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Abstract 

Antimicrobial resistance (AMR) is one of the principle public health problems 
in the 21st century, threatening the available treatment strategies for bacterial 
infections. Here, we present a human protein-lipid complex, HAMLET 
(human alpha-lactalbumin made lethal to tumor cells) purified from human 
milk as a potential therapeutic agent which has both tumoricidal and 
bactericidal activity.  HAMLET’s anti-bacterial activity is selective, against 
respiratory pathogens with highest activity seen in Streptococcus pneumoniae 
(the pneumococcus). HAMLET-induced bacterial death was shown to require 
membrane depolarization and rupture by a sodium-dependent influx of 
calcium, interference with glycolysis and activation of kinases. In this thesis, 
to understand the role of HAMLET as a future therapeutic agent, we studied 
HAMLET-induced targets and pathways involved in pneumococcal death and 
host immunomodulatory effects, which can provide us with information about 
future potential bacterial targets and alternative treatment strategies. 
Additionally, to understand pneumococcal pathogenesis, we studied 
metabolism and biofilm formation in pneumococci with different niche-
associated sugars (like galactose). In paper I, we observed that HAMLET 
results in inhibition of glycolysis and energy production in the cells. In paper 
II, we studied the interaction between HAMLET’s bacterial targets and 
observed that pneumococcal targets of HAMLET are either directly or 
indirectly related. In paper III, we observed that HAMLET induces 
immunomodulatory effects resulting in functional changes of monocyte-
derived macrophages and dendritic cells. In paper IV, we observed that 
pneumococci grow slower and are less metabolically active in both planktonic 
and biofilm bacteria in the presence of galactose compared to glucose. Further, 
we show that galactose-grown bacteria disperse (spread) less in response to 
febrile temperature compared to glucose-grown bacteria. Overall, the results 
from this thesis suggest that HAMLET has dual anti-bacterial roles: first by 
directly killing bacteria and second by stimulating immune responses to 
eliminate bacteria. Additionally, in the presence of galactose pneumococcal 
growth and metabolism is slow, suggesting a role in bacterial pathogenesis (in 
vitro). 
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Introduction 

Bacterial infections are one of the major causes of morbidity and mortality 
worldwide in all age groups. Antibiotics as a treatment strategy is known to be 
very effective in controlling infections. However, high consumption of 
antibiotics has led to an evolutionary pressure of bacteria to develop and spread 
resistance, which has endangered the efficacy of antibiotics and increased the 
threat of antimicrobial resistance (AMR) [1]. AMR is a condition in which the 
bacteria causing infection(s) become resistant to the antibiotics used for 
treatment. Antibiotic resistant and/or multi-drug resistant (MDR) bacteria 
cause approximately 33,000 deaths in the European Union and 35,000 deaths 
in the USA each year [2], with a global estimate of 1.27 million deaths annually 
(in 2019) [3-5]. These deaths are expected to increase to 10 million by 2050, 
world-wide [6]. WHO published a list of 12 bacterial species posing a threat 
to human health as ‘priority pathogens’ (including Streptococcus pneumoniae) 
to guide and promote research and development of new antibiotics or 
alternative treatment strategies [7]. In this thesis, we used a purified protein-
lipid complex from human milk, HAMLET, (human alpha-lactalbumin made 
lethal to tumor cells) which has been shown to have both tumoricidal and 
bactericidal properties [8, 9]. HAMLET’s bactericidal activity is more 
effective against respiratory pathogens and uses novel death pathways [9, 10]. 
It has its highest activity against Streptococcus pneumoniae (the 
pneumococcus). We therefore chose pneumococci as a model organism and 
studied key molecules and mechanisms involved in HAMLET-induced 
pneumococcal death and host immunomodulatory effects. Further, to better 
understand pneumococcal pathogenesis we investigated differences of niche-
associated carbon sources on pneumococcal biofilm formation and 
metabolism. Altogether, this thesis is an attempt to provide an improved 
understanding of the antibacterial activity and immunomodulatory effects of 
HAMLET and of pneumococcal pathogenesis, to identify future novel targets 
for antimicrobial therapy. 
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Antimicrobial resistance 

Antimicrobial resistance (AMR) is one of the principal public health problems 
of the 21st century, threatening the available treatment strategies for present 
bacterial infections [4]. The problem of AMR is a major concern, especially 
due to the increasing antibiotic resistance in bacteria that resulted in an 
estimated 1.27 million deaths globally in 2019 [4, 5]. The modern era of 
antibiotics against bacterial infections started after the discovery of penicillin 
by Sir Alexander Fleming in 1928 [11, 12]. Since then, antibiotics use to treat 
bacterial infections has saved many lives [13]. However, the issue of AMR 
was already highlighted by Alexander Fleming in his Noble prize acceptance 
speech, where he suggested caution in the use of penicillin and antimicrobial 
drugs for the subsequent ability of bacteria to develop resistance. Antibiotic 
resistance was first reported in the 1930s (sulfonamide resistance) [14]. Since 
then, the trend has continued with bacteria rapidly becoming resistant to new 
antibiotics together with increased spread of resistance. The WHO,  in  2014,  
highlighted the problem of AMR with a report stating that it is a serious and 
growing threat if not addressed would lead us entering into a post-antibiotic 
era [6].In 2017, the WHO listed several organisms, based on their high 
incidence of resistance and global burden of diseases were considered 
especially threatening to human health. [7]. These reports have spurred more 
research on epidemiology and alternative treatment strategies.  

AMR is a set of processes whereby bacteria become resistant to antimicrobial 
drugs, by either acquiring resistance genes from other organisms (by horizontal 
gene transfer; the process of exchanging genetic information among 
organisms) or by evolving mechanisms to overcome the action of antimicrobial 
compounds. The resistance of bacteria can be divided into intrinsic, 
extrinsic/acquired or adaptive resistance. Intrinsic resistance is an evolutionary 
trait specific to bacterial species and gives bacteria the ability to resist the 
action of antibiotics  [15]. It occurs in bacteria naturally due to the absence of 
drug targets, due to enzymatic degradation of drugs used for the treatment, or 
due to bacteria extruding the antibiotics physiologically by using efflux pumps 
[16]. Acquired resistance is the ability of bacteria to resist the activity of 
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antibiotics which were previously effective. It occurs due to genetic changes 
through mutations within bacteria or due to exchange of genes among bacteria 
in a niche (host site) by horizontal gene transfer or by conjugation [17]. 
Adaptive resistance is the ability of bacteria to adapt to the environment or to 
antibiotics temporarily for survival without acquiring mutations [18]. Adaptive 
resistance is acquired by bacteria in response to niche conditions like stress, 
pH changes, concentrations of ions, availability of nutrients or sublethal 
concentrations of antibiotics used for the treatment [19]. In practice, it is 
important to have knowledge about the resistance of bacteria (intrinsic as well 
as the ability of specific organisms to acquire or adapt) to avoid incorrect 
therapy and to decrease the risk of resistance development and spread. Some 
of the causes of antibiotic resistance are overuse or inappropriate prescription 
and inconsistence of patients to follow the course of antibiotic therapy.  

