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Abstract

The aim of this work is to investigate different methods to solve the problem

of allocating the correct amount of resources (network bandwidth and storage

space) to video camera systems. Here we explore the intersection between two

research areas: automatic control and game theory. Camera systems are a

good example of the emergence of the Internet of Things (IoT) and its impact

on our daily lives and the environment. We aim to improve today’s systems,

shift from resources over-provisioning to allocate dynamically resources where

they are needed the most. We optimize the storage and bandwidth allocation

of camera systems to limit the impact on the environment as well as provide

the best visual quality attainable with the resource limitations. This thesis

is written as a collection of papers. It begins by introducing the problem with

today’s camera systems, and continues with background information about

resource allocation, automatic control and game theory. The third chapter de-

scribes the models of the considered systems, their limitations and challenges.

It then continues by providing more background on the automatic control and

game theory techniques used in the proposed solutions. Finally, the proposed

solutions are provided in five papers.

Paper I proposes an approach to estimate the amount of data needed by

surveillance cameras given camera and scenario parameters. This model is

used for calculating the quasi Worst-Case Transmission Times of videos over

a network. Papers II and III apply control concepts to camera network storage

and bandwidth assignment. They provide simple, yet elegant solutions to the

allocation of these resources in distributed camera systems. Paper IV com-

bines pricing theory with control techniques to force the video quality of cam-

era systems to converge to a common value based solely on the compression

parameter of the provided videos. Paper V uses the VCG auction mechanism

to solve the storage space allocation problem in competitive camera systems.

It allows for a better system-wide visual quality than a simple split allocation

given the limited system knowledge, trust and resource constraints.
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Preface

Being an engineer is a daily battle with the intricate balance between cost

and results. With infinite amount of power, data, time, one could solve most

things. But reality reminds you that everything has a cost. A good engineer

should solve complex problems with elegant simple solutions. To be able to

find good solutions, one needs to know the problem well. Around the beginning

of my career I was assigned the task of creating a bit rate controller, a control

loop which would influence the amount of data loss in videos in order to be

able to deliver the video from cameras over the network to the recipient. Then

I moved on to find ways to drop data in a smart way in order to limit the

amount of resources used to produce the same images. It was not long before

we realized that the problem did not reside in the camera and that thinking

of the devices alone in the age of IoT was a lost battle. One needs to think of

systems of devices and not of devices in a system. This is where the journey

towards resource allocation began. Now that cameras could produce a defined

amount of data and get rid of less useful data, how would they be able to give

more room to others which need these resources right now? How can they be

smarter devices and be part of a network of smart devices?

https://xkcd.com/1319/

7



Acknowledgements
Being part of the automatic control department has been inspirational and

everyone made these years some of the most fun I had. Thank you all for

being great people, especially to the amazing staff for keeping the spirit up!

Karl-Erik Årzén, I would not be here today without you. Thank you for

being the best supervisor I could have wished for, supporting when needed,

encouraging during inspirational times and still dragging back to earth when

necessary.

Martina Maggio, Harry Pigot, Richard Pates, Johan Ruuskanen, Nils Vre-

man and Emil Vladu you are such amazing colleagues and friends and helped

a lot during this work. Gautham Nayak Seetanadi, thank you for always being

around, in research or in life, I am happy to count you among my friends. Per

Skarin, you have been a great travel and office partner, I miss our discus-

sions but look forward to new ones! Amir Roozbeh, Joris Van Rooij, Rebekka

Wohlrab I look forward continuing our time together. Pr. Hung-Hu Wei, thank

you for the warm welcome and guidance in my research.

My former colleagues from Axis Communications were also a big part of

this work. Axis is full of great people who helped me move forward. I met

amazing people and long-lasting friends there. Thank you Fredrik Pihl for

being an great inspiration and amazing friend, Viktor Edpalm for all the

great past, present (and future) good times, Mariana Rojas for your unending

support and positiveness, Danilo Chinchilla Sosa for your wisdom and Yuan

Song for always being such a great inspiration.

Mikael Lindberg, I will never be able to thank you enough for sponsoring

me, being of great help in research and wine selection! Thank you for dragging

me back to earth when I needed it while still looking at the sky.

Olivier Bonjour, you are my everyday support and confident. I am lucky to

have your attentive and strong spirit around to challenge my daily craziness,

your unending support fills both my spirit and belly with delicious cakes.

A warm thank you to my close family who always support me by all means

possible. I would not be half of the person I am today without you all and you

mean the world to me. Even if we are now spread over the world I hope to

give back at least a tenth of what you gave me over the years.

Last but not least I would like to thank my friends for supporting me

everyday over these research years, a big thank you to you Safina Khellaf,

Flaurian Leroux, Guillaume Garnon, Jack Bates, Nina Latouille, Samia Mel-

louki, Luis Adrián Serratos Sotelo, Ludwig Rojas, Julien Schmitt and others.

And to all I have not mentioned in here, I could not have done this journey

without many of you, because each action has a reaction, every interaction I

had shaped what I am and do today... Thank you...

8



Financial Support
This work was supported by Axis Communications. It has been partially

funded by the Wallenberg AI, Autonomous Systems and Software Program

(WASP), the ELLIIT strategic research area on IT and mobile communica-

tions, and the Nordforsk university hub on Industrial IoT (HI2OT).

9





Contents

1. Introduction 13

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. Resource Management and Auction Theory 20

2.1 Resource management . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Auction theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. System Models 28

3.1 Camera Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Video compression . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4. Control Background 38

4.1 PID control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Tracking-based anti-windup . . . . . . . . . . . . . . . . . . . . 40

4.3 Cascade control . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4 Mid-ranging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5 Bumpless mode changes . . . . . . . . . . . . . . . . . . . . . . 42

5. Game Theory Background 43

5.1 Price discrimination . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Vickrey-Clarke-Groves auctions . . . . . . . . . . . . . . . . . . 44

6. Conclusions and Future Work 48

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Bibliography 51

Paper I. Camera Networks Dimensioning and Scheduling

with Quasi Worst-Case Transmission Time 55

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2 Background on Video Encoding . . . . . . . . . . . . . . . . . . 57

3 Frame Size Estimation . . . . . . . . . . . . . . . . . . . . . . . 61

4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . 76

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

11



Contents

Paper II. Control-Based Resource Management for Storage of

Video Streams 81

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2 Storage of Video Streams . . . . . . . . . . . . . . . . . . . . . . 84

3 Tracking-Based Anti-Windup . . . . . . . . . . . . . . . . . . . 87

4 Tracking for Handling Global Resource Constraints . . . . . 89

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 97

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Paper III. Dynamic Management of Multiple Resources in

Camera Surveillance Systems 101

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

2 Camera Surveillance Systems . . . . . . . . . . . . . . . . . . . 104

3 Control System Architecture . . . . . . . . . . . . . . . . . . . . 107

4 Evaluation and results . . . . . . . . . . . . . . . . . . . . . . . 112

5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 116

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Paper IV. Storage Allocation for Camera Sensor Networks

using Feedback-Based Price Discrimination 121

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3 Architecture, valuation & framework . . . . . . . . . . . . . . 123

4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Conclusions & Future Work . . . . . . . . . . . . . . . . . . . . 132

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Paper V. Vickrey-Clarke-Groves Auction-Based Storage

Allocation for Distributed Camera Systems 139

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

3 System description . . . . . . . . . . . . . . . . . . . . . . . . . . 141

4 Vickrey-Clarke-Groves (VCG) auctions . . . . . . . . . . . . . . 142

5 Estimation of resource needs . . . . . . . . . . . . . . . . . . . 144

6 Valuation of resources . . . . . . . . . . . . . . . . . . . . . . . . 146

7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . 152

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

12



1
Introduction

Today’s world is more and more interconnected. With the development of

smart cities and the Internet of Things (IoT) trend, the amount of machine

to machine communication is growing exponentially. With the advances in

electronics, computer-like devices are present everywhere [Ahad et al., 2020].

A good example of this are camera systems, where nowadays each camera

is a small specialized Linux computer with an image sensor running on an

IP network. These new smart cameras run on-board image/video analytics,

have machine learning acceleration hardware to, e.g., do object detection and

tracking, image optimization or to self-reconfigure [Bellman et al., 2020].

They run continuously, analyzing the images provided by sensors, running

algorithms in quasi real-time and sending information and video data to

other machines over the network.

The functioning, transmitting, processing and storage of information pro-

duced by the different devices consume resources.

The emergence of these connected devices allows for smarter cities and

the promise of more efficient, innovative, greener and more durable systems

[Kitchin, 2015]. Unfortunately most of these systems are rarely optimal and

resources are often wasted due to poor provisioning. Most systems allocate

resources by coarsely estimating the amount of resource needed in the worst

case scenario, and then they over-provision to allow for these potential extreme

scenarios. This approach leads to a lot of resource waste, which by extension

leads to a cost for society as well as a greater impact on the environment,

contradicting the promise of greener automated cities.

By estimating resource usage in a better way and introducing dynamic

adjustment to the resource allocation scheme we can reduce the impact of such

systems. This will ensure a better overall quality of service while keeping the

costs of running it as low as possible and without waste of energy, money or

data.

Optimizing the resources needed to achieve a certain task can be thought

of in two ways, focusing either on Quality of Service (QoS) or Quality of

Experience (QoE). The QoS and QoE are defined by the use case of the

13



Chapter 1. Introduction

system. QoS is more focused on the availability of services while QoE focuses

more on the quality from the point of view of the final user of the system

[Chen et al., 2014]. In most of our work the Quality of Experience (QoE)

is seen as the video quality the viewer receives from the different cameras.

The first way to approach the problem of allocating resources is to maximize

the QoE based on resource availability, i.e., get the most out of the system

given known or measured limitations. The second way, on the contrary, is

to minimize the usage of resources in order to achieved a certain acceptable

QoE level. The first approach is more focusing on optimal allocation with the

provided constraints while the second focuses more on resource saving.

The number and size of camera systems used, e.g., in different types

of public spaces with surveillance cameras, are growing and they are cur-

rently one of the major consumer of storage and bandwidth. With growing

demands on high resolution, high frame rate and level of detail, the amount

of storage needed to retain these videos is a growing problem (as explained

in [IPVM, 2021]). Surveillance camera systems are usually critical installa-

tions and are thus mostly running on dedicated infrastructures, storing video

in trusted servers owned by system administrators. Newer installations are

usually large scale (commonly hundreds of cameras), heterogeneous and have

large differences in resource requirement. The amount of bandwidth or stor-

age available is usually limited due to legacy or cost constraints. This is where

optimizing camera systems becomes relevant attempting to obtain the best

image quality given the limited and variable amount of resource available,

regardless of the type and size of the system.

In this thesis we focus on two resources: storage and network bandwidth.

These resources are dependent, i.e., the allocation of each of these influences

the allocation of the other, e.g., one needs to have enough network resources

in order to be able to store a certain amount of data on the receiver end.

It is pointless to allocate a lot of storage space if the amount of bandwidth

allocated is insufficient, and vice versa. One important point is that even

if dependent, those two resources usually do not change at the same pace.

Usually the variation of the global amount of bandwidth available changes

faster than the storage amount available.

Here we try to bridge two classical techniques used for resource allocation:

game theory and automatic control. Game theory has historically been used

in bandwidth assignment in mobile telecommunication networks due to their

scale and the lack of trust between the devices, where mini-auctions are

performed to split the bandwidth between devices at mobile base stations.

Automatic control on the other hand has been used for more specific and time

critical applications such as memory bandwidth allocation or coordination of

distributed systems.

14



1.1 Thesis Outline

1.1 Thesis Outline

This thesis is written as a collection of papers, with the following outline:

Chapter 1 - Introduction
The introductory chapter describes the motivation and aim of the thesis. It

introduces the main contributions and the included papers.

Chapter 2 - Resource Management and Auction Theory
The second chapter presents important concepts required to understand the

papers. It starts by explaining the resource management concept and methods

used in resource allocation and continues by explaining auction and game

theory, its history and main principles.

Chapter 3 - System Models
This chapter presents the camera system models considered in the papers and

exposes their constraints and specificities. It has been divided into control and

pricing constraints as each approach presents slightly different limitations. In

this chapter we also give an overview of video compression and video quality

estimation techniques which are central in the model described in Paper I

and then used in following Papers II-V.

Chapter 4 - Control Background
This chapter briefly explains the automatic control techniques used in Papers

II to IV. We start by explaining PID control and the related tracking-based

anti-windup and continue with cascade control where multiple controllers

are cascaded to control a process. We then introduce mid-ranging where two

controllers are combined to control a process with two actuators, and finish

by explaining how bumpless mode changes between controllers can be done.

Chapter 5 - Game Theory Background
This chapter briefly explains the pricing and game theory techniques used

in Papers IV and V. We start with pricing theory by explaining the price

discrimination used in Paper IV. We then continue with the introduction of

the Vickrey-Clarke-Groves auction mechanism used in Paper V and its related

knapsack problem which is used for the allocation decision.

Chapter 6 - Conclusion and Future work
The final chapter provides a summary of the work done, its results and gives

suggestions for future improvements.

15



Chapter 1. Introduction

Contributions of the Thesis
The thesis is based on five publications. Paper I proposes an approach to

estimate the amount of data needed by surveillance cameras given camera

and scenario parameters. The proposed model has been compared against

state of the art methods and provides a better estimate of the video frame

sizes. Papers II and III apply control concepts to camera network storage

and bandwidth assignment. They provide simple, yet elegant solutions to

the allocation of these resources in distributed camera systems. Papers IV

and V propose a valuation model of the amount of storage based on the

model proposed in Paper I. This valuation is used to solve a similar resource

allocation problem to that in Papers II and III. Paper IV combines pricing

theory with control techniques to force the video quality of camera systems

to converge to a common value based solely on the compression parameter of

the provided videos. Paper V uses the VCG auction mechanism to solve the

storage space allocation problem in competitive camera systems. It allows for

a better system-wide visual quality than a simple split allocation given the

limited system knowledge, trust and resource constraints.

Paper I

Edpalm, V., A. Martins, K.-E. Årzén, and M. Maggio (2018). “Camera

Networks Dimensioning and Scheduling with Quasi Worst-Case

Transmission Time”. In: Altmeyer, S. (Ed.). 30th Euromicro Conference

on Real-Time Systems (ECRTS 2018). Vol. 106. Leibniz International Pro-

ceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum für

Informatik, Barcelona, Spain, 2018, 17:1–17:22.

In this paper we propose a set of simple measurable parameters which when

combined allow to predict the expected H.264 frame sizes and by extension

the video bandwidth of each device. It proposes a method to tailor the storage

and/or network bandwidth required for a surveillance system in advance using

information about which cameras will be used and under which conditions.

The paper describes a method to compute frame size estimates to be used

in quasi Worst-Case Transmission Time (qWCTT) calculations for cameras

that transmit frames over IP-based communication networks. The precise

determination of the qWCTT allows us to model the network access scheduling

problem as a multiframe scheduling problem and to re-use theoretical results

for network scheduling. The paper presents a set of experiments, conducted in

an industrial testbed, that validate the qWCTT estimation. The paper is the

product of years of work in a surveillance camera company, gathering content

specific to its use case and allowing video engineers to craft a rough model of

the video bandwidth. It is based on an extensive work done by V. Edpalm and

16



1.1 Thesis Outline

A. Martins in the gathering of data, model development, validation against

state of the art techniques and compilation of results. M. Maggio helped

drawing a parallel between network scheduling for video surveillance camera

systems and CPU scheduling. The work was reviewed and validated by K.-E.

Årzén. This work has been extended in a technical report, which provides

more details and tests, [Edpalm et al., 2018].

Paper II

Martins, A., M. Lindberg, M. Maggio, and K.-E. Årzén (2020). “Control-

Based Resource Management for Storage of Video Streams”. In:

vol. 53. 2. 21st IFAC World Congress. Berlin, Germany, 2020, pp. 5542–

5549.

In this paper the basic concept and limitations of the systems considered

for the thesis are described and a control-based approach to solve it is pro-

posed. Distributed surveillance systems typically consist of multiple cameras

that need to store some fraction of their video streams at a central storage

node. The disk space of this node constitutes a shared resource. The disk

space allocation is formulated here as a PI control problem and a new method

for enforcing global resource constraints inspired by anti-windup tracking is

proposed. The approach is evaluated by simulations based on a simple linear

model as well as the model described in Paper I. The initial idea for this ap-

proach was proposed by K.-E. Årzén and then extended by A. Martins. Model

development, simulation, data gathering and writing was done by A. Martins

with input from K.-E. Årzén. The work was finally reviewed by M. Maggio

and M. Lindberg.

Paper III

Martins, A. and K.-E. Årzén (2021). “Dynamic Management of Multiple

Resources in Camera Surveillance Systems”. In: 2021 American Con-

trol Conference (ACC). New Orleans, United States, 2021, pp. 2061–2068.

This paper is a logical extension of the work in Paper II. Here, the disk

space allocation problem and the network bandwidth allocation problem are

solved jointly using techniques normally associated with process control such

as mid-range control and the tracking-based control of global shared resources

proposed in Paper II. The approach helps to address the allocation of limited

dependent resources, i.e., network bandwidth and video storage, in a dis-

tributed multi-tenant setting in order to meet multiple requirements (delay

17



Chapter 1. Introduction

and retention time) by using common (video bandwidth) and separate actua-

tors (network channel and global storage space). It shows how known control

techniques can be combined to solve the allocation of joint resources. This

work was done and written by A. Martins with valuable input and review

from K.-E. Årzén.

Paper IV

Martins, A., H.-Y. Wei, and K.-E. Årzén (2022). “Storage Allocation for

Distributed Video Sensor Systems using Feedback-Based Price

Discrimination”. In: Proceedings of the 11th International Conference on

Sensor Networks - SENSORNETS, SciTePress, Virtual conference, pp. 34–

44.

This paper bridges control theory and pricing theory. We propose a frame-

work using feedback-based price discrimination of storage resources in order

to guarantee a uniform quality level of the videos in camera sensor networks,

regardless of the specific camera sensor parameters. A lightweight solution

is used that combines price discrimination principles from micro-economics,

simple video quality metrics, cascade control, PI (Proportional and Integral)

controllers, and a probing controller to allocate storage resources, while sepa-

rating the resource providers (i.e., the storage units) from the resource buyers

(i.e., the camera sensors). The buyers have private information on the amount

of resources needed and act accordingly to maximize their utility (here the

desire to minimize the compression of their own video stream). The storage

units enforce the constraint on resource availability and fairness through the

use of pricing. This work was developed, simulated and written by A. Martins

with input and from K.-E. Årzén and reviewed by H.-Y. Wei (National Taiwan

University, Taiwan).

Paper V

Martins, A., H.-Y. Wei, and K.-E. Årzén (2022). “Vickrey-Clarke-Groves

Auction-Based Storage Allocation for Distributed Camera Sys-

tems”. In: Under conference submission.

In this paper we address the resource storage allocation problem using

techniques from auction theory. We designed an auction framework based on

the Vickrey-Clarke-Groves (VCG) auction mechanism in order to allocate the

available storage resources optimally. Each device is provided a fixed budged

and tries to maximize its own private utility (based on the money spent,

compression amount and its variation over time) in a competitive system

18



1.1 Thesis Outline

with constrained resources. The advantage of VCG auctions is that they

provide guarantees, such as a fair and envy-free allocation without requiring

control over all devices participating in the auction. The work was developed,

simulated, tested and written by A. Martins with valuable input from H.-Y.

Wei (National Taiwan University, Taiwan), it was reviewed and supported by

K.-E. Årzén.
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2
Resource Management and
Auction Theory

In this chapter, we provide background on the theory and techniques used

in the papers. Starting with the basis of resource allocation, we continue by

describing some of the available resource allocation methods. We then focus

on game and auction theory and its main principles.

2.1 Resource management

A system resource is any physical or virtual component needed by a com-

puter system. It has usually limited availability. All connected devices and

internal system components are resources, e.g., CPU cycles, memory, network

bandwidth, storage space, electricity, etc. Resource management refers to the

techniques for managing these limited resources. Its goal is to allocate the

(sometimes) scarce resources to the correct users or clients at the correct

time, while preventing resource leaks (allocating resources which are not

needed anymore) and dealing with resource contention when the same re-

sources are needed by multiple users that need to be prioritized. Networking,

computing and energy resources are allocated taking into account hardware,

performance, energy and environmental restrictions.

Most of the resources allocated to some extent depend on the allocation

of other resources. A typical example is CPU time and memory. If a software

component needs to run algorithms, it usually needs both computing power

and storage space (to store the information needed for the computation). Lack-

ing one of those would prevent the software from running and allocating too

much of it would be wasting resources which could be used by other software

components. Another example used in this work is network bandwidth and

video storage space. There is no point in allocating a lot of storage space but

no network resources because the data then could not reach the destination.
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2.1 Resource management

Resource allocation methods
Shared resource allocation is crucial is Real-Time Operating Systems (RTOS).

In RTOS multiple tasks (or processes or threads) with more or less time-

critical deadlines are sharing one or several CPUs. The tasks often need to

access external devices, e.g., the screen or the keyboard, and execute code

sections under mutual exclusion constraints, i.e., only one task (or a limited

number) may execute inside the section at the same time. Code sections of this

type go under the name critical sections and use mutual exclusion to prevent

simultaneous access to a shared resource. To obtain the necessary mutual

exclusion synchronization a number of mechanisms have been developed, e.g.,

locks, semaphores, and monitors, [Sha et al., 1990]. Synchronization protocols

such as priority inheritance or priority ceiling protocols [Rajkumar et al.,

1988] are then used to minimize the blocking times and/or to avoid deadlocks

(a state where two or more processes hold a resource which prevents other

processes from proceeding).

Some resources are divisible and others are not. External devices and crit-

ical code sections are examples of resources that are indivisible, i.e., a user

either gets access to the entire resource, either alone or with a limited number

of other simultaneous users, or gets no access at all. In this thesis we focus on

resources that are divisible, i.e., which can be shared between multiple users

so that each resource gets a certain share or budget of the resource. Some

resources, e.g., memory, are divisible in themselves, whereas other resources

can be made divisible using scheduling. One example of the latter is CPUs

that can be made divisible using reservation-based scheduling, e.g., [Shin and

Chang, 1995]. In this case the scheduling mechanism switches or multiplexes

between the users in such a way that each user gets a certain share or budget

of the resource (called a reservation) over a certain time interval. This can

be done for example with time-slicing (giving access to the resource for a

certain time window), space or frequency division (providing different path-

s/frequencies to different processes), or angular/polarization division (where

the resource is split into different polarizations) of the particular resource.

A good overview of reservation-based scheduling can be found in [Lindberg,

2007].

When allocating divisible resources there is always a global constraint

that must be fulfilled, i.e., that the sum of the budgets of all the users never

exceeds the total available amount of resources, i.e., 100%. In this thesis we

focus on two divisible and dependent resources: storage and bandwidth.

Resource allocation approaches
Resource allocation can be achieved in different ways. Three of the main

approaches are optimization-based allocation, control, or feedback, based al-

location, and game theory-based allocation. These approaches can also be
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combined.

Optimization based resource allocation: In this approach the problem is

formulated as an optimization problem. The resource amounts are the decision

variables and the optimization objective could be to either to maximize the

performance subject to some resource constraints or minimize the resource

consumption subject to some performance constraints. An example of the first

situation can be seen in Eq.2.1.

maximize
∑

x f (resourcex)

subject to
∑

x resourcex ≤Total resource availability
(2.1)

where f () represents the performance provided by the allocated resources and

x is the the resource consumer index.

The type of application and resources decide what type of optimization

problem that is required, e.g., integer programming (ILP), mixed-integer lin-

ear programming (MILP), quadratic programming (QP), or nonlinear pro-

gramming (NLP) methods such as branch & bound, genetic algorithms, con-

straint programming, or knapsack. Solving an optimization problem is of-

ten relatively time-consuming so therefore this type of resource allocation is

preferably done either off-line or on-line when a major change has occurred.

Control-based resource allocation: In control-based resource allocation

one uses feedback control to keep some performance or quality variable at

a desired target or reference value, alternatively to maximize or minimize

some performance or cost function, using the resource budget as the control

signal. If we use single-input single-output (SISO) control then the resource

budget for each individual user is determined by a separate controller (as il-

lustrated by Fig. 2.1). Hence, some coordination mechanism is needed between

the controllers to enforce the global resource constraint. This is the topic of

Papers II and III. If one uses a multiple-input multiple-output (MIMO) con-

troller that supports constraint handling then the resource constraint could

be included in the controller. One example of this is Model Predictive Con-

trol (MPC), [Camacho and Alba, 2013], where the control signals (resource

budgets) are computed online by solving an optimization problem each sam-

ple. This, however, normally leads to a centralized architecture which is not

always desirable. Therefore, this has not been studied in this thesis. MPC is

also an example of how optimization and feedback-based resource allocation

can be combined.

Game/auction theory-based approaches: Game theory models situations

in which decision makers have to make specific actions that have mutual
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Figure 2.1 A simplified example of control-based resource allocation. The

blue QoE represents the desired quality and the red QoE represents the actual

quality.

consequences. This method is often used in distributed systems to decentralise

the decision process and allocate resources in systems with multiple (often

untrustworthy) actors. It is used to decide which process or actor should

get the resources based on the valuation the process (or actor) has of the

resources. The basics of game and auction theory are explained in Section

2.2. Auction theory has been used for many resource allocation problems

such as mobile broadband spectrum allocation [Milgrom, 2004], virtual server

resource allocation [Wei et al., 2016], device-to-device radio resource allocation

[Pang et al., 2014], mobile network video caching [Li et al., 2016], camera

network area coverage based on task allocation [Rinner et al., 2012; Lewis

et al., 2013], etc. A nice overview of other game theory applications to resource

allocation in computer systems is available in [Charilas and Panagopoulos,

2010] and a more detailed walk-through can be found in [Niyato et al., 2020].

2.2 Auction theory

Auctions facilitate transactions by enforcing a specific set of rules regarding

the resource allocations to a group of bidders. Auction theory originates from

game theory and economics theory. It deals with how bidders act and react

in auction markets and investigates how the features of auctions provide

incentives towards predictable outcomes. It is a tool used in the design of

real-world auctions such as selling auctions, voting, market determination,

etc. Auction theorists design rules for auctions to address issues which can

lead to market failure. Usually, the auctioneer determines who is awarded

the item(s) based on the agents’ bids. The objective of the system designer

is to engineer the costs, revenue and auction mechanism in such a way that

individual self-interest leads to globally efficient solutions.
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Some history
The history of auctions extends back to 500 B.C. in Babylon when Herodotus

reported the use of an auction to sell women on the condition of marriage.

Within the Roman Empire the "atrium auctionarium" (seamlessly increasing

open-cry auctions) was used by soldiers to sell goods acquired "sub hasia"

(under the spear). The global slave trade was also conducted in major port

cities that imported slaves from around the world. These slaves were sold

at auctions both to wholesalers and to individuals. Soon after the French

Revolution auctions were conducted in taverns and coffeehouses to sell art.

Such auctions were held daily, and catalogs were printed to announce avail-

able items. Large auction houses such as Christie’s and Sotheby’s arose in

the mid-1700s and provided an organized forum for the buying and selling of

disparate goods at auctions.

Auction theory itself begins to be formalized in the 1990s when John

Nash (1994 Nobel Laureate) designed a generalized theory of auctions as a

non-cooperative game which moves beyond simple zero-sum games. Vickrey

(1996 Nobel Laureate) and Harsanyi (1994 Nobel Laureate) extended Nash’s

equilibrium specifying ways in which equilibria can be reached under an in-

formation set (specific set of shared and private information between players).

By the end of the 1990s, auction theorists had defined equilibrium bidding

conditions for single-object auctions under most realistic auction formats and

information settings. In 2020, Robert B. Wilson and Paul Milgrom won The

Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel

for their work on defining how multiple-object auctions can be performed

efficiently.

Main principles
A game-theoretic auction model is a mathematical game represented by a set

of players, a set of actions (strategies) available to each player, and a payoff

vector corresponding to each combination of strategies. Each bid function

maps the player’s value (in the case of a buyer) or cost (in the case of a seller)

to a bid price [Krishna, 2009]. The payoff of each player under a combination

of strategies is the expected utility (or expected profit) of that player under

that combination of strategies.

