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Abbreviations 

AC                    Adenylate cyclase 
ADP                  Adenosine diphosphate 
ATP                  Adenosine triphosphate 
cAMP               Cyclic adenosine monophosphate 
cGMP               Cyclic guanidine monophosphate  
cDNA               Complement DNA 
DAG                 Diacylglycerol 
ER                     Endoplasmic reticulum 
GLP1                Glucagon-like peptide 1 
GPCRs              G protein-coupled receptors 
GSIS                 Glucose stimulated insulin secretion 
HbA1c              Glycated hemoglobin 
IGT                   Impaired glucose tolerance 
IP3                    Inositol triphosphate 
MODY              Maturity-onset diabetic of the young 
NO                    Nitric oxide 
NOS                 Nitric oxide synthase 
PDE                  Phosphodiesterase enzyme 
PIP2                  Phosphatidyl inositol biphosphate 
PKA                  Protein kinase A 
PKC                  Protein kinase C 
PP                     Pancreatic polypeptide  
siRNA              Small interfering RNA 
T1D                 Type 1 diabetes 
T2D                 Type 2 diabetes 
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Introduction 

Blood sugar regulation is the process by which the levels of blood sugar, primarily 
glucose is maintained by the body within a narrow range. This phenomenon of tight 
regulation is commonly referred to as glucose homeostasis. Although insulin and 
glucagon are the most well-known hormones involved in the blood glucose 
regulation, there are still other hormones that might affect blood glucose indirectly 
such as stress hormones adrenaline and cortisone known to negatively affect glucose 
uptake by peripheral insulin-targeted tissues (DeFronzo RA et al, 2015). 
Sympathetic/parasympathetic nervous system are also involved in the blood glucose 
regulation by affecting endocrine cells of pancreatic islets (Revathy Carnagarin et 
al, 2018). Blood glucose regulation is very important to the maintenance of the 
normal body homeostasis in mammals. The brain does not have any energy storage 
of its own and as such needs a constant flow of glucose. Thus, both hypoglycemia 
and hyperglycemia negatively affect the functionality of brain tissue (Ashish K 
Rehni 2015). Both long lasting hypoglycemia and hyperglycemia are associated 
with brain damage (Ashish K Rehni 2015). 

 

Diabetes mellitus (DM), commonly referred to as diabetes is a group of metabolic 
diseases characterized by hyperglycemia resulting from defects in insulin secretion, 
insulin action, or both, Impairment of insulin secretion and defects in insulin action 
frequently coexist in the same patient, and it is often unclear which abnormality, if 
either alone, is the primary cause of the hyperglycemia. Symptoms of high blood 
sugar include frequent urination, increased thirst, and increased hunger. If left 
untreated, diabetes can cause many complications, Acute; life-threatening 
consequences of uncontrolled diabetes are hyperglycemia with ketoacidosis or the 
non-ketotic hyperosmolar syndrome. The chronic hyperglycemia of diabetes is 
associated with long-term damage, dysfunction, and failure of various organs, 
especially the eyes, kidneys, nerves, heart, and blood vessels. Diabetes is roughly 
divided into two groups. Type 1 diabetes and Type 2 diabetes. Although there seems 
to be a dispute about another subdivision of diseases in more defined grouping. 
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Classification of diabetes mellitus  

Type 1 diabetes mellitus (β-cell demise, usually leading to absolute 
insulin deficiency) 
This form of diabetes i.e. type 1 diabetes mellitus (T1D),  which accounts for only 
5–10% of patients with diabetes, previously encompassed by the terms insulin-
dependent- or juvenile-onset diabetes mellitus (IDDM), results from a cellular-
mediated autoimmune destruction of the pancreatic β-cells. Markers of the immune 
destruction of the β-cell include islet cell autoantibodies, autoantibodies to insulin, 
autoantibodies to glutamic acid decarboxylase (GAD), and autoantibodies to the 
tyrosine phosphatases IA-2 and IA-2β (Krischer JP et al,2019). Although the 
mechanisms behind T1D development is not fully understood, autoimmune 
destruction of β-cells has been considered that further might have multiple genetic 
predispositions and environmental factors been involved. However, the interplay 
between these factors is poorly understood.  

Type 2 diabetes mellitus (β-cells poorly respond to carbohydrate 
challenge)   
This form of diabetes is a global disease caused by the inability of pancreatic β-cells 
to secrete adequate insulin in response to carbohydrate (DeFronzo RA et al,2015). 
Type 1 diabetes mellitus (T2D) previously referred to as non-insulin-dependent 
diabetes (NIDDM) or adult-onset diabetes, encompasses individuals who have 
insulin resistance and usually have relative (rather than absolute) insulin deficiency 
at least initially. There are probably many different causes of this form of diabetes, 
Although the specific etiologies are not known, autoimmune destruction of β-cells 
seems not to be involved (Ahlqvist E et al,2018). It is often associated with a strong 
genetic predisposition (Ahlqvist E et al,2018). However, the genetics of this form 
of diabetes are complex and not clearly defined. This form of diabetes frequently 
goes undiagnosed for many years because the hyperglycemia develops gradually 
and at earlier stages is often not severe enough for the patient to notice any of the 
classic symptoms of diabetes. Since T2D is characterized by a reduced β-cell 
response to glucose, knowledge regarding the signaling molecules capable of 
modulating insulin and glucagon secretion are of particular interest for the treatment 
of T2D. There are, however, a number of subgroups within T2D as has been 
reported (Ref) but a certain categories are of interest to mention that could also 
regarded as own or new groups such as gestational diabetes and maturity-onset 
diabetes of the young (MODY).  
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Gestational diabetes  
The third main form and occurs when pregnant women without a previous history 
of diabetes develop high blood sugar levels during pregnancy where reportedly in 
addition to genetic/epigenetic factors, elevated pregnancy hormones are also 
involved. Gestational diabetes normally occurs in 2nd or 3rd trimester of pregnancy 
(Moon JH, et al,2017).   