Overall, to minimise the difficulties of antibiotic resistance, alternative 
treatment strategies, such as novel antibiotics against novel bacterial targets, 
efflux pump inhibitors, immunomodulators and adjuvants as well as antibiotic- 
sensitizers are urgently needed.  
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Human milk 

Human milk is widely acknowledged as the normative and ideal source of 
nutrition for healthy growth and development of infants [20]. For this reason, 
the WHO and United Nations Children’s Fund recommend breastfeeding 
infants for at least 6 months and to continue up to 2 years of age [21, 22]. The 
nutritional content of human milk continuously changes according to the needs 
of the growing infant [23]. During the lactation period, the milk evolves into 3 
kinds of milk: colostrum, transitional and mature milk. The first milk produced 
is the colostrum. It contains higher concentrations of whey proteins with a 
lower fat content compared to mature milk [24, 25]. Transitional milk is a 
produced 2-5 days after childbirth and by the end of 6 weeks postpartum, the 
milk is considered fully mature. 

The nutritional components of human milk are diverse and depend on the 
maternal diet [26]. Human milk contains about 87-88% of water and it has 124 
g/L solid components as macronutrients, such as approximately 60-70 g/L of 
carbohydrates, 35-40 g/L of lipids and 8-10 g/L of protein [27, 28]. 

Carbohydrates are the major macronutrient in human milk. In infants, 
carbohydrate are ingested and digested in the form of lactose, with the help of 
an enzyme called lactase-phlorizin hydrolase (lactase) [28]. Apart from 
lactose, the milk contains human milk oligosaccharides (HMO’s) and 
glycoproteins. Nutritionally, they are of minimal use but help to promote a 
bifidobacterial-dominated gut microbiota, which protects infants from 
diarrheal disease and promote physiological development and function of the 
gastrointestinal tract [29, 30]. Carbohydrates are also known for having the 
ability to block adherence of pathogens to mucosal epithelial cells. [31, 32]. 

Lipids are the second most abundant macronutrients in human milk and a 
major source of energy for infants, and consists of approximately 85% 
saturated (palmitic acid and stearic acid) and monounsaturated (oleic acid) 
fatty acids with the rest being poly-unsaturated fatty acids (linoleic acid, alpha-
linolenic acid, eicosapentaenoic acid (EPA), arachidonic acid (AA) and 
docosahexaenoic acid (DHA)) [33]. The latter fatty acids also play a key role 
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in the development of the central nervous system, in inflammatory responses, 
and immune function of infants. 

Whey and casein are the major protein groups in human milk. The ratio of 
casein: whey varies over the course of the lactation period and becomes 40:60 
in mature human milk. Casein, in human milk exists in alpha, beta and gamma 
forms and aids in intestinal motility and absorption of calcium in infants [34]. 
Alpha-lactalbumin (ALA), lactoferrin, lysozyme, and secretory IgA are 
representative of whey proteins. During initiation of lactation, ALA plays a 
key role in milk production [35]. It alters the substrate specificity of 
galactosyltransferase from N-acetylglucosamine on glycoproteins in the Golgi 
apparatus to free glucose, thus forming lactose [36]. In infants, ALA is an 
important source for supply of essential amino acids (like tryptophan, lysine, 
cysteine and others) and absorption of minerals [36]. In contrast, IgA, 
lactoferrin and lysozyme protect the infant’s intestinal mucosa against 
pathogenic bacteria and inhibits spread of pathogens [36].  

Thus, in addition to provide bioactive factors for optimal development of the 
infant, human milk also has several antibacterial effects including blocking 
adherence and spread of pathogenic bacteria consequently reducing the risk of 
infectious diseases [23, 37, 38].  

 

 

.  
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HAMLET  

HAMLET is a complex of partially unfolded alpha-lactalbumin (ALA) and 
human specific oleic acid (OA, C18:1:9 cis) [39], which kills tumour cells and 
bacterial cells but not healthy differentiated cells. It was discovered by 
serendipity while investigating anti-adhesive properties of milk against upper 
respiratory pathogens (Streptococcus pneumoniae and Haemophilus 
influenzae) [40, 41]. In this anti-adherence experiment, bacteria were 
preincubated with fractions of human milk and then added to either primary 
epithelial cells or cancer cells (the lung cancer cell line A549). Interestingly, 
bacteria failed to bind to either cell type, however the casein fraction of milk 
killed cancer cells while healthy cells were spared. 

Initial analysis revealed that the casein fraction from human milk, obtained 
after low pH precipitation, inhibited the adhesion of bacteria and efficiently 
killed the cancer cells [40, 41]. To isolate the active component, casein was 
fractionated by ion exchange chromatography and the eluted peaks were 
analysed. The peaks eluted did not show any cytotoxic activity, suggesting that 
the active component was still bound to the column due to high affinity towards 
the matrix. However, after elution with high salt buffer (1M NaCl) an 
additional peak was eluted that had cytotoxic activity. This peak contained 
ALA as its major component. Due to its oligomeric nature on SDS-PAGE it 
was named multimeric form of ALA (MAL). As native ALA did not have 
cytotoxic activity, it was hypothesized that the oligomeric nature of the eluted 
fraction was the reason for its cytotoxicity. [41, 42]. 

Later, after additional characterization, the active component in HAMLET was 
found to consist of partially unfolded ALA and oleic acid (OA). HAMLET is 
now produced by an FPLC (fast liquid protein chromatography as described in 
methods section) method by exposing partially unfolded ALA to a column 
conditioned with human specific OA (Figure 1).  
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Figure 1. Schematic representation of the HAMLET complex formation. Structure of native ALA was 
obtained from the Protein Data Bank (PDB), acess number 1A4V (Created in BioRender). 

Cellular targets of HAMLET  
HAMLET has both tumoricidal and bactericidal activities [41, 43]. In cancer 
cells, HAMLET’s activity has been investigated in some detail and HAMLET 
is known to induce an apoptosis-like death in cancer cells from 40 different 
origins, sparing healthy cells [8, 41, 44]. 

HAMLET also kills bacteria, by a mechanism resembling the apoptosis-like 
death in cancer cells [9]. HAMLET’s bactericidal activity is selective against 
respiratory pathogens with its highest activity seen against Streptococcus 
pneumoniae, but HAMLET also has bactericidal activity against other 
Streptococci, Haemophilus influenzae and Mycobacterium tuberculosis [45, 
46]. HAMLET-induced death in bacteria is not universal as it does not have 
activity against other Gram-positive organisms such as Staphylococci, 
Enterococci and Bacillus subtilis or Gram-negative bacteria such as 
Escherichia coli, Klesbsiella pneumoniae and Pseudomonas aeruginosa [9]. 

Besides its direct bactericidal activity, HAMLET has been shown to sensitize 
a large number of antibiotic resistant bacterial species to a wide range of 
antibiotics [43, 47, 48]. This potentiation effect to antibiotics is partially due 
to increased association of antibiotics with the bacteria [49]. HAMLET’s 
potentiation effect has also been seen in HAMLET-resistant bacteria such as 
Staphylococcus aureus, Acinetobacter baumannii, and Moraxella catarrhalis 
[43, 48, 49]. 
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In cancer cells, HAMLET causes influx of calcium and targets the 
mitochondria to initiate inner membrane depolarization and rupture, resulting 
in cancer cell death [44, 50]. HAMLET also induces calcium influx in healthy 
or differentiated eukaryotic cells without causing death [51, 52]. Similarly, in 
pneumococci it causes a dose-dependent depolarization of the plasma 
membrane, which induce a sodium-dependent influx of calcium leading to 
subsequent bacterial death [9]. Inhibitors of ion channels, like ruthenium red 
(calcium channel inhibitor) and amiloride (sodium channel inhibitor), rescue 
bacteria from the HAMLET-induced bactericidal activity, suggesting an 
import role of ion fluxes in HAMLET-induced bacterial death [47, 53].  

