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Abstract 
Breast cancer is the most common cause of cancer-related deaths in females. Despite a generally good 

prognosis, a substantial number of patients suffer from relapse. The acquired capacity of a cancer cell to resist 
apoptosis, a form of controlled cell death, can contribute to treatment resistance. One way to circumvent cell death 
resistance in cancer cells is to reactivate cell death. This can be achieved by treating with Smac mimetics, small 
molecule peptides which were developed to mimic the function of Smac. The function of Smac is to facilitate 
induction of apoptosis by inhibiting the inhibitor of apoptosis proteins (IAPs). This results in disinhibition of caspases, 
a family of proteins which can mediate the execution phase of apoptosis. However, the effect of Smac mimetics as 
a single treatment is limited and they are therefore also examined as part of a combination therapy. TRAIL, a death 
receptor ligand, preferentially induces apoptosis in cancer cells and can potentially be used together with Smac 
mimetics. 

The first aim of this thesis, which was examined in Paper I, was to study if TRAIL together with the Smac mimetic 
LCL161 can induce apoptosis in breast cancer cells, and to investigate the underlying mechanism. We found that 
TRAIL and LCL161 induce cell death in one estrogen receptor (ER)-positive, CAMA-1, and one triple-negative, 
MDA-MB-468, breast cancer cell line. This was dependent on the activity of caspase-8. In CAMA-1, this was also 
found to be partially dependent on receptor-interacting protein kinase 1 (RIP1), but not its kinase activity, and 
suppressed by the caspase-8 inhibitor c-FLIP. In MCF-7, another ER-positive cell line, the combination of TRAIL 
and LCL161 could not induce apoptosis, but rather an alteration of morphology and gene expression. 

In paper II, the mechanisms for the changes in MCF-7 cells, following treatment with LCL161 and TRAIL, were 
investigated. We found that the morphology was irreversible and that downregulation of caspase-8 blocked the 
alteration. However, we observed a slow and gradual processing of caspase-8, suggesting a low and long-term 
activity of caspase-8. We found upregulation of genes related to NF-κB and interferon (IFN) signaling after treatment, 
whereas the downregulated genes were enriched for genes found in a less ER-positive phenotype. The changes in 
morphology and gene expression are separate events since neither inhibition of IFN- nor NF-κB pathways affected 
the morphology change. We further wanted to examine the induction of IFN signaling since little is known about 
TRAIL-mediated induction of IFN signaling. 

We studied the underlying mechanism, and potential mediators, of IFN-induction following treatment with TRAIL 
and LCL161 in Paper III and IV. Inhibition of Janus tyrosine kinases with Ruxolitinib blocked treatment-induced 
STAT1 phosphorylation and downregulation of the type I IFN receptor IFNAR1 suppressed the induction of IFN 
signaling. In addition there was a gradual increase in IFNB1 mRNA levels following treatment, all of which indicate 
an autocrine IFN signaling. Ruxolitinib suppressed IFN-stimulated genes but could not block IFNB1-induction, which 
further supports the hypothesis of an autocrine IFN signaling. Downregulation of caspase-8 suppressed IFN 
signaling but inhibition of its activity did not, suggesting a scaffold role of caspase-8 in this context. Inhibition of TBK1 
and IKKε, two proteins mediating transcription of IFNB1, with MRT67307 suppressed STAT1 phosphorylation but 
IFN signaling could not be blocked by downregulation of TBK1 or IKKε. NIK, a kinase which induces the non-
canonical NF-κB pathway, could potentially be involved in mediating TRAIL- and LCL161-induced IFN signaling. 
The results presented in this thesis suggest that caspase-8 can mediate apoptosis if fully activated, stimulate 
morphology change if activated weakly and slowly, and induce IFN signaling if it acts as a scaffold in ER-positive 
breast cancer cells lines following treatment with TRAIL and Smac mimetic. 
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Abbreviations 

ADCC antibody-dependent cellular 
cytotoxicity 

AI aromatase inhibitor 

AP-1 activation protein 1 

Apaf-1 apoptosis protease activating 
factor 1 

BAFFR B cell-activating factor 
receptor 

BIR baculovirus IAP repeat 

CARD caspase activation and 
recruitment domain 

CBP cAMP-response element 
binding protein (CREB)-
binding protein 

CD40 cluster of differentiation 40 

c-FLIP cellular FLICE-like inhibitory 
protein 

cGAS cyclic GMP-AMP synthase 

cgDNA cytosolic genomic DNA 

cIAP cellular IAP 

CpG cytosine-phosphate-guanine 

DAI DNA-dependent activator of 
IRFs  

DAMP damage-associated molecular 
pattern 

DC dendritic cell 

DCIS ductal carcinoma in situ 

DcR decoy receptor 

DD death domain 

DED death effector domain 

DISC death-inducing signaling 
complex 

DR death receptor 

dsRNA double-stranded RNA 

EGFR epidermal growth factor 
receptor 

ER estrogen receptor 

FADD Fas associated via death 
domain 

FISH fluorescent in situ 
hybridization 

GAS gamma-activated sequence 

HAT histone acetyltransferase 

HER2 human epidermal growth 
factor receptor-2 

HR hormone receptor 

IAP inhibitor of apoptosis protein 

ICI immune checkpoint inhibitor 

IDC invasive ductal carcinoma 

IDC-NST invasive ductal carcinoma of 
no special type 

IFITM1 IFN-induced transmembrane 
protein 1 

IFN interferon 

IFNAR IFN-alpha/beta receptor 
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IFNAR1 IFN-alpha/beta receptor 
subunit 1 

IFNGR1 IFN-gamma receptor 1 

IFNLR1 IFN-lambda receptor 1 

IHC immunohistochemical 

IKKα inhibitor of NF-κB kinase 
subunit alpha 

IKKβ inhibitor of NF-κB kinase 
subunit beta 

IKKε inhibitor of NF-κB kinase 
subunit epsilon 

IL-10RB interleukin-10 receptor 
subunit beta 

IL-1R interleukin-1 receptor 

ILC invasive lobular carcinoma 

IRAK interleukin-1 receptor 
associated kinase 

IRF IFN-regulatory factor 

ISG IFN-stimulated genes 

ISGF3 IFN-stimulated gene factor 3 

ISRE IFN-stimulated response 
elements 

JAK janus kinase 

JNK c-Jun N-terminal kinase 

LCIS lobular carcinoma in situ 

LPS lipopolysaccharide 

LTβR lymphotoxin β receptor 

LUBAC linear ubiquitin chain 
assembly complex 

MDA5 melanoma differentiation-
associated protein 5 

MOMP mitochondrial outer 
membrane permeabilization 

MyD88 myeloid differentiation 
primary response 88 

NAP1 NAK-associated protein 1 

NEMO NF-κB essential modulator 

NF-κB nuclear factor-kappa B 

NHG Nottingham histological grade 

NIK NF-κB-inducing kinase 

NK natural killer 

NOD nucleotide-binding 
oligomerization domain-
containing protein 

OAS1 2´-5´-oligoadenylate synthase 
1 

PAMP pathogen-associated 
molecular pattern 

PD-1 programmed cell death 
protein 1 

pDC plasmacytoid dendritic cell 

PR progesterone receptor 

PRD positive regulatory domain 

PRD-LE PRD-like elements 

RIG-I retinoic acid-inducible gene I  

RIP/RIPK receptor-interacting kinase 

SCAN-B Sweden Cancerome Analysis 
Network – Breast 

SERD selective estrogen receptor 
degraders 

SERM selective estrogen receptor 
modifier 

SH2 src homology 2 

SLE systemic lupus erythematosus 

Smac second mitochondria-derived 
activator of caspase 

SOCS suppressor of cytokine 
signaling 

ssRNA single-stranded RNA 
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STAT signal transducer and activator 
of transcription 

STING stimulator of IFN genes 

TAK1 transforming growth factor-β-
activated kinase 1 

TBK1 TANK-binding kinase 1 

TCR T cell receptor 

TDLU terminal duct lobular unit 

TIC tumor-initiating cell 

TIL tumor-infiltrating lymphocyte 

TLR toll-like receptor 

TN triple-negative 

TNFR TNF receptor 

TNF-α tumor necrosis factor alpha 

TRADD TNFR-associated death 
domain protein 

TRAF TNFR-associated factor 

TRAIL TNF-related apoptosis-
inducing ligand 

TRAIL-R TNF-related apoptosis-
inducing ligand receptor 

TRAM translocating chain-associated 
membrane protein  

TRIF TIR-domain-containing 
adaptor-inducing IFN-β 

TYK2 tyrosine kinase 2 

XIAP X-linked IAP 
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Populärvetenskaplig sammanfattning 

Cancer omfattar en grupp sjukdomar och uppstår när celler delas och växer 
okontrollerat och stör funktionen hos det drabbade organet. Okontrollerad 
celldelning kan vara ett resultat av mutationer som uppstår vid normalt 
förekommande celldelning eller av mutationer som bildas av yttre faktorer så som 
UV-strålning. Oftast är mutationerna ofarliga men de kan ibland leda till en 
förändring hos cellen. Med tiden kan fler förändringar uppstå som tillslut gynnar en 
överdriven tillväxt av en cell. Detta kan då resultera i en tumör.  

En typ av förändring som gynnar okontrollerad celldelning är en cells förmåga att 
undvika att gå igenom celldöd. Detta är en mekanism hos cellerna som normalt 
aktiveras när oönskade och skadade celler behöver elimineras. Genom att undvika 
celldöd kan cancerceller även stå emot olika cancerbehandlingar. En strategi för att 
kringgå detta, och därmed framkalla celldöd i cancerceller, är att provocera fram 
celldöd. Detta kan göras med hjälp av olika typer av nya behandlingsstrategier. Ett 
exempel är de så kallade Smac mimetics som imiterar effekten av Smac – ett protein 
som medverkar i processen att framkalla celldöd hos en cell. Dock har det påvisats 
att Smac mimetics har en begränsad effekt om de används som singelbehandling. 
Därför undersöks vilka behandlingsformer Smac mimetics kan kombineras med för 
att framkalla celldöd. Ett sådant exempel är proteinet TRAIL som främst stimulerar 
celldöd i cancerceller över normala celler.  

I denna avhandling har vi undersökt om kombinationen TRAIL och Smac mimetics 
kan ge upphov till celldöd i bröstcancerceller. I artikel I fann vi att Smac mimetic 
gjorde cellerna känsligare mot celldöd stimulerad av TRAIL. 
Kombinationsbehandlingen ledde till celldöd i två olika typer av bröstcancerceller 
men en specifik celltyp förändrade istället både utseende och egenskaper. Kaspaser 
är viktiga proteiner i celldödsprocessen och aktiveras vid celldöd. Vi fann en snabb 
och kraftig aktivering av kaspaser i de celltyper som dog av behandlingen men inte 
i den celltyp som överlevde.  

Förändringarna som uppstod efter behandling med TRAIL och Smac mimetic i en 
av bröstcancercelltyperna studerades närmre i artikel II. Vi kom fram till att 
förändringarna var bestående och beroende av en specifik kaspas, nämligen kaspas-
8, som bara aktiverades svagt och långsamt. Men det ändrade utseendet och 
egenskaperna hos cellerna är två separata händelser. En av de förändrade 
egenskaperna påminner om vad som sker vid kroppens svar på virusinfektion. Detta 
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svar leder till produktion av så kallade interferoner som är en del av immunförsvaret 
och bidrar till elimineringen av virusinfektionen.  

Hur produktionen av interferon uppstår efter behandling med TRAIL och Smac 
mimetic undersöktes i artikel III och IV. Vi fann att behandling med TRAIL och 
Smac mimetic även kan leda till produktion av interferon i en av celltyperna som 
dog efter behandling. Detta kunde dock enbart ske när celldöd förhindrades genom 
att blockera kaspaserna från att verka. I båda celltyperna som undersöktes var 
interferonsvaret beroende av närvaron av kaspas-8 men inte dess aktivitet. 
Produktionen av interferon ökade också med tiden av behandling eftersom 
interferon kan stimulera samma cell att producera mer interferon. Vi lyckades 
blockera stimuleringen av interferon med hjälp av en hämmare. Däremot kan de 
protein som är tänkta att hämmas inte kan fastställas ha en funktion i den produktion 
av interferon vi ser. Det finns dock indikationer på att ett annat protein, som tillhör 
en annan typ av inflammatoriskt svar, delvis medverkar i interferonsvaret som ses 
efter behandling med TRAIL och Smac mimetics. Sammanfattningsvis kan 
kombinationen av TRAIL och Smac mimetic stimulera celldöd i vissa typer av 
bröstcancercelltyper. Om kaspas-aktiviteten är låg kan detta istället leda till 
förändringar i utseendet hos cellerna. Även egenskaperna kan förändras hos cellerna 
då bland annat interferon produceras. Denna effekt är beroende av närvaron av 
kaspas-8 men inte dess aktivitet. 
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Abstract 

Breast cancer is the most common cause of cancer-related deaths in females. Despite 
a generally good prognosis, a substantial number of patients suffer from relapse. 
The acquired capacity of a cancer cell to resist apoptosis, a form of controlled cell 
death, can contribute to treatment resistance. One way to circumvent cell death 
resistance in cancer cells is to reactivate cell death. This can be achieved by treating 
with Smac mimetics, small molecule peptides which were developed to mimic the 
function of Smac. The function of Smac is to facilitate induction of apoptosis by 
inhibiting the inhibitor of apoptosis proteins (IAPs). This results in disinhibition of 
caspases, a family of proteins which can mediate the execution phase of apoptosis. 
However, the effect of Smac mimetics as a single treatment is limited and they are 
therefore also examined as part of a combination therapy. TRAIL, a death receptor 
ligand, preferentially induces apoptosis in cancer cells and can potentially be used 
together with Smac mimetics. 

The first aim of this thesis, which was examined in Paper I, was to study if TRAIL 
together with the Smac mimetic LCL161 can induce apoptosis in breast cancer cells, 
and to investigate the underlying mechanism. We found that TRAIL and LCL161 
induce cell death in one estrogen receptor (ER)-positive, CAMA-1, and one triple-
negative, MDA-MB-468, breast cancer cell line. This was dependent on the activity 
of caspase-8. In CAMA-1, this was also found to be partially dependent on receptor-
interacting protein kinase 1 (RIP1), but not its kinase activity, and suppressed by the 
caspase-8 inhibitor c-FLIP. In MCF-7, another ER-positive cell line, the 
combination of TRAIL and LCL161 could not induce apoptosis, but rather an 
alteration of morphology and gene expression. 

