
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Modeling and Control for Improved Predictability of Cloud Applications

Berner, Tommi

2022

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Berner, T. (2022). Modeling and Control for Improved Predictability of Cloud Applications. [Doctoral Thesis
(compilation), Department of Automatic Control]. Department of Automatic Control, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/f3425673-7804-4b65-9b3b-7188e3083a07

Modeling and Control for Improved
Predictability of Cloud Applications

Tommi Berner

Department of Automatic Control

PhD Thesis TFRT-1136
ISBN 978-91-8039-233-4 (print)
ISBN 978-91-8039-234-1 (web)
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2022 by Tommi Berner. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2022

Abstract

Cloud computing has emerged as a key technology in the latest decade and
continues to be applied to manage the computing needs of new domains.
As a result, the requirements on predictable behavior in the cloud increase,
thus the hosted applications need to be recognized as both fault-tolerant and
responsive even under difficult conditions.

In this thesis, new modeling methods and decision-making strategies are
presented with the goal of increasing the predictability of cloud applications.
The methods can be divided into two tracks, using concepts from control
theory and queuing theory respectively. The control-theoretical method track
utilizes the concept of graceful degradation as an enabling actuator. In the
context of server control, a novel dynamic model for queue lengths is pro-
posed, as well as a cascaded structure for response time control. Addition-
ally, interactions between decision-making strategies at different layers in the
cloud infrastructure are discussed, including an interpretation of the pop-
ular Join-Shortest-Queue (JSQ) load-balancing strategy as a queue length
controller.

The queuing-theoretical track utilizes the concept of request cloning to
increase the predictability of applications replicated across multiple servers.
A criterion for synchronized service is formalized, which enables a dramatic
simplification of modeling of applications subject to cloning, without requir-
ing any further assumptions on neither queuing disciplines nor on the sta-
tistical distributions involved. Furthermore, model error bounds are derived
for server systems that break the synchronized service criterion. It is shown
that imperfections that can arise during implementation, only slightly affect
the accuracy of the model. Finally, an intuitive explanation is given for why
the popular JSQ load-balancing strategy acts as a service synchronizer, that
allows for accurate, approximate modeling of the complicated scenario of un-
restricted request cloning across replicated servers where the JSQ strategy is
used for load-balancing.

While there are differences in the modeling approaches between the
two separate method tracks, they both share common properties that run

3

throughout the thesis. First, the majority of the involved techniques revolve
around finding design choices that enable simplification, without limiting the
applicability of the solutions. Second, many of the strategies presented in the
thesis apply concepts and structures traditionally used in different domains,
which often requires the problems to be viewed from a slightly different an-
gle. The proposed models and methods from both tracks are evaluated in a
simulated cloud environment, composed of a discrete-event simulator imple-
mented in a request-by-request fashion, independent of the proposed methods
in this thesis.

4

Acknowledgements

I would like to begin by thanking my supervisors, Karl-Erik, Martina and
Maria. Karl-Erik, my main supervisor, for interesting talks about both MFF
and our research, and for providing guidance and support without applying
unnecessary pressure. Martina, for giving me both high-level advice as well
as valuable input regarding technical questions, and Maria for helping me
getting started with my PhD during the first years.

I also want to thank everyone at the Department of Automatic Control
for contributing to a welcoming and inspiring work environment. During my
years at the department, I always felt that there was someone to ask if I
was stuck, whatever the problem was. I would specially like to thank the col-
leagues that I worked close together with, both within WASP and the cloud
research group, including Jonas, Manfred, Victor, Gautham, Alexandre, Per,
Marcus and Johan. A special thanks also to Jacob for all chess and sports
related discussions we had in our office.

Thanks also to the administrative staff, Eva, Ingrid, Mika, Cecilia and
Monika, for help and support with all kinds of work-related things. The same
goes for the technical staff, Anders N, Anders B, Pontus and Leif, thank you
for helping me with all the hardware and software related problems I had
during my time at the department.

I would like to thank my parents and my brother for all support during
the years that led me here. Last but not least, I would also like to thank my
wife Josefin for her invaluable support in all kinds of matters, and our son
Anton for his ability to make me stop thinking about work. It would not be
the same without you.

Financial support

This work was partially supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallen-
berg Foundation.

5

Contents

Acronyms 9
1. Introduction 10

1.1 Thesis Outline . 11
1.2 Contributions of the Thesis 12

2. Background 16
2.1 Cloud Computing . 16
2.2 Queuing Theory . 24
2.3 Control Concepts . 30

3. Improving Cloud Application Predictability 37
3.1 Simulation Environment . 37
3.2 Control-Theoretical Methods 38
3.3 Queuing-Theoretical Methods 46
3.4 Common Themes . 50

4. Future Work 52
Bibliography 53
Paper I. BrownoutCC: Cascaded Control for Bounding

the Response Times of Cloud Applications 59
1 Introduction . 60
2 The brownout approach . 61
3 The BrownoutCCapproach 63
4 Evaluation . 71
5 Conclusion and future work 77
References . 78

Paper II. Improved Dynamic Modeling for Controlled
Server Queues 83

1 Introduction . 84
2 Background and Related Work 86
3 Model . 89
4 Model Evaluation . 96

7

Contents

5 Control Design . 102
6 Control Evaluation . 105
7 Conclusion . 109
References . 111

Paper III. Cloud Application Predictability through
Integrated Load-Balancing and Service Time
Control 115

1 Introduction . 116
2 Problem Statement . 118
3 Proposed Solution . 121
4 Experimental Validation . 131
5 Related work . 136
6 Conclusion . 136
References . 137

Paper IV. Modeling of Request Cloning in Cloud Server
Systems using Processor Sharing 143

1 Introduction . 144
2 Synchronized Model . 146
3 Examples . 150
4 Applications . 151
5 Non-Synchronized Service 157
6 Evaluation . 164
7 Related Work . 167
8 Conclusion . 170
References . 171

Paper V. Towards Performance Modeling of Speculative
Execution for Cloud Applications 175

1 Introduction . 176
2 Model . 177
3 Evaluation . 180
4 Conclusion . 182
References . 182

8

Acronyms

API Application Programming Interface
AWS Amazon Web Services
CDF Cumulative Distribution Function
CFPS Combined FIFO and PS, equivalent to LPS
CoC Cancel-on-Complete (cloning)
CoS Cancel-on-Start (cloning)
FaaS Function-as-a-Service
FCFS First-Come First-Served
FIFO First-In First-Out, equivalent to FCFS
IaaS Infrastructure-as-a-Service
JSQ Join Shortest Queue
LB Load Balancer
LPS Limited Processor Sharing
MIMO Multiple-Input Multiplie-Output (system)
NIST National Institute of Standards and Technology
OS Operating System
PaaS Platform-as-a-Service
PDF Probability Density Function
PI Proportional and Integral (controller)
PID Proportional, Integral and Derivative (controller)
PS Processor Sharing
PSFFA Pointwise Stationary Fluid Flow Approximation
SaaS Software-as-a-Service
SISO Single-Input Single-Output (system)
SQF Shortest Queue First, equivalent to JSQ
VM Virtual Machine
WASP Wallenberg AI, Autonomous Systems and Software Program

9

1
Introduction

Cloud computing1 is a concept where computational resources and storage
are provided as a utility, i.e., where cloud users pay for their usage from
a seemingly infinite pool of resources [Barroso and Hölzle, 2009]. However,
behind the scenes there is of course a limitation on the amount of physical
machines that the cloud providers can maintain in their data centers, and
there are many components involved that can fail [Dean and Barroso, 2013].
Furthermore, the cloud users share the physical resources through virtual-
ization which creates additional complexity, both in terms of performance
and security [Xing and Zhan, 2012]. This makes the task of providing cloud
computing as a service difficult. Today, there exists many different service
models that define what type of computing services the cloud providers of-
fer. The most common examples include: Infrastructure as a Service (IaaS);
Platform as a Service (PaaS); and Software as a Service (SaaS), stated in an
increasing level of abstraction [Mell and Grance, 2011].

The scope of this thesis is limited to concern cloud users that host ap-
plications using the IaaS concept. Specifically, the thesis is focused on the
computational performance of the application, i.e., disregarding, e.g., storage,
network and security. In this setting, the computational part of the applica-
tion is deployed on the cloud using either virtual machines [Smith and Nair,
2005] or containers [Soltesz et al., 2007]. At the abstraction level used in
this thesis, both these virtualization techniques are considered as identical
and the computation units in the cloud are denoted as servers. The types of
cloud applications considered in this thesis are restricted to end-user facing
applications that receive requests and serve responses. They are deployed in
a single server, but can of course be replicated if necessary. An example could
be a simple webserver that hosts a small store. However, this application def-
inition does not comply very well with the increasingly popular microservices
concept, where a single cloud application can be split into tens or hundreds
of services, all deployed on separate servers [Newman, 2021]. On the other

1For more information regarding the cloud concepts, the reader is referred to Chapter 2.

10

1.1 Thesis Outline

hand, the application definition in this thesis could then be used to represent
one of the involved services, instead of a complete monolithic application.

As the task of providing well-behaved servers is difficult for the cloud
provider, cloud applications need to be designed and managed with respect to
these inherent uncertainties, i.e., they need to be fault-tolerant. Additionally,
the end-user behavior can vary, both predicatively over time as well as due
to sudden events. To cope with these changes it is possible to overprovision
the cloud deployment, i.e., to deploy for peak loads. This is, however, an
expensive and wasteful solution [Armbrust et al., 2010]. A better option is
to change the service rate of the application, e.g., by dynamically scaling the
deployment or by graceful degradation, where the quality of the response is
temporarily sacrificed for speed [Jalaparti et al., 2013].

In this thesis, cloud application predictability is defined as the ability
for an application to be both fault-tolerant and responsive, i.e., providing
short response times with low variance even under changing conditions. An
important measure that needs to be kept low to maintain predictability is
the tail latency, which represents the response times of the slowest requests,
i.e., the tail of the distribution.

The aim of this thesis is to use modeling concepts and decision-making
from both queuing theory and control theory, in order to improve the pre-
dictability of cloud applications. The main concepts involved include control
methods using graceful degradation techniques, but also queuing theoretic
modeling of request cloning, where multiple copies of the same request are
issued simultaneously to the servers. Together, the methods included in this
thesis all strive towards the same goal; to ensure fault-tolerant and responsive
applications in an uncertain cloud environment.

1.1 Thesis Outline

This thesis is written as a collection of papers, with the following outline of
the kappa:

Chapter 1 - Introduction
The introductory chapter describes the motivation and aim of the thesis, and
introduces the main contributions together with the included papers.

Chapter 2 - Background
The second chapter presents important concepts within cloud computing,
queuing theory and control theory that are used and referenced throughout
the thesis. This background chapter is completely based on previous knowl-
edge.

11

Chapter 1. Introduction

Chapter 3 - Improving Cloud Application Predictability
This chapter presents the main goal and contributions of the thesis. The
assumed cloud setting is described, and the simulation environment used
throughout the thesis is introduced. Additionally, the proposed modeling and
decision-making strategies are presented, divided into two method tracks:
(i) control-theoretical; and (ii) queuing-theoretical. Finally, common themes
from both tracks are identified and discussed.

Chapter 4 - Future work
The final chapter gives suggestions for where future improvements can be
made, regarding both the strategies proposed as well as the evaluation envi-
ronment.

1.2 Contributions of the Thesis

The main contributions are novel models and decision-making strategies for
increased predictability of cloud applications, using ideas and concepts from
two method tracks: (i) control-theoretical; and (ii) queuing-theoretical. The
contributions for each paper are shortly described in the remainder of this
section. The control-theoretical method track is composed by Papers I-III
and the queuing-theoretical by Papers IV-V. Notice that Tommi Berner has
changed his surname from Nylander to Berner during the course of his PhD-
studies. Both surnames are used in the papers below.

Paper I
Nylander, T., C. Klein, K.-E. Årzén, and M. Maggio (2018). “BrownoutCC:

Cascaded control for bounding the response times of cloud applications”.
In: 2018 American Control Conference. Milwaukee, Wisconsin, USA.

This paper develops models and control strategies for a cloud applica-
tion hosted on a single server. The goal is to improve the decision making
for a graceful degradation concept, denoted as brownout, that can lower the
response quality when needed in order to control response times. The pro-
posed control strategy utilizes a cascaded structure that is able to improve
the predictability of the brownout concept, while providing a model-based
control design. The proposed design is compared to previous strategies in a
simulation campaign.

The idea to try to improve the brownout control design came from K.-E.
Årzén and M. Maggio. The cascaded control structure and models were pro-
posed by T. Nylander after discussions with the co-authors. The simulations
were performed by T. Nylander, extending on a simulator previously built by

12

1.2 Contributions of the Thesis

C. Klein and M. Maggio. The manuscript was written by T. Nylander with
many inputs and comments from the co-authors.

Paper II
Berner, T., J. Ruuskanen, M. Maggio, and K.-E. Årzén (2022). “Improved

dynamic modeling for controlled server queues”. Under journal submis-
sion.

This paper builds on the server modeling from Paper I, and identifies
certain server characteristics where the previous model is insufficient. Specif-
ically, the involved characteristics are represented by queuing disciplines, and
it is shown that these affect the server dynamics. A new, nonlinear model
structure is proposed based on a simulation study as well as on other known
queuing theoretic relations. The proposed structure can represent the dynam-
ics for the more general LPS discipline, resulting in a more versatile model.
A control design example showcases the benefits of the structure, using a lin-
earized version of the proposed model. The design example highlights critical
frequency ranges where the shape of the involved service time distributions
need to be taken into account. Both the proposed model structure and the
control design example are evaluated using simulations.

The idea to investigate the effect of the queuing discipline on server dy-
namics came from T. Berner. The final model structure was developed by T.
Berner from discussions with the co-authors. The idea to include a control de-
sign example was proposed by K.-E. Årzén. The simulations were performed
by T. Berner, extending on the simulator from Paper I. The manuscript was
written by T. Berner with many inputs and comments from the co-authors.

Paper III
Nylander, T., M. Thelander Andrén, K.-E. Årzén, and M. Maggio (2018).

“Cloud application predictability through integrated load-balancing and
service time control”. In: Proceedings of the 15th IEEE International Con-
ference on Autonomic Computing. Trento, Italy (Received Best Paper
Award).