Genetic defects of the β-cell. 
Several forms of diabetes are associated with monogenetic defects in β-cell 
function. These forms of diabetes are frequently characterized by onset of 
hyperglycemia at an early age (generally before age 25 years) (Ellard SC et al, 
2008). They are referred to as maturity-onset diabetes of the young (MODY) and 
are characterized by impaired insulin secretion with minimal or no defects in insulin 
action. They are inherited in an autosomal dominant pattern.  

 G protein–coupled receptors (GPCRS) 
G protein coupled receptors (GPCRs) constitute a large protein family of receptors 
that sense molecules outside the cell and activate inside signal transductions 
pathways and, ultimately, cellular responses (Robas N, et al 2003). As it has been 
reported GPCRs constitute the largest group of cell surface receptors in man, and 
are also the targets of ~35% of all prescription medicines (Flower DR.1999). For 
example, Glucagon-like peptide-1 receptor (GLP-1R) is expressed by both human 
and rodent β-cells and GLP-1 is well studied hormone that play a crucial role in islet 
function by regulating insulin secretion, β-cell proliferation and survival via 
activation of GLP-1R (Buteau J, et al2003). A great numbers of islet GPCRs are 
still orphan GPCRs for which no known endogenous ligands have been identified, 
and these receptors constitute a large untapped pool of potential novel drug targets. 

After binding of a ligand to a GPCR a conformational change would occur. After 
that the receptor functions as a guanine nucleotide exchange factor. G protein 
releases GDP and binds GTP. G protein has 3 subunits (α, β and γ) and α subunit 
has four type (Gαs, Gαi/o, Gαq/11, Gα12/13) (Flower DR, 1999; Buteau J, et al 2003). 
Depending on the bound subunit complex i.e. Gs or Gi either stimulation or 
inhibition with the different intracellular signaling pathways will occur. Normally, 
the GPCRs affects to main and different cellular pathways cAMP/PKA or 
Phospholipase C (PLC) and diacylglycerol (DAG) generating IP3 further affecting 
cellular [Ca2+]i (Seino S & Shibasaki T, Physiol Rev 85,2005).  
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The cAMP signaling pathway starts with activation of membrane bound adenylate 
cyclase (AC) and increase the cAMP that further activates protein kinase A (PKA) 
with following phosphorylating cascade of a number of up-stream proteins which 
ultimately play a role in intracellular [Ca2+]i oscillation and insulin release (Seino S 
& Shibasaki T, Physiol Rev 85,2005). 

The phosphatidylinositol signal pathway begins whit activation of the membrane 
bound enzyme phospholipase C cut the phosphatidyl inositol biphosphate to 
membrane bound diacylglycerol and diffusible inositol triphosphate (IP3) (Liang Y 
& Matschinsky FM,1994). IP3 is a signal substance for receptor on the endoplasmic 
reticulum for transient of calcium which is important for calcium [Ca2+]i oscillation 
and pulsatile insulin release. diacylglycerol (DAG) activate protein kinase C (PKC). 
The effects of PKC and PKA are not additive, suggesting that activation of either 
one way converge on the same secretory pathway in the regulation of insulin 
secretion (Liang Y & Matschinsky FM,1994).  

It is well-established that secretion of hormones from islets of Langerhans is 
regulated by activation of islet cell GPCRs by neurotransmitters, paracrine actions 
of islet hormones and by circulation hormones (Amisten et al,2013). 
Parasympathetic and sympathetic neurotransmitters act at specific muscarinic and 
adrenergic GPCR subtypes to potentiate and inhibit the stimulatory effects of 
nutrients on insulin secretion, to allow finetuning of the insulin secretory response 
(Ahren et al.,2000).  

In addition, glucagon stimulates insulin and somatostatin release, while 
somatostatin inhibits glucagon and insulin release (Jones PM PS, Textbook of 
Diabetes 2010, pp87-103). Furthermore, GLP-1, an incretin released from the 
gastrointestinal tract following food intake, acts at GPCRs on islet β- and α-cells to 
stimulate insulin and inhibit glucagon secretion (De Marinis et al.,2010), and GIP, 
another incretin, also potentiates glucose-induced insulin release. The GLP-1 
receptor is probably the most well characterized of all islet GPCRs, and several 
GLP-1 receptor agonists and DPP4 inhibitor drugs that stabilize incretin levels are 
in widespread clinical use as therapies for type 2 diabetes (T2D) (Tuch et al.,2016). 
A number of other GPCRs, including GPR119, FFAR1, GPRC5B and GPRC5C, all 
of which are expressed by human islets (Amisten etal,2013), have also emerged as 
drug target candidates for the treatment of T2D (Oh Da et al.,2016;Soni et al.,2013)). 