Auctions can be centralized (one auctioneer handles the auction), dis-

tributed (auctioneers seek bidders and deal directly) or peer-to-peer (auction-

eers and bidders cooperate and a reward is needed to ensure cooperation).

Auctions can be online of offline. Online auctions are triggered on resource

requests, each auctioneer has its own auction of items and the market is

cleared immediately. In offline auctions the auctioneers provide time slots,

wait for bids from all potential bidders or the end of a clearance period, and

select how to allocate the item(s) [Krishna, 2009].
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There are two main categories of auctions possible for a single item: open-

cry and sealed-bid. Open-cry are auctions where all bidders see other bidders

proposals (bids) while in sealed-bid auctions bidders provide their bids only

to the auctioneer and others can only guess the bids of others.

The main open-cry auctions (everyone know the others bids) are:

• Open ascending-bid auctions (English auctions): Each bidder makes

increasingly higher bids. This continues until no participant is making

a higher bid; the highest bidder wins the auction at the final amount of

the bid [Krishna, 2009].

• Open ascending-bid auctions (Japanese auction): This is a variant of the

English auction where the amount of the bid is set with an increasing

price clock. All bidders join a bidding area and the clock starts at the

lowest valuation of the item. Bidders who reached their maximum bid

leave the bidding area. The auction stops when only one bidder is left in

the bidding area, the amount due is the one set by the clock [Krishna,

2009].

• Open descending-bid auctions (Dutch auctions): The price of the item is

set by the auctioneer at a high level. The amount is then progressively

lowered until a bidder is prepared to buy at the current price, winning

the auction [Krishna, 2009].

• Anglo-Dutch auctions: The price increases and buyers are dropped,

when only two are left they start a first-price closed auction [Krishna,

2009].

• Waiting-line auctions: Buyers join a queue, the items are allocated in

a first come first serve manner. Being first in line means having paid

more to get the item [Taylor et al., 2003].

Sealed-bid auctions (all bidders provide their secret bid to the auctioneer)

can be classified as:

• First-price auctions: The bidders place their hidden bid (in a sealed

envelope for example) and simultaneously hand them to the auctioneer.

The bidder with the highest bid wins, paying the amount of the proposed

bid for the item [Krishna, 2009].

• Second-price auctions (Vickrey auctions): The bidders again place their

hidden bid and simultaneously hand them to the auctioneer. The bidder

with the highest bid wins, paying a price equal to the second-highest

bid [Vickrey, 1961].
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• K’th-price auctions: This is an expansion of the Vickrey auction. The

bidder with the highest price wins but pays the k’th highest price [Kr-

ishna, 2009].

• All-pay auctions: Every bidder pay regardless of whether they win the

item or not, the item is awarded to the highest bidder. A typical example

are Tullock auctions or lotteries [Taylor et al., 2003].

In addition to the above auction types, auctions can also present different

properties. They can be one shot auctions where only one bid or set of bids is

provided for an item or multi-shot where multiple bids are done sequentially,

each bidder sends its one-shot bid for a single item, then another for the

second item, etc. One shot bids can be done for a single item (bidders only

compete for a single item from the auctioneer and each item is evaluated

separately), multiple items (bidders send a list of multiple item/price pairs

to the auctioneer). The bidders can provide single pairs of item/value to the

auctioneer or send a price-demand function, i.e., a piece-wise linear price/de-

mand function reflecting its bidding strategy, or the value function can be

pre-determined and the bidders just provide an index for a pre-determined

function (provided by the auctioneer or shared) [Krishna, 2009].

In this thesis we allocate multiple identical items. For this we use the

Vickrey-Clarke-Groves auction (VCG), i.e., use a centralized, offline, multiple

item, second price sealed-bid auction where the auctioneer maximizes the

total revenue from selling the items [Nisan and Ronen, 2007].

Auctions can be seen as games where each bidder and auctioneer is a

player. As such, some important game properties are important to know

[Owen, 2013]:

• Cooperative / non-cooperative game: A game is cooperative if the play-

ers are able to form binding commitments and it is non-cooperative if

players cannot form agreements apart from the ones enforced by the

game.

• Symmetric / asymmetric game: A symmetric game is a game where

the payoffs for playing a particular strategy depend only on the other

strategies employed, not on who is playing them.

• Zero-sum / non-zero-sum game: Zero-sum games are constant-sum

games in which choices by players can neither increase nor decrease

the available resources. In zero-sum games, the total benefit to all the

players in a game always sums to zero.

• Simultaneous / sequential games: Simultaneous games are games where

both players move simultaneously or where the later players are un-

aware of the earlier players’ actions. Sequential games are games where

later players have some knowledge about earlier actions.
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Each game can have some optimal outcomes which are enforced by the

rules of the game/auction. Keep in mind that it could be that there is no

preferred outcome depending on the rules and players strategy. Some of these

outcomes are:

• Dominant strategy: A strategy is dominant when the strategy is bet-

ter than another strategy for one player, no matter how that player’s

opponents may play [Krishna, 2009].

• Nash equilibrium strategy: A solution where no player has anything to

gain by changing their own strategy. A Nash equilibrium is a dominant

strategy. A game may have multiple Nash equilibria or none at all. The

Nash equilibrium does not always mean that the most optimal strategy

is chosen, it just indicates that each player’s strategy is optimal when

considering the decisions of other players. Every player wins because

everyone gets the outcome they desire [Osborne and Rubinstein, 1994].

• Pareto optimal strategy: A solution where no player can be better off

without making at least one other player worse off or without any loss

thereof. Pareto efficiency implies that resources are allocated in the most

economically efficient manner, but does not imply equality or fairness

[Krishna, 2009].
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System Models

A typical video surveillance system consists of multiple cameras disseminated

over an area. These cameras continuously record a specific scene, for instance

an office space, a parking lot, a road, or any other alternative. The recorded

scenes are different from one another, but their characteristics do not usually

change significantly over time. A camera that is installed outdoor in a parking

lot will record similar scenes, mostly involving cars and people, in different

light conditions. At the same time, a camera that is pointing to a highway

lane will (most likely) record either an empty road, or the passage of cars.

A common challenge in the video surveillance industry is to tailor the

entire infrastructure of the surveillance system to achieve a certain level of

quality, while keeping the cost as limited as possible. The main challenge

is that these systems become more and more heterogeneous, complex and

interconnected. Previously only large institutions were equipped with such

surveillance systems and had dedicated infrastructure (network and storage

units) to handle the expected load of information produced. However, today’s

systems are usually sharing the same network infrastructure as other network

users and devices, even sometimes running over the cloud or on the internet

with disseminated recording installations that could be on another continent.

The legacy solution of allocating a fixed amount of resource to each device

does not hold anymore and new automated and distributed techniques must

be explored.

In this chapter we will define the models and constraints considered to the

describe the camera systems that are the topic of the final five publications.

3.1 Camera Systems

Today, the video industry is mainly focused on using IP cameras, which stream

videos that are compressed using the H.264 standard [ITU-T, 2010]. These

cameras are connected through an IP network which can be shared with

others or dedicated. Each camera streams video to one or multiple storage
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Figure 3.1 The simplified system considered in this thesis.

locations which can be local, remote or a combination of both. A typical camera

network has at least one storage unit P (Network Attached Storage, Cloud

storage or other) and I video cameras, C, indexed with i: {C1,C2, ...CI } (see

Fig. 3.1).

Typically a video surveillance system is owned by a security department,

which buys or rents storage from an IT department or a cloud provider at a

fixed rate. In our systems, viewing quality is considered as most important.

The main system goal is to maximize the overall global video quality given

the current system constraints, i.e., the running cost and the video storage

size.

It is assumed that all cameras in the network can at least communicate

with the storage unit. The total quantity of storage available by the storage

provider is s and the storage space allocated to camera Ci is si. The cameras

do not have internal storage space, i.e., only the storage unit has storage

space available to store videos.

The total amount of storage available is fixed and allocated during system

design. The amount of storage to be used over a certain period is defined by

the system owner based on design choices or regulations. A typical example

is that video surveillance footage should be saved for 30 days and destroyed

afterwards. The surveillance system owner then needs to try to allocate the

total amount of storage s to accommodate the needs of the cameras.

Each camera C in the system is independent and does not communicate

with other cameras. Its only purpose is to continuously send the video it

records to a storage location. Each camera has different internal characteris-

tics (sensor type, encoder properties, lens type, video resolution, frame rate,

etc.) and is filming different environments with unique parameters (light

condition, amount of motion, etc.). This combination of parameters results

in large differences in the amount of data each camera is producing. The

amount of data produced by a camera C is usually measured in kilobits per

second (kb/s) or megabits per second (Mb/s). More details about how much

each camera is estimated to produce is given in Section 3.2.
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Figure 3.2 The control setup considered in this thesis.

Control system constraints
In the first two papers in the thesis we are given a fixed amount of available

global storage, i.e., disk space and we want to store as much video as possible,

satisfying given quality constraints. Our measurement variable is the stored

video duration of the produced video, e.g. the amount of past video being

stored in memory for each video stream. This problem can be viewed as a

distributed control problem where each camera has a video recording duration

set-point, e.g. camera 1 should save the video it produces for 2 days, while

camera 2 should save it for 1 day.

Cameras will generate video data based on their environment and config-

uration. They require a certain amount of disk space to be able to meet the

recording duration set-point. In a camera system, multiple cameras are com-

peting for the same pool of storage and need to adjust their video compression

also based on the global constraint. We consider the storage provider to act

like a set of ring buffers, containing a sliding window of stored frames for each

camera. When new data is coming in from a camera and the buffer is full, old

data is deleted in order to accommodate this. The time video frames stay in

the buffer represents the retention time of the stored videos. The amount of

storage allocated to each camera is the size of the ring buffer. An illustration

of the system can be seen in Fig. 3.2.

A common limitation to the amount of video stored is the amount of

bandwidth available on the network infrastructure to deliver the video to the

storage endpoint. The network infrastructure can be tailored for the video

surveillance system or, as we see more and more frequently, tailored for a

larger use case and shared among other applications. This brings a second

dimension to the video storage problem as we need to be able to stream

the video to the end point in a defined amount of time to avoid saturation.
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Figure 3.3 The simplified system considered in the control papers.

Too high bandwidth constraints on the network infrastructure will delay or

possibly cause data packet drops, leading to high video delay and/or video

loss. This problem is even more important when the video camera system is

used for live viewing as well as recording. This requires a short transmission

delay to be able to react based on the video content.

The model used in this approach consists of two to three parts: the camera

model, network model, and storage model. The camera model consists of the

encoder which calculates the bandwidth of the video stream as a function

of the compression level. The network model assumes an ideal reservation-

based network where each camera is assigned a separate network channel

with a channel bandwidth that constitutes a given share, or budget, of the

total network bandwidth. Finally, the storage model emulates the ring buffer

behavior of the storage provider. An illustration of the system can be seen in

Fig. 3.3.

We want to keep as much video as possible, satisfying given quality con-

straints, while ensuring a bounded transmission delay. This can be made

easier by selecting which constraint is the most important for each camera.

For a camera used for live viewing, a low delivery delay is crucial, while a

video dedicated to storage applications could accept a higher delay but has

higher storage requirements.

Pricing/auction constraints
In the second part of the thesis, we move from a cooperative system, where

each camera is expected to react to the provided global feedback regarding

resource availability, to a competitive system where each camera would try to

maximize its own video quality regardless of the other resource consumers.

The resource allocation can be seen as a zero-sum game where the total

amount of storage available is fixed and a camera getting more resource
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Figure 3.4 The simplified system considered in the pricing/auction papers.

means that another would get less resources.

For this we design a framework where, at every predefined period k, e.g.,

an hour, a day, or a week, the cameras need to obtain storage by purchasing

it from the seller to save the video they generate, using virtual money.

At each period, k, the cameras obtain an amount of money, m, that they

can use at their discretion to buy resources. The amount they receive depends

on the cost of running the system. Each camera has a virtual account holding

the money it may use. Any remaining money can be saved for future periods.

An illustration can be seen in Fig. 3.4.

In paper IV, we use the price discrimination principle from microeconomics

to allocate storage resources. The storage units enforce the constraint on re-

source availability through the use of pricing. The goal of the storage provider

is to converge to an optimal and uniform quality level for all cameras in the

system given the global resource constraints. In this approach, each camera

is provided a unit cost for the resources which is determined centrally. Since

the amount of money available is limited this will incite the cameras to adjust

the amount of data they produce, and by extension, the visual quality level of

the video, to a global value.

In paper V, we use auction theory, in the form of the Vickrey-Clarke-

Groves (VCG) auction mechanism. Each camera still periodically gets the

same amount of money and provides the storage provider with a set of bids

containing the amount of resource it desires to acquire and the associated

cost it is willing to pay for it. The storage units enforce the constraint on

resource availability by solving a constrained knapsack problem to allocate

the resources.
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I1 B2 B3 P4 B5 B6 P7 B8 B9 I10

encoded referencing I-frame

encoded referencing P-frame
encoded referencing P-frame

Group of Pictures (GOP)

Figure 3.5 H.264 frame sequence: I-frames, P-frames, B-frames, and Group

of Pictures.

3.2 Video compression

In order to tailor the infrastructure, one must be able to anticipate how much

data each camera in the system is expected to produce given its unique set of

internal characteristics and settings, e.g., position, placement, surrounding

environment, etc. This is the topic of Paper I. The model presented in the

paper is inspired by the way the H.264 standard compresses videos and how

the environment influences such algorithms.

H.264 video encoding
H.264, also called MPEG-4 part 10 AVC, is a video compression standard that

defines how a video should be decoded. The implementation of the encoding is

left to the manufacturer’s discretion [ISO/IEC MPEG & ITU-T VCEG, 2003].

The standard describes a block based hybrid codec, i.e., a video is decomposed

into blocks of data for encoding. To allow for video compression, H.264 uses

motion-compensated encoding, i.e., it describes a frame by referencing parts

of other frames, thus capturing the motion of objects across different frames.

A stream encoded with H.264 contains a sequence of frames, which are not

necessarily encoded following the display order or the time when they were

captured. Based on the frame encoding, it is possible to distinguish between

three different types of frames: Intra frames (I-frames), Predicted frames

(P-frames), and Bi-directional predicted frames (B-frames) [Wiegand et al.,

2003].

Intra frames are self contained, i.e., parts of the image can only be pre-

dicted from other parts of the same image which requires a large amount

of data. Predicted frames can refer to previous frames for parts which were

already transmitted, which leads to savings on the amount of data needed

to encode these frames as most has already been transmitted. Bi-directional

predicted frames are the same as Predicted frames but they can refer to both

previous and future frames.

The frames are organized in Group of Pictures (GOP) which consist of

an I-frame followed by a sequence of B-frames and P-frames. Fig. 3.5 shows
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a sequence of 10 frames (or images). The first nine frames in the sequence

denote a Group of Pictures (GOP). The I-frame can be marked as an Instan-

taneous Decoding Refresh (IDR), meaning that the following frames do not

need information from frames prior to that one in the sequence. If all the

I-frames are marked as IDR points, the decoding of each GOP is independent,

otherwise it is not.

For the sequence shown in Fig. 3.5, the first and the last frame are

encoded as I-frames. The fourth and the seventh are encoded as P-frames.

The remaining ones are encoded as B-frames. The red arrows in the Figure

indicate areas of the third and seventh frames – respectively a B-frame and

a P-frame – that are encoded as references to the previous I-frame. The blue

arrow shows an area of the third B-frame that is encoded as reference to the

following P-frame. The green arrow shows an area of the seventh P-frame

that is encoded as a reference to the previous P-frame.

The given frames are split into macroblocks. To be more precise, a generic

H.264 frame is split into multiple 16×16 squares of pixels, each of them being

a macroblock. Macroblocks are encoded/decoded separately from one another,

and can be split into sub-blocks down to a block size of 4×4 pixels [Wiegand

et al., 2003]. Macroblocks are also assigned a type from the set {I, P, B}.

I frames can contain only I-blocks. P-frames can contain both P-block and

I-blocks. B-frames can contain all types of blocks.

Fig. 3.6 shows an overview of the encoding process. The input frame is

divided into macroblocks, each of them is passed to a Coder Control and

to a Motion Estimation function. The Motion Estimation function uses some

previously encoded and buffered frames, the number of them being determined

by the Coder Control. These previous frames are used to choose if the current

block should be encoded:

• as a new block, containing the full information (Intra-Frame Prediction,

I-block),

• by referring to a previously encoded block in the same frame, containing

a positional vector and the residual information (Intra-Frame Predic-

tion, I-block),

• by referring to a block in a previous frame, containing a positional

vector, the frame reference, and the residual information (Motion Com-

pensation, P-block), or

• by referring to block in a previous or future frame, containing a posi-

tional vector, the frame reference, and the residual information (Motion

Compensation, B-block).

The Motion Estimation function determines the cost for the four choices and

selects the most appropriate one for the current macroblock. The residual
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Figure 3.6 Basic coding structure of a H.264 frame.

information is then Transformed, Scaled, and Quantized according to a quan-

tization parameter (QP) to reduce its size. Note that the quantization step

is the only step in the encoding process where there is information loss. The

higher the QP value, the higher the loss of information is in the image.

The quantization parameter is an integer value between 1 and 51 which

indicates how much of the residual information should be kept. The scaling,

inverse transform and the deblocking filter allow the encoder to reconstruct

the output frame and buffer it for future encoding. The entropy coding function

uses lossless statistical compression to produce the final output frame [Wie-

gand et al., 2003].

Video quality evaluation
In this thesis, we focus on the resource allocation problem and use the crude

but simple visual quality parameter available from the video compression

algorithm, i.e., the quantization parameter (qp) value.

Human perception of video/image quality does not correlate directly and

35



Chapter 3. System Models

solely with the compression level qp and is influenced by cultural and social

trends. Nevertheless the quantization parameter of H.264 videos, and its

variation over time have a direct impact on the perceived video quality (using

mean opinion score testing) according to [Xue et al., 2010; Xue et al., 2013;

Lin et al., 2012], i.e., the lower and less varying the quantization parameter

is, the better the perceived quality will be.

Image quality metrics is an active research topic which involves many

adjacent areas such as biology and machine learning, as modeling human

visual perception is a very complex topic. Despite the limitations of the qp
metric, we argue that this is a valid first step. A logical future work would

be to replace the quality parameter with another quality metric from the

literature. We briefly present some quality metrics below.

We can isolate two types of video quality metrics [Brunnström et al., 2021]:

• subjective, that present the images to groups of people and ask them to

grade their view of the quality (such as mean opinion square).

• objective, that use image analysis to extract a value or set of values

which can be compared.

Objective metrics can be split into three method groups [Brunnström et

al., 2021]:

• Full reference method, where one is assumed to have access to the

"ground truth" image that is not altered. The most used methods are

peak signal-to-noise ratio (PSNR) [Teo and Heeger, 1994], structural

similarity index measure (SSIM) [Wang et al., 2004], video quality

metric (VQM) [ITU-T, 2004] or video multi-method assessment fusion

(VMAF) [Li et al., 2016].

• Reduced reference method, where one has access to information (re-

duced image, features information, etc) about the "ground truth" image

[Dost et al., 2022].

• No reference method,where one has no access to the original image

[Shahid et al., 2014].

One advantage of running the algorithm for the metric in the cameras is that

it becomes possible to access a good enough reference image and, thus, use

full reference methods.

The metrics can be further split up into two broad categories: phenomeno-

logical, that analyze features of the image without attempting to understand

the fundamentals of the interaction between the human visual system and

the image, and model-based, that incorporate some more or less accurate rep-

resentation of the human visual system in the assessment algorithm [Zhai

and Min, 2020].
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3.2 Video compression

However, the aim of the research in this thesis is not to develop or use the

best image quality metric available but rather to use a very simple metric,

i.e., the qp value, in order to assess streaming videos quality in a short time.
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4
Control Background

In this chapter we introduce the control principles used in Papers II, III and

IV. We start by explaining the basics of PID control and tracking-based anti-

windup before moving to ways of combining controllers with cascade control

and mid-ranging.

4.1 PID control

Proportional-Integral-Derivative (PID) control is one of the most common

control algorithms used in industry. The PID algorithm consists of three

basic terms: the proportional (P) term, the integral (I) term and the derivative

(D) term [Åström and Murray, 2008]. PID controllers use the control error

(denoted e in Fig. 4.1) as the input in order to calculate the value of the control

signal (denoted u in Fig. 4.1), i.e., the input to the system or process that is

under control. The control error is the difference between the setpoint, i.e.,

the desired value of the output of the process, and the actual measured value

of the output. The reason for the control could be to mitigate disturbances

acting on the process or to modify the dynamics of the process, e.g., to speed

up the response to a change in the setpoint. The time-domain equation for

Figure 4.1 Simplified PID architecture.

38



4.1 PID control

the text-book version of the PID controller is given by Equation 4.1

u = P + I + D

u(t)= K
(
e(t)+ 1

Ti

∫t
e(s) ds+Td

de
dt

)
.

(4.1)

The proportional term depends only on the control error and multiplies this

error by the proportional gain value, K , of the controller, i.e., the P-term

depends on the current value of the error. The integral term sums the error

over time. This term depends on the past value of the error. Even a small

error will cause the integral term to increase slowly. The integral term will

continue to change over time unless the error is zero, hence, the effect of the

integral term is to drive the steady state error to zero. The derivative term

instead tries to predict what the error will be at horizon into the future. This

is done using a simple linear extrapolation.

It is sometimes to instead use the frequency-domain version of the PID

controller given by Equation 4.2

U(s)= K
(
E(s)+ 1

Tis
E(s)+TdE(s)

)
, (4.2)

where s is the Laplace operator. Using this notation 1/s corresponds to the

integrator.

PI control, i.e., PID without the derivative term, is often suitable for

processes of low order and/or when only a very coarse model of the process is

available and the control specifications are not so challenging. This is often

the case with applications of control to computer and communication systems.

This is the reason why PI control is the method of choice in Paper II and III,

and as a part of the price discrimination scheme in Paper IV.

The code for the continuous-time PI controller when the I-term is dis-

cretized using a forward approximation, is given by the following very com-

monly used pseudo-code adopted from [Wittenmark et al., 2003]. The code is

executed each sampling period h.

1 y = readY () ;
2 ref = r e a d R e f e r e n c e () ;
3 e = ref - y ;
4 v = K * e + I ;
5 u = max ( u_low , min (v , u_max ) ) ;
6 writeU ( u ) ;
7 I = I + ( K / Ti ) * e ;
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Figure 4.2 A PI controller with tracking-based anti-windup.

4.2 Tracking-based anti-windup

All actuators have physical limitations or saturations, e.g., a motor has limited

maximum velocity or a control valve cannot be more than fully open. The

classic PID controller is not aware of these actuator limitations and could

easily generate a control signal that is outside the bounds.

When the actuator saturates the feedback loop will be broken because

the output of the actuator is then not influenced by its input. Any unstable

modes in the controller (modes where the control system loses the ability to

provide a bounded output when a bounded input is applied to it) may then

drift, or windup, to very large values. The most common case of this is the

integral term. When the control signal is limited the integrator will grow to

a potentially very large value, creating a large overshoot (where the process

exceeds the target value). Since the value of the integrator is so large, it may

take considerable time before it has decreased again when the error becomes

negative, causing a subsequent large undershoot.

Integrator windup can be avoided by making sure that the integral is kept

to a proper value when the actuator saturates. A common anti-windup scheme

that achieves this is known as tracking or back-calculation. It consists of a

feedback loop inside the controller that adjusts the value of the integral term

so that the output of the controller tracks the saturated value, see Fig. 4.2.

The difference between actuator input and output is fed back to the integrator.

As soon as the actuator saturates, this signal becomes non-zero and prevents

the integrator from winding up. One could add a tracking time constant Tr
to this feedback to influence how fast the integrator should be adjusted.

The method for handling global resource constraints proposed in Paper II

is inspired by tracking-based anti-windup. The idea behind the method is to

modify the integrators of the individual PI controllers so that the sum of the

control signals does not exceed a maximum value.

4.3 Cascade control

Cascade control is used when there are more than one measurement available

to a controller, but only one control variable to actuate on. Cascade control
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4.4 Mid-ranging

Figure 4.3 Cascade control architecture (C1 and C2 being outer and inner

controllers of processes P1 and P2).

involves the use of two controllers, with the output of the first, or outer,

controller providing the setpoint for the second, or inner controller. In the

resulting structure the inner feedback loop is nested inside the outer feedback

loop. This is illustrated in Figure. 4.3. Normally the inner loop is designed

to be faster than the outer loop. The advantage of cascade control is that it

can respond more quickly to disturbances acting on the inner loop part of

the process than would be the case if only the outer controller was used. The

design of the outer controller also becomes simpler since the inner controller

will simplify the dynamics of the process.

Cascade control is used in the control architecture for controlling storage

and network resources presented in Paper III.

4.4 Mid-ranging

Mid-range control can be considered the dual of cascade control, where two

control signals are used to control one measurement signal. A practical exam-

ple could be to control the flow of a liquid using two control valves according to

Fig. 4.4 [Åström and Hägglund, 2006; Hägglund, 2021]. Valve v1 is small, i.e.,

has low control authority, but has high resolution whereas valve v2 is large,

i.e., has high control authority, but low resolution. The solution is to use valve

v1 to control the flow and then use a so called valve position controller (VPC)

according to Fig. 4.5. The VPC uses the control signal of v1 (u1 in Fig.4.5) as

the measurement signal, and selects the reference signal of v2 (r2 in Fig.4.5)

Figure 4.4 Mid-ranging application example.
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Figure 4.5 Mid-ranging controller structure.

to ensure that the control signal of v1 lies in the middle of its operating range,

i.e., at 50%. Process P1 and controller C1 together form a fast feedback loop.

The valve position controller C2 controls the valve position of controller C1
via the controller output u2.

The advantage of mid-ranging is to avoid relying on a single expensive

valve with both large control authority and high resolution and instead re-

place it with two cheaper valves with different characteristics which together

achieve the same result.

Mid-ranging is the basis for the control architecture for controlling storage

and network resources presented in Paper III, where it is used to combine

the storage and network bandwidth reservation controllers. This structure

presents the advantage of allowing finer control of the process with two

simple controllers reacting at different speeds where C1 has a short response

time and C2 has a slower response time.

4.5 Bumpless mode changes

Controllers are dynamic systems. This means that when switching between

controllers or between different operating modes of the same controller, e.g.,

between manual and automatic mode, we need to ensure that the internal

state of the controller that is switched in corresponds to the internal state of

the controller that is switched out. If that is not the case the switching will

cause bumps in the control signal. There are multiple ways to ensure this

depending on the controller and implementation used. For PID controllers on

the form presented in Section 4.1, tracking could be used to ensure that the

integrator, i.e., the internal state, of the controller has the correct value at

the time of the switching.

Tracking-based bumpless mode changes could (and should if time had

permitted) have been used in Paper III to ensure bumpless switches between

the two main operating modes of the cameras.
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Game Theory Background

In this chapter we introduce the pricing and auction theory principles used in

Papers IV and V. We start with price discrimination, an important economics

theory used in Paper IV. We then explain the Vickrey-Clarke-Groves auction

mechanism and its associated optimization problem, the knapsack problem,

which are used in Paper V.

5.1 Price discrimination

Price discrimination is a selling strategy used in economics. The principle is to

charge buyers different prices for the same product or service based on what

the sellers think they can get the buyers to accept [Krugman and Obstfeld,

2018]. In a perfect market, the seller charges each buyer the maximum price

they are willing to pay. In more common forms, the seller groups buyers

based on certain attributes and charges each group a different price. Price

discrimination is practiced based on the seller’s belief that buyers in certain

groups can be asked to pay more or less based on certain characteristics or

on how they value the product at a certain time.

We can identify three degrees of price discrimination:

• First-degree discrimination (or perfect price discrimination): The seller

charges the maximum possible price for each unit sold to buyers. Be-

cause prices vary among units, the seller captures all available buyer

surplus for itself [Frank and Cartwright, 2010].

• Second-degree price discrimination: The seller charges a different price

for different quantities sold, such as quantity discounts on bulk pur-

chases [Frank and Cartwright, 2010].