Previous studies show that in cancer cells, HAMLET interferes with glycolysis 
by binding and inhibiting the activity of hexokinase contributing in the death 
of cancer cells [54]. Further, similar to HAMLET-activation of mitogen- 
activated  protein kinases (MAPKs) (are serine/threonine kinases in 
eukaryotes) during its tumoricidal activity [53], in bacteria HAMLET’s 
activity involves activation of a serine/threonine kinase [43]. Altogether, this 
suggest that HAMLET-induced mechanisms are different from traditional 
antibiotics or anticancer drugs. In bacteria, HAMLET-induced death involves 
multiple targets and pathways, which would make it more difficult for bacteria 
to develop resistance.  
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Streptococcus pneumoniae 

Streptococcus pneumoniae is a Gram-positive, spherical aerotolerant 
bacterium from the genus Streptococcus, usually found in pairs (diplococci). 
Pneumococci are classified based on their virulence-related polysaccharide 
capsule (the outer envelope of bacteria) and so far, 101 serotypes have been 
identified [55]. In the last century, the pneumococcus has been the subject of 
many investigations and provided insights into basic principles of bacterial 
biology. Some of the important discoveries resulting from investigations on 
pneumococci includes the discovery of the Gram-staining technique (for 
identification and classification of bacteria), identifying the capability of 
bacteria to take up and incorporate exogenous DNA from the environment 
(natural transformation/competence) [56, 57], and the concept of development 
of drug resistance in bacteria [58].  

The pneumococcus has been, and continues to be among the major causes of 
mortality and morbidity globally, causing a greater number of deaths compared 
to most other infectious agents [59]. Children under the age of 5 years, elderly, 
and immunocompromised individuals are all risk groups for diseases caused 
by pneumococci [60]. In 2016, pneumococcal lower respiratory infections 
caused approximately 650,000 deaths in children under the age of 5 years and 
approximately 1.1 million deaths in adults over the age of 70 years world-wide 
[61]. Interestingly, this study also suggests that sociodemographic factors such 
as malnutrition, accessibility to primary health care and hygiene play major 
roles in the mortality rates of children, however these factors do not seem to 
have a similar effect on adult mortality rates [61].  

Pneumococci are part of the normal flora and common colonizers of the human 
upper respiratory tract. Approximately 27-65% of healthy children and more than 
10% of healthy adults carry the pneumococcus as a commensal in the 
nasopharynx [62, 63]. A commensal is an organism that lives in the host 
symbiotically without causing harm [64]. However, the pneumococcus is also 
considered a pathobiont, an organism which under normal circumstance causes 
no harm but has pathogenic potential to cause disease under specific conditions 
(like those caused by environmental changes due to e.g., viral co-infections) [65].  
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As a pathobiont in the upper respiratory tract, the pneumococcus can, when 
disseminated to other sites in the host, cause upper and lower respiratory tract 
infections such as otitis media, pneumonia, chronic obstructive pulmonary 
disease (COPD), sepsis or meningitis [66]. Pneumococci are commonly 
observed during co-infections (infection by multiple pathogens) with other 
respiratory pathogens, such as respiratory syncytial virus (RSV), influenza A 
virus (IAV) or severe acute respiratory syndrome virus (SARS-CoV-2) leading 
to higher mortality or morbidity of such patients [67, 68]. Among these, 
pneumococcal co-infection with IAV is the most well documented, with IAV 
-induced secondary pneumococcal pneumonia causing close to 50 million 
deaths in  1918 (Spanish flu pandemic) [69]. The currently available literature 
on coronavirus diseases-2019 (COVID-19) suggests that the bacterial co-
infections in COVID-19 diagnosed patients range from 0-40 % and that the 
most commonly isolated bacteria from these patients are pneumococci [70-72].  

Diagnosis 
Diagnostic methods used to detect infections are important for risk 
stratification and/or evaluation of the patients. Chest radiography or computer 
tomography (CT) are used to check patterns of infiltration in the lungs during 
pneumonia (which could be caused by several organisms) and these methods 
could crudely suggest which pathogens (virus versus bacteria) would be the 
potential cause. However, X-rays are mostly used in pneumonia for 
confirmation [73]. CT has higher sensitivity and accuracy compared to 
radiography. However, due to high cost and radiation exposure this technique 
is scarcely used for diagnostic purposes. 

There is currently no gold standard method for identification of pneumococci 
and improved diagnostic methods are needed [74]. Classically, diagnosis of 
pneumococcal infections is done by growing bacteria from suitable patient 
samples. The patient samples are acquired by collecting respiratory secretions 
(sputum, bronchoalveolar lavage or pleural fluid), blood or urine [75]. In 
laboratories and clinical setups, pneumococci are identified through detection 
by visualizing morphological characters (as mentioned below), molecular 
detection and by antigen-based detection methods [76].  

Pneumococci have specific phenotypical characteristics such as catalase 
negativity, α-haemolysis after growth on blood agar, optochin susceptibility 
and bile solubility, which are used to assess the cultured bacteria from patient 
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samples. The optochin susceptibility test was a mainstay for the identification 
of pneumococci until the identification of optochin resistant pneumococcal 
strains. Optochin is a chemical which inhibits the pneumococcal F (0)F(1)-H+-
ATPase that is involved in maintaining the proton motive force in both 
pneumococci and viridans streptococci. However, optochin-sensitivity is a 
characteristic not seen in other viridans streptococci [77]. Very few 
pneumococcal isolates have been found to be insoluble in bile (a phenotype 
due to the presence of major autolytic enzyme LytA) [78]. Thus the bile 
solubility test is more specific than optochin susceptibility test [79]. 

Molecular detection of pneumococci is primarily done by polymerase chain 
reaction (PCR) and quantitative polymerase chain reaction (q-PCR). Genes 
that are unique to pneumococci, like pneumolysin (ply), autolysin (lytA), 
pneumococcal surface adhesin (psaA), capsular polysaccharide (cpsA) or the 
spn 9802 gene fragment are used in these PCR-based methods [74, 80, 81]. 
The pneumolysin gene was first used for detection of pneumococci by PCR-
based methods [82] and thought to be a specific biomarker for identification. 
Later studies have shown the presence of ply in non-pneumococcal viridans 
streptococci (S. pseudopneumoniae and S. mitits) [83, 84], which lead to use 
of psaA, lytA and spn9802 genes as biomarkers for the detection of 
pneumococcal infections. 

The antigen-based method is an indirect method for detecting pneumococci 
from urine samples of the patients. This test is based on detecting the C 
polysaccharide (CPS) cell wall antigen, common to all pneumococcal isolates 
[85, 86]. However, the assay has limitations, such as cross-reaction with 
closely related streptococci and the fact that antigen can be detected for weeks 
after onset of the disease, making it less accurate for detecting acute disease. 
Therefore, this test is usually used in combination with other diagnostic 
methods [87, 88]. 

Treatment and prevention 
Antibiotic therapy is the first line of treatment against bacterial infections. 
Since the discovery of antibiotics, the mortality and morbidity of bacterial 
infections have reduced noticeably [89]. Treatment of pneumococcal 
infections with antibiotics varies based on age, severity of the infection and 
geographical location. For example, patients diagnosed with low-risk 
community-acquired pneumonia (CAP) without comorbidities are prescribed 
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with beta-lactam antibiotics (amoxicillin) or tetracyclines (doxycyckine) and 
macrolide monotherapy (erythromycin) are used as last choice [90]. 
Fluoroquinolones (moxifloxacin or gemifloxacin) are used in high-risk CAP 
patients and in severe cases dual therapy with beta-lactams (penicillin and 
cephalosporins) plus macrolides (erythromycin) or fluoroquinolones are used 
[91]. In hospital-acquired pneumonia (HAP), cephalosporines (clindamycin) 
are used, if the patient has allergies to beta-lactams. In more severe cases 
combination therapy is used (more potent beta-lactams or clindamycin) [92] . 