In paper II, the mechanisms for the changes in MCF-7 cells, following treatment 
with LCL161 and TRAIL, were investigated. We found that the morphology was 
irreversible and that downregulation of caspase-8 blocked the alteration. However, 
we observed a slow and gradual processing of caspase-8, suggesting a low and long-
term activity of caspase-8. We found upregulation of genes related to NF-κB and 
interferon (IFN) signaling after treatment, whereas the downregulated genes were 
enriched for genes found in a less ER-positive phenotype. The changes in 
morphology and gene expression are separate events since neither inhibition of IFN- 
nor NF-κB pathways affected the morphology change. We further wanted to 
examine the induction of IFN signaling since little is known about TRAIL-mediated 
induction of IFN signaling. 
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We studied the underlying mechanism, and potential mediators, of IFN induction 
following treatment with TRAIL and LCL161 in Paper III and IV. Inhibition of 
Janus tyrosine kinases with Ruxolitinib blocked treatment-induced STAT1 
phosphorylation and downregulation of the type I IFN receptor IFNAR1 suppressed 
the induction of IFN signaling. In addition there was a gradual increase in IFNB1 
mRNA levels following treatment, all of which indicate an autocrine IFN signaling. 
Ruxolitinib suppressed IFN-stimulated genes but could not block IFNB1-induction, 
which further supports the hypothesis of an autocrine IFN signaling. 
Downregulation of caspase-8 suppressed IFN signaling but inhibition of its activity 
did not, suggesting a scaffold role of caspase-8 in this context. Inhibition of TBK1 
and IKKε, two proteins mediating transcription of IFNB1, with MRT67307 
suppressed STAT1 phosphorylation but IFN signaling could not be blocked by 
downregulation of TBK1 or IKKε. NIK, a kinase which induces the non-canonical 
NF-κB pathway, could potentially be involved in mediating TRAIL and LCL161-
induced IFN signaling. The results presented in this thesis suggest that caspase-8 
can mediate apoptosis if fully activated, stimulate morphology change if activated 
weakly and slowly, and induce IFN signaling if it acts as a scaffold in ER-positive 
breast cancer cells lines following treatment with TRAIL and Smac mimetic. 
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Cancer 

Cancer is the second-most common cause of death, both in Sweden and worldwide 
[1, 2]. As the life expectancy increases, the incidence of cancer cases does too. This 
is a result of damage and mutations of the DNA accumulating with age [3]. In 5-
10% of all cancer cases, there is an inherited mutation in a cancer predisposition 
gene [4]. In addition, there are other risk factors than age and inherited genes for 
developing cancer, such as exposure to carcinogens, lifestyle factors (for example 
tobacco use, alcohol consumption, and overweight), as well as some viral or 
bacterial infections [5]. 

Cancer is not a single disease, but rather constitutes a group of diseases which are 
characterized by uncontrolled division, growth, and sometimes spread of cells. 
Traits that are acquired with time during the development of tumors are termed 
hallmarks of cancer and were summarized by Hanahan and Weinberg in 2000 [6]. 
The hallmarks of cancer include: sustaining proliferative signaling; evading growth 
suppressors; activating invasion and metastasis; enabling replicative immortality; 
inducing angiogenesis; and resisting cell death. In 2011, these were complemented 
with four additional hallmarks, namely: avoiding immune destruction; tumor 
promoting inflammation; genome instability and mutation; and deregulating cellular 
energetics [7]. 

DNA damage occurs naturally in cells during cell division, and can frequently be 
repaired. The cell can also go through cell death if a DNA damage cannot be 
repaired. However, if an incorrectly paired nucleotide escape proofreading this can 
result in mutation of a gene [8]. These mutations can affect oncogenes, which can 
drive transformation of cancer upon mutation, or suppressor genes, which are 
protective genes that can be inactivated following mutations [9]. Accumulation of 
these mutations in a cell can contribute to development of a cancer cell. This is 
followed by cellular proliferation, which leads to expansion and outgrowth of a 
population of clonally derived cells. Additional mutations may then follow, which 
facilitate rapid growth, increased survival, and perhaps invasion and metastasis, 
which increase the malignancy of the evolving tumor with time [10]. All hallmarks 
are potential targets for cancer therapeutics [7]. 
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Breast cancer 

Epidemiology 
Breast cancer is the most commonly diagnosed cancer and the primary cause of 
cancer-related death among females [2, 11]. In 2019, 65 965 individuals were 
diagnosed with cancer in Sweden [12]. Of these were 8 288 women who were 
diagnosed with breast cancer [12]. In the same year, 1 353 females passed away due 
to breast cancer-related death [13]. Although breast cancer predominantly is 
diagnosed in women, approximately 60 men per year are affected by the disease in 
Sweden [12]. This thesis will focus on breast cancer in women. Looking at a broader 
perspective, 2.3 million females were diagnosed with breast cancer worldwide in 
2020, while 685 000 deaths were reported, according to World Health Organization 
(WHO). However, of the women who have been diagnosed in the past 5 years, 7.8 
million were still alive, making breast cancer the most prevalent cancer disease in 
the world [14]. The number of surviving patients are increasing due to early 
diagnosis [15] and treatment improvements [16]. However, this also results in more 
women being at risk of recurrence [17]. 

Risk factors 
There are several different genetic and environmental factors that can increase the 
risk of developing breast cancer. Age is one of the most important mainly since the 
mutational burden in cells accumulates over time. Factors that influence the 
exposure to estrogen or substances that can stimulate estrogen receptor (ER) 
signaling also influence the risk of developing breast cancer. These include: early 
menarche, late menopause, nulliparity, high hormonal baseline levels, giving birth 
at a higher age, and the usage of oral contraceptives and hormonal replacements 
therapies [18-22]. In addition, having a high breast density [23] or a previous history 
of carcinoma in situ [24] are factors that result in an elevated risk of developing 
breast cancer. There is also a risk related to ethnicity, where Caucasian women are 
more prone to develop breast cancer as compared to African American or Hispanic 
women. However, there is a higher risk of developing more aggressive tumors with 
an African American ethnicity [25]. The majority of all breast cancers occur 
sporadically but family history seems to be related to 5-10% of all cases [25]. The 
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most classical example is the inactivation of the BRCA1 and BRCA2 genes, both 
involved in DNA repair [26], which leads to a prominent risk of breast cancer 
development, and accounts for approximately 25% of all hereditary breast cancer 
cases [27, 28]. Mutated BRCA1 has been linked to an aggressive and less treatable 
form of malignancy [29]. Women with a family history of BRCA mutations are 
offered early prophylactic care. 

In addition, there are many risk factors related to lifestyle habits, which include 
consumption of alcohol [30-32] and processed meat [33, 34], a high body fat level 
and obesity, both measured as high BMI and in a BMI-independent setting [35-39], 
lack of physical activity [40-42], and passive and active tobacco smoking [43, 44]. 
On the other hand, to have given childbirth and have breastfed, can be protective 
against breast cancer [45-47]. 

The development of breast cancer 
The major development of the human breast starts at the beginning of puberty when 
hormones are produced which cause the breast epithelia to grow. A mature breast 
contains branches of terminal duct lobular units (TDLUs) in the surrounding fat 
tissue (Figure 1). These TDLUs contain several lobules, which are small cavities 
where the milk production occurs during lactation [48]. During pregnancy the 
mammary gland stem cells located in the breast start proliferating and 
differentiating. This gives rise to the different cell types necessary to constitute the 
expansion of the ductal network and causes the breast tissue to grow [49-51]. The 
duct of each TDLU is composed of apically positioned ductal cells and surrounding 
basal myoepithelial cells which contract during lactation when the milk is to be 
released from the nipple [52-54]. After terminated lactation, involution occurs, in 
which the breast tissue regresses and the organization of the mammary gland returns 
to a quiescent state [55, 56]. 

Breast cancer can arise in all compartments of the breast, but most often it starts as 
a benign alteration in the cells of the TDLUs [11] where it can progress from a 
hyperplasia into an atypical hyperplasia, which increases the risk of developing 
breast cancer [57, 58]. If the progression continues, it can ultimately develop into 
carcinoma in situ, which is a tumor consisting of abnormal cells but located only at 
the site of origin. This can be followed by tumor growth and subsequently tumor 
invasion where the cells can spread into the surrounding stroma and adjacent lymph 
nodes [59]. At this stage it is termed an invasive cancer. Tumor cells can also 
metastasize through invasion and intravasation of either the lymphatic system or 
blood vessels followed by extravasation to distant tissues and organs. The most 
common sites for breast cancer metastases are bone, liver, and lung [60, 61]. 
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Figure 1. Schematic figure of the human mammary gland 
The terminal duct lobular units (TDLUs) are composed of cavities, called lobules. The ductal cells line the duct and are 
surrounded by myoepithelial cells which contract during lactation to facilitate the flowing of the milk through the ducts 
and ultimately out through the nipple. 

 

The so called tumor-initiating cells (TICs) in breast cancer have not been firmly 
established. According to one hypothesis, TICs originate from mammary stem cells. 
Intrinsic properties of the generally quiescent mammary stem cells, such as the 
ability of self-renewal, could benefit development of cancer cells [51, 62]. It has 
also been suggested that the breast cancer TICs derives from progenitor cells that 
have acquired the capacity of self-renewal [51, 62]. It is also under discussion if 
there is a common TIC that give rise to all breast cancer subtypes or if the TICs 
differ between subtypes. The clonal evolution model proposes that there is a 
common ancestor and that the oncogenic events determine the subtype [62]. On the 
other hand, a study by Keller et al. showed that transformation of luminal EpCAM+ 
cells resulted in tumors with luminal features, such as ERα, whereas tumors derived 
from transformed CD10+ cells showed squamous, metaplastic, and giant cell 
differentiation, and lack of ERα [63]. This could indicate that the TIC may 
determine the subtype. When it comes to BRCA1 deletions in breast cancer, 
experiments in mice, where the BRCA1 gene was deleted both in luminal and basal 
progenitor mammary epithelial cells, demonstrated that it was only the luminal 
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progenitor cells that gave rise to tumors resembling human BRCA1 breast cancers 
and basal-like tumors [64]. 

Breast cancer classification 
Breast cancer can be classified by different means, taking distinctive features of the 
tumor into consideration. All classification systems provide information on 
prognosis and can be used as a guidance when selecting the most effective 
treatments. 

Histological type 
Histological types are determined by patterns related to the morphology and 
architectural characteristics of single tumor cells as well as the tumor bulk [65]. 
Invasive ductal carcinomas (IDCs) are the most common types of invasive breast 
cancer as they comprise approximately 80% of all breast cancer cases [66]. The IDC 
of no special type (NST, previously known as IDC-NST) accounts for 
approximately 75% of all IDC cases. NST includes tumors that do not harbor 
sufficient characteristics to be categorized into any of the special types [67, 68], 
which constitute for the remaining 25%. These include, for example, the medullary, 
tubular, apocrine, and metaplastic carcinomas. The tubular and medullary 
carcinomas have a more favorable prognosis as compared to the metaplastic and 
apocrine types [65]. Invasive lobular carcinoma (ILC) represents 5-15% of all 
invasive breast cancers and includes five different variants [69, 70], namely the 
classic type of ILC, pleomorphic lobular carcinoma, histiocytoid carcinoma, signet 
ring carcinoma, and tubulolubular carcinoma [65]. Since the majority of tumors do 
not present any specific characteristics, such as those belonging to NST, histological 
typing has a limited significance in a clinical setting [71, 72]. 

When a tumor is not considered invasive, it is called either ductal or lobular 
(depending on site of origin) carcinoma in situ (DCIS or LCIS), meaning that it has 
not invaded through the basement membrane. Tumors defined as DCIS constitute 
approximately 10% of all breast cancer cases in Sweden and are treated with surgery 
and post-operative radiation [11]. Hormone therapy can be used if the DCIS is ER-
positive [11, 73]. LCIS is often hormone receptor (HR)-positive and human 
epidermal growth factor receptor-2 (HER2)-negative and is treated with surgery in 
combination with post-operative radiation or endocrine therapy [74]. A diagnosis of 
DCIS or LCIS confers an increased risk of developing invasive cancer at a later time 
point. Therefore, follow-ups are encouraged [11, 75]. 
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Histological grade 
Breast tumors are classified based on histological grade, which is a morphological 
marker where tumor differentiation, as compared to normal breast tissue, is 
evaluated. The Nottingham Grading System, based on Elston and Ellis histological 
grade system [76], is widely used in the clinic and has been shown to have 
prognostic value [72, 77]. By setting a score (1-3) of the degree of differentiation 
on three morphological features: tubule and gland formation (amount of normal 
structures), nuclear pleomorphism (variation in size and shape), and mitotic count 
(proliferation), it is possible to estimate the aggressiveness of the tumor. The three 
scores are added and when the sum is 3-5 (Nottingham Histological Grade (NHG) 
I) the tumor is morphologically similar to normal breast tissue. This correlates with 
good prognosis. On the contrary, tumors given a score of 8-9 (NHG III) are poorly 
differentiated and have the worst prognosis [11, 78]. 

TNM staging system 
Another way of classifying breast cancer is by evaluating how advanced the tumor 
is. This can be done with the TNM staging system, where tumor size (T), nearby 
lymph node involvement (N), and distant metastasis (M), are assessed. Based on 
these three measures, patients are categorized into four stages (I-IV), where stage I 
has the most favorable prognosis and stage IV the worst [79]. 

Immunohistochemical classification 
Immunohistochemical (IHC) staining of four protein biomarkers is used in the clinic 
to categorize tumors into clinical subtypes and thereby assess the best treatment 
option. These biomarkers includes the two hormone receptors (HRs), estrogen 
receptor (ER) and progesterone receptor (PR), human epidermal growth factor 
receptor-2 (HER2), and the proliferation marker Ki67. By counting the number of 
tumor cells positively stained with antibodies against these markers a percentage of 
stained cells is obtained. In Sweden, the threshold for HR positivity is set to 10% 
for ER and 20% for PR, whereas international guidelines set the threshold to 1% for 
both HRs. Staining of Ki67 is categorized as low (<10%), intermediate, or high 
(>20%) grade [11]. For HER2 it is more complex. Based on IHC, staining of HER2 
(to determine protein levels) is graded 0-3+, where a tumor is considered HER2-
negative if it is graded as 0-1+ (no or faint staining), and HER2-positive if graded 
as 3+ (strong staining in >10% of tumor cells). Those graded as 2+ (weak to 
moderate staining in >10% of tumor cells) are considered ambiguous and are 
therefore further evaluated with fluorescent in situ hybridization (FISH) to examine 
amplification of the ERRB2 gene, which encode for HER2 [11, 80]. 
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Molecular subtype classification 
As a complementary tool to the histological and morphological classifications used 
in the clinic, analysis of mRNA expression can be applied [81, 82]. Based on 
microarray analyses, Perou et al. and Sørlie et al. were able to establish molecular 
(also called intrinsic) subtypes of breast cancer, based on similarities in gene 
expression [81-83]. Later, these studies were extended with qPCR analyses of a 
limited number of mRNAs. One example is the PAM50 assay which, in addition to 
classify breast cancer subtypes, can be used to assess the risk of recurrence when 
combined with other prognostic factors [11, 84-86]. There are five different intrinsic 
subtypes of breast cancers, namely: luminal A and B, HER2-enriched, basal-like, 
and normal-like [81, 82, 85]. 

