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Abstract—Process-based confidential computing enclaves such
as Intel SGX can be used to protect the confidentiality and
integrity of workloads, without the overhead of virtualisation.
However, they introduce a notable performance overhead, espe-
cially when it comes to transitions in and out of the enclave
context. Such overhead makes the use of enclaves impractical
for running IO-intensive applications, such as network packet
processing or biological sequence analysis. We build on earlier
approaches to improve the IO performance of work-loads in
Intel SGX enclaves and propose the SGX-Bundler library, which
helps reduce the cost of both individual single enclave transitions
well as of the total number of enclave transitions in trusted
applications running in Intel SGX enclaves. We describe the
implementation of the SGX-Bundler library, evaluate its per-
formance and demonstrate its practicality using the case study
of Open vSwitch, a widely used software switch implementation.

Index Terms—SGX, Hardware security, Open vSwitch, Perfor-
mance optimization

I. INTRODUCTION

Confidentiality and integrity are important topics when com-
putation moves from local premises to a third-party environ-
ment. Addressing these topics should not offset the two core
advantages of cloud computing: cost reduction and flexibility.
Confidential computing is an increasingly popular approach to
achieving this [35]. It relies on using a Trusted Execution Envi-
ronment (TEE) backed by certified hardware, such that critical
operations of Trusted Applications running inside the TEE
cannot be manipulated by the platform operator or malicious
entities (with the notable exception of the CPU manufacturer).
For example, AMD SEV, Intel SGX, and IBM SVM provide
mechanisms to achieve this in different ways [12], [20],
[34]. The variety of vendor TEE implementations highlights
trade-offs between security guarantees, portability of legacy
applications, ease of deployment, and run-time performance.
VM-based TEE implementations (e.g. AMD SEV, IBM SVM,
and Intel TDX) support portability of legacy applications with
a modest performance overhead [8], but have a larger attack
surface and are vulnerable to several classes of attacks [17].
Process-based TEEs (e.g. Intel SGX and ARM TrustZone) on
the other hand have a smaller attack surface and improved
security. Unfortunately, the additional security checks together
with memory access limitations also affect the performance
of process-based TEEs negatively [8]. Furthermore, these
have shown to be particularly vulnerable to microarchitectural

attacks [25] and platform vendors have repeatedly issued
microcode patches to alleviate security problems [7]. Figure 1
illustrates that microcode updates for Intel SGX have caused
TEE performance to decrease even further.
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Fig. 1: Evolution of the SGX enclave transition time though
Intel microcode updates, presented as a cumulative distribution
function (CDF).

It is therefore imperative to identify and implement new
approaches that help to maintain or improve TEE performance
despite the latest countermeasures to microarchitectural at-
tacks. This, however, must also be done in a way that does
not significantly increase application developers’ efforts. In
this paper, we address a crucial limitation on the intersection
between the portability of legacy applications and the perfor-
mance overhead introduced by the transition between the TEE
and the Rich Execution Environment (REE).

Our results show that while a tailor-made refactoring of
legacy Trusted Applications for Intel SGX yields the best per-
formance, it is labor-intensive, application-specific, and often
impractical. This insight led us to develop the SGX-Bundler
software library as a generic approach for speeding up enclave
transitions in legacy Trusted Applications, while maintaining
the security benefits of SGX. This solution is particularly
beneficial in IO-intensive applications such as network packet



processing, remote sensing applications, biological sequence
analysis, and long-running simulations [24]. We demonstrate
the practical applicability and performance improvements of
our approach using a packet processing application. Note
however that the proposed solution is generic and can be
applied to any domain. This paper extends, clarifies and
complements the preliminary results presented in [28]. The
main contributions of our work are summarized as follows:

• We describe a generic approach to speed up transitions
between the rich execution environment and SGX en-
claves (Section III);

• We introduce enclave execution graphs, that allow exe-
cuting arbitrary sequences of enclave functions using a
single enclave transition (Section IV);

• We implement a library to assist refactoring of legacy
applications and introduce efficient transitions in and out
of SGX enclaves;

• We demonstrate the applicability of our approach with
the case study of a widely used IO-intensive application;

• The implementation source code is openly available1.
The rest of the paper is structured as follows. We introduce

the required background and motivate the problem in Sec-
tion II, introduce the SGX-Bundler library in Section III and
describe the implementation of the library in Section IV. Next,
we evaluate the performance of the SGX-Bundler library and
its application in a case study in Section V, present the related
work in Section VI followed by conclusion and future work
in Section VII.