This paper is focused on interactions between different decision making
layers in the cloud, for an application hosted on multiple servers. The paper
shows that negative interactions can occur when load balancing policies and
server controllers are not designed with respect to each other. This is ex-
emplified for the popular load balancing strategy JSQ, that in combination
with brownout server controllers can result in a heavy oscillatory behavior.
To mitigate this potential problem, an alternative decision making struc-
ture is proposed where both layers are co-designed. The proposed design is

13

Chapter 1. Introduction

evaluated and compared to previous structures in an extensive simulation
campaign.

The idea to investigate interactions between decision making layers in the
cloud came from T. Nylander. The problem statement, including the high-
lighting of the JSQ strategy, was then discussed with the other co-authors.
The proposed co-design structure was developed by T. Nylander and M.
Thelander Andrén, with inputs from the other co-authors as well. The simu-
lations were performed by T. Nylander and M. Thelander Andrén, utilizing
an extension of the simulator from Paper I. The manuscript was written by
T. Nylander and M. Thelander Andrén, with inputs and comments from the
other co-authors as well.

Paper IV
Nylander, T., J. Ruuskanen, K.-E. Årzén, and M. Maggio (2020). “Modeling

of request cloning in cloud server systems using processor sharing”. In:
Proceedings of the 2020 ACM/SPEC International Conference on Per-
formance Engineering. Edmonton, Canada.

This paper proposes a simplified method to model request cloning in cloud
systems by introducing the concept of synchronized service. As the method
has no assumptions on the statistical distributions involved, it allows for
re-using of previous queuing theoretic results, as the model of cloning to n
servers becomes equivalent to a basic single server model. The paper presents
examples of server systems that fulfill the synchronized service criterion, but
also investigates cases where the criterion can not be fulfilled. Specifically, it
proves error bounds for common imperfections such as delays in arrival and
cancellation of the clones. Additionally, it presents an intuitive reasoning
as to why request cloning in a server system involving the popular load
balancing policy JSQ approximately behaves as a synchronized system. The
proposed cloning model with all examples and imperfections are evaluated
using simulations.

The idea to try to model request cloning using the synchronized service
criterion came from T. Nylander. The formalization of the concept and the
applications presented in the paper were discussed with all co-authors, es-
pecially J. Ruuskanen. The idea to include analysis for imperfect systems
came from T. Nylander and J. Ruuskanen, and the formalization and proofs
for the error bounds were developed by J. Ruuskanen. The simulations were
performed by T. Nylander and J. Ruuskanen, using a simulator extending on
the one developed in Paper I. The manuscript was written by T. Nylander
and J. Ruuskanen, with inputs and comments from the other co-authors as
well.

14

1.2 Contributions of the Thesis

Paper V
Nylander, T., J. Ruuskanen, K.-E. Årzén, and M. Maggio (2020). “Towards

performance modeling of speculative execution for cloud applications”.
In: ACM/SPEC International Conference on Performance Engineering
Companion (ICPE ’20 Companion). Edmonton, Canada.

This paper builds on the modeling principles from Paper IV for request
cloning, and extends the scope to model the more general cloning concept of
speculative execution. Here the request clones are sent after a given specula-
tion time, and not simultaneously along with the original request as in Pa-
per IV. The modeling in this paper utilizes the near-synchronization property
of the JSQ load-balancer, enabling a simplified, yet accurate, approximate
analysis for any configuration of speculation times and number of clones.
As in Paper IV, there are no assumptions on the properties of the statisti-
cal distributions. The paper presents the modeling procedure, together with
an illustrative example. The modeling is evaluated using simulations that
highlight the key promises of the proposed method.

The idea to utilize the near-synchronization property of JSQ to model
speculative execution came from T. Nylander, and was refined in discussions
together with the other co-authors. The formalization of the procedure was
developed by J.Ruuskanen together with T. Nylander. The simulations were
performed by T.Nylander and J. Ruuskanen, using a simulator extending on
the one developed in Paper IV. The manuscript was written by T. Nylander
and J. Ruuskanen, with inputs and comments from the other co-authors as
well.

Additional Publications
The following publication by the author is not included in the thesis:

Ruuskanen, J., T. Berner, K.-E. Årzén, and A. Cervin (2021). “Improving
the mean-field fluid model of processor sharing queueing networks for dy-
namic performance models in cloud computing”. Performance Evaluation
151.

15

2
Background

In this thesis, methods and concepts from both queuing theory and control
theory are applied in a cloud computing setting. The analysis is performed on
a high abstraction level, i.e., cloud specific tools and programs are mostly left
out in the included papers. Instead, more general concepts such as servers
and high level architectures are utilized. However, in order to provide context
and motivation, this background section includes descriptions of the most
relevant concepts within cloud computing. Furthermore, the basic building
blocks of queuing theory are also presented, as they are utilized in all papers
in this thesis, especially in Papers IV - V. Finally, some classic concepts and
strategies from control theory that are applied in a cloud setting in Papers I -
III, are presented here to aid the reader.

2.1 Cloud Computing

Cloud computing can be described as the illusion of being provided infinite
computing resources. However, there exists more precise definitions. The clas-
sical definition from National Institute of Standards and Technology (NIST)
provides the following essential characteristics [Mell and Grance, 2011]:

• On-demand self-service – The cloud user should be able to automati-
cally acquire computing resources, such as servers and storage.

• Broad network access – The cloud should be accessible through stan-
dard protocols that promote use by heterogeneous devices, e.g., mobile
phones and laptops.

• Resource pooling – Physical and virtual resources are dynamically as-
signed to multiple cloud users through resource pooling. The users are
not in control of where the computations are located.

16

2.1 Cloud Computing

Figure 2.1 Server racks in a Facebook
data center in Luleå, Sweden. Picture
from [Brodkin, 2013].

Figure 2.2 Typical power usage share
in a data center. Figure from [Shehabi et
al., 2016].

• Rapid elasticity – Resources should be elastically provisioned and re-
leased, in order to scale both up and down with the demand. This
characteristic is what provides the illusion of infinite resources.

• Measured service – Resource usage should be monitored in order to be
controlled and optimized. The measures should be reported to ensure
transparency for the cloud users.

Together with the essential characteristics, the NIST definition also pro-
vides the following cloud deployment models: (i) Private; (ii) Community;
(iii) Public; and (iv) Hybrid. Defining the access of resources, the first three
are self-explanatory whereas the hybrid model acts as a composition of the
other models. In this thesis, the cloud applications are assumed to be hosted
on a public cloud, where users from anywhere can interact with the applica-
tion.

Data Centers
The computations in the cloud are typically performed in large-scale data
centers, containing thousands of physical servers together with storage,
switches, routers, cables and cooling systems [Barroso and Hölzle, 2009].
The servers are stored in racks as shown in Figure 2.1, and as can be seen in
Figure 2.2, the majority of the power is consumed by the servers and cooling
systems [Shehabi et al., 2016]. As a large data center in the US consumes
several hundreds of megawatt (MW) [U.S. Department Of Energy, 2020], cor-
responding to about half of the power created by a nuclear reactor, energy
efficiency is a key factor in cloud computing. In 2018, the estimated global
data center energy usage was 205 TWh, or around 1% of global electricy
consumption [Masanet et al., 2020].

17

Chapter 2. Background

Ja
n

07

Ja
n

08

Ja
n

09

Ja
n

10

Ja
n

11

Ja
n

12

Ja
n

13

Ja
n

14

Ja
n

15

Ja
n

16

Ja
n

17

Ja
n

18

Ja
n

19

Ja
n

20

Ja
n

21

0

25

50

75

100

Time

P
op

ul
ar

it
y

(%
)

Figure 2.3 Cloud computing search term popularity, according to Google
Trends: https://trends.google.com. Data collected Dec 2021.

Trends and Research Topics
The term cloud computing was defined by NIST [Mell and Grance, 2011] in
2011, however, the concept started to gain popularity already a couple of
years earlier. This can be seen in Figure 2.3, that shows the popularity of the
search term "cloud computing" during 2007-2021, with data collected from
Google Trends in December 2021. The popularity of the search term peaked
in 2011, but as it is on levels of 40-50% of peak value today, cloud computing
is still both relevant and important in the everyday life.

The research scope of cloud computing has through the years shown to be
quite wide and diverse. As found by the literature review paper [Bayramusta
and Nasir, 2016], the five most dominant themes in the years 2009-2014 were:

• Cloud Computing Adoption (19% of all 236 reviewed articles)

• Legal & Ethical Dimension of Cloud Computing (15%)

• Conceptualization & Evolution of Cloud Computing (14%)

• Technical Dimension of Cloud Computing (13%)

• Application of Cloud Computing in Different Sectors (10%)

Among the least popular themes during 2009-2014 were Cloud Computing
for Mobile Applications (6%) and Energy Consumption Dimension of Cloud
Computing (4%).

18

https://trends.google.com

2.1 Cloud Computing

A more recent paper that tries to look ahead on the new trends and
research directions within cloud [Varghese and Buyya, 2018] highlights the
following topics:

• Distributed cloud infrastructure and edge/fog computing

• Multi-tier cloud architectures, i.e., microservices

• Cloud computing impact on both societal and scientific avenues

• Cloud security and sustainability for architecting future systems

It is interesting to compare the two papers as a shift towards the topics
that were unpopular in the beginning of the cloud era, i.e., security and
sustainability, have become increasingly more popular. Another major trend
is the focus towards distributed cloud applications, where the computations
are not only processed in large-scale data centers, but also closer to the end-
users on edge devices such as network base stations.

Virtualization
The concept of virtualization allows cloud users to share physical resources
in cloud data centers, while obtaining an isolated environment [Jain and
Choudhary, 2016]. Two common approaches include both full hardware and
container-based virtualization.

In the first approach, a virtual machine (VM) is spawned for each user
that acts like a physical computer with its own operating system. The VMs
are administrated by a hypervisor [Smith and Nair, 2005]. While this ap-
proach allows for flexibility (host machine and guest VM can use different
operating systems) and enhanced isolation, the full hardware virtualization
does create a lot of overhead. The average startup time for a VM in a com-
mon public cloud is approximately a couple of minutes [Mao and Humphrey,
2012]. This startup delay makes it difficult to host cloud applications for
rapidly changing workloads.

In the second virtualization approach, denoted as containerization or
operating-system-level virtualization, a container is spawned for each user.
This concept is less flexible, as the guest container needs to use the same
operating system as the host machine. However, it does reduce a lot of the
overhead present in VMs [Soltesz et al., 2007]. The typical startup time for
a container is in the order of a couple of seconds [Medel et al., 2016], which
makes them very useful for cloud application deployments.

Service Models
The cloud providers offer computing and services to its users. There ex-
ists many different service models, which define what type of product

19

Chapter 2. Background

that the cloud provider makes available. The three original models are (i)
Infrastructure-as-a-Service (IaaS); (ii) Platform-as-a-Service (PaaS); and (iii)
Software-as-a-Service (SaaS) [Mell and Grance, 2011].

IaaS is the model that provides the least amount of abstraction, thus
many administrative tasks need to be performed by the cloud user. This
service model provides the users with virtualized hardware, e.g., VMs and
storage services, that can be used to build up the complete infrastructure
needed to host an application [Bokhari et al., 2016]. The cloud users pay for
their usage and are responsible for scaling the application. Examples of IaaS
providers include Amazon Web Services (AWS), Microsoft Azure and Google
Cloud.

PaaS provides a bit more abstraction as the server management is now
included in the offering, which means that the cloud users are not respon-
sible for, e.g., autoscaling of the application. The cloud provider hosts both
hardware and software (including operative system) that allows application
programmers to build their software on top of the platform [Bokhari et al.,
2016]. Examples include AWS Elastic Beanstalk and Google App Engine.

SaaS is targeted towards the end-users as it delivers a complete applica-
tion hosted in the cloud, and accessible via, e.g., a web browser. Bug fixes and
software updates are managed by the provider, and no installation is required
for the end-users. This makes these services both easy to use and suitable for
collaboration [Bokhari et al., 2016]. Examples of SaaS applications include
Netflix, Dropbox and Gmail.

In recent years, the concept of Function-as-a-Service (FaaS), or serverless
computing, has also increased in popularity. In this service model, the appli-
cation programmer is provided with an interface to develop functions that
run in the cloud, where the computing nodes are automatically scaled [Jonas
et al., 2019]. The most common example of FaaS is AWS Lambda, where the
billing of the service is based on every millisecond of computation time.

Elasticity
One of the most important characteristics of cloud computing is, as formal-
ized in the NIST definition [Mell and Grance, 2011], the elasticity of the cloud
applications, i.e., the ability to scale. For some cloud service models, such as
PaaS and FaaS, the autoscaling is already performed and managed by the
cloud provider. However, for the widely used IaaS model, the cloud user is
responsible for ensuring the elasticity. For the PaaS model, some platforms
include autoscaling abilities, for example AWS Elastic Beanstalk. Another
example of a platform that includes autoscaling is Kubernetes, which is an
open source platform for managing containerized applications [Burns et al.,
2018]. As the code is open source, the user can edit the autoscaling policies to
improve the responsiveness of the application, thus studying algorithms and

20

2.1 Cloud Computing

models for elastic cloud applications can be relevant even for the platform
setting.

The autoscaling of cloud applications has been an important research
topic in the last decade, with many different algorithms proposed [Lorido-
Botran et al., 2014]. The scaling can be performed in two dimensions,
both horizontal (adding/removing of servers), as well as vertical (increas-
ing/decreasing speed of servers) [Millnert and Eker, 2020]. Most of the pro-
posed algorithms can be grouped into using one or many of the following
techniques: (i) Threshold-based rules; (ii) Reinforcement learning; (iii) Queu-
ing theory; (iv) Control theory; and (v) Time series analysis. Another way of
categorizing the autoscaling policies is by their anticipation capabilities, i.e.,
as reactive or proactive, where the latter includes some sort of prediction of
future resource needs [Lorido-Botran et al., 2014].

Microservices
In the recent years, cloud application development has largely shifted from
large monolithic applications to instead be composed of independent and
loosely coupled microservices [Ueda et al., 2016]. With this architecture, one
user-facing application could consist of hundreds, or thousands, of microser-
vices that communicate through remote calls using a common application
programming interface (API). All of these microservices can then be de-
ployed, scaled and managed independently.