Human islets express almost 300 additional GPCRs (Amisten et al,2013; Regard et 
el.,2008; Regard et el.,2007), but most of these have poorly characterized roles in 
islet physiology (Amisten et al,2013). Due to the limited availability of human islets, 
the vast majority of all physiological and pharmacological studies on the regulation 
of islet hormone secretion have been carried out using isolated mouse islets. There 
was a need to evaluate the similarity of GPCR expression between human islets, the 
primary therapeutic target tissue, and mouse islets, the primary model system tissue. 
In our recent study human islet GPCR mRNA profiles have been compared with 
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those of islets isolated from mouse and a core set of 121 GPCR mRNAs were found 
to be expressed by islets of both human and mouse. A1R, P2Y6- and P2Y14 
receptors are among these receptors. 

 

Figure 1. A schematic illustration of GPCR signaling pathway in β-cells showing that GPCRs can influence insulin 
secretion by the specific receptors coupled to Gs (potentiation of insulin secretion), Gi (inhibition of insulin secretion) or 
Gq/G11 (potentiation of insulin secretion). 

Considering the fact that GPCRs are targeted by almost 40% of the current drugs on 
the market and particularly for being easily accessible targets that makes GPCRs a 
great pharmaceutical interest. However, most of GPCRs expressed by pancreatic 
islets are still orphan, without any well-known ligands, which require an extensive 
research to explore their therapeutic potentials (Amisten et al 2013). We were 
interested in investigating the following de-orphanized receptors; A1R, P2Y2, 
P2Y4, P2Y6 as well as P2Y14 to study their impact on the β-cells function. All of 
these GPCRs are expressed by almost all cells in the body and they are target for 
the extracellular adenine and uracil nucleotides (Burnstock G 2006).  

In general, purinoceptors are a family of plasma membrane molecules that are found 
in almost all mammalian tissues. They are divided into P1R and P2R. P1R is a 
GPCR which response to adenosine. P2 receptors have further been divided into 
subclasses: P2X, P2Y. P2X receptors are ligand-gated ion channels which 
desensitized quickly. 
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P2Y receptors are G protein coupled receptors which are responsive to purine and 
pyrimidine nucleotides and nucleotide sugars (Ralevic & Burnstock, 1998; 
Abbracchio et al., 2006) 

P2Y receptors can be divided on the basis of their endogenous ligands into adenine 
nucleotide-preferring (P2Y1, P2Y11, P2Y12 and P2Y13 receptors) and uracil 
nucleotide or UDP-sugar-preferring (P2Y2, P2Y4, P2Y6 and P2Y14 receptors) (von 
Kugelgen,2006). Alternatively, P2Y receptors can be distinguished as P2Y1-like 
family and P2Y12-like family based on their sequence alignments and effector 
coupling. The P2Y1-like family couples to Gq protein and involves an activation of 
the phospholipase C (PLC) signaling pathway (Costanzi et al., 2004). This sub-
family contains P2Y1, P2Y2, P2Y4, P2Y6 and P2Y11, although P2Y11 receptor 
can couple to Gs protein too, leading to an activation of adenylyl cyclase (Communi 
et al., 1997). The P2Y12-like family can couple to Gi protein leading to an inhibition 
of adenylyl cyclase (Jacobson et al., 2012). The sequence homology between the 
two sub-families is low, for instance, the sequence identity between P2Y1 and 
P2Y12 receptors is only 20%. While the sequence identity between the members 
within the same sub-family is higher, for instance, the sequence identity between 
P2Y12 and P2Y14 receptors is 45% (Jacobson et al., 2010). P2Y receptors have a 
wide distribution throughout the body and they mediate various responses in a 
variety of tissues (see reviews by Burnstock, 2007; Burnstock et al., 2010). 

Molecular mechanism for purinoceptors A1R, P2Y6 and P2Y14 
Insulin secretory granules contain ATP, ADP, UTP, UDP. ATP is very rapidly 
hydrolyzed to adenosine by ecto-nucleotidases. UDP-glucose is a component of 
glycosylation reactions that take place intracellularly in many cell types especially 
in hepatocytes, in the process of glycogen metabolism. 

P1 receptors (Adenosine receptors)  
Adenosine is a purine nucleoside composed of a molecule of adenine attached to a 
ribose sugar molecule. Adenosine plays an important role in biochemical processes. 
Adenosine is an endogenous purine nucleoside that modulates many physiological 
processes. Cellular signaling by adenosine occurs through   adenosine receptor. All 
adenosine receptors (P1 receptors) can be sub-divided into four distinct subtypes. 
(A1, A2A, A2B, and A3).  (Olah & Stiles, 2000; Fredholm et al., 2001). All adenosine 
receptors subtypes are G-protein-coupled receptors. The four receptor subtypes are 
further classified based on their ability to either stimulate or inhibit adenylyl cyclase. 

A1 and A3 are negatively coupled to adenylyl cyclase through Gi/o protein, A2A 
and A2B receptors are positively coupled to adenylyl cyclase through Gs protein 
(Reshkin et al., 2000). 
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P2Y6 Receptor 
P2Y6 receptor has UDP as ligand. The receptor is a GPCR (Gq) which activate the 
enzyme phospholipase C which cleaves phosphatidyl inositol biphosphate (PIP2) to 
the membrane bound diacylglycerol (DAG) and diffusible inositol triphosphate 
(IP3). IP3 acts on receptor on endoplasmic reticulum to release calcium. Induction 
of short-lived transients of [Ca2+]i, which temporarily interrupt the voltage-
dependent entry of Ca2+ by activating a hyperpolarizing K+ current (Grapengiesser 
et al. 2003). The calcium transients are supposed to regulate the calcium oscillations 
and resulting pulsatile insulin release from pancreatic β-cells. DAG in the inner 
membrane surface activates PKC. 