Luminal A is the most common subtype as it comprises more than half of all newly 
diagnosed breast cancer cases [65, 87, 88]. Tumors of the luminal A subtype are in 
general ER- and PR-positive, lack amplification of HER2, and have a low to 
intermediate Ki67 expression. The luminal B tumors are in general ER-positive with 
low PR expression, high Ki67 expression, and lack HER2-amplification. They 
account for 10-20% of all breast cancer cases. The HER2-enriched subgroup 
represents 15-20% of all breast cancer cases [88, 89]. Tumors of this subtype are 
frequently HER2-positive and lack expression of the HRs. Tumors of the basal-like 
subtype account for 10-20% of all breast cancer cases. Their gene expression is 
similar to that of myoepithelial or basal cells, which explains the name [81, 88]. 
Tumors of this subtype generally lack expression of ER, PR, and HER2. Tumors 
which are negative for ER, PR, and HER2 are called triple-negative (TN). However, 
20-30% of all basal-like tumors actually express one or more of these receptors [82, 
88, 90-92]. To distinguish between TN and basal-like tumors, biomarkers such as 
cytokeratin 5/6 and/or epidermal growth factor receptor (EGFR), as well as negative 
staining for ER, PR, and HER2, can be used [91, 93-95]. The normal-like subtype 
comprises only 5-10% of all breast cancer cases. In general, tumors belonging to 
this subtype have a similar expression pattern to that seen in normal breast samples 
and fibroadenomas, which has given it its name [81, 88]. This subgroup is fairly 
uncharacterized, which could be explained by its low prevalence [88]. Moreover, it 
is still under debate whether this is a real subgroup or if it is a technical artefact due 
to normal tissue in the samples [88, 96]. Nevertheless, it presents variable 
expression of HRs, negative expression of HER2 and Ki67, as well as 
low/intermediate grade [88, 97]. 

Efforts are being made to improve current analyses and to develop new ones. For 
example, in 2010 the Sweden Cancerome Analysis Network – Breast (SCAN-B) 
was launched, as a collaboration between hospitals in the southern of Sweden, to 
identify new prognostic markers using whole transcriptome RNA sequencing [98]. 
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Classification of breast cancer in the clinic 
In the clinic, immunohistochemical analysis is used to approximate the molecular 
subtypes [11, 99]. This classification results in the following subgroups: luminal A-
like, luminal B-like (HER2-positive), luminal B-like (HER2-negative), HER2-
positive, and triple-negative (Table 1). 

Tumors classified as luminal A-like are ER-positive, HER2-negative, have a low 
NHG (grade 1-2), and either a low or intermediate Ki67 expression together with 
high PR expression (>20%) [11]. The expression of PR could contribute to the low 
grade of luminal A tumors, since progesterone can counteract estrogen-dependent 
cell growth and division [100]. Tumors of this subgroup display many different 
histological variants of low grade, including IDC-NST and tubular carcinoma [101]. 
The prognosis of Luminal A-like cancers is favorable and the tumors are less prone 
to develop lymph node metastasis [102, 103]. 

Luminal B-like tumors are ER-positive and can be either HER2-negative or HER2-
positive. A tumor that is ER-positive and HER2-negative is classified as luminal B-
like if it has either a high expression of Ki67 together with NHG 2-3 or an 
intermediate Ki67 expression and low PR-expression (<20%) together with NHG 
2-3 [11]. A HER2-positive tumor, which is ER-positive, is classified as luminal B-
like independently of the level of PR and Ki67 [11, 99]. Compared to luminal A-
like tumors, luminal B-like tumors are more aggressive and exhibit a worse 
prognosis [88]. As a result, they generally have an increased risk of locoregional 
relapse (recurrence at primary site or nearby lymph nodes) and metastatic spread 
[104-106]. Luminal B-like tumors encompass 10-20% of all breast tumors [88]. 

Tumors that are clinically characterized as HER2-positive have a high expression 
of HER2 protein levels and/or amplification of the ERBB2 gene, which encode for 
HER2, in addition to being ER- and PR-negative [11]. However, amplification does 
not always correlate with increased protein levels [107, 108]. In addition to HER2 
status, the tumors are associated with high expression of Ki67 [88, 99]. Tumors of 
this subtype are associated with a higher histological grade and poor prognosis [88]. 
However, with the development of targeted therapies such as trastuzumab, a 
monoclonal antibody targeting the HER2 receptor [109], these tumors have good 
response to treatments [110]. 

Triple-negative (TN) tumors are ER-negative, PR-negative, HER2-negative, and in 
most cases of a high histological grade [11]. The prognosis for this subtype is 
usually poor since the lack of receptors prevents the usage of targeted therapies [88, 
111, 112]. 
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Table 1. Approximated molecular subtypes for breast cancer 
Approximated 
molecular 
subtypes 

Luminal A-like Luminal B-like HER2-positive Triple-
negative 

  HER2- HER2+   
Frequency (%) 50-60 10-20 15-20 10-20 
Biomarkers and 
histological grade 

ER+ 
PR+ 
HER2- 
Ki67 low/interm. 
Low NHG 

ER+ 
HER2- 
 
and either 
PR+ 
Ki67 high 
NHG 
interm. 
 
or 
Ki67 
interm. 
PR low 
NHG 
interm. 

ER+ 
HER2+ 
Indep. of 
PR and 
Ki67 

ER- 
PR- 
HER2+ 
Ki67 high 

ER- 
PR- 
HER2- 
NHG high 

Prognosis Good Intermediate Poor Poor 

Abbreviations: interm. = intermediate, indep. = independent 

Treatment 
The specific treatment given to a patient is decided based on the analyses and 
classifications described above. Before deciding the type of treatment, a biopsy 
sample of the tumor is collected to, by histological classification, decide the 
invasiveness and to analyze the expression of biomarkers (ER, PR, HER2, and 
Ki67) [11]. 

Surgery 
Surgery is used to remove the tumor, and in some cases adjacent lymph nodes. It is 
either performed as a mastectomy, where the entire breast is removed, or as a breast-
conserving surgery, in which cancerous tissue with margin is removed [113]. 
Surgery has been proven to be very effective since it results in lifelong absence of 
tumor disease in approximately 50% of all breast cancer cases when used either 
alone or in combination with local radiation therapy [11]. 

Radiation therapy 
Local radiation therapy is often used as adjuvant therapy (post-operatively) to 
eradicate any remaining cancer cells after breast-conserving surgery, as it decreases 
the risk of recurrence and mortality [113]. However, it may also be used as a 
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neoadjuvant therapy (pre-operatively) to shrink the tumor before surgery. This has 
been shown to suppress local nodal recurrences [114]. 

Chemotherapy 
The aim of chemotherapy is to shrink or eliminate the primary tumor and to 
eradicate tumor cells which potentially already have spread. Chemotherapy is given 
pre-operatively, if suitable for the patient, when the breast tumor is locally 
advanced, inoperable, or if it is accompanied with spread to lymph nodes. It is also 
given upon operable tumors > 2 cm which are either HER2-positive or TN [11]. 
Different types of chemotherapies are used for breast cancer. Anthracyclines, such 
as doxorubicin, primarily act by inhibiting topoisomerase II, resulting in DNA 
damage and apoptosis [115, 116]. Taxanes, which include paclitaxel and docetaxel, 
disrupt the microtubule dynamics causing halted cell division and cell death [117]. 
Cyclophosphamide is an alkylating agent and acts by cross-linking DNA and RNA 
strands, which prevents DNA replication, by adding an alkyl group to guanine bases 
[118]. Carboplatin is a platinum-based substance, which act by causing cross-
linkage of DNA [119]. 

Endocrine therapy 
Endocrine therapy can be given either as neoadjuvant or adjuvant therapy. Patients 
with HR-positive breast cancer are recommended post-operative endocrine therapy, 
where the treatment of choice is based on menopausal status, age, and lymph node 
status. The different types of endocrine therapies include selective estrogen receptor 
modifier (SERM), such as tamoxifen, selective estrogen receptor degraders (SERDs), 
such as fulvestrant, and aromatase inhibitors (AI) [11, 113, 120]. Tamoxifen is a 
complex drug as it acts both as a competitive ER antagonist by blocking the 
proliferative signaling of ER, and stimulates ER in some organs, making it a partial 
ER agonist as well [121, 122]. It is standard treatment for premenopausal women, 
who generally have high estrogen levels, and can be combined with a luteinizing 
hormone-releasing hormone (LHRH) agonist which suppresses the production of 
estrogen from the ovaries (ovarian suppression), but it also has an effect in 
postmenopausal patients [11]. Fulvestrant acts as an ER antagonist by competitively 
blocking the binding of estrogen to the receptor and causes impaired receptor 
dimerization which subsequently inhibits its nuclear localization [123-125]. In 
addition, the binding of fulvestrant to ER results in an unstable complex and therefore 
it is degraded [126]. It can be given to postmenopausal patients as a monotherapy, or 
in combination with a LHRH agonist and a CDK4/6 inhibitor in premenopausal 
patients [11, 127]. AIs function by inhibiting aromatase, the enzyme responsible for 
converting androgens to estrogens. They are given to postmenopausal women since 
they have been shown to be more efficient than tamoxifen for these patients [11, 128]. 
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However, they cannot block the estrogen production in the ovaries prior to menopause 
and are therefore not given to premenopausal patients unless combined with ovarian 
suppression [11, 129]. 

Targeted therapy 
Patients diagnosed with breast cancer harboring amplification of ERRB2 and/or high 
expression of HER2 protein levels are offered targeted therapy with anti-HER2 
drugs. One example is the monoclonal antibody trastuzumab, which is given either 
as neoadjuvant or adjuvant therapy [11, 80]. By blocking HER2 receptor 
dimerization, as well as inducing antibody-dependent cellular cytotoxicity (ADCC), 
trastuzumab induces cell-cycle arrest and apoptosis [130, 131]. 

Immunotherapy 
The immune system can either suppress tumor growth by destroying cancer cells or 
promote its progression by creating a favorable microenvironment for tumor growth 
[132]. During immunotherapy, the goal is to utilize the patient’s own immune 
system to identify and kill cancer cells. To avoid attacks on one’s own normal cells, 
so-called self-tolerance, the immune system uses an immune checkpoint system. 
These checkpoints also function as immunosuppressive factors [133]. Programmed 
cell death protein 1 (PD-1) acts as an immune checkpoint inhibitor (ICI) and has 
been shown to inactivate the immune system in solid tumors when activated by its 
ligand PD-L1 [134, 135]. In breast cancer, the expression of PD-L1 is associated 
with large tumor size, high grade [136], and its expression correlates with a 
decreased survival [137]. To distinguish which breast cancer patients who will 
benefit from immunotherapy, different biomarkers are assessed, for example: the 
expression of PD-1 and its ligand PDL-1, tumor-infiltrating lymphocytes (TILs), 
and tumor mutation burden [132]. Inhibition of PD-1 has been proven efficient 
against TN breast cancer [138, 139] when combined with chemotherapy [11]. 

CDK4/6 inhibitors 
Inhibitors have been developed to target CDK4 and CDK6, which together with the 
D-type cyclins regulate the G1-to-S phase cell cycle checkpoint. Treatment with 
these agents causes cell cycle arrest [140]. There are currently three approved 
CDK4/6 inhibitors: palbociclib, ribociblib, and abemaciclib, which are given to 
patients with advanced HR-positive/HER2-negative tumors. They have been proven 
to be most efficient when combined with either an aromatase inhibitor (AI) or 
endocrine therapy, such as fulvestrant [11, 141]. 
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Cell death 

Overview 
In multi-cellular organisms, there is a requirement to remove cells through cell death 
in order to maintain the homeostasis between newly generated cells and cells that 
are either damaged or unwanted [142]. This process occurs as early as during 
development where, for example, fingers and toes are shaped from webbed limbs 
[143]. Another example is the development of cells within the adaptive immune 
system. Here cells with non-functional receptors for antigens and cells that strongly 
react with self-proteins are eliminated via cell death [144-146]. Thus, cell death can 
occur in various regulated situations. However, it can also occur accidentally, such 
as upon severe physical-, chemical-, or mechanical insults. This differs from 
regulated cell death which is controlled by a genetically encoded molecular 
machinery and takes part during tissue homeostasis and development [147]. 

In the course of tumor development, cell death may be stimulated to counteract some 
acquired features of the cancer cell, such as enhanced proliferation, or to deal with 
signaling imbalances due to increased oncogenic signaling. Enhanced proliferation 
can also result in DNA damage, which in turn may trigger cell death. However, it 
has been found that established tumor cells have acquired resistance to cell death [6, 
7]. Thus, activation of cell death in cancer cells has emerged as a potential strategy 
to treat cancer. There are at least 11 different types of regulated cell death [148, 
149]. One of them is apoptosis, which will be the main focus in this thesis. 

Apoptosis 
In 1972, the term “apoptosis” was used for the first time to describe controlled cell 
death with morphologically distinct features, such as cell shrinkage, nuclear 
fragmentation, and cytoplasmic and chromatin condensation. It results in extensive 
membrane blebbing, cellular fragmentation, and the release of spherical fragments 
called apoptotic bodies. The apoptotic bodies and the cellular fragments can in turn 
be engulfed by other cells and subsequently be degraded [142, 150, 151]. The dying 
cell will maintain the plasma membrane intact until it is obliterated [150], which 
contrasts the process of necrotic cell death. Necrosis involves cellular leakage and 
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swelling of the organelles and the cell (also called oncosis), resulting in damage of 
the surrounding tissue [142]. 

The morphological classifications of cell death are still used, but they are 
accompanied by some disadvantages. For example, the presence of a morphological 
feature does not explain the causative process. In addition, there are several subtypes 
of apoptosis which are morphologically similar to each other but are associated with 
different biochemical events, such as caspase cleavage and activation, 
phosphatidylserine exposure (which can be both caspase-dependent and –independent 
[152, 153]), and generation of reactive oxygen species (ROS). Moreover, different 
types of cell death can result in various immune responses. Apoptosis generally does 
not induce any immune reaction following engulfment of apoptotic bodies, but there 
are exceptions. For instance, an immune response has been observed during apoptosis 
during influenza A viral infection [154]. Necrosis and pyroptosis are two types of cell 
death which can provoke an immune response in which, for example, cytokines are 
released [148, 149, 155-157]. Therefore, biochemical methods have become more 
common to use when classifying cell death. 

Based on biochemical events, apoptosis can be divided into the extrinsic and 
intrinsic pathway, which are brought together at the execution phase. Here the 
executioner caspases (caspase-3, -7, and -6) are cleaved and activated [149, 158] 
and can in turn cleave and activate different substrates, such as PARP, cytoplasmic 
endonuclease, gelsolin, ICAD, and proteases. This cause degradation of nuclear and 
cytoskeletal proteins, and lead to the characteristic morphology and biochemistry of 
apoptotic cells [151, 159-161]. Finally, phosphatidylserine is externalized which 
enables recognition by phagocytes and a non-inflammatory phagocytosis of the 
apoptotic cells [162, 163]. 

