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Abstract 

Spatial decision making is an everyday activity, common to individuals and 
organizations. However, recently there is an increasing interest in the importance of 
spatial decision-making systems, as more decision-makers with concerns about 
sustainability, social, economic, environmental, land use planning, and transportation 
issues discover the benefits of geographical information. Many spatial decision 
problems are regarded as optimization problems, which involve a large set of feasible 
alternatives, multiple conflicting objectives that are difficult and complex to solve. 
Hence, Multi-Objective Optimization methods (MOO)—metaheuristic algorithms 
integrated with Geographical Information Systems (GIS) are appealing to be powerful 
tools in these regards, yet their implementation in spatial context is still challenging. In 
this thesis, various metaheuristic algorithms are adopted and improved to solve complex 
spatial problems. Disaster management and urban planning are used as case studies of 
this thesis.  

These case studies are explored in the four papers that are part of this thesis. In paper 
I, four metaheuristic algorithms have been implemented on the same spatial multi-
objective problem—evacuation planning, to investigate their performance and 
potential. The findings show that all tested algorithms were effective in solving the 
problem, although in general, some had higher performance, while others showed the 
potential of being flexible to be modified to fit better to the problem. In the same 
context, paper II identified the effectiveness of the Multi-objective Artificial Bee 
Colony (MOABC) algorithm when improved to solve the evacuation problem. In 
paper III, we proposed a multi-objective optimization approach for urban evacuation 
planning that considered three spatial objectives which were optimized using an 
improved Multi-Objective Cuckoo Search algorithm (MOCS). Both improved 
algorithms (MOABC and MOCS) proved to be efficient in solving evacuation 
planning when compared to their standard version and other algorithms. Moreover, 
Paper IV proposed an urban land-use allocation model that involved three spatial 
objectives and proposed an improved Non-dominated Sorting Biogeography-based 
Optimization algorithm (NSBBO) to solve the problem efficiently and effectively. 
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Overall, the work in this thesis demonstrates that different metaheuristic algorithms 
have the potential to change the way spatial decision problems are structured and can 
improve the transparency and facilitate decision-makers to map solutions and 
interactively modify decision preferences through trade-offs between multiple 
objectives. Moreover, the obtained results can be used in a systematic way to develop 
policy recommendations. From the perspective of GIS - Multi-Criteria Decision 
Making (MCDM) research, the thesis contributes to spatial optimization modelling 
and extended knowledge on the application of metaheuristic algorithms. The insights 
from this thesis could also benefit the development and practical implementation of 
other Artificial Intelligence (AI) techniques to enhance the capabilities of GIS for 
tackling complex spatial multi-objective decision problems in the future. 
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Sammanfattning 

Beslut grundade på rumsliga parametrar görs dagligen, såväl av individer som av 
organisationer. Det kan också noteras att intresset för rumsliga beslut-system ökat 
markant under senare år. Fler och fler beslutsfattare inser betydelsen av hållbarhet, ur 
såväl sociala, ekonomiska, miljörelaterade, markanvändningsrelaterade som 
infrastrukturella perspektiv. Inom alla dessa områden spelar rumslig, eller geografisk, 
information en viktig roll. 

Generellt kan man säga att alla rumsliga beslut innefattar någon form av optimering. 
De inkluderar i många fall ett stort antal möjliga alternativ, och ett antal av dessa 
alternativ är ofta motstridiga vilket ökar komplexitet och därmed svårighet att komma 
fram till bästa tänkbara lösning. En möjlig ansats för att lösa dessa problem är att 
använda sig av Multipel Objekts-Optimering (MOO), där metaheuristiska algoritmer 
integreras i Geografiska Informations-System (GIS). Ett sådant angreppssätt ger stora 
möjligheter, men det är även en stor utmaning att implementera rumsliga parametrar. 
I denna doktorsavhandling tillämpas och utvecklas olika metaheuristiska algoritmer 
med syfte att lösa komplexa rumsliga problem. Fallstudier inom katastrofhantering och 
stadsplanering har använts som exempel på sådana problem. 

Avhandlingen inbegriper fyra publikationer. I den första har fyra metaheuristiska 
algoritmer anpassats till samma rumsliga multi-objektiva problem, evakuering, för att 
undersöka algoritmernas prestanda och potential. Resultaten visar att alla fyra 
algoritmer är effektiva för att lösa det givna problemet, men med variationer avseende 
anpassningsflexibilitet och prestanda. Den andra publikationen spinner vidare på detta, 
och testar effektiviteten hos algoritmen ”Multi-Objektiv Artificiell Bi-koloni” 
(MOABC) när den anpassats för att lösa evakueringsproblem. 

I den tredje publikationen föreslår vi en multi-objektiv optimerings-ansats för att lösa 
ett urbant evakueringsproblem med tre rumsliga begränsningar (objektiv). Algoritmen 
som används är en ”Multi-Objektiv gök (”Cuckoo”) - Sökning” (MOSC). Båda 
algoritmerna (MOABS och MOSC) visade sig vara effektiva för att lösa 
evakueringsproblem, i jämförelse med såväl standardversioner som andra algoritmer. 

I publikation fyra genomfördes en studie av allokering av markanvändning som 
inbegrep tre rumsliga begränsningar. En ”Icke(”Non”)-Dominerande Sorterande 
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Biogeografisk-baserad Optimerings algoritm” (NSBBO) implementerades 
framgångsrikt för att lösa problemet. 

Sammanfattningsvis kan konstateras att arbetet som presenteras i denna avhandling 
demonstrerar att olika metaheuristiska modeller har potential att förändra hur olika 
rumsliga beslutsproblem kan struktureras, och därmed förbättra transparens och 
resultat. De kan ge beslutsfattare möjligheter att få överblick över olika lösningar, och 
interaktivt modifiera betydelsen av olika begränsningar genom avvägningar mellan 
dessa. Resultaten kan sedan användas för att systematiskt utveckla bl.a. policys och 
rekommendationer. 

Inom forskningsområdet GIS – multi-kriterie-beslutsförfarande (Multi Criteria 
Decision Making (MCDM) tillför avhandlingen kunskaper inom optimering av 
rumslig modellering samt användning av meta-heuristiska algoritmer. Resultaten kan 
också främja utveckling och implementering av andra tekniker inom Artificiell 
Intelligens (AI) för att utnyttja GIS i syfte att lösa komplexa rumsliga multi-objektiva 
problem. 
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Introduction  

Many real-world problems with spatial concepts have to handle multiple criteria that 
are often conflicting. One example would be deciding on where and how to optimally 
allocate various land use activities such as schools, industries and residences within an 
area to promote sustainable urban development. Such a problem is not only complex 
but also involves multiple interest groups who might be affected by the final decision 
arrived at (e.g. decision-makers, individuals, organizations). In such an example, there 
is no single “best” solution that satisfies all involved decision-makers and stakeholders. 
Nevertheless, supporting methods and techniques to solve such problems are usually 
integrated within tools known as geographic information systems (GIS). The ultimate 
goal of GIS functions is to provide support for making spatial decisions, by using either 
fundamental or advanced functions. However, GIS has a limited capacity for solving 
complex spatial decision problems and cannot stand alone. Accordingly, spatial 
decision-making problems are multi-faceted challenges. Not only do they often involve 
technical requirements, but their formulation to appropriately abstract or represent the 
issue of interest is typically not an easy task. Decisions to be made and properties of the 
spatial problem need to be structured using mathematical principles and logic 
(Krzanowski and Raper 2001). It is even more complicated for instance when a problem 
considers economic, environmental, and political dimensions that could involve 
conflicting objectives. 

Solving a spatial decision problem is therefore complicated for several reasons. First, 
the problem requires highly complex spatial data analysis processes. Second, the 
number of decision variables and constraints associated with the problem could make 
it difficult to solve and computationally intensive. Scientists and practitioners, 
therefore, suggested merging GIS with advanced techniques to enhance its capabilities 
for supporting spatial decisions (Malczewski 1999; Church 2002). From this idea, the 
integration of two distinctive fields: GIS and Multi-Criteria Decision Making/Analysis 
(MCDM) was initiated (Jankowski 1995). On one hand, GIS provides the tools for 
storing, manipulating, and analysing spatial data and relationships to be an input of 
MCDM. On other hand, MCDM provides a collection of techniques and procedures 
for structuring decision problems. Thus, the combination of GIS and MCDM is 
regarded as a collection of methods and tools for transforming and combining spatial 
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data and preferences to obtain information for decision making, where the purpose is 
to evaluate a set of alternatives in terms of number of conflicting objectives (Chakhar 
and Martel 2003; Malczewski and Rinner 2015).  

Over the last three decades, the integration of GIS-MCDM has been then widely and 
strongly adopted within the GIScience field and the great benefits have been recognized 
(Thill 1999; Malczewski and Rinner 2015). The major application areas of GIS-
MCDM include environmental planning/management, transportation, urban and 
regional planning, waste management, agriculture, forestry, natural hazard, and other 
diverse domains (Malczewski 2006; Greene et al. 2011; Rinner 2018). Methods of 
MCDM that have been applied to GIS are classified into two groups: Multi-Attribute 
Decision Making (MADM) and Multi-Objective Decision Making (MODM), also 
known as Multi-Objective Optimization (MOO).  

The MADM methods are those concerned with the evaluation of a relatively small 
number of alternatives characterized by attributes (or feasible solutions) and the 
evaluation process searches for how well the alternatives satisfy the objectives. The 
Weighted Linear Combination (WLC) and Analytic Hierarchy/Network Process 
(AHP) are the best examples of this type of methods (Hamilton et al. 2016; Özkan, 
Özceylan, and Sarıçiçek 2019). 

In contrast, MOO methods involve the simultaneous evaluation of multiple objective 
functions along with a set of constraints defined for each decision variable, to search for 
the best alternative (Ehrgott, Figueira, and Greco 2010). This thesis focuses on GIS-
MOO methods (therefore, the terms, GIS-MODM, GIS-MOO, are used 
interchangeably). 

While there is a wide range of approaches available for solving multi-objective 
optimization problems (Gunantara 2018), two categories of MODM methods have 
typically been applied in GIS. The first category corresponds to the exact or 
deterministic methods that are based on mathematical principles of transforming the 
multi-objective problem into a scalar function and then solved as a single-objective 
problem. When using this approach, the best possible, or optimal solution is guaranteed 
to be identified. However, many MOO problems, specifically in a spatial context, 
cannot be approached using exact methods. Because most of the problems have an 
infinite number of feasible solutions, evaluating each solution is almost impossible. The 
most popular exact approaches used in GIS-MODM include weighting and constraint 
methods, goal programming, linear programming, Dijkstra’s algorithm, and others 
(Tong and Murray 2012). 

The second category of MODM methods corresponds to the heuristic/metaheuristic 
algorithms, which involve the use of algorithms to find good solutions by using trial 
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and error approaches. Unlike the exact methods, heuristics/metaheuristics are problem-
oriented ad hoc strategies, they use procedures to explore the solution space from which 
a near-optimal solution can be found. Although heuristic and metaheuristic algorithms 
have been applied to many spatial decision problems (e.g., Krzanowski and Raper 2001; 
Mladenović et al. 2007; Xiao, Bennett, and Armstrong 2007; Xiao and Murray 2019; 
Liang, Minanda, and Gunawan 2021), the choice of the suitable algorithm to handle a 
given problem can be a challenge to the users. In addition, several factors may affect 
the selection of the algorithm for a particular spatial problem such as the spatial 
arrangement of feasible alternatives, the number of objectives, the type of decision 
variables, and last but not least, computational requirements and capacities of the 
algorithm. It is therefore of great importance that metaheuristic algorithms are 
implemented and modified so that they fit the problem at hand.  