P2Y14 Receptor. 
The P2Y14 receptor (also known as GPR105) is the most recently identified 
member of the P2Y family of receptors for adenine and uridine nucleotides and 
nucleotide sugars and is responsive to uridine-5'-diphosphate-glucose (UDP-
glucose) and other sugar nucleotides (Chambers et al., 2000; Abbracchio et al., 
2003). P2Y14 receptor is activated by UDP-glucose and other nucleotide sugars, 
with a rank order of the potency of P2Y14 receptor ligands as follows: UDP-glucose 
≥ UDP-glucuronic acid > UDP-galactose > UDP-N-acetylglucosamine (Chambers 
et al., 2000; Ko et al., 2007).  MRS2690 (2-thiouridine-5′-diphosphoglucose) has 7-
fold greater potency than UDP-glucose at P2Y14 receptors (Ko et al., 2009).  UDP-
glucose is a potent agonist at P2Y14 receptor (Carter et al., 2009).  

 The human P2Y14 receptor shares 45% amino acid identity with human P2Y12 
and P2Y13 receptors and 22% with the P2Y1 receptor  (Abbracchio et al., 2003; 
Moore et al., 2003). In our recent study, we found that Dose dependent activation 
of P2Y14 by UDP-G suppressed glucose stimulated insulin secretion (GSIS) and 
knockdown of P2Y14 abolished the UDP-G effect.  
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Aims 

The general aim of this thesis was, on one hand, to identify similarities and 
differences in GPCR expression in human and mouse islets and on the other hand, 
to investigate the role of three selected GPCRs, which are express in both human 
and rodent islets on the hormone secretion. The study was performed on isolated 
pancreatic islets and on the β-cell cell line INS-1 832/13 cells.  

Paper I 
The aim of paper I was to understand which GPCRs are present on human islet, and 
if mouse islet shows a similar expressional pattern and can be used as a translational 
model system for the GPCR of interest. The created atlas over common GPCRs 
between human and mouse pancreatic islets are essential for development of new 
diabetes therapeutics. 

Paper II 
The aim of paper II was to examine whether adenosine via A1 receptors (A1R) 
interferes with pulsatile islet hormone release and compare if the insulin pulses are 
synchronous or antisynchronous with glucagon and somatostatin pulses.  

Paper III 
The aim of paper III was to examine the transcriptional pattern of the pyrimidine 
P2Y receptors i.e. P2Y2, P2Y4, and P2Y6 compared to P2Y1 in mouse pancreatic 
islets. We also wanted to evaluate the possible effect of these receptors on the insulin 
and glucagon secretion. 

Paper IV 
The aim of paper IV was to study the effect of UDP-glucose on β-cell function in 
relation to P2Y14 expression and also evaluate the role of P2Y14 as possible drug 
candidate. 
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Materials and methods 

A brief description of the experimental procedures and analytical techniques is 
given below. A more detailed description of different methods during studies as well 
as the source of chemicals and materials can be found in each separate paper. 

Isolated mouse islets  
Male or female mice (c57BL/6 strains) were purchased from Charles River, Harlan 
Janvier Laboratory (Paris), weighing 25–30 g were used in our study. They were 
given a standard pellet diet with tap water ad libitum. Pancreatic islets were isolated 
by collagenase digestion of the exocrine pancreas (Isra Mohammad Al-Amily et al 
2019). Local ethical committee had approved the use of animals in our studies. 

Isolated human islets 
Isolated human pancreatic islets from cadaveric organ donors (Prodo, USA) with 90 
% purity had been cultured in CMRL 1066 medium for around 5 days prior to use. 
The islets were then hand-picked under stereomicroscope at room temperature and 
subjected to different treatment as indicated in the relevant papers. Local ethical 
committees approved the use of isolated human islets in our experiments. 

INS-1 832/13 cells 
The Rat glucose-responding insulinoma cell line INS-1 832/13 was kindly provided 
by Dr. Chrisopher B. Newgard; Duke University, School of Medicine (Hohmeier, 
H. E., and Newgard, 2004). The cells were seeded (350 000 cells/well) in a 24-well
plate with 1 ml/well complete RPMI 1640 medium supplemented with 11.1 mM D-
glucose and 10% FBS, 2% INS-1 supplement (18), 5 ml penicillin/streptomy-cin
(10,000 units/10 mg/ml), and 10 mM Hepes (HyClone, Logan, UT, USA). The cells
were cultured in a humidified atmosphere with 5% CO2 at 37°C for 24 h
(Mohammad Al-Amily et al 2019). When the cells reached an appropriate
confluence for the experiments, they were washed with PBS and subjected to the
different experimental procedures as indicated in the papers.
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Biochemical and radio-immunological analysis 

Hormone analysis 
The released hormones in perfusion medium or in the incubation medium were 
analyzed by RIA (Salehi et al Am j physiology 1996) or ELISA (Mohammad Al-
Amily et al 2019). 

cAMP detection 
For the measurement of cAMP, INS-1 832/13 cells were incubated for 60 min at 1 
or 16.7 mmoI/1 glucose in the presence or absence of the test agent. The incubation 
buffer buffer also contained 3-isobutyl-1-methylxanthine (IBMX) (100 mM) to 
prevent the hydrolysis of cAMP by cellular phosphodiesterase (Muhammed SJ  et 
al,2012). After incubation, the cells were washed with PBS and stored in RIPA 
buffer containing, HCl (100 mM) and IBMX (100 mM) for subsequent analysis of 
cAMP, which was measured using a direct cAMP ELISA kit (AD-900-066) (Enzo 
Life Sciences) according to the manufacturer’s instructions. The protein 
concentrations in the cell lysates were measured by a BCA kit (Nr 23225; Thermo 
Fisher Scientific).  

