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Exploiting Antenna Correlation in Measured Massive
MIMO Channels

Jose Flordelis, Sha Hu, Fredrik Rusek, Ove Edfors, Ghassan Dahman, Xiang Gao and Fredrik Tufvesson

Dept. of Electrical and Information Technology, Lund University, Lund, Sweden
Email: firstname.lastname@eit.lth.se

Abstract—We investigate antenna correlation of an M -
antenna massive multiple-input multiple-output (MIMO) setup
with the purpose of obtaining a low-rank representation of the
instantaneous massive MIMO channel. Low-rank representation
bases using short-term and long-term antenna correlation statis-
tics are defined, and their performance is evaluated with data sets
obtained from channel measurements in both indoor and outdoor
environments at 2.6 GHz. Our results indicate that the short-
term bases can capture a larger amount of the channel energy
compared to the long-term ones, but they have a limited time-
span, one coherence time or less. On the other hand, the long-term
bases are stable over time-spans of a few seconds. Hence, they
can be obtained relatively easily. We also investigate a rank-p
vector-scalar LMMSE channel estimator that exploits antenna
correlation. Our results show that the investigated estimator can
achieve a performance similar to that of full-rank LMMSE at
a (2p + 1)/M times lower cost. The investigated estimator may
be used in conjunction with estimators that exploit correlation in
the frequency and time domains or, alternatively, in situations in
which these estimators cannot be used, e.g., when pilot separation
is larger than the channel coherence bandwidth or time.

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) is a com-
munication technology that has the potential to enable substan-
tial improvements in spectral and energy efficiency compared
to state-of-the-art systems [1], [2]. In a typical massive MIMO
system, an M -antenna base station (BS) communicates with
K single-antenna users, with M much larger than K. By
exploiting the spatial degrees of freedom arising from the
surplus of BS antennas, users can be served simultaneously and
independently while making use of simple, linear processing
schemes. Because of this, massive MIMO is regarded as an
avenue towards future 5G communication systems [3], [4].

It is well-known that wireless channels, when incorporating
the effects of the transmit and receive antennas, are usually cor-
related at both link ends. In contrast to conventional multiple-
user multiple-antenna systems, in which antenna correlation
has normally an adverse effect, there are a few cases in
massive MIMO where it can be advantageous. For example,
the authors of [5], [6] propose a two-stage precoding scheme
termed joint spatial division and multiplexing (JSDM) which,
by judiciously exploiting the structure of the correlation of
the channel vectors, achieves significant savings in uplink
feedback, thus potentially enabling frequency division duplex
(FDD) massive MIMO. In the same vein, [7]–[9] suggest
feedback compression algorithms which rely on low-rank
approximations to the covariance matrix of the channel vectors.

These approximations are feasible provided that antennas at the
BS are highly correlated.

However, although techniques that exploit the structure of
the spatial correlation of the massive MIMO channel have
recently received a fair amount of attention [5]–[9], little [10]
seems to have been reported on measurements of such cor-
relations. This paper has two main contributions. First, we
investigate two types of reduced-rank bases for represent-
ing spatially correlated channel vectors, short-term and long-
term, and report on their efficiency and stability properties.
Second, as an application of the above, we investigate a
rank-p (p ≤ M ) vector-scalar linear minimum mean-squared
error (LMMSE) channel estimator that exploits the spatial
correlation of the massive MIMO channel. The investigated
estimator has (2p+1)/M times lower complexity, yet performs
similarly to the full-rank, optimal LMMSE estimator. The
investigated estimator is especially useful in situations in which
correlation in the frequency-time domain cannot be readily
exploited, e.g., when pilot separation is larger than the channel
coherence bandwidth or time. We would also like to point out
that the investigated algorithm is not restricted in any way to
processing signals in the spatial domain; on the contrary, it
can be applied to any general vector estimation problem.

The rest of the paper is organized as follows. In Sec. II,
the system model is presented. After that, the channel mea-
surement campaigns are introduced in Sec. III. In Sec. IV, the
theory of optimal representation basis is shortly reviewed, and
then applied to the measurement data. Next, channel estimators
that exploit antenna correlation in massive MIMO systems are
discussed in Sec. V. Finally, Sec. VI concludes the paper.