The modularity of this approach can simplify both deployment and de-
bugging of cloud applications [Gan and Delimitrou, 2018]. As errors in the
application can be tracked to an isolated component, it both becomes easier
to track down the bug as well as deploying the update for the fix. Moreover,
microservices offer flexibility to the applications developers as many different
programming languages and frameworks can be used to build up the applica-
tion. In addition, the microservices architecture fits well with the increasingly
popular containerization model for virtualization in the cloud.

However, the distributed manner of a microservices application in the
cloud also poses challenges. The development task can get more difficult,
as it becomes harder for the teams to see the big picture of the applica-
tion [Balalaie et al., 2015]. Furthermore, more time is spent on processing
and sending network requests, which can deteriorate the performance of the
application [Gan et al., 2019]. With this architecture, it also becomes more
difficult to develop performance models for application end-to-end response
times and to, e.g., find bottlenecks in the system [Ueda et al., 2016].

Graceful Degradation
A common method for keeping tail latencies low in cloud applications is the
concept of graceful degradation. For cloud applications under periods of high

21

Chapter 2. Background

user loads, the application deteriorates its user content to some degree in
order to increase the service rate. These techniques are usually only meant
to be used for short periods of time, for instance while waiting for more
servers to start, as it of course is not desirable to provide the users with
degraded application content [Nylander et al., 2018].

The most extreme case of graceful degradation is admission control [Kon-
stanteli et al., 2012], where user requests are denied to enter the application
if the servers are too overloaded. This is an effective way of keeping tail
latencies low and predictable, however, the consequences of completely deny-
ing user service can outweigh its advantages. Another graceful degradation
technique is to limit the time user requests can spend in the application, and
iteratively refine the response until the maximum time is reached [Ding et al.,
2011]. This is, however, only applicable to certain types of requests such as
search queries. Finally, another option for implementing graceful degradation
behavior is Brownout [Klein et al., 2014]. In this technique the content of the
application response is split into two parts, one mandatory and one optional.
The mandatory part is composed by the core features of the application
response and is always sent, whereas the optional part that includes nice-
to-have features is only sent when the application is not under heavy load.
All of these mentioned techniques can be utilized as actuators that realize
control strategies that, e.g., try to keep tail latencies below some maximum
setpoint.

Cloning and Speculative Execution
A common performance issue with large and distributed cloud applications
is the occurrence of stragglers, i.e., requests that for different reasons require
significantly longer time to execute than the rest. The problem is extra severe
when other parts of the application depend on the completion of the straggler
requests [Dean and Barroso, 2013], and this will especially affect the tail
latencies of the application. The causes for these slow requests can be many:
software bugs, network issues, hardware failures or inconsistent performance
of the virtualized environments. What they share in common is that these
causes are difficult to predict in advance, which means that the straggler
problem can not always be mitigated by standard load balancing algorithms.

One mitigation technique that has received a lot of research attention in
recent years is cloning, where multiple clones of the same original request
are sent simultaneously to different servers [Ananthanarayanan et al., 2013].
There exists different variations of the cloning technique, and the two most
common are (i) cancel-on-complete (CoC); (ii) cancel-on-start (CoS); and
(iii) speculative execution. In CoC cloning, all clones execute until the first
one completes, and immediately after the first completion all other clones
cancel their execution. This is shown schematically in Figure 2.4. If not oth-

22

2.1 Cloud Computing

LB

R1

R2

...

Rn

λ

λ

λ

λ

λ

(a) An incoming request is cloned to n servers
at the load balancer LB.

LB

R1

R2

...

Rn

λ

λ

λ

λ

λ

(b) Server R2 completes first and sends the
response. All other clones are cancelled.

Figure 2.4 Cancel-on-complete cloning to n servers.

erwise mentioned, the concept cloning in this thesis refers to the CoC variant.
The CoS variant cancels all clones as the first one starts its execution, which
generally leads to a reduced system load compared to the CoC variant. How-
ever, as only one clone gets processed, the CoS variant is not as effective on
mitigating issues with, e.g., inconsistent VM or container performance. The
speculative execution concept is identical to CoC cloning, with the difference
that the sending of clones can be delayed by a speculation time. As is the
case with CoS cloning, speculative execution also leads to less overhead due
to the delayed clones.

Cloning has for quite some time been shown to be able to work well in
practice, when evaluated in actual large-scale cloud environments [Anantha-
narayanan et al., 2013]. The intuition behind why it should be successful at
mitigating stragglers and keeping tail latencies low, is that the more servers
that serve a specific request, the more likely the request is to find a fast per-
forming server. However, it is then likewise intuitive to assume that the extra
clones will increase the system load and therefore make all servers slower. The
need for analysis and modeling of the effects of cloning is thus clear, in or-
der to determine under what circumstances cloning increases the application
performance, and when it deteriorates performance. The first exact analysis
was published in 2015 [Gardner et al., 2015], and its involved statistical as-
sumptions were restricted towards the exponential distribution. Since then,
more publications have widened the scope and relaxed the assumptions [Joshi
et al., 2015; Qiu et al., 2016] but the concept of cloning still remains as a
fairly open research topic.

23

Chapter 2. Background

µ
λ

Figure 2.5 Single server model. Requests arrive with incoming arrival
rate λ, and are processed with outgoing service rate µ.

2.2 Queuing Theory

In this thesis, concepts from the field of queuing theory are utilized in all
Papers I-V. This section aims to give a background relevant to the scope of
the thesis, and a complete introduction can be found in the book by Klein-
rock [Kleinrock, 1975]. Queuing-theoretical methods can be used to analyze
any application that involves queues, e.g., from grocery store checkouts to
customer services. In the context of cloud computing and computing systems
in general, the queues of interest are within the servers, where requests wait
to be processed. With the queuing theory framework, it is possible to an-
alyze computing systems and predict cloud application response times and
capacity requirements.

Single Server
The most elementary component that queuing theory can model is the sin-
gle server, shown in Figure 2.5, that represents a unit capable of performing
computation. The modeling relies heavily on statistical distributions, and the
stream of arriving requests is described by the inter-arrival time distribution
with cumulative distribution function (CDF) Farr(x) and rate λ. The requests
are put in a queue before being processed by the server, described by its ser-
vice time distribution with CDF Fser(x) and rate µ. The involved distribu-
tions can also be represented by their probability density functions (PDF),
and for, e.g., service times the notation becomes fser(x) = d

dxFser(x). The
most common single server model is denoted in Kendall’s notation [Kendall,
1953] as M/M/1, where M represents the exponential distribution for both
inter-arrivals and service times. Other more general model notations in-
clude M/G/1 (exponential inter-arrivals and general service times) as well
as G/G/1 (general inter-arrivals and service times).

Queuing Disciplines
The processing of the requests in the server is modeled by queuing disci-
plines [Kleinrock, 1975]. The three common types that are used in this thesis
are shown in Figure 2.6. The simplest possible discipline is first-come first-
served (FCFS) shown in Figure 2.6(a), where only one request is simultane-
ously processed, and the other wait in a queue according to order of arrival.
This queuing discipline is an accurate representation for non-preemptible

24

2.2 Queuing Theory

µλ

(a) FCFS discipline.

µλ
1− γ

γ

(b) PS discipline.

µλ
1− γ

MCwaiting

γ

(c) LPS discipline.

Figure 2.6 Queuing discipline models.

requests, i.e., requests that must run from start to completion without inter-
rupts.

Figure 2.6(b) shows another commonly used discipline denoted as pro-
cessor sharing (PS). With this concept, each request is executed for a short
period of time ε before it gets put back last in the queue unless they finish.
This is an accurate representation of round-robin scheduling of requests that
allow preemption. In Figure 2.6(b), γ represents the share of non-finished
requests that get placed in the queue again, whereas 1−γ is the share of fin-
ished requests that leave the queue. As the execution time ε approaches zero,
the PS discipline can be viewed as all requests simultaneously processing in
the server, where each request gets the same share of the current processing
capacity, hence the name of the discipline. A drawback with implementing
this concept is that for many simultaneous requests, the overhead of the
switching between the requests can become large [Zhang et al., 2009].

A possible remedy to the potential switching overhead problem of the
PS discipline, is to instead only allow a maximum number of concurrent
requests, denoted as MC , to execute simultaneously. This queuing discipline
is denoted as limited processor sharing (LPS), see, e.g., [Zhang et al., 2009],
and is shown in Figure 2.6(c). As can be seen, it behaves as a combination of
the FCFS and PS disciplines, where a maximum of MC concurrent requests
execute in the server in a PS fashion, and any number of requests beyond
MC wait in a queue in order of arrival. The LPS discipline thus serves as a
generalization of the special cases FCFS (MC = 1) and PS (MC =∞).

25

Chapter 2. Background

LB

R1

R2

...

Rn

λ

(a) Incoming requests with rate λ are routed
using a load balancing strategy. All servers
have individual queues.

R1

R2

...

Rn

λ

(b) Incoming requests with rate λ arrive to
a central queue. No servers have individual
queues.

Figure 2.7 Two common server systems.

Server Systems
Replicated cloud applications can be represented by systems of servers in
queuing theory. Figure 2.7 shows two common structures where one applica-
tion is replicated over n servers.

Figure 2.7(a) shows a setup where incoming requests with rate λ arrive
at a load balancer (LB), that routes the requests to a server with an indi-
vidual queue. The routing is performed according to some load balancing
strategy [Sharma et al., 2008]. Two of the most common strategies include

• Random [Sharma et al., 2008] – The simplest possible strategy, where
servers are chosen at random. Has minimal decision-making delays and
simplifies stability analysis, but is in general far from optimal.

• Join-Shortest-Queue (JSQ) [Gupta et al., 2007] – Routes to server with
least requests, i.e., the shortest queue. Requires measurements of all
server queue lengths, but achieves near-optimal performance.

Many other load balancing algorithms exist, see [Ghomi et al., 2017] for an
overview of algorithms implemented in some popular cloud platforms.

Figure 2.7(b) shows a different setup where no load balancing strategy
is necessary as all requests instead wait in a central queue in a FCFS fash-
ion [Sharma et al., 2008]. Each server only processes one request at a time,
and upon the event of a finished request the server is provided a new request
from the front of the central queue. This setup has a model notation similar
to the single server case, for general distributions and n servers its notation
becomes G/G/n. This structure makes the server routing trivial, however,
the single queue can become a bottleneck if the request streams are large.
Also, this setup does not allow requests to share servers which can limit the
processing efficiency for some request types.

26

2.2 Queuing Theory

More complicated server systems exist as well, that describe how different
queues interact in a network [Chandy et al., 1975]. However, these queuing
networks are out of scope for this thesis, as they are not required for the
analysis performed in the papers included.

Performance Modeling
The traditional models in queuing theory consider stationary relationships,
as transient and dynamic models generally become difficult to find closed-
form expressions for [Kleinrock, 1975]. Stationary metrics of interest include
stability, i.e., if the queue lengths stay bounded, utilization 0 ≤ ρ = λ/µ ≤ 1
and average response time. A very useful stationary relationship that holds
in any type of queuing system is Little’s Law [Little, 1961]:

E(N) = λ̄E(T), (2.1)

which states that the average number of requests E(N) in a system is equal
to the effective arrival rate λ̄, defined by the rate of requests that enter the
queue, multiplied by the average time E(T) a request spends in the system.
In any queuing system, if either E(N) or E(T) is found, the other metric can
be obtained through Equation (2.1).

For the single server M/M/1 case it is possible to obtain many perfor-
mance metrics explicitly. λ < µ is required for stability and the average
response time can through Little’s Law be determined as

E(T) =
1

µ− λ, (2.2)

which holds for both FCFS and PS queuing disciplines. For the more general
M/G/1 case, the expression for average response time for the FCFS case can
be found through the Pollaczek-Khinchin mean formula (see, e.g., [Kleinrock,
1975]) as

E(T) = E(x) +
ρE(x)(1 + C2

s)

2(1− ρ)
, (2.3)

where E(x) is the average service time and C2
s is the squared coefficient of

variation of the service time distribution. For the PS case, the expression
only depends on the average service time E(x) and arrival rate lambda:

E(T) =
E(x)

1− λE(x)
. (2.4)

Stationary performance models also exist for the two server systems
shown in Figure 2.7. For the random load balancer, the properties of the
inter-arrival times are preserved and all single server results can thus be
used for each server separately. For the JSQ strategy no exact performance

27

Chapter 2. Background

metrics exist, but an accurate expression for the average response time, as-
suming the PS queuing discipline, is given by [Gupta et al., 2007]. It can
not be stated as a simple closed-form expression, however, it approximates
the average response time of the JSQ server system with n servers with an
error within 2-3% using only the arrival rate λ and the average service time
E(x). For the central queue case, exact expressions for average response time
only exist for the M/M/n model, i.e., assuming exponential distributions.
As the expression is complicated it is left out for brevity, but can be found
in, e.g., [Kleinrock, 1975]. For the more general M/G/n case, no exact per-
formance metrics exist. Furthermore, it is shown in [Gupta et al., 2010] that
the first two moments of the service time distribution are unfortunately not
enough to provide an approximation that is accurate under all loads.

Dynamic performance models are more interesting from a control-
theoretical point of view. For the remaining work w in a server, the dy-
namics are given by the following well-known result (see, e.g., [Jean-Marie
and Robert, 1994]), that holds for any work-conserving queuing discipline
that never intentionally keep servers idle, including FCFS, LPS and PS:

ẇ = λE(x)− 1. (2.5)

For the queue length growth process, i.e., when λ > µ, there exists exact
dynamical models for both FCFS and PS [Jean-Marie and Robert, 1994].
For the FCFS case, the model is linear, simple and depends only on the
arrival rate λ and service rate µ as

q̇ = λ− µ, (2.6)

with queue length q. However, for the PS case the model instead becomes
the following asymptotical model

lim
t→∞

q̇ = α, (2.7)

where the asymptotical growth rate α > 0 is the solution to the integral
equation

α = λ

(
1−

∫ ∞
0

e−αxfser (x) dx

)
, (2.8)

with fser(x) the PDF of the service time distribution. As can be seen in Equa-
tion (2.8), the growth rate α depends on the entire service time distribution
for PS, and not only its mean.