Vaccines are used as a preventive strategy to reduce the incidence of diseases 
with pneumococci. Immunogenic proteins and/or the capsular polysaccharides 
found on the pneumococcal surface, which act as antigens in the host, are the 
basis for vaccine development [93]. Polysaccharide and conjugate vaccines are 
two types of pneumococcal vaccines used to date. The current polysaccharide 
vaccine was developed in 1983 and contains 23 capsule serotypes (PPSV23) 
that covered 80-90% of the infective serotypes of pneumococci at the time 
[93]. However, children under the age of 2 years failed to mount efficient 
immune protection, which led to the development of pneumococcal conjugate 
vaccines [94]. Conjugate vaccine is a type of subunit vaccine, which combines 
a weak antigen with strong antigen [95].  In order to overcome the drawback 
of PSV23 and to protect children under the age of 2, the 7-valent pneumococcal 
conjugate vaccine (PCV 7) was developed in 2000 [96]. It was introduced 
based on the seven most frequent serotypes associated with invasive disease at 
the time and included serotypes 4, 6B, 9V, 14, 18C, 19F, and 23F [97]. 
Introduction of PCV7, had major impact on reducing the incidence of invasive 
pneumococcal disease, decreasing the hospitalization of both children and 
elderly with pneumonia. Additionally, it also had an effect on colonization and 
reduced the carriage rates of vaccine serotypes [98, 99]. The second 
polysaccharide conjugate vaccine 10 (PCV 10) was developed to include 
additional serotypes lent in from other countries than US and Europe such as 
serotype 1, 5 and 7F and was introduced in 2009. A year later, the 13-valent 
polysaccharide conjugate vaccine (PCV 13) with the serotypes from PCV10 as 
well as the additional serotypes 3, 6A and 19A, was developed to protect 
against a wider range of pneumococcal serotypes that were problematic or 
emerging [96, 100]. Currently, the 10 and 13-valent pneumococcal conjugate 
vaccines are in use and pneumococcal 15-valent and 20-valent conjugate 
vaccines are in the pipeline [101].  

Although immunization with PCV vaccines protects against pneumococcal 
infections, long-term use of these vaccines has been shown to impact the 
nasopharyngeal microbial flora by a process called serotype replacement and 
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serotype switching [102, 103]. An increase of non-vaccine type (NVT) 
pneumococci due to a decrease in vaccine type (VT) pneumococci post 
vaccination is leading to serotype replacement [104]. Additionally, prior 
vaccine serotypes are switching their capsules thereby becoming NVTs and 
can be more virulent again based on their complete genetic background, this 
process is called serotype switching and is a result of vaccine-induced selective 
pressure [105]. However, with the growing emergence of antibiotic resistant 
pneumococci, the antibiotics efficacy is also dropping, suggesting the need for 
novel antibiotics, vaccines, antimicrobial therapeutics or alternative treatment 
strategies.  
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Pneumococcal host interactions 

Pathogenesis is the mode of disease/infection development. The pathogenesis 
of pneumococcal infection is a complex interplay between pneumococcal 
virulence factors (proteins/enzymes of the bacteria), host factors (physical 
barriers and immune responses) and the normal flora present in the niche. In 
the human upper respiratory tract, the nasopharynx is the primary ecological 
niche of pneumococci [106]. There, they firmly attach to the mucosal surfaces 
of epithelial cells, colonize and may replicate or form biofilms without 
affecting the host. However, in response to changes in the niche, due to e.g., 
viral co-infections and altered host immunity, the bacteria may spread to 
distant regions of the host resulting in invasive infections. 

Nasopharyngeal Colonization and Biofilms 
Colonization (i.e., carriage) is a state where micro-organisms enter various 
niches of a host, grow and multiply/replicate without causing harm to the host. 
For many organisms, including pneumococci, carriage is a prerequisite for 
subsequent progression to disease [107]. Colonization serves as a reservoir for 
bacteria and source of spread between hosts [107], suggesting that 
pneumococci are transmitted by respiratory aerosols (droplets containing 
bacteria) or direct contact with the carriers. Pneumococcal colonization may 
occur with one or multiple strains [108, 109].  

The initial step of colonization involves adherence of pneumococci to the 
epithelial cell surfaces of the host’s upper respiratory tract. To be able to adhere 
to the host nasopharyngeal epithelial surface, pneumococci need to adopt to 
host immune factors and/or other niche-associated resident microbial flora of 
the upper respiratory tract [110]. Once attached to the epithelial lining 
pneumococci continue to establish colonization through formation of biofilms. 
Biofilms were first observed in the 1970s when Nils Hoiby observed a link 
between infection and bacterial aggregates in cystic fibrosis patients [111]. 
Since its observation, the definition of biofilms has evolved and is now defined 
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by some as ‘complex  bacterial communities, attached to surfaces and 
embedded in own extracellular matrix’ [112]. Biofilms protect bacteria from 
shear forces, environmental stressors or host immune responses [113]. 
Moreover, biofilm bacteria are less susceptible to antibiotics and show 
different phenotypes and gene expression patterns during growth compared to 
planktonic bacteria (free-living bacteria) [114].  

In the upper respiratory tract, biofilms from many bacterial species are present 
including the pneumococcus [115, 116]. Pneumococcal biofilm bacteria are 
less virulent, and are more adapted for colonization and persistence in the host 
compared to planktonic bacteria [117]. Pneumococcal biofilm formation can 
be divided into 3 stages namely initial attachment, aggregation and matrix 
maturation [118]. The mature matrix contains extracellular DNA (eDNA), 
proteins and carbohydrates. These components constitute 90% of the total 
biomass of the biofilm and helps in linking pneumococcal cells together and 
attach them to the host cell in a mesh [119]. The eDNA in the biofilm matrix 
also helps in increasing genetic and phenotypical variation in biofilm bacteria 
by horizontal transfer and spread of antibiotic resistance and other traits among 
them [120]. 

Host-Immune responses 
We are repeatedly exposed to micro-organisms (pathogenic and non-
pathogenic) present in the environment. The ability of these organisms to 
invade into the body and to cause infections depends on both the pathogenicity 
of the organism and the integrity of the host immune system. The immune 
system is an interactive network of barriers (skin and mucosa), lymphoid 
organs (such as the bone marrow, spleen, thymus, and lymph nodes), cells, 
humoral factors (soluble immune factors which respond to danger in the body), 
and cytokines (cell-to-cell communication signals). The important functions of 
the immune system are to recognize and neutralize danger from the external 
environment (e.g., infectious agents), to provide protection from diseases 
developing inside the body (e.g., cancer), and to maintain normal homeostasis 
(balance) of the body [121]. Based on the speed and specificity in responding 
to threats, the immune system can be divided into innate immunity or adaptive 
immunity.  

Innate immunity is the host’s first line of defence [122]. The elements of the 
host innate immune system include natural physical barriers (skin and 
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mucosa), phagocytic cell enzymes (e.g., lysozyme), phagocytes (like 
neutrophils, monocytes and macrophages), serum proteins (such as 
complement proteins, lectins and ficolins) and antimicrobial peptides (e.g.,  
defensins and cathelicidins) [123]. It recognizes threats with the help of pattern 
recognition receptors (PRRs, such as Toll-like receptors and complement 
regulatory receptors) present on/inside the host cell. These receptors 
distinguish molecular signatures on for example pathogens through pathogen 
associated molecular patterns (PAMPs), such as polysaccharides, glycolipids, 
lipoproteins, nucleotides and nucleic acids. They also recognize damage 
associated molecular patterns (DAMPs), such as endogenous alarmins 
signaling danger [123-125].  