II. SYSTEM MODEL

In this work, as we do not consider the massive MIMO
precoding or detection steps, all signal processing is carried
out independently for each user. Because of this, the original
multi-user problem can be reduced to the single-user case. We
thus consider a single-antenna user communicating with an
M -antenna BS, M � 1. Further, we assume that orthogonal
frequency division multiplexing (OFDM) [11] is used. As
such, the channel is decomposed into L parallel noninteracting
subcarriers, each of them experiencing frequency-flat fading.
Let h(n, `) ∈ CM denote the channel vector from the user to
the BS at symbol n = 1, . . . , N and subcarrier ` = 1, . . . , L.
Then, the baseband complex representation of the signal re-
ceived at the BS can be written as

y(n, `) = h(n, `) s(n, `) + n(n, `), (1)



Fig. 1. K = 9 users in an outdoor environment. Note the BS antenna
encircled in red.

where s(n, `) ∈ C is the transmit signal, which fulfills
E[s(n, `)s∗(n, `)] = P , and n ∈ CM is the vector of additive
receiver noise distributed according to CN (0, N0I).

In some parts of our discussion, the model without additive
noise

y(n, `) = h(n, `) s(n, `) (2)

will be used instead. When this is the case, it will be clearly
indicated.

III. MEASUREMENT DESCRIPTION

To study the correlation properties of antenna elements in
real propagation environments, we select data sets from two
massive MIMO channel measurement campaigns correspond-
ing to one outdoor and one indoor scenarios. In both measured
scenarios, 9 single-antenna users located close to each other
communicate with a BS mostly in LOS propagation conditions.
At the BS, a switched antenna array with 64 dual-polarized
patches (i.e., M = 128 antenna ports) arranged in cylindrical
geometry is used. Outdoor measurements took place at the
campus of the faculty of engineering LTH of Lund University,
Lund, Sweden (55.711510 N, 13.210405 E), in a suburban
environment. In this setup, users moved randomly at speeds
at most 0.5 m/s while being confined to a 5 meter diameter
circle. The BS was located on a nearby rooftop at a height
of 9 m (see Fig. 1). A map of the environment is available
in [12], which reports on a related massive MIMO campaign.

Indoor measurements took place in lecture theater E:A,
which is part of the E-building at LTH. In this case, although
the positions of the users were static, UE antennas moved in
random circular trajectories in front of the torso of the users
(see Fig. 2). UE antennas can be thought of as revolving
around a 0.5 meter diameter circumference at an angular
velocity ω ≈ π rad/s. The outdoor and indoor scenarios
selected are representative of propagation conditions arising in
outdoor live concerts and sport events, and in indoor concert
halls and conference venues, respectively.

Measurement data were recorded using the RUSK LUND
MIMO channel sounder [13]. The principal configuration
parameters of the RUSK LUND channel sounder are shown
in Tab. I. Here is an interesting observation that will be
useful later when we discuss the stability of the representation
bases. We observe that, in both the indoor and the outdoor

Fig. 2. K = 9 users in a lecture theater.

TABLE I. RUSK LUND PRINCIPAL CONFIGURATION PARAMETERS.

Parameter Value (indoors/outdoors)

Carrier frequency (fc) 2.6 GHz
Measurement bandwidth 40 MHz
Number of Tx-Rx pairs (Nch) 9 × 128
Number of subcarriers (L) 129 / 257
Maximum measurable delay (τmax) 3.2 / 6.4 µs
Snapshot duration 2 ×Nch × τmax
Snapshot sampling rate 17 Hz
Number of snapshots (N ) 300
Nominal output power 27 dBm

setups, UE antennas are confined to small regions of the space.
Because of this, we expect that most of the energy between
each UE antenna and the BS propagates through a limited set
of independent paths. As the UE antenna travels within this
finite region, the different paths are revealed. Hence, after a
suitably long observation time, we expect that a stable long-
term representation basis can be obtained. One can expect
to have one such long-term basis per geographic location.
Whether or not short-term bases stay constant longer than
the channel coherence time will depend, for each geographic
location, on the local stationarity properties of the channel.