For the case of stable non-stationary queues, i.e., with λ < µ, there only
exists approximations for the queue length dynamics. One well known is the
pointwise stationary fluid flow approximation (PSFFA) [Wang et al., 1996],
that includes support for many different service time distributions. The model

28

2.2 Queuing Theory

is fluid, i.e., it does not consider the individual requests in the queue, rather
it views the requests as a flow and the derivative of the queue is determined
as q̇ = flow in − flow out. For the well-known exponential case, sometimes
denoted as Tipper’s model, the equation becomes

q̇ = λ− µ
(

q

q + 1

)
. (2.9)

Distribution of the Minimum
An old statistical result relevant for queuing-theoretic applications, when
modeling request cloning, is presented here. The concept concerns a statistical
case where, for each random draw of n random variables, the minimum value
is always chosen. The result is formalized in the following theorem:

Theorem 1
(Distribution of the Minimum) Given a set of n random variables
{X1, . . . , Xn} with any CDF, and denoting with Fi(x) the CDF of Xi; the
CDF of the random variable Xmin, where Xmin = min{X1, . . . , Xn} becomes

Fmin(x) = (−1)0
n∑
i=1

Fi(x) +

(−1)1
∑
i<j

Fi,j(x, x) +

(−1)2
∑

i<j<k

Fi,j,k(x, x, x) + . . . +

(−1)n−1 Fi,j,...,n(x, · · · , x),

(2.10)

where Fi,j(x, x) is the joint CDF of random variables Xi and Xj . If Xi and
Xj are independent, i.e., if Fi,j(x, x) = Fi(x)Fj(x), Equation (2.10) becomes

Fmin(x) = 1−
n∏
i=1

{1− Fi(x)} . (2.11)

Proof. See Theorem 1 in Paper IV. 2

This theorem is very useful, as it provides a method for calculating the com-
plete statistical distribution Fmin(x) for the choice of the minimum value
among n random variables. Additionally, in Equation (2.10) there are no as-
sumptions on the involved distributions, which makes the theorem powerful.
Finally, if assumptions on independent variables are used, the algorithm for
Fmin(x) becomes the much simpler expression given in Equation (2.11).

29

Chapter 2. Background

2.3 Control Concepts

This section presents some relevant concepts within control theory, that are
utilized in a cloud setting in this thesis. The reader is assumed to possess
some basic knowledge of the subject of automatic control. For a complete
introduction to the topic, see [Åström and Murray, 2019].

Sensors and Actuators
The main purpose of applied control theory is to affect the system of interest,
such that it behaves in a desirable way. As the applications of control theory
are widespread, the system under control could be anything from a water
tank to an aircraft autopilot. One property that these diverse systems share,
is that in order to successfully control them, efficient sensors and actuators
are needed [Åström and Murray, 2019]. In many classical control applications,
these are physical and not of particular interest. However, in the computing
systems domain, both sensors and actuators can be designed in order to sim-
plify modeling and control, as these can be part of the software itself [Maggio
et al., 2012].

Modeling
A basic prerequisite for applying control-theoretical methods is the ability to
construct models useful for control. The models describe how control inputs
u and the state x affects the dynamics of the output y, as exemplified in the
following linear equation:

ẋ = Ax+Bu
y = Cx+Du,

(2.12)

with A a square matrix, B, C and D vectors, x a vector and u and y
scalars. The model (2.12) is an example of a linear single-input single-output
(SISO) system on state-space form, however, the control-theoretical mod-
els could of course be both non-linear and have multiple inputs and outputs
(MIMO) [Ljung, 2000]. In this thesis, both linear and non-linear SISO models
will be utilized.

If the model is linear, then it can, through the Laplace transform (see,
e.g., [Widder, 2015]), be stated as a transfer function [Åström and Murray,
2019] as:

Y (s) =
(
C (sI −A)

−1
B +D

)
U(s) = G(s)U(s), (2.13)

with G the transfer function from Laplace variables U to Y . The poles and
zeros of G(s) can be used to represent important properties of the model,
such as stability and speed.

The models in control theory are generally quite coarse, as in order to
design a successful controller, only the relevant dynamics need to be captured.

30

2.3 Control Concepts

If for example a process is to be controlled slowly, then any considerably faster
stable poles and zeros can be neglected in the control design [Åström and
Murray, 2019].

Feedback and Feedforward
The core part of applied control theory lies in the feedback loop. In order
to ensure that a system behaves desirably, measurements and feedback are
required. An example feedback loop is shown in Figure 2.8. This representa-
tion of the interconnections between the system components is in the Laplace
domain, and describes how a process P (s) is affected by control inputs u and
disturbances d, with the goal of measurement y following the setpoint (or ref-
erence r). In this figure, the control signal u is composed of both a feedback
ufb and a feedforward uff part.

The feedback part is determined by the feedback controller C(s), that
calculates a control signal with respect to the control error e, defined as
the difference between the desired setpoint r and process measurement y.
The most widely utilized controller structure is the simple, yet effective, PID
controller [Åström and Hägglund, 2006]. It is used in control applications
ranging from process control in factories [Craig et al., 2011] to computing
systems [Leva, 2018]. The PID controller is composed of three parts, a pro-
portional (P), integral (I) and derivative (D) part. A common representation
of the complete control algorithm, including a filter on the derivative part,
can be stated as [Åström and Hägglund, 2006]:

U(s) = K

(
1 +

1

sTi
+

sTd
1 + sTd/N

)
E(s), (2.14)

with K proportional gain, Ti integral time constant, Td derivative time con-
stant and N filter constant. With a correct parameter tuning, the PID con-
troller can be utilized to eliminate stationary errors through its I-part, and
to predict future errors through the D-part. With these properties, the PID
controller performs well enough in many different applications.

The feedforward part of the control signal in Figure 2.8 is determined by
the feedforward controller FF (s). It does not utilize feedback, but instead it
relies solely on models which thus have to be accurate. It can take both the
setpoint r and measurable disturbances d as input, depending on the purpose
of the controller. For improved setpoint following, the setpoint r is fed to the
controller that then utilizes a model from r to y to determine a feedforward
control signal. Often this requires model inversion, which means that the feed-
forward relation often is approximated by a static gain instead [Wittenmark
et al., 2002]. For improved disturbance rejection, the measurable disturbance
d is instead fed into the controller, which also here utilizes an inverse relation
between d and y to attenuate the disturbance before it affects the control

31

Chapter 2. Background

P (s)C(s)+ + +

FF (s)

r

d

e ufb u y

−1

nuff

Figure 2.8 Example block diagram for a feedback loop with feedforward.
The process P (s) is affected by a measurable disturbance d and measure-
ment noise n. Feedback controller C(s) reacts to changes in error e and
feedforward controller to changes in reference r and disturbance d.

loop performance. Feedforward controllers are generally used together with
feedback controllers, such as in Figure 2.8.

Linearization Methods
Linearization is an important tool within the field of control theory, as many
models of real processes contain nonlinearities, whereas a big part of the the-
ory is based on assumptions of linearity. One common method of lineariza-
tion is around an operating point x0, using Taylor series expansions (see,
e.g., [Åström and Murray, 2019]). The approximation using this method is
then valid close to x0. The algorithm can be mathematically described as a
linearization of a general nonlinear system

ẋ = f(x, u).
y = g(x, u),

(2.15)

with functions f and g. By choosing new variables ∆x = x−x0, ∆u = u−u0

and ∆y = y − y0 the system can be linearized around the stationary point
(x0, u0, y0) as

∆ẋ = ∂
∂xf (x0, u0) ∆x+ ∂

∂uf (x0, u0) ∆u = A∆x+B∆u
∆y = ∂

∂xg (x0, u0) ∆x+ ∂
∂ug (x0, u0) ∆u = C∆x+D∆u,

(2.16)

i.e., with the same structure as in Equation (2.12).
This method of linearization is accurate enough in many cases, especially

if the controlled variables stay close to one operating point at all times. If
not, it is possible to extend this method by the concept of gain scheduling
(see, e.g., [Rugh and Shamma, 2000]). In this control concept, the nonlin-
ear dynamics are linearized according to the algorithm in Equation (2.16) at

32

2.3 Control Concepts

multiple operating points, and the controller parameters are calculated for
each case. Then, as the system moves between the different operating points,
the controller parameters are changed, or scheduled, accordingly. In the ex-
treme case, it is also possible to continuously linearize and adapt the control
parameters. A drawback is that for these linearizing methods, the stability
can only be guaranteed for slow-varying systems, and explicit performance
guarantees might be difficult to prove [Rugh and Shamma, 2000].

Another method of linearization is the feedback linearization concept (see,
e.g., [Ljung, 2000]). Assume that the nonlinear system is of the following form:

ẋ = f(x) + ug(x)
y = h(x),

(2.17)

where f , g and h are infinitely differentiable functions. The goal with feedback
linearization is then to find a control law

u = a(x) + vb(x), (2.18)

such that the previous system in Equation (2.17) is linear from the new
variable v to y. If it is possible to find this relation, then controllers can be
designed for v using standard linear control theory, and this linearization is
then exact.

The concept becomes clearer in this simple sinusoidal example
from [Ljung, 2000], with the nonlinear system model

ẋ1 = x2

ẋ2 = x3

ẋ3 = u cos(arcsin(x3))
y = x1.

(2.19)

The feedback control law

Ψ : u = (v − x1 − 3x2 − 3x3)/ cos(arcsin(x3)) (2.20)

brings (2.19) to a linear system with all poles in -1. The dynamics can then
further be changed by defining a linear control law for v, i.e., closing the loop
from v to y. A block diagram of the example is shown in Figure 2.9, where
the inner loop represents the feedback linearization algorithm.

The method of feedback linearization has some clear benefits, as it sim-
plifies the control design in the new variable v. It has been applied in several
different settings, ranging from motor control [Chiasson, 1998] to chemical
processes [Braake et al., 1998], however, the method does have drawbacks
as well. First, it is not applicable to all types of nonlinear systems as they
have to be on the same form as Equation (2.17). Second, the feedback law
that performs the linearization, i.e., Equation (2.18), in general requires that

33

Chapter 2. Background

ProcessΨC(s)+
r e v u y

−1

x

Figure 2.9 Feedback linearization of nonlinear Process defined by Equa-
tions (2.19) with linearizing feedback law Ψ from Equation (2.20). Linear
controller C(s) can then be designed for the linearized process from v to y.

feedback can be performed on all states x. If not all states are measurable,
nonlinear observers must be implemented. Finally, if the true system deviates
from the model the feedback law does not result in an exact linearization,
thus the system’s sensitivity towards parameter variations can not be ana-
lyzed with simple linear methods.

Cascaded Control
The cascaded control structure in, e.g., [Bolton, 2021], is an important ex-
ample of a structure that deviates from the basic feedback loop shown in
Figure 2.8. This structure, as shown in Figure 2.10, has two loops in cascade
and utilizes feedback from two measurement signals yi and yo. The structure
is thus useful when multiple measurements are available, while only one ac-
tuator can be used to affect the process. The inner loop controller CI(s) is
the one that actuates on the process through its control signal u, whereas
the outer loop controller CO(s) determines a setpoint ri for the inner loop.

Using the cascaded structure has several advantages: (i) As the inner loop
controller CI can be designed to be fast, it improves rejection of disturbances
di acting on the inner process PI ; (ii) Nonlinearities in the inner loop can be
linearized using feedback as described in the previous section and exemplified
in Figure 2.9; and (iii) The structure introduces a separation of timescales
between the two controllers CI (typically fast) and CO (typically slower),
which simplifies the outer loop control design. The drawback of the structure
is that it requires multiple measurement signals to be available, which is not
always the case in real-life applications. Also, many simpler processes can
be efficiently controlled using a single controller, and in those cases it is not
preferable to extend the structure to a cascaded one.

Cascaded control has traditionally been utilized mainly in the chemical
processing industry [Wolff and Skogestad, 1996; Alvarez-Ramirez et al., 2002],
where one specific example is to closing of an inner loop around valves [Hall,
2017]. The applications have spread to other domains as well, e.g., servo

34

2.3 Control Concepts

PO(s)PI(s)CI(s)+CO(s)+
r

di do

eo ri ei u yi yo

−1

−1

Figure 2.10 A general cascaded feedback structure with inner loop con-
troller CI(s) and outer loop controller CO(s) that sets inner setpoint ri.

systems in automotive industry [Saleem et al., 2015] and robotics [Guo et
al., 2008].

Computing System Applications
In the last decades, control theory has been applied more frequently in the
computing systems domain. Resource allocation is an area that can be for-
mulated as a control problem, which allows for control-theoretical methods,
see, e.g., [Abdelzaher et al., 2002; Hellerstein et al., 2004; Kjaer et al., 2009].
The PID controller is a versatile and simple control structure that is utilized
in the computing systems domain as well, [Leva, 2018], where examples in-
clude PID control of server queues, clock synchronization in networks and
batch data processing. Other examples of applications in the cloud domain
include dynamic control of virtual network functions under end-to-end dead-
line constraints [Millnert et al., 2017], load balancing strategies [Dürango et
al., 2014] and event-triggered model predictive control for cluster reconfigu-
ration in data intensive cloud services [Cerf et al., 2016].

Two important dynamic queue length models exist in the control domain,
one for the FCFS queuing discipline and one for PS. The FCFS model (see,
e.g., [Arcelli et al., 2015]) has very simple dynamics, given by a pure inte-
grator:

q̇ = λ− 1

x̄
u, (2.21)

where x̄ is the mean service time and u an actuator that affects the server.
The dynamic model for the PS discipline is more complicated and was origi-
nally designed for network applications, describing a proportional bandwidth
allocation protocol [Paganini et al., 2012]. However, this application is almost
completely analogous to the PS queue dynamics, and by minor parameter

35

Chapter 2. Background

adjustments the model becomes the following partial differential equation:

∂q (t, x)

∂t
=
∂q (t, x)

∂x

u (t)

q (t)
+ λ F̄ser (x) , (2.22)

with F̄ser (x) the complementary CDF of service times, i.e., F̄ser (x) = 1 −
Fser(x).