Rationale of the research 

As already outlined in the introduction section, many spatial decision problems are not 
directly solvable through straightforward approaches. Such problems often require the 
participation of several stakeholders and consideration of multiple factors. In urban 
planning, for example, the task of locating land use activities may require decision-
makers to maximize suitability, minimize economic cost, and also minimize negative 
environmental effects (Zander and Kächele 1999). This is in a way similar to evacuation 
planning in disaster management, where the incorporation of multiple objectives into 
decision-making and the search for efficient evacuation plans are critical to the safety 
of people exposed to hazards (Sherali, Carter, and Hobeika 1991; Ma et al. 2019). 

These and other types of multi-objective problems represent significant challenges 
for researchers and decision-makers. To solve spatial multi-objective decision problems 
efficiently and effectively, metaheuristic algorithms have proven to be efficient, and 
provide a set of optimal solutions with low computation complexity. However, 
Malczewski and Rinner (2015) noted that the available studies which applied 
heuristic/metaheuristics represented less than 10% of the total research on GIS-
MCDM yet these techniques have a great potential to be used for decision making and 
planning. Moreover, among the used metaheuristic methods, evolutionary algorithms, 
specifically genetic algorithms, have been used to a greater extent than other algorithms 
to tackle spatial decision problems (Schwaab et al. 2018; Masoumi et al. 2020; Ding, 
Zheng, and Zheng 2021). So far, very few researchers have used other methods such as 
swarm intelligence algorithms and hybrid algorithms in GIS applications (Hu, Xu, and 
Li 2012; Mi et al. 2015; Bui et al. 2016; Jaafari et al. 2019).  
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Many challenges that exist in spatial multi-objective decision making are also related 
to the limited number of studies within the field. Murray (2010) reflected on the 
contribution of GIS and optimization techniques to solve location modelling. This 
study/review highlighted the research gap in terms of theory, application, and solution 
to support the decision-making process. A study by Lidouh (2013) explored the reasons 
for integrating MCDA and GIS and gave an overview of the concrete works that have 
been achieved in terms of technical and operational aspects. The author revealed a lack 
of multi-criteria tools that are useful for the development of an integrated system that 
can offer robustness and higher interactivity with the decision processes. Zheng, Chen, 
and Ling (2015) provided an overview of evolutionary algorithms applied to disaster 
relief operations. The findings of this survey highlighted the need for more 
metaheuristics methods to be applied and demonstrate their performance on more real-
world applications. This could be a solution to overcome the true challenge of soft 
computing in general, that convinces decision-makers that the new methods are capable 
of producing results worthy of application and win their trust. Consequently, the 
application of metaheuristic algorithms in different GIS domains is increasing and their 
efficiency is continuously being proved by several researchers (Boussaïd et al. 2013; 
Castillo-Villar 2014; Memmah et al. 2015; Razavi Termeh et al. 2018; Ding et al. 
2021).  

Moreover, there are many reasons for metaheuristics' success. First, they have the 
potential to formalize knowledge concerning how to appropriately structure and solve 
an optimization problem. The use of stochastic operators allows metaheuristics to 
escape from local optima and converge to approximate global optima. The aim here is 
not to find the best optimal solution to the given problem but to find a set of optimal 
solutions of good quality within a reasonable computational time. To achieve such an 
objective, a suitable balance between exploration and exploitation must be maintained. 
In exploration operation, the algorithm is searching for new solutions in the most 
promising new regions in a search space, while exploitation means using already existing 
solutions and making refinement to find solutions of high quality. The better a given 
algorithm performs in the balance of these two operators, the better its performance 
will be (Boussaïd et al. 2013). Second, hybrid metaheuristics combine two or more 
algorithms to take advantage of each other while avoiding as much as possible their 
weaknesses (Marić et al. 2015; Mohammadi et al. 2016). The third, reason for 
metaheuristics' success is due to their flexibility and robustness which make them easy 
to use in practice. Therefore, the use of metaheuristic algorithms for spatial decision 
making is technically interesting and timely issue for research to explore. 
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Research aim and objectives  

The aim of this thesis mainly focuses on adopting and improving metaheuristic multi-
objective optimization techniques for solving complex spatial problems. The study 
intends to present the efficiency and effectiveness of metaheuristic algorithms when 
solving spatial decision problems. Evacuation planning and urban land use planning 
have been used as two case study problems for application of efficient and effective 
metaheuristic algorithms to solve spatial decision problems. 

The aforementioned aim will be achieved by following these objectives: 
1. To investigate the performance and efficiency of different multi-objective 

optimization techniques to solve multi-objective evacuation planning model 
(Paper I). 

2. To adopt and improve a recently developed metaheuristic algorithm to solve 
the multi-objective evacuation planning model (Paper II). 

3. To develop an evacuation planning model that optimizes three conflicting 
spatial objectives and proposes an efficient metaheuristic algorithm to solve the 
problem (Paper III). 

4. To develop a hybrid algorithm based on the existing metaheuristic algorithms 
for solving a multi-objective land-use allocation problem in urban planning 
(Paper IV). 

Structure of the thesis   

The thesis is structured as follows: after this introductory chapter, chapter 2 presents a 
theoretical background of GIS and MCDM in general, as well as the concept of GIS-
based MCDM methods. In addition, the most popular metaheuristic algorithms 
applied in GIS-MODM are reviewed. Chapter 3 provides a detailed description of the 
methods and data used in the thesis. Chapter 4 summarises the results and discusses 
the research findings. The concluding remarks and outlook are given in Chapter 5. 
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Theoretical Background 

The geospatial decision-making research field is often defined as interdisciplinary. It 
combines decision-making concepts and methods and relates them to spatial context. 
Accordingly, many spatial decision problems give rise to GIS and MCDM. At the most 
fundamental level, GIS-MCDM is a process that includes geospatial data (input maps) 
and the decision maker’s preferences into a resultant decision (output map). Whether 
it concerns the development of new methods, analysis and improving the existing 
methods, or the simple application of fundamental methods in the GIS context, it will 
rely on both decision making and geographical information science. Hence, the 
research presented in this thesis does fall into these categories. 

Geographic Information System 

Geographic Information System (GIS) also known as a spatial information system, is 
defined as an integration of several components: hardware, software, and procedures 
designed to provide support for making decisions. The system is devoted specially to 
capturing, storing, managing, manipulating, analysing, modelling, and display of 
spatially referenced data. Data input refers to the process of identifying and gathering 
the data required for a specific application. Such a process involves the acquisition, 
reformatting, georeferencing, compiling, and documenting of the data. These functions 
of storing and retrieving data make most GIS systems to be database-oriented. 

GIS utilizes two types of data: spatial data and attribute data. The spatial data 
describe the absolute and relative locations of spatial entities (e.g., building, street, tree, 
river, state, country, etc.). The attributes (e.g., tabular data) refer to the properties of 
spatial entities. These properties can be qualitative or quantitative. Spatial data are 
stored in GIS using one of two models: raster and vector. Raster models are represented 
by grid cells identified by rows and columns of the same size. Each element is called a 
pixel or cell and has its information and geographic reference assigned to it. A group of 
cells forms an image of the area. In vector models, the geographic features are 
represented by the geometric features (e.g. points, lines, polylines, and polygons). 
Vector data are used to define boundaries and spatial geometries such as houses, 
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represented by points; rivers, roads, streams, etc., are represented by polylines; and 
villages, towns, cities, etc. are represented by polygons. 

One of the advantages of GIS is the way spatial data are organized so that a user can 
select the necessary information for a particular purpose or task by reading a map. A 
thematic map with spatial data allows a user to add layers of information to a base map 
of real-world locations (see Figure 1). This shows the major potential GIS has for 
manipulating spatial data to promote a Decision Support System (DSS).  

For many spatial problems, however, GIS presents some difficulties to become the 
general tool for solving all types of problems. For instance, GIS does not support the 
decision making process effectively (Densham and Goodchild 1989; Zerger and Smith 
2003). Most of these difficulties arise from the lack of spatial analysis and modelling 
capacities required in the design of the decision-making process, as it involves 
investigating, developing, and analysing the diverse number of decision variables, 
considered spatially. This form of geographic information management allows multi-
criteria decision making, giving the possibility to provide the capacity of manipulating 
data using statistics and mathematic models. 

Furthermore, several alternatives were studied for the development of Spatial 
Decision Support Systems (SDSS). The SDSS is defined as a computer-based system 
designed to expand GIS capabilities for tackling complex spatial decision problems 
(Malczewski 1999). The concept of SDSS evolved in research the development of many 
different approaches and frameworks including planning support systems (Geertman, 
de Jong, and Wessels 2003), group SDSS (Jankowski and Nyerges 2001), spatial 
knowledge-based systems (Zhu, Healey, and Aspinall 1998), spatial multi-agent 
systems (van Leeuwen, Hagens, and Nijkamp 2007). The common aim of all these 
spatial information systems is to improve the performance of decision-makers, 
managers, and citizens when they deal with spatial decision problems (Keenan and 
Jankowski 2019). 
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Figure 1. GIS Layers. Source: www.gembc.ca 

Multi-Criteria Decision Making 

Decision analysis is a valuable tool in solving the issue as characterized by multiple 
actors, criteria, and objectives (Triantaphyllou 2000). A decision-making process is 
therefore an act of selecting the most suitable action to fulfil the desired goals and 
objectives (Clemen and Reilly 2014). Because decision-making is a daily task in our 
everyday routines, effective tools should be used to analyse all aspects of decision-
making problems. Hence, Multi-Criteria Decision Making (MCDM, also known as 
Multi-Criteria Decision Analysis, MCDA) has been widely used to perform 
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mathematical optimization to analyse multi-objective decisions and incorporate the 
varying opinions of decision makers (Colorni et al. 1996; Sánchez-Lozano et al. 2013). 
MCDM is intended to reduce the impact of biased decisions from decision-makers 
relying on their interests, and also group decision-making failures, that almost 
inevitably afflict intuitive decision-making. By making the weights and associated 
trade-offs between the criteria explicit in a structured way, MCDM results in more 
transparent and consistent decisions. 

In short, any multi-criteria decision involves these three elements: decision-maker(s), 
whose preferences are to be presented with the responsibility of decision making, 
decision alternatives to be ranked or chosen between, and criteria include a set of 
objectives and attributes, by which decision alternatives are evaluated and compared 
(Zarghami and Szidarovszky 2011). While decision-making process, in general, follows 
six steps including, problem formulation, identifying the requirements, setting the 
goals, identifying various alternatives, (5) developing criteria, and (6) identifying and 
applying the decision making techniques.  