We should also mention that, even though the number of
independent propagation paths might be limited, the instanta-
neous channel is usually not “static”. Indeed, the radio channel
between each measured transmit-receive antenna pair changes
quickly. If we consider the channel as being approximately
constant for UE antenna displacements less than λc/4, its
coherence time can be estimated as

Tcoh = 0.25× (λc/v), (3)

where v is the speed of the UE antenna, and λc is the
wavelength at the carrier frequency. In the outdoor setup,
v = 0.5 m/s gives Tcoh ≈ 58 ms. For the measured indoor
scenario, we can compute v = 0.25 × ω = π/4 m/s, which
gives Tcoh ≈ 37 ms. Hence, the coherence time and the time
between snapshots (1/17 ≈ 59 ms) have the same order of
magnitude. This will somewhat limit our ability to study the
temporal stability of the short-term bases.

IV. REPRESENTATION BASES

In this section, we first define the notion of short-term and
long-term representation bases. Then, we introduce the concept
of normalized captured channel energy as a figure of merit, and
apply it to the channel measurement data.



A. Optimal Short-Term and Long-Term Representation Bases

Consider the orthonormal basis B of dimension p. Then,
we can write

h(n, `) = f(n, `) + e(n, `), (4)

where f(n, `) = BBHh(n, `) is the representation of h(n, `)
in the basis B, and e(n, `) = (I − BBH)h(n, `) is the
representation error. We seek a basis B that minimizes the
energy of the representation error across all subcarriers within
a certain observation time.

First, consider the matrix

A(n) = [h(n, 1) · · ·h(n,L)], (5)

formed by collecting the channel vectors at OFDM symbol n
and subcarriers ` = 1, . . . , L, and its singular value decompo-
sition (SVD)

A(n) = U(n)Σ(n)V(n)
H
, (6)

where U(n) = [u1(n) · · ·uM (n)] ∈ CM×M and V(n) =
[v1(n) · · ·vL(n)] ∈ CL×L are unitary matrices, and Σ(n) ∈
RM×L is a diagonal matrix σ1(n) ≥ . . . ≥ σq(n) ≥ 0, where
q = min(M,L). Then,

BSVD(n) = [u1(n) · · ·up(n)] (7)

is an optimal p-dimensional representation basis of the column
space of A(n). Since BSVD(n) depends on a single OFDM
symbol, it can be regarded as a short term or instantaneous
representation basis. Depending on the local properties of the
channel, the optimal basis BSVD(n) might change quickly.
In such cases, to preserve optimality, BSVD(n) must be
recomputed often, which might lead to unacceptably high
computational complexity. We will later discuss the required
update rate in relation to the coherence time.

To circumvent this problem, a long-term basis BKLT may
be defined. For that, we regard h(n, `) as a Gaussian stationary
stochastic vector process with zero-mean. Then

Ra = E[h(n, `)hH(n, `)] (8)

is the covariance matrix of h(n, `), which admits an eigenvalue
decomposition (EVD)

Ra = TΛTH, (9)

where T = [t1 · · · tM ] ∈ CM×M is a unitary matrix and
Λ ∈ RM×M is a diagonal matrix λ1 ≥ . . . ≥ λM ≥ 0. It
can be shown [14] that the representation basis of rank p that
minimizes the mean-squared error (MSE)

MSE =
1

M
E
[
‖(I−BBH)h‖2F

]
(10)

can be obtained from the Karhunen-Loève transform (KLT) of
h(n, `) as

BKLT = [t1 · · · tp]. (11)

The minimum MSE is then

MMSE =
1

M

r∑
i=p+1

λi, (12)

where r ≤M is the rank of Ra. Obviously, using BKLT results
in a larger MSE compared to BSVD. However, BKLT is, in
general, a slower (or much slower) changing basis.

B. Representation Basis in Real Propagation Environments

We assume that channel state information (CSI) corre-
sponding to the most recent W snapshots is available, and thus
approximate Ra(n) in (8) by the sample covariance matrix

R̂a(n) =
1

W

W−1∑
i=0

1

L
A(n− i)AH(n− i). (13)

The associated representation basis Ba(n) is then obtained by
extracting the eigenvectors of the p strongest eigenmodes of
R̂a(n). Note that W = 1 gives Ba(n) = BSVD(n), while
Ba(n) approaches BKLT(n) as W grows to infinity.