Both of these models (2.21) and (2.22) are exact in a mean flow model
sense, i.e., if multiple queue length evaluations are performed for some se-
quence of control input u, the mean queue length dynamics will follow the
models exactly. The models can be compared to their queuing theoretic coun-
terparts, i.e., the queue length growth models presented earlier in this chap-
ter, for FCFS given in Equation (2.6) and for PS in (2.8). They share the same
properties and notably, both FCFS models only depend on the mean of the
service time distribution whereas both PS models depend on the entire dis-
tribution, here represented by the complementary CDF denoted as F̄ser (x).
An important distinction between the control theoretical queue models pre-
sented here and queuing theoretic growth models from Section 2.2 is that
the control theoretical models have support for actuators that can affect the
server efficiency, here represented by the control signal u. As a result, the
control-theoretical models do not have to assume any relations between ar-
rival rate λ and service rate µ, however, they do imply an indirect assumption
on non-empty queues, in order for the actuation of control input u to make
sense.

36

3
Improving Cloud
Application Predictability

This chapter describes the main contributions of the thesis. The content is
mainly divided into two method tracks, where the first utilizes control theory
(consisting of Papers I - III), and the second makes use of queuing theory
(Papers IV - V). While being different in the mathematical tools used, both
tracks share some high-level themes as described in Section 3.4, and also
the common goal to improve cloud application predictability. This goal is
throughout the thesis interpreted as keeping application tail response times
low and consistent, even under uncertainties and sudden events.

The setting assumed in this thesis is from the cloud user point-of-view,
i.e., companies or individuals that rent compute capacity in the cloud to host
end-user facing applications utilizing an IaaS service model. Both tracks use
novel methods and interact with the cloud applications through actuators,
where the control-theoretical track mainly considers graceful degradation,
while the queuing-theoretic methods utilize request cloning.

3.1 Simulation Environment

All papers in this thesis are evaluated in a simulated cloud environ-
ment, based on the discrete-event simulator first developed by the authors
in [Dürango et al., 2014]. The original simulator included support for config-
uring (i) inter-arrival distribution for incoming requests; (ii) load balancing
strategy and number of server replicas; (iii) service time distributions; and
(iv) control strategies in the servers. For the papers included in this thesis,
the simulator has been extended and adapted to also include configuration of
(i) queuing disciplines: FCFS, PS and LPS; and (ii) request cloning related
settings.

The simulator engine is discrete-event based, implemented as an event
queue where events are added, changed or removed as the simulation time

37

Chapter 3. Improving Cloud Application Predictability

α

λ
1

s
K+ + ++ka

(
kp +

ki
s

)
Feedforward

+

τ̄o95
w d

eoτ95 rfb
q

rff
q rq eq v q τo95

−1

−1

λ

Figure 3.1 The cascaded structure utilized in Paper I, with the proposed
models and controllers for both outer and inner loop. Figure from Paper I.

progresses. The evolution of a request consists of the following stages: (i)
client module produces a request event; (ii) request arrives at load balancer
that decides which server it should be sent to; (iii) request is processed at the
chosen server; and (iv) an event notifies request completion and stores metrics
such as end-to-end response time. As the simulator is discrete-event based,
all control strategies need to be implemented using discretization methods,
e.g., as proposed in [Åström and Wittenmark, 1997]. Also, the simulation
does not rely on any dynamical (flow) models, as it is implemented in a
request-by-request fashion. This makes the simulator a suitable environment
for evaluating the dynamical models and strategies proposed in thesis.

3.2 Control-Theoretical Methods

The first method track is focused on applying control-theoretical concepts
using mainly graceful degradation as an actuator. The cloud applications
considered are replicated over multiple servers, and could represent either a
complete (smaller) application or a single microservice that is part of a larger
application.

Server Modeling and Control
Papers I and II discuss response time and queue length control for the single
server case. The first main contribution to this topic is the proposed cascaded
modeling and control structure from Paper I, as seen in Figure 3.1. The inner
loop models and controls queue length, a metric that generally is straight-
forward to measure in a real cloud environment. The actuator that affects
the service rate is the graceful degradation concept Brownout, with a binary
choice of providing optional content or not. Choosing this binary choice as
control signal would make modeling difficult from a control-theoretical per-
spective. Instead, the approach in Paper I utilizes feedback linearization to
transform the system into a control signal denoted v, which represents the
derivative of the queue length. In this fashion, the modeling effort and con-

38

3.2 Control-Theoretical Methods

trol design for the inner loop are greatly simplified. The model from v to q
becomes an exact integrator which can be efficiently controlled by a simple
P-controller.

The actuation of control signal v must, however, also be realizable. For
this purpose, the binary properties of the Brownout actuator concept are uti-
lized. For each sampling period of length h seconds, a queue length threshold
that represents the desired queue length derivative v is calculated. During a
sampling period, if the queue length becomes larger than the threshold only
mandatory content is served, and if the queue is below, optional content is
served as well. In this way, a guaranteed stable actuation of v is achieved,
but as a trade off stationary actuation errors are introduced.

These stationary actuation errors can, however, easily be eliminated by
the outer loop PI controller as shown in Figure 3.1. Also, as the inner loop is
designed to be fast, the design of the outer loop can be made slower to intro-
duce a separation of time scales. Lastly, the design in Paper I also features a
feedforward part in the outer loop, that makes the controller react faster to
changes in arrival rate λ.

In total, the cascaded structure together with the feedback linearization
strategy of the inner loop result in a control design that outperforms the
previous control-theoretical efforts made for the Brownout concept [Klein et
al., 2014; Maggio et al., 2014].

The second main contribution for the single server case is the improved
dynamic queue length modeling proposed in Paper II. Here, a more general
continuous graceful degradation actuator is assumed, exemplified by server
speed u. As the feedback linearization method for the queue length modeling
in Paper I was enabled by the trivial queue length derivative actuation due
to the binary property of the Brownout concept, it can be assumed that a
different modeling approach is necessary for a more general actuator. Addi-
tionally, the results of the evaluation seen in Figures 6-11 in Paper I show
that the control strategies behave differently depending on the queuing dis-
cipline. These observations acted as inspiration for Paper II, where the key
contribution is a model structure that can capture the behavior of a wider
range of queuing disciplines.

The foundation of the proposed model structure in Paper II is a
simulation-based investigation of the queue length dynamics for disciplines
FCFS and PS. The results for FCFS, available in Figure 1 in Paper II, fol-
low the traditional integrator behavior perfectly, and the dynamics are only
dependent on the mean value of the service time. For the PS discipline the
results are, however, more interesting. As can be seen in Figure 3.2, the
behaviors are completely different for the three service time distributions,
despite their identical mean values. Another interesting observation that can
be made is that the dynamics for the exponential distribution, shown in green
in Figure 3.2, follow the pure integrator behavior just as all distributions do

39

Chapter 3. Improving Cloud Application Predictability

0 50 200 250 500 5500

200

400

600

u = 0.1 u = 0.5 u = 0.1 u = 0.5 u = 0.8 u = 0.5

Time (s)

Q
ue

ue
L
en

gt
h
q

Fexp Fwei

Funi

Figure 3.2 Simulation study results for the PS queuing discipline. Service
time distributions of types exponential, uniform and Weibull with identical
mean values are compared. Figure from Paper II.

for FCFS. A dynamic queue length model for PS must thus include a distri-
bution describing parameter, that for some specific parameter value reduces
the dynamics to a pure integrator. Motivated by this insight, and by the fun-
damental physics involved in the queue, the following novel, nonlinear model
structure is proposed:

ẇ = λ x̄− u
q̇ = λ− k q

w
u, (3.1)

with arrival rate λ, queue length q, mean service time x̄, remaining work
w > 0 and distribution specific parameter k > 0. The linearization of the
model in (3.1) reveals some interesting properties related to k. It is performed
around an operating point (w0, qo, u0), which introduces the new variables
∆w = w−w0, ∆q = q− q0 and ∆u = u−u0. The resulting transfer function
from ∆U to ∆Y then becomes:

GN (s) = − q0

w0

(
1 + sw0

u0

)
s
(

1 + s w0

ku0

) . (3.2)

As can be seen in Equation (3.2), in addition to an integrator pole, the
model also contains a stable pole located at p1 = −ku0

w0
and a stable zero at

z1 = −u0

w0
. Clearly, the location of the pole relative to the zero is dependent

on the value of the distribution parameter k. For k < 1, the pole p1 is slower
than zero z1, resulting in a phase drop between p1 and z1. For k > 1, the
situation is the opposite and a phase increase is obtained instead. For k = 1,
the pole and zero cancel out and the linearized model (3.2) becomes a pure
integrator.

40

3.2 Control-Theoretical Methods

10−2 10−1 100 101 102

−60

−70

−80

−90

−100

−110

−120

{ωcritical}

Frequency ω (rad/s)

P
ha

se
(d

eg
re

es
)

Fwei

Funi

Figure 3.3 Phase part of an example Bode diagram of GN (s) for distri-
butions of types Weibull and Uniform with identical mean values. {ωcritical}
denotes the frequency region between p1 and z1. Figure from Paper II.

From a control design perspective, even the distributions with k 6= 1
behave integrator-like outside of the frequency region between p1 and z1,
defined as {ωcritical}. This is illustrated in Figure 3.3, that shows the Bode
phase of GN (s) for two example service time distributions of types Weibull
(with k > 1) and Uniform (k < 1). Away from this critical frequency region,
i.e., if the control design cut-off frequency is considerably slower or faster
than {ωcritical}, the controllers can safely be designed using a simple, pure
integrator model as the basis, for any distribution. However, if the cut-off
frequency is desired to be close to, or inside, {ωcritical}, then the distribution
specific properties will affect the design. As a phase increase is desirable,
distributions with k > 1 are easier to design controllers for, and extra effort
has to be put into the design for distributions, such as Uniform, with k < 1.

The proposed model structure shown in Equation (3.1) was designed with
respect to the PS queuing discipline. However, the distribution specific pa-
rameter k reduces the model to a pure integrator for k = 1, used to represent
the Exponential distribution. Thus the model can easily be utilized, through
its k-value, to describe the queue dynamics for the more general LPS queu-
ing discipline with any concurrency value MC . For MC values close to PS
behavior, i.e., if MC is large, the k-value for a specific distribution will stay
close to its PS value. As the MC value gets closer to 1 (i.e., FCFS-like be-
havior), the value of k will tend closer and closer to k = 1 to represent the
changes in behavior. The model structure (3.1) is thus able to represent the
full spectrum of LPS behaviors for any MC , just by altering the value of k.

The proposed model structure is useful both for providing control design
related insights, as well as to describe the behaviors of the LPS queuing
discipline. However, the model does have drawbacks. The model is only exact

41

Chapter 3. Improving Cloud Application Predictability

LB

R1

R2

...

Rn

λ

control

control

control

Figure 3.4 The standard load balancing architecture. The load balancer
routes incoming requests to a replica, where the request might spend time
queuing before service. Replicas include graceful degradation controllers
that can interact with the load balancing strategy. Figure from Paper III.

for the FCFS case (i.e., MC = 1), where it reduces to an integrator model of
the same form as Equation (2.21) in Section 2.3. For cases where the server
concurrency MC > 1, the distribution specific dynamics can not be exactly
described by a single parameter k. A comparison can be made towards the
exact dynamic model for PS queues, given in Equation (2.22), where the
dynamics are dependent on the entire service time distribution. As a result,
the value of k has slight variations when, e.g., the incoming arrival rate
changes. However, the evaluations show that these variations are generally
small and can be tracked well by an online estimation scheme.

Cloud Interactions
Paper III is focused on cloud applications that are replicated over servers,
thus requiring a load balancing strategy for routing decisions. As in Papers I
and II, the servers still include graceful degradation controllers with the pur-
pose of keeping response times low and predictable. The main contribution
for this replicated server architecture is the highlighting of possibly nega-
tive interactions that can occur between the load balancing strategy and the
graceful degradation controllers in the servers.

Figure 3.4 shows the basic architecture assumed, where the incoming
requests get routed to a server replica based on the decisions made by the
load balancer, and then processed at the server under the actuation of a
graceful degradation controller. In this setup, the load balancer can measure
any metrics from the server, but it does not know any of the future decisions
to be made by the server controllers. In addition, depending on the queuing
discipline implemented in the servers there might be a long delay, caused
by server queuing, between the decision made at the load balancer and the
control decisions in the servers. This makes the design of the load balancing

42

3.2 Control-Theoretical Methods

50 100

1

2
λ = 400/s λ = 1500/s λ = 400/s

Time (s)

R
es

po
ns

e
T

im
es

(s
) JSQ random

Figure 3.5 Comparison between random and JSQ load balancing. The
plot shows setpoint (at 1s) and 95% confidence intervals for the 95th per-
centile of response times. Figure from Paper III.

strategy difficult, as the decisions on the different levels of the architecture
might be in conflict with each other.

Figure 3.5 shows simulation results of load balancing strategies random
and JSQ, when combined with servers subject to cascaded graceful degra-
dation controllers from Paper I in a setup as described in Figure 3.4. The
simulations were performed for n = 5 servers using the LPS discipline with
MC = 15, representing a behavior in between FCFS and PS. The simulations
were repeated 20 times in order to construct 95% confidence intervals, and
for each run the arrival rate λ shifted between 400/s and 1500/s. The desired
setpoint for the 95th percentile of response times is 1 second, and as can be
seen the confidence interval for random stays much closer to the setpoint than
for JSQ, thus achieving a better predictability. The results for JSQ, on the
other hand, exhibit an oscillatory behavior that deteriorates performance,
and the oscillations are especially prominent when the arrival rate is 1500/s.
The results are surprising as JSQ widely outperforms random when it comes
to load balancing with servers subject to no graceful degradation controllers,
as described in Section 2.2.

The results can, however, be intuitively explained if the JSQ load bal-
ancing strategy is instead viewed as a feedback queue length controller. The
algorithm first collects measurements of all server queue lengths, and then
chooses the one with the shortest queue. Using this behavior, JSQ drives all
n servers towards the same queue length at each time instant tk. Thus, JSQ
can be interpreted as a feedback controller with an alternating queue length
setpoint r(tk) as

r(tk) =
1

n

n∑
i=1

qi(tk). (3.3)

43

Chapter 3. Improving Cloud Application Predictability

JSQ does not have an integrator-like behavior, as it does not consider earlier
measurements in its algorithm. Instead, the controller interpretation of JSQ
can be viewed as a P-controller with infinite gain as it always redirects all
requests to the shortest queue, thus maximizing its control input in order to
reach its setpoint.