Within minutes of entering the nasal cavity of the host, pneumococci encounter 
mucus secretions. To evade initial clearance by mucus, pneumococci express 
polysaccharide capsule. Almost all capsular polysaccharides expressed by 
pneumococci are negatively charged, which increases their repulsion to mucins 
and allow them to translocate across the negatively charged mucus layer [126]. 
During translocation of pneumococci across the mucus layer, the ciliary 
beating of epithelial cells is inhibited by the expression and release of the pore 
forming toxin pneumolysin [127]. Pneumococci also express exoglycosidases 
(NanA, NanB, and NanC) which can cleave sialic acid on mucins and alter 
mucins adhesive properties [128]. Pneumococci escape antibacterial molecules 
secreted in mucous secretions, such as the lysozyme cell wall degradation with 
the help of genes PgdA (peptidoglycan N-acetylglucosamine deacetylase) and 
Adr (O-Aacetyl-transferase) and overcomes lactoferrin (sequester free iron on 
microorganisms) activity to escape from lactoferrin induced bactericidal 
activity with the help of PspA (pneumococcal surface protein A). [129, 130]. 

The adaptive immune system cooperates with the innate immune system in the 
elimination of pathogens. It consists of antigen presenting cells (APCs), T cells 
and B cells [131].The primary functions of the adaptive immune system are to 
recognize ‘non-self’ antigens, distinguishing them from self-antigens, 
generating immunologic mechanisms to eliminate pathogens, and developing 
an immunologic memory that will facilitate the elimination of the pathogen in 
case of reoccurring infections [132].  

Monocytes/macrophages together with dendritic cells (DCs) are APCs that 
play important roles in both innate and adaptive immunity. During 
inflammation, monocytes circulating in the blood reach the site of infection, 
transform into macrophages and exhibit phagocytosis (the process of ingesting 
and eliminating pathogens/cell debris or dead host cells) [133]. Depending on 
their biological functions, macrophages can be divided into classically 
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activated type-1 macrophages (M1) or alternatively activated type-2 (M2) 
macrophages. M1 macrophages are induced by microbial products (e.g., 
bacterial lipopolysaccharides; LPS) and cytokines (interferon gamma; IFN-γ 
or tumor necrosis factor-alpha; TNF-α) [134]. Once activated, they up-regulate 
the expression and production of pro-inflammatory cytokines like interleukins 
(IL-23/12, IL-6, IL-1), macrophage inflammatory protein-1 (MIP-1α), 
monocyte chemoattractant protein-1 (MCP-1) and major histocompatibility 
complex (MHC) class II [135, 136]. M2 macrophages, on the other hand, are 
induced by numerous inflammatory mediators, for example after recognition 
of Immunoglobulin G (IgG) complex and TLR-ligands. Once activated, they 
produce anti-inflammatory cytokines (like IL-10) and are involved in tissue 
rebuilding and resolution of the inflammation process [135, 136]. It should, 
however, be emphasized that the M1/M2 nomenclature is oversimplified and 
there are as many macrophage phenotypes as there are stimuli [137].  

Similar to monocytes/macrophages, immature DCs phagocytose antigens, but 
are upon maturation more efficient in activating T-cell responses and induce 
cell-mediated immunity against pathogens.  

Toll-like receptors, like TLR2, TLR4 and TLR9 on epithelial cell surfaces are 
involved during pneumococcal infections. TLR2 recognizes lipoteichoic acids 
(LTAs) present in the cell wall of pneumococci [138]. TLR4 recognizes 
pneumolysin, which regulates the complement system and inhibits 
phagocytosis by the innate immune system [139]. It is also a pro-inflammatory 
toxin, which damage the host cells and helps in the spread of bacteria between 
hosts [140, 141]. TLR9 binds to the bacterial CpG motif on DNA and activate 
innate immune responses to eliminate them [142]. Additionally, TLR2 and 
TLR4 together activate macrophages during pneumococcal infections which 
further leads to phagocytosis [143]. 

During pneumococcal infections, immunoglobulin A (IgA) antibody is 
detected on mucosal surfaces and saliva, which helps the host in initiating 
opsonin-mediated phagocytosis. However, pneumococci have the ability to 
cleave IgA, by expressing a protease called IgA1 protease, which facilitate 
escape from phagocytosis [110, 144]. 
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Pneumococcal metabolism 

The human pharynx can harbour more than 700 different microbial species 
[145]. In the nasopharyngeal niche, pneumococci have to compete with the 
residing microbiota for nutrients, resist host inhibitory metabolites, and face 
the host defence system to propagate and colonize [146]. To overcome this 
hostile environment, pneumococci express virulence factors to facilitate 
colonization, which are highly regulated by the availability of nutrients and 
host metabolic signals in the niche [147]. Thus, metabolism, nutrition supply 
and niche space play a key role in bacterial colonization and pathogenesis.  

In order to produce energy, pneumococci utilize easily available carbohydrates 
in a niche, such as glucose. However, in the nasopharynx the concentration of 
free glucose (that is commonly the dominant carbohydrate source in culture 
media) is low [148]. So, in order to successfully live in this niche pneumococci, 
possess multiple transporters and pathways for nutrient acquisition and use.  
This is exemplified by the expression of glycosyl-hydrolases (enzymes which 
cleave carbohydrates from N-linked glycan structures present on mucins) that 
degrade complex polysaccharides available in the niche into easily utilizable 
oligo-, di- and monosaccharide forms, such as sialic acid, hyaluronic acid, N-
acetyl glucosamine and galactose [149, 150]. These carbohydrate acquisition 
mechanisms to use different sugar sources give pneumococci a selective 
advantage over other bacterial species present in the niche. 

Carbohydrate uptake systems in pneumococci are not well characterized. 
However, studies predict that there are approximately 21 phosphotransferase 
systems (PTS) and 8 ATP (Adenosine tri phosphate) binding cassettes (ABC) 
that import at least 32 distinct carbohydrates used for pneumococcal 
metabolism [151]. The available mono- and disaccharide carbohydrates in the 
niche are transported through PTS, where they are phosphorylated with the 
help of a cascade involving enzyme I (EI) and a histidine-containing 
phosphocarrier protein (HPr) and using phosphoenolpyruvate (PEP) as a 
phosphate source [152]. These phosphorylated carbohydrates are then used in 
central metabolic pathways [152]. On the other hand, the carbohydrates 
transported through ABC transporters are not modified. ABC transporters 
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utilizes more bacterial energy than PTS transporters, to modify carbohydrates 
once intracellular [153]. 

The pneumococcus has multiple carbohydrate metabolism pathways (Figure 
2) and lacks a TCA (tricarboxylic acid) cycle and oxidative phosphorylation. 
The carbohydrates imported into the cells by PTS or ABC transporters are 
converted to generate ATP primarily by glycolysis (the Embden-Meyerhof-
Parnas (EMP) pathway) present in all streptococcal species [152]. The end 
product of this pathway is pyruvate, yielding a net 2 ATP and 2 NADH 
molecules for each glucose molecule. Further, NADH is oxidised into NAD to 
maintain the redox balance by conversion of pyruvate into lactate by lactate 
dehydrogenase.  

Overall, the knowledge of bacterial metabolism in the niche microenvironment 
is crucial for understanding pathogenicity of infections and development of 
novel control strategies. 