Here a comment is in order. In (13), the model without
additive noise (2) has been assumed. This assumption is
certainly reasonable for long-term basis, for which we expect
BKLT(n) to be stable over many coherence times. Hence, it
can be obtained relatively easily from noisy observations (1).
For short-term basis, more sophisticated subspace estimation
and tracking algorithms may be required. A discussion of such
algorithms is, however, beyond the scope of this paper, and we
restrict ourselves to merely investigating performance achiev-
able under the assumption that BSVD(n) can be estimated with
arbitrarily good accuracy.

We ask the following question: for fixed p and W , what
can Ba(n) tell us about h(n + ∆n)? Here, ∆n = 0, 1 . . . is
the prediction step size (in our measurements, ∆n = 1 roughly
corresponds to 59 ms). To answer this question, we introduce
the normalized captured channel energy

NE(∆n) =
1

N−W−∆n+1

N−∆n∑
n=W

‖BH
a (n)A(n+∆n)‖2F
‖A(n)‖2F

,

(14)
as a figure of merit. NE(∆n) can be interpreted as the average
fraction of the channel energy that the sequence of bases
{Ba(n)}Nn=W can capture ∆n snapshots into the future. For
the sake of brevity, {Ba(n)}Nn=W will be denoted simply as
Ba in the sequel.

As a benchmark, it is interesting to examine the perfor-
mance of the representation bases obtained by considering the
correlation of the channel across subcarriers. We denote these
bases by Bf, and compute them from the sample covariance
matrix

R̂f(n) =
1

W

W−1∑
i=0

1

M
AT(n− i)A∗(n− i). (15)

Such bases have been extensively investigated in, .e.g., [15].

The left-hand side of Fig. 3 shows NE as a function of p
for two cases, W = 1 (a short-term basis) and W = 100
(a long-term basis), and for some selected values of ∆n.
On the right-hand side of Fig. 3, the corresponding plots
for the representation bases Bf are also shown. Clearly, Bf
are more efficient than Ba, as they capture more energy for
the same p. Nevertheless, Ba can also be regarded as an
efficient sequence of bases. For example, Fig. 3 reveals that
a long-term basis with W = 100 and p = 8 exists that
can capture about 88% of the channel energy. Alternatively,
if Ba(n) is known for all n = 1, . . . , the short-term bases
with W = 1 and p = 8 can capture 98% of the channel
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Fig. 3. Normalized captured channel energy NE(∆n) as a function of the
basis size p, for one short-term basis (W = 1) and one long-term basis
(W = 100), and for some selected values of the prediction step size ∆n.
This example corresponds to the measured outdoor environment.
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Fig. 4. Normalized captured channel energy NE(∆n) for two short-term
bases (W = 1, W = 2) and one long-term basis W = 100, and for some
selected values of the basis size p. This example corresponds to the measured
outdoor environment. Note that the legends are shared.

energy. The bases Ba are particularly valuable in situations
in which subcarrier correlation cannot be readily exploited.
Such situations include, e.g., distributed pilot allocations, or
allocations in which pilots are separated beyond the channel
coherence bandwidth or time.

Next, we look at the stability of Ba. Fig. 4 depicts NE(∆n)
for two basis sizes, p = 8 and p = 16, and three observation
window lengths, W = 1, W = 2 and W = 100. It is apparent
from Fig. 4 that a tradeoff exists between basis efficiency and
basis stability. For example, Fig. 4 shows that short-term basis
(W = 1, 2) achieve efficiency values close to 1, but only
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Fig. 5. To the left, NE(∆n) as a function of the basis size p, for one short-
term basis (W = 1) and one long-term basis (W = 100), and for selected
values of the prediction step size ∆n. To the right, NE(∆n) for two short-
term bases (W = 1, W = 2) and one long-term basis W = 100, and for
some selected values of the basis size p. This example corresponds to the
measured indoor environment.

when used within one coherence time interval. By contrast,
if an observation window of roughly 6 seconds is adopted,
the resulting long-term basis can be reused, totally unchanged,
for the next 9 seconds, perhaps longer. An explanation to this
remarkable observation was suggested in Sec. III where it was
argued that, in the measurement setup considered, most of the
energy propagates through a limited number of independent
paths. In general, short-term bases can accurately capture the
local properties of the channel, thus providing efficient bases
at the expense of stability. On the other hand, long-term bases
can capture well the global properties of the channel, yielding
stable but less efficient bases.