MCDM is a procedure that consists in finding the best alternative among a set of 
feasible alternatives. In particular, a spatial decision alternative consists of at least two 
elements: action (what to do?) and location (where to do it?). The spatial components 
of a decision alternative can be specified explicitly or implicitly (Malczewski 2006). In 
addition, many spatial decisions are made by multiple decision-makers, who have 
different preferences, goals, objectives, and criteria. In this case, there is no single 
solution that is likely to satisfy every decision-maker completely. When there is one 
decision-maker and one criterion then one is dealing with a single-objective 
optimization problem. On other hand, the MCDM problem arises when the decision-
maker or group of decision-makers consider several criteria simultaneously. 

GIS-based Multi-Criteria Decision Making methods  

According to Malczewski (1999), a criterion is a generic term including both the 
concept of objective and attribute. An objective is a statement about the desired and 
favourable state of the system under consideration (e.g., a spatial pattern of accessibility 
to school). It indicates the direction of improvement of one or more attributes. The 
statement about the desired goal to achieve can be interpreted as either maximization 
or minimization of an objective function. Thus, an objective is defined as operational 
by assigning to each objective at least one attribute, which measures the level of 
achievement of the objective. While, an attribute can be described as a property of 
elements in an applied system (e.g., location-allocation system, vehicle routing system). 
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It is a measurable quantity or quality of a spatial entity or relationship between entities. 
For example, the objective of maximizing the accessibility of fire stations, shelters, 
hospitals, public facilities can be measured by attributes such as cost, time, travel 
distance, and capacity of the area, etc. Therefore, Multi-criteria decision methods are 
classified based on the criteria used during the decision process to search for the 
solutions, which can be attributed for multi-attribute decision making (MADM) and 
objectives for multi-objective decision making (MODM) (Hwang and Yoon 1981; 
Malczewski and Rinner 2015) as shown in Table 1. 

MADM methods are data or outcome-oriented. They deal with the evaluation of a 
limited number of alternatives that are predetermined (known in advance by the 
decision maker). Multi-attribute techniques are referred to as discrete methods because 
the alternatives are given explicitly rather than implicitly as in MODM. The MODM 
approach is a model or process-oriented design and search. Here, alternatives are either 
not known in advance, or there are many so that the problem cannot be solved with 
the evaluation method. Instead, these types of problems can be solved by applying 
mathematical optimization. Unlike multi-attribute approaches, multi-objective 
methods define the set of alternatives in terms of a decision model consisting of two or 
more objectives and a set of constraints imposed on the decision variables. The 
alternatives are implicitly defined as decision variables (see Table 1). In MODM, the 
attributes can be used implicitly as information sources available to the decision maker 
to formulate and measure the achievement of his/her objectives (Kaim, Cord, and Volk 
2018). Although MADM is referred to as discrete and in GIS they use vector-based 
data structure, while MODM are continuous decision problems and they use raster-
based data structure (Malczewski 2006), it is also important to note that the MODM 
problems can be defined in terms of a set of continuous and/or discrete decision 
variables (Zarghami and Szidarovszky 2011). 
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Table 1. Multi-attribute and multi-objective decision making approaches  

Sources: Based on (Hwang and Yoon 1981; Malczewski 1999); cited in (Malczewski and Rinner 2015). 

This research specifically focused on the metaheuristics subgroup of MODM methods, 
although the next section briefly presents a summary of the relevant literature for both 
MADM and MODM approaches, to give an overview of the distinction between these 
two types of GIS-MCDM methods. Multi-attribute decision making, MADM related 
methods, as well as exact methods are out of the scope of this thesis. 

Multi-Attribute Decision Making methods 

A large number of multi-attribute decision-making methods have been described in the 
GIS-based MCDM literature as highlighted in (Malczewski and Rinner 2015; 
Malczewski and Jankowski 2020; Abdullah, Siraj, and Hodgett 2021). The most widely 
used GIS-MADM methods are the weighted linear combination (WLC), ideal point 
methods, the analytic hierarchy/network process methods (AH/NP), and outranking 
methods (see Table 1). Research by (Ehrgott, Figueira, and Greco 2010) reviewed the 
percentage of GIS-MCDM research by type of methods and the study shows that 
around 71% of the total research belonged to the MADM approach and only 39.4 was 
about WLC methods. 

In short, the WLC and related models are composed of a set of criterion weights 
(𝑤௞) and value functions (𝑣ሺ𝑎௜௞ሻ). Each 𝑖th decision alternative is associated with a set 
of criterion weights combined with the attribute values 𝑎௜ଵ, 𝑎௜ଶ, … ,𝑎௜௡.  

Condition Multi-attribute decision making 
(MADM) 

Multi-objective decision making 
(MODM) 

Criteria  Attributes  Objectives 

Objectives  Implicitly Explicitly  

Attributes  Explicitly Implicitly 

Constraints  Implicitly Explicitly 

Alternatives  Explicitly Implicitly 

Decision modeling paradigm Outcome-oriented evaluation/choice Process-oriented design/search 

Examples of multi-criteria 
methods 

Weighted linear combination 
Analytic hierarchy/network process 
Outranking methods 
Ideal point methods 

Linear/integer programming 
Goal programming 
Compromise programming  
Heuristics/metaheuristics 

Examples of spatial decision 
problems 

Site selection 
Land use/suitability 
Vulnerability analysis 
Environmental impact  
Assessment  

Site search 
Location-allocation  
Transportation problem 
Shortest path problem 
Districting  
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(with 𝑖 = 1, 2, … ,𝑛) (Malczewski and Rinner 2015). The mathematical expression 
of the WLC method is summarized as follows: 

𝑉(𝐴௜) = ෍𝑤௞௡
௞ୀଵ 𝑣(𝑎௜௞) 

where in spatial terms 𝑉(𝐴௜) is the overall value of the 𝑖th alternatives at a certain 
location 𝑖, and 𝑣(𝑎௜௞) is the value of the 𝑖th alternative concerning the 𝑘th attribute. 
The alternative with the highest value of 𝑉(𝐴௜) is the best among the evaluated 
alternatives (Malczewski and Rinner 2015) 

The main reason behind the extensive usage of WLC in the GIS context is that 
WLC-related methods are easy to implement, just by considering map algebra 
operations and cartographic modelling (Malczewski 2000). The method is also easy-to-
understand to decision-makers. A variety of application domains have applied GIS-
WLC for analysing decisions and management (Jankowski 1995; Geneletti 2005). 
Some GIS systems (e.g., IDIRIS (Eastman 2009)) have built-in routines for the WLC 
method, and there is other GIS desktop software (e.g. ArcGIS, QGIS) that have 
modules or scripts to perform the WLC procedure. More details about this method can 
be found in the literature (Jankowski 1995; Malczewski 1999; 2006; Greene et al. 
2011; Malczewski and Rinner 2015). Other MADM methods such as the Analytic 
network process (ANP) for flood vulnerability model can be found in de Brito, 
Almoradie, and Evers (2019), and AHP applied in urban land use planning (Hao 
Wang, Shen, and Tang 2015; Kazemi and Akinci 2018). 

Multi-Objective Decision Making methods 

Multi-objective decision making methods (MCDM) or Multi-objective optimization 
(MOO) define a problem in terms of a mathematical model that includes decision 
variables, a set of objective functions to be optimized, and parameters representing a set 
of constraints subjected to decision variables. In general, a MODM problem can be 
mathematically expressed as follows: 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒/𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒         𝐹(𝑥) = {𝑓ଵ (𝑥), 𝑓ଶ (𝑥), … 𝑓௠ (𝑥)}  (1) 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜                            𝑔(𝑥) ≤ 0  

where 𝑥 is the vector of decision variables, 𝑓௜(𝑥) is the 𝑖th objective functions to be 
minimized, and 𝑔(𝑥) is the constraint vector.  
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The decision variables strongly influence the formulation of objective functions. In 
other words, an objective function is a function of decision variables. The objective 
function is either minimized or maximized to find the optimal values of decision 
variables, which are solutions to the problem. In an optimization problem, objective 
function space is determined by the decision variable space. For each solution in the 
decision variable space, there is a point in the objective space as illustrated in Figure 2. 
In most optimization problems, there are always restrictions imposed by particular 
conditions or available resources. These restrictions also called constraints must be 
satisfied to find an acceptable solution. 

 

Figure 2. Relationship between (a) m-dimensional decision variable space, and (b) n-dimensional objective function space 

of two-objective problem. Both objectives are to be minimized. Source: Maier et al. (2019). 

In the context of spatial optimization problems, there must be at least one set of 
spatially explicit decision variables (e.g., location, distance, size, capacity, direction, 
connectivity, shape, etc.). For example, in the case of land use optimization problems, 
four main decision variables are considered: land-use type, size, location, and capacity 
(Mohammadi, Nastaran, and Sahebgharani 2016). By combining these variables, the 
goal of any land use optimization problem is to find the appropriate (size) of specific 
land use (type) which needs to be allocated in a particular site (location) to maximize 
or minimize a specific objective (e.g. maximize environmental, and or economic 
benefits) (Rahman and Szabó 2021).  

The optimization model expressed in equation (1) is considered as a general 
formulation that can be extended in many different ways. There are two categories of 
solving a MOO problem: Scalarization (exact methods) and Pareto front-based 
(heuristics/metaheuristics) method. Scalarization methods combine multiple objectives 
into a single-objective scalar function. The most common under scalarization 
techniques in GIS-MODM are: the weighted sum method (Kennedy et al. 2016), Goal 
programming (Praneetpholkrang, Huynh, and Kanjanawattana 2021), and Reference 
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point method (Stewart and Janssen 2014). On other hand, Pareto front-based methods 
attempt to find a set of non-dominated solutions also called Pareto optimal solutions. 
According to this concept, a solution 𝑥∗ is Pareto optimal if there exists no feasible 
vector 𝑥 which would decrease some objective without causing a simultaneous increase 
in at least one other objective function(s) (in case of minimizing (Coello Coello, Van 
Veldhuizen, and Lamont 2007). Figure 2 illustrates non-dominated solutions on the 
Pareto front line, which are trade-offs among two conflicting objective 
functions 𝑓ଵ and 𝑓ଶ. From the set of trade-off solutions, decision-makers can select or 
prioritize an alternative according to their preferences and then plan. 

There is a wide range of Pareto front-based methods, specifically nature-inspired 
metaheuristic algorithms which have been used in GIS-based multi-objective 
optimization problems. The following section gives examples of the most used 
metaheuristics, and some of them were applied in this thesis.  

Nature-inspired metaheuristic algorithms  

Overview 

The concept of metaheuristic originates from two words in Greek “meta” and 
“heuristic”, where “meta” means “high level” or “beyond” and heuristic means “to find” 
or “to know” (Gandomi et al. 2013). Metaheuristics give guidance (strategies) on how 
to design and apply heuristics to solve real-world problems. The popularity and success 
of metaheuristics can be attributed to many reasons, and one of the main ones is that 
these algorithms have been developed by mimicking the most successful processes in 
nature, including biological, physical, and chemical processes (Abdel-Basset et al. 
2018). This thesis focused on the two subgroups of evolutionary and swarm 
intelligence-based algorithms, both classified in the family of bio-inspired algorithms 
and simulated annealing classified as physics-based algorithms. The two selected groups 
are known as population-based algorithms and are efficient to solve multi-objective 
optimization problems (Coello Coello, Van Veldhuizen, and Lamont 2007). Figure 3 
presents the classification of nature-inspired metaheuristic algorithms. 
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Figure 3. Classification of nature-inspired metaheuristic algorithms. These are examples of algorithms used in GIS-based 

multi-objective optimization.  