In addition to the above-mentioned methods, there were also specific technique or 
analysis of material used in each paper as follow:  

Study I  
In this study isolated mouse and human islets from non-diabetic organ donors were 
used. for extraction of RNA a modified TRIzol protocol was used. GPCR expression 
was quantified relative to the house keeping gene GAPDH by quantitative real-time 
PCR (qPCR).  

For analysis of insulin secretion groups of 3 or 12 isolated mouse or human islets 
were incubated for 1 hour in a physiological salt solution (Get Go GM 1936) in the 
absence or presence of the indicated agents. The secreted insulin was quantified by 
radioimmunoassay (Jones et al.,1988). 

Study II  
The impact of A1 receptor on insulin secretory response of pancreatic β-cells in 
relation to glucagon and somatostatin secretion from α and δ cells were studied in a 
pancreas perfusion model. Pancreas was perfused in mice expressing or lacking the 
A1 receptor and the released hormones were measured with radioimmunoassay. 
Cytoplasmic (intracellular) Ca2+ [Ca2+]i transients was recorded using fura-2 
indicator in isolated β-cells from the splenic part of the pancreas since the islets from 
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this region contain >90% β-cells, which have a normal secretory response to glucose 
(Hahn et al. 1974).  

Study III 
Isolated islets were either dissolved immediately in TRIzol (Invitrogen) and stored 
at -80 ºC for RNA purification or subjected for β-cell purification by repeated 
counter-flow elutriation using first a standard chamber and then a Sanderson 
chamber Beckman (Palo Alto, CA) as previously applied for ECL-purification (E. 
Lindström.at.al,1997) with some modifications. This cell preparation, (~80% β-
cells) was then subjected to density gradient centrifugation. The purity of each β-
cell preparation was assessed by RIA measurement of insulin, glucagon, 
Somatostatin and PP per mg protein (S.S Qader.at.al 2007). The final cell 
preparations, consisting of around 95% β-cells, were then collected in TRIzol 
(Invitrogen) and stored in –80 ºC. All quantitative real-time PCR (qPCR) primers 
were designed using Vector NTI software (Invitrogen, Informax, UK). Relative 
gene expression levels were determined as described elsewhere (Pfaffl M.W. et 
al.,2001).  

Study IV 

Confocal microscopy 
Handpicked islets were washed twice and fixed with 3% paraformaldehyde for 10 
min, followed by permeabilization with 0.1% Triton X-100 for 15 min. Insulin 
staining was carried out using a primary guinea pig anti-insulin antibody (1:300) 
followed by incubation with fluorescent- conjugated secondary antibodies (1:100). 
P2Y14 protein expression in insulin-positive cells in human and mouse islets as well 
as INS-1 cells was determined by confocal microscopy using the Zen 2009 (Carl 
Zeiss, Oberkochen, Germany) software and rabbit polyclonal anti-GPR105 (P2Y14) 
antibodies at a 1:200 dilution. Fluorescence was visualized with a Zeiss LSM510 
confocal microscope by colocalization analysis of islet P2Y14 with insulin 
(indicator of β-cells) in islets was performed using the ZEN2009 software based on 
Pearson’s coefficient analysis, which recognizes the colocalized pair by comparison 
pixel by pixel intensity (Zhang at al 2019; Al-Amily,at.al 2019; Costes at al 2004). 
The plasma membrane/cytosol ratio was calculated by mean intensity of plasma 
membrane to mean intensity in cytosol, as described previously (Zhang at al 2019; 
Al-Amily,at.al 2019; Costes at al 2004).  

P2Y14 SiRNA 
Transient knockdown of P2Y14 in INS-1 832/13 cells were performed by siRNA 
transfection (36-42h). After transfection, the media was replaced with complete 
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RPMI 1640 media with antibiotics and the INS-1 832/13 cells were cultured for 
additionaly 4-6h for recovery before being subjected to different experimental 
protocol. 

Western blot 
For the visualization of the P2Y14 protein by Western blots, INS1 832/13 lysates 
representing 30 µg of total protein were run on SDS-polyacrylamide gels (7.5%9 
(Bio-Rad, Hercules, CA, USA). After electrophoresis, proteins were transferred to 
nitrocellulose membranes (Bio-Rad, Hercules, CA, USA). The membranes were 
blocked in LS-buffer (10 mM Tris, pH 7.4, 100 mM NaCl, 0.1% Tween-20) 
containing 5% non-fat dry milk powder for 40 min at 37°C. Subsequently the 
membranes were incubated over night with the following primary antibodies: 
polyclonal rabbit anti-GPR105 (P2Y14) antibody (1:150) and polyclonal rabbit anti-
tubulin antibody (1:150), at room temperature. After washing (three times) in LS-
buffer the membranes were finally incubated with a horseradish peroxidase-
conjugated and anti-rabbit antibodies (1:500). Immunoreactivity was detected using 
an enhanced chemiluminescence reaction (Pierce, Rockford, IL, USA). The results 
were quantified by densitometric analysis using the Bio-Rad software. 