• Third-degree price discrimination: Here the seller charges a different

price to different buyer groups. This discrimination is the most common

[Bergemann et al., 2015].
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Third-degree price discrimination is the basis for the resource manage-

ment method presented in Paper IV.

5.2 Vickrey-Clarke-Groves auctions

A Vickrey-Clarke-Groves auction mechanism is the method used in Paper V to

split the storage resource among cameras as well as determine the payment

requested for these resources. A Vickrey-Clarke-Groves (VCG) auction is a

type of sealed-bid auction of multiple items (see Section 2.2). Bidders submit

bids that reflect their valuations for the items to the seller/auctioneer, without

knowing the bids of the other participants. The auction system assigns the

items in a socially optimal manner, i.e., it charges each individual based on

the harm (or loss) they cause to other bidders.

The VCG auction mechanism gives bidders an incentive to bid their true

valuations of the items, by ensuring that the dominant strategy for each

bidder is to reveal their true valuations. This mechanism can be undermined

by bidder collusion (when buyers group collaborate).

The VCG auctions are named after William Vickrey [Vickrey, 1961], Ed-

ward H. Clarke [Clarke, 1971] and Theodore Groves [Groves, 1973] for their

papers which successively generalized the VCG auction mechanism.

Consider an auction where a set of identical indivisible products are being

sold (the auctioneer having N items for sale). At auction start, each bidder

announces to the auctioneer (and only to him) the maximum price they are

willing to pay to receive n of the N items (with 0 < n ≤ N), i.e., the bid is

a combination of number of items and an associated price. Each bidder is

allowed to declare more than one bid, since its willingness-to-pay per unit

might be different depending on the total number of items it receives. When a

predefined time has passed or all the bids are received, the auction is closed.

All the possible combinations of bids are then considered by the auction

system and the one maximizing the total amount of money is selected, on the

conditions that the number of items allocated does not exceed N and that at

most one bid per bidder is selected. Bidders who have been assigned items

will receive them but the price they pay in exchange is not the amount they

had bid initially but the marginal harm their bid has caused to other bidders

(which is at most as high as their original bid).

If the sum of bids of the second best combination of bids is the same as

that of the best combination, then the price paid by the buyers will be the

same as their initial bid, otherwise the price paid will be lower. In that sense

the VCG auctions can be viewed as second-price auctions.

The marginal harm caused to other participants can be calculated as the

sum of bids of the auction from the best combination of bids (the decided

allocation) excluding the participant under consideration. This can be done
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by solving a knapsack problem per bidder where a selected bidder is not

present and see what would the allocation be in that case. The difference

between the selected allocation prices with all bidders and the one where a

considered bidder wouldn’t be present provides us the marginal harm value

of that bidder.

If bidders are rational (and there is no collusion), we can assume that the

provided price is equal to the real willingness to pay since only the marginal

harm to other bidders will be charged to each participant, making truthful re-

porting a weakly-dominant strategy. This type of auction incites truthfulness

and maximizes the total welfare but will not maximize the seller’s revenue.

Practical illustration
We can take a practical example with a pastry chef selling identical "semlor",

a famous Swedish pastry, which shall not be split between people as it is

considered an utter lack of manners. The bidders would pay the semla/semlor

in Swedish kronor (kr).

If for example we consider 3 bidders and N = 2 semlor for sale:

• Bidder A wants only 1 semla and is willing to pay 50kr for it.

• Bidder B wants 1 semla and would pay up to 40kr for it.

• Bidder C wants only 2 semlor and is willing to pay 70kr to get them.

The outcome of the auction is determined by maximizing the amount

of money from the bids which is a done by solving a knapsack problem.

The two semlor go to bidder A and bidder B, since their combined bid of

50kr+40kr = 90kr is greater than the bid for two semlor made by bidder

C who is willing to pay only 70kr. Other knapsack problems are solved to

calculate the price each bidder will have to pay for the item.

As for the payments:

• If bidder A was not present, the two semlor would both be allocated to

bidder C (as 70kr > 40kr). The total loss of welfare (or harm) inflicted

by not having bidder A present is then 90kr−70kr= 20kr. The price A

would pay for its semla is 50kr−20kr= 30kr.

• The same logic applies for bidder B who would need to pay 40kr−(90kr−
70kr)= 20kr.

• Finally, the payment for bidder C is (50kr+40kr)− (50kr+40kr) = 0kr.

(since bidder C did not receive anything, he should not pay anything).

At the end of the auction, the total utility has been maximized since all

the semlor have been attributed to the bidders with the highest combined

willingness-to-pay.
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Knapsack optimization
The knapsack problem is a problem in combinatorial optimization [Salkin and

De Kluyver, 1975]. The problem is defined as follows. Given a set of items,

each with a weight and a value, determine the number of each item to include

in a collection so that the total weight is less than or equal to a given limit,

and the total value is as large as possible. One can visualize it by trying to

fill a knapsack with a limited space with the most valuable combination of

items.

The most common problem being solved is the 0-1 knapsack problem where

items are indivisible and unique (meaning they can only be taken once). The

knapsack problem is, despite its apparent simplicity, a NP-hard problem and

thus no fast scalable and exact methods exists to solve it. Several approaches

can be used to solve knapsack problems, e.g, dynamic programming or branch

and bound. In Paper V, the Google OR-Tool library which utilizes dynamic

programming is used.

The optimization problem used to solve a VCG auction allocation can be

written as:
maximize

∑n
i=1 vi · xi

subject to
∑n

i=1 wi · xi ≤W and xi ∈ {0,1}
(5.1)

with n being the number of items indexed by i (1≤ i ≤ n), vi being the value

of item i, wi its associated weight, W the maximum total weight, and xi being

a variable that indicates if the item was selected or not.

Practical illustration
Imagine that Olivier, a Frenchman, goes out for a picnic. He only has a

small fabric knapsack (or backpack) which can hold at most 3kg before it

breaks. Olivier would like to get a lot of food but he needs to choose. He goes

shopping and finds a collection of items i which he would enjoy (value v) but

has a weight (w):

• Bottle of red wine, v = 5 and w = 1kg.

• Bottle of water, v = 1 and w = 1kg.

• Camembert cheese, v = 5 and w = 1kg.

• Comté cheese, v = 2 and w = 2kg.

• Chicken sandwich v = 2 and w = 1kg.

• Flan cake, v = 5 and w = 1kg.

• Brownie cake, v = 1 and w = 1kg.
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Which items should Olivier take for his picnic? The wine, the Camembert

cheese and the flan cake of course! Because the sum of their weights is 3kg

but the total value is 15. Any other combination within 3kg would provide a

lower value to Olivier.
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6
Conclusions and Future
Work

In this thesis we propose different methods to efficiently allocate storage and

bandwidth resources for video surveillance camera systems. These solutions,

each trying to solve a similar problem, use different techniques from automatic

control, economics theory and game theory.

A proper estimation of the video frame sizes is the key to properly dimen-

sion the network infrastructure for real-time video-surveillance systems. For

this, we presented in Paper I how to derive upper bound estimates for the size

of the frames in a video streaming system. We discussed which characteris-

tics influence the bandwidth requirements of different cameras and derived

models for the upper bound estimates of the size of frames. This allowed us

to precisely formulate the problem of allocating network bandwidth to a set

of cameras in a switched Ethernet network environment.

We then used the model described in Paper I to simulate video frame

sizes used in Paper II. In Paper II we proposed a method for enforcing soft

resource constraints in camera networks where PI controllers were used to

decide the amount of disk space resources that each camera should obtain

for storing the video stream. These resource constraints were expressed as a

global limitation on the sum of the control signals. The method was inspired

by tracking-based anti-windup for PID control. The approach was evaluated

in simulation with very good results.

The system from Paper II was then further extended in Paper III where

a control system architecture was proposed that combined mid-ranging and

global resource tracking. The architecture was used to control, assign, and

prioritize storage and bandwidth reservation resources in camera networks.

In Paper IV we then explored pricing theory by proposing a lightweight

method based on price discrimination of storage costs for system-level opti-

mization of video quality. This allowed camera systems to have an equivalent
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video quality over the whole system with little overhead and very little infor-

mation about each device.

We finally used auction theory methods in Paper V by proposing a method

for the allocation of storage space resources based on the VCG mechanism

and a utility derived from the compression level and its variation. The main

advantage of the latter is that the storage provider is not required to be aware

of the cameras parameters and still is able to efficiently allocate the storage

based solely on the cameras’ declared values.

The control, pricing and auction theory solutions proposed illustrate dif-

ferent possible ways to solve the storage and bandwidth allocation problem.

The control solutions presented give very good results in the case of joint

bandwidth/storage allocation but require each device in the system to be

cooperating for the solution to work as expected. The price discrimination

approach is very interesting as it is lightweight and can be implemented eas-

ily in a non-cooperating environment, provided that there is no encryption of

the video streams which is less and less likely nowadays. The VCG auction

mechanism approach is probably the most future proof approach of all. Even

if is more computationally heavy (which would limit the number of devices

handled in the system), it provides guarantees in the case of competitive

systems. It can work with encrypted content as we do not require to look at

the streamed content and allows for devices with different optimization goals

to share the same pool of resources. The VCG mechanism should provide

a solid basis for more complex and smarter valuation of multiple resources

while allowing the different devices to seek different amounts of resources for

different use cases without having to redesign the whole mechanism which

would be needed in the other proposed solutions.

6.1 Future Work

There are several directions in which the results presented in the thesis could

be extended and further evaluated. Here this is outlined for each paper.

The model developed in Paper I should be evaluated against more test

scenarios in order to refine the upper-bound estimation in other network

contexts and use it for bandwidth scheduling applications.

The formal properties of the approach in Paper II need further study to,

e.g., analyze the multiple equilibria that may occur. The approach can also

be modified in different ways, e.g., so that controllers without any integral

term can be used. Also the delay between the storage set-point request and

allocation should be introduced and studied.

In Paper III, performance can be further improved by introducing decou-

pling in the mid-range controllers. Additional changes should be introduced

to handle saturation, the saturation feedback could be directed to the band-

49



Chapter 6. Conclusions and Future Work

width controllers to improve the saturation case. We should also implement

bumpless mode changes when changing between the two main controller

modes. The network model could also be made more realistic. The differ-

ence in bandwidth and camera characteristics are bounded in the simulation.

In a real scenario the cameras’ characteristics (resolution, frame rate, lens,

etc) and scene differences (motion, light, etc) would generate very different

bandwidths.

A logical extension of Papers IV and V would be to handle multiple stor-

age providers and develop more complex utility functions for both cameras

and storage sellers which would take into account different constraints such

as network latency and bandwidth. The work should also be expanded with

multiple inter-dependent resources, e.g., bandwidth, storage, and CPU, etc.

We should also study to handle prioritization based on priority or task alloca-

tion of cameras. Implementing such systems in real large-scale systems would

allow to study their scalability and behaviours and complete the simulations

provided.

For Paper IV we could use a different convergence method which would

optimize the storage usage more by allowing the compression levels to slightly

deviate for some cameras.

A pertinent future approach would also be to use an application-specific

metric or a recognized quality metric such as the structural similarity in-

dex measure (SSIM), peak signal-to-noise ratio (PSNR) or other metrics as

described in [Yang, 2007].

These solutions should also be implemented in real physical camera sys-

tems using different network architectures and cameras with different char-

acteristics to see how it will affect the resource allocation mechanisms.

Finally, more complex camera and environment knowledge through learn-

ing could be incorporated. Adding extra knowledge in the valuation of re-

sources and the decision process of cameras would allow to take advantage

of the dynamic nature of distributed systems. This would enable self-aware

and self-expressive systems [Bellman et al., 2020; Esterle et al., 2017; Becker

et al., 2012; Rinner et al., 2012].
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Camera Networks Dimensioning and

Scheduling with Quasi Worst-Case

Transmission Time
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Martina Maggio

Abstract

This paper describes a method to compute frame size estimates to be

used in quasi Worst-Case Transmission Times (qWCTT) for cameras that

transmit frames over IP-based communication networks. The precise de-

termination of qWCTT allows us to model the network access scheduling

problem as a multiframe problem and to re-use theoretical results for

network scheduling. The paper presents a set of experiments, conducted

in an industrial testbed, that validate the qWCTT estimation. We believe

that a more precise estimation will lead to savings for network infras-

tructure and to better network utilization.
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1. Introduction

In the modern interconnected world, multiple devices share access to networking re-

sources, such as transmission bandwidth. For some of these devices — e.g., video

surveillance cameras connected to a monitoring station [Rinner and Wolf, 2008] —

access to networking resources is often more critical than access to computing re-

sources [Vandalore et al., 2001; Wang et al., 2008; Veeraraghavan and Weber, 2008].

Scheduling network access is therefore crucial for the satisfaction of real-time re-

quirements [Toka et al., 2017; Almeida et al., 2007; Pedreiras and Almeida, 2003;

Tang et al., 2017], like the timely transmission of surveillance videos from different

cameras [Seetanadi et al., 2017].

A typical video surveillance system comprises of multiple cameras disseminated

over an area. These cameras continuously record a specific scene, it being an office

space, a parking lot, a road, or any other alternative. The recorded scenes are of course

different from one another, but their characteristics do not evolve significantly over

time. A camera that is installed outdoor in a parking lot will record similar scenes,

mostly involving cars and people, in different light conditions. At the same time, a

camera that is pointing to a highway lane will (most likely) record either an empty

road, or the passage of cars. A common challenge in the video surveillance industry is

to tailor the entire infrastructure of the surveillance system to achieve a certain level

of quality, while keeping the cost as limited as possible. Today, the video industry

is mainly focused on using IP cameras, which stream videos that are compressed

using the H.264 standard. In order to tailor the infrastructure, one must be able to

anticipate how much data each camera in the system is expected to produce, given

its unique set of internal characteristics and settings — e.g., position, placement,

surrounding environment, etc. Such an estimate can be conservative, assuming that

video frames are not compressed. Currently, conservative techniques are adopted

for practical applications [Wang et al., 2008; Almeida et al., 2007; Pedreiras and

Almeida, 2003; Seetanadi et al., 2017]. However, conservativeness greatly increases

infrastructure cost and limits the network usage. Non-conservative estimates have the

potential of reducing the operational cost of video-surveillance systems. The challenge

explored in this paper is therefore the estimation of the amount of data produced by

each camera in the surveillance system.

We motivate our investigation by drawing a parallel between network scheduling

for video surveillance camera systems and CPU scheduling. Using the periodic task

model, a set T = {τ1, . . . ,τp} of p tasks execute on a given hardware platform. Each

τi = {Ei ,Pi ,Di} is activated at precise time instants, determined by the period Pi , and

must meet a given deadline Di . For scheduling policies to be effective at ensuring the

satisfaction of deadline constraints in complex systems, schedulers use information

about the Worst-Case Execution Time (WCET) Ei of a task τi on the given hardware.

Similarly, a set C = {c1, . . . , cp} of p surveillance cameras transmits video streams

to a monitoring station. Each camera ci has a given frame rate f i , denoting the

number of frames that the camera captures in a second. The frame rate has a direct

implication on the transmission requirements of the camera, its inverse 1/ f i being

equal to the activation period. For simplicity, we can assume that the deadline to

transmit the currently captured frame is equal to the period. Hence, in this setting,

reusing well-known CPU scheduling algorithms for network access depends on de-
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termining the Worst-Case Transmission Time (WCTT) for video frames. From the

theoretical perspective, the task set model is not as simple as a set of periodic tasks,

and can be described using a multiframe model [Mok and Chen, 1997], as will be

shown in the following. Also, video encoders are very complex and the frame size

depends heavily on the encoded scene. We therefore cannot compute precise upper

bounds — e.g., using static analysis or formal methods — that guarantee that the

given size is never exceeded. We therefore limit ourselves to the computation of quasi

Worst-Case Transmission Times (qWCTT). We have experimentally verified that our

estimate of the upper bound is valid in most cases and we have not encountered any

case in which a frame exceeding our estimated upper bound is not a result of software

bugs.

This paper contributes to the state of the art of real-time systems (and real-time

surveillance video streaming) by:

• Determining a combination of measurable parameters that can accurately pre-

dict the expected H.264 frame sizes;

• Computing reasonable estimates of upper bounds for the qWCTT of frames

of different types over a network, casting the problem of scheduling switched

Ethernet network access into a multiframe non-preemptive scheduling problem;

• Conducting a thorough experimental campaign to validate our findings and the

given models, providing parameters for different camera models and circum-

stances and allowing researchers to use the derived models to verify real-time

properties on the network transmission time.

From the industrial perspective, the relevance of this paper is in enabling infrastruc-

ture tailoring for a video surveillance system and selecting quantities like the total

required network bandwidth to guarantee a given video stream quality.

In the following, we review the H.264 standard and terminology in Section 2.

Section 3 then discusses our models; enumerating the parameters, explaining how to

measure them when needed, and showing the equations used to determine the frame

sizes. Section 4 presents related efforts and Section 5 shows experimental results

obtained with 6 different cameras in a laboratory environment and 24 different real-

life surveillance scenarios. We finally conclude the paper in Section 6.

2. Background on Video Encoding

This section provides a brief overview of H.264, also called MPEG-4 part 10 AVC,

which currently is the de facto standard for video encoding and decoding1. Table 1

presents a recap of the acronyms used in the paper.

H.264 is a video compression standard that defines how a video should be decoded.

The implementation of the encoding is left to the manufacturer’s discretion. The

1 The first official version H.264 version was approved in March 2003 [ISO/IEC MPEG & ITU-

T VCEG, 2003; Wiegand et al., 2003] and has since evolved over time. The standard now

includes more features and modes, the latest version being approved in April 2017 [ITU-T,

2017]. The MPEG LA organization administers most of the licenses for patents applying to

this standard.
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Table 1. Nomenclature: Acronyms.

Acronym Brief Explanation

GOP Group of Pictures: Set of one I-frame and multiple P- and B-frames. The

number also represents the amount of frames between two consecutive I-

frames

HDR High Dynamic Range: Technique used to enhance video, that typically

allows frames to include more details and be sharper

IDR Instantaneous Decoding Refresh: I-frame that imposes a refresh, i.e.,

following frames must not need any information from frames prior to the IDR

I-frame

QP Quantization Parameter: Compression parameter defined in the H.264

standard, higher numbers indicate more information loss

SAO Size of Average Object: Reflects the expected distance to an object in an

image, determined by factors like the zoom level, field of view, and lens type,

as well as placement of the camera

WCET Worst-Case Execution Time: Upper bound on the time it takes for a task

to execute on a given hardware platform

WCTT Worst-Case Transmission Time: Indicates the maximum time it takes to

transmit a frame of the video using the available network bandwidth

qWCTT quasi Worst-Case Transmission Time: Indicates a non-exact upper bound

for the transmission time of a frame using the available network bandwidth

standard describes a block based hybric codec, i.e., a video is decomposed in blocks

of data for encoding. To allow for video compression, H.264 uses motion-compensated

encoding, i.e., it describes a frame by referencing parts of other frames, thus capturing

the motion of objects across different frames [Wiegand et al., 2003]. A stream encoded

with H.264 contains a sequence of frames, these frames are not necessarily encoded

following the display order or time they were captured. Based on the frame encoding,

it is possible to distinguish between three different types of frames: Intra frames (I-

frames), Predicted frames (P-frames), and Bi-directional predicted frames (B-frames).

• I-frames are (usually2) self-contained. An I-frame contains the full image and

does not need additional information in the decoding process. In terms of en-

coding, these are fast and easier to encode, as all the information should be

present in the resulting frame and no extra buffer containing other frames are

necessary. In terms of size, on the contrary, these are the most space-consuming

type of frames.

• P-frames are encoded using information contained in the current frame and

in previous ones (up to the last self-contained I-frame). In the encoding of a

P-frame, part of the image can be encoded using references to previous ones

with extra information to reproduce the difference, instead of repeating the

information. This allows the encoder to compress the frame, reducing its size,

at the cost of additional computation and buffering.

2 If an I-frame is marked as an Instantaneous Decoding Refresh (IDR), its encoding is self-

contained. In most cases, this is true, but there are certain conditions in which this does not

hold. Since we are interested in estimating the upper bounds, we can safely assume that the

upper bound of an I-frame is self-contained.
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I1 B2 B3 P4 B5 B6 P7 B8 B9 I10

encoded referencing I-frame

encoded referencing P-frame
encoded referencing P-frame

Group of Pictures (GOP)

Figure 1. H.264 frame sequence: I-frames, P-frames, B-frames, and Group

of Pictures.

• B-frames are encoded using both information from previous frames and informa-

tion from following frames. In a B-frame, the encoder can introduce references

to frames that come next, in display order, with respect to the current one being

encoded. B-frames require the most computational capacity for the encoding,

but are usually the lightest in terms of space consumption.

Figure 1 shows a sequence of 10 frames. The first nine frames in the example

denote a Group of Pictures (GOP). A GOP consists of an I-frame followed by a sequence

of B-frames and P-frames. The I-frame can be marked as an Instantaneous Decoding

Refresh (IDR), meaning that the following frames do not need information from frames

prior to that one in the sequence. If all the I-frames are marked as IDR points, the

decoding of each GOP is independent, otherwise it is not. The sequence of frame types

is determined and fixed by a high-level controller before the frame encoding starts.

For the sequence shown in Figure 1, the first and the last frame are encoded as

I-frames. The fourth and the seventh are encoded as P-frames. The remaining ones

are encoded as B-frames. The red arrows in the Figure indicate areas of the third

and seventh frames – respectively a B-frame and a P-frame – that are encoded as

references to the previous I-frame. The blue arrow shows an area of the third B-frame

that is encoded as reference to the following P-frame. The green arrow shows an

area of the seventh P-frame that is encoded as a reference to the previous P-frame.

These arrows are only examples and do not represent the full set of references of the

encoding.

The given “areas” are composed of macroblocks. To be more precise, a generic H.264

frame is split into multiple 16×16 squares of pixels, each of them being a macroblock.

Macroblocks are encoded/decoded separately from one another, and can be split into

sub-blocks down to a block size of 4×4 pixels. Macroblocks are also assigned a type

from the set {I, P, B}. I frames can contain only I-blocks. P-frames can contain both

P-block and I-blocks. B-frames can contain all types of blocks.

Figure 2 shows an overview of the encoding process. The input frame is divided into

macroblocks, each of them is passed to a Coder Control and to a Motion Estimation

function. The Motion Estimation function uses some previously encoded and buffered

frames, the number of them being determined by the Coder Control. These previous

frames are used to choose if the current block should be encoded:

• as a new block, containing the full information (Intra-Frame Prediction, I-block),
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Input Frame

(split into
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+
-
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Figure 2. Basic coding structure of a H.264 frame.

• by referring to a previously encoded block in the same frame, containing a

positional vector and the residual information (Intra-Frame Prediction, I-block),

• by referring to a block in a previous frame, containing a positional vector, the

frame reference, and the residual information (Motion Compensation, P-block),

or

• by referring to block in a previous or future frame, containing a positional

vector, the frame reference, and the residual information (Motion Compensation,

B-block).

The Motion Estimation function determines the cost for the four choices and selects

the most appropriate one for the current macroblock.

The residual information is then Transformed, Scaled, and Quantized according to

a Quantization Parameter (QP) to reduce its size. This is the only step where there is

information loss and the higher the QP value, the higher the loss of information. The

scaling, inverse transform and the deblocking filter allow the encoder to reconstruct

the output frame and buffer it for future encoding. The entropy coding function uses

lossless statistical compression to produce the final output frame.
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3. Frame Size Estimation

The aim of this paper is to estimate an upper bound for the size of encoded video

frames, to aid a potential external network manager towards a better scheduling of

network capacity. The largest improvement is given when information-rich frames

(I-frames) are treated separately from frames that can contain references to previous

and future frames (P- and B-frames). The small difference in size of P- and B-frames

and the similarity in the methods used for their construction justify the use of the

same upper bound estimate for the two frame types. We therefore devise two models:

an Intra Frame model for I-frames and an Inter Frame model for P- and B-frames.

In Section 3.1 we explain what are the implication for network access scheduling. In

Section 3.2 we describe the model we use for the estimation of the upper bound of the

size of I-frames. In Section 3.3 we describe how to derive upper bounds estimates for

P-frames and B-frames. In the following, we use ∝ to indicate proportionality.

3.1 Scheduling implications
Assume it is possible to compute an upper bound estimate for the size of I-frames,

denoted with I∗ and an upper bound estimate for the size of P- and B-frames, denoted

with P∗. Knowing the network speed N , e.g., 100Mbps, one can then translate these

bounds into knowledge of the WCTT for the two types of frames in the network. The

GOP parameter specifies how many “dynamic” (P- and B-) frames there are in between

two “static” (I-) frames.

In fact, when a set C = {c1, . . . , cp} of p surveillance cameras share the same

network, one can say that the i-th camera behaves according to the multiframe

task model [Mok and Chen, 1997]. The camera has a vector of execution times

[E0,E1, . . .EGOP−1] and a single period and deadline, equal to the inverse of the

frame rate 1/ f i . E0 is then equal to the upper bound estimate on the transmission

time of the I-frame I∗/N and all the other execution times [E1, . . .EGOP−1] are equal

to the upper bound estimates on the transmission time of the P-frame, i.e., P∗/N .

This allows us to reuse theoretical results developed for the specific model [Zuhily and

Burns, 2009; Han, 1998; Baruah et al., 1999; Lu et al., 2007] or for its generaliza-

tions [Baruah et al., 1999; Peng and Fisher, 2016; Stigge et al., 2011; Li et al., 2014;

Zeng and Di Natale, 2013; Ekberg et al., 2015; Chakraborty and Thiele, 2005]. In

particular, once we have determined the WCTTs for the different frame types, we can

use the analysis on non-preemptive scheduling of multiframe tasks [Andersson et al.,

2012; Baruah and Chakraborty, 2006] to determine schedulability properties for a

set of video-surveillance cameras communicating over switched Ethernet [Andersson,

2008].

As video encoders are very complex software elements, we cannot really compute

an upper bound with static analysis or formal methods, that would guarantee that the

size will never exceed the one predicted. However, we can compute an approximation

(estimate) of such upper bound, that is proven conservative in most cases. We believe

that the very few circumstances in which the size of frames exceeds the computed

values are due to problems and bugs of the execution of video-surveillance software.

Therefore, we refer to I∗/N and P∗/N using the term quasi Worst-Case Transmission

Times (qWCTT).
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3.2 Intra Frame Model – I-frames
To determine the upper bound estimate I∗ for the size of I-frames, we isolate the

principal components that influence the amount of information included in the frame.

Many acronyms and symbols are defined in the rest of the section. Table 2 contains a

summary of the terms and constants that are needed for the estimation. The second

column of the table contains a letter explaining how the value is obtained: [C] for

computed, [K] for known, [M] for measured. Section 3.4 contains details on how to

measure the [M]-parameters given a scene and a camera model.

Three different components influence the size of the frame: (i) the resolution of

the video r, (ii) the compression level Ic, (iii) the actual camera and scene parameters

Ia. There are many alternatives to write an expression of how each of these factors

influences the size of the resulting frame. We decided to express Ic and Ia as scaling

factors with respect to the resolution of the frame, therefore writing I∗ as the product

of the three terms,

I∗ = {r · Ic · Ia} . (1)

We now provide details for each of these terms separately.

• Resolution r. The frame resolution r is the number of pixels in the frame. Its

value is equal to the product of the height h and the width w of the frame,

r = w ·h. The resolution is linked to the number of macroblocks in the frame,

therefore it influences its size directly.

• Compression level Ic. We denote with Ic the influence of the compression,

I∗ ∝ Ic. The compression level QP determines the loss of information in each

macroblock. From the H.264 standard, we infer that “an increase of 1 in QP

corresponds to an increase of the quantization step size by approximately

12%” [Wiegand et al., 2003] (an increase of 6 means an increase of the quanti-

zation step size by a factor of 2).

In order to properly capture this relationship, we define a reference QP, denoted

with QPref, and express Ic as a function of the difference between the current

value and the reference value, ΔQP = QP−QPref. We select QPref = 28 as the

baseline. This choice is arbitrary, but represents a commonly used value, and

does not affect the generality of the approach. ΔQP is used to scale the frame

sizes between two compression levels, according to the relationship Ic = 2−
ΔQP

6 .