The metaheuristics methods presented in Figure 3 were applied in GIS-MOO research 
due to their reputation of being efficient and/or accurate to solve multi-objective 
optimization problems with complicated factors, including huge solution space, non-
linearity, and non-standard underlying objective functions, which make them 
potentially suitable for spatial multi-objective optimization problems. The common 
concept of these algorithms is that they all start by identifying multiple feasible 
solutions from which the best solutions can be found. For these reasons, they are called 
population-based algorithms. According to the specific search rule of the heuristic, new 
solutions are identified and the current solutions are updated. The search process ends 
when the termination condition is satisfied. The set of high-quality solutions, also 
known as optimal solutions, is found through many iterations (Talbi 2009). In 
addition, most of the illustrated algorithms in Figure 3 have their variants that are 
proposed to solve multi-objective optimization problems in general, and for solving 
spatial decision problems in particular.  
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Biology-based algorithms 

The majority of metaheuristics are based on biological evolution principles (Abdel-
Basset, Abdel-Fatah, and Sangaiah 2018). They are concerned with simulating various 
biological metaphors which differ from the representation schemes (structuring, 
components, etc.). The following two main paradigms are the most popular: 
evolutionary and swarm intelligence. 

• Evolutionary algorithms (EAs): are metaheuristic methods that simulate the 
biological principles of natural selection and survival of the fittest. Specifically, 
the family of evolutionary algorithms includes (i) Genetic Algorithms 
(Krzanowski and Raper 2001; Mi et al. 2015; Xin Li and Parrott 2016), (ii) 
Differential Evolution (Chen, Panahi, and Pourghasemi 2017), (iii) 
Biogeography-based optimization (Ahmadlou et al. 2019), and (iv) Evolution 
Strategy (Schröder, Lauven, and Geldermann 2018). Genetic algorithms 
(GAs) are the most used metaheuristics for dealing with multi-objective 
optimization problems. They are also by far the most popular methods for 
tackling spatial multi-objective optimization problems (Yang 2014).  

Many GAs variants have been suggested, with different schemes of 
chromosome representation (encoding of solutions), evaluation of fitness 
function, selection, crossover, and mutation (Yang 2014). Extended literature 
on GA procedures can be found in (Malczewski and Rinner 2015). Among the 
GAs variants, the most popular MOO is known as the Non-dominated Sorting 
Genetic Algorithm (NSGA-II) developed by Deb and associates (Deb et al. 
2002). NSGA-II is also the most used method in GIS-based applications of 
genetic algorithms. Examples of NSGA-II application in land-use optimization 
(Song and Chen 2018; 2018; Schwaab et al. 2018; Lubida et al. 2019), and in 
evacuation planning (Ghasemi et al. 2019; Ransikarbum and Mason 2021).  

• Swarm intelligence (SI): These optimization methods are inspired by the 
collective, emerging, and social behaviour of multiple agents such as flocks of 
birds, schools of fish, colonies of ants, and bees. This type is among the most 
recently popular and widely used algorithms in multi-objective optimization. 
Some examples of most used SIs in GIS applications are (i) Particle Swarm 
Optimization-PSO (Zhao et al. 2015; Chen, Panahi, and Pourghasemi 2017; 
Razavi Termeh et al. 2018; Song and Chen 2018a), (ii) Anti Colony 
Optimization-ACO (Castillo-Villar 2014; Razavi Termeh et al. 2018; 
Masoumi, Van Genderen, and Niaraki 2021), (iii) Artificial Bee Colony-ABC 
(L. Yang et al. 2015; Fang et al. 2017), and Cuckoo Search-CS (M. Cao et al. 
2015; Talib et al. 2020). In this thesis, four variants of swarm intelligence 
algorithms are applied, namely Multi-objective Standard Particle Swarm 



34 

Optimization Algorithm (MSPSO); Multi-objective Artificial Bee Colony 
(MOABC); and Discrete Multi-objective Cuckoo Search algorithm 
(DMOCS). 

Physics-based algorithms 

These types of algorithms mimic certain physical and/or chemical phenomena, 
including instance electrical charges, temperature changes, gravity, or river systems. 
Within this group, the most popular algorithm is Simulated Annealing (SA), which 
mimics the annealing process of metals, cooling and freezing them into a crystalline 
state with the minimum energy and larger crystal sizes, which reduces the defects in 
metallic structures. Bandyopadhyay et al. (2008) extended the SA algorithm to a multi-
objective optimization version and named it the Archived Multi-Objective 
Optimization Simulated Annealing algorithm (AMOSA). AMOSA has been improved 
and applied to solve complex geographical spatial sampling in the study by (Xiaolan Li 
et al. 2020). Duh and Brown (2007) developed a knowledge-informed Pareto 
simulated annealing approach to solving multi-objective allocation problems. The 
ordered capacitated multi-objective location-allocation problem for fire stations has 
been solved and evaluated using SA and GA (Bolouri et al. 2018). 

Tabu search (TS) is another physics-based algorithm, which is inspired by the 
mechanics of human memory (Boussaïd, Lepagnot, and Siarry 2013). TS was initially 
developed to solve single-objective combinatorial optimization problems, but it can also 
be applied for multi-objective optimization problems when coupled with other 
heuristic algorithms. Mohammadi, Nastaran, and Sahebgharani (2016) developed and 
compared various hybrid metaheuristic algorithms including TS for urban land-use 
allocation problems. The variable neighbourhood search (VNS) is a type of 
metaheuristic developed with aim of solving hard optimization problems. It has been 
applied in the GIS application studies such as waste management problems (Delgado-
Antequera et al. 2020), traveling salesperson problems (Polacek et al. 2007), and 
humanitarian logistics model for disaster relief operations (Ahmadi, Seifi, and Tootooni 
2015). 
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Methodology 

The methods employed in this study were primarily influenced by the nature of the 
problems in disaster management and urban planning, which gave rise to the use of 
Geographic Information System (GIS) and Multi-criteria Decision Making (MCDM). 
To achieve the objectives of this thesis, various data and methods have been used (Table 
2). Evacuation planning problem in two countries, Rwanda and Mozambique as well 
as urban land-use allocation problem in Rwanda were considered as case studies. The 
spatial data were prepared and analysed in a GIS environment as input data to the 
metaheuristic algorithms implemented using python scripts. 

Table 2. An overview of spatial objectives, data, and methods by paper and research applications as case studies.  

 Research 
applications  

Spatial 
Objectives  

Study area Methods Datasets 

Paper I Evacuation 
planning   

Total travel 
distance  
Capacity of 
shelters  

Kigali, Rwanda Network analysis 
Four metaheuristic 
algorithms: AMOSA, 
MOABC, NSGA-II, 
MSPSO 

The road 
networks 
location of 
shelters  
Population data 
DEM  

Paper-II Evacuation 
planning  
 

Total travel 
distance  
Capacity of 
shelters 

Kigali, Rwanda  Network analysis 
Dijkstra’s algorithm 
MOABC algorithm  

The road 
networks 
location of 
shelters  
Population data 
DEM  

Paper III Evacuation 
planning  

Total travel 
distance  
The capacity of 
shelters  
risk on evacuation 
routes  

Maputo, 
Mozambique 

Network analysis,  
Dijkstra’s algorithm 
MOCS algorithm 

The road 
networks 
location of 
shelters, and 
bridges 
Population data 

Paper IV Urban Land-
use allocation 

Spatial 
accessibility  
Spatial 
compactness  
Space syntax 
integration 
 

Kigali, Rwanda  Network analysis  
Space syntax analysis 
MOBBO algorithm 
 

Road networks 
Land use dataset 
Kigali master 
plan (2013) 
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Case studies 

Evacuation planning (Papers I, II, and III) 

The urban evacuation planning scenarios presented in this thesis were conducted in 
two study areas; one in the city of Kigali, Rwanda, and the other in the city of Maputo, 
Mozambique. Both cities (Kigali and Maputo) are the capitals of the two sub-Saharan 
African countries. These cities are experiencing an increase in frequency and intensity 
of natural disasters including floods, landslides, droughts, and cyclones (Fraser et al. 
2017). Flooding, in particular, is one of the major threats to these cities. Climate change 
effects, combined with migration toward cities, lead to high demand for housing and 
promote urbanization. Given the insufficiency of adequate planning and infrastructure, 
many people live in flood-prone zones. This makes them vulnerable. Therefore, 
development of effective urban evacuation planning is needed in these two cities. 
Moreover, the effective planning and scheduling of emergency operations such as 
evacuation planning, play a key role in saving lives and reducing damages in disasters, 
which promote the sustainability development goals (SDGs), specifically for Disaster 
Risk Reduction (Zheng, Chen, and Ling 2015). 

Spatial data including road networks, administrative boundaries, and location of 
bridges were provided by authorities of the city of Kigali, Rwanda and of Maputo, 
Mozambique (Table 2). The population data was provided by the National Institute of 
Statistics of Rwanda (paper I, and II). The selection of appropriate shelters and their 
capacities of accommodating evacuees were determined based on global standards 
documented in The Sphere Project (2011). A digital elevation model (DEM) with 10 
m resolution was used to conduct the slope analysis for the selection of shelters’ 
locations. Dijkstra’s algorithm and road networks extracted from Open Street Map 
were used to calculate the shortest path and to generate the distance matrix that was 
used in the computation of the total travel distance. The Risk function was formulated 
to calculate the total risk in the evacuation planning process. Thus, datasets including 
roads, bridges, shelters, and residential were used to estimate the risk on the evacuation 
path between the point of origin and destination, that is prone area and shelter. 
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Urban land-use allocation (Paper IV) 

With the rapid increase in urbanization and population growth, urban land-use 
planning is becoming a major concern for governments and municipalities, particularly 
in developing countries (United Nations 2018). This rapid demographic and spatial 
transformation may be difficult for most of the African cities, where the capacity is 
typically inadequate to cope with major challenges including increased demand for 
housing, resource scarcity, increased poverty, and climate change (Keivani 2010; Sakka 
2016). However, the well planned urban land uses, based on policies and principles of 
sustainable development can help to address these challenges (Van et al. 1994; 
Satterthwaite 2017). 

Therefore, paper IV of this thesis addressed the problem of land-use allocation in the 
city of Kigali, Rwanda. The main goal of the proposed land-use planning model is to 
generate land use allocations that lead to the balance of social integration and economic 
benefits in urban design areas via three objectives: maximizing accessibility, maximizing 
compactness, and maximizing space syntax integration. The Land-use (LU) data of the 
study area was extracted from a dataset of the Kigali master plan (Kigali 2013). Detailed 
master plans and recommendations were used to classify different land-use activities 
and to determine the proportion of each land use type (REMA 2013). Road networks 
were analysed using GIS tools to generate a distance matrix for calculating the 
accessibility index and performing the space syntax analysis. The Depthmap software 
was used to generate a segment map of the integration attribute.  