Cell viability and apoptosis 
Cell viability (measuring the reductive capacity of cells) was analyzed by MTS and 
apoptosis was measured with the Cell Death Kit (Roche Diagnostics), which 
quantifies the appearance of cytosolic nucleosomes in both cultured human islet 
homogenates and cultured INS-1 832/13 homogenates as reported previously 
(Zhang at al 2019). Cell proliferation by counting INS-1 832/13 cells using a 
Bürcker chamber as described previously (Soni at al 2013). 
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Results and discussion 

Paper I 

A comparative analysis of human and mouse islet G-protein coupled 
receptor expression 
G-protein coupled receptors (GPCRs) are essential for islet function, but most 
studies use rodent islets due to limited human islet availability.  
We have systematically compared the GPCR mRNA expression in human and mouse 
islets to determine to what extent mouse islets can be used as surrogates for human 
islets to study islet GPCR function, and we have identified species-specific expression 
of several GPCRs. The A3 receptor (ADORA3) was expressed only in mouse islets 
(Fig. 2) and the A3 agonist MRS 5698 inhibited glucose-induced insulin secretion 
from mouse islets, with no effect on human islets. Similarly, mRNAs encoding the 
galanin receptors GAL1 (GALR1), GAL2 (GALR2) and GAL3 GALR3) were 
abundantly expressed in mouse islets but present only at low levels in human islets 
(Fig. 3), so galanin inhibited insulin secretion only from mouse islets. Conversely, the 
sst1 receptor (SSTR1) was abundant only in human islets (Fig. 4) and its selective 
activation by CH 275 inhibited insulin secretion from human islets, with no effect on 
mouse islets. Our comprehensive human and mouse islet GPCR atlas has 
demonstrated that species differences do exist in islet GPCR expression and function, 
which are likely to impact on the translatability of mouse studies to the human context. 

 
Figure 2. Expression of ADORA1, ADORA2A, ADORA2B and ADORA3 relative to GAPDH of in mouse and human 
pancreatic islets. Mean ± SEM for n=4 (ICR and C57 mouse islets) and n=3-4 human islet donors in each group. 
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Figure 3. Expression of GALR1, GALR2, GALR3 relative to GAPDH in mouse and human pancreatic islets. Mean ± 
SEM for n=4 (ICR and C57 mouse islets) and n=3-4 human islet donors in each group. 

Figure 4. Expression of SSTR1, SSTR2, SSTR3, SSTR4 and SSTR5 relative to GAPDH in mouse and human 
pancreatic islets. Mean ± SEM for n=4 (ICR and C57 mouse islets) and n=3-4 human islet donors in each group. 

Conclusion: 
• Our comprehensive GPCR atlas shows that there are similarities and species

differences in GPCR expression of mouse and human islets.

• The species differences in GPCR expression in the islets are likely to affect the
translatability of mouse studies into the human context
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Paper II 

Absence of adenosine A1 receptors unmasks pulses of insulin release 
and prolongs those of glucagon and somatostatin 
Our data showed that in addition to insulin secretion, glucose-induced glucagon and 
somatostatin release showed a two-phase pattern. Increase in glucose concentration 
was associated with an increase in Ca2+ transient in the β-cells. Addition of 10 µmol 
adenosine removed the Ca2+ transients supposed to coordinate the insulin release 
pulses. This effect of adenosine was counteracted by 100 nm of the A (1)R 
antagonist DPCPX. In situ perfusion of the pancreas indicated two phases of islet 
hormone release when glucose was raised from 3.3 to 16.7 mm. The first phase was 
characterized by a brief dip followed by a peak, which was more pronounced for 
insulin and somatostatin than for glucagon. The second phase was markedly 
affected by knockout of A1R. The wild-type A1R (+/+) mice, usually lacked 
statistically verified insulin pulses but generated anti synchronous glucagon and 
somatostatin pulses with half-widths of 4 min. In the A1R (-/-) mice time-average 
release of insulin during the second phase was almost three times higher than in the 
controls and 30% of the hormone was released as distinct pulses with half-widths 
of 3 min. The absence of the A1R receptor resulted in 50% prolongation of the pulse 
cycles of glucagon and somatostatin and loss of their anti-synchronous relationship.  
The A (1)R receptor is important both for the amplitude (insulin) and duration 
(glucagon and somatostatin) of islet hormone pulses. The inhibitory action of 
adenosine on glucose-stimulated insulin secretion seems, at least in part, be 
mediated by the removal of cytoplasmic Ca2+ transient in the β-cells. 

Conclusion: 
• A (1)R antagonists warrants to be investigated in more detail as an alternative 

to the current antidiabetic drugs for T2D. 
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Paper III 

Uridine diphosphate (UDP) stimulates insulin secretion by activation of 
P2Y6 receptors 
We examined the transcriptional expression and functional effects of receptors for 
the extracellular pyrimidine uridine triphosphate (UTP) and uridine diphosphate 
(UDP), on insulin and glucagon secretion in isolated mouse pancreatic islets and 
purified beta-cells. Using real-time PCR, the UDP receptor P2Y6 was found to be 
highly expressed in both whole islets and β-cells purified by repeated counter-flow 
elutriation, whereas no mRNA expression for UTP receptors P2Y4 and P2Y2 could 
be detected.   