Intrinsic apoptosis 
The intrinsic pathway is initiated upon different stimuli such as imbalance of growth 
factors, hormones or cytokines, or upon DNA damage, irradiation, free radicals, 
hyperthermia, or viral infection. All these stimuli can cause changes of the 
mitochondria [151] and lead to mitochondrial outer membrane permeabilization 
(MOMP), which releases cytochrome c into the cytosol [164, 165]. This event is 
controlled by the regulation of pro- and anti-apoptotic proteins of the Bcl-2 family. 
The pro-apoptotic proteins can be divided into multidomain effectors, which include 
Bax and Bak, and BH3-only proteins, which include Bim, Puma, Noxa, Bad, and 
Bid [166]. Bax and Bak can form the pores in the outer mitochondrial membrane 
causing the permeabilization of the membrane [167, 168]. The anti-apoptotic 
members of the Bcl2-family, such as Bcl-2 and Bcl-XL, inhibit Bax and Bak through 
heterodimerization and thus suppress induction of apoptosis [169, 170]. The BH3-
only proteins can facilitate apoptosis either by binding to and neutralizing the anti-
apoptotic proteins or, as in the case for Bid following cleavage by caspase-8, directly 



31 

promote the pore formation by Bax and Bak [171-173]. The BH3-only proteins 
depend on the presence of Bax and Bak to promote apoptosis [173]. 

Once cytochrome c is released from the mitochondria into the cytoplasm, it mediates 
an ATP-dependent activation and oligomerization of apoptosis protease activating 
factor 1 (Apaf-1), which thereafter binds to and activate procaspase-9, and together 
they form the apoptosome (Figure 3) [164, 174]. Active caspase-9 can cleave and 
activate the executioner caspase-3 [175]. But a member of the inhibitor of apoptosis 
protein (IAP) family, X-linked IAP (XIAP), can inactivate caspase-9 by binding to 
its homodimerization surface and prevent activation of the executioner caspases by 
blocking their substrate cleft [176, 177]. Other proteins being released from the 
mitochondria are second mitochondria-derived activator of caspase (Smac), which 
can inhibit IAPs and thus facilitate apoptosis [178], and HtrA2, which contributes 
to apoptosis through either caspase-dependent or –independent mechanisms [179]. 

Extrinsic apoptosis 
Initiation of the extrinsic pathway begins with binding of a ligand to its cognate 
transmembrane death receptor (DR) on the cellular membrane. The ligand FasL 
binds to Fas, tumor necrosis factor-α (TNF-α) binds to TNF receptor 1 and 2 
(TNFR1 and TNFR2), and TNF-related apoptosis-inducing ligand (TRAIL) 
recognizes DR4 and DR5, all of which are examples of death receptors which can 
initiate a pro-apoptotic signaling cascade [180]. The death receptors consist of a 
cysteine-rich extracellular domain and a cytoplasmic death domain (DD) [181]. 
Upon ligation the receptor will trimerize to form signaling platforms, a process 
called capping [182-185]. This can be followed by recruitment of adaptor proteins 
and subsequent activation of procaspase-8 and/or -10 through their oligomerization 
and auto-catalytic activation [186, 187]. Caspase-8 can be negatively regulated by 
the protein c-FLIP (cellular FLICE-like inhibitory protein) [188-190]. Active 
caspase-8 and -10 can cleave and activate the executioner caspases-3, -6, and -7. 
However, caspase-8 may also cleave Bid to generate a truncated form (tBid), which 
in turn will cause the release of mitochondrial cytochrome c into the cytosol [171, 
172, 191]. This describes two types of cells: type I and type II cells. For type I cells, 
death-induction relies solely on the extrinsic pathway and does not involve the 
mitochondria, whereas the intrinsic pathway, where Bid is an intermediate, is 
involved in type II cells [192]. 

In addition to death receptors mediating apoptosis, there are a number of decoy 
receptors which compete with the death receptors for binding of the ligand. They 
are not structurally capable of transmitting the signal, which is why ligand binding 
to decoy receptors results in a decreased activation of pro-apoptotic signaling [193]. 
There are several different decoy receptors belonging to the TNFR family. Decoy 
receptor 1 (DcR1) and DcR2, which bind TRAIL ligand, have both been found to 
be expressed in multiple normal tissues to a greater extent than in cancer cell lines 
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[194]. There are different reports of whether or not they are involved in TRAIL 
resistance [195-199]. DcR3, to which FasL binds, is a secreted decoy receptor 
whose gene was in one study reported to be amplified in at least half of the primary 
lung and colon tumors studied [200]. 

TNFR signaling pathways 
Beside activation of the extrinsic pathway, death receptors can induce several other 
signaling pathways. Signaling through the TNF receptors TNFR1 and TNFR2 is 
initiated upon binding of its ligand TNF-α, which initiates a trimerization of the 
receptors [201, 202]. The two receptors differ from one another since TNFR2 does 
not harbor a death domain (DD) and is therefore unable to transmit apoptotic 
signaling. However, it can stimulate activation of the nuclear factor-κB (NF-κB) 
signaling pathway [203, 204], and activate c-Jun N-terminal kinase (JNK) [205]. 
TNFR1 contains a DD and can thereby trigger apoptosis but most often it activates 
the NF-κB signaling pathway [206, 207]. Following ligand binding, the adaptor 
molecule TNFR-associated death domain protein (TRADD) and receptor-
interacting protein kinase 1 (RIP1/RIPK1) can bind to the DD of the receptor 
(Figure 2) [206-208]. This is followed by association of TNFR-associated factor 2 
(TRAF2) together with the E3 ligases of the IAP family, cellular IAP1 (cIAP1) and 
cIAP2 [209]. cIAP1/2 have the potential to polyubiquitinate RIP1, via K63-linked 
ubiquitin chains [210], to enable a binding site for another E3 ligase, namely linear 
ubiquitin chain assembly complex (LUBAC), consisting of HOIP, HOIL-1, and 
SHARPIN [211]. LUBAC can further modify RIP1 by forming M1-linked ubiquitin 
chains which enables recruitment of transforming growth factor-β-activated kinase 
1 (TAK1) and the IκB kinase (IKK) complex, consisting of NF-κB essential 
modulator (NEMO), inhibitor of NF-κB kinase subunit α (IKKα), and IKKβ, to 
RIP1 [206, 212, 213]. This will lead to activation of the canonical NF-κB pathway 
since TAK1 can phosphorylate the IKK complex [206, 214]. The complex formed, 
consisting of TRADD, RIP1, TRAF2, cIAP1/2, and LUBAC, is termed Complex I 
and stimulates the NF-κB signaling pathway [206]. 
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Figure 2. TNFR1/2 signaling pathway 
TNF-α binds to its receptor TNFR1/2, and thereafter TRADD and RIP1 are recruited, which is followed by association 
of TRAF2 and cIAP1/2. Through their E3 ligase activity, cIAP1/2 can ubiquitinate RIP1, which results in binding of 
LUBAC, consisting of HOIP, HOIL, and SHARPIN. LUBAC can then add M1-linked ubiquitinin chains to RIP1, causing 
recruitment of TAK1 and the IKK complex. Subsequently, TAK1 phosphorylates the IKK complex, leading to activation 
of the NF-κB pathway. The complex formed is called Complex I. The soluble Complex IIa cannot be formed until 
stimulation of the anti-apoptotic NF-κB signaling ceases. Then TRADD, RIP1, FADD, and procaspase-8 can associate 
and induce apoptosis. Complex IIb (or the ripoptosome) can be formed following depletion of IAPs (XIAP and cIAP1/2) 
or inhibition of c-FLIP. It consists of RIP1, FADD, procaspase-8/-10, and can stimulate RIP1-dependent apoptosis. 

 

As long as Complex I is stimulated and continues to induce anti-apoptotic NF-κB 
signaling, the soluble cytoplasmic variants of Complex I, called Complex IIa/b, are 
blocked. However, following removal of K63- and M1-polyubiquitin chains of 
RIP1 by CYLD, which is induced by NF-κB, the NF-κB signaling is inhibited. This 
results in dissociation of TRADD and RIP1 and subsequent formation of Complex 
IIa [215]. Complex IIa, consisting of TRADD, RIP1, Fas associated via death 
domain (FADD), and procaspase-8, can trigger apoptosis [216, 217]. Complex IIb 
(also known as the ripoptosome) is composed by RIP1, FADD, procaspase-8/-10, 
and is formed upon depletion of XIAP and cIAP1/2, following genotoxic stress, 
after treatment with Smac mimetics, which leads to either reduced or abolished K63-
linked ubiquitination of RIP1 [215], or when c-FLIP is inhibited. Signaling through 
Complex IIb can stimulate RIP1-dependent apoptosis [218-220]. 

TRAIL signaling pathways 
There are two TRAIL receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5), and both 
harbors DDs, making them able to induce apoptosis upon binding of their ligand 
TRAIL [221]. DR4 and DR5 are expressed in most human tissues [194, 222]. 
However, their expression can vary within a tissue and between cell types which 
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may affect through which receptor the apoptotic signaling is transmitted following 
ligand binding [223]. Upon homotrimeric ligand binding, the DR4/5 forms 
homotrimers (Figure 3) [224]. This results in recruitment of the death-inducing 
signaling complex (DISC) components FADD and procaspase-8, which can cause 
activation of caspase-8 and -10. This is followed by their subsequent activation of 
the executioner caspases, leading to apoptosis [223]. In addition to cell death, the 
NF-κB pathway has been shown to be induced upon ligation of DR4 and DR5 and 
subsequent recruitment of TRADD and FADD [225]. Furthermore, when 
investigating treatment with TRAIL in combination with Smac mimetics, a 
cytosolic complex consisting of RIP1, FADD, and procaspase-8 was identified, 
which can initiate the apoptotic cascade [226-228]. 

 

 

Figure 3. TRAIL signaling in the extrinsic and intrinsic apoptotic pathways 
Binding of TRAIL to its receptor TRAIL-R1 (DR4) or TRAIL-R2 (DR5) results in association and formation of DISC, 
consisting of FADD, caspase-8, and -10. DISC can induce apoptosis through the extrinsic pathway by cleaving and 
activating the executioner caspases-3, -6, and -7. The intrinsic pathway is initiated upon permeabilization of the 
mitochondria. Here Bax and Bak causes the release of cytochrome c and Smac into the cytosol. Cytochrome c will bind 
to Apaf-1 and procaspase-9, inducing activation of the latter. This results in the formation of the apoptosome, which can 
cleave and activate the executioner caspases. Smac acts by inhibiting XIAP and can thereby facilitate induction of 
apoptosis. Caspase-8 can trigger the intrinsic pathway in some cells by cleaving Bid to tBid, which then may activate 
Bax and Bak. This is followed by the translocation of Bax/Bak to the mitochondrial membrane which they can 
permeabilize. 
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In addition to apoptosis, TRAIL signaling can induce production of inflammatory 
cytokines and chemokines, which can be mediated via either NF-κB [229], or FADD 
and caspase-8 [230, 231]. Together with caspase-8, FADD constitutes a cytosolic 
complex, called the FADDosome, in which caspase-8 is described to act as a 
scaffold protein, without utilizing any enzymatic activity. TRAIL has also been 
found to induce expression of interferon-β (IFN-β) and IFN-regulated genes [232]. 

Due to the ability of TRAIL to preferentially stimulate apoptosis in cancer cells over 
normal cells [233], it is a good candidate for anti-cancer therapy. This is thought to 
be a result of a more abundant expression of DcR1 and DcR2 in normal tissues than 
in tumor tissues [181, 194, 199]. However, some tumor types have been found to be 
resistant to TRAIL treatment, which could be mediated via different mechanisms. 
For example, insufficient transport of the receptors to the cell surface from the 
endoplasmic reticulum following their translation was reported to cause TRAIL-
resistance in colon cancer cell lines [234]. In breast cancer cell lines, endocytosis of 
DR4 and DR5 leading to decreased surface expression has been shown as a 
desensitizing mechanism [235]. Mutations or deletions resulting in loss of both 
copies of the TRAIL receptors in some cancer cases, e.g. breast cancer and non-
small cell lung cancer, could also result in TRAIL resistance [236]. In addition to 
effects at the receptor level, enhanced expression of the caspase-8 inhibitor c-FLIP, 
as well as inactivation of caspase-8, have been suggested to cause TRAIL resistance 
in cancer [237]. 

Caspases 
The conserved enzyme family of caspases (cysteinyl aspartate proteinases) have 
well-defined roles in apoptosis and inflammation [238]. As the name implies, 
caspases are cysteine proteases which cleave their substrates at a site following an 
aspartate residue [239]. There are ten different caspases in humans which are 
categorized into initiator (caspase-2, -8, -9, and -10), executioner (caspase-3, -6, and 
-7), and inflammatory caspases (caspase-1, -4, and -5) [240]. In their inactive state, 
caspases exist as caspase zymogens (also called procaspases), and possess the 
ability to activate other procaspases once activated. However, some procaspases, 
such as the initiator caspases-8, -10, and -9, are also able to aggregate and 
autoactivate, [241-243]. Procaspases undergo proteolytic cleavage where a 
prodomain is removed and two subunits, one large and one small, are generated, 
which in turn comprise the active enzyme (Figure 4) [244, 245]. In addition to a 
catalytic domain, the initiator and inflammatory caspases also consist of protein-
protein interaction domains: either a caspase activation and recruitment domain 
(CARD) or two death effector domain (DED), which are important for their 
activation as they provide for interaction with adaptor molecules [246]. 
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Figure 4. Structure of procaspases and active caspases 
The initiator procaspases (2, 8, 9, and 10) and the inflammatory procaspases (1, 4, and 5) contain either a CARD or 
two DED prodomains. Upon activation the prodomains, as well as the linker regions between the domains, are 
cleaved. This causes the large and small units to dimerize before they associate with another dimer, resulting in an 
active caspase. 

 

The inflammatory caspases can activate cytokines in response to infection [247, 
248] and mediate inflammatory cell death through pyroptosis, an infection-initiated 
cell death associated with water influx, cell swelling, and release of 
proinflammatory contents [249]. The initiator and executioner caspases have 
important roles in the apoptotic cascade [239], but some of them also possess the 
ability to induce other types of cell death than apoptosis. For example caspase-3 can 
induce cell death through pyroptosis via ROCK1 [250]. In addition to being 
mediators of different cell death signaling pathways, caspases have been shown to 
be involved in neural development and disease [251], cellular proliferation and 
differentiation [252], cytoskeleton rearrangement [253], erythroid differentiation 
[254], T cell development [255, 256], and spermatogenesis [257]. Especially 
caspase-8 is involved in several different cellular mechanisms. It can inhibit 
necroptosis, a controlled and inflammatory form of cell death, through cleavage of 
RIP1 and RIP3 [258], regulate proinflammatory cytokine release in response to 
activation of the inflammasome [259] and stimulation of toll-like receptor 3 (TLR3) 
and TLR4 [260], and act as a scaffold in inflammasome activation in response to 
viral RNA [261]. 