The expression in Equation (1) thus becomes

I∗ = {r · Ic · Ia}=
{

r ·2−ΔQP
6 · Ia

}
. (2)

• Actual camera and scene parameters Ia. The last component that influences

the size of an I-frame includes a mix of camera and scene parameters, that we

denote with Ia for “actual”. Ia includes two different terms, Ia = Id +nc,�. The

first one, Id , is related to how many details the scene has and how well the

camera is able to retain that information. The second one, nc,� is related to the

amount of noise generated in the camera. I∗ then becomes

I∗ = {r · Ic · Ia}=
{

r ·2−ΔQP
6 · Ia

}
=

{
r ·2−ΔQP

6 · (Id +nc,�
)}

. (3)
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The detail influence Id , captures how the scene details and their perception at the

camera level affect the size of the frame. These can be separated into two categories:

(i) scene-dependent parameters (each camera reacts differently to them, but they are

a property of the scene), (ii) camera-dependent parameters. Parameters in the first

category should be measured, while parameters in the second category are either

measured or known, e.g., available from the camera manufacturer.

In the first category, we include the scene illumination �, the scene detail level

ds, and the nature parameter n. In the second category, we include the camera detail

level dc, the enhancing factor e induced by features like High Dynamic Range (HDR),

and the Size of the Average Object (SAO) in the scene, which depends for example on

the zoom level enforced by the camera. The resulting Id is the product of all these

factors. In fact, the factors are known or measured as the relative difference that they

produce in the I-frame size.

The frame size is greatly influenced by the illumination of the surroundings �,

given that more light allows the camera to capture the scene better while the absence

of light hides details in the image. The value of � represents the ratio between

the current illumination level and a reference one, it is is measured in a controlled

environment with predetermined light levels. The result of the measurement is a

value � ∈R+ |0.25 ≤ �≤ 1. We consider three different light levels: low, medium, and

high. A low light scenario is a scene recorded at night time, without any major light

sources. A medium illumination scene is a night time scenario, with some light source

illuminating the scene. A high illumination scene is a daylight scene, or a well lit

indoor environment such as an office or a store. The high illumination scenario used

as basis for scaling the remaining ones. This means that each camera at high light level

has �= 1, and values for middle and low level are scaling factor that decrease the size

of the frame. Given a camera model, these values can be determined experimentally

as described in Section 3.4.

Directly connected with the light factor, is the level of details in the scene ds.

The scene detail level represents how many details there are in a scene, and can be

measured in the field based on the different scenes. The resulting value is a number

ds ∈R+ |500≤ ds ≤ 2000 expressed in millibits per pixel. Section 3.4 describes how to

conduct field measurements.

We have experimentally found that the detail influence is also highly correlated to

the amount of nature in the scene—lawns, bushes, trees, and similar. These features

increase the difficulty of the encoding process, forcing the encoder to include more

details in the resulting image, especially in the presence of wind. A high level descrip-

tion of the scene (e.g., a road, a garden, an office) allows one to provide an estimate of

the amount of nature present in the frames. The nature factor n is expressed as the

portion of the scene that includes natural elements, n ∈R+ |0≤ n ≤ 1. It can be easily

measured on the field by taking a frame and computing a rough estimate. Typically,

indoor scenes have a nature factor n = 0, while forest scenes have a nature factor n = 1.

Common values for an outdoor parking lot are between 0.5 and 1. The factor included

in the computation is (1+n), as the presence of nature only adds complexity to the

scene, compared to the baseline.

The camera properties should be taken into account when computing the detail

influence. The factor dc is used to scale the frame size taking into account factors like
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Table 2. Terms and Constants used in the Estimation of the upper bound

for the I-frame size.

Acronym Brief Range or

or Symbol Explanation Typical Values

dc [M] Camera detail level: camera specific

constant that reflects the camera ca-

pacity to retain scene details

dc ∈R+ |0.1≤ dc ≤ 10

ds [M] Scene detail level: indicates the total

amount of details in the scene

ds ∈R+ |500≤ ds ≤ 2000

e [M] Enhancement factor, indicates the

effectiveness of High Dynamic

Range (HDR) or similar technology

e ∈R+ |1≤ e ≤ 1.35

h [K] Height of a frame in pixels ~200–4320

I∗ [C] Upper bound on the size of I-frames

Ia [C] Influence of camera and scene

Ic [C] Influence of the compression level

QP

Id [C] Influence of the detail level

� [M] Scene illumination: it indicates the

luminance (amount of light) in the

scene, lower values indicate less

light

� ∈R+ |0.25≤ �≤ 1

n [M] Nature factor: amount of nature

(trees, bushes, etc) in the scene

n ∈R+ |0≤ n ≤ 1

nc,� [M] Noise level: camera specific constant

indicating the amount of noise in

the camera, capturing characteris-

tics like sensor size and type; lower

values indicate indoor high light

and higher values low-light environ-

ments

nc,� ∈R+ |1≤ nc,� ≤ 500

QP [K] Quantization Parameter: reflects the

frame compression, higher numbers

indicate more information loss

QP ∈N+ |1≤QP≤ 51

QPref [K] Reference value used in measure-

ments for the Quantization Parame-

ter QP

28

ΔQP [K] QP−QPref

r [K] Frame resolution (number of pixels

in the frame)

~64000–35389440

SAO [M] Size of Average Object: reflects the

expected distance of an object in an

image, determined by factors like

the zoom level, field of view, and lens

type, and placement of the camera

SAO ∈R+ |0.5≤SAO≤ 1.5

w [K] Width of a frame in pixels ~320–8192
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the sensor types, lenses properties, etc. The constant value dc represents how well

the camera captures the details in the scene and how sharp they are. A measure of

dc can be obtained with respect to a standard camera. The camera detail level dc can

be measured for a given camera as detailed in Section 3.4.

The dynamic range of the scene, together with the camera’s ability of capturing

it through various image enhancement techniques such as HDR is modelled using

the enhancement factor, e. If one assumes that the different light ranges have the

same bitrate characteristics and that the camera auto-exposure will select the range

filling the most pixels then e ∈R+ |1≤ e ≤ 2 . There are two corner cases, 1 and 2. e = 1
describes a scene with no additional dynamic range to capture, such as an indoor scene

or a foggy day scene. e = 2 describes a scene where half the the frame is low dynamic

and the other half is high dynamic, such as an indoor scene with large windows. An

average value for all real world scenarios lays in between the two. The cameras that

we tested had on average a 35% larger I-frame size when HDR was enabled, inducing

e ∈R+ |1≤ e ≤ 1.35.

Another important factor affecting the I-frame size via Id is the size of typical

objects and details in the scene, denoted with the term SAO. This parameter can be

approximated based on a combination of the distance to the scene, the zoom level and

the field of view. The effect of this is to reduce the I-frame size for scenes where the

objects are large, since the amount of details in a typical object usually does not scale

with resolution. Section 3.4 provides an explanation of how to estimate this parameter.

The last parameter that we need to include is nc,�, which captures the influence of

noise generated in the camera (which in the end influences the size of the I-frame). We

assume that the camera is the only source of noise, but the parameter value varies with

the amount of light �. In fact, the amount of noise is in direct relation to the scene

noise level. The more light there is, the more sensor saturation, the more photons

the sensor receives, and the less noticeable the camera noise becomes. The noise

level is heavily camera dependent, and related to both hardware (optics and sensor)

and software (exposure strategies, noise filtering technologies, and image settings).

Depending on the different light conditions �, the noise level can be measured. Values

are nc,� ∈R+ |1≤ nc,� ≤ 500. The procedure to measure nc,� is described in Section 3.4.

Considering all the contributions to the upper bound estimate I∗, and substituting

Id and nc,� in Equation (3), we can finally write

I∗ = ·· · =
{

r ·2−ΔQP
6 · (� ·ds · (1+n) ·dc · e ·SAO+nc,�

)}
, (4)

obtaining our desired expression for the I-frame size upper bound estimate.

Figure 3 illustrates the results that we obtain using Equation (4) with a default

camera. The figure represents data obtained with three different 1080p videos: v1, v2,

and v3. The videos were encoded using different QP values in a standard setup where

we know lighting conditions, detail level of both the scene and the camera, the size

of objects, the enhancement features and the noise. We record I-frame sizes during

the encoding with varying QP values, shown as dots in the Figure. The three lines

represent the estimation obtained with Equation (4), which upper bounds the dot in

almost every case.
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Figure 3. Measured I-frame sizes and calculated ones for different videos,

varying QP.

3.3 Inter Frame Model – P-frames and B-frames
The same reasoning we used to estaimte the upper bound of I-frames can be used

to estimate the upper bound of the size of frames that can be encoded referencing

macroblocks in other frames. The three components that provide contributions to the

size of a P- and B-frame are the same. We use P-frames as our basis, as we expect

the encoder to be slightly more successful in encoding B-frames, therefore P-frames

should represent an upper bound estimates for B-frames too. Table 4 summarizes the

additional terms that are defined in this Section.

Using scaling factors with respect to the resolution (as we did for the I-frame), we

define

P∗ = {r ·Pc ·Pa} . (5)

The first element contributing to the size of the frame is the resolution of the image

r. The second and third components respectively are related to compression (Pc) and

to the actual parameters of the camera and scene (Pa).

P-frames are highly correlated with neighboring frames, due to the compression

algorithm. This makes the compression factor for P-frames larger than the one for I-

frames and Pc < Ic. The relation between the compression parameter (QP) and frame

size that we used for I-frames does not apply for P-frames due to this correlation. We

introduce this by changing the compression term (the base 5 experimentally achieved

through curve fitting):

Pc = 5−
ΔQP

6 . (6)

Pa can again be split into two parts, one part relative to the influence of the

detail level Pd and the noise nc,�, which is the same term used for the I-frames,

Pa = Pd +nc,�. The difference between Id and Pd , on the contrary, lies in the motion

detected in the image. The encoding algorithm tries to find motion, starting from

the same macroblock position in buffered images. We therefore encode Pd = Pm · Id ,

defining Pm as a multiplicative gain that explains the effect of motion on the resulting

66



3 Frame Size Estimation

Table 4. Additional Terms and Constants used in the upper bound for the

P-frame size.

Acronym Brief Range or

or Symbol Explanation Typical Values

finf [K] Inferior frame rate limit 2

fsup [K] Superior frame rate limit 120

f ref
s [K] Reference frame rate used for the

motion level measurement

30

fs [K] Number of frames per second in the

video (saturated)

fs ∈ [ finf, fsup]; ~20–40

P∗ [C] Upper bound on the size of P-frames

Pa [C] Influence of camera and scene

Pc [C] Influence of the compression level

QP

Pd [C] Influence of the detail level

Pm [C] Influence of motion

μs [C] Motion level: fraction of the image

that is expected to be moving

μs ∈R+ |0≤μs ≤ 1

μx [M] Motion encoder efficiency: reflects

the ability of efficiently encode mov-

ing object, an encoder with a large

motion search window will have a

low motion cost

μx ∈R+ |0≤μx ≤ 1

frame size, refining Equation (5) into

P∗ = {r ·Pc ·Pa}=
{

r ·5−ΔQP
6 · (Pm · Id +nc,�

)}
. (7)

The influence of motion on the P-frame size Pm is affected by three factors: (i)

the frame rate fs, (ii) the scene motion level μs, and (iii) a camera motion cost, which

reflects how well the H.264 encoder captures encoding of moving objects, which we

call motion encoder efficiency μx.

• Saturated frame rate fs: Pm is directly linked to the frame rate of the video:

the lower the frame rate, the more difference there will be between consecutive

frames, the larger the motion step will be and the more objects would have

moved. This larger gap will translates into higher chances of a motion miss

by the encoder, and leads to higher bandwidth consumption. At extremely high

frequencies or extremely low frequencies, the frame rate effect saturates. We

therefore impose thresholds on the frame rate, forcing it to belong to the interval

[ finf, fsup]. We have experimentally determined good values for finf and fsup

and respectively set them to 2 and 120. Using experimental data, we have

determined that Pm is proportional to the inverse square of the video frame

rate Pm ∝√
fs

−1
.

• Scene motion level μs: The motion level of a scene is a measurable quantity

at a certain reference frame rate f ref
s , in our case equal to 30. This means that

Pm ∝μs ·
√

f ref
s . The motion level determines the portion of the image that has
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Figure 4. Measured P- and B-frame sizes and calculated ones for different

videos, varying QP.

moved from one frame to the next. If accurately known, μs can be uniquely

used and varied per frame. However, since the primary use case of our upper

bound is to estimate the required bandwidth there is a strong added benefit in

simplifying the analysis. For simplification, we only use a generic set of possible

motion levels: high, medium, and low. For high motion scenes, μs is typically

around 0.15. For medium motion scenes, its value is around 0.07, and for low

motion scenes 0.01.

• Motion encoder efficiency μx: The motion encoder efficiency is a measurable

quantity per camera. The camera encoding capabilities are often dependent on

the encoder capabilities and efficiency. The motion encoder efficiency can be

measured, as explained in Section 3.4.

Including all the terms specified above, one can write Pm = μs ·μx ·
√

f ref
s / fs, and

therefore, substituting Pm in Equation (7), we obtain our upper bound estimate

P∗ = ·· · =
{

r ·5−ΔQP
6 ·

(
μs ·μx ·

√
f ref
s / fs · Id +nc,�

)}
. (8)

Figure 4 illustrates the results that we obtain using Equation (8) with a default

camera with known parameters. The figure represents data obtained with three dif-

ferent 1080p videos, v1, v2, and v3. The lines represent the estimation obtained with

Equation (8), which upper bounds the measured values, plotted with dots. We also

report the measured size of I-frames for the same videos with asterisks.
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Figure 5. Image laboratory used to determine characteristics related to the

camera and the scene.

3.4 Model Calibration
As indicated above, different constants need to be measured for the various cameras

and scenes, in order to be able to extract meaningful numbers for Equations (4)

and (8). These characteristics can be grouped in different sets: (i) platform-related, (ii)

camera-related, and (iii) scene-related.

• Platform-related characteristics. The motion encoder efficiency μx is related

to the platform (mostly the encoder) that is being used. In principle, the scene

is also important in this case, but a scene-independent approximation can be

computed. For each encoder generation and brand, the estimation of μx is

done by isolating the encoder, or an equivalent encoder model, with a series of

predetermined video sequences, encoded using varying compression.

• Camera-related characteristics. The three characteristics that we need to

measure among the camera-related ones are dc, nc,�, and e. They are respec-

tively: (dc) the ability of the camera to retain scene details, (nc,�) the amount of

noise that the camera generates in specific light conditions, and (e) the enhance-

ment factor added by technology like HDR. These are constants that summarize

many different physical elements like the sensor size and quality.

• Scene-related characteristics. Four scene-related characteristics should be

measured: the scene level detail ds, the amount of nature n, the Size of the

Average Object in the scene, SAO, and the amount of light �.

Measurements should be collected in a reproducible environment. In our case, we

collected the data in a dedicated laboratory. The main idea is to be able to reproduce

certain scene conditions. The environment must contain different levels of details. It

should be possible to shoot videos of areas with few or no details, as well as others

with many details. It should also be possible to control the amount of light, at least
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to reproduce three different light conditions — high, medium, and low. Finally, there

should be some reproducible source of motion, e.g., a fan or a toy train. The position

of the camera with respect to the scene should be fixed in advance and should be

reproducible as well. Figure 5 shows the laboratory in which the tests to compute

the above mentioned parameters were conducted. Most measurements are conducted

using a reference camera, and then for a new camera some additional data is collected

to compare the camera to the reference one.

To determine the parameters we follow a specific procedure, both for the reference

camera and for the model that we are trying to profile: (i) we record (repeatable)

scenes with no motion, motion, no details, details, in three different light levels; using

the compression level QPref; (ii) we extract the frame sizes for all the I-frames and

P-frames in the video; and (iii) we compute statistics for the videos, the average and

maximum size of I- and P-frames.

For the camera detail level dc, we compute the average frame size (for all the set

of recorded videos), including both I-frames and P-frames and compare them with the

values obtained with the reference camera. Denoting with Savg the average frame size

of the camera under test and with Sref
avg the one of the reference camera, dc = Savg/Sref

avg.

We repeat the same considering only low light conditions, and compute nc,� exactly

using the same formula. The value of e for a given camera is determined by computing

the ratio of the average frame sizes with HDR activated and deactivated.

To compute scene-level measurements, there are two alternatives. The first one

is to physically record videos from the location where the camera should be installed,

and the second one is to film similar scenes multiple times, and re-use the average

measured parameter for similar scene types. We denote with SI,avg the average size

of I-frames measured in bits for these measurements. We also want to collect videos

done with the zoom level set to 50% for this case. The average size of the I-frames for

this zoom level is indicated with SI,50%,avg.

The reference camera is used to measure the scene detail level ds. Using the set

of videos recorded from similar or the same scene, ds is computed as the average size

of I-frames expressed in millibits per pixel, ds = SI,avg ·1000/r. The scene illumination

� is measured by comparing the laboratory result with the scene results using the

actual camera to be used. From the laboratory results, we take videos recorded in

high illumination scenes and compute the average size of I-frames for these videos

as SI,�=1,avg. We then compute � as �= SI,�=1,avg/SI,avg. The amount of nature n is

computed by looking at how many pixels in a frame are covered by nature.

Finally, we need to measure the size of the average object SAO. SAO is determined

as SI,50%,avg/SI,avg. The SAO levels can be, for simplicity, divided into three levels:

large, medium, and small. As a general rule of thumb, one can determine the SAO

level for 1080p video such as: (i) Large SAO: Objects taking up more than 1% of the

pixels. An example is a licence plate camera, commonly setup to capture mainly a car

with sufficient margin around it. (ii) Medium SAO: Objects are between 1% and 0.01%

of the pixels. This is the most common case. (iii) Small SAO: Objects are very small,

less than 0.01% of the pixels. This is sufficient only for scene awareness, i.e. knowing

what happened in the scene, but does not permit to identify objects.
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4. Related Work

The ultimate goal of this paper is to enable scheduling of network bandwidth in a

video-surveillance system, utilizing the available bandwidth as much as possible. This

goal can be achieved in many different ways.

One alternative to better utilize network resources is to reduce the amount of sent

information by exploiting better compression and enhanced encoding. A lot of research

has been devoted to adapting video stream quality to fit network channels [Rinner

and Wolf, 2008; Ramos et al., 2007; Seetanadi et al., 2017; Kotra and Fohler, 2010;

Kotra and Fohler, 2011; Almeida et al., 2007]. For example, adaptive strategies have

been developed for MJPEG encoding [Seetanadi et al., 2017; Almeida et al., 2007],

MPEG-2 [Kotra and Fohler, 2010], and MPEG-4 [Kotra and Fohler, 2011]. Another

alternative offer variable network channels [Wang et al., 2008; Seetanadi et al., 2017].

In this work, we investigate estimation of the WCTT for frames over a network, which

is related to these works, but takes a different route. The aim of this paper is to

devise a reasonably accurate model to aid scheduling decisions, without introducing

adaptation.

To the best of our knowledge, there are two known alternative methods to estimate

the frame size, and in turn the expected video bandwidth needed for the video trans-

mission. These methods are based on other encoding methods (respectively MJPEG

and MPEG-4) and aim to provide an estimate of the expected frame sizes. To the best

of our knowledge, we propose the first frame size estimation for MPEG-4 part 10 AVC

(H.264).

We denote the MJPEG method with LIN. This method only considers the com-

pression parameter (QP for H.264 videos), and scales the frame size linearly accord-

ing to such a parameter that we name ql . Given a maximum size, identified with

the term smax, the frame size s(ql ) is computed as s(ql ) = ql · smax. The param-

eter ql indicates the quality of the encoding, and relates, as indicated previously,

to the Quantization Parameter QP. The scale and logic used are different and in

MJPEG ql ∈ [0.01,1.0], 1 being the lowest compression and 0.1 the highest, therefore

ql = 1.01− (QP/51). In the case of a 1080p YCbCr color video with 8 bits per pixel,

smax = 1920 ·1080 ·8 ·3 = 49766400 [bits per frame]. This model is used for exam-

ple in [Seetanadi et al., 2017; Seetanadi et al., 2017] to devise a control strategy to

determine the quality to be applied given a target bandwidth consumption.

We call the MPEG-4 model RQM. This model is used in [Almeida et al., 2007] and

described in [Ding and Liu, 1996]. It uses curve fitting to determine the parameters

of a rate-distortion curve, modeled with a Gaussian random variable. Denoting with

α a constant accounting for overhead bits, with β a constant that varies with the

resolution and amount of motion in the video, with qr the compression level for

MPEG-4 (qr ∈ [1,31]), and with γ a constant that varies depending on the frame

type (paper [Ding and Liu, 1996] providing recommended bounds of γ ∈ [0.5,1] for

I-frames and γ ∈ [0.5,1.5] for P-frames), the size of the frame can be written as

s(qr)=α+β ·1/qr
γ.

Notice that neither LIN, nor RQM compute proper upper bounds. They rather compute

estimates of the frame size. We therefore do not expect them to be suitable for upper

bounding the size of frames and obtaining WCTTs.
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Table 5. Measured camera-related parameters.

Model dc nc,l (high �) nc,l (medium �) nc,l (low �) μx

A 1.00 2.50 02.75 022.2 0.450

B 0.98 0.25 02.75 230.0 0.450

C 1.23 0.35 01.10 102.0 0.450

D 0.54 0.75 04.05 005.6 0.400

E 0.81 1.25 12.00 035.0 0.400

F 1.03 2.25 02.7 119.0 0.425

5. Experimental Results

In this section we present our experimental evaluation. We conducted many tests with

different cameras and in different scenarios to validate the upper bounds estimates

computed with our technique. We present two different categories of tests. Section 5.1

shows the results obtained for a controlled environment and a repeatable video, com-

paring our estimation strategy with state-of-the-art techniques. Section 5.2 presents

a stress-test where we report the aggregate results of a large experimental campaign.

To conduct a comprehensive evaluation, we used 6 different camera models, and

deployed them in 24 real-life (surveillance) scenarios. We refer to the different camera

models using letters from A to F. Camera A was used as reference camera for the

parameter estimation discussed in Section 3.4. To show the versatility of the model

we use different parameters, resolutions, etc. Also, Camera C is a thermal camera.

Table 5 contains the camera-related parameters that do not change with the scenario.

Parameters that change with the scenario will be discussed in the corresponding

sections.

5.1 Frame-by-Frame Evaluation
We present here a first validation experiment done with our reference Camera A. We

recorded two videos of the same scene in our laboratory. The scene has a lot of details.

The laboratory allows us to move the camera with predictable motion and control the

amount of movement introduced in the image. Our aim is to show a frame-by-frame

comparison between our frame size estimation and the state-of-the-art techniques

discussed in Section 4.

The two videos differ in the amount of motion that is introduced3. A toy, present in

the scene, allows us to introduce very limited but non-zero motion in both cases. In the

first video, we also sharply changed the position of the camera. This simulates a fast

movement for a video-surveillance camera. In the second video we kept the camera

still, thus the only movement comes from the toy. The first video is characterized by a

large amount of motion μs, while the second video has a very low μs.

3 The two videos are available online: https://www.youtube.com/watch?v=614BbbhD56M (high-

motion), and https://www.youtube.com/watch?v=q4j3LlVrOls (low-motion). We have manipulated

them to also visually show the motion vectors detected for both the original videos: https:
//www.youtube.com/watch?v=5YrxlGhadsY (high-motion), and https://www.youtube.com/watch?v=
cfrO8CZQa-E (low-motion)
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Figure 6. Results of the comparison experiment with the high- and low-

motion video.

The Camera A parameters for the two videos are: camera level detail dc = 1,

enhancement factor e = 1.35 (HDR), width w = 1920 [pixels], height h = 1080 [pixels],

frame rate fs = 25 [frames per second], QP= 29, noise level nc,� = 2.5, motion encoder

efficiency μx = 0.45, GOP= 64. The scene parameters are: no nature, n = 0, very good

illumination, � = 1, scene detail ds = 780 [millibit per pixel], and size of the average

object SAO= 1.

Figure 6 shows the results we obtained for the two videos. Each plot represents 200

frames of one video, the top one being the high-motion one and the bottom one being

the low-motion case. The black bars represent the real frame sizes measured after the

encoding. The circles represent the estimated upper bound on the frame sizes provided

by the algorithm presented in this paper. The squares show the estimate produced by

the LIN model, which does not take into account the difference between I, P, and B

frames. Finally, the squares represent the estimate produced by the RQM model.
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For the RQM model, we used to the low-motion video to tune the parameters α,

β, and γ, as recommended in [Almeida et al., 2007]. The tuning resulted in α= 0.55
and β = 1.7. As γ changes depending on the frame type, we fit γI = 0.5 and γP =
4 separately. The RQM tuning resulted in average errors on I-frames and P-frames

respectively of 1.80% and 1.38%, which indicate very good performance for the low

motion video. The square points in the lower plot of Figure 6 are therefore a posteriori

estimations, and are clearly a very good fit for the video, despite the presence of a few

outliers. The RQM model neglects motion — i.e., the β parameter is not sufficient to take

motion into account. In fact, when the parameters determined with the low-motion

video are used for a priori estimating the size of the frames in the high-motion video,

the estimate frame size greatly underestimates the real value. The RQM approximation

is therefore not a good fit to upper bound the size of the frames.

On the contrary, the LIN model gives very conservative results for both the high-

and low-motion video, as its only parameter is a translation of the encoding quality

QP. These are too conservative to be used in any practical setting, since the estimates

are roughly 30 times as large as the real values. The LIN approximation is therefore

also not a good upper bound for the size of the frames.

In the case of our upper bound estimates I∗ and P∗, the circles represent for

both plots a priori estimates based on the parameters that we have selected and on

a standard computation of the motion level μs based on the percentage of pixels that

differ from one image to the next (which could be determined before the encoding

step). Roughly, the computed upper bound estimates are twice as large as the real

values. While this could be reduced with a more conservative setup of parameters, we

believe that there could be a risk of cases in which the real frame size exceeds the

upper bound estimate. In the full length of the two videos (low-motion 751 frames,

high-motion 376 frames) this never happens for the low-motion case, and happens

five times for the high-motion case. Inspecting these five occurrences prompted us

to suspect some capturing error or some encoding miss, possibly due to the sharp

movement.

5.2 Stress test
The purpose of the stress test is to verify that we obtain a reasonably good estimate of

the bandwidth consumed by cameras to transmit their frame streams to a base station.

We deployed our cameras in real-life surveillance scenarios and collected video streams

for a time up to five days. We then measured the expected bandwidth consumption

using estimates of the parameters (e.g., instead of computing precisely the motion

level μs, we guessed it based on the type of recorded scene). We compared the measure

expected bandwidth with the real bandwidth requirements — the videos’ bitrates.

The characteristics of the tested scenarios and the obtained results are summarized

in Table 6, where br represents the bitrate, and b̂r its estimate.

The scene in scenarios 1a–1f is a highly illuminated parking lot, recorded with

camera A (e = 1.35,w = 1920,h = 1080). Scenarios 2a–2k are videos from the surveil-

lance system of a hotel complex. Camera B (w = 1920,h = 1080) in scenario 2a points

at the reception entrance. In scenario 2b, Camera B (w = 1920,h = 1080) captures the

emergency exit. Camera C (w = 1920,h = 1080) in scenario 2c films the control room.