Viewing JSQ as a feedback queue length controller JSQ with setpoint
defined in Equation (3.3), leads to a situation of controllers with conflicting
setpoints, as the graceful degradation controllers in the servers have setpoints
based on the response time goal. JSQ has no tuning parameters, but the sim-
ulation results suggest that it does change its behavior for different arrival
rates λ, as the oscillations become much clearer in this case when λ = 1500/s.
Note that the server controllers keep the same tuning throughout the sim-
ulation and that the results for the random strategy do not change with λ.
One interpretation is that JSQ becomes a faster queue length controller with
increasing λ, as it then gets more requests per second that can be routed
to the shortest queue. In this simulation example, the JSQ feedback con-
troller becomes approximately equally strong as the server controllers for
λ = 1500/s, leading to large oscillations due to the conflicting setpoints. For
λ = 400/s, the issue is almost completely mitigated due to the separation
of time scales, i.e., the server controllers are significantly faster than JSQ
here. These changes in behavior for JSQ with the incoming arrival rate make
this issue of possible negative interactions with server controllers even more
severe, as it might be difficult to find if it is only tested in a certain range
where a separation of time scales occurs.

The setup of Figure 3.4 was utilized in a previous effort [Dürango et al.,
2014] of designing load balancing strategies for servers using Brownout con-
trol strategies from [Klein et al., 2014]. Their approach was to feed metrics
from the Brownout controllers to the load balancer, in order to set server
weights in a weighted random-based strategy. While this Brownout-aware
approach performed reasonably well, it is evident that the randomness still
involved in the decisions hurt the predictability of the application. Interest-
ingly enough, they found that the best performing non-Brownout-aware load
balancing strategy was in fact JSQ. A possible reason for the opposite con-
clusions between the investigation in this thesis and [Dürango et al., 2014] is
the involved server controllers. In Paper III, the controllers at the server level
utilizes the cascaded Brownout structure from Paper I, whereas the evalua-
tion in [Dürango et al., 2014] uses the considerably slower original Brownout
controller [Klein et al., 2014]. Thus, in the latter case it is possible that the
controller and JSQ had a large enough separation of time scales to avoid the
oscillatory behavior observed in Paper III.

The proposed solution in this thesis to the controller interactions problem
is to instead improve the architecture, such that the load balancing strategy
and server controllers do not risk to make conflicting decisions, both due

44

3.2 Control-Theoretical Methods

top-level controller

LB

R1

R2

...

Rn

λ

control

control

control

control

λ1

λ2

λn

Figure 3.6 The proposed load balancing architecture, with the goal
of mitigating negative interactions between decision-making layers. Figure
from Paper III.

to conflicting setpoints and long delays between the decisions. The proposed
architecture is shown in Figure 3.6, which exhibits a more hierarchical design
compared to Figure 3.4. In this proposed setup, the queues have been removed
from the servers and are instead replaced by a central queue at the load
balancer, in order to minimize the delay between decisions at the two levels.

The load balancer now features a waiting time controller, that controls its
queue length through a simple I-controller with the graceful degradation de-
cision as its actuator. The server replicas now feature service time controllers
that control the time the requests spend in the servers using an I-controller,
actuated by deciding the number of concurrent requests. In order to control
this concurrency number, each server controller piggy-backs the responses of
completed requests with an order for new requests from the load balancer.
In this way, the responsibilities of the load balancer and server controllers
have been reversed compared to the setup in Figure 3.4. The routing deci-
sions are now made by the server controllers themselves, which eliminates
both possible negative interactions as well as the randomness involved in
the Brownout-aware strategies proposed in [Dürango et al., 2014]. The struc-
ture is completed by a top-level controller, that ensures that the end-to-end
response times, including both waiting and service time, follow the desired
setpoint. Once again, this is performed by a simple I-controller, this time
actuated by setting the setpoints of the lower level controllers.

The proposed structure enables design of almost trivial I-controllers, as
their tasks at hand are simplified by the hierarchical structure. A possible
drawback, however, is that the central queue at the load balancer might act as
a bottleneck if the implemented logic does not execute fast enough. Also, the
optimal concurrency numbers in the servers might differ from application to

45

Chapter 3. Improving Cloud Application Predictability

R1
F1

R2

. . .

Rn-1

Rn
Fn

sync

Fmin

Farr

Figure 3.7 Synchronized service system. Figure from Paper IV.

application, which might limit the set of possible control inputs in the server
controllers. It is thus possible, that the proposed structure might require some
modifications in order to run in a real cloud setup. However, the simplicity
of the involved controllers should enable a fast and efficient implementation
at all levels.

3.3 Queuing-Theoretical Methods

The second method track is focused on applying queuing-theoretical concepts
using request cloning as actuator. The cloud applications considered are sim-
ilar to the ones in the control-theoretical method track, i.e., replicated over
multiple servers. This track does not focus on obtaining dynamical models,
instead the analysis is aimed towards stationary models that can be used for
gaining insight into important predictability aspects of the application. In
addition, the models are also useful for decision making.

Simplified Modeling for Request Cloning
Paper IV describes modeling concepts that enable a simplified way of analyz-
ing request cloning for replicated cloud applications. The analysis is mainly
performed for the processor sharing queuing discipline, in order to widen the
scope of the previous work which mostly concerns the FCFS discipline. Ad-
ditionally, the PS discipline is usually an accurate processing model of pre-
emptible applications, and exhibits some interesting properties when used
together with the JSQ load balancing strategy.

The first main contribution is the formalization of the enabling synchro-
nized service criterion, that allows modeling of cloning using the minimum
distribution theorem, described in Theorem 1 in Section 2.2. The concept
is shown in Figure 3.7, where cloning is performed to all n servers in the
system. In the figure, the request sent to server replica R2 terminates first

46

3.3 Queuing-Theoretical Methods

and produces the response, while the other clones are cancelled. In order to
guarantee synchronized service, the following two conditions need to be met:

1. All clones have to be sent simultaneously to all servers.

2. Perfect cancellation is required, i.e., the processing in all n− 1 servers
that did not produce the fastest response, needs to cancel immediately.

Note that synchronized service criterion does not imply immediate service.
Clones of the same original request do not have to enter the processing in the
servers immediately, and can queue at the servers. Synchronized service only
requires that requests enter and leave the processing simultaneously, which
means that the concept is compatible with any queuing discipline, given that
it is the same across all servers.

Assuming that the synchronized service criterion is fulfilled, the fastest
clone is also the one that received the shortest service time, as all other pa-
rameters are equal. This means that the service time distribution Fmin(x) for
the request clones that deliver the response can be exactly determined using
the minimum distribution theorem presented in Section 2.2. As a result, the
server system with synchronized cloning shown in Figure 3.7 can be equiv-
alently modeled as a single server, with the same unaffected inter-arrival
distribution Farr(x) and the determined service time distribution Fmin(x),
using the same queuing discipline as the n servers. As the minimum distribu-
tion theorem has no assumptions what so ever, this equivalent modeling can
be performed for any (possibly heterogeneous and dependent) service time
distribution under any queuing discipline, assuming that the synchronized
service criterion is fulfilled.

A simple example is synchronized cloning to n heterogeneous and inde-
pendent servers Ri under exponential service time distributions with service
rates µi. Then, the equivalent model becomes a single server with service
time distribution Fmin(x) calculated according to Equation (2.11):

Fmin(x) = 1−
n∏
i=1

{1− Fi(x)} = 1−
n∏
i=1

e−µix = 1− e
−

n∑
i=1

µix
. (3.4)

The equivalent model for this example is thus also exponential, with a service
rate equal to the sum of all involved service rates.

The main advantage with the equivalent model is that it reduces the
server system with cloning to a single server with a service time distribution
that can be determined. Thus, all previous queuing-theoretical methods and
results for a single server, where some are presented in Section 2.2, can be
applied to analyze the server systems subject to cloning as well, i.e., there is
no need for reinventing the wheel. Additionally, a system of n servers subject
to cloning can also be divided into subsystems, or clusters, of m servers each,

47

Chapter 3. Improving Cloud Application Predictability

where each subsystem guarantees synchronized service. Thus, the equivalent
modeling procedure can be performed for each subsystem respectively, which
reduces the cloned server system to a traditional server system of n/m servers.
As a result, all previous methods and results for server systems can be applied
as well.

The second main contribution is an analysis of imperfections, i.e., of sit-
uations where the synchronized service criterion does not hold. The analysis
presented so far assumes perfect synchronized service, which is almost im-
possible to achieve in a real implementation. Thus, it is of high importance
to investigate the effect of imperfections on the model as well. Two common
imperfections that break the synchronized service criterion are analyzed in
this thesis, (i) arrival delays, where clones reach the servers at different times
due to, e.g., network issues; and (ii) cancellation delays, representing delays
that can occur when the serving of requests are to be terminated.

The outcome of the analysis of the imperfections is in the form of er-
ror bounds, i.e., bounds on how the average response time of an imperfect
system S1 compares to an otherwise identical system S2 fulfilling perfect
synchronization. All proofs are available in Paper IV but are left out here
for brevity. For arrival delays of average time E[a], the error bound for the
model becomes

E[T |S1] ≤ E[T |S2] + E[a], (3.5)

i.e., the errors in average response time are bounded by the average arrival
delays. For average cancellation delays E[c] the error bound becomes

E[T |S1] ≤ E[T |S2], (3.6)

where S2 has service time X|S2 identical to

X|S2 = X|S1 + E[c]. (3.7)

In other words, the errors in the average response time due to cancellation
errors E[c] are bounded by an otherwise identical, but synchronized system
with E[c] as additional service time. Finally, the error bounds are also proven
in Paper IV to be additive, i.e., the errors of a system S1 subject to both ar-
rival and cancellation delays are bounded by the sum of the bounds presented
in Equations (3.5)-(3.7). Utilizing these error bounds, the analysis presented
for synchronized service can thus be extended to include more realistic sys-
tems subject to implementation imperfections.

Cloning and Speculative Execution for JSQ
Paper IV utilizes properties of the JSQ load balancing strategy to extend
the synchronized clone-to-clusters methods. The concept of dividing the n
servers into clusters, or subsystems, to achieve synchronization is slightly

48

3.3 Queuing-Theoretical Methods

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization ρ

N
or

m
al

iz
ed

E
[T

]

a-JSQ-d
a-R-d
c-`-d

Figure 3.8 Simulations comparing a-`-d to c-`-d for random and JSQ.
The intervals represent 95% confidence intervals. Figure from Paper IV.

cumbersome. The first main contribution in this area is thus to (i) intro-
duce a clone-to-any concept, where clones can be sent to any server; and
(ii) show that for the JSQ load balancing strategy under the PS discipline,
this cloning strategy can be approximated well by the synchronized clone-to-
clusters model.

The clone-to-any method breaks the synchronized service criterion by
sending the clones of an original request to any m of the n servers in total,
and these servers are then not guaranteed to be of the same queue length.
However, as seen in the analysis on imperfections, the modeling accuracy
is still high as long as the synchronization errors are small. The JSQ load-
balancer was in Paper III interpreted as a queue length controller, successfully
keeping the queue lengths of all n servers close to each other. For the processor
sharing discipline investigated in Paper IV, there is no queuing involved for
clones, rather they experience processor shares based on how many other
requests they share their servers with during their processing time. As the
JSQ load balancer acts to keep all queue lengths, or server occupancies, equal,
then all clones of an original request will experience approximately equal
processor shares. Thus, from a cloning perspective under the PS discipline,
the JSQ load balancing strategy acts as a service synchronizer, providing
all clones near-synchronized service. As a result, the clone-to-any method for
JSQ with d number of clones, denoted as a-JSQ-d, can be expected to perform
similarly to its synchronized clone-to-clusters counterpart, denoted as c-JSQ-
d. As the latter can be modeled using the concept from Paper IV, the a-JSQ-d
method can also be approximately modeled using the same methods.

Figure 3.8 shows results from simulations comparing two clone-to-any
strategies a-`-d to their clone-to-clusters counterparts c-`-d. The simulations

49

Chapter 3. Improving Cloud Application Predictability

were performed for different number of servers n and varying cloning factors
d, and from these results 95% confidence intervals were formed. The normal-
ization of E[T] was performed such that each value is divided by the value
for the c-`-d counterpart, thus a value close to 1 represents that they are ap-
proximately equal. The Random load balancing strategy a-R-d, included for
reference, is obviously not well modeled by its c-R-d counterpart, unless for
very low utilization. The JSQ results, on the other hand, stay within an er-
ror of 10% for any utilization, implying that a-JSQ-d can be approximately
modeled by c-JSQ-d with high accuracy for all the evaluated cases. The
model accuracy is, however, highest for low utilization, since many servers
are empty during low loads. As JSQ is excellent in finding empty servers,
almost all clones will run alone with the same processor share equal to 1,
thus achieving near-perfect synchronization.

The second main contribution utilizing the JSQ discipline is presented in
Paper V. Here, the near-synchronization properties of JSQ for cloning under
the processor sharing discipline are used to extend the results obtained in
Paper IV. As the JSQ discipline is efficient in keeping all server occupancies
equal, the clones of the same original request do not even have to be sent out
simultaneously, as they will still receive approximately equal processor shares.
Thus, the same concept can be applied to approximately model speculative
execution, where clones are sent after a known speculation time. Cloning can
be interpreted as a special case of speculative execution with zero specula-
tion time for all clones. Thus, extending this modeling concept to also include
non-zero speculation time gives opportunities to find new configurations that
outperform traditional cloning. However, as the search space of possible con-
figurations increases from bounded to unbounded, it becomes more difficult
to find the optimal combination of speculation times and cloning factors.

3.4 Common Themes

Apart from the common goal of increasing predictability of cloud applica-
tions, both method tracks share common concepts and ideas.

Design Choices for Simplification
The first concept that runs through the entire thesis is the goal of finding
design choices that enable a simplified world view, without limiting the appli-
cability of the proposed methods and strategies. Examples from the control-
theoretical method track described in Section 3.2 include: (i) the feedback
linearization-like modeling approach in Paper I for queue length dynamics;
(ii) the simple, yet applicable model for queue dynamics under more general
assumptions in Paper II; and (iii) the new proposed architecture for easier
co-design of load balancing strategy and server controllers in Paper III. For

50

3.4 Common Themes

the queuing-theoretical track in Section 3.3 the main examples are: (i) the
formalization of the synchronized service criterion in Paper IV that enables
simplified modeling of request cloning under general assumptions; and (ii) the
interpretation of JSQ as a near-synchronizer that allows for approximate, yet
accurate modeling of an otherwise complex scenario, for both basic cloning
in Paper IV and its extension speculative execution in Paper V.