IAPs and Smac mimetics 
The IAPs (inhibitor of apoptosis proteins) can regulate both the extrinsic and the 
intrinsic apoptotic pathways [262]. There are eight different IAPs in humans: XIAP, 
cIAP1, cIAP2, ILP-2, ML-IAP, NAIP, survivin, and apollon. They all contain at 
least one baculovirus IAP repeat (BIR) domain [263]. 
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XIAP inhibits the activation of caspase-3, -7, and -9, an effect that is mediated by 
its three BIR domains (BIR1-3) [177, 264]. The linker region between BIR1 and 
BIR2 binds to and inhibits active caspase-3 and -7 [265-268], whereas binding of 
BIR3 prevents activation of caspase-9 by inhibiting its homodimerization [269, 
270]. In addition, XIAP can inhibit the activation of the ripoptosome [218]. 

cIAP1/2, which possess E3 ubiquitin ligase activity [271], are important regulators 
of the NF-κB signaling pathways. In the canonical NF-κB pathway, cIAP1/2 act as 
positive regulators by promoting ubiquitination of RIP1, which subsequently results 
in activation of the pathway [210, 272-274]. However, cIAP1/2 blocks the non-
canonical NF-κB pathway by mediating a degradative ubiquitination of NF-κB-
inducing kinase (NIK), a protein kinase that initiates the non-canonical pathway 
[272, 275]. There are also indications that activation of JNK and p38 MAPK 
signaling pathways can be dependent on the activity of cIAP1 and cIAP2 [276]. 
Furthermore, cIAP1 and cIAP2 have been shown to inhibit the activation of the 
ripoptosome [218] and block Smac from inhibiting XIAP [277]. 

ILP-2 can inhibit apoptosis initiated through the intrinsic pathway as it binds to and 
inhibit caspase-9 [278], ML-IAP can inhibit Smac’s ability to block XIAP [279], 
and NAIP inhibits the executioner caspases [280]. The role of survivin is somewhat 
wider as it, in addition to caspase-9 inhibition [281], also has a role in in cell division 
[282]. Apollon, finally, inhibits Smac-induced apoptosis by ubiquitinating Smac 
and caspase-9 for proteasomal degradation [283]. 

Many IAPs are overexpressed in several cancer types and they have been associated 
with tumor progression, poor prognosis, and decreased treatment efficacy [284-
287]. This is exemplified by reduced sensitivity to chemotherapy in different types 
of lung and gastric cancer cells, and to TRAIL treatment in breast cancer cells and 
pancreatic carcinoma cells [288-293]. Nuclear expression of XIAP was found to be 
associated with poorer survival in breast cancer [294]. Higher expression of XIAP 
has also been correlated with a higher tumor grade [295], as well as larger tumor 
size and impaired overall survival [296], whereas downregulation of XIAP in triple 
negative and inflammatory breast cancer cells was associated with increased 
TRAIL-sensitivity [297-300]. One study has found that patients with basal-like 
breast cancer had higher levels of cytoplasmic XIAP, which correlated with 
increased risk of relapse [301]. The same study also showed that breast cancer 
tissues had higher expression of cytoplasmic XIAP than normal tissues. Smac has 
been shown to have a negative correlation with breast cancer tumor size [302]. Due 
to the mechanisms of action of the IAPs, they are potential targets for cancer 
therapies. 

Smac mimetics are small molecule peptide-like mimetics of Smac and were 
developed to mimic the functions of Smac, which is to inhibit some of the IAPs, 
[285, 303]. Specifically, Smac mimetics mimic the tetrapeptide of the N-terminus, 
which binds to the BIR domains of cIAP1/2 and XIAP [304, 305]. Eight different 
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Smac mimetics have so far been tested in humans [285]. Some Smac mimetics are 
bivalent consisting of two monovalent units, which are connected via a chemical 
linker [306]. Smac mimetics can potentiate apoptosis both in vitro and in vivo [288, 
307-310]. LCL161, which was used in the present investigation, is a monovalent 
Smac mimetic. It was developed by Novartis Pharmaceuticals as a structural 
analogue of another Smac mimetic (LBW242) and have progressed into clinical 
trials for myeloma and some solid tumors including, breast, lung, and colon [311-
316]. The mechanism of action of LCL161 is to inhibit XIAP [317] and to bind to 
the BIR3 domains of cIAP1 and cIAP2, thereby causing their autoubiquitination and 
proteasomal degradation [318]. The result of this is activation of the non-canonical 
NF-κB pathway, which in some cells is followed by induction of TNF-α, an NF-κB 
target gene [318, 319]. TNF-α can act in an autocrine manner and activate NF-κB 
as well as lead to caspase-8-dependent cell death in many tumor cells. By inhibiting 
TNF-α, caspase-8, or NF-κB-activated transcription it is possible to prevent 
apoptosis mediated by Smac mimetics [275, 320, 321]. However, it is not always 
that induction of TNF-α is sufficient to induce cell death. Chronic lymphocytic 
leukemia (CLL) cells are resistant to Smac mimetics, despite production of TNF-α, 
which was shown to be due to an inability to form the ripoptosome [322]. Generally, 
the efficacy of Smac mimetics as a single agent has not been especially promising 
and they are therefore more commonly examined in the setting of a combination 
treatment [285, 323-325]. Smac mimetics in combination with TRAIL receptor 
agonists have been extensively studied in several cancer types, including breast-, 
bladder-, and pancreas cancer, glioblastoma, and multiple myeloma, where they 
were found to potentiate TRAIL-induced apoptosis [307, 326-329]. 
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NF-κB signaling pathways 

Overview 
There are five inducible transcription factors belonging to the nuclear factor-κB 
(NF-κB) family, called NF-κB/Rel proteins. They can all form either homo- or 
heterodimers. These transcription factors take part in either the canonical or the non-
canonical NF-κB pathway, where they bind to promoters of their target genes. This 
induces gene transcription and synthesis of proteins that are involved in several 
different processes, such as inflammatory response, cell proliferation, and 
differentiation [330]. 

Canonical NF-κB signaling pathway 
Induction of the canonical NF-κB pathway may begin following signaling via 
different receptors, such as the TNFR, TLR, T cell receptor (TCR), and interleukin-
1 receptor (IL-1R) [331]. Depending on the receptor, different adaptor molecules 
bind following ligation. All receptors have in common that they activate the IKK 
complex, via activation of TAK1 [332]. 

Upon TNFR1 stimulation, TRADD, RIP1, cIAP1/2, and LUBAC are recruited to 
the receptor. This is described in more detail under “TNFR signaling pathway”. 
LUBAC ubiquitinates RIP1, which facilitates recruitment of TAK1, resulting in the 
subsequent recruitment of the IKK complex (Figure 5) [206, 212, 213]. The IKK 
complex consists of inhibitor of NF-κB kinase subunit α (IKKα), IKKβ, and IKKγ 
(also called NEMO), of which the two former are kinases whereas the latter is a 
nonenzymatic regulatory component [333]. Following its recruitment to TAK1 the 
IKK complex is either trans-autophosphorylated or phosphorylated by TAK1 [334, 
335]. The IKK complex can thereafter mediate phosphorylation of the inhibitory 
IκBα, resulting in its subsequent polyubiquitination and proteasomal degradation 
[336]. The heterodimer RelA and p50, which is produced from its precursor p105 
[337], will thereafter be free to translocate to the nucleus and activate transcription 
of NF-κB target genes [338-343]. 
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Figure 5. Canonical and non-canonical NF-κB pathway 
The canonical NF-κB pathway is initiated upon ligand binding to its receptor, for example TFN-α to TNFR1 as shown in 
this figure. This leads to recruitment of TRADD, RIP1 and TRAF2, to which cIAP1/2 associates and thereafter 
ubiquitinate RIP1. This enables recruitment of LUBAC leading to further ubiquitination of RIP1, which thereby can bind 
TAK1 and the IKK complex, consisting of NEMO, IKKα, and IKKβ. This is followed by phosphorylation of the IKK 
complex by either TAK1 or through trans-autophosphorylation. Subsequently, the IKK complex can phosphorylate IκBα, 
which leads to its proteasomal degradation. RelA and p50 thus dissociates from IκBα and can translocate to the nucleus 
and act as transcription factors. In unstimulated cells, the non-canonical NF-κB is inactive as NIK is constantly degraded 
by the TRAF3-TRAF2-cIAP1/2 complex. However, upon stimulation of a receptor, for example TNFR1, IL-1R, or 
BAFFR, TRAF2 and TRAF3 assemble with the receptor, to which cIAP1/2 are recruited. They will in turn ubiquitinate 
TRAF3, causing its proteasomal degradation, after which NIK can accumulate and phosphorylate IKKα. This will lead 
to processing of p100 into p52, which will act as a transcription factor together with RelB. 

 

Non-canonical NF-κB signaling pathway 
The non-canonical NF-κB pathway is generally initiated by NF-κB-inducing kinase 
(NIK). In unstimulated cells, NIK is constantly degraded and the non-canonical NF-
κB pathway is therefore not active (Figure 5). Newly synthesized NIK is rapidly 
bound to TRAF3 [344], which in turn binds to TRAF2. Together, TRAF2, TRAF3, 
and NIK form a complex with cIAP1/2, where TRAF2 binds to cIAP1/2 [345]. NIK 
will then be ubiquitinated by cIAP1/2, causing its proteasomal degradation [275, 
345]. The importance of cIAP1/2 in this context is supported by the finding that 
treatment with Smac mimetics, which induce cIAP1/2 degradation, leads to NIK 
accumulation [275]. The role of TRAF3 in NIK degradation has been shown using 
TRAF3-deficient cells in which there is an accumulation of NIK [346]. 
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Signaling through the non-canonical NF-κB pathway can be induced upon binding 
of TNF-α, IL-1, lipopolysaccharide (LPS), or double-stranded RNA (dsRNA), to 
their cognate receptors TNFR, IL-1R, TLR, BAFFR (B cell-activating factor 
receptor), LTβR (lymphotoxin β receptor), or CD40 (cluster of differentiation 40) 
[347-351]. This results in recruitment of the NIK-degrading complex consisting of 
TRAF2, TRAF3 and cIAP1/2 to the receptor, which is followed by ubiquitination 
and subsequent degradation of TRAF3 by cIAP1/2 [345]. This causes accumulation 
of NIK which phosphorylates and activates IKKα [344, 352, 353]. In contrast to the 
canonical NF-κB pathway, where IKKα, IKKβ, and IKKγ (NEMO) are necessary, 
the non-canonical NF-κB pathway is solely dependent on phosphorylation of IKKα 
and its subsequent phosphorylation of p100, leading to its processing into p52 [348, 
352, 354, 355]. Together with RelB, p52 forms a heterodimer, which translocates to 
the nucleus and acts as a transcription factor [356, 357]. 

There are two main hypotheses explaining how activation of the non-canonical NF-
κB is controlled. One theory is that only sub-optimal activity of cIAP1/2 is required 
to ubiquitinate NIK, causing its degradation, whereas the degradation of TRAF3, 
induced following receptor stimulation, requires stronger activities of cIAP1/2 [358, 
359]. The other hypothesis is that TRAF3 degradation involves receptor 
internalization through the lysosomal pathway [359, 360]. 

There is an upstream crosstalk between the canonical and non-canonical NF-κB 
pathways, which is mediated by RIP1. Here, RIP1 suppresses TNFR1-mediated 
activation of the non-canonical NF-κB [351, 361], as it inhibits degradation of 
TRAF2 and cIAP1, in a kinase-independent manner [361]. On the contrary, upon 
depletion of RIP1, TRAF2 and cIAP1 are degraded, leading to activation of the non-
canonical NF-κB pathway [361]. Another type of crosstalk between the two 
pathways involves NIK, which was shown to have an important role in activation 
of the canonical NF-κB signaling following CD40 and CD27 stimulation [362]. 
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Interferons 

Overview 
Interferons were first described by Isaacs and Lindenmann in 1957 as they studied 
virus interference [363]. They discovered the release of a new factor with the ability 
to protect against viral infection, which they named interferon (IFN). In addition to 
protect against infections, IFNs have also been shown to be associated with 
autoimmune diseases, for example systemic lupus erythematosus (SLE), systemic 
sclerosis, and some cases of rheumatoid arthritis [364, 365]. Since their discovery, 
several IFNs have been identified and they are divided into three groups: type I, II, 
and III IFNs. 

Type I interferons 
The type I IFNs include IFN-α, which in humans exists as 13 homologous subtypes 
[366], IFN-β, IFN-δ, IFN-ε, IFN-ζ, IFN-κ, IFN-ν, IFN-τ, and IFN-ω. However, only 
IFN-α, IFN-β, IFN-ε, IFN-κ, and IFN-ω exist in humans [367]. Their genes are 
located on chromosome 9 [368]. Type I IFNs are produced upon viral and some 
bacterial infections where they have numerous effects on anti-pathogen immunity 
via their induction of IFN-stimulated genes (ISGs), which restrict pathogenic 
spread. In addition, type I IFNs can stimulate production of type II IFN by affecting 
macrophages [369]. However, they are not always protective against infections. A 
type I IFN response can result in impaired bacterial clearance for some infections 
[370, 371]. In addition to their role in infections, type I IFNs have been shown to 
induce cellular damage, inflammation, apoptosis, autophagy, migration and 
differentiation, and inhibit angiogenesis and proliferation [372]. 

Interferon-α 
IFN-α is produced by plasmacytoid dendritic cells (pDCs) and leukocytes [373]. 
Depending on the IFN-α subtype, its binding can result in different signaling 
outcomes, which is thought to be due to differences in receptor-binding affinities 
[374]. However, one study showed that there are differences in IFN-α/β receptor 



43 

(IFNAR) expression, and that abundance of IFNAR on specific target cells can 
compensate for a weaker affinity [375]. 

Interferon-β 
IFN-β is primarily produced by DCs, epithelial cells, and fibroblasts [373, 376], and 
is induced in response to viral infection [373]. IFN-β has been shown to induce an 
anti-proliferative response in some cancer types, such as glioma, retinoblastoma, 
and hepatocellular carcinoma [377-380]. Therefore, IFN-β can potentially be used 
as anti-cancer treatment [381, 382]. 

Type II interferons 
There is only one type II IFN, namely IFN-γ, and it is structurally different from the 
type I IFNs [383, 384]. The active form of IFN-γ is a dimer [385], which can be 
glycosylated. Glycosylation causes its existence in several different isoforms, but it 
is not necessary for its dimerization [386, 387]. IFN-γ is produced by immune cells, 
such as T cells and natural killer (NK) cells, but its receptor is expressed on multiple 
cell types and therefore it has a broad effect [388]. Like the other IFN types, IFN-γ 
is an important factor of the immune system in the response to infections. More 
specifically, it mediates activation of macrophages and affects T cell differentiation, 
which ultimately contribute to clearance of pathogens that reside intracellularly 
[388-390]. 

Type III interferons 
This is the most recently identified group of IFNs and comprises of IFN-λ1 (IL-29), 
IFN-λ2 (IL-28A), IFN-λ3 (IL-28B), and IFN-λ4 [391-394]. Their functions are similar 
to the type I IFNs [367, 395], but they have a limited activity since their receptors more 
or less are restricted to the surface of mucosal epithelial cells [396, 397]. 