II. BACKGROUND

We next introduce several key concepts used in the paper.

A. Intel SGX

Intel Software Guard Extensions (SGX) are CPU security
extensions that allow execution of unprivileged trusted ap-
plications in the presence of possibly malicious privileged
software such as a compromised OS or hypervisor [20]. An
SGX-enabled CPU maintains an isolated memory region, the
Enclave Page Cache (EPC), within which security enclaves
can execute isolated from the rest of the system. SGX provides
mechanisms to verify the integrity of an enclave (using local
and remote attestation) and binding of information to specific
configurations (sealing), which allows one to validate an
enclave without direct access to its content.

Enclaves communicate with applications running in the Rich
Execution Environment (REE) using the ECALL and OCALL
(entry and out call) instructions. However, these instructions
introduce a performance overhead that often makes SGX un-
suitable for IO-intensive applications. Weisse proposed using a
shared memory region outside the enclave for communication,
resulting in significant performance improvements in real-
world applications [33]. In response to published security
vulnerabilities affecting Intel SGX [31], [18], [15], Intel
issued a number of microcode updates. However, along with

1Source code repository: https://github.com/nicopal/sgx bundler

addressing software vulnerabilities this further degraded the
performance of enclave transitions (see Figure 1). While the
HotCalls approach [33] produces a tangible performance im-
provement, we note the importance of further efforts to offset
the overhead introduced by subsequent microcode updates.

B. Memoisation

Memoization is an optimization technique for reducing the
execution time of computationally expensive functions [14].
Given a function with no side effects, memoization uses a
cache to remember some input-output pairs. If an input used
in a subsequent call is found in the cache, the recorded output
value is returned, otherwise, the (expensive) function call is
taken. Memoization is a simple way of trading execution
time for space and is commonly used to optimize recursive
algorithms. We use memoization to speed up enclave transition
times between applications running in the TEE and the REE.

C. Open vSwitch

The motivating use case for this work is Open VSwitch
(OvS), a software network switch for connecting physical and
virtual network interfaces in a virtualized environment [16].
This is a critical component for providing network isolation in
cloud infrastructure and other multi-tenant environment [23].

Fig. 2: Overview of OvS main components.

Among the OvS components (Figure 2), the flow tables (1)
are of special interest to us as they contain the rules that define
the switch routing behavior. While these tables are critical
OvS assets, they are often stored without sufficient confi-
dentiality and integrity protection, leading to serious security
vulnerabilities. For example, an attacker with access to flow
tables could map the network structure [5], modify routing
behavior to perform man-in-the-middle attacks, or bypass
firewalls and intrusion-detection systems [4]. Furthermore,
an attacker could inject malicious data into flow tables to
propagate deeper into the network and compromise systems
otherwise not reachable [9].

Proposed solutions to address flow table security issues
include auditing flow table to detect discrepancies between



the configured and current behavior [19], validating both exe-
cutables and flow tables with a TPM [11], or moving critical
components (the OpenFlow flow tables and forwarding logic)
into Intel SGX enclaves [21]. The latter, while promising from
a security point of view, is a very labor-intensive task and
introduces additional overhead. In this work, we address both
shortcomings.

D. Threat model

We focus on the integrity of critical components in applica-
tions executing in multi-tenant environments. We assume the
critical components execute in TEEs and communicate at high
frequency with the corresponding applications in REE. We
consider an adversary capable of operating arbitrary software
components and having remote execution capabilities on plat-
forms where target applications operate. The adversary may
modify any REE software component. We exclude microar-
chitectural attacks [7] and address them in upcoming work;
we consider existing countermeasures against such attacks in
our performance analysis.

III. SPEEDING UP ENCLAVE TRANSITIONS

We describe SGX-Bundler, a mechanism addressing per-
formance penalties caused by transitions from and to SGX
enclaves. To help adoption and usability, we implemented the
SGX-Bundler library.

A. Overview

The SGX-Bundler library offers functionality to reduce the
cost of individual enclave transition as well as the total
number of enclave transitions for trusted applications (TAs)
deployed in Intel SGX enclaves. This library extends work
conducted in HotCalls [33] with novel ideas and is the core
contribution of this paper. The library leverages three main
features: switchless enclave function calls, execution graphs,
and enclave function memoization.