The space syntax analysis employed in paper IV, was used to assess the spatial 
relationship between street networks and the distribution of land uses of residential and 
commercial in particular. According to Hillier (2009), the space syntax can be described 
as a set of techniques that are used for analysing spatial layouts and human activity 
patterns in buildings and urban areas. Moreover, the space syntax concept enables us 
to understand the spatial properties of a sustainable city. Therefore, the possible spatial 
distribution/ arrangement of commercial land use within residential areas was measured 
using the space syntax integration attribute. 

Methods 

Development of MOO methods and tools in the context of spatial multi-objective 
decision making is typically an iterative process of identifying the spatial problem, 
spatial multi-objective optimization modelling, implementing algorithms, and 
evaluating solutions. The methodological approach employed in this thesis has been 
adopted and extended by several researchers starting with Malczewski (1999), 
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Jankowski and Nyerges (2001), followed by Chakhar and Martel (2003), Xiao, 
Bennett, and Armstrong (2007), and Xiao (2008).  

The design cycle of GIS-MODM, which constitutes the core of the decision-making 
process, consists of three phases: intelligence, design, and selection/choice as suggested 
in the study by Simon (1960). Problem definition, data acquisitions, processing, and 
analysis are done in the intelligence phase; and spatial modelling is the design phase to 
develop a set of solutions as spatial decision alternatives. The selection phase, also called 
choice phase involves the sensitivity analysis of the model, results visualisation, and 
gives recommendations. The integration of MODM techniques and GIS functions 
supports the design phase significantly. The selection phase involves the choice of 
particular alternatives from optimal solutions (Malczewski 1999). Furthermore, the 
sensitivity analysis supports parameter configuration and testing of robustness of the 
model. At the end of the analysis, the analyst is expected to provide a recommendation 
and its justification to the decision-maker concerning the problem and explain how to 
implement it. 

In this thesis, the conceptual framework of decision-making process includes 
problem formulation, design and implementation of the algorithms, and determining 
optimal solutions to the problem. Specifically, the conceptual framework employed for 
spatial multi-objective decision-making models is created from the perspective of 
metaheuristic algorithms and GIS tools for data structure, analysis, and visualization. 
Figure 4 illustrates the fundamental elements of this framework, as well as the three 
phases suggested in Simon (1960). 
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Figure 4. A conceptual framework of spatial multi-objective decision making and analysis. Adopted from Xiao, Bennett, 
and Armstrong (2007) and extended by the author. 

Spatial multi-objective optimization problem formulation  

The first step in structuring any GIS-based MODM technique is to define a goal that 
a group of individuals attempts to achieve, along with its associated evaluation criteria 
(objectives), from which the decision-maker evaluates alternatives. In the context of 
MODM, problems are formulated differently than they are in traditional methods (e.g. 
linear programming models), though the general mathematical form as explained by 
the equation (1). 

The evacuation planning and urban land-use allocation problem tackled in this thesis 
are types of location-allocation problems, which means that the solutions to such 
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problems depend on the spatial arrangements of the feasible alternatives. The 
alternatives are defined geographically and contain spatial concepts explicitly. For 
instance, the concept of location, distance, connectivity, and adjacency was used to 
define the decision alternatives. Based on the type of decision variables of these 
problems, they were formulated and tackled as combinatorial optimization problems. 
Decision variables are discrete when their values are fixed. Similar structuring of the 
spatial multi-objective optimization model has been suggested in the literature 
(Jankowski 1995; Malczewski 1999; Chakhar and Martel 2003). 

In spatial modelling of evacuation planning and urban land-use allocation using 
MODM, the decision-makers and experts were involved in the conceptualization of 
the problems. The decision maker’s preferences were used to set the goal and assign the 
weights to different objective functions, and also to set the target values that should be 
satisfied with any feasible solution. Moreover, they helped to indicate the nature of 
optimization for each defined objective function, e.g., maximization or minimization. 
The goal and the nature of optimization are the most required information to define a 
set of non-dominated solutions. This set contains solutions that are not dominated by any 
other solution in the objective space on which experts base their decisions. 

The solutions to the spatial multi-objective optimization problems were generated 
using metaheuristic methods. These methods seek to find the best solutions by trial and 
error and incorporate strategies aimed at efficient exploration of a solution space. For a 
metaheuristic algorithm, a problem is more directly formulated algorithmically: an 
appropriate data structure is designed to encode solutions, and searching strategies are 
specified to handle objectives and constraints subjected to them. Then, the fitness 
evaluation techniques are applied to generate the optimal solutions. Figure 5 
demonstrates an example of a discrete encoding structure employed in Papers I and II 
(Niyomubyeyi et al. (2020), Niyomubyeyi, Pilesjö, and Mansourian (2019), and 
Sicuaio et al. (2022)). This encoding strategy was used based on vector data 
representation. 

 

Figure 5. Example of discrete/integer encoding of a potential land-use plan.  
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Each land-use variable is represented by an integer value from 0 to 4. These values 
correspond to the four land uses. The whole string is a numeric code describing the 
details of the land use pattern (alternative solution) of the study area consisting of nine 
sites of land. (adopted from Malczewski and Rinner (2015)).  

Non-dominated Sorting Genetic Algorithm II  

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) developed by Deb et al. 
(2002), is one of the most popular multi-objective optimization algorithms. It was 
proposed to improve the original version of NSGA initially developed based on the 
concept of the Genetic Algorithm (GA). The structure of NSGA-II is based on the four 
principles, which are, non-dominated sorting, elite preserving operator, crowding 
distance, and selection operator. 

The procedure of NSGA-II start with generating an initial random population 𝑃଴ of 
size 𝑁 and then is sorted using the concept of Pareto dominance. After evaluating 
objective functions, the process of non-dominated sorting begins with assigning the 
first rank (or fitness) to the non-dominated solutions of the 𝑃଴ at initial time 𝑡 = 0. 
The first ranked solutions are stored in the first front and then removed from the initial 
population. The procedure continues until all members of the population 𝑃଴ are 
assigned to different fronts based on their ranks. At the beginning of the main loop, 
operators such as binary tournament selection, recombination (crossover), and 
mutation are applied over 𝑃଴ to create the offspring population 𝑄଴ of size 𝑁. The 
parents and offspring populations, 𝑃௧ and 𝑄௧, are combined and form a new combined 
population 𝑅௧ of size 2𝑁, which is also sorted according to the non-domination 
procedure. Figure 6 illustrates this process.  

Next, the elitism selection method is applied to select the best candidate for next-
generation and must reduce the number of individuals in a combined population of 2𝑁 to get the size of 𝑁. As Figure 6 demonstrates the process, all solutions of the first 
two Pareto fronts 𝐹ଵ and 𝐹ଶ are selected and included into 𝑃௧ାଵ. However, if the 
number of solutions in 𝑃௧ାଵ is less than the size of 𝑃௧, then some solutions in 𝐹ଷ must 
be included. The crowding distance sorting method is used to rank the solutions in the 
Pareto front 𝐹ଷ. Then the solutions with higher ranking value of crowding distance are 
included in the new population 𝑃௧ାଵ. The crowding distance sorting method 
introduces more diversity into the population. The selection, evaluation, 
recombination, and non-dominated sorting procedures repeatedly continue until the 
stopping criteria are met (e.g., the maximum number of iterations).  

 



42 

 

Figure 6. The NSGA-II evaluation of non-dominated solutions procedure. 𝑃௧ = parent population; 𝑄௧ = offspring population; 𝑃௧ାଵ = parent population in the next generation; (𝐹ଵ,𝐹ଶ, …𝐹௠) = Pareto front. Adopted from Deb et al. (2002). 

The previously described procedures are for a standard or classic NSGA-II algorithm as 
proposed in the original work by Deb et al. (2002). Similar procedures of NSGA-II 
have been applied to optimize the total travel distance and overload capacity of shelters 
as two objective functions for the evacuation model in Paper I (Niyomubyeyi et al. 
(2020)) where all objectives were to be minimized.  

The implementation of NSGA-II starts with encoding the potential solutions into 
the form of genes and chromosomes. According to the genetic terminology, a solution 
vector of decision variables is referred to as a chromosome or an individual. 
Chromosomes are made of discrete units as demonstrated in Figure 6. Each unit in a 
chromosome is called a “gene”, which controls the features of the chromosome. Once 
an encoding solution is done, the next step is to apply NSGA-II procedures as described 
in the previous texts.  

NSGA-II has been widely applied to solve evacuation planning models. Goerigk, 
Deghdak, and Heßler (2014) proposed a comprehensive urban evacuation planning 
model which was solved using the standard NSGA-II algorithm. Furthermore, a 
standard NSGA-II was applied and compared with other algorithms in solving multi-
period dynamic emergency resource scheduling problems (Zhou et al. 2017). A study 
by Ghasemi et al. (2020) showed the efficiency of the NSGA-II algorithm in solving 
the problems of logistic distribution and evacuation planning. Moreover, many 
researchers continue to modify and improve the performance of standard NSGA-II to 
fit better to the spatial problem (e.g., García et al. 2017; Masoumi, Coello Coello, and 
Mansourian 2020; Verma, Pant, and Snasel 2021).  
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Multi-objective Standard Particle Swarm Optimization algorithm  

The Particle Swarm Optimization algorithm is a population-based metaheuristic 
algorithm proposed by Kennedy and Eberhart (1995). The algorithm is inspired by 
animals’ social behaviours, including fishes, birds, and insects. Members of the swarm 
called particles organize themselves and work together in a multi-dimensional space 
searching for food, and each member of the swarm adjusts its movement and distance 
for better search according to its own previous experience and with those of 
neighbouring particles in the swarm.  

Numerous variants of the PSO algorithm have been proposed in the literature, aimed 
at improving the performance or solving a specific problem. Among the variants, 
Standard PSO (SPSO-2011) was proposed to provide common procedures and 
guidance to improve the original PSO (Clerc 2012). However, the developed SPSO 
was not intended to be the best PSO variant but only to be considered as the reference 
level of future improvements (Zambrano-Bigiarini, Clerc, and Rojas 2013).  

The SPSO algorithm begins with generating a random initialization of each particle’s 
position and velocity (particle displacement) within the search space. By considering a 𝐷- dimensional search space, position and velocity of the 𝑖௧௛particle is represented by 
a vector 𝑋௜→ = 𝑥௜ଵ, 𝑥௜ଶ, … , 𝑥௜஽ and velocity  𝑉௜→ = 𝑣௜ଵ,𝑣௜ଶ, … , 𝑣௜஽. The performance 
of each particle is therefore assessed based on its fitness value, which is the basis for 
updating 𝑋௜→. A particle memorizes its best position found so far, which is named as 
personal/previous best and represented as 𝑃௜→ = 𝑝௜ଵ, 𝑝௜ଶ, … ,𝑝௜஽, whereas the best 
position within the particle’s neighbourhood, is named local best and presented by 𝐺௜→ = 𝑔௜ଵ,𝑔௜ଶ, … ,𝑔௜஽. In SPSO-2011, velocity, and position of the 𝑖௧௛ particle is 
updated using the following equations: 𝑉௜→௧ାଵ = 𝜔𝑉௜→௧ + ℋ௜(𝐺௜→௧ ฮ𝐺௜→௧ −  𝑋௜→௧ ฮ) − 𝑋௜→௧   (3) 𝑋௜→௧ାଵ =  𝑋௜→௧ + 𝑉௜→௧ାଵ  (4) 

where 𝑖 = 1, 2, … ,𝑁 with 𝑁 equal to the size of the swarm, and 𝑡 = 1, 2, … ,𝑇, with 𝑇 equal to the maximum iterations. 𝜔 is the inertia weight that controls the increase of 
particle velocity to prevent swarm explosion. The 𝐺௜→௧ represents the centre of gravity 
for each particle at three positions: a personal position 𝑋௜→, the best previous position 
(𝑃௜→), and the best previous position in the neighbourhood (𝐺௜→), respectively. Figure 
7 presents the main procedures of the SPSO algorithm applied in paper I.  
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Figure 7. Pseudocode for the SPSO-2011 algorithm. source: (Zambrano-Bigiarini, Clerc, and Rojas 2013). 