 
Figure 2. Schematic representation of selected sugars and their pathways in pneumococci. P-addition of 
phosphate, DHAP-Dihydroxyacetone Phosphate, Gal-galactose, Glu-Glucose, CiaR-two-component response 
regulator, ManNAc- N-Acetyl-D-mannosamine, ManNGc- N-Glycolyl-D-mannosamine, AcPh- acyl carrier protein 
phosphodiesterase. (Created in BioRender). 
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Present investigations 

Aims 
To identify novel potential targets in pneumococcal infections, and understand 
the role of HAMLET as an alternative treatment strategy, we divided the 
objective of this thesis in two parts: 

1. To investigate the antibacterial and immunomodulatory properties of 
HAMLET.  

2. To investigate the effects of niche-associated carbon sources on 
pneumococcal metabolism and its role in pneumococcal biofilm 
formation and dispersal. 

The specific aims were: 

I. To study HAMLET-induced glycolytic targets in pneumococci. 

II. To study how known HAMLET-induced bacterial targets and 
pathways interact during HAMLET-induced death. 

III. To investigate HAMLET’s immunomodulatory effects using human 
myeloid cells.  

IV. To study the role of niche-associated carbon sources in pneumococcal 
biofilm formation and metabolism.  
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Methods 

HAMLET Production 
HAMLET is produced by ion exchange chromatography. The production of 
HAMLET involves multiple steps and can be divided into 3 phases. (Figure 
3). Human milk was collected and stored at -20°C prior to use for production 
of the HAMLET complex. 

 
Figure 3. Schematic representation of steps invovled in the HAMLET production. (Created in 
BioRender) 

Purification of human alpha-lactalbumin 
One litre of human milk contains about 2 g of ALA that is purified by 
hydrophobic interaction chromatography (HIC) [154, 155]. First, the collected 
milk is defatted by centrifugation and precipitated with ammonium sulphate to 
remove unwanted proteins. Next, the sample is treated with ethylenediamine 
tetra acetic acid (EDTA) to remove the calcium ions (Ca2+), making ALA 
partially unfolded (apo-ALA) and more hydrophobic. The apo-ALA is then 
passed through a HIC (phenyl sepharose) column, where it tightly binds to the 
matrix. On elution with a buffer containing Ca2+, the partially unfolded ALA 
retains its native conformation, detaches from the column matrix, and is 
collected and used for conversion into HAMLET. 
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Conversion of alpha-lactalbumin into HAMLET 
ALA is converted into the HAMLET complex by ion exchange 
chromatography using an anion exchange Di-ethyl amino ethyl (DEAE) 
matrix. Prior to the conversion, the matrix is pre-conditioned with human milk 
specific oleic acid. To allow interaction with the OA bound to column, the 
purified ALA from the above step is treated with EDTA again to attain partially 
unfolded form (Apo-ALA). When passed through the DEAE column, apo-
ALA binds to matrix-bound OA and the HAMLET complex is eluted with a 
buffer containing high concentrations of salt (sodium chloride) [39].  

Processing  
The obtained HAMLET complex is further subjected to dialysis to remove the 
salt from the anion exchange chromatography elution buffer. Dialysis is done 
using large amount of deionized water at 4ºC. The complex is further subjected 
to lyophilization and stored at -20 ºC until further use. This procedure does not 
affect the stability of the HAMLET complex [156].  

Batch evaluation  
All batches were thoroughly evaluated for potential variability in bactericidal 
activity by performing bacterial viability testing. Bacteria are treated with 
various concentrations of a HAMLET batch and incubated for 1 h. Further, 
viability of the bacteria is tested by plating serial dilutions of the HAMLET-
treated culture on blood agar plates and counting CFU/ml (method described 
in paper I). Batch-to-batch variation depends on number of OA molecules 
bound to ALA when passed through the column in final step of HAMLET 
production. The concentrations of pure OA or ALA corresponding to the levels 
in the respective HAMLET batch are used as controls in the experiments. 
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Main findings of the thesis 
HAMLET targets glycolysis and inhibits energy production in pneumococci 
(Paper I) 
To investigate HAMLET’s activity on pneumococci, we performed short term 
bactericidal activity assays (time-kill assay), where bacteria were exposed to 
HAMLET for 1 h and viability was assessed by viable plate counts. We 
observed that HAMLET induced dose-dependent pneumococcal death (Figure 
4). ALA alone showed no activity, but OA alone showed dose-dependent 
activity, albeit less activity than HAMLET as a complex. 

As HAMLET targets and interferes with glycolysis in tumour cells [54, 157], 
we hypothesized that HAMLET could have a similar effect in bacteria. To 
investigate HAMLET’s role in glycolysis and ATP production, we measured 
ATP production and lactate secretion and observed that pneumococci produced 
less ATP and lactate in the presence of HAMLET compared to ALA or OA 
alone (Figure 5). Further, to confirm HAMLET’s effect on glycolysis and ATP 
production, we either stimulated glycolysis by addition of high sugar or 
inhibited glycolysis with the inhibitor 2-deoxyglucose. As hypothesized, 
HAMLET had less bactericidal activity in the presence of high sugar and 
displayed a higher activity in the presence of the glycolysis inhibitor. Thus, 
these results suggested that HAMLET’s bactericidal effect on pneumococci is 
dose-dependent, and that HAMLET-induced death is accompanied by 
inhibition of glycolysis and energy production. 

 
Figure 4. Bactericidal Activity of HAMLET, ALA and OA. Dose-dependent death of D39 pneumococci 
exposed to HAMLET complex compared to ALA or OA with concentration quivalent to the concentration present 
in HAMLET complex. (*indicates  p <0.05, *** indicates  p <0.001; ns indicates nonsignifiant) [10]. (Paper I- 
Figure 1). 
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Figure 5. Inhibition of glycolysis and enrgy production. (A) ATP production and (B) lactate secretion 
decreased after addition of  HAMLET complex compared to ALA. (*indicates  p <0.05, *** indicates  p 
<0.001).[10] (Paper I- Figure 3). 
 

HAMLET binds to and inhibits the activity of two central glycolytic 
enzymes in pneumococci (Paper I) 
We next used a proteomic approach to identify potential targets involved in 
HAMLET’s glycolytic inhibition. Two central glycolytic proteins, fructose 
bisphosphate aldolase (FBPA) and glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), were identified as potential HAMLET targets. To 
assesses HAMLET’s interactions with FBPA and GAPDH, we performed 
binding and enzymatic assays with recombinantly produced glycolytic 
proteins. We observed that HAMLET bound to and inhibited the activity of 
both the enzymes. Interestingly, ALA showed similar effects on the glycolytic 
enzymes whereas OA showed no or significantly lower inhibition than 
HAMLET or ALA. However, when we investigated FBPA’s activity in whole 
cells, HAMLET but not ALA or OA inhibited FBPA activity (Figure 6). 
Though, ALA inhibited the activity of recombinantly produced glycolytic 
enzymes in vitro, it showed no effect on FBPA’s activity in whole cells. This 
suggests that HAMLET binds to and inhibits glycolytic enzymes by gaining 
access across the membrane whereas ALA does not pass across the membrane. 
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Figure 6. Inhibition of recombinant and intracellular FBPA activity. (A) Inhibiton of recombinant FBPA 
activity with both HAMLET and ALA in vitro, (B) Inhibiton of FBPA activity in whole cells is onolyl observed with 
HAMLET. (*indicates  p <0.05, *** indicates  p <0.001; ns indicates nonsignifiant). [10] ( Paper I – Figure 5 A 
and 6). 
 