Functional in vitro experiments revealed that the P2Y6 agonist UDPβs dose-
dependently enhanced insulin and glucagon release during short-term incubation 
(1h), while P2Y6 activation during a longer period (24h), selectively increased 
insulin release, especially at high glucose levels. The corresponding EC (50) value 
for UDPβs ranged from 3.2 x 10(-8) M to 1.6 x 10(-8) M for both glucose 
concentrations. The P2Y6 antagonist MRS2578 inhibited the effects of UDPβs, 
supporting a P2Y (6) specific effect. In addition to negative RT-PCR results, the 
lack of response to UTPγs a selective P2Y2/4 agonist further rule out the 
involvement of P2Y (2/4) receptors in the islet hormone release. Our results suggest 
a modulatory role for UDP via a functional active P2Y6 receptor in the regulation 
of islet hormone release. 
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Figure 5. P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13 and P2Y14 relative to GAPDH in mouse and human 
pancreatic islets. Mean ± SEM for n=4 (ICR and C57 mouse islets) and n=3-4 human islet donors in each group. 

Conclusion: 
• P2Y6 is expressed in both human and rodent pancreatic β-cells. 

• P2Y6 could be an attractive target for the development of new drugs 
potentiating GSIS. 

  



30 

Paper IV 

Inhibitory effect of UDP-glucose on cAMP generation and insulin 
secretion 
As mentioned earlier T2D is a global disease, caused by the inability of pancreatic 
β-cells to secrete adequate insulin. However, the molecular mechanisms underlying 
the failure of β-cells to respond to glucose in T2D remains very complex. Here, we 
investigated the relative contribution of UDP-glucose (UDP-G), a P2Y14-specific 
agonist, in the regulation of insulin release using human isolated pancreatic islets 
and INS-1 cells. We found that P2Y14 was expressed in both human and rodent 
pancreatic β-cells. Dose-dependent activation of P2Y14 by UDP-G suppressed 
glucose-stimulated insulin secretion (GSIS) and knockdown of P2Y14 abolished the 
UDP-G effect. 12-h pretreatment of human islets with pertussis-toxin (PTX) 
improved GSIS and prevented the inhibitory effect of UDP-G on GSIS. UDP-G on 
GSIS suppression was associated with suppression of cAMP in INS-1 cells. UDP-
G decreased the reductive capacity of nondiabetic human islets cultured at 5 mm 
glucose for 72 h and exacerbated the negative effect of 20 mm glucose on the cell 
viability during culture period. T2D donor islets displayed a lower reductive 
capacity when cultured at 5 mm glucose for 72 h that was further decreased in the 
presence of 20 mm glucose and UDP-G. Presence of a nonmetabolizable cAMP 
analog during culture period counteracted the effect of glucose and UDP-G. Islet 
cultures at 20 mm glucose increased apoptosis, which was further amplified when 
UDP-G was present. UDP-G modulated glucose-induced proliferation of INS-1 
cells. The data provide intriguing evidence for P2Y14 and UDP-G's role in the 
regulation of pancreatic β-cell function. 

Conclusion: 
• The receptor P2Y14 is expressed in both human and rodent β-cells.

• UDP-G has a suppressive effect on the GSIS, which is mediated via activation
of P2Y14.

• P2Y14 activation by UDP-G reduces the cAMP content in the β-cells.



31 

Summary 
In summary, as presented in Figure 6 the results of present thesis indicate that 
P2Y14 like A(1)R is Gi protein coupled receptor, the activation of which causes a 
reduced AC activity that consequently leads to a decreased cellular cAMP level. 
cAMP plays an important role in insulin secretory response of β-cell. The 
mechanism of P2Y6 activation however, differ from both P2Y14 and A(1)R. 

 
Figure 6. A schematic illustration for P2Y14 signaling pathway in β-cells showing great similarity with A(1)R activation 
i.e. being a Gi coupled receptor while differ from P2Y6 activation which is known to be Gq/G11 coupled receptor (see 
introduction). 
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Final Remarks 

The major interpretational conclusion from the current thesis are that in spite of the 
complexity of T2D, there are still several ways to either prevent the metabolic 
disorders resulting in the β-cell dysfunction or postpone the progression of β-cell 
failure that results in the overt T2D. Normally a drug is developed by testing it on 
the rodent. The finding in the current theses reveals that there are both similarities 
and species differences in GPCR expression in mouse and human islets. GPCRs are 
easily accessible target for the drug development. Thus, our finding of species 
differences in GPCR expression in the islets are likely to affect the translatability of 
mouse studies into the human context. 

Keeping in mind that the β-cell dysfunction in T2D might have different origins, we 
also show new targets for the restoration of β-cell dysfunction and potentiation of 
GSIS. Among such targets that have been studied in the present thesis are the A(1)R, 
P2Y6 and P2Y14 that are expressed in both human and rodent β-cells, where 
modulation of receptor activity was associated with the improve β-cell function. 
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Future perspective 

It well-known that disturbed pancreatic β-cell function is the main defect finally 
leading to sustained hyperglycaemia and even abnormalities of intermediary 
metabolism that subsequently lead to progression into T2D. As the disease 
progresses, the β-cell ability to sufficiently respond to carbohydrate challenges and 
secrete adequate amounts of insulin to face hyperglycaemias declines. This will lead 
to additional harm on the β-cells exerted by hyperglycaemia. 