Camera A (w = 1920,h = 1080) in 2d is directed to the parking entrance. Camera C
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Table 6. Parameters and results of the experiments conducted with 6 cam-

eras in 24 real-life surveillance scenarios.

fs QP GOP μs � ds SAO br b̂r

1a (A) 25 28 62 ≈ 1% 1 780 1.00 1040 1275

1b (A) 25 28 62 ≈ 3% 1 780 1.00 1600 1806

1c (A) 25 28 62 ≈ 9% 1 780 1.00 3200 3398

1d (A) 12 32 32 ≈ 1% 1 780 1.00 544 600

1e (A) 12 32 32 ≈ 3% 1 780 1.00 720 723

1f (A) 12 32 32 ≈ 11% 1 780 1.00 1200 1219

2a (B) 15 28 62 ≈ {2,3}% {1, 0.8} 810 1.00 794 991

2b (B) 15 28 62 ≈ 0% 1 710 0.45 78 208

2c (C) 15 28 62 ≈ 1% 0.8 820 0.45 243 287

2d (A) 15 28 62 ≈ {3,5}% {1, 0.8} 990 0.45 669 765

2e (C) 15 28 62 ≈ 1% 1 810 1.00 513 761

2f (C) 15 28 62 ≈ 1% {1, 0.8} 1400 1.00 333 490

2g (C) 15 28 62 ≈ 5% 1 920 0.45 409 456

2h (F) 15 28 62 ≈ 0% 0.8 710 0.45 45 96

2i (A) 15 28 62 ≈ 0% {1, 0.5} 780 1.10 722 793

2j (F) 15 28 62 ≈ 4% 0.8 780 1.00 139 144

2k (A) 15 28 62 ≈ {4,3}% {1, 0.5} 780 1.00 194 220

3a (A) 25 28 32 ≈ 21% 1 1200 1.00 10000 10051

3b (A) 25 28 32 ≈ 4% 1 1200 1.00 2800 3116

4a (C) 30 18 32 ≈ 6% 1 660 1.00 4215 4551

4b (C) 30 18 32 ≈ 2% 0.5 780 1.00 4966 5321

5 (D) 25 24 4 ≈ 2% 1 990 1.00 42500 46529

6 (E) 25 32 32 ≈ 4% 0.5 660 1.00 2837 2878

7 (A) 15 36 30 ≈ 20% 1 1050 1.00 620 681

(w = 1920,h = 1080) in 2e films the reception. Camera C (w = 1280,h = 720) in 2f cap-

tures the corridor with shops. In 2g, Camera C (w = 1280,h = 720) is directed towards

the elevator. Camera F in 2h films the staircase. Camera A (w = 1280,h = 720) in

2i streams a parking lot with nature n = 0.5. Camera F (w = 704,h = 480) in 2j and

Camera A (w = 704,h = 480) in 2k film parking lots without nature. When the table

contains two numbers for the motion level μs and for the light �, this means that in

the estimation the numbers are adjusted for day and night capture. The set includes

first the day and then the night value. The value of e is set to 1 for 2b, 2c, 2e, 2f, 2h,

2j, which means HDR is turned off. In the other scenarios, HDR is turned on with a

contribution of e = 1.35. The two instances of Camera A (e = 1.35,w = 1920,h = 1080)

used in scenario 3a and 3b are placed in bridges on the highway and monitor car

traffic. The two instances of Camera C (e = 1) of scenario 4a and 4b monitor a

perimeter of a parking lot and the parking lot itself. In 4a the resolution is set to

w = 640,h = 480, while in 4b the resolution is set to w = 384,h = 288. In scenario 5,

Camera D (e = 1,w = 3840,h = 2160) streams a 4k video of the corner of a city street.

Camera E (e = 1.35,w = 3072,h = 1728) in scenario 6 is filming a shipyard loading

dock. Finally, in scenario 7 Camera A (e = 1.35,w = 1280,h = 720) is facing a city

intersection.

Despite the high variety of scenes, the varying light conditions, the different cam-
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eras, and the different motion levels, the estimated bitrate b̂r (upper bound estimate)

is always higher than the measured bitrate br . In most cases, the two values are

very similar to one another (see for example scenario 1e or 3a). In a few cases, like

2b and 2h, it is possible to see that the upper bound overestimates the video bitrate

(respectively 2.65 and 2.13 times as large). However, we believe these numbers provide

a reasonable upper bound estimate and permit to correctly dimension the network

bandwidth, aiding scheduling decisions.

6. Conclusion and Future Work

In this paper we presented a practical contribution on how to derive upper bounds

estimates for the size of video frames in a streaming system. We have discussed which

characteristics influence the bandwidth requirements of different cameras, derived

models for the upper bound estimates of the size of I-, P-, and B-frames. We have also

systematized the knowledge on the involved quantities and parameters. We divided

such quantities into parameters that are known, characteristics that are measurable,

and values that are computable. We have then taken the measurable characteristics

and discussed how to conduct field tests to obtain reasonable values for them, and —

when possible — how to guess based on the environmental conditions. Some parame-

ters can be more or less easily estimated online (motion, light level, noise level, scene

type...). Estimating these parameters on the source could lead to a more accurate and

less pessimistic short term prediction. More frame by frame tests as well as highly

challenging scenarios will also be ran in order to enhance the model.

The derivation of reasonable upper bounds estimates for the WCTT allows us to

precisely formulate the problem of allocating network bandwidth to a set of cameras

in a switched Ethernet network environment and to reuse well-known scheduling

results. We have shown with a thorough experimental campaign that our estimated

upper bounds are more reliable, and closer to the real frame sizes than state-of-the-art

estimation techniques.

A proper estimation of the frame sizes is the key to properly dimension network

infrastructures for real-time video-surveillance systems. Our results demonstrated

that we can dimension the network infrastructure, being able to accurately predict

the bitrate consumption of video streams. Our findings have a significant industrial

relevance, as they permit to reduce the infrastructure cost and allows us to reuse

known scheduling results.
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Control-Based Resource Management

for Storage of Video Streams
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Abstract

Distributed surveillance systems typically consist of multiple cameras

that need to store some fraction of their video streams at a central storage

node. The disk space of this node constitutes a shared resource. In the

paper the disk space allocation is formulated as a PI control problem and

a new method for enforcing global resource constraints inspired by anti-

windup tracking is proposed. The approach is evaluated by simulations.
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1. Introduction

A common scenario in many control applications is the need to share some resource

among a number of clients or subsystems. This happens particularly often when

control is applied to computer and communication systems. In these cases a limited

shared resource, e.g., communication bandwidth, CPU capacity, or memory, should be

shared between a number of clients. The problem, however, does not appear only in

computing systems, but can be found in other industrial sectors as well. One example

is process automation, where common resources such as cooling water or steam need

to be shared between several subsystems or process units.

In many cases, the amount of shared resource that should be allocated to each

client is given by the output of a controller, i.e., by the control signal, which has the

objective to keep some quality or performance related variable at a desired value.

Hence, the overall architecture of the system consists of a number of control loops that

interact with each other through the fact that the sum of all the control signals, i.e., the

total amount of resources required, is limited. When there are hard or soft limitations

on the total amount of resource it is also necessary to have some mechanism for

prioritizing among the control loops so that the most important loop should be effected

the least by the resource limitation, i.e., static priorities, or the loop that need the

resources the most should be effected the least, i.e., dynamic priorities. We propose an

approach that supports both options.

In this paper, the focus is storage systems for video surveillance. Video surveillance

systems are increasingly prevalent in society. They are used at different levels and

at different scales – e.g., cities, public places, companies, homes, etc. A typical video

surveillance system comprises multiple, in some cases several hundreds or thousands,

cameras, disseminated over an area and recording 24/7. Today, the video industry is

mainly focused on using IP cameras, which stream videos that are compressed using

the H.264 standard ([Richardson, 2010]), also called MPEG-4 part 10 AVC, which is

currently the de facto standard for video encoding and decoding.

The cameras send their video streams over a network to one or several storage

stations, where the video streams are monitored, e.g, by a human operator looking for

abnormal events. Doing this requires the operator to have access to a sliding window

of the video stream, showing, e.g., the last 15 minutes or 1 hour of the video. Storing

the associated video frames requires an amount of memory that varies depending on

the size of the video frames, i.e., on the dynamics of the scene. Video streams from

multiple cameras typically share the available storage which then constitutes a shared

resource that all cameras in the system compete for.

The allocation of storage to a video stream can be viewed as a control problem

(see Fig. 1) where the measured variable is the length, or duration, of the stored

video sliding window. This is compared to the desired duration, e.g., one hour, and the

resulting error is fed to a controller, e.g., a PI controller, that calculates the amount of

memory or disk space that the video stream may use. The frames in the video stream

and the storage that they require can be viewed as a disturbance acting on the system.

We propose an approach for managing shared resources that is inspired by the

tracking, or back-calculation, approach for handling anti-windup in controllers with

integral actions that is commonly used in PID control. In this paper tracking is instead
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Figure 1. Video storage feedback loop.

used to ensure that the sum of the control signals is limited.

The objective of the approach is simplicity, i.e., the approach should fit well with

simple PID control schemes, and to be as decentralized and asynchronous as possible.

An alternative approach would be to use conventional Model-Predictive Control (MPC)

([Rawlings and Mayne, 2009]). However, this is more centralized and does not fit well

with PID control. Also, the model of the storage used here is non-linear which would

in the MPC case imply the use of non-linear MPC techniques. The price to pay for

decentralization and lack of synchronization is that the global control signal constraint

must be soft in nature.

The following are the contributions of the paper.

• The allocation of disk space for storing a video stream is formulated as a control

problem.

• A method, that, to the best of our knowledge, is new for enforcing global con-

straints on the control signals for a set of controllers with integral action is

proposed. The method is inspired by anti-windup tracking commonly used in

PID control.

• The application of the proposed method to control of computer and commu-

nication systems where a limited resource is shared between a set of user or

clients.

• The method is applied to the video storage application with promising results.

1.1 Outline of the paper
In Section 2 the model used for the video storage is described. Tracking-based anti-

windup is shortly recapitulated in Section 3. The proposed general approach for han-

dling global control signal constraints is presented in Section 4 together with a linear

system example. In Section 5 the result of applying this to video storage is described.

Extensions to the approach are presented in Section 6. Finally, the paper ends with

suggestions for future work and conclusions in Section 7.

1.2 Related Work
Control has been applied to the problem of determining the best setting for video

streaming ([De Cicco et al., 2011; Cucinotta et al., 2009; Palopoli et al., 2009; Yin

et al., 2015]). In this case, the focus was on optimizing the video quality subject to

bandwidth constraints. This problem is equivalent to meeting a certain quality of
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service for a real-time ([Cucinotta et al., 2004]) or multimedia ([Palopoli et al., 2008;

Cucinotta et al., 2011]) application. The problem that we are facing is different. In

fact, we are trying to determine what is the fraction of videos that we should store

to satisfy (legal) requirements and at the same time avoid exceeding the amount of

available storage. In this work we do not consider adapting the compression level of

the cameras, although this would be a possibility.

The general formulation of our problem is allocating a limited resource to multiple

actors. This problem has been encountered in different circumstances when controlling

computing systems, e.g., in the management of a set of thread ([Hellerstein et al.,

2004]), CPU scheduling ([Leva and Maggio, 2010]), or core allocation ([Maggio et al.,

2010]). However, the solutions that were found either require domain knowledge or

do not scale well. We aim at providing a general mechanism to handle the problem

of partitioning the shared resource among multiple competing actors requiring the

least possible amount of domain knowledge. In our case the actors are the cameras

and their associated storage controllers. The objective has been an approach that is

as decentralized as possible and fits well into a PID control setting.

2. Storage of Video Streams

Video storage is usually done at central locations, which could be edge storage, e.g.

a computer with hard drive(s) at each geographical location or global storage, e.g. in

a data center. Usually, the camera system is designed/expected to stream on average

a certain amount of data per fixed duration, e.g. a Gigabit per day, week, or month.

The amount of disk space allocated is then calculated with some safety margin. This

storage behaves like a ring-buffer where the oldest content is deleted to allow new

content to be stored. It can be deleted due to requirements (new video frames need

to be stored in the system) or for legal/policy reasons (the video content should not

be stored longer than a certain time). In this paper we only consider the first case:

recycling for memory re-use.

The storage cost has a a large impact for companies. Hence, they try to minimize

the amount of storage needed, while fulfilling the requirements in terms of duration,

resolution, quality, etc. This is true especially when many video streams should be

stored simultaneously.

In our work, we consider the dual problem: we are given a fixed amount of available

global storage, i.e., disk space and we want to optimize its usage. We want to keep

as much video as possible, satisfying given quality constraints. Our measurement

variable is the stored video duration of the produced video, e.g. the amount of past

video being stored in memory for each video stream. This problem can be viewed as

a distributed control problem where each camera has a video recording duration set-

point, e.g. camera 1 should save video for 2 days, while camera 2 should save it for 1

day. Cameras will generate video data based on their environment and configuration.

They require a certain amount of disk space to be able to meet the recording duration

set-point.

In a camera system, multiple cameras are competing for the same pool of storage

and need then to adjust also based on the global constraint. The situation in case of

two cameras is shown in Fig. 2.
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Figure 2. Multiple video streams sharing the same disk space.

The open loop performance of the ring-buffer model is illustrated in Fig. 3. The

figure shows the stored video time, the amount of memory/disk space allocated to the

buffer, and the frame size. We assume that initially the buffer is full. After a while

the allocated storage increases by a step. This causes the stored video time to grow

linearly as new frames are entered into the buffer until the buffer becomes full again.

After a while the allocated storage is decreased, again using a step. This causes the

stored video to drop instantaneously as a number of frames will be flushed from the

buffer. At t = 3000 the average frame size is decreased. This causes the stored video

time to increase linearly as more frames will fit in the buffer. Similarly when the frame

size increases the stored video time will decrease linearly as there is room for fewer

frames. Hence the model consists of a saturated integrator where the gain depends

on the frame size and frame rate in combination with an instantaneous change when

data is flushed.

The corresponding closed loop performance is shown in Fig. 4. Here a discrete-time

PI controller with a sampling rate equal to the frame rate, which we assume is constant

and equal to 30 fps, is used as the controller. However, also other controller types could

be used as long as they contain integral action. The ring buffer is implemented as

a Simulink s-function. The plot shows the stored video time including the set-point

value of 900 seconds, the allocated storage, and the average frame size. At t = 1000
the average frame size increases and the stored video time drops. This causes the

controller to increase the allocated storage until the stored video time returns to the

set-point. At t = 4000 the frame size decreases and the stored video time consequently

increases. The controller reacts by reducing the allocated storage until the stored video

time is back at the set-point.
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Figure 3. Stored video time, allocated storage, and frame size in open loop.
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Figure 4. Average frame size, target storage and buffer behavior in closed

loop (K=5000, Ti=0.002).
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3 Tracking-Based Anti-Windup

The actual size of the frames that are used in the simulations varies substantially

from frame to frame. A sign of this is the rather noisy stored video time plot in Fig. 4.

The reason for this is the nature of a H.264 stream. The stream consist of a sequence

of groups of pictures (GOP). Each GOP consist of one I-frame followed by a sequence

of P-frames and B-frames. I-frames are usually self-contained, i.e., they contain a full

image and do not need additional information for the decoding. The P and B-frames

are encoded using information contained in other frames. As a result of this the I-

frames are substantially larger than the P- and B-frames. In the simulation a stream

consisting of frames with the sizes shown in Fig. 5 has been used, i.e., the I-frames

are 5 times as large as the other frames. This has consequences for the ring buffer

storage. For example, entering a new I-frame may cause several old P- and B-frames to

be removed. The overall size of all the frames depends on things such frame resolution,

camera noise, scene illumination, compression level, motion level, etc, according to the

model in [Edpalm et al., 2018]
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Figure 5. Frame size detail in closed loop.

3. Tracking-Based Anti-Windup

We propose a scheme for managing the allocation of shared resources, that is inspired

by the tracking approach for handling anti-windup in controllers with integral action

that is commonly used in PID control ([Åström and Murray, 2008]).

A controller with integral action together with an actuator that becomes saturated

can cause problems. If the control error is so large that the integrator causes the control

signal to saturate the actuator, then the feedback loop will be broken. The reason for

this is that the actuator will remain saturated also if the plant output changes. The

integrator may then integrate up to a very large value. When the error finally becomes

small again, the integral value may be so large that it takes a considerable amount

of time until the integral assumes a normal value again. This effect is known as

integrator (or reset) windup and typically causes over and undershoots in the output

response.

The tracking or back-calculation approach to anti-windup is based on the addition

of an extra feedback loop inside the controller. The feedback is generated by adding

a simple saturation model of the actuator, and forming an error signal es as the

difference between the estimated, possibly saturated, actuator output u and the output

87



Paper II. Control-Based Resource Management...

K
∑

∑ 1
s

K
Ti

∑

1
Tt

v

es

e

e

u

+−

Figure 6. A PI controller with tracking-based anti-windup.

v that the controller would like to send out. This error is then fed back to the integrator

through a gain 1/Tt. When the actuator is not saturated the error es is zero and

the controller is not affected by the extra feedback. When the actuator is saturated

the extra feedback loop will try to force es to zero, by modifying the value of the

integrator. This means that the integrator is reset (or back-calculated), so that the

controller output is at the saturation limit. The reset is done with a time constant Tt,
also known as the tracking time constant, rather than instantaneously. One reason

for not this is to avoid that the integrator is reset erroneously, for example due to

measurement noise.

A PI controller with tracking-based anti-windup is shown in Fig. 6. The corre-

sponding code for the continuous-time PI controller in Equation 1

u(t)= K
(
e(t)+ 1

Ti

∫t
e(s) ds

)
, (1)

when the I-part is discretized using forward approximation is given by the following

very commonly used pseudo-code adopted from [Wittenmark et al., 2003]. The code is

executed each sampling period h.

1 y = readY () ;
2 ref = r e a d R e f e r e n c e () ;
3 e = ref - y ;
4 v = K * e + I ;
5 u = max ( u_low , min (v , u_max ) ) ;
6 writeU ( u ) ;
7 I = I + ( K / Ti ) * e + ( h / Tt ) *( u - v ) ;

If the tracking time constant Tt is selected as Tt = h then the reset will be performed

instantaneously. This is also known as deadbeat tracking.
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4. Tracking for Handling Global Resource Constraints

The proposed method is based on calculating the sum of the control signals that the

individual controllers would like to send out and compare this value with Umax, i.e.,

the maximum amount available. The difference between these values can be viewed

as a tracking error signal, eg, that is fed back to each individual controller through

the gains KT /ωi where KT is used to scale the gains and ωi is a weight (or priority)

that gives control over the relative importance of the controllers, i.e., which controllers

that should be affected the least and the most by the lack of resources.

The rational behind the method is that as long as the sum of the control signals

is larger than Umax then the error will be negative and this will cause the integral

parts in all the controllers to decrease until eventually the sum of the control signals

equals Umax. The individual rates at which this takes place is controlled by ωi . A

small value of ωi will make the gain large. Hence, the rate at which the integrator is

adjusted will be large. A large value of ωi will make the gain small and, hence, the

rate at which the integrator is adjusted will be small. The result of this is that the

control loops with large weights will be affected less by the lack of resources compared

to those with small weights.

The proposed method is shown in Fig. 7 for the case of two controllers. The global

tracking feedback loops are shown in red. The lower limit in the global saturation block

can be set to zero and the upper limit is set to Umax. The local saturation blocks could

also have a lower limit of zero and the upper limit can be used to further constrain

the value of the control signal.

4.1 A simple example
As a simple example of the approach we use three PI-controllers that each control a

first-order linear system given by Gp(s)= 1/(s+1). However, note that it is not a model

of the storage system used in the simulations in 5, it is only intended as an example

of the new approach for handling global control signal constraints.

The PI parameters are equal for the three controllers (K = 2 and Ti = 1) and the

set-points are chosen as 10 for all three loops. Since the closed loop systems have static

gains 1, the control signals will be equal to the reference values as shown in Fig. 8.

Here also the sum of the control signals is shown (equal to 30) and Umax which in

this case is set to 40. Hence, in the first part of the plots the global tracking is not

invoked.

However, at time t = 6, we lower Umax to 20. Now the amount of available resources

is less than what is needed. All the controllers have the same weight, i.e., they will

share the available resources in a fair way and all will obtain the control signal equal

to 20/3 = 6.67. Finally, at time t = 12, we change the weights so that controller 1 has

highest weight, and controller 3 lowest weight. This will change the control signals.

Controller 1 will be affected the least by the resource constraint and controller 3 the

most.

As shown by the example the proposed approach will adjust the control signals

of all the involved controllers. In some cases this may be undesirable and one would

prefer to only adjust a subset of the controllers, e.g., one might want to put the full

adjustment on the control loop with lowest priority if that is possible and, if not, then
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Figure 7. A tracking-based approach for handling global control signal con-

straints. The figure shows the case for two local controllers.

continue with the loop with the second-lowest priority. This would require that the

tracking is done instantaneously in a similar way as deadbeat tracking in ordinary

anti-windup tracking. Another extension could be to use dynamic priorities instead of

static. For example one could let the adjustment on the control loops depend on how

much more resources they need than what is available.

The proposed method, however, also has issues. In the previous figure, the param-

eters were KT = 100, ω1 = 1, and ω2 = 0.5 and ω3 = 0.4, i.e., the corresponding tracking

time constants are substantially smaller than the time constants of the closed loop

systems. If we, however, change this by setting KT = 1 then the system will converge to

another, undesired, equilibrium where the tracking error eg is different from zero and,

consequently, the control signal constraint is violated, see Fig. 9 where the change
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Figure 8. Three identical controllers which each has a control signal equal

to 10. The upper plot shows the set-points (all equal) and the measurement

signals whereas the lower plot shows the control signals, the sum of the control

signals (in blue) and Umax in red. At time 6 the resource constraint is activated

and at time 12 the relative weights of the controllers are changed.
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Figure 9. The same example as in Fig. 8 with only the control signal infor-

mation shown. At time 10, KT is changed from 100 to 1.
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Figure 10. The same example as in Fig. 8 now with KT = 100 all the time

but with input pulse disturbances.

occurs at time t = 10. This equilibrium occurs when ∀k, (Kk/TIk)ek + (KT /ωk)eg = 0,
i.e., the total input to all the integral parts equal 0, while eg �= 0.

In addition to this, it is possible for the control signal constraint to be violated

due to high-frequency disturbances. An example of this is shown in Fig. 10 where

KT = 100 all the time but pulse disturbances are introduced at the input to the plants

at time 4,8, and 14. This disturbance again causes the control signal constraint to

temporarily be violated.

5. Results

We consider three cameras with similar (but independently generated) frame sizes

but different duration set-points and a global constraint on the amount of resources

available. The simulation is started in steady state (the cameras have filled their

storage and reached their duration set-point). At time t = 1000s the average frame

size of camera 1 increases from 200 kbits to 250 kbits, followed shortly after by camera

2 and then camera 3. At time t = 4000s the average frame size drops down to 150

kbits until t = 7000s where it goes back to 200 kbits. We number the different phases

to ease understanding (phase 1 is from t = 0 to 1000, phase 2 from t = 1000 to 4000 ...)

In the first simulation (Fig. 11), the feedback tracking gains have been set to the

the same value (100), i.e., each camera has same priority and should react equally to

the global constraint. In this simulation both I and P/B frames are included according

to Fig. 5 although in the plots only the average frame size is shown. At phase 2 the

rise in frame size triggers an increase of storage until the global maximum is reached.

From this point the global storage amount does not increase anymore due to the

constraint and, thus, the duration of video stored for each camera drops until reaching

the new equilibrium. When the frame sizes decreases again in phase 3, the amount of

storage needed decreases and, thus, the duration increases until the duration set-point

is reached. From this point, the storage required decreases. At phase 4, the average

frame size goes back to 200 kbits and storage rises to compensate, keeping the defined

set-point. We can see in this example that the proposed system works well.
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The second simulation (Fig. 12) presents the same behavior as in the first one but

here the cameras have different tracking gains. In this simulation we can see that the

global behavior is very much like the one in (Fig. 11) but the durations are different

due to that the global constraint is affecting different cameras more or less depending

on the their tracking gain. Camera 3 with the lowest priority (highest tracking gain)

will suffer the most from the limited resources and camera 1 with the highest priority

(smallest tracking gain) will be affected the least. also this behavior corresponds to

what could be expected.

In the simulations the basic version of the approach without any PI-tracking is

used. The maximum value of the constraint violation is 0.04 per cent, which easily

could be managed by adding a safety margin to the global constraint. It could also be

reduced by increasing KT .
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Figure 11. Stored video time, allocated storage, and average frame size. The

weights of the control loops are identical. The red signals are for Camera 1, the

blue for Camera 2 and the green for Camera 3. The sum of the control signals

is shown in black and the constraint in dashed black.Uniform the heights of

the captions.
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Figure 12. Stored video time, allocated storage, and average frame size

with different weights (ω1 = 100, ω2 = 133.3, ω3 = 200). The red curves are for

Camera 1, the blue for Camera 2 and the green for Camera 3. The sum of the

control signals is shown in black and the constraint in dashed black.
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6. Extensions

The problems mentioned in Section 4.1 motivate extensions to the proposed approach.

We present here two (partly overlapping) extensions:

1. Safety Margin, and

2. PI-based Tracking.

The easiest way to address the problems above is to introduce a safety margin,

i.e., to use an Umax that is smaller than the true resource constraint. The problem

with this approach is that it still does not provide any guarantees that the resource

constraint will be met. However, in practice this can work quite well.

The background for the the second extension is the risk of ending up in the

undesired equilibrium discussed in the previous sub-section and shown in Fig. 9, i.e.,

where eg �= 0. In an ordinary control loop, the remedy to remove stationary errors is

to introduce integral action. This can be used also at the global tracking level, i.e.,

by introducing a PI-controller that aims to remove the global tracking error eg. The

approach is illustrated in Fig. 13. The input to the PI controller is the original global

tracking error and the set-point is 0, i.e., we want the PI controller to ensure that

global tracking error really is zero. The output of the PI controller is connected to the

KT /ωi blocks in the same ways as the global tracking error was in the case without

the additional PI controller.

Using this approach it is possible to remove the stationary error as seen in Fig. 14.

Here the same setup as in Fig. 9 is used, i.e., with KT = 1. From t = 0 to t = 10 the

ordinary global tracking approach is used. At t = 10 a properly tuned PI controller

according to Fig. 13 is activated and the stationary error is removed. However, also

in this case the global control signal constraint can be violated due to measurement

noise.

∑
∑

PI

KT
ω2

KT
ω1

+−

eg

Ref= 0

u1

u2

Figure 13. PI-based Tracking. The blocks should replace the right hand part

of the block diagram in Fig. 7.

96



7 Conclusions and Future Work

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

Time

C
on

tr
ol

si
g
n

a
ls

u1
u2
u3

Usum

Umax

Figure 14. The same example as in Fig. 9 with only the control signal

information shown. At time 10, PI-based global tracking is activated.

7. Conclusions and Future Work

A method for enforcing soft resource constraints for the case when the constraint is

expressed as a global limitation on the sum of the control signals has been proposed.

The method is inspired by tracking-based anti-windup for PID control. It has been

applied to storage of video stream generated by surveillance cameras. This problem

can be modelled as a set of control loops where each controller decides how much disk

space is available for the corresponding camera. The approach has been evaluated in

simulation with very good results.

The proposed method and its application to video storage can be continued and

further extended in a number of ways. Concerning the method the following are

possible future directions. The formal properties of the approach need further study

to, e.g., analyze the multiple equilibria that may occur. The approach can also be

modified in different ways. The approach could be applied to controllers without any

integral part. In that case the global tracking signal could instead be added to the

control signal v. One could also consider to instead add the global tracking signal to

the set-point, e.g.„ to reduce the set-point in case of resource shortage. It is also likely

that the approach can be used for certain other types of global constraints, e.g., on the

process outputs. Finally, the use of dynamic priorities needs to be further explored.

For the video storage application the most natural next step is to implement it

on physical storage and use real video streams. Another possibility is to also include

the shared communication resource and use the potential that the cameras have

for adapting the compression rate and the frame rate. One limitation that has not

been considered in this paper is the delay between the storage set-point request and

allocation which could result in a control limitation. This should be introduced and

studied. The communication bandwidth is also a shared constrained resource that

interacts with the storage resource in interesting ways. For example, if a camera does

not receive enough storage resources then it does not need so much bandwidth and,

consequently, if it does not receive sufficient bandwidth then it does not require as

much storage. A combined control approach for this is a challenging goal.
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Paper III

Dynamic Management of Multiple

Resources in Camera Surveillance

Systems

Alexandre Martins Karl-Erik Årzén

Abstract

Distributed camera surveillance systems typically consist of multiple

cameras that need to store some fraction of their video streams in a

central storage node. The disk space of this node as well as the network

between the cameras and this central node constitute shared resources.