In this thesis, a multi-objective version of standard particle swarm optimization 
(MSPSO) algorithm was implemented to optimize two conflicting objective functions 
for the evacuation planning problem addressed in paper I. Nevertheless, the original 
SPSO algorithm was designed for a continuous problem with real numbers, while the 
solved evacuation problem was defined as a discrete problem. To solve this issue, the 
rounded value method was used for mapping a continuous space transforming to a 
discrete problem space. The encoding procedure illustrated in Figure 5 was employed 
to design the SPSO solutions. To solve the evacuation model, every possible spatial 
arrangement to evacuate people from the risk zone to a safe place was considered as a 
potential particle in the search space. Thus, a neighbourhood topology (ring topology) 
was used to determine the global best (𝐺௜→) for each particle among its neighbors (see 
the modelling of MSPSO in in paper I). 

Other variants of the PSO algorithm have been adapted in other studies related to 
evacuation planning. For example, Lin and Lucas (2015) proposed a PSO model of 
emergency airplane evacuations with emotion. The results from this study showed the 
efficiency of PSO in simulating the evacuation of airplane. The PSO has also been 
modified and hybridized in many studies in order to better fit the problem at hand 
(Song and Chen 2018a; Xu et al. 2018; Hua Wang et al. 2020). 
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Multi-objective Artificial Bee Colony algorithm  

The Multi-objective Artificial Bee Colony (MOABC) is a multi-objective optimization 
variant of original Artificial Bee Colony (ABC) developed by Karaboga (2005). ABC 
algorithm mimics the behaviour of the colony of bees in nature. This algorithm was 
selected to solve the evacuation problem based on its efficiency and flexibility. It is also 
known to have well-balanced exploration and exploitation operators, which promote 
diversity among optimal solutions (Karaboga et al. 2014).  

In the standard MOABC algorithm, the colony consists of three artificial bees: 
employed, onlookers, and scout bee. In nature, each bee in the colony carries in its 
memory the food source, the quality of the food, and the location of the food source. 
While in the optimization problem, the food source represents the fitness value assigned 
to each artificial bee and the food source position corresponds to the solution position 
in the search space. First, some scout bees (initial solutions) are randomly generated to 
explore the search space of the problem. After initializing solutions and evaluating their 
fitness values, the best solutions are stored in an external archive. The employed bees 
and onlooker bees are sent in the search space to exploit the best solutions and improve 
their quality through the following equations: 𝑣௜ௗ = 𝑥௜ௗ + 𝑤. 𝑟𝑎𝑛𝑑[0,1](𝑥௜ௗ − 𝑥௞ௗ) (5) 𝑝௜ = ௙(௑೔)∑ ௙(௑೔)೙೔సబ  (6) 

where 𝑖 represents the food source which is going to be updated, 𝑑 ∈ {1, 2, … ,𝐷ሽ is 
the 𝐷 − dimension (number of decision variables), and 𝑘 ∈ {1, 2, 3 … ,𝐾ሽ represents 
the new position of 𝑥 bee. Note that 𝑘 and 𝑑 are randomly chosen indices. 

Standard MOABC uses a roulette wheel selection method to select the onlooker bees 
for next-generation after evaluating the fitness of employed bees and updating the 
archive with the best solutions. An onlooker bee is selected based on the probability 𝑝௜, 
found by calculating the proportion of solution fitness 𝑓(𝑥௜) in relation to the total 
fitness of the 𝑛 population, as shown in equation (6). Both employed and onlooker 
bees perform the neighbourhood search using the expression in equation (5). The 
greedy selection method is then applied to evaluate the solution with the best fitness 
value. Further exploration is carried out by scout bees that generate new random 
solutions. The algorithm is terminated when the given termination criterion 
(maximum generations) is attained. Similar procedures of standard MOABC have been 
adopted to solve the evacuation model in paper I.  

However, the standard MOABC has a weakness of local search, where the solutions 
tend to be trapped in a local optimum. To solve this issue, paper II proposed an 
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improved MOABC for solving the evacuation model with two objectives. Three 
strategies and Pareto front-based approach from NSGA-II were employed. First, a 
discrete random procedure was used for solution representation and initialization. The 
second proposed searching strategy combined two random searches (swap and 
insertion) to improve the selection of new solutions in the search space. This strategy 
improved the exploration process of MOABC and maintained the diversity of the 
solutions. Third, the crossover operator was used to enhance the recombination process 
of parents and offspring solutions (employed bees and onlooker bees in the case of 
MOABC). Finally, the concept of Pareto dominance was used to sort non-dominated 
solutions (see the detailed improved MOABC in paper II (Niyomubyeyi, Pilesjö, and 
Mansourian 2019).  

In addition, many studies have applied and or improved MOABC in GIS 
applications (e.g., L. Yang et al. 2015; Shao et al. 2015; Naghibi, Delavar, and 
Pijanowski 2016). Pérez et al. (2017) applied MOABC to design water quality 
monitoring networks in river basins, and the obtained solutions were insightful and 
valuable information to decision-makers. Also, a land partitioning model was proposed 
using a MOABC algorithm, and the model outperformed the designer’s land-use plan 
in terms of land-use compatibility and agriculture conditions (Bijandi et al. 2021) 

Multi-objective Cuckoo Search algorithm 

The Multi-objective Cuckoo Search (MOCS) is a nature-inspired metaheuristic 
algorithm extended from the original Cuckoo Search (CS) developed by Yang and Deb 
(2009) to solve a single-objective function. The CS mimics the reproductive breeding 
behaviour such as brood parasitism of certain species of cuckoos. In CS for single-
objective optimization, the following three idealized rules are used; 1) each cuckoo lays 
an egg at a time and dumps it in a randomly chosen nest; 2) the best nests with high-
quality eggs will continue to the next generations; 3) the number of the available host 
is fixed, and a host can discover an alien egg with a probability 𝑝௔ ∈ [0,1]. In this case, 
the host bird can either throw the egg away or abandon the nest to build a completely 
new nest in a new location. Here the egg represents a decision variable of optimization 
problem and the nest represents a solution to the problem. 

The procedure of the proposed discrete MOCS algorithm in paper III is mainly 
based on three parameters: (i) the probability to abandon the worst nest, 𝑝௔, (ii) a non-
negative step size, 𝛼, that should be associated with the scale of the problem, in most 
cases is greater than one. For the evacuation model, the step size corresponds to the 
current solution 𝑥௜௧, and (iii) the random step length, 𝜆. Then, a Lévy flight operator is 
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applied when generating a new solution 𝑥௜௧ାଵ. The following equation expresses the 
Lévy flight operator: 𝑥௜(௧ାଵ) =  ቔ𝑥௜(௧) + 𝛼 ⊕ Lévy(𝜆)ቕ%(1 + 5) (7) 

where ⨁ means entry wise multiplication, and % is the modulus arithmetic operator 
and this returns the remainder of the division of each vector component by (1+5) to 
guarantee that every entry is between zero and five. Besides, a probability 𝑝௔ of the 
worst nests can be abandoned so that new nests can be built at a new location by 
random walks process and mixing, which can be performed by random permutation of 
the solutions according to the similarity/difference to the host egg. 

Some modifications were made to MOCS in order to address the MOO problems 
with discrete variables (e.g., location-allocation problem, evacuation planning 
problem). Moreover, to improve the performance and the quality of solutions, the 
proposed MOCS was therefore hybridized with the Pareto Archived Evolution Strategy 
(PAES), which is successful in generating diverse solutions in the final Pareto optimal 
set (Knowles and Corne 2000). The procedure and main improved steps of the 
proposed MOCS algorithm can be seen in paper III (Sicuaio et al. 2022). 

Some studies have modified MOCS with a focus on finding the optimal Pareto 
solutions (Srivastav and Agrawal 2017; Balogun et al. 2021) and others hybridized 
MOCS with other algorithms to improve its performance (Talib et al. 2020). Zhang et 
al. (2018) used a hybrid cuckoo search algorithm to solve the heating route design 
problem, and Jaafari et al. (2022) hybridized cuckoo search with whale optimization 
algorithm to model and predict landslides, and the results showed that the hybrid 
model with CS algorithm identified the best trade-offs among objectives, accuracy, and 
robustness. 

Non-dominated Sorting Biogeography-based Optimization algorithm  

The Non-dominated Sorting Biography-based optimization algorithm (NSBBO) is an 
evolutionary algorithm inspired by the standard BBO algorithm for solving multi-
objective optimization (Simon 2013). Thus the general procedure of NSBBO is similar 
to that of BBO except for the addition of non-dominated sorting and crowding distance 
procedures adopted from the NSGA-II algorithm (Deb et al. 2002). BBO is among 
novel algorithms inspired by biogeography, which studies the geographical distribution 
of biological organisms.  

In NSBBO, a solution is termed as habitat and has a habitat suitability index (HSI) 
to evaluate its quality (which is similar to fitness evaluation in NSGA-II). In the case of 
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the minimization problem, a low-HSI habitat represents a good solution and a high-
HSI is a poor solution instead (Simon 2008). Each habitat is characterized by a suitable 
index variable (SIVs) that corresponds with genes in the NSGA-II algorithm or decision 
variables of the optimization problem. A habitat with high-HSI is more likely to share 
(emigrate) its SIVs with nearby poor habitats, while a low HSI is more likely to accept 
(immigrate) shared SVIs from high-HSI habitat.  

In summary, the NSBBO operates in two main operators which are migration and 
mutation. Migration is a probabilistic operator that improves the habitats by using the 
migration rate of each habitat to probabilistically share the features (SIVs) of emigrating 
habitat to the immigrating habitat. For habitat ℎ௜, its immigration 𝜆௜ is used to 
probabilistically decide whether or not to immigrate. If the habitat is to immigrate, 
then the emigrating habitats ℎ௝ should be selected based on the emigration rate 𝜇௝. 
Therefore, the migration operator can be defined as 𝐻௜(𝑆𝐼𝑉𝑠) ← 𝐻௝(𝑆𝐼𝑉𝑠). The 
mutation is also a probability operator that is used to maintain the diversity among 
habitats. A mutation is performed by simply replacing a selected SIV of habitat with a 
randomly generated SIV. For a low HSI habitat, a mutation can raise the number of 
species to some extent, and for a high HSI habitat, a mutation may further enhance its 
fitness to avoid falling into a local optimum, which is similar to a mutation of other 
meta-heuristic algorithms (Simon 2013). The objective functions are then evaluated 
and solutions are sorted using the non-dominated approach.  