Interferons and their receptors 
Hundreds of genes are induced upon IFN signaling, some of which are regulated by 
specific IFNs and others by both type I and type II IFNs. For example, the expression 
of IFN-induced transmembrane protein 1 (IFITM1) and signal transducer and 
activator of transcription 1 (STAT1) can be induced by all IFNs, but OAS1 (2´-5´-
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oligoadenylate synthase 1) is induced by IFN-α and –β and not by IFN-γ. On the other 
hand, IFN-γ is the only IFN that can induce IRF1 (IFN-regulatory factor 1) [398]. 

To enable induction of IFN-regulated genes, the IFNs must bind to their specific 
transmembrane receptors on the cell surface [399]. 

• The type I IFN receptor is composed of two components, IFNAR1 and 
IFNAR2, which together can recognize all type I IFNs [400]. It is assembled 
1:1:1 (IFN-α/β/IFNAR1/IFNAR2) [401]. Since the type I IFN receptor does 
not harbor any intrinsic kinase activity it relies on association with Janus 
kinases. IFNAR1 is constitutively associated with Tyrosine kinase 2 
(TYK2) and IFNAR2 with Janus kinase 1 (JAK1) [402, 403]. Following 
ligand binding TYK2 and JAK1 form a signaling unit, which activates 
TYK2 and JAK1 and in turn causes them to phosphorylate IFNAR1 and 
IFNAR2 [404]. 

• The type II IFN receptor is composed of IFN-gamma receptor 1 (IFNGR1) 
and IFNGR2 and the ligand-receptor complex assembles in a 1:2:2 IFN-
γ/IFNGR1/IFNGR2 relation [401]. Similar to IFNAR1 and IFNAR2, 
IFNGR1 and IFNGR2 do not possess any intrinsic kinase activity, but they 
contain binding motifs for JAK1 and JAK2, which phosphorylate the 
receptor upon its ligation [390, 405, 406]. 

• The type III IFN receptor is composed of IFN lambda receptor 1 (IFNLR1 
or IL28RA) and interleukin-10 receptor subunit beta (IL-10RB or IL10R2) 
[391], and assembles in a similar way as the type I IFN receptors, namely 
1:1:1 [401]. Ligation results in activation of JAK1 and TYK2, both of which 
are associated with the receptor complex [407]. 

Upon binding of an IFN-ligand to its cognate receptor, the receptor-associated Janus 
kinases will become activated through trans- and autophosphorylation [390, 408] and 
subsequently phosphorylate the receptor tyrosine kinase residues of the IFN receptor. 
This allows for recruitment of STAT proteins, via their src homology 2 (SH2) 
domains. In unstimulated cells, STAT proteins are present in the cytosol as inactive 
monomers [409, 410]. Type I IFN signaling can lead to phosphorylation of several 
STAT proteins, such as STAT1, STAT2, STAT3, STAT4, STAT5 and STAT6 [411, 
412]. However, type II IFN signaling only involves STAT1 and STAT3, with STAT1 
binding with higher affinity to the receptor. This results in a stronger and more 
persistent phosphorylation of STAT1 as compared to STAT3, and the STAT1 
homodimer is therefore the most common STAT dimer in type II IFN signaling [413, 
414]. In type III IFN signaling, STAT1 and STAT2 are involved [412]. 

Once bound to the receptor, STATs are phosphorylated, which enables their 
dissociation from the receptor as either homo- or heterodimers [408]. Phosphorylation 
occurs at Tyr701 of STAT1 [415]; at Tyr690 of STAT2 [416]; and at Tyr705 of 
STAT3 [417]. In addition to tyrosine phosphorylation, STAT1 and STAT3 are also 
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phosphorylated at Ser727 following IFN signaling, which is essential for full 
transcriptional activation but not required for nuclear translocation and binding to ISG 
promoters [418-420]. STAT2, on the other hand, can be phosphorylated at Ser287, 
which leads to negative regulation of type I IFN signaling [421]. 

 

 

Figure 6. Type I IFN signaling 
Type I IFN-α/β binds to its receptor, consisting of IFNAR1 and IFNAR2, to which TYK2 and JAK1 are bound. Upon 
ligation, JAK1 and TYK2 become phosphorylated and can phosphorylate the receptor subunits. This allows binding of 
STAT1 and STAT2, through their SH2 domains, resulting in their phosphorylation and subsequent dissociation from the 
receptor. Following their dissociation, they form a heterodimer which binds IRF9. Together they form the IFN-stimulated 
gene factor 3 (ISGF3), a transcription factor which binds to IFN-stimulated response elements (ISREs) to induce 
transcription of IFN-stimulated genes (ISGs) and type I IFNs. 

 

In response to type I IFN signaling (Figure 6), STAT1 and STAT2 form a 
heterodimer which associates with IFN regulating factor 9 (IRF9). Together they 
form the transcription factor IFN-stimulated gene factor 3 (ISGF3) [408, 422, 423]. 
ISGF3 translocates to the nucleus where it interacts with co-activators which 
regulate transcription, such as p300 and CBP (cAMP-response element binding 
protein (CREB)-binding protein), [424, 425]. This complex binds to IFN-stimulated 
response elements (ISREs) of ISG promoter regions [408, 426]. In addition to 
inducing transcription of ISGs, this can also results in induction of IFN-β, which 
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can act through an auto- or paracrine loop to further enhance IFN-β signaling and 
synthesis [427-429]. 

Following type II IFN ligation, phosphorylated STAT1 is able to form a homodimer, 
which can bind to gamma-activated sequences (GAS) element in the promoter 
region of certain ISGs [430]. Stimulation of the type III IFN receptor activates the 
same JAK-STAT signaling pathway as mediated by type I IFN signaling [384, 431, 
432]. Hence, STAT1 has a central role in the response to type I, II, and III IFN [433-
435]. The essential role of STAT1 is exemplified by the finding that STAT1-
deficient mice are unable to respond to type I and type II IFN signaling and are more 
sensitive to infections than wild-type mice [434]. JAK-STAT signaling declines 
upon dephosphorylation, nuclear export, or suppressor of cytokine signaling 
(SOCS) feedback inhibition [436-438]. 

Induction of type I interferon signaling 
Type I IFNs are induced upon recognition of different pathogen-associated 
molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs), 
such as viral or bacterial double/single-stranded (ds/ss) RNA or DNA, cytosolic 
genomic DNA (cgDNA), or lipopolysaccharide (LPS) (Table 2). The different 
PAMPs/DAMPs associate with pattern recognition receptors (PRRs), in particular 
with members of the toll-like receptor (TLR) family. TLR4 is located on the cell 
surface, where it recognizes LPS [439, 440]. TLR3, -7, and -9 are localized on the 
cell surface and on the endosomal membrane and are activated upon ligation with 
viral dsRNA, ssRNA, and unmethylated cytosine-phosphate-guanine (CpG) DNA 
[439, 441, 442]. TLR8 is only expressed on the endosomal membrane and 
recognizes ssRNA [439]. Stimulation of these receptors ultimately results in 
activation of the protein kinases TANK-binding kinase 1 (TBK1) and IKKε (Figure 
7) [443-448]. 

Following LPS stimulation of TLR4 the receptor oligomerizes, which is enabled by 
its association with MDA-2 [449]. Thereafter, translocating chain-associated 
membrane protein (TRAM) and TIR-domain-containing adaptor-inducing IFN-β 
(TRIF) bind to the receptor [450, 451]. NAK-associated protein 1 (NAP1) is 
recruited to TRAM and TRIF and mediates activation of TBK1 [452].  

Activated TLR3, which in most cases is located in endosomes [453] but sometimes 
on the cell surface of epithelial cells [454], recruits TRIF, NAP1, TBK1, and IKKε 
[444, 447, 451, 452], resulting in activation of TBK1 and IKKε. Both dsRNA and 
Poly(I:C), a structurally similar analogue to dsRNA, can stimulate TLR3 [455, 456]. 

TLR-7, -8, and -9-mediated IFN-α/β-induction is, in contrast to TLR-3 and -4, 
dependent on the adaptor MyD88 [457], which associates with TRAF6, interleukin-
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1 receptor associated kinase 1 (IRAK1)/IRAK4, TRAF3, TBK1 and IKKε to cause 
activation of TBK1 and IKKε [458, 459]. 

 

 

Figure 7. Induction of type I IFN following recognition of viral and cytosolic nucleic acids 
Transcription of type I IFNs can be achieved through several different pathways responding to pathogenic RNA/DNA, 
circulating DNA and nucleic acids. Induction of these pathways begins upon ligand binding to a receptor in the cellular 
membrane (TLR4), in the endosomal membrane (TLR3, TLR7/8, and TLR9), or in the cytoplasm (NOD1, NOD2, MDA-
5, RIG-I, DAI, and cGAS). This is followed by recruitment and association of different adaptor proteins and kinases, 
ultimately resulting in phosphorylation of TBK1/IKKε, which activate IRF3 and/or IRF7, causing their homo- or 
heterodimerization. They will then bind to the IFN promoter and induce transcription of type I IFNs. 

 

In addition to TLRs, cytoplasmic receptors can mediate type I IFN-induction. 
Foreign or circulating DNA, RNA, and nucleic acids, which normally should not be 
found in the cytosol, can be recognized and lead to induction of type I IFNs. 
Cytosolic RNA binds to either retinoic acid-inducible gene I (RIG-I) or melanoma 
differentiation-associated protein 5 (MDA5), which in turn can associate with 
MAVS (also known as IPS-1 and CARDIF), an adaptor molecule located on the 
mitochondrial membrane, through its N-terminal caspase activation and recruitment 
domain (CARD) [460-463]. Thereafter, TBK1 and IKKε are activated following 
association of TRIF, TRAF3, TBK1, and IKKε to MAVS [464-466]. 

Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and 
NOD2 recognize nucleotides in the cytoplasm. Ligation of NOD2 leads to its 
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association with MAVS and subsequent association with TBK1 and IKKε [467, 
468]. Activation of NOD1 leads to its association with RIPK2/RICK through 
CARD-CARD interaction. Activated RIPK2/RICK recruits TRAF3, which leads to 
TBK1 and IKKε phosphorylation [467, 469]. 

Cytosolic genomic DNA (cgDNA) can be released from tumors or following 
different stress conditions, such as UV radiation, exposure to genotoxic agents, and 
radiotherapy [470-472]. The cgDNA motifs are recognized by DNA-dependent 
activator of IRFs (DAI) and cyclic GMP-AMP synthase (cGAS). cGAS is 
responsible for catalyzing the formation of cGAMP, which is recognized by STING 
(stimulator of IFN genes) [473]. STING, a scaffolding protein and an adaptor, is 
located in the endoplasmic reticulum and is translocated to the Golgi apparatus upon 
recognition of cytosolic DNA. There, it can recruit and activate TBK1 [474, 475]. 

Table 2. Location of receptors involved in type I IFN-induction following recognition of PAMPs or DAMPs 

 

Once activated, TBK1 and IKKε phosphorylate and activate the homologous IRF3 
and -7 [443, 445, 446, 476]. IRF3 is ubiquitously expressed, whereas IRF7 is largely 
restricted to lymphoid cell types [477, 478]. Phosphorylation of IRF3 on serine 386 
is critical for its activation [479] and results in its dimerization and subsequent 
removal of its autoinhibitory structure. This allows its translocation to the nucleus 
and subsequent association with CBP/p300 [480-485]. Together with NF-κB (RelA 
and p50) and activation protein 1 (AP-1), a dimer of ATF-2 and c-Jun [486, 487], 
they bind to the promoter of IFNB1 (the gene encoding IFN-β) [488]. The IFNB1 
promoter is controlled by four positive regulatory domains (PRDs) I-IV, where the 
IRFs bind to PRD I and III, NF-κB binds to PRD II, and AP-1 to PRD IV [488-494]. 
Together with the high-mobility group protein (HMG-I(Y)) the former mentioned 
proteins form the enhanceosome [495, 496]. Formation of the enhanceosome is 
followed by binding of histone acetyltransferases (HATs), such as CBP and GCN5, 
which ultimately leads to induction of IFNB1 gene expression [488, 497]. In contrast 
to the IFNB1 promoter, the promoter of IFNA genes only contains PRD I and –III-
like elements (PRD-LEs) [498]. 

Receptor Location PAMP/DAMP recognition 
TLR3 Cell surface, endosomes dsRNA, poly(I:C) 
TLR4 Cell surface LPS 
TLR7 Cell surface, endosomes ssRNA, guanosine 
TLR8 Endosomes ssRNA 
TLR9 Cell surface, endosomes Unmethylated CpG DNA 
RIG-I Cytosol RNA 
MDA-5 Cytosol RNA 
DAI Cytosol DNA 
cGAS Cytosol DNA 
NOD1/NOD2 Cytosol Viral and bacterial nucleic acids 
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Additional roles of TBK1 and IKKε 
Although the IKK-related kinases (TBK1 and IKKε) today primarily are known to 
be essential for activation of IRF3 signaling [445], they were first identified as 
activators of NF-κB [499]. In this context, TBK1 and IKKε can phosphorylate the 
canonical IKK complex [500] and thereby cause IκB degradation [501]. IKKα/β 
have also been found to activate TBK1 and IKKε via phosphorylation [500]. 
Nevertheless, IKKε and TBK1 and the canonical IKKs (IKKα/β) were shown to be 
regulated by different pathways following stimulation of IL-1R, TLR3, and TLR4 
[500]. Another effect of TBK1 and IKKε is inhibition of cell death. One study 
demonstrated their recruitment to TNFR1 via TANK and NAP1, together with 
NEMO, following ubiquitination of RIP1 [502]. Here, TBK1 and IKKε act by 
phosphorylating RIP1, which leads to inhibition of cell death. In addition, TBK1 
has been found to protect embryonic hepatocytes from apoptosis [503]. 

Both TBK1 and IKKε have been identified as oncogenes in several malignancies, 
including breast cancer, where they are frequently overexpressed and show 
enhanced activity [504-506]. The protein expression of IKKε was found to be higher 
in the ER-positive MCF-7 breast cancer cell line, as compared to the normal breast 
cell line MCF-10A [505]. The same study also found that MCF-10A lack IKBKE 
copy-number gain, whereas MCF-7 cells express low levels of IKBKE copy-number 
gain. Due to their ability to phosphorylate the ER, TBK1 and IKKε might have a 
role in resistance to therapies targeting ER, such as tamoxifen [507, 508]. This, in 
combination with the fact that they are structurally similar [509], and overexpressed 
in various cancer types [504-506], could make them suitable targets for 
pharmacological inhibition. One such inhibitor, called BX795, was found to block 
downstream IRF3 activation whereas it did not inhibit phosphorylation of TBK1 
and IKKε [510]. This suggested that they are not activated through 
autophosphorylation. However, BX795 also targets PDK1, Aurora B, ERK8, and 
MARK3. Later, it was actually found that induction of autophosphorylation of 
TBK1 (at Ser172) and self-association are important for its activation [511], and 
that the activity of TBK1 is regulated through several posttranslational 
modifications such as phosphorylation, ubiquitination, modulation of kinase activity 
as well as prevention of formation of TBK1-containing complexes [512]. There are 
many similarities between IKKε and TBK1, for example their closely intertwined 
signaling properties. But they are expressed differently and exhibit differences in 
substrate specificity [445, 513]. Altogether, activation of TBK1 is important in the 
PRR-stimulated pathways where pathogenic or cyclic genome are recognized by its 
cognate receptors and results in induction of IFN-β. 
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TRAF3 
TRAF3 is a protein which has been found to be important in many different 
pathways resulting in IFN-β-induction. It is required for TRIF-dependent TLR-
mediated induction of IFN-β as it can interact with TRIF and TBK1. TRAF3 is also 
involved in MyD88-dependent TLR signaling since it is recruited via IRAK4 and 
IRAK1 and can, in turn, recruit TBK1 and IKKε [466, 514-516]. In addition, 
TRAF3 is recruited, either directly or indirectly, to cytoplasmic receptors, such as 
RIG-I, following their signaling [514]. However, TRAF3 may also act as a negative 
regulator of IFN production following activation of DNA pathways, as it suppresses 
NIK, which in turn is a positive regulator of the DNA pathway since it enhances 
STING signaling [517]. In the same study, NIK was found to be a negative regulator 
of RNA pathway. 