In the paper the disk space allocation as well as the network bandwidth

reservation are solved using techniques normally associated with process

control. These include mid-range control and tracking-based control of

global shared resources. The approach is evaluated by simulations.

© Originally published in 2021 American Control Conference (ACC), Pages 2061-2068,

New Orleans, United States, 2021. Reprinted with permission. The article has been

reformatted to fit the current layout
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1. Introduction

Computer and communication systems are interesting and challenging application ar-

eas for control, e.g., [Pothukuchi et al., 2020]. However, in many applications, control

is used only for individual control loops. A large-scale system, e.g., a camera surveil-

lance system, contains multiple subsystems at different levels that interact in often

very challenging ways. This can be compared with large-scale industrial production

processes where control is successfully used as a core technology for guaranteeing

performance and stability, and where a number of techniques have been developed for

combining multiple individual controllers in order to fulfil different global objectives.

One of the aims of this paper is to show that these ideas also apply to computer and

communication systems, with camera surveillance systems as the particular case.

A common scenario is the need to share some resource among a number of clients or

subsystems. In these cases a limited shared resource, e.g., communication bandwidth,

CPU capacity, or memory, should be shared between a number of clients (tasks,

processes, nodes, ...). In many cases, the amount of resource that should be allocated

is given by the output of a controller, i.e., by a control signal, which has the objective

to keep some quality or a performance related variable at the setpoint. Hence, the

overall architecture consists of a number of control loops that interact with each other

through the fact that the sum of the control signals, i.e., the total amount of resources

required, is limited. In our previous paper [Martins et al., 2020] an approach for

managing shared resources inspired by the tracking or back-calculation method for

handling anti-windup in PID control, was proposed as a way of handling shared disk

space resources in video storage systems. The approach was developed to fit well with

a PID-based solution, which is often sufficient for these types of systems that are often

of low order and very decentralized, as opposed to, e.g., a conventional MPC approach

that also could be used to handle this type of control signal constraints. The price

to pay for decentralization is that the global control signal constraint must be soft

in nature. Here this approach is extended to simultaneously manage two dependent

resources: shared disk space and shared communication bandwidth. The underlying

control architecture is based on cascaded PID control and mid-ranging.

Video surveillance systems that are increasingly prevalent in society are used at

different levels and scales – e.g., cities, public places, companies, homes, etc. A typical

system comprises multiple (in some cases several hundreds or thousands) cameras,

disseminated over an area and recording 24/7. Today, the video industry focuses on IP

cameras that stream videos that are compressed using the H.264 standard [Richard-

son, 2010], also called MPEG-4 part 10 AVC, which is currently the de facto standard

for video encoding and decoding.

The cameras send their video streams over a shared network to one or several

storage stations, where the video streams are monitored by a human operator either

in real-time ("live") or by inspecting stored video sequences. The former requires that

the latency of the video stream is not too long. The latter requires the operator to

have access to a sliding window of the stored video stream, showing, e.g., the last

15 minutes or 1 hour of the video. Storing the associated video frames requires an

amount of memory that varies depending on the size and rate of the frames, i.e., on

the dynamics of the scene. Video streams from multiple cameras typically share the

available storage which then constitutes a shared resource that the cameras compete
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1 Introduction

Figure 1. System overview.

for, see Fig. 1. Similarly, transmitting the video streams from the cameras to the

storage station requires network bandwidth that also constitutes a shared resource.

Both allocation of storage and allocation of network bandwidth can be viewed as

control problems. In the storage case, the measured variable is the duration of the

stored video window. In the sequel this is also referred to as the retention. This is

compared to the desired duration and the error is fed to a controller that calculates

the amount of memory or disk space that the video stream may use and/or the

video compression level. The frames in the video stream and the storage that they

require can be viewed as a disturbance acting on the system. In the network case, the

measured variable is the latency that is compared to the desired latency. The delay

can be affected either by changing the share of the total network bandwidth that is

allocated to the stream or by changing the video compression level. High compression

means that the video frames are smaller and hence, faster to transmit. Changing the

video compression also influences the storage allocation – a video stream with high

compression requires less disk space than a video with low compression. Hence, the

two control problems are coupled.

The following are the contributions of this paper.

• The allocation of disk space and network bandwidth for a video stream are

formulated as control problems.

• A decentralized way to manage and prioritize constrained resources is proposed.

• It is shown how cascaded PID controllers and mid-ranging in combination with

the tracking-based approach for managing shared resources from [Martins et

al., 2020] can be used to control two dependent shared resources.
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1.1 Related Work
Control has been applied to the problem of determining the best setting for video

streaming [De Cicco et al., 2011; Cucinotta et al., 2009; Palopoli et al., 2009; Yin

et al., 2015]. In this case, the focus was on optimizing the video quality subject to

bandwidth constraints. This problem is equivalent to meeting a certain quality of

service for a real-time [Cucinotta et al., 2004] or multimedia [Palopoli et al., 2008;

Cucinotta et al., 2011] application. The issue that we are facing is different. In fact, we

are trying to determine what is the fraction of videos that we should store to satisfy

(legal) requirements and at the same time to avoid exceeding the amount of available

storage.

The general formulation of our problem is allocating a limited resource to multiple

actors. This problem has been encountered in different circumstances with controlling

computing systems, e.g., in the management of a set of threads [Hellerstein et al.,

2004], CPU scheduling [Leva and Maggio, 2010], or core allocation [Maggio et al.,

2010]. However, the solutions that were found either require domain knowledge or

do not scale well. We aim to provide a general mechanism to handle the problem of

partitioning the shared resource among multiple competing actors requiring the least

possible amount of domain knowledge. In our case the actors are the cameras and

their associated storage and network controllers. The objective has been an approach

that is as decentralized as possible and fits well into a PID control setting.

1.2 Outline of the paper
Camera surveillance systems and how they have been modeled in this paper are dis-

cussed in Section 2. The control system architecture including the network bandwidth

and storage controllers are presented in Section 3. Simulated evaluation results are

given in Section 4. Finally, conclusions and suggestions for future work are discussed

in Section 5.

2. Camera Surveillance Systems

A typical surveillance system consists of multiple network video cameras that stream

continuous video 24/7 to a central storage which can be local or remote. The video

streams are encoded using the H.264 video compression standard (see [Richardson,

2010]). H.264 is a block-oriented, motion-compensated integer-DCT coding technique.

A H.264 video consists of a sequence of groups of pictures (GOP). Each GOP comprises

one I-frame followed by a sequence of P-frames and B-frames. I-frames are usually

self-contained, i.e., they contain a full image and do not need additional information

for the decoding. The P and B-frames are encoded using information contained in

other frames. As a result of this the I-frames are substantially larger than the P- and

B-frames. The size of typical H.264 surveillance video frames (and by extension the

bandwidth) can be predicted using the model reported in [Edpalm et al., 2018] and

developed in detail in [Edpalm et al., 2018]. An example of the expected average video

frame size for a defined sets of environment parameters is shown in Fig. 2.

Video storage is usually done at central locations, which could be edge storage,

e.g., a computer with hard drive(s) at each geographical location or global storage,
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Figure 2. H.264 average video frame size for different QP (compression)

values.

e.g. in a data center. This storage behaves like a ring-buffer where the oldest content

is deleted to allow new content to be stored. It can be deleted due to requirements

(new video frames need to be stored in the system) or for legal/policy reasons. In this

paper we only consider the first case: recycling for memory re-use. The storage cost

has a large impact for companies. Hence, they try to minimize the amount of storage

needed, while fulfilling the requirements in terms of duration, resolution, quality, etc.

This is true especially when many video streams should be stored simultaneously.

A common limitation to the amount of video stored is the amount of bandwidth

available on the network infrastructure to deliver the video to the storage endpoint.

The network infrastructure can be be tailored for the video surveillance system or, as

we see more and more frequently, tailored for a larger use case and shared among

other applications. This brings a second dimension to the video storage problem as we

need to be able to stream the video to the end point in a defined amount of time to

avoid saturation. Too high bandwidth constraints on the network infrastructure will

delay or possibly cause data packets drops, leading to high video delay and/or video

loss. This problem is even more important when the video camera system is used for

live viewing as well as recording. This requires a short transmission delay to be able

to react based on the video content.

In our work, we consider the two dimensions of the problem: we are given a fixed

amount of available global storage, i.e., disk space and we want to optimize its usage.

We also would like to limit the delay of the transmission of the video over the network.

We want to keep as much video as possible, satisfying given quality constraints, while

ensuring a bounded transmission delay. This can be made easier by selecting which

constraint is the most important for each camera. For a camera used for live viewing,

a low delivery delay is crucial, while a video dedicated to storage applications could

accept a higher delay but has higher storage requirements.

2.1 Model of the camera surveillance system
The model consists of three parts: the camera model, the network model, and the

storage model, see Fig. 3. The model is implemented in Simulink and partly makes

use of Simulink’s discrete event simulation toolbox SimEvent (as used for example

in [Harahap et al., 2016]).

The camera model consists of the encoder based on the model in [Edpalm et al.,
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Figure 3. The overall structure of the model.

Figure 4. The SimEvent model of a network channel.

2018]. It calculates the bandwidth, ω, of the video stream as a function of the compres-

sion level, qp. A number of scene and camera parameters can be given to model how

the bandwidth depends on, e.g., variations in the scene caused by changing light, move-

ments and camera/encoder capabilities. Assuming a fixed frame rate the bandwidth

can be converted into frame size, f . The cameras that we consider have 52 discrete

compression levels where 0 means lossless compression and 51 maximum compres-

sion. In the model, we, however, assume that the compression levels are continuous.

The relationship between the compression and the frame size is highly nonlinear, see

Fig. 2.

The network model assumes an ideal reservation-based network where each cam-

era is assigned a separate network channel with a channel bandwidth that constitutes

a given share, or percentage, of the total network bandwidth. These channels are used

to transmit the video stream from the cameras to the storage without any interference

between the channels. It is also assumed that a small percentage of the total network

is allocated to a special control plane channel used for exchanging control and syn-

chronization messages. These messages are, however, not explicitly modeled and are

assumed to take zero time to transmit (which is actually quite realistic since they are

very small compared to the video frames).

The channels are modeled in a rather simplistic way. It is assumed that the

network channel share is an input to the channel model and at any given moment the

sum of the shares of all the camera channels plus the control plane channel should

be less than 1, i.e., the total network bandwidth is a shared resource between the

cameras.

Each channel is modelled by the discrete sequence of frames that are queued in

FIFO (first-in first-out) order and eventually transmitted. The inputs to the channel

model are the frame size and the channel share. The outputs are the frame delay

measured as the difference in time between when the frame enters the FIFO and

when it has been transmitted and arrives at the storage.

The frame model is implemented using SimEvent, see Fig. 4. Frames and the
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corresponding SimEvent entities are created at a rate given by the camera frame rate

and with the current time and the frame size as attributes. The FIFO (first-in first-out)

entity queue has an infinite buffer, i.e., no frames are lost due to buffer overflow. The

entity server consists of one server for which the service time, i.e., the transmission

time of the frame, is calculated as the frame size divided by the channel bandwidth.

When the frame arrives at the entity terminator the delay since the frame entered

the FIFO is calculated.

An ideal reservation-based network can be approximated by a TDMA (time-division

multiple access) network protocol where the sending slots are infinitely small and the

schedule is sufficiently long to avoid quantization of the reservation shares (or budgets).

The storage model is the same as in [Martins et al., 2020]. A Simulink S-function

is used to implement a ring buffer containing a sliding window of stored frames for

each camera. The input of the model is the amount of disk space available, expressed

as a share, or percentage, of the total amount of disk space. The output is the duration

of the sliding window. If the amount of disk space increases, the stored video time will

increase linearly as new frames are entered into the buffer until the buffer becomes

full. If the amount of disk space is decreased, the stored video will drop instantaneously

as the corresponding number of frames will be flushed from the buffer. If the average

frame size is increased or decreased, the stored video time will decrease or increase

as there will be room for less or more frames in the buffer. Hence, the model consists

of a saturated integrator where the gain depends on the frame size and frame rate in

combination with an instantaneous change when data is flushed.

3. Control System Architecture

The control system architecture is based on a combination of cascaded PI controllers,

mid-ranging, and the tracking-based approach to handling shared resources proposed

in [Martins et al., 2020]. The PI controllers are all discretized versions of the standard

PI controller given by

u(t)= K
(
e(t)+ 1

Ti

∫t
e(s) ds

)
. (1)

3.1 Feedback linearization and cascade control
In the camera model the encoder is highly nonlinear. Since we can measure the

bandwidth generated by the encoder we use a PI-controller – the camera bandwidth
controller (CBC) - to help linearize it. The measured variable is the generated

camera bandwidth which is then compared to the bandwidth setpoint. The output of

this controller is the compression level of the encoder. Hence, instead of specifying the

compression level of the camera one specifies the desired output bandwidth.

The camera bandwidth controller is the inner loop in a cascade control structure

where the outer loop controls the delay of the video stream by adjusting the camera

bandwidth. The outer controller is also a PI-controller which we denote the delay
bandwidth controller (DBC). Alternatively, if the main control objective is to control

the stored display time, then the outer loop is a PI-controller that controls the stored

display time by adjusting the camera bandwidth. We call this controller the retention
bandwidth controller (RBC).
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Figure 5. Mid-range application example.

Figure 6. Mid-range controller structure. (this figure has been replaced due

to errors, please see at the end of this article for details)

3.2 Mid-range control
Cascade control is a strategy where one control signal and two measurement signals

are used to meet the control objective. The dual situation is when two control signals

are used to control one measurement signal. This situation occurs twice here. The

control system has two actuators for controlling the delay: the cameras’ share of the

total network bandwidth and the camera’s bandwidth (or compression level). Similarly

there are two actuators for controlling the stored display time: the disk space allocated

to the ring buffer and the camera bandwidth. The question then is how to combine

these two actuators in the best way.

In process control, mid-range control or simply mid-ranging, is commonly used for

this [Åström and Hägglund, 2006]. The motivating example contains two valves that

are used to control one flow according to Fig. 5. Valve v1 is small, i.e., has low control

authority, but has high resolution whereas valve v2 is large, i.e., has high control

authority, but low resolution. The solution is to use valve v1 to control the flow and

then use a so called valve position controller (VPC) that uses the control signal of

v1 as the measurement signal, and v2 to ensure that the control signal of v1 lies in

the middle of its operating range, e.g., 50%. The control structure is shown in Fig. 6.

Process P2 and controller C2 together form a fast feedback loop. The mid-ranging

controller C1 controls the valve position of controller C2 via the process output y.

In the delay control case, the channel bandwidth, i.e., the channel’s share of the

total network bandwidth, corresponds to the small valve. It is a fast actuator that

directly influences the delay but the operating range is limited since the network

bandwidth is shared among all cameras. The frame size (or alternatively the camera

bandwidth) actuator is slow since a change in frame size will not have any influence
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on the delay until all the currently queued frames have been transmitted. The limited

number of compression levels also reduce the resolution. Hence, the frame size actuator

corresponds to the large valve. The control system then consists of two controllers.

One uses the delay as the measurement signal and the channel bandwidth as the

control signal. We call this controller the delay channel controller (DCC). The

second uses the control signal of the first as the measurement signal and the camera

bandwidth as the control signal. This is the previously mentioned DBC. Thus both

are PI-controllers. The setpoint of the latter controller should be 50% of the operating

range of the controller, i.e., 0.25, in case of two identical cameras and 1/6 in case of

three identical cameras. This choice will maximize the control authority of the DCC.

Mid-range control is also used for the storage. The small actuator is the share of the

total storage amount and the large actuator is, again, the frame size (or alternatively

the camera bandwidth). The retention storage controller (RSC) uses the stored

video duration as the measurement signal and the share of the total storage amount as

the control signal, and the RBC uses the control signal of the RSC as the measurement

signal and the camera bandwidth as the control signal.

An example of how the mid-range control works for the delay control is shown

in Fig. 7. The top plot shows the delay with and without mid-ranging. The bottom

plot shows the corresponding control signals. At t = 30 the setpoint changes from

0.2 to 0.1. Without mid-ranging the delay channel controller compensates for this by

increasing the channel’s share of the total network bandwidth from 0.5 to 1.0. With

mid-ranging the delay bandwidth controller ensures that the control signal returns to

0.5 by increasing the compression level. The small undershoot that is visible can be

removed if also a feed-forward compensator is introduced between the two controllers,

see [Åström and Hägglund, 2006] pg 379. This has, however, not been considered

necessary in our case.

3.3 Tracking-based resource management
The approach that we use to handle the two shared resources is the tracking-based

resource sharing approach first introduced in [Martins et al., 2020]. The extension

here is the use of this approach for two dependent resources and their interaction

with the mid-ranging. The method is inspired by the tracking approach for handling

anti-windup in controllers with integral action that is commonly used in PID control

([Åström and Murray, 2008]). It is assumed that the amount of shared resource that

should be allocated is given by the output of a controller. Hence, the overall architecture

consists of a number of control loops that interact with each other since the sum of all

the control signals, i.e., the total amount of resources required, is limited.

The proposed method, see Fig. 8, is based on calculating the sum of the control

signals that the individual controllers would like to send out and by comparing this

value with Umax, i.e., the maximum amount available. The difference between these

values can be viewed as an error signal, eg, that is fed back to each individual

controller through the gains KT /ωi , where KT is used to scale the gains uniformly,

and ωi is a weight (or priority) that gives control over the relative importance of the

controllers, i.e., which controllers should be affected the least and the most by the lack

of resources.

As long as the sum of the control signals is larger than Umax, the error will be
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Figure 8. Tracking-based resource sharing.
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negative and this will, if the tracking time constants are substantially smaller than

the time constants of the closed loop systems, cause the integral parts in all the

controllers to decrease until eventually the sum of the control signals equals Umax.

The individual rates at which this takes place are controlled by ωi . A small value of

ωi will make the gain large. Hence, the rate at which the integrator is adjusted will be

large. A large value of ωi will make the gain small and, hence, the rate at which the

integrator is adjusted will be small. It results that the controllers with large weights

will be affected less by the lack of resources compared to those with small weights.

The global resource tracking method is used for both the network bandwidth and

the storage disk space. In the first case the approach is applied to the DCCs and in

the second case to the RSCs.

3.4 Mode Handling
A problem with the controller structure described so far is that the DBC and the

RBC both use the same actuator, i.e., the setpoint of the CBC. To handle this, two

camera-specific modes are introduced. In the live mode, it is assumed that an operator

monitors a live video stream. In that case, delay control is favored and the RBC is

simply disabled. This means that in this case, the full responsibility for controlling

the stored display time is given to the RSC without any help of the RBC.

Similarly, in the stored mode it is assumed that the operator inspects the stored

video streams. In that case, the control of the stored display time is favored and

the DBC is simply disabled. This means that in this case, the full responsibility for

controlling the delay is given to the DCC.

3.5 Dependent resources
The network bandwidth and the storage disk space are dependent resources, in the

sense that if a camera does not receive enough disk space, it does not need as much

network bandwidth and vice versa. One simple approach for handling this is to use

the same relative priority ordering among the cameras for both resources, i.e., if a

camera has high priority with respect to the network bandwidth, it should also have

high priority for the storage disk space. Using mid-ranging, however, reduces the need

for this. If a camera requires more disk space than what it can get, then the RBC
will increase the compression level, i.e., reduce the channel network bandwidth, until

the camera eventually meets its disk space requirement. Finally, the cameras in live

mode should have lower storage priority than the cameras in stored mode.

3.6 Global Controller Structure
The global controller structure is shown in Fig.9 except for the global resource tracking.

The controller contains anti-windup mechanisms not discussed here due to space

constraints. All the controllers are discrete-time controllers with a sampling rate

equal to the frame rate.

The proposed controller structure is very decentralized. The only centralized oper-

ations are the summations of the control signals, the limitation, and the multiplication

with KT which scales linearly with the number of cameras.
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Figure 9. A block diagram of the overall controller structure.

4. Evaluation and results

In order to evaluate the proposed approach four simulated scenarios are considered,

the first three with two cameras and the last with three cameras. In the first three

scenarios camera 1 (in blue) uses the live mode and camera 2 (in red) uses the stored

mode. Both cameras have a fixed retention setpoint of 200 s and a delay setpoint of

0.2 s. The cameras have the same priority in the global tracking, both for the network

channel bandwidth and the storage, in all scenarios but scenario 3 (only the camera

mode will cause different behavior in case of resource saturation). In scenarios 2 and

3, a sampling period of 10 s for the storage and 5 s for the network bandwidth was

used, this was not the case for the scenarios 1 and 4, where both used the cameras

sampling period of 1/30 s.

Scenario 1: In the first scenario, a step disturbance in the average frame size, i.e. an

offset, is added and there are no resource constraints. The result is shown in Fig 10.

The second plot shows the resulting camera bandwidths and the third and fourth plot

show the delay and the retention time. The retention plots at the beginning are not in

steady state because the simulation is started with default initial parameters. We can

see in the figure that the bandwidth changes for cameras 1 and 2 are slightly different.

This is due to the bandwidth controllers, which are chosen based on the mode of each

camera (the live camera uses the DBC while the other uses the RBC). The change

in the delay caused by the disturbance is smaller for camera 1 than for camera 2, as

could be expected since camera 1 uses live mode. Similarly, the retention changes are

much smaller for camera 2 than for camera 1.

Scenario 2: In the second scenario, resource constraints are introduced. At time

t = 500 s, a network bandwidth saturation is introduced (and kept), and at time

t = 1000 s, a global storage saturation is added (and kept). The priority for the cameras

is the same, meaning that both cameras would react in the same way to the global

resource tracking, based only on the mode it has (live or store). One can see in Fig 11,

top two plots, that the limitation of total network bandwidth at t = 500 s triggers a
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Figure 10. Scenario 1: Delay and retention for two cameras with the same

parameters. One uses live mode and the other store mode.

delay increase and that both cameras correct their channel bandwidth accordingly.

Camera 2 (store) is more impacted than camera 1 because it uses the RBC, while

camera 1 corrects the network channel as well as the bandwidth via the DBC to be

able to regulate the delay more efficiently. In the bottom two plots one can see that the

retention time for camera 1 (live) oscillates due to the delay global saturation, because

of the bandwidth adjustments to correct for the delay error. At time t = 1000 s, the

global storage amount is decreased and triggers a drop of video data stored, which

affects both cameras. Camera 2 being focused on video retention, it is less affected

than camera 1. We observe that at time t = 1000 s, the delay of the camera 2 video

rises. This is due to the camera being in retention mode and the bandwidth being

controlled by the RBC, which induces a higher bandwidth to compensate for the loss

in retention, thus creating a higher delay in the video transmission.

Scenario 3: The third scenario is similar to the second one. The difference is that the

cameras have different priorities. Camera 1 has a higher priority than camera 2 for
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Figure 11. Scenario 2: Delay and retention for two cameras with the same

parameters with live and store mode, with and without global limitations.

both delay and retention. The plots and colors are the same as for scenario 2. One can

see that during the saturation of the global network bandwidth and global storage,

(Fig. 12 top two plots) camera 1 is less affected than camera 2 by the saturation of

global resources availability. This scenario shows how the priorities can be used to

optimize even more the system by giving priority to different cameras regarding the

most critical resource needed.

Scenario 4: In the final scenario three cameras are used. The set-points are changed

during the scenario and the frame size disturbance changes every 10 s. Resource

limitations are also present. The modes of the cameras change over time but all the

cameras have the same priority. One of them uses live mode and the others store mode.

114



4 Evaluation and results

400 600 800 1,000 1,200 1,400
0.2
0.4
0.6
0.8

1 ·105

Time (s)

C
h

a
n

n
el

b
a
n

d
w

id
th

(k
b
it

/s
)

Channel bandwidth (live)

Channel bandwidth (store)

Channels sum

Channel maximum bandwidth

400 600 800 1,000 1,200 1,400

0.5

1

1.5

D
el

a
y

(s
) Delay reference

Delay (live)

Delay (store)

400 600 800 1,000 1,200 1,400

0.2
0.4
0.6
0.8

1 ·108

S
to

ra
g
e

a
m

ou
n

t

(k
b
it

) Storage (live)

Storage (store)

Storages sum

Storage maximum

400 600 800 1,000 1,200 1,400
50

100

150

200

R
et

en
ti

on
(s

)

Retention reference

Retention (live)

Retention (store)

Figure 12. Scenario 3: Delay and retention for two cameras with the same

parameters with live and store mode, with and without global limitations and

different global resource priority.

The camera using live mode rotates over time (1,2,3,1,.... etc) every 500 seconds. This

scenario is presented to show how the system would react when multiple disturbances

and changes are occurring. It is closer to a real scenario where the frame sizes could

change in a short time, and only one camera is viewed at a time.

One can notice the high frequency fluctuations due to the frame size disturbance

in Fig. 13. These disturbances come from the difference in frame size in the simulated

H.264 video. A H.264 video contains two types of frame, I-frame and P-frames, and

there are usually around 30 P-frames for one I-frame. In our simulations, an I-frame

is about 10 times the size of a P-frame.
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One can also see that the set-points for delay and retention are followed in the

periods where the global resource limitations do not limit the amount of resource

available. When the global resources are limited, the system is still stable but cannot

follow the set-points. One can further notice that the behavior of one of the cameras,

both in the delay and retention part, is always different from the other two because it

focuses on live streaming instead of storage. This demonstrates that, as expected, the

mode of the camera influences which resource is prioritized. Note that in this scenario

priorities of all the cameras are the same, meaning that they would react similarly to

a global saturation of the resource, only the mode is changing their behavior regarding

these limitations.

5. Conclusions and Future Work

In this paper we have proposed a control system architecture based on mid-ranging

and global resource tracking that is used to control, assign, and prioritize resources

in camera networks. This approach allows to address the allocation of discrete limited

resources (network bandwidth and video storage) in a distributed multi tenant setting

in order to meet multiple requirements (delay and retention time) by using common

(video bandwidth) and separate actuators (network channel and global storage space).

5.1 Future Work
There are a number of future directions for this work. Using the available model, e.g,

it is likely that performance can be further improved by introducing decoupling in the

mid-range controllers. Additional changes should be introduced within controllers to

handle saturation, and the saturation feedback could be directed to the bandwidth

controllers to improve the saturation case. Also the network model should be made

more realistic by, e.g., adding extra delay based on the total bandwidth. There are also

additional limitations that need to be addressed before applying it to a real system.

The difference in bandwidth and camera characteristics are bounded in the simulation.

In a real scenario the cameras’ characteristics (resolution, frame rate, lens, etc) and

scene differences (motion, light, etc) would generate very different bandwidth. Also

the frame size changes are bounded. In reality the frame size changes a lot within a

GOP, (I-frames are very large compared to P-frames) as well as due to motion or other

scene changes, which could generate a high variability of sizes between consecutive

frames. However, it is our belief that the proposed general controller structure would

still be applicable.
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Figure 13. Scenario 4: Dynamic scenario - frame disturbance, delay, network

bandwidth, retention, storage and modes changes, priorities are the same
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Change from original publication:

Fig.6 was wrong in the original publication in ACC 21. The original figure is shown

here. The difference is that C1 and C2 have switched place in the block diagram. The

same holds for P1 and P2.
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Paper IV

Storage Allocation for Camera Sensor

Networks using Feedback-Based Price

Discrimination

Alexandre Martins Hung-Yu Wei Karl-Erik Årzén

Abstract

Camera sensor networks, mainly with surveillance cameras, are grow-

ing in size and complexity. Storage space is the prime resource in such

systems but current surveillance setups are still very much centralized

and limited in resources due to cost and security constraints. Allocating

the correct amount of storage to each camera sensor considering their

large difference in characteristics and video content is challenging. In

this paper we propose a framework using feedback-based price discrimi-

nation of storage resources in order to guarantee a uniform quality level

of the videos in camera sensor networks, regardless of the specific cam-

era sensor parameters. We designed a lightweight solution using simple

video quality metrics, cascade control and PI (Proportional and Integral)

controllers to define the optimal price of resources per camera.