Switchless enclave function calls are used to reduce the cost
of a single enclave transition. Execution graphs and enclave
function memoization are used to reduce the total number of
enclave function calls in Intel SGX applications.

B. Functional Requirements

We consider the following functional requirements for the
SGX-Bundler library, defined based on observations of the
performance analysis described in Section V-C: (1) Switchless
calls: execute enclave functions without context-switching to
enclave mode; (2) Merging: execute an arbitrary number of
enclave functions over a single enclave transition; (3) Batch-
ing: apply an arbitrary number of enclave functions to each
element of an input list over a single enclave transition;
(4) Branching: conditional execution of enclave functions
over a single enclave transition; (5) Memoization: cache
enclave data in untrusted memory when confidentially is not
required. Caches allow untrusted applications data access with-
out enclave transitions. Moreover, we implement a mechanism
to verify the integrity of enclave data stored in untrusted
memory.

The switchless enclave function call component presented in
IV-A fullfills requirement 1; the execution graph component in
Section IV-B fullfills requirements 2-4, and the memoization
component in Section IV-D fullfills requirement 5.

C. Architecture

In the case of SGX enclaves, implementing a shared mem-
ory switchless enclave communication library requires source
code modifications in both the trusted application running
in the TEE and the untrusted application running in the
REE. Enclaves do not share source code (and libraries) with
the untrusted application; therefore, the SGX-Bundler library
consists of two separate libraries. The first library is a static C
library that needs to be linked with the untrusted application,
and the second is a trusted enclave library which needs to be
linked with the enclave. Trusted enclave libraries are static
libraries that are linked with the enclave binary [1].

Intel SGX Application

Untrusted Component
(Untrusted Application)

Untrusted Application Code

Invokes switchless
enclave function

Untrusted Library Component

Write execution
graph

Shared Memory Region

Trusted Component
(Enclave Component)

Enclave Code & Data

Invokes enclave
functions

Trusted Library Component

Polls

Fig. 3: High-level overview of an Intel SGX application using
the SGX-Bundler library.

Figure 3 illustrates the untrusted and trusted part of the
SGX-Bundler library when integrated into an arbitrary Intel
SGX application and the interactions between the different
parts. The untrusted application invokes switchless enclave
functions through an API exposed by the untrusted library.
Next, the untrusted library writes the job to a shared memory
region in the form of an execution graph (execution graphs are
discussed later in Section IV-B). Finally, the job is processed
by an enclave worker thread which calls the associated enclave
function and writes back potential return values to the shared
memory region.

IV. SGX-BUNDLER IMPLEMENTATION

We next describe the SGX-Bundler implementation.

A. Switchless Enclave Function Calls

The protocol used for switchless enclave function calls
in the SGX-Bundler library builds on HotCalls [33] and
is presented in Figure 4. This component fulfills functional
requirement (1) listed above in III-B. The shared memory
region contains a spinlock primitive that must be acquired by



either the untrusted application and the TA before accessing
the shared memory region to avoid data races. While Intel
SGX SDK supports condition variables, this synchronization
primitive is implemented with OCALLS, which is a context
switch operation and conflicts with our goal to keep the
communication protocol switchless. Spinlock is the only syn-
chronization primitive that can be used by the enclave worker
threads without leaving the enclave.

The untrusted application invokes switchless enclave func-
tions by acquiring the lock of the shared memory region and
writing the enclave function call, represented by a (function id,
function data) tuple to shared memory. An enclave worker
thread initiated through an API exposed by the trusted part of
the library is continuously polling the shared memory region
for scheduled jobs to execute. The enclave worker thread uses
a busy-waiting scheme where it repeatedly checks for pending
jobs inside of an infinite loop. We use Intel’s pause instruction
inside of the spinlock loop to improve the efficiency of the
busy-waiting scheme. The pause instruction provides a hint
to the processor that it is executing inside a spinlock loop,
enabling the processor to perform memory optimizations [10].

In Section IV-B we will replace this tuple with a data
structure representing an execution graph to create a more effi-
cient enclave communication scheme able to execute multiple
enclave functions using a single enclave transition.