Application of Traditional Concepts in New Domains
The second concept that can be found throughout the thesis is the method
of applying well-known approaches from other field into new domains. This
way of thinking sometimes requires to look at the problem from a slightly
different angle than the state-of-the art of the current domain. The goal is
still, however, that for the identified possibilities of applying methods from
other domains, the solution once completed should feel as an integrated part
of the new domain as well. Examples from both method tracks include: (i)
the cascaded controller structure, usually found in chemical process control,
here applied for response time control in Paper I; (ii) the interpretation of
JSQ as a queue length controller in Paper III; and (iii) the utilization of
the minimum distribution theorem, a more than a century old result from
statistics, for the modeling of request cloning in Paper IV.

51

4
Future Work

This section discusses possibilities for improvements and extensions to the
methods and strategies proposed in this thesis. Cloud computing is a chang-
ing and growing environment, where new concepts and trends emerge every
year. The work that lays the foundation of this thesis started already in 2016,
in a time where popular cloud concepts of today were only beginning to gain
popularity. As a result, the research performed in this thesis could in the
future be extended towards many newer areas within cloud computing, such
as serverless and edge computing, as well as the microservices architecture.
However, due to the high abstraction level approach of both modeling and
decision-making in thesis, there should be great possibilities to adopt the
findings presented to fit the purposes of future cloud technologies.

Regarding extensions and future research directly related to the work pre-
sented in this thesis, some examples deserve to be mentioned. First, from a
control-theoretical perspective it would be interesting to further investigate
how to explicitly model the JSQ load balancing strategy as a controller. With
a more formalized approach, the patterns noticed in the interactions with the
server controllers could be explained in greater detail, such as the frequency
of the oscillations observed. Also, it could be possible to predict in what
scenarios JSQ would interact more intensely with the server controllers and
when the performance would be reasonable. Second, from a more queuing-
theoretical perspective it would be interesting to look into additional possible
applications where the proposed request cloning model could be used as a
basis for approximate modeling. In other words, if it would be possible to ex-
tend beyond the investigated scenarios including delay imperfections and the
near-synchronization property of JSQ. Finally, it would also be interesting
to extend the evaluations performed in the simulated cloud environment of
this thesis, towards systematical investigations implemented in a real cloud
setup. As the models and decision-making strategies proposed in this the-
sis strive to rely on non-restricting assumptions, there should be potential
for successful usage in real-world implementations as well. However, this of
course remains to be empirically proven in the future.

52

Bibliography

Abdelzaher, T. F., K. G. Shin, and N. Bhatti (2002). “Performance guaran-
tees for web server end-systems: A control-theoretical approach”. IEEE
Transactions on Parallel and Distributed Systems 13:1. issn: 1045-9219.

Alvarez-Ramirez, J., J. Alvarez, and A. Morales (2002). “An adaptive cascade
control for a class of chemical reactors”. International Journal of Adaptive
Control and Signal Processing 16:10, pp. 681–701.

Ananthanarayanan, G., A. Ghodsi, S. Shenker, and I. Stoica (2013). “Effec-
tive straggler mitigation: Attack of the clones”. In: Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation.
nsdi’13. USENIX Association, Lombard, IL, pp. 185–198.

Arcelli, D., V. Cortellessa, A. Filieri, and A. Leva (2015). “Control theory for
model-based performance-driven software adaptation”. In: Proceedings of
the 11th International ACM SIGSOFT Conference on Quality of Software
Architectures - QoSA ’15. ACM Press.

Armbrust, M., A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, I. Stoica, et al. (2010). “A view of cloud
computing”. Communications of the ACM 53:4, pp. 50–58.

Åström, K. J. and B. Wittenmark (1997). Computer-controlled Systems
(3rd Ed.) Prentice-Hall, Inc., Upper Saddle River, NJ, USA. isbn: 0-
13-314899-8.

Åström, K. J. and T. Hägglund (2006). Advanced PID control. Vol. 461.
ISA-The Instrumentation, Systems, and Automation Society Research
Triangle Park.

Åström, K. J. and R. M. Murray (2019). Feedback Systems: An Introduction
for Scientists and Engineers, Second Edition. Princeton University Press,
Princeton, NJ.

53

Bibliography

Balalaie, A., A. Heydarnoori, and P. Jamshidi (2015). “Migrating to cloud-
native architectures using microservices: An experience report”. In: Eu-
ropean Conference on Service-Oriented and Cloud Computing. Springer,
pp. 201–215.

Barroso, L. A. and U. Hölzle (2009). The Datacenter as a Computer: An In-
troduction to the Design of Warehouse-Scale Machines. Morgan & Clay-
pool.

Bayramusta, M. and V. A. Nasir (2016). “A fad or future of IT?: A compre-
hensive literature review on the cloud computing research”. International
Journal of Information Management 36:4, pp. 635–644.

Bokhari, M. U., Q. M. Shallal, and Y. K. Tamandani (2016). “Cloud com-
puting service models: A comparative study”. In: 2016 3rd International
Conference on Computing for Sustainable Global Development (INDIA-
Com), pp. 890–895.

Bolton, W. (2021). Instrumentation and control systems. Newnes.
Braake, H. A. te, E. J. Van Can, J. M. Scherpen, and H. B. Verbruggen

(1998). “Control of nonlinear chemical processes using neural models
and feedback linearization”. Computers & chemical engineering 22:7-8,
pp. 1113–1127.

Brodkin, J. (2013). “Facebook opens data center filled entirely with servers it
designed”. url: https://arstechnica.com/information-technology/
2013/06/facebook- opens- data- center- filled- entirely- with-
servers-it-designed/.

Burns, B., J. Beda, and K. Hightower (2018). Kubernetes. Dpunkt Heidel-
berg, Germany.

Cerf, S., M. Berekmeri, B. Robu, N. Marchand, and S. Bouchenak (2016).
“Cost function based event triggered model predictive controllers appli-
cation to big data cloud services”. In: 2016 IEEE 55th Conference on
Decision and Control (CDC). IEEE, pp. 1657–1662.

Chandy, K. M., U. Herzog, and L. Woo (1975). “Approximate analysis of
general queuing networks”. IBM Journal of Research and Development
19:1, pp. 43–49.

Chiasson, J. (1998). “A new approach to dynamic feedback linearization con-
trol of an induction motor”. IEEE Transactions on Automatic Control
43:3, pp. 391–397.

Craig, I., C. Aldrich, R. Braatz, F. Cuzzola, E. Domlan, S. Engell, J. Hahn,
V. Havlena, A. Horch, B. Huang, et al. (2011). “Control in the process
industries”. The impact of control technology. IEEE control systems soci-
ety.

Dean, J. and L. A. Barroso (2013). “The tail at scale”. Communications of
the ACM 56:2, p. 74.

54

https://arstechnica.com/information-technology/2013/06/facebook-opens-data-center-filled-entirely-with-servers-it-designed/
https://arstechnica.com/information-technology/2013/06/facebook-opens-data-center-filled-entirely-with-servers-it-designed/
https://arstechnica.com/information-technology/2013/06/facebook-opens-data-center-filled-entirely-with-servers-it-designed/

Bibliography

Ding, S., S. Gollapudi, S. Ieong, K. Kenthapadi, and A. Ntoulas (2011).
“Indexing strategies for graceful degradation of search quality”. In: Pro-
ceedings of the 34th international ACM SIGIR conference on Research
and development in Information Retrieval, pp. 575–584.

Dürango, J., M. Dellkrantz, M. Maggio, C. Klein, A. V. Papadopoulos, F.
Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén (2014). “Control-
theoretical load-balancing for cloud applications with Brownout”. In: 53rd
IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA,
USA, December 15-17, 2014. CDC14, pp. 5320–5327.

Gan, Y. and C. Delimitrou (2018). “The architectural implications of cloud
microservices”. IEEE Computer Architecture Letters 17:2, pp. 155–158.

Gan, Y., Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, et al. (2019). “An open-source bench-
mark suite for microservices and their hardware-software implications for
cloud & edge systems”. In: Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 3–18.

Gardner, K., S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia
(2015). “Reducing latency via redundant requests: Exact analysis”. ACM
SIGMETRICS Performance Evaluation Review 43:1, pp. 347–360.

Ghomi, E. J., A. M. Rahmani, and N. N. Qader (2017). “Load-balancing algo-
rithms in cloud computing: A survey”. Journal of Network and Computer
Applications 88, pp. 50–71.

Guo, H., Y. Liu, G. Liu, and H. Li (2008). “Cascade control of a hydraulically
driven 6-dof parallel robot manipulator based on a sliding mode”. Control
Engineering Practice 16:9, pp. 1055–1068.

Gupta, V., M. H. Balter, K. Sigman, and W. Whitt (2007). “Analysis of join-
the-shortest-queue routing for web server farms”. Performance Evaluation
64:9-12, pp. 1062–1081.

Gupta, V., M. Harchol-Balter, J. Dai, and B. Zwart (2010). “On the inap-
proximability of M/G/K: Why two moments of job size distribution are
not enough”. Queueing Systems 64:1, pp. 5–48.

Hall, S. (2017). Rules of thumb for chemical engineers. Butterworth-
Heinemann.

Hellerstein, J. L., Y. Diao, S. Parekh, and D. M. Tilbury (2004). Feedback
Control of Computing Systems. John Wiley & Sons. isbn: 047126637X.

Jain, N. and S. Choudhary (2016). “Overview of virtualization in cloud com-
puting”. In: 2016 Symposium on Colossal Data Analysis and Networking
(CDAN), pp. 1–4.

55

Bibliography

Jalaparti, V., P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan
(2013). “Speeding up distributed request-response workflows”. In: Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. SIG-
COMM ’13. ACM, Hong Kong, China. isbn: 978-1-4503-2056-6.

Jean-Marie, A. and P. Robert (1994). “On the transient behavior of the
processor sharing queue”. Queueing Systems 17:1-2, pp. 129–136.

Jonas, E., J. Schleier-Smith, V. Sreekanti, C.-C. Tsai, A. Khandelwal, Q. Pu,
V. Shankar, J. Carreira, K. Krauth, N. Yadwadkar, et al. (2019). “Cloud
programming simplified: A Berkeley view on serverless computing”. arXiv
preprint arXiv:1902.03383.

Joshi, G., E. Soljanin, and G. Wornell (2015). “Efficient replication of queued
tasks for latency reduction in cloud systems”. In: 2015 53rd Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton).
IEEE.

Kendall, D. G. (1953). “Stochastic processes occurring in the theory of queues
and their analysis by the method of the imbedded markov chain”. The
Annals of Mathematical Statistics, pp. 338–354.

Kjaer, M. A., M. Kihl, and A. Robertsson (2009). “Resource allocation and
disturbance rejection in web servers using SLAs and virtualized servers”.
IEEE Transactions on Network and Service Management 6:4. issn: 1932-
4537.

Klein, C., M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez (2014).
“Brownout: Building more robust cloud applications”. In: 36th Interna-
tional Conference on Software Engineering. ICSE14. ACM, Hyderabad,
India, pp. 700–711. isbn: 978-1-4503-2756-5.

Kleinrock, L. (1975). Queueing Systems. Vol. I: Theory. Wiley Interscience.
Konstanteli, K., T. Cucinotta, K. Psychas, and T. Varvarigou (2012). “Ad-

mission control for elastic cloud services”. In: 2012 IEEE Fifth Interna-
tional Conference on Cloud Computing, pp. 41–48.

Leva, A. (2018). “PID-based controls in computing systems: A brief survey
and some research directions”. IFAC-PapersOnLine 51:4, pp. 805–810.

Little, J. D. (1961). “A proof for the queuing formula: L = λW ”. Operations
research 9:3, pp. 383–387.

Ljung, L. (2000). Control theory: Multivariable and nonlinear methods. Taylor
& Francis.

Lorido-Botran, T., J. Miguel-Alonso, and J. A. Lozano (2014). “A review
of auto-scaling techniques for elastic applications in cloud environments”.
Journal of grid computing 12:4, pp. 559–592.

56

Bibliography

Maggio, M., H. Hoffmann, A. V. Papadopoulos, J. Panerati, M. D. Santam-
brogio, A. Agarwal, and A. Leva (2012). “Comparison of decision-making
strategies for self-optimization in autonomic computing systems”. ACM
Transactions on Autonomous and Adaptive Systems (TAAS) 7:4, pp. 1–
32.

Maggio, M., C. Klein, and K.-E. Årzén (2014). “Control strategies for pre-
dictable brownouts in cloud computing”. IFAC Proceedings Volumes 47:3.
19th IFAC World Congress. issn: 1474-6670.

Mao, M. and M. Humphrey (2012). “A performance study on the VM startup
time in the cloud”. In: 2012 IEEE Fifth International Conference on Cloud
Computing, pp. 423–430.

Masanet, E., A. Shehabi, N. Lei, S. Smith, and J. Koomey (2020). “Re-
calibrating global data center energy-use estimates”. Science 367:6481,
pp. 984–986.

Medel, V., O. Rana, J. Á. Bañares, and U. Arronategui (2016). “Modelling
performance & resource management in Kubernetes”. In: Proceedings
of the 9th International Conference on Utility and Cloud Computing,
pp. 257–262.

Mell, P. and T. Grance (2011). “The NIST definition of cloud computing”.
Millnert, V. and J. Eker (2020). “HoloScale: Horizontal and vertical scaling

of cloud resources”. In: 2020 IEEE/ACM 13th International Conference
on Utility and Cloud Computing (UCC), pp. 196–205.

Millnert, V., J. Eker, and E. Bini (2017). “Dynamic control of NFV forward-
ing graphs with end-to-end deadline constraints”. In: 2017 IEEE Interna-
tional Conference on Communications (ICC). IEEE, pp. 1–7.