Lastly, we briefly compare the performance of the bases
Ba in indoor scenarios (Fig 5) and in outdoor scenarios (Fig 3
and Fig. 4). The main observation is that, in the investigated
scenarios, Ba is less efficient in indoor situations. This can
be explained by the larger angular spreads present in indoor
environments due to more interactions with walls and furniture.

V. AN APPLICATION TO CHANNEL ESTIMATION

In this section, we investigate a rank-p vector-scalar
LMMSE channel estimator that exploits the antenna correla-
tion of the channel, and evaluate its performance on measured
channels. The investigated estimator is pertinent to massive
MIMO systems, and it is most attractive in situations in
which the frequency correlation of the channel cannot be
utilized, e.g., when the distance between pilots is larger than
the channel coherence bandwidth or time, or when pilots are
allocated in a distributed fashion. In addition, the investigated
estimator can also be used to improve the performance of
conventional channel estimators, which customarily operate
by cascading two one-dimensional filters on the time and
frequency dimensions.



A. Short-Term and Long-Term Channel Estimators

We first introduce some general expressions that apply
to LMMSE estimators and reduced-rank LMMSE estimators,
which we then tailor to the short-term and long-term cases at
hand. We assume that (i) uplink channel estimation is carried
out independently for each user; and (ii) pilot transmissions
from each user are orthogonal to pilot and data transmissions
from other users. We can therefore use the signal model
model (1) for our channel estimation problem, where h(n, `)
is now a stationary stochastic vector process, and s(n, `) is a
known complex scalar. Without loss of generality, we assume
that s(n, `) = 1. For the sake of notational simplicity, indices
n and ` will be dropped when there is no risk of confusion.

With the signal model (1), the least-squares (LS) estimator
of h is given by

ĥLS = y, (16)

while the corresponding LMMSE estimator is

ĥLMMSE = Ca(Ca +N0I)
−1ĥLS, (17)

where Ca will be defined later. At present, we will simply
assume that Ca admits an EVD Ca = UΛUH, where U =
[u1 · · ·uM ] ∈ CM×M is a unitary matrix and Λ ∈ RM×M

is a diagonal matrix λ1 ≥ . . . ≥ λM ≥ 0. If h is a
Gaussian process, then estimator (17) is optimal and attains
the minimum MSE, given by

MMSE =
1

M

r∑
i=1

(
1

λi
+

1

N0

)−1

, (18)

where r is the rank of Ca.

The LMMSE estimator (17) has a complexity of M2

complex multiplications per estimated vector1, which in sys-
tems with a large number of antennas, might be considered
excessive. To address this issue, an optimal rank-p LMMSE
estimator is derived in [14], [15] as

ĥp = UpΣpU
H
p ĥLS, (19)

where Up = [u1 · · ·up] ∈ CM×p and Σp ∈ Rp×p is a diago-
nal matrix with entries [ λi

λi+N0
]ii, i = 1, . . . , p. By using (19),

the complexity is reduced to 2Mp complex multiplications
per estimated vector. Since (19) only considers the p strongest
eigenmodes of Ca, its associated MSE is

MSE(p) =
1

M

p∑
i=1

(
1

λi
+

1

N0

)−1

+
1

M

r∑
i=p+1

λi. (20)

We recognize the second term in the right-hand side of (20)
as the representation error (12). This representation error
constitutes an error floor that limits the performance of (19)
at moderate and high SNR values. To alleviate this situation,
we investigate a vector-scalar LMMSE estimator of the form

h̃p = UpΣpU
H
p ĥLS + α(I−UpU

H
p )ĥLS. (21)

1When computing the complexity of the estimator, the cost of the SVD has
been left out. This cost can be charged, instead, to the subspace estimation
and tracking algorithms. As argued earlier, we expect that more sophisticated
algorithms are needed for the case of short-term bases.

It can be shown that, by selecting the scalar α as

α =

 r∑
i=p+1

λi

 /

 r∑
i=p+1

λi +

M∑
i=p+1

N0

, (22)

the error floor in (20) can be removed, and

M̃SE(p) =
1

M

p∑
i=1

(
1

λi
+

1

N0

)−1

+

1

M


 r∑
i=p+1

λi

−1

+

 M∑
i=p+1

N0

−1


−1

(23)
is attained. The complexity of this estimator is M(2p + 1)
complex multiplications per estimated vector. To see this,
simply rewrite (21) as

h̃p =

p∑
i=1

(Σii − α)upuH
p ĥLS + αĥLS.