1) Translation Functions: Input and output parameters are
treated as generic elements which simplifies the implemen-
tation but must be translated to correct data types before
an enclave worker thread can be invoked. This is done by
defining a translation function for each function exposed to
the untrusted application, see Listing 1 for an example. Note
that translation functions are constructed to accept an array of
parameters, which will enable the use of batching (see Section
??).

Listing 1: A translation function for an enclave summation.

void t r a n s l a t i o n e c a l l p l u s ( unsigned i n t i t r s ,
unsigned i n t params , void * a r g s [ ] [ ] ) {
f o r ( i n t i = 0 ; i < i t e r s ; ++ i ) {

*( i n t *) a r g s [ 2 ] [ i ] = h o t c a l l p l u s (
* ( i n t *) a r g s [ 0 ] [ i ] , * ( i n t *) a r g s [ 1 ] [ i ] ) ;

}
}

B. Execution Graphs

A limitation of the HotCall implementation [33] is that it
only allows execution of a single enclave function per enclave
transition. A switchless enclave transition still introduces an
overhead estimated to be around ∼600 to ∼1400 clock cycles
for warm and cold caches respectively [33]. A simple approach
to address this is to merge sequence of enclave calls into a
single call, as illustrated in Figure 5.

In practice the enclave call sequence may be much more
complex than just a pre-defined list of function calls. To
address this, we introduce the concept of execution graphs
in the context of enclave transitions. An enclave execution

graph is an arbitrary sequence of dependent or independent
enclave function calls, control statements, and iterators that
are executed within a single enclave transition. This provides
a significant improvement over the original HotCall implemen-
tation and is to best of our knowledge a novel concept that
has not been explored in previous studies. We discuss various
graph components and their function outlines in our Technical
Report [29].

C. Construction of Execution Graphs

When converting an imperative programming language to
execution graphs, each node can require 5 − 10 lines of
boilerplate code. This is a tedious and error-prone task and
most likely will result in a less readable code. To address
this problem, we created a user-friendly API based on C pre-
processor macros. This API can be used for building execution
graphs using both an imperative and functional-style syntax,
and is explained in detail in the technical report accompanying
this paper [29].

D. Enclave Function Memoization

While execution graphs are effective capturing complex
operations that have a high number of enclave calls, they
are not as effective in handling simpler enclave operations.
To address this we make propose caching results of frequent
enclave calls in untrusted shared memory using a technique
called memoization. The integrity of memoization caches in
untrusted memory is guaranteed by storing a hash of each
memoization cache in the enclave. We compute the hash of a
memoization cache as follows:

∑
e∈C

hash(e) (1)

where C is the set of all entries in the cache. The enclave
worker thread, responsible for populating memoization caches,
updates the corresponding memoization hash each time a
cache entry is inserted or deleted.

The enclave worker thread periodically verifies the caches
by recalculating the hashes of the memoization caches in un-
trusted memory and compares them with the hashes stored in
enclave memory. Depending on the nature of the application,
different actions can be appropriate when an unauthorized
modification is detected.

Manipulating the eviction list only enables an attacker to
give cache priority to selected entries.

V. RESULTS

To assess the performance gains of using SGX-Bundler, we
first perform several micro-benchmarks for each component of
the library. To evaluate real-world performance improvements
in a significantly more complex environment, we also evaluate
a prototype implementation of OvS with SGX support.



1. Acquire the lock
2. Set function_id & function_data
3. Release lock
4. Acquire the lock
5. If is_done then exit, otherwise
    release lock and go to 4

struct shared_memory {
    spin_lock
    function_data
    function_id
    run
    is_done
}

1. Acquire the lock
2. If run then continue, else 
    release lock and go to 1
3. Set run to false
4. Execute function corresponding
    to function_id with 
    function_data as argument
5. Set is_done to true
6. Release lock

writes return value

writes function data

reads

function data

reads 

return value

Untrusted Application Shared memory Enclave

Fig. 4: Switchless enclave function call protocol.
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Fig. 5: Sequence diagram illustrating two function calls with
the original HotCall implementation and using execution
graphs.

A. SGX-Bundler Library

The following components of the proposed solution are
evaluated here: switchless enclave functions, execution graphs
(merging, batching, branching), and memoization. This allows
us to study the benefits of each improvement in isolation.