HAMLET-induced energy production and membrane depolarization are 
associated (Paper II) 
Previous studies have shown that HAMLET-induced pneumococcal death is 
also accompanied by membrane depolarization and rupture that requires a 
sodium-dependent calcium influx and activation of a serine/threonine kinase 
[43, 47, 49]. First, to investigate the relationship between HAMLET-induced 
ion transport with energy production in bacteria, we measured depolarization 
and rupture of the plasma membrane in the presence and absence of HAMLET 
and a glycolysis inhibitor (2-deoyglucose). HAMLET stimulated a dose-
dependent depolarization and rupture that was higher in the presence of the 
glycolysis inhibitor, (Figure 7). Second, to address the relationship between 
ion transport and serine/threonine kinase, we used the kinase inhibitor 
staurosporine. Measuring depolarization and rupture of the membrane we 
observed that, inhibition with kinase inhibitor partially influenced HAMLET-
induced membrane depolarization and rupture. These results suggest that 
HAMLET-induced glycolysis inhibition facilitate membrane depolarization 
and rupture and activation of kinase is partially linked with ion transport in the 
membrane. 
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Figure 7. Depolarization and rupture after inhibiting glycolysis  (A) Membrane depolarization or (B) 
membrane rupture were measured in bacteria treated with HAMLET in the presence (red line) or absence (blue 
line) of glycolysis inhibitor and the signal was compared to untreated control bacteria (black line). (Paper II- 
Figure 3) 
 

Similarly, by measuring glycolytic activity through intrabacterial ATP 
production in the presence or absence of Na+ or Ca2+ inhibitors or facilitators, 
which will inhibit sodium-dependent calcium influx or facilitate it by causing 
pores in membrane, we observed that more ATP was produced in HAMLET-
treated bacteria preincubated with ion transport inhibitors compared to bacteria 
treated with HAMLET alone. On other hand, less ATP was produced in the 
presence of ion transport facilitators (Figure 8). Additionally, to assess the link 
between HAMLET-induced activation of kinase and glycolysis, we measured 
ATP production in the presence of kinase inhibitor. More energy was produced 
in presence of kinase inhibitor compared to HAMLET alone. This suggests 
that HAMLET-induced ion transport and membrane depolarization and kinase 
activity inhibits ATP production in the bacteria.  
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Figure 8. ATP production in presence of HAMLET and ion transport inhibitors/facilitators  ATP release in 
the presence of HAMLET and with (A) sodium inhibitor - more ATP release (C) sodium facilitator - less ATP 
release (B) calcium inhibitor - more ATP release  (D) calcium facilitator - less ATP release. (*indicates  p <0.05 
; ns indicates nonsignifiant. (Paper II -Figure 4). 
 

HAMLET induce maturation of monocyte-derived dendritic cells and 
macrophages (Paper III) 
Previous studies have shown that HAMLET induces signals involved in innate 
immunity in healthy, primary kidney cells [44, 51, 52, 158]. Therefore, we 
hypothesized that HAMLET, besides killing bacteria and cancer cells, have 
immunomodulatory effects. To understand HAMLET’s potential 
immunomodulatory role, we first cultured primary human monocytes and 
differentiated them into macrophages and dendritic cells and stimulated them 
with HAMLET. By light microscopy we observed that HAMLET induces 
dose-dependent morphological changes in both macrophages and dendritic 
cells (Figure 9), suggesting that HAMLET has an effect on monocyte-derived 
macrophages and dendritic cells. To address these morphological changes, we 
investigated the surface phenotypes using flow cytometry. In macrophages, 
HAMLET-stimulation increased the percentage of cells expressing the M1-
like macrophage associated co-receptor CD86, whereas in dendritic cells 
HAMLET increased the expression of the dendritic cell maturation marker 
CD83 compared to control cells stimulated with either ALA or OA. These 
results suggested that HAMLET induce surface phenotypes similar to 
activated M1-like macrophages and mature dendritic cells.  
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Figure 9. Morphological changes induced by HAMLET on Monocyte derived macrophages and Denritic 
cells Left pannel represents monocyte derived dendritic cells (Mo-DC) and right  pannel represents monocyte 
derived macrophages (Mo-M). The cells were treatd with HAMLET and difference were observed. Thick black 
arrow indicate Mo-DC protrusions and thick red arrow indicates aggregates. In Mo-M, thin balck arrow indicates 
small protrusions and thin red arrow indicates elongated morphology. ( Paper III-Figure 1) [159]. 
 

HAMLET induces functional changes in macrophages and dendritic cells 
(Paper III) 
Further, we measured the cytokine release from macrophages and dendritic 
cells after HAMLET stimulation and tried to delineate the immune 
mechanisms involved. Our results suggested that the HAMLET-induced 
immunomodulatory effects are partially mediated by calcium-, NFκB-, and 
p38-signaling pathways. To investigate the effect of HAMLET treatment on 
the functionality of macrophages or dendritic cells, we performed a 
phagocytosis assay (for macrophages) and a mixed lymphocyte reaction assay 
(MLR, for dendritic cells). HAMLET-stimulated macrophages were more 
efficient in phagocytosis of pneumococci compared to untreated macrophages. 
Further, we observed that HAMLET-stimulated dendritic cells had an 
increased capacity to stimulate T-lymphocyte proliferation compared to 
untreated control cells or cells stimulated with ALA. Altogether, these results 
suggest that HAMLET-stimulated monocyte-derived macrophages or 
dendritic cells are functionally affected (Figure 10). 
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Figure 10. HAMLET-induced functional changes. (A) Monocyte derived macrophages (Mo-M) stimulated with 
HAMLET show more phagocytosis of pneumococci compared to control stimulations (ALA, LPS) and 
unstimulated cells. (B) Proliferation of T-lymphocytes in the repsence of HAMLET-stimumated DCs compared 
to control-stumulated DCs (ALA, LPS) or unstimulated DCs (* indicates  p <0.05, ** indicates  p <0.01;. (Paper 
III- Figure 6) [159]. 
 

Galactose grown planktonic and biofilm pneumococci have reduced growth 
rate and metabolism (Paper IV) 
Studies have shown that glucose is not readily available in the human 
nasopharynx, whereas carbohydrates such as sialic acid, hyaluronic acid, N-
acetyl glucosamine and galactose are available in the nasopharynx [160-162]. 
Galactose has been suggested to be an important carbon source during 
pneumococcal colonization and progression into infection[163, 164]. 
Therefore, we investigated the role of galactose during growth and its effect 
on the metabolism in pneumococci (both in planktonic and biofilm bacteria). 
First, we adapted multiple strains of pneumococci to glucose or galactose in 
chemically defined media (CDM) containing glucose or galactose as sole 
carbon sources. When monitoring growth over time, we observed that 
galactose-adapted bacteria grown in CDM-galactose grew slower than 
glucose-adapted bacteria grown in CDM-glucose and displayed and extended 
stationary phase. (Figure 11). Galactose-adapted bacteria formed biofilms 
with similar density compared to glucose-adapted bacteria but with less 
extracellular matrix. Further, we addressed the slow growth rate of galactose-
adapted bacteria, both planktonically and in biofilms, by performing metabolic 
activity assays over time (such as oxidation assay, ATP assay and lactate/ 
hydrogen peroxide (H2O2) assays). Using an oxidation assay we observed 
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that, in both glucose-adapted bacteria and galactose-adapted bacteria oxidation 
of sugars did not vary over time in either planktonic or biofilm bacteria. While 
measuring energy production by ATP assays, we observed that galactose-
adapted bacteria produced less ATP than glucose-adapted bacteria in both 
planktonic and biofilm forms. Further, we measured fermentation in the 
different bacterial populations by measuring lactate and H2O2, in the growth 
media. We found that a lower level of lactate was produced in the presence of 
galactose in both planktonic and biofilm bacteria grown compared with 
bacteria grown in glucose. On the other hand, a higher production of H2O2 
was observed in both planktonic and biofilm bacteria grown in the presence of 
galactose, suggesting differences in fermentation pattern between bacteria 
grown in glucose and galactose. Finally, to understand the functionality of 
galactose-grown bacteria in biofilm form, we tested dispersal of bacteria after 
exposure to febrile temperature compared to biofilms from glucose-adapted 
bacteria. We observed that, galactose-adapted bacteria biofilms disperse less 
compared to biofilms formed by glucose-adapted bacteria. Overall, these 
results suggest that galactose plays an important role in bacterial metabolism 
and function, suggesting a potential role of metabolism for survival and 
colonization of bacteria in the nasopharynx.  