Next, we define Ca for the two studied cases of short-term
and long-term representation bases.

1) Short-Term Channel Estimator: In this case, we let

Ca(n) = BSVD(n)Θ(∆n)BH
SVD(n), (24)

where BSVD(n) is computed according to (13) with W = 1
and

Θ(∆n) = diag(E[uH
1 (n)h(n+∆n)], . . . ,E[uH

M (n)h(n+∆n)]).
(25)

In (25), we have assumed that E[uH
m(n)h(n+∆n)], m =

1, . . . ,M , is invariant in n. If this assumption is fulfilled, the
entries of Θ(∆n) are easily tracked.

2) Long-Term Basis: In this case, we simply let

Ca = R̂a, (26)

where R̂a is computed according to (13) with W = 300.

B. Performance Evaluation with Measured Channels

We evaluate the performance of the channel estimators
discussed above. The evaluation is based on data sets obtained
from channel measurements in both indoor and outdoor envi-
ronments at 2.6 GHz. Performance is measured in terms of the
MSE, which we compute as

MSE(∆n) =
1

N−1

N−1∑
n=1

1

M
‖ĥ(n+∆n)−h(n+∆n)‖2F, (27)

where, following (2), h(n) is a noiseless observation of the
channel, and ĥ(n+∆n) is one of (16), (17), (19) or (21). Chan-
nel estimators using both short-term and long-term statistics
of the antenna covariance matrix of the channel are evaluated.
For the short-term channel estimators, Ca(n) is obtained as
described in Sec. V-A1, for n = 1, . . . , N − 1. Two prediction
step sizes, ∆n = 0 and ∆n = 1, are considered. For the long-
term channel estimators, a single matrix Ca is computed as
indicated in Sec. V-A2, and used for all n = 1, . . . , N − 1.
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Fig. 6. Performance of antenna correlation based channel estimation in a
massive MIMO outdoor setup.

Fig. 6 shows that, when a large number of antennas is
available at the BS, antenna correlation based channel esti-
mators can bring about significant gains compared to scalar
estimators, specially in the low to medium SNR range. As
expected, these gains are larger in the measured outdoor
environment compared to the indoor one (not shown due to
space constraints). Of particular interest is the rank-p vector-
scalar LMMSE channel estimator (21). Careful examination
of the plots in Fig. 6 suggests that only a small performance
penalty has to be paid by using (21) in place of the optimal
LMMSE estimator (17), whereas the computational complexity
is reduced by a factor M/(2p + 1). Lastly, we compare the
performance of channel estimators using short-term and long-
term antenna correlation statistics. A key observation is that,
in the investigated scenarios, the short-term bases must be
updated every coherence time interval in order to outperform
the long-term ones. This is difficult since, in reality, channel
observations are noisy. Hence, our ability to make use of
antenna correlation in massive MIMO for the purpose of
channel estimation seems limited to the usage of long-term
statistics.

VI. CONCLUSIONS

In this paper, we investigated the correlation properties of
massive MIMO channels with the purpose of obtaining a low-
dimensional representation of the channel vectors. We defined
short-term and long-term representation bases, and evaluated
their performance with data sets obtained from measurements
in both indoor and outdoor environments. We found that,
within the coherence time of the channel, the short-term
bases can capture a larger portion of the channel energy, as
compared to the long-term ones. On the other hand, beyond
one coherence time and up to several hundred coherence
times, the long-term bases offer superior performance. We also
investigated a rank-p vector-scalar LMMSE channel estimator
that exploits antenna correlation. The investigated estimator
has lower complexity, yet performs similarly to the full-rank,
optimal LMMSE estimator. Our results also show that, for
channel estimation, the short-term bases must be updated every

coherence time interval in order to outperform the long-term
ones. This is difficult since, in reality, channel observations are
noisy. Hence, our ability to make use of antenna correlation
in massive MIMO for the purpose of channel estimation
seems limited to the usage of long-term statistics. Future
investigations might involve joint-basis for co-located users.
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