© Originally published in the Proceedings of the 11th International Conference on

Sensor Networks - SENSORNETS (SENSORNETS22), Pages 34-44, Porto, Portugal,

2022. Reprinted with permission. The article has been reformatted to fit the current

layout
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1. Introduction

The number and size of camera sensor systems used, e.g., in different types of public

spaces with surveillance cameras, are growing due to the Internet of Things (IoT)

trend and they are currently one of the major storage and bandwidth consumers. With

growing demands on high resolution, high frame rate and level of detail, the amount of

storage needed to retain these videos is a growing problem. Surveillance installations

are usually critical installations and are mostly running on dedicated infrastructures,

storing video in trusted servers owned by systems administrators. Newer installations

are usually large scale (commonly hundreds of cameras), heterogeneous and have large

differences in resource requirement. [IPVM, 2021].

In this paper we propose a lightweight solution using the price discrimination

principle from micro-economics, [Armstrong, 2008], to allocate storage resources while

separating the resource providers (i.e., the storage units) from the resource buyers (i.e.,

the camera sensors). The buyers have private information on the amount of resources

needed and act accordingly to maximize their utility (here the desire to minimize the

compression of their own video stream). The utility represents the goal the buyers

want to achieve. The storage units enforce the constraint on resource availability

through the use of pricing.

The focus in this paper is H.264 video cameras, the dominating system on the

market today. H.264 is a video compression standard based on block-oriented, motion-

compensated coding [ITU-T, 2010]. A model of the bandwidth needed/generated by a

H.264 surveillance camera was presented in our earlier work [Edpalm et al., 2018;

Edpalm et al., 2018]. This model provides an estimate of the bandwidth needs for a

H.264 video given current scene conditions and specific sensor parameters and allows

to calculate the long term resource needs for the camera as long as it maintains the

current parameters.

For a video surveillance system operator, the most important metric is the video

quality. As such they want to have the best possible system-wide video quality given

the current (mostly cost) constraints without knowledge of the prior or current char-

acteristics of each camera sensor. The video compression level of H.264 videos, qp,

determines the quality of each frame. The lower the qp value, the less compression

is applied to the frame, the better the quality but the higher the frame size. The qp
value and its variation over time have a direct impact on the perceived video quality

(using mean opinion score testing) according to [Xue et al., 2010; Xue et al., 2013;

Lin et al., 2012], i.e., the lower and less varying the compression parameter qp is, the

better the perceived quality will be. Our aim is thus to have all video cameras in the

system to deliver videos with the same compression parameter values without having

specific information about them.

The contributions of the paper are:

• A new flexible framework for facilitating resource allocation in medium- and

large-size camera sensor networks.

• The use of cascade control to decide the price of resource per camera (price

discrimination) so that the storage usage is maximized.

• A proposed utility measure for camera sensor networks based on the compres-

sion value (qp) and its deviation from a nominal value.
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2. Related work

Price discrimination is a known profit optimization method in economics, [Armstrong,

2008], but it has been mostly used for revenue maximization. A study of different

pricing schemes for maximizing revenue from selling cloud resources can be found

in [Xu and Li, 2013]. [Li et al., 2009] studied the maximum revenue achievable by

a monopolistic service provider under complete network information. Revenue maxi-

mization using price discrimination for communication network service providers was

studied in [Shakkottai et al., 2008]. Price discrimination was used in order to dis-

tribute energy between sensors in [Edalat et al., 2009]. In [Tsakalozos et al., 2011]

the same technique was used to optimally allocate virtual machines in a cloud service

infrastructure. But, to the best of the authors knowledge, however, no prior work has

used price discrimination in camera sensor networks for visual quality maximization.

Some centralized bandwidth allocation techniques optimizing the system’s com-

pression level have been proposed in [Seetanadi et al., 2018] and [Silvestre-Blanes et

al., 2011]. Centralized task allocation for collaborative radar sensors based on resource

availability and Quality of Service are proposed in [Yan et al., 2021] and [Giannecchini

et al., 2004]. An alternative but related distributed approach to assign resources are

auctions, thus second price auctions have been applied to video surveillance systems

to optimize specific applications such as area overage [Chong Ding et al., 2012; Konda

et al., 2016; Dieber et al., 2011], sensor placement [Elhamifar and Vidal, 2009; Ermis

et al., 2010] and object tracking [Qureshi and Terzopoulos, 2009; Sankaranarayanan

et al., 2008]. Auction theory has also been used to minimize content delivery delay and

caching cost for large mobile networks involving multiple stakeholders as reported in

[Li et al., 2016] or [Ghosh et al., 2004] or to allocate tasks between radar sensors as

in [Ostwald et al., 2005].

3. Architecture, valuation & framework

We consider a simplified camera sensor network with one storage unit (Network At-

tached Storage, Cloud storage or other) and I IP video cameras, each having a camera

sensor, indexed with i: {C1,C2, ...CI }. An overview of the system with I = 4 is shown

in Figure 1. Typically a video surveillance camera system is owned by a security

department, which buys/rents storage from an IT department or cloud provider at a

fixed rate. In our system, viewing quality is most important. The main system goal

is to maximize the overall global video quality given the current system constraints:

running cost and video storage size. The shared information between the devices

and the system load should be as low as possible. We therefore use the video com-

pression factor as a computation-free and simple way to measure the video quality.

The direct correlation between the perceived video quality and the compression factor

and its oscillation over time was studied in [Xue et al., 2013] and [Xue et al., 2010].

In H.264 videos, the compression factor is defined by the quantization parameter,

qp ∈ {0,1, . . . ,51} with 0 being lossless and 51 being the highest compression level

[ITU-T, 2010]. The quantization controlled by the qp value is the only non-reversible

step in the H.264 compression/decompression process impacting the visual quality.
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Figure 1. System with four cameras and one storage unit.

Every predefined period k, e.g., an hour, a day, or a week, the cameras need to

buy storage from the seller to save the video they generate, using the money at their

disposal. If the cameras run out of storage they need to wait until the next period

to buy more. At the beginning of each period, k, the cameras obtain an amount of

money, m, that they can use at their discretion to buy resources. The amount they

receive depends on the cost of running the system. Each camera sensor has a virtual

account holding the money it may use. Any remaining money can be saved for future

periods. The amount of money available for camera Ci to buy storage at the beginning

of each period k is: mi(k) = mi(k−1)+m. We do not enforce a limit to the amount of

money a camera can retain if unused. How the money is distributed and enforced is

not investigated in this paper.

It is assumed that all camera sensors in the network can communicate with the

seller and they could, e.g., be part of the same virtual network. The total quantity of

storage available by the storage provider is s and the storage space allocated to camera

Ci is si . The corresponding expected quantities are annotated with a ∗ superscript,

e.g. the expected allocated storage si to camera Ci is denoted s∗i . Only the storage

unit has storage space, i.e., the cameras are not storage providers.

3.1 Price and valuation of resources
Storage providers. The running price of each storage unit (Tbyte, Gbyte, etc.) is

determined by the storage provider. The most common approach is to use marginal

pricing, i.e., the price is defined as the running cost plus a revenue margin. The

storage provider will then charge p0 = pmin
0 + ε where pmin

0 is the running cost and

ε the revenue margin. If p0 ≤ pmin
0 the storage provider would sell at a loss. We can

calculate pmin
0 from the physical cost of hard disks, e.g., a 8Tb hard disc costs around

400$, thus pmin
0 = 0.05 $ per Gb of storage. By adding a 20% margin, we would have

p0 = 0,06$.

In our approach, the seller will instead set different (or discriminate) prices per

buyer based on the quality of the video stored by the buyer. We define the discriminate
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price of camera i at time k as pi(k)≥ pmin
0

We denote with R(k) the revenue of the seller at time k:

R(k)=
I∑

i=1
si(k) · pi(k) (1)

where pi(k) is the price set by the seller and si(k) is the amount of storage bought by

camera i at time k.

The seller wants to maximize the camera’s video quality given the current system

constraints and to adjust the price to reflect the storage limitations without sacrificing

the revenue.

The compression level, i.e., qp, of H.264 videos is part of the headers of the received

videos. Hence, in each transaction period the storage provider has access to the qp of

the received videos.

The discriminate prices are set with the help of PI controllers (one per camera)

which compute the offset Δ pi(k) to the running price p0, i.e., the discriminate price

is pi(k) = p0 +Δ pi(k). Proportional and Integral (PI) control is the most widely used

control scheme in industry [Wittenmark et al., 2003]. The equation for a continuous-

time PI controller is given by

u(t)= K
(
e(t)+ 1

TI

∫t
e(s) ds

)
, (2)

where u(t) is the control signal, e(t) the error between the desired value (or setpoint)

of the measured signal and the actual value of the measured signal, and K and TI
are constant parameters. The storage provider has one controller per camera. It uses

the current compression level, qp, of the video as the measured signal. The setpoint

is determined by a single outer-loop probing controller which monitors the amount

of storage allocated. The goal of the probing controller is to compute the desired

compression level for all the cameras so that the storage usage is maximized. Probing

control is a simple version of extremum-seeking control that is commonly used in

process control, e.g., [Akesson and Hagander, 2000] and [Dochain et al., 2011]. The

probing controller adjusts its output signal gradually until it reaches a good enough

value, probing a new value at regular intervals to check if the new optimal value has

changed.

Here the output of the probing controller is the desired system compression level

which is used as the setpoint of the inner-loop PI controllers. The output of the PI

controllers, i.e., the control signal, is the discriminate price offset Δ pi(k). In order

to maximize the used storage the compression level should be as small as possible.

Hence, the probing controller will decrease the desired compression level until the

requested storage is at or above the maximum storage available. Then it will increase

the desired compression level until the requested storage is within a safety margin

and then keep it constant. It is kept constant until either (1) the requested storage

is again at or above the maximum storage available, in which case it will start to

increase the desired compression level again, or (2) a time-out event occurs, in which

case it will again start to gradually decrease the desired compression level.

The cascade architecture with n cameras is shown in Figure 2 and the state

machine of the probing controller is shown in Figure 3. The sampling period of the
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Figure 2. Cascade control structure, one probing controller decides the set-

point of the price controllers.

Figure 3. Probing controller state machine. The double border indicates

that this is the initial state. The margin avoids rapid state changes close to

the maximum storage amount. The Timeout event occurs when the Constant

setpoint state has been active longer that a specified interval.

controllers is the transaction period and they are executed at the beginning of each

period.

The effect of the feedback-based price discrimination is that the compression levels,

qp, of the cameras will converge to the setpoint value of the PI controllers, i.e., the

value set by the outer probing controller.

If the total amount of storage requested by the cameras exceeds the total amount

of available storage for sale, the storage provide will provide each camera Ci with

an amount of storage si proportional to its demand compared to that of the other

cameras.

Cameras. In order to decide how much storage a camera Ci wants to buy it needs

to know how much storage it needs to store a video of a certain quality. An estimate

of the storage needed for each qp is obtained using the frame size estimation model

provided in [Edpalm et al., 2018]. This model is based on empirical values from

multiple real surveillance videos. We denote the estimated storage at the period k for

camera i, s∗i,k(qp), it provides for each qp the expected amount of storage necessary

for a video with the current parameters (e.g., motion in the scene, light level, amount

of nature) and settings of the specific camera sensor (e.g., frame rate, group of picture

length). An example of s∗i,k(qp) is shown in Figure 4. The higher the qp is, the smaller
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Figure 4. s∗i,k example.

the amount of storage needed and the lower the visual quality of the video.

At the beginning of each transaction period k, each camera Ci calculates s∗i,k(qp),
i.e., an estimate of the storage need for each qp ∈ {0,1, . . . ,51} given the actual scene

and camera sensor parameters which are assumed to be measured or estimated by the

camera. The s∗i,k(qp) functions differ from camera to camera and over time because

each camera sensor which equips camera Ci has different settings and overlooks a

different non-constant scene.

Camera Ci uses the actual curve to decide how much storage it should buy with

its available money mi(k), see Section 3.1. We do not impose any limitation on the

saved funds of cameras and unused money could be saved indefinitely.

Camera utility. The more storage the camera has, the lower qp it can use to

compress its video and therefore the better the video quality [Xue et al., 2010] will be.

Oscillations between qp values have a large impact on the visual quality of the video

because of the visible jumps in visual quality [Xue et al., 2013].

The valuation function θi of buyer Ci designed to embody the system objective,

i.e., to retain videos of the highest possible quality in the system, where quality is

measured by the video compression level, qpi , and how much it varies. It is defined

by the ellipse equation

θi(qpi ,mi)= mi ·
√

1−
(

qpi +σn(qpi)
2 ·51

)2
, (3)

where mi is the money available for the camera Ci , qpi the compression value

corresponding to the received amount si , and σn(x) is the standard deviation of x over

the n last periods.

The equation of an ellipse has an interesting characteristic around its vertexes.

The derivative of the ellipse is low when approaching the co-vertex (low qp and low

σ(qp)), while it is high when close to the vertex (high qp and high σ(qp)). It is valued

more (high derivative) to move away from the high qp and high σ(qp) values (vertex)

than it is to get closer to the low qp and low σ(qp) values (co-vertex).
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Figure 5. An illustration of how the valuation of resources, θi , depends on

the compression and its variation.

The utility ui of buyer Ci is then given by

ui(qpi ,mi , pi)= θi(qpi ,mi)− pi (4)

where pi is the price paid to obtain the amount of storage si . The smaller the

compression level and the variation of the compression level the higher the camera

utility will be. An example of the utility is shown in Fig 5. We use the last 10 qp
values from previous transactions to calculate the standard deviation. The longer this

history, the longer a deviation in qp will affect the utility.

At the beginning of each transaction period k, after calculating the expected

storage amount of storage s∗i,k(qp) (see Section 3.1), the camera calculates the expected

utility u∗
i assuming that it gets the associated storage s∗i,k given the available money

mi(k) and the announced unit price pi(k).
Different cameras can have different strategies for buying storage. Here we con-

sider two possible strategies:

1. At each period k, the camera buys the amount of storage s∗i,k which maximizes

the expected utility u∗
i (k) given the money mi(k) available.

2. The camera keeps all the money until an event occurs. When the event occurs

it acts according to Strategy 1 (above).

3.2 Transaction steps
We use a transaction mechanism inspired by the closed bid transaction mechanism

used in auctions [Reck, 1997]. A transaction is defined by the step described below.

At the beginning of each transaction period k:

1. Camera Ci gets an amount of money, m, for the new period k. The money

available to the camera is mi(k)= mi(k−1)+m.
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2. The storage provider, n, announces the total amount of storage for sale, s(k),
and the unit price of camera Ci : pi(k).

3. Camera Ci decides how much it buys based on the expected storage usage

s∗i,k(qp), pi(k) and mi(k). It sends to n the amount from s∗i,k(qp) maximizing

its expected utility u∗
i (k) (see Section 3.1).

4. Storage provider n decides the storage allocation and sends to Ci the amount

of storage it is allowed to buy, si .

5. Camera Ci pays the storage provider n the price si · pi , deduces this amount

from the money it has, i.e., mi(k) = mi(k)− si · pi , and starts streaming video

data up to the provided amount si allocated.

6. Storage n extracts the compression level from the received videos, qpi(k), and

uses it to decide the price for the next transaction pi(k+1) using the PI con-

trollers. It also calculates the total amount of storage allocated,
∑

i si(k), and

uses it to adjust the desired compression level using the probing controller so

that the storage usage is maximized, see 3.1.

4. Results

To validate the price discrimination approach we run multiple simulations using a

python framework with independent players (seller and buyers) communicating via

queues as well as simulations using the CORE real time network emulator [Ahren-

holz et al., 2008]. Each simulation uses random unit prices, p0, and random camera

parameters (resolution and motion level). The storage needs of the cameras are deter-

mined using the model described in [Edpalm et al., 2018]. The cameras will have a

computation horizon of 10 periods to calculate their utility.

In the simulations we compare three different cases:

1. The storage uses marginal pricing, i.e., it defines the running cost and adds a

margin to it (see Section 3.1).

2. The storage uses the price discrimination scheme described in Section 3 with a

fixed system quality setpoint, i.e., without any probing controller.

3. The storage uses the price discrimination scheme described in Section 3 with

the probing controller selecting the system quality setpoint.

The camera utility is given by Equation (4). We also define a seller utility U(k) to

visualise how efficiently the proposed approach reduces the standard deviation of the

sum of the compression levels. It is given by

U (k)= 1

σn
(∑I

i qpi (k)
) (5)

The simulations use four cameras in Fig 7 and Figure 9 and ten cameras in Figure 8.

The storage price p0 is set randomly at simulation start. In the simulations in Figure 7

and Figure 9, C1 is a 4K camera and as such requires the largest storage amount, C2
and C3 are 1080p cameras with different scene characteristics (C2’s video is more noisy
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and has more motion) and C4 is a 720p camera. In Figure 8, camera parameters are

randomly selected at simulation start. During the simulations the camera parameters

are constant (resolution and motion levels are fixed) but uniform noise of amplitude

up to 25% of the frame sizes was added to reflect a real scenario where noise from

the sensor and small changes in the scene would create changing frame sizes. All

cameras receive the same amount of money m at each period k. Figure 7 shows the

simulation results of case 1 and case 2. The left column contains the results using

marginal pricing scenario (case 1) and the right column contain the results using

price discrimination with PI control but without probing controller, i.e., with a fixed

setpoint (case 2).

The uppermost plots contain the qp values of the cameras (remember that a

higher qp means a lower video quality), the ones below are the prices set by the

storage provider (gray for the base price, colored for discriminate prices). The third

row is the camera utility and the final two rows show the seller utility (defined in 1)

and the revenue from selling storage to the cameras (see 3.1). Note that in the utility

plots the maximum utility has been limited to 5 for easier plotting and calculations

(as the utility of an infinitesimal standard deviation tends to infinity).

In the right column of Figure 7, we can see that the PI controllers change the

unit prices pi to allow the video compression qpi to converge towards a common

qp value (first row). The seller utility U (fourth row) in the price discrimination

case (case 2, right column) is clearly higher than in the fixed price case (case 1, left

column) while the seller revenues R are very close to each other (fifth row), i.e., the

price discrimination policy allows the total system to run in a better state than using

marginal price policy. Because of the seller utility definition, the utility value will tend

to infinity when the standard deviation of the camera qp is zero, leading to the jumps

we can see in Figure 7.

In the simulations in Figure 9 price discrimination with probing controller (case

3) is used in both columns. The camera parameters (apart for the video resolution)

are selected randomly at simulation start. The results in the left and right column

are from two different runs. In the left column, cameras are buying storage at each

period k, the simulation being run for 400 periods. In the right column the simulation

is done with 4 cameras over 100 periods, cameras C3 and C4 are buying at each time

period but C1 and C2 only buy every 5 and 12 periods respectively. The simulations

were done using the same code and models as the python framework but the seller

and buyers were running in virtual machines communicating through sockets in the

CORE real time network emulator [Ahrenholz et al., 2008]. A screenshot of the used

system can be seen in Figure 6. With the CORE simulator we can simulate multiple

machines communicating over different network architectures and simulate different

network conditions. We used the CORE simulator to ensure communication was not

sequential and reflected a real-world setup without having to deploy such a setup. The

focus of the python framework is to simulate the system sequentially with a focus on

the global system behavior.

In the right part of Figure 9 the seller revenues oscillate because of the less

frequent storage buy from cameras C1 and C2, but the average revenue is comparable

and the different strategies does not prevent the system from converging to a common

compression level. In the left part of Figure 9, we can observe the effect of the
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Figure 6. CORE network emulator setup.

probing controller adjusting gradually the setpoint compression level down in order

to maximize the storage usage, leading to a stable system value with qp = 20. We

can also see that the prices set follows the same trend in order to converge to the

system setpoint set by the probing controller but also each discriminate prices diverge

in order for the compression of each camera to converge to a common value thanks to

the price discrimination PI controllers.

Figure 8 shows simulations with 10 cameras and same selected parameters (ran-

domly chosen once for both simulations) and we visualize the most interesting 250

periods. In this figure, the left side has only the price discrimination PI controllers

(case 2) running with a manually fixed global quality setpoint of qp = 25 (which is

the optimal setpoint for this specific system). The right side of the figure shows the

same parameters with the setpoint controller (case 3) converging autonomously to the

optimal value of qp = 25. In the left column (case 2) we can see that all cameras

converge slowly to the defined setpoint while on the right (case 3) they converge faster

and autonomously to the desired quality levels.

Finally, to test the robustness of the proposed approach, we run 100 simulations of

500 transactions period k each with price discrimination (case 3) and 100 others with

marginal pricing (case 1) where all cameras were buying at each period k. We also run

simulations with random uniform distributed video parameters changing from frame

to frame. In reality this is highly unlikely to happen, but demonstrate a hypothetical

worst case scenario. This is denoted with "+rnd" in Table 1.

A global summary of the simulation runs can be found in Table 1. The seller

utilities U are on average (mean) higher in the discriminate pricing (1.68 and 0.56)

than for the marginal pricing (0.33 and 0.27). Note that the utility difference between

the random and non-random case in Table. 1 comes from the utility being based on

σn(qp). With randomly changing video parameters, the optimal qp value will rarely

stay equal to the system setpoint qp value, thus leading to a lower utility value for

the storage than in a more stable environment. The revenue R remains very close at

19.8 and 20 for the discriminate pricing versus 20 for the margin pricing indicating

no noticeable loss in revenue for the seller. The buyer utilities ui have higher values

with price discrimination than with the marginal pricing because of the visual quality

uniformity enforced by the storage provider.
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Discriminate Discriminate+rnd Margin Margin+rnd

Seller utilities mean 1.68 0.56 0.33 0.27

Seller revenue mean 19.8 20 20 20

Buyer 1 utility mean 0.87 0.82 0.81 0.78

Buyer 2 utility mean 0.86 0.82 0.8 0.75

Buyer 3 utility mean 0.86 0.82 0.83 0.79

Buyer 4 utility mean 0.86 0.83 0.82 0.8

Table 1. Multiple simulations results.

5. Conclusions & Future Work

In this work we proposed a method based on price discrimination of storage costs for

system-level optimization of video quality, which to the best of the authors knowledge

is a novel approach to solve video storage allocation. The approach is lightweight

and requires limited system knowledge and computation requirements. The results

in terms of system-wide video quality are encouraging and do not lead to significant

revenue loss for the storage sellers but improves the overall system video quality.

The simplified approach also lays the ground for future development of game theory

approaches using the same transaction framework.

A logical extension of this paper would be to handle multiple storage providers

and develop more complex utility functions for both cameras and storage sellers which

would take into account different constraints such as network latency and bandwidth.

We could also use a different convergence method which would optimize the storage

usage more by allowing the compression levels to slightly deviate for some cameras.

Instead of having the probing controller increasing or decreasing the compression level

for all the cameras it could increase/decrease the compression level of the cameras one

at a time, ensuring that at all times the cameras have setpoints that maximally differ

with one compression level value. This would increase the storage utilization.

A limitation of this work is that we expect the storage provider to be able to access

the received videos in order to get access to the qp values in order to decide on a

discriminate price. If the video is stored in an encrypted format this technique could

not be used. Video quality is here considered as correlated to the video compression.

An alternative approach would be to use an application specific metric or a recognized

quality metric such as the structural similarity index measure (SSIM), peak signal-

to-noise ratio (PSNR) or other metrics enumerated in [Yang, 2007], but at the expense

of additional computation costs.
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Paper V

Vickrey-Clarke-Groves Auction-Based

Storage Allocation for Distributed

Camera Systems

Alexandre Martins Hung-Yu Wei Karl-Erik Årzén

Abstract

Video surveillance systems are critical infrastructures and that grow-

ing in size and complexity. Storage space is the prime resource in such

systems but current surveillance setups are centralized and limited in

resources due to security and cost constraints. Allocating the correct

amount of storage to each camera considering their large differences in

characteristics and video content is challenging. In this paper we pro-

pose a game theoretic approach to storage allocation for video surveil-

lance camera systems based on the Vickrey-Clarke-Groves (VCG) auction

mechanism.

© Paper in submission
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1. Introduction

The number and size of camera systems used, e.g., in different types of public spaces,

are growing due to the Internet of Things (IoT) trend and they are currently one of the

major storage and bandwidth consumers. With growing demands on high resolution,

high frame rate and level of detail, the amount of storage needed to retain these

videos is a growing problem. Surveillance installations are usually critical installa-

tions and are mostly running on dedicated infrastructures, storing video in trusted

servers owned by systems administrators. Newer installations are usually large scale

(commonly hundreds of cameras), heterogeneous and have large differences in resource

requirement. [IPVM, 2021].

In this paper the focus is video surveillance systems based on H.264 video cameras,

the most prevalent system on the market today. H.264 is a video compression standard

based on block-oriented and motion-compensated coding [ITU-T, 2010]. A model of the

bandwidth generated, and hence, storage needed, by a H.264 video surveillance camera

was presented in [Edpalm et al., 2018; Edpalm et al., 2018]. The model provides an

estimate of the bandwidth needs for a H.264 video, given current scene conditions

and specific camera parameters. It allows to calculate the long term resource needs

for the camera as long as it keeps the current parameters. Anticipating the amount

of storage and bandwidth needed by each camera is difficult due to the uniqueness of

each scene, camera characteristics and parameters. The amount of storage available is

limited and is one of the main cost of running the system [IPVM, 2021]. Furthermore,

the cameras compete (or are at the least not explicitly incited to cooperate) for the

storage resources available. As a result the system administrators can not trust the

devices to provide their real valuation.

This creates a need for strategies to determine the allocation of storage resources

that do not rely on trustworthy information being shared between cameras and storage

units. We propose the use of auction theory, in particular the Vickrey-Clarke-Groves

(VCG) mechanism [Krishna and Perry, 1998], to decide how to allocate these resources.

The advantage of VCG auctions is that they provide guarantees, in particular enforcing

a fair and envy-free allocation [Pápai, 2003] (an outcome in which each agent does

not envy what some other agent has obtained) without requiring control over all

devices participating in the auction. Specifically, in this paper we propose a solution

to allocate storage resources in a competitive camera system while separating the

resource providers (i.e., the storage units) from the resource buyers (i.e., the cameras).

The buyers have private information on the amount of resources needed and aim to

maximize their valuation (in this case to minimize the compression of their video

stream). The storage units enforce the constraint on resource availability by solving

a constrained knapsack problem to allocate the resources (see Section 4). This paper

focuses on the auction framework and utility determination. The cameras are not

explicitly cooperating as the system could be running cameras from different providers

which prevents explicit cooperation between devices, and the storage provider acts as

a ring buffer as explained in [Martins et al., 2020]. We chose to use auction theory

to distribute the available resources in the best way possible without relying on the

devices truthfulness.
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2 Related work

The contributions of this paper are:

• A game theoretic approach based on VCG auctions for storage allocation in

camera systems for video surveillance is proposed.

• A utility measure for camera systems based on the video compression value and

its variation is proposed.

• Simulation results of the storage allocated for video content is done to validate

the game theoretic proposed solution as well as its system resource cost.

2. Related work

Centralized bandwidth allocation techniques using control theory with maximization

of the system-wide visual quality have been proposed in [Seetanadi et al., 2018]

and [Silvestre-Blanes et al., 2011]. Second price auctions have been applied to video

surveillance systems mostly for specific applications such as area overage [Chong Ding

et al., 2012; Konda et al., 2016; Dieber et al., 2011], camera placement [Elhamifar

and Vidal, 2009; Ermis et al., 2010] and object tracking [Qureshi and Terzopoulos,

2009; Sankaranarayanan et al., 2008]. Auction theory has been previously used in

various computer science applications such as content delivery delay and cashing cost

minimization for large mobile networks involving multiple stakeholders as reported

in [Li et al., 2016; Ghosh et al., 2004; Pillai and Rao, 2016]. There are also vari-

ous studies on resource management in cloud computing, mostly focusing on virtual

machine resource allocation [Xu and Yu, 2014], some of which are using knapsack

optimization to allocate resources, e.g., [Vanderster et al., 2009], or Stackelberg game

allocation of CDN resources, e.g., [Li et al., 2016; Hung et al., 2018] or device to device

communications, e.g., [Sawyer and Smith, 2019]. Auction theory has also been applied

to spectrum sharing in mobile networks [Suris et al., 2007; Cramton et al., 2002] and

task allocation to mobile devices such as [Wang et al., 2017] where the VCG mecha-

nism is used to allocate computation tasks to mobile devices or using consensus-based

auctions (as explained in [Zlot, 2006]) to ensure consensus between mobile robots, e.g.,

[Brunet et al., 2008; Choi et al., 2009; Hunt et al., 2014] or [Nanjanath and Gini,

2006]. However, to the authors’ best knowledge, auction theory has not been applied

to storage allocation for video surveillance systems before.