Interferon signaling and breast cancer 
In the late 80s it was found that treatment of breast tumor cells with low doses of 
type I IFNs induced expression of ER and made the cells, which were plated at a 
low density, more sensitive to tamoxifen [518-520]. This was later also confirmed 
in clinical studies, in which treatment with IFN increased ER expression [521-523]. 
However, the combination of IFN and tamoxifen reduced ER expression [522]. 
Estrogen signaling can also affect IFN signaling. For example, estrogen has been 
found to modulate CD4+ T-helper 1 (Th1) cells through enhancement of IFN-γ 
expression [524]. In addition, activation of the PR can repress ISG expression in 
ER-positive breast cancer cells. This is due to impaired association of STAT2, and 
IRF9 to the ISG promoters following PR recruitment to ISG enhancers [525-527]. 
These examples suggest that there is a complex interplay between IFN signaling and 
endocrine therapy. 

Since the 80s, additional studies on the effect of IFN signaling on breast cancer have 
been conducted. More recently, it was found that IFN signaling is associated with 
the aggressiveness of breast cancer. The association is dependent on the ER status 
of the breast tumor. ER-positive breast cancer, which have acquired resistance to 
different treatments, show an enhanced expression of ISGs and IFN signaling. For 
example, increased ISG expression is associated with radiotherapy- and hormonal 
therapy resistance [528, 529], as well as with resistance to CDK4/6 inhibitors [530]. 
Moreover, enhanced IFN-α signaling can result in ligand-independent ER signaling 
which can promote survival of AI-resistant breast cancer cells [531]. In addition, 
chronic activation of Fas in MCF-7 resulted in more stem cell like features of the 
cells. The effect was found to be driven by type I IFN and STAT1 signaling [532, 
533]. In ER-negative breast cancer, on the other hand, IFN signaling has been found 
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to be associated with response to chemotherapy and longer distant metastasis-free 
survival following chemotherapy [534, 535]. 

Interferon signaling and Smac mimetics 
Smac mimetics have been shown to cooperate with type I and type II IFNs to induce 
cell death in different cancer cells [536-539]. More specifically, a Smac mimetic 
was found to act synergistically with IFN-α to induce cell death in acute myeloid 
leukemia (AML) through induction of TNF-α and its subsequent signaling [539]. 
Treatment of renal cell carcinoma (RCC) with Smac mimetic and IFN-α also 
induced apoptosis [536]. This was found to be independent of TNF-α and RIP1 
kinase activity, but dependent on a potential scaffold role of RIP1. One study 
showed that the combination of Smac mimetic and IFN-α induced RIP1-dependent 
cell death. Although, the induction of cell death differed depending on cell line, 
since A172 glioblastoma cells depended on subsequent production of TRAIL 
whereas HT29 colon adenocarcinoma cells required production of TNF-α [540]. 
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Present investigation 

Overview and aims 
The overall aims of this thesis were to understand how TRAIL in combination with 
Smac mimetics influence the apoptotic machinery and phenotypic changes in breast 
cancer cells. The focus is on the induction of IFN signaling and how TRAIL and 
Smac mimetics can be used to suppress the malignancy of breast cancer cells. This 
was initiated in Paper I, where we studied the mechanisms of Smac mimetic- and 
TRAIL-induced cell death. The non-apoptotic effect by the same treatment was 
further investigated in Paper II, where we studied the effect on changed morphology 
and gene expression. The mechanisms underlying the changes in gene expression 
and induction of IFN signaling were further examined in Paper III and IV. 

The specific aims of this thesis were: 

I. To investigate if TRAIL in combination with the Smac mimetic LCL161 
can induce apoptosis in breast cancer cells, and if so, examine the 
underlying mechanism. 

II. To study the characteristics and underlying mechanisms of the irreversible 
change obtained following long-term treatment with LCL161 and TRAIL 
in MCF-7 cells. 

III. To examine the mediators and mechanisms behind induction of IFN 
signaling following LCL161 and TRAIL treatment. 

Paper I 
Induction of breast cancer cell apoptosis by TRAIL and Smac mimetics: 
Involvement of RIP1 and c-FLIP 
Overexpression of IAPs is associated with tumor progression and promotion of 
cancer cell survival due to their ability to suppress apoptosis [262, 284, 286-288]. 
Smac mimetics were developed to inhibit IAPs and thereby facilitate induction of 
apoptosis [285, 303]. The effect of Smac mimetics as single agents is limited, which 
is why they also are investigated as part of a combination treatment [285, 323-325]. 
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The death receptor ligand TRAIL is a potential agent that can be used together with 
Smac mimetics since it preferentially stimulates apoptosis in tumor cells as 
compared to normal cells [233]. In Paper I, the aim was to investigate if the Smac 
mimetic LCL161 can potentiate TRAIL-induced apoptosis in breast cancer cells, 
and if so, examine the underlying mechanism. For this study, three different breast 
cancer cell lines were used, the TN MDA-MB-468, and the luminal and ER-positive 
CAMA-1 and MCF-7 cell lines. All three cell lines were resistant to LCL161 as 
single agent, but LCL161 potentiated TRAIL- or TNF-α-induced loss of cell 
viability in CAMA-1 and MDA-MB-468 cells. This was found to be caspase-
dependent. MCF-7 cells differ from the two other cell lines since neither apoptosis 
nor activation of caspase-8 could be observed following the combination treatment. 

Smac mimetics have the potential to degrade cIAP1/2, which in turn can activate 
the non-canonical NF-κB pathway [275]. Treatment with LCL161 caused cIAP1-
degradation and induction of the processed p100 product p52 in all three cell lines, 
indicating activation of non-canonical NF-κB pathway. In addition, LCL161 
enhanced cIAP2 mRNA levels both in CAMA-1 and MCF-7 cells. This was 
dependent on the non-canonical NF-κB pathway since knockdown of NIK 
suppressed this effect. Induction of NF-κB signaling following Smac mimetic 
treatment have previously been found to stimulate TNF-α-dependent cell death in 
breast cancer cells, among others [275, 321]. Knockdown of NIK had no effect on 
LCL161 and TRAIL-induced cell death in CAMA-1 cells, an indication that cell 
death occurs independently of the non-canonical NF-κB pathway. 

Previous studies have found formation of a cell death-inducing cytosolic complex, 
consisting of FADD, procaspase-8, and RIP1, following treatment with TRAIL in 
combination with Smac mimetics. This complex is also known as the ripoptosome 
[226-228]. The ripoptosome can, in addition to apoptosis, stimulate NF-κB 
signaling [541, 542]. XIAP and cIAP1/2 have, in a previous study, been shown to 
inhibit the activity of the ripoptosome [218]. Therefore, we investigated the effects 
of Smac mimetic and TRAIL on this complex formation. The combination of 
LCL161 and TRAIL, but not the treatments alone, could stimulate association of 
RIP1 and caspase-8, both in MDA-MB-468 and CAMA-1 cells, but not in MCF-7 
cells. Apoptosis could be suppressed in CAMA-1 following RIP1 downregulation, 
but not upon inhibition of RIP1 kinase activity, suggesting a role for RIP1 that is 
independent of its kinase activity. In contrast to CAMA-1, knockdown of RIP1 did 
not suppress the LCL161 and TRAIL-induced cell death in MDA-MB-468 cells and 
the amount of RIP1 co-immunoprecipitation to caspase-8 was lower in MDA-MB-
468 than in CAMA-1 cells. A possible explanation of the different requirement of 
RIP1 in the two cell lines could be either lower amount of the complex formation 
or different roles of RIP1 in the cell lines. In CAMA-1, but not MCF-7 cells, TRAIL 
could stimulate cleavage of RIP1, which was further potentiated by LCL161 
treatment. Inhibition of caspase activity blocked RIP1 cleavage. 
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An inhibitor of caspase-8 is c-FLIP [188-190], which can exist in two isoforms: 
short (c-FLIPS) and long (c-FLIPL). We speculated that there could be differences 
in c-FLIP levels and/or isoform expression that could explain the different responses 
in CAMA-1 and MCF-7 cells to stimulation with LCL161 and TRAIL. The 
expression of c-FLIPs, which is known to inhibit caspase-8 activity [543, 544], was 
high in MCF-7, but it could not be detected in CAMA-1 cells. c-FLIPL, which can 
either inhibit or potentiate caspase-8 activation depending on high or low ratio of c-
FLIPL:procaspase-8 [188, 543, 545, 546], was found to be highly expressed in both 
MCF-7 and CAMA-1 cells. Addition of TRAIL decreased c-FLIPL expression in 
both cell lines. Following downregulation of c-FLIP, LCL161 and TRAIL could 
induce caspase-7 cleavage in MCF-7 cells and there was also a tendency to cell 
death induction. The results suggest that c-FLIP could be an inhibitor of LCL161 
and TRAIL-induced cell death in MCF-7. In CAMA-1, knockdown of c-FLIP 
potentiated TRAIL-induced cell death and cleavage of caspase-8 and -7. In this 
context, addition of LCL161 had barely any further potentiating effect. To 
investigate if the c-FLIP isoforms have specific roles in cell death induction 
following LCL161 and TRAIL treatment, the individual isoforms were 
downregulated. Neither in CAMA-1 nor in MCF-7 cells, did knockdown of the 
individual isoforms have any different effect on caspase cleavage and cell death as 
compared to simultaneous knockdown of both isoforms. 

The expression of c-FLIPS, an inhibitor of caspase-8, was found to be higher in 
MCF-7 cells than in CAMA-1 cells. In addition, MCF-7 cells lack expression of 
caspase-3 and -10, and express lower levels of caspase-8 than other breast cancer 
cell lines [547-549]. We found differences in caspase-8 activation between the cell 
lines. Following treatment with LCL161 and TRAIL, MCF-7 cells only showed 
minor cleavage of caspase-8, as compared to CAMA-1. Moreover, MCF-7 did not 
show any cleavage of the executioner caspase-7, an effect that was detected in 
CAMA-1 cells. The importance of caspase-8 for cell death-induction in CAMA-1 
was demonstrated following knockdown of caspase-8 since this blocked apoptosis 
and caspase cleavage. Hence, hampered caspase-8 activation could be a plausible 
explanation to why MCF-7 breast cancer cells are not sensitive to treatment with 
Smac mimetic and TRAIL. Although we could not detect any cell death, the 
combination treatment did not leave the MCF-7 cells totally unaffected since we 
saw changes of cell morphology and growth pattern. These effects were further 
investigated in Paper II. 
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Paper II 
The combination of TRAIL and the Smac mimetic LCL-161 induces an 
irreversible phenotypic change of MCF-7 breast cancer cells 
In Paper I, we noticed that MCF-7 cells, instead of going through apoptosis, 
underwent a dramatic change in morphology and growth pattern following 
treatment with the Smac mimetic LCL161 and TRAIL. The cell morphology was 
characterized by a decreased size, a round shape, and lack of cell-cell contact. In 
addition, the cells were less adherent. The effect could also be obtained following 
LCL161 in combination with TNF-α, but neither substance had any affect when 
used alone. The cells undeniably resembled dead cells but cell viability and Annexin 
V assays confirmed that the cells were viable. In addition, the cells could be 
maintained in culture for several weeks with a maintained morphology and growth 
pattern, despite removal of treatment. The aim of this study was to investigate the 
characteristics and underlying mechanisms of the irreversible change obtained 
following treatment with LCL161 and TRAIL in MCF-7 cells. 

We inhibited several different signaling pathways to study if any of them could 
mediate the morphology change. All pathways investigated have been found to 
potentially be activated following treatment with LCL161 and TRAIL. However, 
only inhibition of caspase activity with zVAD-FMK resulted in complete 
suppression of the morphology change. zVAD-FMK is a pan-caspase inhibitor and 
the importance of individual caspases were therefore investigated. Downregulation 
of caspase-8 completely blocked the change in morphology, indicating a non-
apoptotic function of caspase-8 in the process. There was a gradual but fairly slow 
processing of caspase-8, perhaps indicating a low but long-term activity. Caspases 
have previously been associated with non-apoptotic roles in cell differentiation and 
proliferation [550-552]. Moreover, caspases have been shown to have 
morphological effects in the nervous system and during cell migration [553-556]. 
These findings could be in line with the caspase-dependent morphological changes 
we have observed. 

Since MCF-7 cells do not express caspase-3 [547] we only investigated if the 
executioner caspase-6 and -7 had any effect in LCL161 and TRAIL-induced 
morphology change. Only downregulation of caspase-7 decreased the number of 
morphologically altered cells, but the effect was not complete. Similar to caspase-
8, both caspase-6 and -7 were processed in a time-dependent manner. Caspase-7 has 
been shown to be necessary in detachment of cells [557]. 

The persistent alteration in morphology indicates a phenotypic change, where 
changes in gene expression may be involved. Global mRNA expression analysis 
confirmed that there is a considerable change in gene expression accompanying the 
change in morphology. Enrichment analysis of the upregulated genes demonstrated 
enrichment of NF-κB- and IFN-inducible genes after treatment with LCL161 and 



56 

TRAIL for 24h. This was also seen after LCL161 and TRAIL treatment for 4 days 
followed by 3 days of recovery (here called long-term treatment). However, 
inhibition of neither IFN nor NF-κB pathways influenced the morphology change, 
indicating that the changes in gene expression and morphology are independent 
events. Downregulated genes in long-term treated cells were enriched for ER-
stimulated genes, genes typical for non-basal-like phenotype, and genes 
downregulated in cells resistant to anti-estrogen therapy. This result suggests that 
there has been a shift towards less ER-positive phenotype. The vast majority of 
genes that were up- or down-regulated after long-term treatment were not affected 
after 24h of treatment, indicating that they represent a more long-term alteration. 