Although the standard NSBBO and other BBO variant algorithms can efficiently 
solve difficult optimization problems with many-objective functions (Ma et al. 2017; 
Singh and Ingole 2019), there is still room for improvement. Thus, paper IV proposes 
an improved NSBBO to fit the addressed spatial land-use allocation problem. 

First, the migration and mutation operators in standard NSBBO have a strong global 
exploration ability, while the local exploitation capability is weak. Note that exploration 
aims at finding new solutions in the most promising new regions in a search space, 
while exploitation means using already existing solutions and making refinement to 
find solutions of high quality. To maintain the balance of exploration and exploitation, 
a sinusoidal model was used for the migration operator instead of the linear model as 
proposed in the original BBO and standard NSBBO algorithm. The sinusoidal 
emigration and immigration rate is calculated as follows: 𝜆௜ =  ூଶ [𝑐𝑜𝑠(𝜋 × 𝐻𝑆𝐼௜) + 1] (8) 

𝜇௜ = ாଶ [1 − 𝑐𝑜𝑠(𝜋 ∗ 𝐻𝑆𝐼௜)] (9) 
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where 𝐼 and 𝐸 are the maximum immigration and emigration rates, 
respectively, 𝐼&𝐸 = 1. 𝐻𝑆𝐼௜ represents the fitness (rank) of habitat i. 

Second, the challenge in optimizing a problem with multi-objective functions (e.g., 
3 objectives in paper IV), is to translate those objective function values into HSI for 
selecting habitats to share their SIVs (e.g., migration). If the Pareto dominance of 
NSGA-II is applied to determine the non-dominated between habitats, the objective 
function values of solutions are then considered as a ranking of habitats, which will lead 
to the insufficient convergence of the population (An et al. 2021). To solve this, an 
efficient non-dominated sorting strategy (ENS) proposed by X. Zhang et al. (2015) was 
used to sort the solutions in the proposed NSBBO (paper IV). After selecting the best 
solutions from the initial population using the migration operator, new solutions are 
generated using crossover and mutation operators. The solutions for the next 
generation are then selected using the ENS procedure. The main loop is repeated until 
the stopping criteria are met. 

BBO is among the novel population-based algorithms, but it has already received 
much attention from researchers in GIS applications. Kaveh and Mesgari (2019) 
improved the BBO algorithm using migration process adjustment to solve the location-
allocation of emergency centres/ambulances. The results showed that the improved 
BBO has higher convergence compared to PSO and GA algorithms. Al-Fugara et al. 
(2020) developed three novel GIS-based models by combining Genetic Algorithm 
(GA), Biogeography-Based Optimization (BBO), and Simulated Annealing (SA) with 
Support Vector Regression (SVR) for groundwater potential mapping. The results 
showed that the model with the BBO algorithm performed better than the others. This 
shows the opportunity of using the BBO algorithm to solve other complex spatial 
optimization problems including the land-use allocation. 

Archived Multi-Objective Optimization Simulated Annealing algorithm  

The Archived Multi-Objective Optimization Simulated Annealing algorithm 
(AMOSA) employed in this thesis was proposed by Bandyopadhyay et al. (2008) to 
improve the existing multi-objective implementation of the original Simulated 
Annealing algorithm (Kirkpatrick, Gelatt, and Vecchi 1983), which in general do not 
consider Pareto dominance for accepting a new candidate solution as part of the final 
set. In modelling the AMOSA, the Pareto dominance approach is adopted and uses the 
concept of an archive to store all non-dominated solutions. The archive is limited to 
two parameters known as Hard Limit (HL) and Soft Limit (SL). The HL is the 
maximum size to achieve by termination, and it is equal to the number of non-
dominated solutions required by the user; while the SL is the maximum size up to 
which the archive may be filled before clustering is applied. The algorithm starts with 
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the set of solutions randomly initialized and refined in the archive by using a hill-
climbing technique. The acceptance of new solutions is based on the probability 
determined by calculating the amount of dominance between two solutions a and b as:  ∆𝑑𝑜𝑚௔,௕ = ∏ (|𝑓௜(𝑎) − 𝑓௜ (𝑏)|/𝑅௜)ெ௜ୀଵ,௙௜(௔)ஷ௙௜(௕)    (10) 

where 𝑀 = number of objectives and 𝑅௜ is the range of 𝑖௧௛ objectives. To change 
the state of the solution (generating new solutions), at a given temperature 𝑇, a new 
state 𝑠 is selected with a probability 𝑃௤௦ = ଵଵା௘ష(ಶ(೜,೅)షಶ(ೞ,೅))೅   (11) 

where q is the current state and 𝐸(𝑠,𝑇) and 𝐸(𝑞,𝑇) are the corresponding energy 
values of 𝑠 and 𝑞, respectively. This equation automatically ensures that the probability 
value lies between 0 and 1. 

The solution and decision variables were encoded and presented and tackled as 
discrete variables as demonstrated in Figure 5. Equations (10) and (11) were used to 
select and sort the non-dominated solutions in the archive. The algorithm stops when 
the cooling process reaches the predefined low temperature and the maximum number 
of generations. The pseudocode of AMOSA algorithm is shown in Figure 8. 
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Figure 8. Pseudocode of AMOSA algorithm. Source: Sanghamitra Bandyopadhyay et al. (2008). 
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Sensitivity analysis of GIS-based MOO model 

Qureshi, Harrison, and Wegener (1999) stated the role of sensitivity analysis (SA) and 
defined it as a method that examines the stability of the model, checking the extent of 
variation in the output when parameters are systematically varied over a range of 
interests. SA also measures how the impact of uncertainties of one or many input 
variables can lead to uncertainties on the output variables. Research by Delgado and 
Sendra (2004) reviewed how the sensitivity analysis is applied to models based on GIS 
and MODM. This kind of analysis is conceived as the last phase in the multi-objective 
spatial decision-making modelling. In the context of the MODM process, the SA is of 
the type “what if” and some of the questions to be answered are: 

 
• What are the most important parameters and how would the optimum 

solutions change as the main model parameters change? 
• What are the limits of variation of the parameters to obtain the final optimal 

solutions? 
• How stable is the model in terms of multiple simulation scenarios (i.e., number 

of repeatability)? 
 

In this thesis, the SA was used to analyse the impact of parameters of each algorithm 
used in spatial modelling (Paper I-IV). As mentioned above, each algorithm has its 
particularities, and the parameters configuration is different. Hence, the parameter 
tuning approach, and other performance measurements (e.g., size of Pareto front, 
hypervolume, and repeatability) have been used in the results analysis to measure the 
performance of each algorithm. In addition, the first part of this thesis provides an 
extended SA study of four metaheuristic algorithms in which several criteria including 
the reliability of the model have been evaluated. 
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Results and discussion 

The papers included in this thesis cover two different areas, each of the areas being 
related to one of the research objectives (see Figure 9). Spatial modelling of evacuation 
planning using standards and improved metaheuristic algorithms is covered in paper I, 
II, and III. Paper I address the first research objective of investigating the performance 
of four standard metaheuristic algorithms for urban evacuation planning problem of 
two objective functions. Paper II identifies the potential of MOABC algorithm and 
modifies the algorithm to improve the results of evacuation model in paper I. Paper III 
proposes an urban evacuation model considering three objective functions and solve 
the model using an improved MOCS algorithm. Paper IV proposed a multi-objective 
land-use allocation model using an improved NSBBO algorithm. All four papers 
handle spatial multi-objective decision making problems using metaheuristic 
algorithms in two GIS applications (disaster management and urban planning). The 
solutions from optimal urban evacuation planning and optimal land-use allocation can 
contribute to the decision-making and planning for sustainable urban development.  
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Figure 9. Schematic overview of the relationship among four papers included in this thesis. 

Performance evaluation and comparison of metaheuristic 
algorithms 

Various studies have shown that metaheuristic methods could be proper solutions to 
solve many real-world problems when they are well implemented (Zheng, Chen, and 
Ling 2015; Gunantara 2018). However, the choice of a suitable algorithm for a specific 
problem is still difficult for many users. Therefore, researchers need to understand how 
and why one metaheuristic algorithm outperforms another for tackling optimization 
problems. Thus, the study in a paper I explores how different metaheuristics methods 
perform when solving the same spatial multi-objective optimization problem. To 
achieve this, four standard metaheuristic methods were implemented and applied to 
solve the problem related to evacuation planning in Kigali, Rwanda. In this study, the 
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spatial evacuation model was aiming to minimize two objective functions 
simultaneously; minimizing accumulated travel distance from high-risk zones to 
shelters and minimizing the overload capacity of shelters. The implemented algorithms 
were Archived Multi-Objective Simulated Annealing (AMOSA), Multi-Objective 
Artificial Bee Colony Algorithm (MOABC), Multi-Objective Standard Particle Swarm 
Optimization Algorithm (MSPSO), and Non-Dominated Sorting Genetic Algorithm 
(NSGA-II).  

Several evaluation criteria and performance metrics include effectiveness (quality of 
optimal solutions), efficiency (convergence and execution time), and repeatability. The 
statistical analysis of variance method (Kruskal–Wallis test) was used to test how each 
algorithm achieves the best solutions and to evaluate if there are statistically significant 
differences between performances of the implemented algorithms. For instance, Figure 
10 illustrates that AMOSA and MOABC outperformed other algorithms in terms of 
obtaining the minimum fitness values of two objective functions, as well as in short 
execution time(seconds).  

 

Figure 10. Box plots of comparing effectiveness and efficiency of four algorithms. (a) variation of the fitness values of 
overload capacity and distance function. (b) variation of the execution time of each algorithm. Modified from Paper I. 

Furthermore, by evaluating the convergence speed of the four algorithms, the results 
show that AMOSA and NSGA-II followed by MOABC converged faster and smoother 
towards the final optimal solutions (see figures in Paper I). This justifies not only the 
competence of NSGA-II, which has been used in the literature of spatial optimization 
to a large extent (Mohammadi, Nastaran, and Sahebgharani 2015), but also shows the 
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potential of the recently developed classic algorithms in solving evacuation problems 
(e.g., AMOSA and MOABC). To conclude, the compared metaheuristics methods and 
others of its type are not to find a set of “exact solutions” but a set of “good enough or 
close to the best solutions” in an efficient way, and therefore, more efforts could be 
added to improve the optimal solutions by using alternative methods. In this case, 
Decision-makers must be aware of this aspect, to properly assess the benefits and 
limitations of these techniques (Xiao and Murray 2019). 

Improved MOABC algorithm for evacuation planning  

After an extended investigation on the performance and application of four 
metaheuristics methods presented in paper I, the results showed not only that the most 
popular genetic algorithm (NSGA-II) can effectively solve a complex spatial decision 
problem, but also among the recently developed metaheuristics such as MOABC 
algorithm, could be an efficient tool for evacuation planning. In addition, most of the 
metaheuristic algorithms are originally designed to tackle general optimization 
problems, especially most of them are designed and tested on benchmark problems 
from computer science and/or engineering perspectives (Abdel-Basset, Abdel-Fatah, 
and Sangaiah 2018). Therefore, the use of a standard algorithm for real-world problem 
such as evacuation might lead to the wrong results and biased decisions. Thus, it was 
important to modify the MOABC to fit much better to the problem at hand. The 
weakness of standard MOABC was identified at local optimal search. This issue was 
addressed with modified neighbourhood strategies of local search, as well as improving 
its recombination operation by adopting a crossover operator.  