1) Enclave Transition Time: Measured execution time for
switchless function calls can be observed in Figure 6. Com-
pared to ECALLs (see Figure 1), we note that not only the
switchless calls are significantly faster (∼20.3x and ∼18.6x
for warm and cold cache), they are also mostly unaffected by
microcode updates. In contrast, ECALL warm and cold cache
performance has increased over time by ∼110.8% and ∼57.8%
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Fig. 6: Enclave transition times for switchless enclave function
calls with different Intel microcode versions.

respectively.

B. Execution Graphs

We next evaluate the merging, batching and branching
capabilities of the SGX-Bundler library.
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Fig. 7: Execution times when executing n different enclave
functions, with and without execution graphs.



1) Merging: We compared execution time of merging
n ∈ {1, 10, 20, 30, 40, 50} enclave function calls using execu-
tion graphs to single enclave function calls (i.e. no merging).
As Figure 7 illustrates, merging significantly reduces execution
time when multiple calls are performed. Note that without
execution graphs the execution time is dominated by the
transition time measured in Figure 6.

2) Batching: Given a list of n ∈ {1, 10, 20, 30, 40, 50}
elements, we compared the processing time using either a loop
or an iterator. As Figure 8a illustrates, iterators are ∼14x faster
even though both operations grow linearly with the number of
elements.

Currently, iterators are limited to a single enclave call per
round while loops can perform an arbitrary number. We mea-
sured the execution time of applying m ∈ {1, 5, 10, 15, 20}
enclave functions to an input list of size 20. Despite iterating
through the list m times, iterators are still ∼6.4 times faster
than loops (see Figure 8b).
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Fig. 8: Execution time when applying m enclave functions to
each element in a list of size n.

3) Branching: In Figure 9 we compare enclave branching,
which happens inside the enclave to application branching
which performs the branch in the application and executes
the branch body as a separate execution graph. Notice that
enclave branching is faster when the branch condition is true,
but slower when false. However, if the branch operation is
repeated at least once (Figure 9 (c)), then enclave branching
is faster even when the condition is false.

4) Enclave Function Memoization: We measure perfor-
mance gains of memoizing a variable accessed through an
enclave function. In Figure 10 we measure execution time for
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Fig. 9: Execution times for enclave and application branching.

a cache hit with LRU or FIFO eviction policies. Notice that a
cache hit is ∼20-24x faster than a cache miss.

At the same time, memoization introduces a noticeable
overhead to enclave operations that update a value and thus
must update or invalidate the cached value. Figure 11 shows
that the cost differs depending on the state of the cache
(∼12.0% and ∼20.7% for warm and cold caches respectively).

C. OvS Prototypes

To better assess the proposed solutions it is important
to study the performance impact in non-trivial real-world
applications. Since time constraints would limit us to analysis
of a single application, we chose Open vSwitch (commit
53cc4b0) where different operations and workloads should
cover a wide range of executions characteristics. To this
aim, we studied four Open vSwitch flow table operations
(add, delete, modify and evict flow rule) under realistic SDN
workloads and as average of 20 separate rounds.

The performance of each operation has been compared
across five different implementations: baseline is the original
version, SGX vanilla is the OFTinSGX version [21], Switchless
uses hotcalls instead of ECALLs [33] while Bundler uses all
optimizations described in this paper. Finally SGX refactored
is the authors heavily modified version tailored specifically
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Fig. 10: Execution times of an enclave function with memo-
ization enabled for both cache hits and misses.
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for SGX and will be used to compare the trade-offs between
performance and development effort. All evaluation scripts are
openly available2.

1) Add and Delete Flow Rules: Measured execution time
for add and delete flow operations can be seen in Figure 12
and Table I. We note that in both cases SGX vanilla performs
significantly worse than other implementations. It is also noted
that Bundler performs slightly better than Switchless but not
as well as SGX refactored which is the best preforming secure
implementation (with Baseline being the best performing
overall implementation.)

The difference between Bundler and Switchless increases
slightly in the case of delete operations. Unlike add, delete
operations often target multiple table entries and therefore
benefits from batching. We will shortly revisit this difference
for other operations

2) Modify and Evict Flow Rules: Measured execution time
for modify and evict operations can be seen in Figure 13 and

2Source code repository: https://anonymous.4open.science/r/sgx
bundler-E9C2
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Fig. 12: Execution time for add and delete flow operations

Table I. The pattern observed earlier is repeated here, although
the performance difference between Bundler and Switchless is
growing. For example, for evict operations the former is well
over an order of magnitude faster.