Since the change of morphology can be blocked by inhibition and downregulation 
of caspases, their role for the changes in gene expression was investigated using 
RNA-seq analysis. A principal component analysis of the expression data 
demonstrated that caspase inhibition had minor effects on the expression pattern 
induced by LCL161 and TRAIL. The effect of caspase inhibition on individual 
genes related to NF-κB and IFN signaling was further examined. There was a 
tendency towards potentiation of the expression of IFN-inducible genes, but a 
suppression of NF-κB-inducible genes by zVAD-FMK. Similar to the morphology 
change, the induced expression of IFN- and NF-κB-related genes was maintained 
following removal of LCL161 and TRAIL. We have not encountered or observed 
any similar phenotypic change in any other breast cancer cell line following 
treatment with TRAIL and Smac mimetic, but a similar phenotypic change which 
involved IFN signaling has been demonstrated in breast cancer (including MCF-7) 
and squamous cell lines following treatment with Fas [532, 533]. IFN signaling has 
been shown to be associated with treatment resistance and enhanced aggressiveness 
in ER-positive breast cancer [528, 529]. Furthermore, TRAIL-mediated induction 
of IFN signaling is not well characterized. Therefore, the mechanisms mediating the 
induction of IFN signaling were investigated in Paper III and IV. 

Paper III 
Induction of interferon-β and interferon signaling by TRAIL and Smac 
mimetics via caspase-8 in breast cancer cells 
Treatment of MCF-7 cells with TRAIL and the Smac mimetic LCL161 led to 
expression of IFN- and NF-κB-inducible genes. This led us to study mediators and 
mechanisms behind induction of IFN signaling following LCL161 and TRAIL 
treatment. We examined the NF-κB and IFN signaling pathways and found 
increased levels of p52, indicating activation of non-canonical NF-κB pathway, as 
well as phosphorylation of STAT1, suggesting activation of type I IFN signaling 
pathway. In MCF-7 cells treatment with LCL161 alone resulted in a slight induction 
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of p52 levels, which was further enhanced upon combination with TRAIL. TRAIL 
alone was sufficient for induction of STAT1 phosphorylation, whereas LCL161 
suppressed this effect of TRAIL. In CAMA-1, another ER-positive breast cancer 
cell line, the combination of LCL161 and TRAIL induces caspase-dependent cell 
death. A caspase inhibitor was therefore included to enable analysis of the signaling 
pathways in these cells. Both non-canonical NF-κB and IFN signaling pathways 
were activated by LCL161 and TRAIL in CAMA-1 cells. Here, LCL161 was 
sufficient to induce p52, whereas both LCL161 and TRAIL were necessary for 
STAT1 phosphorylation. In MCF-7 cells, downregulation of NIK did not inhibit the 
induction of STAT1 phosphorylation. Inhibition of Janus tyrosine kinases with 
Ruxolitinib on the other hand blocked STAT1 phosphorylation. 

Type I IFN signaling is activated following ligation of IFN-β to its receptor complex 
consisting of IFNAR1 and IFNAR2. This results in activation of the Janus tyrosine 
kinases, with subsequent phosphorylation of STAT1/2 [558]. In turn, STAT1/2 
dimerize and form a complex with IRF9 called ISGF3 which can bind to ISREs and 
induce transcription of ISGs [559]. Our results raise the possibility of the induction 
of autocrine type I IFN signaling. This is supported by the RNA-seq analysis as type 
I and type III IFNs were induced in MCF-7 cells following LCL161 and TRAIL 
treatment. Further examination showed that mRNA of both type I receptors 
IFNAR1 and IFNAR2, and one of the type III receptors were detected in MCF-7 
cells. LCL161 and TRAIL induce a gradual increase of IFNB1 mRNA levels, 
suggesting that IFN-β production increases with time. Moreover, downregulation of 
IFNAR1 suppressed both LCL161 and TRAIL-mediated STAT1 phosphorylation 
and the increase in total STAT1 levels, indicating the involvement of signaling via 
the type I IFN receptor. Our hypothesis was further supported by the finding that 
Ruxolitinib could not block the induction of IFNB1, whereas the downstream ISGs 
IRF9 and STAT1 were suppressed. Autocrine type I IFN signaling has previously 
been described in other cell types following different types of stimuli, as 
demonstrated following silencing of IFNAR1/2 and the ligands [560-562]. 

Depending on the ER-status of a breast cancer, IFN signaling has been suggested to 
have different effects on cancer aggressiveness. IFN signaling in ER-positive breast 
cancers is associated with resistance to radiotherapy and hormonal therapy [528, 
529], whereas in ER-negative breast cancers it is related to response to 
chemotherapy and longer distant metastasis-free survival [534, 535]. The IFN 
expression was examined in MCF-7 cells following treatment with LCL161 and 
TRAIL and in breast tumors using public RNA-seq data from the SCAN-B cohort 
of consecutive breast cancers. The type II IFN (which is generally found on 
leukocytes) was highly expressed in breast tumors, which probably reflects immune 
cell infiltration but it was not expressed in MCF-7 cells. Type III IFN genes were 
expressed in some of the breast cancer samples and in treated MCF-7 cells, whereas 
only IFNB1 of the type I IFNs was expressed in MCF-7. In breast cancers, type I 
IFNs were expressed in some tumors, and the expression of IFNB1 was higher than 
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any of the other type I IFNs. We also studied the expression of the IFN receptor 
genes in MCF-7 cells following treatment and in the SCAN-B cohort. The pattern 
was similar in both MCF-7 cells and in SCAN-B where both type I IFN receptors 
were expressed. In MCF-7 cells, only one of the type III IFN receptors were 
expressed, whereas both were expressed in tumors, but at different levels. We also 
examined the association of prognosis with the number of IFNB1 and IFNL genes 
with an expression level above baseline. The prognosis was found to be worse for 
ER-positive cancers if more than two genes were expressed, as compared to 
expression of fewer genes. Since TRAIL stimulation is a potential strategy to 
suppress breast cancer growth [563, 564], it could be important to also assess 
induction of IFN-β signaling in ER-positive breast cancers. 

TRAIL stimulation has been found to induce inflammatory signaling which is 
dependent on a scaffolding and non-apoptotic role of caspase-8 [230, 231]. 
Downregulation of caspase-8 completely abolished TRAIL-induced STAT1 
phosphorylation in MCF-7 cells and suppressed it following treatment with zVAD-
FMK, LCL161, and TRAIL in CAMA-1 cells. Moreover, downregulation of 
caspase-8 decreased treatment-induction of ISGs in both cell lines. However, 
inhibiting caspase activity by either zVAD-FMK or the caspase-8-specific inhibitor 
zIETD-FMK could not suppress TRAIL-mediated STAT1 phosphorylation, which 
contrasts a previous study where zIETD-FMK treatment inhibited Fas-induced 
STAT1 phosphorylation in MCF-7 [533]. Previous studies suggest that stimulation 
of death receptors can induce formation of a complex called the FADDosome, 
where caspase-8, through its scaffolding role, associates with FADD [230, 231]. We 
could determine that FADD and caspase-8 are co-immunoprecipitated following 
TRAIL stimulation. However, downregulation of FADD did not inhibit STAT1 
phosphorylation as efficient as knockdown of caspase-8. RIP1 has been described 
to induce NF-κB signaling, which was dependent on FADD and caspase-8 [565], 
and to mediate production of IFN-β in macrophages [566]. The protein c-FLIP can 
either block or promote the activity of caspase-8. Therefore, these proteins were 
examined for a potential role in IFN-induction, but downregulation of RIP1 or c-
FLIP did not have any effect on TRAIL-mediated phosphorylation of STAT1. This 
contrasts previous results where TRAIL-mediated cytokine production was 
dependent on RIP1 [230, 231]. IRF3 and IRF7 are well established activators of 
IFNB1 transcription [480, 484] and can be regulated by TBK1 and IKKε. The 
possible involvement of these and other proteins in IFN-β-induction were 
investigated in Paper IV. 
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Paper IV 
TRAIL- and Smac mimetic-mediated activation of TBK1 and NF-κB pathways 
in breast cancer cells and their roles in induction of interferon pathways 
The combination of TRAIL and the Smac mimetic LCL161 can stimulate a caspase-
8-dependent induction of IFN-β signaling in ER-positive breast cancer cell lines. 
The aim of Paper IV was to elucidate which other mediators that contribute to the 
effect. IFN-β is in general induced following viral infection where either TLRs or 
RLRs are activated [445, 515, 516, 567, 568]. This results in phosphorylation and 
activation of TBK1 and IKKε, which in turn can phosphorylate IRF3 and -7 [445, 
446]. Phosphorylated IRF3/7 can then dimerize and translocate to the nucleus where 
it induces transcription of IFNB1 [480, 481, 484, 485]. Our results both support and 
discard an involvement of TBK1 and IKKε in the induction of IFN signaling 
following treatment with LCL161 and TRAIL in CAMA-1 cells. The results 
supporting their involvement include the finding that pretreatment with an inhibitor 
against TBK1 and IKKε, MRT67307, blocks STAT1 phosphorylation and induction 
of ISG mRNA expression in CAMA-1 cells. Furthermore, treatment with TRAIL 
and LCL161 resulted in phosphorylation of TBK1. In addition, TBK1 activation 
was found to be caspase-8-dependent. Similar results were found in MCF-7 cells 
stimulated with TRAIL alone. Treatment with TRAIL led to TBK1 phosphorylation 
and MRT67307 suppressed the TRAIL-induced STAT1 phosphorylation. 
Downregulation of caspase-8 also reduced TRAIL-mediated phosphorylation of 
TBK1 in MCF-7 cells. The results speaking against an involvement of TBK1 and 
IKKε includes the facts that downregulation of TBK1 or its downstream mediator 
IRF3 could not suppress STAT1 phosphorylation in CAMA-1 cells. In addition, the 
combination treatment could not induce phosphorylation of IRF3, which the TLR3 
agonist Poly(I:C) could. 

A type I IFN response has previously been demonstrated following dsRNA 
stimulation in IRF3-/- mice [569], suggesting a pathway independent of activation 
of TBK1, IKKε, and IRF3. Therefore, one possible theory to the conflicting results 
regarding the involvement of TBK1 is that MRT67307 has off-target effects and 
acts by other mechanisms than suppressing TBK1 and IKKε. For example, ULK1/2, 
two proteins involved in autophagy, have been found to be inhibited by MRT67307 
[570]. MRT67307 has also been found to affect the AMP-dependent kinase family 
in a TBK1-/-IKKε-/- background [571], and to block CYLD phosphorylation 
following deletion of TBK1 and IKKε with CRISPR/Cas9 [572]. 

NF-κB can facilitate transcription of IFNB1 together with c-Jun and ATF-2 
following their binding to the IFNB1 promoter [495, 496]. However, MRT67306 
further potentiated LCL161 and TRAIL-induced phosphorylation of IκBα, an 
indication of active canonical NF-κB pathway [573, 574], and downregulation of 
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p65 and IKKβ did not impact STAT1 phosphorylation. A critical involvement of 
the canonical pathway was therefore was discarded. 

TLR- and RLR-stimulated induction of IFN-β includes involvement of TRAF3 
[515, 516], an adaptor molecule which we investigated through knockdown. This 
actually enhanced LCL161 and TRAIL-mediated STAT1 phosphorylation, which 
excludes it as a mediator of the effect. Expression of NIK has been found to be 
enhanced in TRAF3 knockout MEFs [517]. In the same study, NIK was shown to 
interact with STING and induce IFN-β. TRAF3 is known to be critical for the 
degradation of NIK [344, 345, 575], and our results showed that downregulation of 
TRAF3 caused enhanced phosphorylation of STAT1. Therefore, we investigated 
NIK. Knockdown of NIK diminished the treatment-induced STAT1 
phosphorylation, proposing a role for NIK in the LCL161 and TRAIL-induced IFN 
response. 

Conclusions 
In this thesis, we have found that the combination of the Smac mimetic LCL161 and 
TRAIL can induce cell death in some breast cancer cell lines. This was dependent 
on caspase-8 activity. But in ER-positive MCF-7 cells the combination induces a 
caspase-8-dependent and non-apoptotic change of morphology and gene expression. 
A slow processing of caspase-6, -7, and -8 was observed upon the morphology 
change. LCL161 and TRAIL specifically upregulated and activated NF-κB and IFN 
signaling, in which caspase-8, independently of its enzymatic activity, is involved 
in mediating an IFN-β-induction and autocrine IFN-β signaling. We have studied 
the underlying mechanisms of induction of cell death, the morphology change, and 
IFN signaling by investigating several different pathways and potential mediators. 

We can conclude that: 

• The combination of Smac mimetic LCL161 and TRAIL induces caspase-
dependent apoptosis in the ER-positive CAMA-1 and TN MDA-MB-468 
breast cancer cell lines. This is accompanied by a strong caspase-8 
activation. In CAMA-1, induction of apoptosis was dependent of RIP1, but 
independent of RIP1 kinase activity. 

• Downregulation of the caspase-8 inhibitor c-FLIP showed a tendency 
towards enhancing the sensitivity of MCF-7 cells to LCL161 and TRAIL 
treatment. This also correlated with increased cleavage of caspase-7. In 
CAMA-1 cells, downregulation of c-FLIP potentiated TRAIL-induced 
cleavage of caspases and cell death. 

• Instead of apoptosis, treatment with LCL161 and TRAIL induces a caspase-
8-dependent irreversible change of morphology in MCF-7 cells. 
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• Long-term treatment with LCL161 and TRAIL induces downregulation of 
ER-related genes and upregulation of genes related to NF-κB and IFN 
signaling, which are separated from the induction of morphology change in 
MCF-7. 

• LCL161 and TRAIL induce non-canonical NF-κB and IFN signaling in 
MCF-7 cells, and in CAMA-1 if caspases are inhibited. Non-canonical NF-
κB does not mediate the IFN-induction. 

• Caspase-8 has a non-apoptotic and non-enzymatic function in mediating 
autocrine IFN-β signaling in MCF-7 cells following TRAIL stimulation. 

• Although LCL161 and TRAIL induces activation of TBK1 and inhibition 
of TBK1 suppresses IFN signaling, downregulation of TBK1 and its 
downstream protein IRF3 does not affect IFN signaling, suggesting 
involvement of other proteins sensitive to the inhibitor MRT67307. 

• NIK, a protein that induces the non-canonical NF-κB pathway, is a potential 
mediator of the IFN signaling induced by TRAIL and LCL161, whereas the 
canonical NF-κB pathway seems to be redundant. 

 

 

Figure 8. Summary figure 
Treatment of ER-positive breast cancer with TRAIL and the Smac mimetic LCL161 results in apoptosis when caspase-
8 is strongly activated. RIP1 associates with caspase-8 and can potentially further promote apoptosis induction. 
Apoptosis can be suppressed by c-FLIP. In MCF-7 cells slow and weak caspase-8 activation, which is induced by TRAIL 
and LCL161, results in a morphology change. The combination treatment can also result in autocrine IFN-β signaling, 
which is independent of caspase-8 activity. Here caspase-8 conceivably has a scaffold role. NIK, which is inhibited by 
TRAF3, is a potential mediator of IFN-β-induction, whereas MRT67307 suppresses it. 
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