  
Figure 11. Bacterial growth in presence of either glucose (Glc) or galctose (Gal). (A) Glucose-adapted D39 
bacteria were grown in either THY, CDM containing glucose or galactose. In the prescence of galactose (purple 
line) an extended stationary phase is observed compared to glucose-grown bacteria (green line) or THY-grown 
bacteira (black line). (B) Glactose-adapted bacteria (purple line) grown in galactose have an extended staionary 
phase compared to glucose-adapted bacteia (green line) grown in galactose (Paper IV-Figure 1). 
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Summary and future perspectives  
In this thesis, to address the increasing problem with AMR in bacteria, we used 
HAMLET as a potential novel antimicrobial molecule against pneumococci. 
HAMLET exerts bactericidal activity against pneumococci. The overall goal 
of the thesis was to study HAMLET’s antibacterial and immunomodulatory 
effects and as pneumococci colonizes the nasopharynx, we further attempted 
to study the metabolism and biofilm formation of bacteria grown in galactose 
present in the niche compared to glucose, which will give us a better 
understanding about pneumococcal colonization and disease progression as 
well as potentially identify novel therapeutic targets. 

For the first time, to our knowledge, we show that HAMLET targets glycolysis 
in pneumococci. In bacteria, HAMLET binds to two central glycolytic 
enzymes and inhibits energy production leading to subsequent death (paper 
I). However, in the future, studying HAMLET’s interactions with glycolytic 
enzymes in HAMLET-sensitive vs resistant species like Mycobacterium 
tuberculosis, Haemophilus influenzae or Moraxella catarrhalis, 
Staphylococcus aureus [MRSA] and Escherichia coli would tell us whether 
HAMLET’s activity is similar in all species or if it is specific to pneumococci. 
As HAMLET induces ion transport in HAMLET-resistant strains, this is an 
indication that HAMLET may have similar targets in bacteria and has 
conserved mechanistic pathways [43]. To understand the HAMLET-induced 
death mechanistically, we investigated whether the pneumococcal targets of 
HAMLET are activated sequentially or in parallel (paper II). We observed 
that the HAMLET-induced sodium and calcium transport is facilitated when 
energy production (ATP from glycolysis) is inhibited and partially associated 
with activation of serine/threonine kinase. On the other hand, inhibition of 
kinase activity did not influence the ion transport in the bacteria. These results 
from paper II, suggests that some targets, such as ion transport and ATP 
production, involved in HAMLET-induced bacterial death are associated and 
potentially linked. However, others, such as Ser/Thr kinase and ion transport 
are potentially activated independently in parallel. However, further studies are 
needed to understand the complex network of pathways initiated by HAMLET. 
Further, as the HAMLET targets are conserved among other bacterial species, 
the results from this study can lead to the identification of novel therapeutic 
targets in bacteria.  

In paper III we show that HAMLET has immunomodulatory effects on 
monocyte-derived macrophages and dendritic cells. The HAMLET complex, 
compared to ALA or OA alone, induced morphological changes and 
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maturation of monocyte-derived dendritic cells as well as an M1-like surface 
phenotype of macrophages. HAMLET stimulation of macrophages and 
dendritic cells also induced release of many cell mediators and suggested the 
potential involvement and partial dependence on calcium-, NFκB- and p38- 
signalling pathways (from experiments using inhibitors). Functionally, 
HAMLET-stimulated cells were more efficient in phagocytosis of 
pneumococci and in inducing T cell proliferation compared to ALA-stimulated 
cells. The results from this paper propose a dual mechanism for HAMLET, 
i.e., a direct antibacterial activity and an indirect by activating immune cells. 
In the future we would like to validate the results acquired in this project in 
vivo. 

In pneumococci, successful colonization and transition to infection is 
associated with niche/environmental factors such as host factors, other niche 
associated microbiota and nutrients. In paper IV, we studied the role of 
galactose in pneumococcal growth, biofilm phenotypes and the metabolic 
activity of pneumococci. The results from this paper show that in the presence 
of galactose, planktonic bacteria grow slower, biofilms formed are more 
resistant to antibiotics and have low metabolic activity compared to glucose-
grown bacteria. Further, to assess the dispersal (spread) of bacteria from 
biofilms, by mimicking febrile temperature in the host (in vitro) we observed 
that galactose-grown biofilms are less prone to disperse than glucose grown 
bacterial biofilms, suggesting that galactose as a nutrient source is more 
suitable for colonization and establishment of biofilms, and that this can 
protect the bacteria from environmental factors. In future studies, incorporating 
other niche environmental factors such as viral co-infections, host factors 
(inflammation), normal flora and other available carbon sources would help in 
better understanding the colonizing environment and pneumococcal transition 
from colonization to infection. 

Overall, the results from this thesis provided us with information about 
HAMLET-induced death pathways in bacteria and its immunomodulatory 
effects on human myeloid cells. Further, the results gave us a better 
understanding about pneumococcal growth and metabolism with sugar 
(galactose) readily available for bacteria in the nasopharynx compared to 
glucose that the bacteria encounter in the blood stream during invasive disease.  
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Conclusions 
I. HAMLET’s bactericidal activity in pneumococci is related to its 

ability to target and inhibit glycolytic enzymes. 

II. The HAMLET-induced glycolysis inhibition and ion transport 
induction in bacteria are directly connected, whereas, serine/threonine 
kinase is partially activating ion transport resulting in depolarization 
of membrane and is activated by glycolysis inhibition. 

III. HAMLET induces a pro-inflammatory phenotype in myeloid cells.  

IV. Galactose influences pneumococcal metabolism, biofilm formation 
and biofilm dispersal. 

Clinical significance 
The results presented in this thesis provided a better understanding of 
HAMLET-induced targets and death pathways in bacteria. HAMLET could be 
good alternative treatment strategy because it has multiple targets in bacteria 
compared to traditional antibiotics which would potentially lead to less chance 
for resistant development. Due to its immunomodulatory effects it can serve 
dual proposes, i.e. both being directly antibacterial by killing bacteria and also 
act antibacterially by stimulating immune responses resulting in elimination of 
bacteria.  

As it has no effect on healthy cells there is less chance to get side effects with 
HAMLET. Furthermore, it can sensitize bacteria to antibiotics, which would 
help in addressing resistance development in bacteria (not studied in this 
thesis).Additionally, in this thesis we also attempted to mimic and study the 
physiological environmental aspect of pneumococci comparing growth, 
metabolism and biofilm formation in glucose (present in the bloodstream) with 
galactose (present in the nasopharynx), to better understand pneumococcal 
pathogenesis, which in turn can provide information about pneumococcal 
infection progression and provide information for improved treatment 
strategies. 
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