GPCRs are the target for about 40-50% of the current drugs on the market. 
Particularly those GPCRs with known endogenous ligands could be great 
pharmaceutical interest for the treatment of T2D. Although most GPCRs  are still 
orphans, we show that the de-orphanized GPCRs could also be investigated in more 
detail in vitro and in vivo for possible treatment of T2D. It would be of great interest 
to explore the impact of a more selective P2Y6 agonist as well as a more selective 
A(1)R and P2Y14 antagonists in the in vivo studies in mice. 
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Populärvetenskaplig sammanfattning 

Återställandet av insulin frisättning vid T2D 
Typ 2 diabetes (T2D) är en av våra snabbast växande sjukdomar runt om i världen, 
delvis till följd av olika faktorer som en stillasittande livsstil och övervikt, i 
kombination med genetik. Sjukdomen som i början i folkmun kallades 
åldersdiabetes, drabbar också medelålders och nuförtiden även yngre individer. 

Sjukdomen börjar när kroppen inte kan upprätthålla blodsockernivån inom normala 
gränser. Detta beror på att de insulin-producerande cellerna i bukspottkörtel (β-
cellerna) inte längre klarar av att tillförse kroppens olika organ med adekvat mängd 
insulin för att hålla blodsockernivån i balans.  

I början av sjukdomen ökar kroppen insulinproduktionen i ett försök att hålla 
blodsockernivån nere, vilket i slutändan tröttar ut β-cellerna. Detta försök leder dock 
till, förr eller senare, en minskad produktion och utsöndring av insulin. 

Det är känt sedan länge att förhöjda blodsockernivåer leder till dysfunktionella β-
celler och med T2D som följd, men de underliggande mekanismerna är fortfarande 
dåligt definierade. De antidiabetiska läkemedel som finns på marknaden idag siktar 
in sig på att möjliggöra insulinfrisättning från β-celler samt att öka 
insulinkänsligheten i de perifera vävnaderna.  

Ett botemedel innebär ett farmaka som kan återställa både produktionen och 
frisättningen av insulinet. Vägen till detta botemedel går genom en detaljerad 
kartläggning av de olika mekanismerna som ligger bakom produktionen och 
frisättningen av insulin som svar på intagna sockerarter. 

I vårt arbete har vi försökt bidra till denna kartläggning genom att analysera olika 
G-proteinkopplade receptorer (GPCR) och hur olika substanser påverkar dessa 
receptorer för att signalera β-celler, och genom vilka vägar in i cellen fortplantas 
dessa signaler för att slutligen öka eller minska insulinfrisättningen. GPCRer är den 
största och mest mångsidiga gruppen av membranproteiner i våra celler med 
förmågan att överföra och förmedla effekten av hormoner, metaboliter, 
neurotransmittorer, inflammatoriska cytokiner samt läkemedel till våra celler. Vi 
har identifierat alla GPCRer som uttrycks i humana β-celler vilket gör det möjligt 
att utveckla nya läkemedel mot T2D. Parallellt har vi också tittat på hur olika 
substanser genom dessa receptorer påverkar cellens överlevnadsförmåga och 
aktivitetsnivå. Genom detta arbete har vi försökt öka förståelsen kring β-cellernas 
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livsduglighet och mekanismer bakomliggande dess hormonfrisättning för att 
slutligen kunna hitta och åtgärda defekter som uppstår i insulin produktionen och 
frisättningens mekanismer, vilka leder till uppkomsten av typ 2 diabetes. 

I första delen av vårt arbete har vi skapat en atlas över GPCR receptorer som är 
gemensamma mellan människor och möss, för att kunna underlätta både vårt eget 
arbete, men även andra forskares arbete genom att studera de rätta GPCR-
receptorerna.  

I andra delen av arbetet har vi analyserat vilken roll kalk (kalcium) spelar i 
frisättning av insulin. Vi har samtidigt kunna visa att insulinfrisättningen sker 
genom snabba förändringar av cellulärt kalcium (calciumoscillationer) leder till att 
insulin frisätts i pulsar. Både calcium och insulin pulsalitet påverkas negativt av 
adenosin A(1) receptor. Våra resultat visar att A(1) hämmare har en bra effekt på 
insulinfrisättning from β-celler.  

I delarbete tre har vi studerat hur kroppens egen substans UDP (uridin difosfat) 
modulerar insulinfrisättningen genom att aktivera GPCR-receptor P2Y6. Så 
substanser som binder och aktiverar P2Y6 har en bra effekt på insulinfrisättningen 
from β-celler. 

I sista delen av vårt arbete har vi kartlagt hur UDP-glukos som är en naturlig ligand 
för GPCR-receptor P2Y14, minskar insulinfrisättningen samt hur blockaden av 
denna receptor förbättrar insulinfrisättningen.  

Sammanfattningsvis visar resultaten i denna avhandling på att aktiveringen av P2Y6 
har en bra effekt på insulinfrisättningen medan aktiveringen av vissa receptorer 
såsom adenosin A(1) och P2Y14 har en hämmande effekt på insulinfrisättning. 
Därför, aktiverare (agonister) av P2Y6 eller blockare (antagonister) av A(1) och 
P2Y14 kan vara attraktiva att utveckla vidare. 
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