We note that modify and evict represent more complex
operations that may require many more enclave transitions.
In such situations Bundler appears to provide much more
stable performance improvements. Hence we conclude that
while Switchless provides some performance improvements,
its benefits are limited in IO-intensive applications.

Given these results, it seems that while Bundler introduce
a measurable performance overhead it does not drastically
increase execution time even in corner cases. We note that
SGX refactored demonstrates better performance, but is the
performance gain worth the amount of work required to rewrite
the original application?

D. Programming Effort Trade-Offs

The effort required to rewrite and optimize an application
specifically for SGX depends on the size and complexity of
the application. In practice doing this may not be possible
due to cost and time limitations, lack of know-how or other
issues. For example, maintainability may suffer as transferring
new changes from the original project to the rewritten version
becomes much harder. As mainline changes also include
security patches, this might also negatively affect the security.

While in this work the authors were able to create the
SGX refactored implementation for Open vSwitch, the effort



TABLE I: OvS overhead for different operations

Version Batch Op Overhead for quantile Op Overhead for quantile
size 25% 50% 75% 25% 50% 75%

Baseline - Add 0 0 0 Delete 0 0 0
SGX Refactor - Add 29 34 53 Delete 19 22 26
Bundler 1 Add 80 90 106 Delete 22 26 29
Bundler 16 - - - - Delete 17 16 15
Switchless - Add 119 124 136 Delete 37 39 42
SGX vanilla - Add 1473 1524 1511 Delete 508 517 544
Baseline - Modify 0 0 0 Evict 0 0 0
SGX Refactor - Modify -11 -10 0 Evict 23 25 27
Bundler 1 Modify 8 10 16 Evict 153 153 150
Bundler 16 Modify 21 21 21 Evict 86 89 91
Switchless - Modify 38 39 45 Evict 3661 3906 3860
SGX vanilla - Modify 588 622 615 Evict 49628 47606 45703
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Fig. 13: Execution time for modify and evict flow operations

for doing so was not negligible. In comparison the Bundler
implementation utilized the SGX-Bundler library and required
much smaller changes to the Open vSwitch source code (less
than 1% of lines and 1% of files were modified). We believe
this is mainly attributed to the user API for constructing
execution graphs (see the Technical Report [29]).

E. Security Analysis and Limitations

We next assess the security implications of using SGX-
Bundler by examining the changes that can affect the trusted
code running inside the enclave.
Storing execution graphs in shared memory does not
advantage an attacker in the Intel SGX adversary model, where

the attacker controls the underlying OS and the enclave IO [3].
SGX-Bundler applies the approach employed by Hotcalls [33]
and SGX SDK (reference) for passing the data structures
between the untrusted code and the enclave. Furthermore,
execution graphs are initially constructed in the untrusted,
rich execution environment and are not sensitive to attacks
on confidentiality and integrity (beyond performance effects).
We further refer to the security analysis in [33] which analyzes
a similar approach.

Replay attacks and Denial of Service: The SGX-Bundler
approach does not introduce additional risks for replay attacks
or denial of service. Calls to the API of the trusted application
running in the enclave are always issued from the untrusted
rich execution environment. Denial of service is outside the
Intel SGX adversary model.

Confidentiality of application data: SGX-Bundler does not
affect data confidentiality as neither user nor application data
is stored in the shared memory. We assume that all user data
communicated between the trusted enclave and the untrusted
rich execution environment is done through a secure channel
established following enclave attestation [3].

Integrity of the memoization cache: An attacker can tem-
porarily change the content of a memoization cache without
being detected. If an attacker modifies a memoization cache
entry and restores the original value before the next memoiza-
tion cache verification, then the unauthorized modification will
not be detected by the enclave. An attacker can time the cache
changes such that cache modifications are removed before each
cache verification, thus hiding the changes. However, assuming
the attacker cannot determine exactly when the enclave worker
thread verifies memoization caches, the integrity violation
will be eventually detected. As a result, enclave function
memoization only guarantees eventual integrity of its content
and is not directly suitable for settings requiring stronger
integrity guarantees. Instead, it is appropriate in contexts when
the logic of the application must be protected, and not the data
that it processes. Consider the case of proprietary algorithms,
software implementations, parameters of DNN models, and
other types of software intellectual property.