The evacuation model solved by the improved MOABC, aimed at finding the 
optimal distribution of evacuees to safe places (as was the case in Paper I). The 
experimental results of the improved MOABC algorithm showed improvement from 
the results obtained for the multi-objective evacuation model. The impact of employed 
methods to improve MOABC was analysed, and the results showed a significant 
difference between MOABC with combined neighbourhood searching strategies 
(random swap, RS and random insertion, RI) together with crossover operator (Table 
3). Moreover, the results of the improved MOABC outperformed the standard version 
of MOABC and NSGA-II algorithm in terms of optimizing two objective functions 
and execution time.  
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Table 3. Comparison of the improved MOABC against the standard MOABC and NSGA-II algorithm. The three 
algorithms were implemented on the same dataset and run with 500 maximum iterations.  

Algorithm Minimum fitness value of 
overload capacity function  

Minimum fitness value of distance 
function 

Execution time (s) 

Proposed MOABC 5.8 8.72 x 108 161 
Standard MOABC 49.0 1.18 x 109 163 
NSGA-II 38.9 1.08 x 109 1971 

 

Furthermore, it was important to assess the evolution process of the algorithm 
throughout iterations and track how the algorithm improves the solutions. From an 
operational perspective, the improved MOABC optimally allocated the minimum 
number of population (evacuees) as possible based on the capacity of shelters that they 
are assigned to. Hence, finding the closest shelter was achieved by minimizing the total 
travel distance at the same time as minimizing the overload capacity of the shelters. 
Figure 11 illustrates the variation of six selected generations together with the spatial 
allocation of evacuees to the assigned shelters. The minimum fitness values obtained 
from an optimal solution at each generation are also presented in Figure 11. 

In addition, the sensitivity analysis on repeatability also displayed interesting results 
and proved the stability of the algorithm when solving the evacuation model. The 
convergence results showed how progressively the improved MOABC has optimized 
the distance and capacity objective functions through 500 generations. 
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Figure 11. Variation of optimum solutions through generations. The grey lines on each graph represent the allocation of 
shelters. The numbers of building blocks assigned to shelters are represented on the pie chart on the right side of each 
graph. The minimum fitness values of capacity overload and distance function obtained at 1st, 50th, 150th, 250th, 350th 
generations are represented respectively. Modified form Paper II 

Improved MOCS algorithm for evacuation planning  

The motivation for the study in paper III was that the evacuation planning models 
solved in paper I and paper II involved only two conflicting spatial objectives, while 
there are many more factors to be considered when planning for efficient evacuation in 
urban areas of developing countries. For instance, the damaged roads and destroyed 
bridges could be a big challenge to the planners to decide on the best alternative of 
rescuing people from danger. In this case, a risk function was defined, tested, and 
adopted in the development of the evacuation model. The model consists of optimizing 
the distribution of people from disaster risk zones to safe areas, using the shortest and 
secure paths, and minimizing the shelter’s overload capacity. However, a spatial 
decision problem with many objectives becomes even more complicated to be solved 
by the traditional methods. Therefore, a novel metaheuristic algorithm called multi-
objective cuckoo search (MOCS) was modified and applied to fit better to the problem. 
The model was tested on geographical and population data of Mozambique, a Sub-
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Saharan African country that is also prone to many natural disasters including 
hurricanes, cyclones, and floods. 

The performance tracking of the improved MOCS algorithm showed that the 
computation time is below that of the standard MOCS algorithm. This proves that the 
modifications made on the main operations of MOCS have impacted the behaviour of 
the algorithm from a performance perspective (computation time). The application of 
crossover and mutation operators has raised the generation of new individuals with 
better solutions to take place in the next generations. Also, Lévy flights method adopted 
for selection, avoided the best solutions to be trapped in the local search process. 
Furthermore, the convergence speed was investigated to analyse how each objective 
function has been minimized. The mean value of the minimum fitness values in each 
generation was retrieved and it was found that there is a minor difference between 
convergences of the three objective functions. 

Furthermore, the Pareto front size (number of non-dominated solutions) over 
generations has been analysed, it appears that when the initial parameters were set to 
200 population and 500 generations, the improved MOCS obtained a smaller Pareto 
font size compared to that of standard MOCS. However, this is not a significant 
difference since the Pareto front size could change based on different parameter settings 
and the number of generations of an algorithm (refers to the results in paper I-II). Other 
important indicator is the diversity among solutions and to verify if the trade-off 
between objective functions meets the goal of the optimized problem. In this case, the 
hypervolume indicator was employed in the analysis of the results to measure the 
quality of Pareto front of the improved MOCS algorithm against that of the standard 
MOCS (Figure 12). 
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Figure 12. The hypervolume convergence analysis of optimal solutions through different number of generations (on the 
left) and population size (on the right). Adopted from Paper III. 

Sustainable urban land-use planning approach using an 
improved NSBBO algorithm  

Sustainable urban land-use allocation deals with the spatial arrangements of various 
land use to specific land units in a geospatial context. It contains social, economic, and 
environmental dimensions that involve different objectives (Mohammadi, Nastaran, 
and Sahebgharani 2016). Moreover, optimality is the key element of sustainable urban 
land use planning (Cao et al. 2011). These factors make sustainable land-use allocation 
to be regarded as a multi-objective optimization problem. Thus, paper IV of this thesis 
aimed to develop a multi-objective spatial optimization model for sustainable land-use 
allocation using an improved non-dominated sorting biography-based optimization 
(NSBBO) algorithm.  

The goal of the developed model was to generate optimal alternatives of land-use 
allocations plans that lead to the balance of social integration and economic benefits in 
urban design areas via three spatial objectives: maximizing accessibility, maximizing 
compactness, and maximizing space syntax integration. This study proposed the use of 
an integration attribute as a new spatial component to be considered in multi-objective 
land-use optimization modelling. Moreover, several studies related to land use 
optimization modelling have often used methods that belong to evolutionary 
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algorithms (EAs) (Rahman and Szabó 2021), since they are known to be efficient. 
Nevertheless, there is a need of exploring other potential algorithms that could perform 
even better than those EAs when they are modified and improved to fit the spatial 
decision problem.  

In the modelling of NSBBO, parameters such as the number of generations, the size 
of the initial population, and the mutation probability rate play an important role in 
the performance and output of the algorithm. In this context, several tests have been 
done to study the effects of parameter changes. The results showed that the set of a high 
number of population and generations results in high computation time, while the 
obtained minimum objective values of the three objective functions are not highly 
affected by the changes of parameters. By analysing the optimization progress of non-
dominated solutions through generations, it was observed that the algorithm converged 
smoothly towards the minimum value.  

The contribution of the study in paper IV is twofold. First, the presented NSBBO 
algorithm can be used to create a set of base plans from comprehensive to detailed plans 
of land uses allocation. For instance, each optimal solution from a trade-off (Pareto 
front) can be interpreted as a prototype of a land-use plan that fulfils the concerns of 
specific decision-makers' interests (Figure 13). Figure 13 (a) shows the land-use map of 
the best solution that maximized the accessibility function. It can be observed that the 
NSBBO model has produced an optimal distribution of certain land uses across the 
residential area (e.g., mixed schools, shops, public facilities, and parks). The land-use 
map of best solution that maximized the spatial compactness is presented in Figure 13 
(b). Land uses such as schools, open space and parks are the most compacted. Moreover, 
Figure 13 (c) represents the optimal land-use map of the best solution that maximized 
the space syntax integration function. As the space syntax integration function focused 
only on the allocation of commercial land use types (named neighbourhood centers), 
it can be seen that the cells in red colour that represent neighbourhood centers are 
distributed in the centre of the study area where the streets with high integration values 
were identified (paper IV).  

Furthermore, the maximization of accessibility objective could contribute to the 
environmental aspect, while social equality concerns are included in the objectives of 
compactness and space syntax integration. Secondly, we compared the map of land-use 
allocation produced by the NSBBO algorithm with the existing land-use map 
allocation proposed in the master plan of the study area. 
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Figure 13. Correspoding spatial patterns are the best solution that maximized each objective function. (a) maximization of 
spatial accessibility, (b) maximization of spatial compactness, and (c) maximization of space syntax integration. Adopted 
from Paper III. 

It was concluded that a land-use plan of NSBBO algorithm provided better 
compactness of some land-uses such as schools as well as an optimal distribution of 
shops across the residential area. This advantage could contribute to the reduction of 
cost and negative influences of improper decisions on urban land-use planning, 
particularly in developing countries. 
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Conclusions and Outlook 

The present research demonstrated the potential use of integrated geographical 
information systems and multi-objective decision-making methods in solving complex 
spatial decision problems. The complex spatial multi-objective optimization models in 
disaster management and urban planning contexts were explored and developed. 
Furthermore, the GIS tools and metaheuristic techniques were investigated and used 
to solve the defined spatial optimization problems. The generation of high-quality 
alternatives is a key to the success of spatial multi-objective decision making. The 
methodological essence of metaheuristic algorithms is based on the process of evolution 
from initial random solutions toward a diverse set of optimal or near-optimal solutions. 
Because the employed metaheuristic algorithms are population-based, it is possible to 
design and modify algorithms to fit better to the spatial problem and to encourage the 
convergence of diversity and optimality. The findings showed that the employed 
metaheuristic algorithms are particularly appropriate for spatial multi-objective 
decision making. 

This thesis fully benefits from a better understanding of GIS-MODM methods and 
their implementations to address real-world problems. However, several critical issues 
require further investigation. Here, three important future topics are identified. By 
addressing these issues, researchers and decision-makers will be equipped with more 
effective tools to solve spatial multi-objective decision problems. 

1. Spatial optimization problems often have objectives and constraints that are 
difficult to translate into mathematical forms. Though metaheuristics, 
particularly EAs and SA algorithms, have proven to be efficient in addressing 
such constraints, a unified approach to constraint handling for a wide range of 
spatial problems would be useful. Xiao (2008) demonstrated a unified 
conceptual framework for geographical optimization using evolutionary 
algorithms that can be applied to different spatial problems. A similar study of 
the conceptual framework for instance using Swarm intelligence algorithms is 
still needed.  

2. The metaheuristics algorithms, GIS tools, and visualization techniques 
discussed in this thesis have been separately implemented in different forms, 
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and efforts are needed to integrate them into a more coherent system that can 
be used to address spatial applications.  

3. The issue of evaluating GIS-MODM methods is a very complex one since the 
outcome is ultimately dependent on the decision maker’s preferences, 
expectations, and knowledge. Moreover, there are several issues related to 
analysing trade-offs that may have an impact on decision-making. The 
sensitivity analysis method using different criteria to measure the quality of the 
results such as hypervolume indicator, and assessing Pareto front solutions (i.e., 
study multiple scenarios of trade-offs), have all shown to have an impact on 
how we make decisions. In future work, the impact of the uncertainties on the 
GIS-MODM methods should be investigated.  
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