3. System description

We consider a simplified camera system with one storage unit P (physically realized

as Network Attached Storage, Cloud storage, or some other technique) and C video

cameras indexed by i: {c1, c2, . . . , cC}. An overview of the system with C = 4 is shown

in Figure 1. Typically a video surveillance system is owned by a security department,

which buys or rents storage from an IT department or a cloud provider at a fixed

rate. In our system, viewing quality is most important. The main system goal is to

maximize the overall global video quality given the current system constraints, i.e.,

the running cost and the video storage size.
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Figure 1. The simplified system considered in this paper.

All cameras can communicate with the seller and can, e.g., be part of the same

virtual network. At the beginning of a predefined period k, e.g., an hour, a day, a

week, etc, the cameras can buy storage from the seller to save the video they generate

during the coming period, using the money at their disposal. If the cameras run out

of storage, they need to wait until the next period to buy more. At each period, k,

the cameras obtain an amount of money, m, that they can use to buy resources. The

amount they receive depends on the cost of running the system. Each camera has a

virtual account holding the money it may use. Any remaining money can be saved for

future periods. The amount of money available for camera ci to buy storage at the

beginning of each period k is

mi(k)= mi(k−1)+m,

where mi(k−1) is the money accumulated and available from previous rounds (after

all previous payments have been made).

4. Vickrey-Clarke-Groves (VCG) auctions

Vickrey-Clarke-Groves (VCG) is a combinatorial auction mechanism known to yield

efficient outcomes, with desirable properties such as incentive compatibility (players

best interest is to reveal their true valuation) and individual rationality (players will

always benefit from entering the auction) provided the resource allocation is optimal,

[Maillé and Tuffin, 2007; Nisan and Ronen, 2007]. VCG auctions apply to any problem

where players have a quasi-linear utility function (the compression values being the

linear argument).1 In our case the seller is the storage unit which also acts as the

auctioneer. The players are the cameras who want to buy storage, i.e. they are the

buyers. The seller is provided a set of proposals, or bids, A, indicating the amount

as well as the value that the buyer is willing to pay for this amount. Each buyer

sends multiple bids, typically one per compression level. A subset of A, consisting of

maximum one bid from each buyer, satisfying the constraints will be selected by the

1 Quasi-linear utility functions are linear in one argument
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4 Vickrey-Clarke-Groves (VCG) auctions

seller, leading to an outcome a, which can be considered as an allocation vector. The

value that buyer i obtains from this outcome is denoted θi . The price pi that the buyer

i pays for the decided outcome a is determined by the VCG mechanism, see (3).

The utility of the buyer is the difference between the willingness to pay θi and the

price pi it is charged for it:

ui(a, pi)= θi(a)− pi (1)

The buyers aim at maximizing this utility.

We assume that buyers are provided with a regular cash inflow in order to be able

to buy resources, typically this would be a budget allocated, e.g. every auction period,

to each camera by the system owner which the buyers can use at their own discretion.

VickreyClarkeGroves auctions work as follows:

1. Each buyer i is asked to reveal his valuation function θ̃i which indicates how

the buyer values each outcome a. The revealed valuation θ̃i could differ from

the real valuation function θi if player i is not truthful.

2. The auction mechanism computes an outcome a∗(θ̃) that maximizes the declared

social welfare, i.e., the sum of revealed valuations
∑

i θ̃
i , given the constraints,

using 0-1 knapsack optimization, see (4).

a∗(θ̃) ∈ argmax
a∈A

∑
i
θ̃i(a) (2)

3. The price paid by each buyer is given by the loss of declared welfare which the

buyer imposes to the others through his presence in the auction, meaning the

value that other buyers lose through the difference between the current outcome

a∗ and an alternate optimal outcome a′ ∈ a without buyer i. For this, we solve

one 0-1 knapsack problem per buyer without the items from buyer i present, to

find the outcome a′ if i was not present, see Eq. 4.

pi =maxa
∑
j �=i

θ̃ j(a′)− ∑
j �=i

θ̃ j(a∗) (3)

The VCG mechanism is a second-price auction mechanism. Each buyer is declar-

ing its real value and the price paid is the loss of declared welfare which the

buyer imposes on the other buyers, as such the buyer will always end up paying

less than the declared value. This property is enforced thanks to the secondary

knapsack problem in Equation (3), which is done to calculate this loss of welfare

to other buyers.

The VCG mechanism verifies three properties [Krishna and Perry, 1998]:

• Incentive compatibility. For each user, bidding truthfully (i.e. declaring θ̃i =
θi) is a dominant strategy, meaning it is the strategy which will provide the

maximum value.

• Individual rationality. Each truthful player obtains a non-negative utility,

meaning it is advantageous to be truthful (see Eq. 1).

• Efficiency. When players bid truthfully, the social welfare,
∑

i θ
i , is maximized.
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The auction mechanism decides on the optimal outcome by solving a 0-1 knapsack

problem. It is a problem in combinatorial optimization: We pick a set of items (given

by the bids), each with a weight and a value. We want to determine the items to

include in a collection so that the total weight is less than or equal to a set limit and

the total value is as large as possible. In the 0-1 version of this problem each item is

indivisible and cannot be picked more than once. Each buyer i ∈ [1..C] participating

in the VCG mechanism provides n bids, indexed by the letter j. The total number of

bids for the whole system is thus N = n×C. Each bid contains an item weight wi
j and

its associated declared value vi
j (weight and value of bid j from buyer i). The declared

value is given by the valuation function vi
j = θ(wi

j).
We add one source constraint per buyer to the classical 0-1 knapsack problem,

expressing that the optimization is only allowed to select at most one bid j from each

buyer i. There is no guarantee that each buyer will have one of its bids accepted

whereas no buyer can have more than one of its bids accepted. There will therefore be

at most C items selected by this allocation (as there are C buyers). The total weight

possible is W and xi
j indicates if an item j from buyer i is selected (xi

j = 1 if item j
from buyer i is selected and 0 otherwise). The modified 0-1 knapsack problem is

maximize
∑C

i=1
∑n

j=1 vi
j · xi

j

subject to
∑C

i=1
∑n

j=1 wi
j · xi

j ≤W

∀i ∈ [1..C] (
∑n

j=1 xi
j ≤ 1)

(4)

with vi
j = θi(wi

j) and xi
j ∈ {0,1}.

5. Estimation of resource needs

5.1 Storage provider
At each auction period k = {1,2, ...} the storage provider P sells units of storage (in

Gigabyte, Gb). The time between auctions has a duration of T. The total quantity

of storage available by storage provider P is denoted S, the amount of storage for

sale at each auction is denoted s(k). s(k) is a subset of S, the total amount of storage

available, and the time, R, the data needs to be kept. R is usually determined by the

system owner policy. In this paper we define simply s(k) = S∗T
R , meaning we evenly

split the total amount available by the retention time to get the amount to allocation

for each auction k of duration T. The storage space allocated to camera ci is denoted

si(k). The expected quantities are annotated with a ∗ superscript, e.g. the expected

allocated storage to camera ci is denoted si∗(k). Only the storage unit has storage

space available, i.e., the cameras are not storage providers.

The storage provider P acts as a ring buffer, deleting the oldest allocated data in

order to accommodate new incoming data. Data stored during the oldest auction period

is deleted in order to reuse the allocated storage for the new period k:
∑k

t=k−R/T s (t)≤
S. The storage provider will then assign the storage following the VCG mechanism’s
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Figure 2. An example of the expected storage as a function of the compres-

sion, i.e. si∗(qp).

allocation rule, which means that for each auction period k,
∑C

i=1 si (k) ≤ s (k) with

si (k)≥ 0 for all cameras ci .

5.2 Storage buyers (cameras)
In order for a camera to define its storage valuation, θi (since VCG is a truthful

mechanism, θ̃i = θi), it needs to know how much storage is needed for a video of a

certain quality.

For H.264 videos, the compression level is defined by the quantization parameter

qp. This value indicates how much data is lost by quantifying the residual data after

the transformation step of the encoding process [ITU-T, 2010]. qp is an integer between

0 and 51 (qp ∈ {0..51}), 0 being lossless and 51 being the highest compression level.

The compression level affects both the memory requirements and the visual quality of

the video. The higher the compression, the smaller the amount of storage needed per

auction period T will be.

The estimated amount of storage that the camera ci needs for each H.264 quanti-

zation level qp is denoted by si∗(qp) and is calculated using the frame size estimation

model provided in [Edpalm et al., 2018]. The model returns the expected amount of

storage required for a video with constant scene parameters (motion in the scene, light

level, etc.) and settings of the specific camera (frame rate, group of picture length, etc.)

for a given qp. An example of this function is shown in Fig.2. The estimation model

provided in [Edpalm et al., 2018] is of the form:

si∗(qp)=α×2−qp/6 +β×5−qp/6, (5)

where α and β are positive real numbers defined by a combination of scene and cam-

era parameters. The function s∗(qp) is a positive monotonously decreasing function

defined in R+. This means that it is invertible and we can find qp∗(si∗) = s∗−1(qp).
In practice the inverse function is found by computing all 52 values of si∗(qp) and

inverting the resulting table. Each camera ci will at the beginning of auction k calcu-

late the si∗(qp) function for all 52 qp values given measurements of the actual scene

conditions and, hence, the actual values of the α and β parameters.
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6. Valuation of resources

The quality of an H.264 video is directly linked to the compression parameter qp of

the video and the variations in qp, see [Cermak et al., 2011; Nemethova et al., 2004;

Singh et al., 2012]. In these papers the authors correlated the compression parameter

and its variation to the perceived video quality using Mean Opinion Score (MOS)

testing, a method to assess video quality by collecting the opinions of participants

in a controlled environment. The authors found that the perceived degradation in

video quality is strongly noticed at higher compression levels but hardly perceptible

at lower levels. Moreover, large variations (jumps) in the compression level are easily

noticed by viewers. It means that from a viewer perspective, moving away from the

high compression levels is more valuable than getting closer to a very low compression

level, i.e., the visual quality gain at low compression levels is hardly noticeable while

it would be more noticeable at high compression levels. This is shown in Fig. 4 where

the derivative/slope of the red curve is higher towards the higher compression levels.

The same applies for compression variations over time, avoiding large changes in

compression is more valuable than moving towards no variation.

6.1 Valuation function
In order to minimize the negative effects of high compression and compression jumps as

well as take into account their cost to the viewers, we propose a model of the valuation

which embodies the desired characteristics, derived from the simple equation of an

ellipse. The valuation function θi of buyer Ci is defined as

θi(qpi ,mi)= m ·

√√√√1−
(

qpi +σn(qpi)
2 ·51

)2
(6)

where mi is the money available for the camera ci , qpi is the compression value

corresponding to the received amount si , and σn(x) is the standard deviation of x over

the n last periods.

The function embodies our system objective, i.e., to retain video of the highest

possible quality in the system given the available money mi , where quality is measured

by the video compression level, qpi , and how much it varies. The equation of an ellipse

has an interesting characteristic around its vertexes. The derivative of the ellipse is

low when approaching the co-vertex (low qp and low σ(qp)), while it is high close to

the vertex (high qp and high σ(qp)). It is valued more (high derivative) to move away

from high qp and high σ(qp) values (vertex) than it is to get closer to the low qp and

low σ(qp) values (co-vertex).

6.2 Utility and bid choices
The utility ui of buyer ci is then given by

ui(qpi ,mi , pi)= θi(qpi ,mi)− pi (7)

where pi is the price paid to obtain the amount of storage si . The utility is the

difference between the value it obtained from the seller and the price it paid to
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Figure 3. An illustration of how the valuation of resources, θi , depends on

the compression and its variation.

acquire it. An example of θi(qpi ,mi) with mi = 1 is shown in Fig. 3 and an example

with mi = 5 can be seen in Fig. 4 (blue curve). In Fig. 4 one can also see the predicted

amount of storage expected per qp value (black curve) as well as the valuation of each

qp values with mi = 5 and fixed θi (red curve).

To determine the size of the bids in terms of memory, camera ci calculates si∗(qp).
The value of each quantity in si∗(qp) is the associated valuation θi(qpi ,mi), One

example of how the bids are decided is shown in Fig. 4 (blue curve). One can see that

the bids bi (last plot) are a combination of the expected storage si∗ (black curve) and

the valuation θi (red curve). Each bar in the blue curve represent a bid (an amount

of storage si and the associated value θi).

6.3 Auction steps
The different steps in the VCG mechanism can be summarized as follows:

1. Camera ci gets a fixed amount of money m for the new period k and adds it to

mi .

2. Camera ci calculates si∗(qp) and θi(qpi ,mi) given the actual parameters and

sends its 52 bids bi (one per possible qp): (si∗,θi∗) to the storage provider P .

3. Storage provider P waits for some time to receive all bids bi from buyers ci .

4. Storage provider P solves a 0-1 knapsack problem with the received bids bi to

find the optimal allocation of available resources, see Section 4.

5. Storage provider P solves one 0-1 knapsack problem per buyer to calculate the

payments of cameras ci defined by Equation (3) of the VCG mechanism.

6. Storage provider P sends the allocated storage amount si and price pi to

camera ci .

7. Camera ci pays the storage provider P the required amount pi and starts

streaming data up to the allocated storage amount si .
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Figure 4. Bid example (with m = 5). The top plot shows the expected storage

amount, si∗(qp). The middle plot shows the valuation of the compression,

θi(qp,m). The last plot shows the sent bids bi .

The optimization problem solved is explained in Section 4. The total amount of

storage available for sale from the provider P is S (which is the same as W in Equation

4). xi
j still indicates if an item j from camera ci is selected or not (xi

j = 1 if item j from

Ci is selected and 0 otherwise).

Each item j ∈ [1..n] from buyer i has a storage amount si
j (denoted wi

j in Equation

4), and an associated value vi
j such that vi

j = θi(si
j).

The result of the optimization is the storage amounts si
j allocated to each camera

ci , providing the highest possible sum of valuations
∑C

i=1 vi depending on the storage

resource limitation S of the provider P . As indicated before, vi = θi(si) where θi(si) is

the declared value of the storage which was given by camera ci . This value is related

to the visual quality of the streamed video as shown in Fig 3.

7. Results

To evaluate the utility function and the use of the VCG mechanism, we implemented

a simulator in python and ran multiple simulations with independent players (seller

and buyers) communicating via queues.

The 0-1 knapsack problem solving is computationally costly. Because the optimiza-
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tion problem is strongly NP-hard, i.e. there is no pseudo-polynomial algorithm to solve

it [Google, 2021]. This could prevent the system to scale due to time constraints. In this

paper we use the Googleő Ortools library (v.9.0.9048) [Google, 2021] which uses the

SCIP mixed integer programming solver [SCI, 2021] on an Appleő MacBook Pro with

an octacore M1 ARMő-based chip with 3.2 GHz maximum core frequency [Wikipedia,

2021].

The simulations used the Appleő emulator to convert to ARM instructions which

slows down the computation but multi-threading was used with up to 10 simultaneous

threads. In order to see how long it would take to run a complete VCG auction

period, i.e., with C +1 knapsack optimizations (C being the number of buyers), we

ran 5 simulations with random buyer parameters, 100 auctions each and calculated

the mean and standard deviation of the time it took to complete all the required

optimizations at each period. The results are shown in Fig. 5. As can be seen, the time

to complete the VCG auction follows what appears to be a quadratic function of the

number of buyers. As such a system with 50 cameras would solve the assignment of

each period in approximately 4.5 seconds, a system with 250 cameras would do so in

approximately 3 minutes and a system with 450 cameras would take approximately

12 minutes to do the same task. As long as the auction periods are on the order of an

hour, this relatively short time required for computing the allocation is acceptable. If

the computation time is a limiting factor one could include a delay of one period in

the auction.

For clarity of presentation the following simulations only use four cameras. c1 is a

4K camera and as such requires the most storage quantity, c2 is a 1080p camera, c3 is

a 720p camera and c4 is a 480p camera. The simulation parameters used are: W = 50
Gb, R = 10 hours, i.e., there is s(k) = 5 Gb/hour for sale, and m = 5$ is given to each

camera at each period of k = 10 hours. Each simulation has fixed camera parameters

(resolution, size of the Group of Pictures (GOP), and frame rate) and random video

parameters (motion level, light level, noise level, etc). The storage needs of the cameras

are determined using the model described in [Edpalm et al., 2018]. The cameras have

no explicit incentive to cooperate and try to maximize their own utilities. The values

of qpi in the presented figures are the average values over the period k. Random noise

is added to the video frame sizes.

As soon as we consider a competitive system, the buyers, ci , have no incentive to

accommodate other players or provide truthful information if it is not in their favor. For

these reasons we compare the VCG mechanism approach (which provides truthfulness

as a property) with an equal split of the total resources between the buyers, since this

does not assume any information from the cameras. Hence, we compare:

1. Splitting s(k) equally between the buyers ci .

2. Using the proposed VCG mechanism.

We run two types of simulations for each assignment:

1. The video parameters, change significantly (but in a realistic way) every 10

auction periods.

2. The video parameters are changed randomly every auction period with uniform

distributions.
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Figure 5. Mean and deviation of the time (in seconds) to solve the assign-

ments per number of buyers C for each period k.

Fig.6 shows the simulation results of the equal allocation (the plots to the left)

and VCG allocation (the plots to the right) with low variation of the video parameters

(simulation type 1). Fig.7 instead shows the second type of simulation with rapid

random changes of the video parameters. The uppermost plots contain the qpi values

of the four cameras, the ones below show the amount of storage si allocated and the

third plot shows the valuation of the resource acquired, i.e., θi , with mi = 1.

We can see in Fig.6 that the VCG approach allocates more storage si(k) to c1 (the

4K camera) which allows c1 to achieve a lower qp (so better visual quality is perceived

by the viewer) by assigning less storage to c2, c3 and c4. The overall visual quality in

the VCG allocation case would be more uniform as the camera requiring more storage

would be allocated more, which is what the proposed solution aims for.

In Fig.7 we can observe the same behavior as in Fig.6, the VCG mechanism

allocates more storage to c1 allowing it to have a better quality level. Moreover, the

variations in qp are also less pronounced than with equal allocation as the cameras ci

react to the parameter changes, modifying the bids bi accordingly which in turn affects

the allocation of storage si . By comparing the θi curves, we can see the advantage of

the VCG mechanism: the video streamed by cameras ci present closer qp values and

less qp deviations which should provide a better system-wide visual quality for the

viewer [Cermak et al., 2011; Nemethova et al., 2004; Singh et al., 2012].

One can observe that the VCG approach in this scenario leads to a storage as-

signment that is very close to a split of the storage resource that is proportional to

the camera resolution. However, the latter policy would require the cameras to report

this information to the storage, and hence, open up for cameras to provide untruthful

information. Using the VCG approach, this assignment is obtained without any need

for this information.
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Figure 6. Simulations with 4 buyers and the same amount of money, and

low fixed video parameter changes.
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8. Conclusions and Future Work

In this work we proposed a storage resource allocation method based on the VCG

mechanism with the utility derived from the compression level and its variation. The

approach requires limited system knowledge and the results in term of system-wide

video quality are encouraging. As discussed in [Maillé and Tuffin, 2007], VCG auctions

present at least one prohibitive drawback when compared to simpler allocation, as they

need computationally intensive NP-complete optimization problems to be solved. The

amount of optimizations grows with the number of cameras in the system as each

added camera comes with 52 news bids for the optimization problems and one extra

optimization for the payment calculation. This still seems to be computationally fea-

sible for the considered systems (hundreds of cameras with allocations every hour or

so). The approach has interesting properties (incentive compatibility, individual ratio-

nality and efficiency) for systems with competitive players. Thanks to these properties

the seller can be unaware of the camera parameters and efficiently allocate the storage

based solely on the cameras’ declared values. A logical extension of this paper would

be to handle multiple storage providers and incorporate learning in the valuation of

resources from the cameras. Also, the video quality is here considered to be correlated

with the video compression. An alternative approach would be to use an application-

specific metric or a recognized quality metric such as the structural similarity index

measure (SSIM), peak signal-to-noise ratio (PSNR) or other metrics as described in

[Yang, 2007], but at the expense of additional complexity for the cameras.
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Med utvecklingen av smarta städer och sakernas internet (Internet of Things

eller IoT) växer mängden maskin-till-maskin-kommunikation väldigt snabbt.

Ett exempel på detta är kamerasystem där små specialiserade smådatorer

med bildsensorer kommunicerar via ett nätverk. De analyserar bilder från

sensorer, exekverar algoritmer och skickar information och videodata till and-

ra maskiner. Genom att uppskatta och fördela de använda resurserna på ett

effektivt sätt kan vi minska resursanvändningen och säkerställa en bättre

total servicekvalitet samtidigt som vi håller nere kostnaderna.

Ett typiskt videoövervakningssystem ägs av en säkerhetsavdelning, som

köper eller hyr från en central lagringsleverantör P till ett fast pris. Målet är

att maximera den totala videokvaliteten givet systembegränsningarna, d.v.s.

driftskostnad och videol̃agringsstorlek. Den lagrade videoövervakningsfilmen

bör sparas i några dagar och förstöras efteråt. Varje kamera C i systemet är

oberoende och kommunicerar inte med andra kameror, deras enda syfte är

att kontinuerligt skicka sin video till en lagringsplats.

Vi fokuserar på tilldelning av två resurser: lagringutrymme och nätverks-

bandbredd. Dessa resurser är beroende av varandra: tilldelning av den ena

påverkar tilldelningen av den andra, eftersom man behöver ha tillräckligt med

bandbredd för att kunna lagra en viss mängd data. Vi använder två tekniker

som historiskt använts för resurstilldelning: spelteori och reglerteknik. Spel-

teori har använts vid bandbreddstilldelning i mobila telenätverk på grund av

deras stora skala och bristen på förtroende mellan nätverksenheterna. Regler-

teknik å andra sidan har använts för mer tidskritiska tillämpningar såsom

minnesbandbreddstilldelning eller koordinering av distribuerade system.

Del 1: Reglerteknik tillämpad på kameranätverk.

Vi antar att kamerorna samarbetar och förväntas reagera på lagringsleve-

rantörens P globala feedback angående resurstillgänglighet (Fig. 1.). Diskut-

rymmet såväl som nätverket mellan kamerorna och lagringsleverantören P
är en delad resurs, det är önskvärt att lagra så mycket video som möjligt,

1



som uppfyller givna kvalitetsbegränsningar, samtidigt som man säkerställer

en begränsad fördröjning.

Fig. 1. Kontrollexempel.

Detta uppnås genom att välja vilken be-

gränsning som är den viktigaste för varje

kamera. För en kamera som används för di-

rektvisning är en låg leveransfördröjning av-

görande, medan en video dedikerad till lag-

ringsapplikationer kan acceptera en högre

fördröjning, men har högre lagringskrav.

För detta fokuserar vi först på tilldel-

ning av diskutrymme och formulerar syste-

met som ett PI-reglerproblem kombinerat

med en metod för att upprätthålla globala

resursbegränsningar inspirerad av anti-windup-spårning. Vi formulerar se-

dan en tredelad modell: kameramodellen, nätverksmodellen och lagringsmo-

dellen. PI-reglering och mid-ranging kombineras för att välja hur mycket av

var och en av de delade resurserna som ska tilldelas till varje kamera.

Del 2: Prissättning och auktionsteori tillämpad på kameranätverk.

Här tittar vi istället på ett system där kamerorna C konkurrerar och försöker

maximera sin egen videokvalitet oavsett andra resurskonsumenter.

Fig. 2. Auktionsexempel.

Vi antar att kamerorna vid varje fördefi-

nierad period, t.ex. en timme, en dag eller en

vecka, behöver köpa lagringsutrymme från

säljaren för att spara videon de genererar

(Fig. 2.). Vid varje period fick kamerorna en

summa pengar som de kunde använda efter

eget gottfinnande för att köpa resurser. Be-

loppet de fick berodde på kostnaden för att

driva systemet.

Vi använder först principen om pris-

diskriminering från mikroekonomi för att

tilldela lagringsresurser. Lagringsenheter-

na tvingade fram begränsning av resurstillgänglighet genom att använda

prissättning. Målet för lagringsleverantören P är att konvergera till en op-

timal och enhetlig kvalitetsnivå för alla kameror i systemet givet de globala

resursbegränsningarna. Vi använder därefter auktionsteori, närmare bestämt

auktionsmekanismen Vickrey-Clarke-Groves (VCG). Varje kamera C får fort-

farande samma summa pengar och skickar till lagringsleverantören P en

uppsättning bud som innehåller mängden resurs de vill köpa och kostnaden

de är villiga att betala för detta. Lagringsenheterna väljer sedan den optimala

tilldelning av resurser och deras kostnader.
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With the development of smart cities and the Internet of Things (IoT), the

amount of machine to machine communication is fast growing. A good ex-

ample of this is camera systems where small specialized computers analyze

images provided by sensors, run algorithms in quasi real-time and send infor-

mation and video data to other machines over the network. By estimating and

allocating efficiently resources we can reduce the resource waste and ensure

a better overall quality of service while keeping the costs of running it low.

A typical video surveillance system is owned by a security department,

which buys or rents a central storage provider P at a fixed rate. The main

system goal is to maximize the overall global video quality given the system

constraints, i.e., the running cost and the video storage size. The stored video

surveillance footage should be saved for some days and destroyed afterwards.

Each camera C in the system is independent, their sole purpose is to conti-

nuously send their video to a storage location.

In this work we focus on allocation of two resources in camera systems:

storage and network bandwidth. These resources are dependent: the allocation

of one influences the allocation of the other, as one needs to have enough

network resources to be able to store an amount of data at the receiver end.

We bridge two techniques historically used for resource allocation: game

theory and automatic control. Game theory is used for bandwidth assign-

ment in mobile telecommunication networks due to their large scale and the

lack of trust between network the devices. Automatic control on the other

hand is used for more specific and time critical applications such as memory

bandwidth allocation or coordination of distributed systems.

Part 1: Control theory applied to camera networks.

We assume that the cameras are cooperating and expected to react to the

storage provider’s P global feedback regarding resource availability (Fig. 1.).

The disk space as well as the network between the cameras and the

storage provider P is a shared resource, it is desirable to store as much video

3



as possible, satisfying given quality constraints, while ensuring a bounded

transmission delay.

Fig. 1. Control example.

This is can be achieved by selecting

which constraint is the most important for

each camera C. For a camera used for live

viewing, a low delivery delay is crucial, whi-

le a video dedicated to storage applications

could accept a higher delay, but has higher

storage requirements.

For this, we first focus on disk space al-

location and formulate the system as a PI

control problem combined with a method for

enforcing global resource constraints inspi-

red by anti-windup tracking. We then formulate the model with three parts:

the camera model, the network model, and the storage model. PI control with

anti-windup tracking and mid-ranging are combined to select how much of

each of the shared resources should be allocated to each camera.

Part 2: Pricing and Auction theory applied to camera networks.

Here we consider a competitive setting where each camera C wants to maxi-

mize its own video quality regardless of the other resource consumers.

Fig. 2. Auction example.

For this we design a framework where at

every predefined period, e.g., an hour, a day,

etc, the cameras need to buy storage from

the seller to save the generated video, using

the money at their disposal (Fig. 2.). At each

period, the cameras obtain an amount of mo-

ney that they could use at their discretion to

buy resources. The amount they receive de-

pends on the cost of running the system.

We first use the price discrimination

principle from microeconomics to allocate

storage resources. The storage units enforce

the constraint on resource availability through the use of pricing. The goal of

the storage provider P is to converge to an optimal and uniform quality level

for all cameras in the system given the global resource constraints.

We then use auction theory, more precisely the Vickrey-Clarke-Groves

(VCG) auction mechanism. Each camera C still receive the same amount of

money and send a set of bids containing the amount of resource they desire

to acquire and the associated cost they are willing to pay for it to the storage

provider P. The storage units then select the optimal allocation of resources

and their costs given the provided bids from cameras.
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