VI. RELATED WORK

Performance issues in SGX applications can sometimes be
attributed to the high cost of entering and exiting enclaves.
Weisse et al. introduced ”HotCalls” for communicating with
enclaves using shared untrusted memory [33]. This approach
can be orders of magnitude faster than ECALLs, although the
use of untrusted memory also increases the attack surface for
the enclave. The switchless enclave function call component
of the SGX-Bundler library developed in this paper, presented
in Section III-A, is heavily inspired by this work.

The HotCalls protocol requires an enclave worker thread
that communicates with the main thread through a shared
memory region. This thread will occupy one CPU core,
which is economical only when the SGX enclave is under
some load. Tian et al. suggested using an adaptive approach
where ECALLs are used when the device is mostly idle and
switchless calls are used when it is under some load [30]. This
scheme has been included in recent versions of the Intel SGX
SDK as an official feature. We chose to not use this scheme
in our paper as it lacked the flexibility and control granularity
of a custom solution.

ShieldStore is an SGX enabled key-value store that uses
HotCalls and also overcomes EPC memory limitations by
storing all key-value pairs in encrypted untrusted memory
[13]. The two prototypes developed in this work were highly
influenced by ShieldStore.

The authors of [6] presented an extensive performance study
for virtualization and Intel SGX. The study includes a large
number of benchmarks on ECALL, OCALL, and EPC paging
performance in native and virtual environments. The native
ECALL performance estimates were used in Section V-C of
this paper.

Weichbrodt et al. presented sgx-perf, a performance analysis
tool for Intel SGX applications [32]. Using this tool, the
authors analyzed scenarios where Intel SGX was a significant
performance bottleneck and suggested possible solutions. Two
such scenarios were subsequent calls of the same enclave
function and subsequent calls to different enclave functions.
While the authors proposed batching and merging respectively
or moving the caller into the enclave, to the best of our
knowledge this has not been implemented and described before
our work. Furthermore, we improve the usability of this
approach by packaging it as a library.

Software-Defined Networking (SDN) and in particular the
SDN control plane has been extensively scrutinized by security
researchers [27], [2]. Some researchers have considered the
use of Trusted Computing and trusted execution to address
security issues. For example, Jacquin et al. proposed using
TPM to ensure a trusted boot and use of attestation to monitor
the integrity of flow tables [11], while Paladi et al. suggested
using Intel SGX to ensure a secure boot and to provide secure
communication channels [22]. Similarly, Shih et al. proposed
executing parts of a virtual network function inside an Intel
SGX enclave [26].

Medina et al. proposed OFTinSGX, an Open vSwitch im-
plementation where OpenFlow flow tables are placed inside

an SGX enclave [21]. While this provided confidentiality
and integrity guarantees to the flow tables, it also brought a
significant performance degradation to OvS.

VII. CONCLUSIONS

In this paper we presented SGX-Bundler, a mechanism to
help improve the performance of IO-intensive applications
in Intel SGX enclaves. The proposed mechanism combines
switchless SGX communication and a novel optimization us-
ing execution graphs and function memoization. We extended
earlier work and developed two prototypes that utilize switch-
less communication both with and without execution graphs
and memoization. Our evaluation shows that while switchless
communication contributes to some performance improve-
ments, the addition of execution graphs and memoization leads
to further significant improvements. In particular, our approach
seems to be much better equipped to handle exceedingly IO-
intensive operations, making it more suitable for real-world
usage. The suggested improvements come however at the
cost of increased size and complexity. To facilitate adoption
we encapsulated the proposed mechanism into the openly
available SGX-Bundler library, thereby reducing development
effort significantly.

We thoroughly evaluated the performance improvements
introduced by the SGX-Bundler library using the case study of
Open vSwitch, a widely used network switch implementation.
The SGX-Bundler library can be used for other IO-intensive
applications that can benefit from the security guarantees
of isolated execution in SGX, such as biological sequence
analysis or long-running simulations. Considering the many
parameters that each evaluation entails, we will explore in
future work the performance effects of the SGX-Bundler
library in further applications, as well as evaluate the required
programming efforts across several case studies.
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