Newman, S. (2021). Building microservices. O’Reilly Media, Inc.
Nylander, T., C. Klein, K.-E. Årzén, and M. Maggio (2018). “BrownoutCC:

Cascaded control for bounding the response times of cloud applications”.
In: 2018 American Control Conference. Milwaukee, Wisconsin, USA.

Paganini, F., A. Tang, A. Ferragut, and L. L. H. Andrew (2012). “Network
stability under alpha fair bandwidth allocation with general file size dis-
tribution”. IEEE Transactions on Automatic Control 57:3, pp. 579–591.

Qiu, Z., J. F. Pérez, and P. G. Harrison (2016). “Tackling latency via repli-
cation in distributed systems”. In: Proceedings of the 7th ACM/SPEC on
International Conference on Performance Engineering - ICPE ’16. ACM
Press.

Rugh, W. J. and J. S. Shamma (2000). “Research on gain scheduling”. Au-
tomatica 36:10, pp. 1401–1425.

57

Bibliography

Saleem, A., B. Taha, T. Tutunji, and A. Al-Qaisia (2015). “Identification
and cascade control of servo-pneumatic system using particle swarm op-
timization”. Simulation Modelling Practice and Theory 52, pp. 164–179.

Sharma, S., S. Singh, and M. Sharma (2008). “Performance analysis of load
balancing algorithms”. World academy of science, engineering and tech-
nology 38:3, pp. 269–272.

Shehabi, A., S. Smith, D. Sartor, R. Brown, M. Herrlin, J. Koomey, E.
Masanet, N. Horner, I. Azevedo, and W. Lintner (2016). “United States
data center energy usage report”.

Smith, J. E. and R. Nair (2005). “The architecture of virtual machines”.
Computer 38:5, pp. 32–38.

Soltesz, S., H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson
(2007). “Container-based operating system virtualization: A scalable,
high-performance alternative to hypervisors”. In: Proceedings of the 2nd
ACM SIGOPS/EuroSys european conference on computer systems 2007,
pp. 275–287.

U.S. Department Of Energy (2020). “Annual energy outlook 2020”.
Ueda, T., T. Nakaike, and M. Ohara (2016). “Workload characterization

for microservices”. In: 2016 IEEE International Symposium on Workload
Characterization (IISWC), pp. 1–10.

Varghese, B. and R. Buyya (2018). “Next generation cloud computing: New
trends and research directions”. Future Generation Computer Systems 79,
pp. 849–861.

Wang, W.-P., D. Tipper, and S. Banerjee (1996). “A simple approximation for
modeling nonstationary queues”. In: Proceedings of IEEE INFOCOM ’96.
Conference on Computer Communications. IEEE Comput. Soc. Press.

Widder, D. V. (2015). Laplace transform (PMS-6). Princeton university
press.

Wittenmark, B., K. J. Åström, and K.-E. Årzén (2002). “Computer control:
an overview”. IFAC Professional Brief 1, p. 2.

Wolff, E. A. and S. Skogestad (1996). “Temperature cascade control of
distillation columns”. Industrial & engineering chemistry research 35:2,
pp. 475–484.

Xing, Y. and Y. Zhan (2012). “Virtualization and cloud computing”. In: Fu-
ture Wireless Networks and Information Systems. Springer, pp. 305–312.

Zhang, J., J. Dai, and B. Zwart (2009). “Law of large number limits of lim-
ited processor-sharing queues”.Mathematics of Operations Research 34:4,
pp. 937–970.

58

Paper I

BrownoutCC: Cascaded Control for
Bounding the Response Times of Cloud

Applications

Tommi Nylander Cristian Klein Karl-Erik Årzén

Martina Maggio

Abstract

Cloud computing has emerged as an inexpensive and powerful com-
puting paradigm, to the point that now even applications with hard
deadlines are executed in the cloud. It may happen, due to unexpected
events, that an application becomes popular and receives a lot of atten-
tion and client requests in a short period of time. Provisioning comput-
ing capacity for such applications is quite a difficult task, because con-
tent popularity cannot be easily predicted. One of the main problems
in case content has to be served with a hard deadline is to ensure that
this deadline is respected, even in the presence of popularity spikes. To
this end, partial computation and graceful degradation were exploited,
originating the brownout framework. Applications would degrade the
user experience in the presence of load variations, to guarantee that
deadlines are met. Two different control paradigms were applied to
brownout: discrete-time control of optional content percentage over a
period and event-based queue management. The first one had reason-
able performance providing formal guarantees about the solution. The
second one was able to improve the performance and keep the response
time at the setpoint better, but suffered from the drawback of not pro-
viding formally-grounded mathematical guarantees. In this work we
combine the best of both worlds, providing a cascaded controller for
brownout, based on a more precise model of the cloud application with
respect to the original design. The BrownoutCC controller achieves per-
formance comparable with the event-based version, without sacrificing
formal guarantees.

© 2018 AACC. Originally published in American Control Conference
(ACC), Milwaukee, July 2018. Reprinted with permission. The article has
been reformatted to fit the current layout.

59

Paper I. BrownoutCC: Cascaded Control for Bounding...

1. Introduction

Control theory is becoming important in domains where problems were
previously solved using heuristic solutions, without having access to for-
mally grounded analysis tools. One of these is the computing systems do-
main [Hellerstein et al., 2004]. Computing resource allocation can easily be
cast into a control problem, where a controller decides the amount of resource
to allocate to different entities based on desired and measurable performance
metrics [Yun and Proutiere, 2015; Kjaer et al., 2009; Lu et al., 2002; Ab-
delzaher et al., 2002]. Recently, the cloud computing domain has emerged
as an interesting application domain for control-theoretical principles and
techniques [Maggio et al., 2014; Durango et al., 2014; Barna et al., 2016;
Deliparaschos et al., 2016; Kalyvianaki et al., 2014].

One of the most difficult problems in cloud computing is to quickly and
effectively react in the presence of flash crowds. A flash crowd is caused
by a sudden increase in popularity of some content, that is then served to
millions of users at the same time. The amount of resources needed to serve
this increased amount of requests is unlikely to be available, unless there
was a substantial over-provisioning of computing capacity before the raise in
popularity.

To mitigate this problem, it is common to resort to techniques like graceful
degradation. A possible way of degrading the performance of a web server is
to deny admission to some of the requests when it is not possible to meet
the user demands [Abdelzaher et al., 2002]. Admission control means that
some users would not receive any response at all, hence risking losing them to
competitors, incurring long-term revenue loss. Another possibility is to assign
a maximum time to each request and iteratively refine an answer until the
time budget expires [Ding et al., 2011; Jalaparti et al., 2013]. This strategy
works well for pruning search queries of spurious results, but does not easily
generalize to all types of cloud applications.

A third possibility to apply the principles of graceful degradation is called
brownout [Maggio et al., 2014; Klein et al., 2014]. When producing the re-
sponse to the user requests, it is often possible to identify a part of the
response that is the necessary information the user wants to see and a part
of the response that would provide a better user experience and increased
revenues, but is not mandatory. In the case of a travel agency website, the
mandatory part of the response is the flight search, while additional op-
tional information are car rental locations and hotel suggestions. Clearly, the
application owner wants to provide the additional information, but not at
the expense of losing a customer. Brownout [Klein et al., 2014] divides the
response into the two mentioned parts and measures the response time to
determine if the optional content is served (at an additional computation
cost) or not.

60

2 The brownout approach

The core idea behind brownout is to serve as much optional content as
possible, without penalizing response times. The cloud application uses feed-
back from the response times to determine how much optional content can be
served without sacrificing performance. The first brownout proposal used a
very simple first-order model for the system [Klein et al., 2014; Maggio et al.,
2014] and proposed some control strategies. Using discrete-time control, it
was possible to prove properties of the closed-loop system, like stability and
zero steady-state error [Klein et al., 2014]. However, the sampling period of
the controller would still be a critical parameter. Decisions would be made
periodically, but depending on the arrival rate of requests at the server, the
control period could either be too small, leading to taking decisions based
on too few response times, or too large, leading to a large lag in controller
response. This could mean deciding based on the average of many response
times or of none. To avoid this disparity and gain additional performance, an
event-based version of the brownout principle was then devised [Desmeurs
et al., 2015], which would take a new decision at every request arrival. The
event-based brownout controller [Desmeurs et al., 2015] showed very good
performance, but lacked the mathematical formalization and analysis possi-
bility.

The contribution of this paper is three-fold: (i) We formalize the brownout
control strategy in [Desmeurs et al., 2015] into a cascaded control problem;
(ii) We design the inner and outer loop controllers, proposing both a feed-
back and a feedforward plus feedback version. Our controller features both
the performance of [Desmeurs et al., 2015] and the formal guarantees of [Klein
et al., 2014]; (iii) We evaluate our approach and compare with previous so-
lutions using the brownout simulator. Besides providing formal guarantees,
our controllers show fewer oscillations and maintain the measured response
times closer to the target.

2. The brownout approach

This section provides some background information about the brownout
model and controllers developed in [Klein et al., 2014; Desmeurs et al., 2015].
It also introduces some basic terminology that will then be used to explain
the BrownoutCC approach.

A brownout-aware application generates responses that are composed of
two different parts: the mandatory and the optional content. In some cases, a
response is produced including both parts of the content, while in other cases,
to speed up the process and consume less resources, only the mandatory part
is included in the response. The aim of the brownout approach is to maintain
certain statistics for the user response time. In cloud computing, the focus
is on maintaining tail response time – instead of average – as it was shown

61

Paper I. BrownoutCC: Cascaded Control for Bounding...

to better correlate with user experience [Dean and Barroso, 2013]. For this
reason, we focus our effort on the 95th percentile of the response time for the
user requests.

Furthermore, notice that simplicity is an important feature of every con-
trol strategy for a system like this. In fact, the control computation happens
on the same hardware that provides responses to the users’ requests. In case
the control strategy is simple and executes fast enough, more hardware power
is devoted to answering requests from actual users of the web application.
Due to this remark, simplicity is one of the key points in evaluating our
control strategy.

This simplicity also applies to plant modeling. In contrast to physical
plants, the hardware and software stack of cloud applications are so complex
that it is unfeasible to devise a detailed model. Therefore, when controlling
software system, one aims for as simple plant models as possible while still
capturing the essential relationship between inputs and outputs. This also
implies that linear models and linear design techniques often are a good
choice.

2.1 Original control strategy
Assume that a brownout controller is periodically selecting the probability
of including the optional content in a response, called the dimmer value.
The controller period is τc seconds and to each controller intervention we
associate a cardinal number k. We denote by θ(k) the dimmer value that the
controller computes for the interval [(k − 1) τc, k τc].

The brownout approach presented in [Klein et al., 2014] assumes that
the cloud application behaves according to a very simple first-order model.
According to the model, the value of the 95th percentile of the response time
τ95 varies depending on the dimmer value as follows

τ95(k) = φ(k − 1) θ(k − 1) + δτ95(k), (1)

where φ(k − 1) is a time-varying coefficient that depends on the computing
platform and can be estimated and δτ95(k) is a disturbance, interfering with
the nominal system’s behavior. Loop shaping is then used to synthesize a
controller for the system. We denote by eτ95(k) the error between the desired
95th percentile of the response time τ̄95(k) and the actual value. Assuming
that no disturbance is acting on the system, the desired closed loop system
Z-transform between the setpoint τ̄95(k) and the actual value of τ95(k) is

G(z) =
1− pb
z − pb

(2)

where pb, the pole of the closed loop system, is simply a parameter of the

62

3 The BrownoutCCapproach

controller. The unsaturated dimmer value θ∗(k) can then be selected as

θ∗(k) = θ(k − 1) +
1− pb
φ̂(k)

eτ95(k) (3)

where φ̂(k) is an estimate of φ(k) obtained with a Recursive Least Square
(RLS) filter. The dimmer value θ represents the probability of carrying out
the execution of the optional content, therefore it is saturated in order to be
bounded in the interval [0, 1].

The expression of the closed loop system in (2) allows one to prove sta-
bility (provided that the pole pb is chosen accordingly) and zero steady-state
error (the static gain is equal to 1). The proof is subject to how well the
model (1) approximates the behavior of the cloud application [Klein et al.,
2014].

2.2 Event-driven brownout
The event-based version of the brownout paradigm [Desmeurs et al., 2015]
works as follows. A periodic controller updates a threshold value ψq(k) for
the length of the queue of requests that have not yet been answered, with
period τc.

Assume that a request r arrives at time tr and that time tr is included
in the control interval [k, k+ 1]. Denote with or ∈ {0, 1} the indicator of the
execution of the code for the optional content – i.e., if or = 1 the optional
content is computed and if or = 0 the optional content is not computed. The
web server compares the amount of requests already queuing in the system
q(t) and the threshold set by the controller at the closest k-th control period
ψq(k) and determines if the optional content should be provided or not.

q(tr) ≥ ψq(k) =⇒ or = 0
q(tr) < ψq(k) =⇒ or = 1

(4)

This algorithm has the advantage of being very easy to implement. The
threshold ψq was in [Desmeurs et al., 2015] set using a manually tuned PI
controller with anti-windup.

However, the absence of a proper model for the queue behavior and the
application behavior creates difficulties in proving properties of the closed
loop system. Empirically though, the cloud application was shown to have
very good performance in terms of the 95th percentile of the response times
being close to its desired value [Desmeurs et al., 2015].

3. The BrownoutCCapproach

This section describes the design of a brownout control strategy that com-
bines the advantages of both the methods described in Section 2, obtaining

63

Paper I. BrownoutCC: Cascaded Control for Bounding...

POPICI+CO+
τ̄95

w d
eτ95 rq eq u q τ95

−1

−1

Figure 1. A general cascaded control structure interpretation
of [Desmeurs et al., 2015].

a formally analyzable controller. Subsection 3.1 motivates the use of a cas-
caded structure. Section 3.2 describes the inner loop, while Sections 3.3, 3.4,
and 3.5 respectively discuss modeling, feedback, and feedforward control of
the outer loop.

3.1 Event-driven brownout interpreted as cascaded control
In this section, we take a closer look at the event-driven approach
in [Desmeurs et al., 2015], that we briefly summarized in Section 2.2. We here
show that the threshold-based algorithm described in Equation (4) – that
decides on optional content execution via the variable or – can be interpreted
as part of a queue length control loop. In this interpretation, the threshold
ψq(k) translates to a queue length setpoint rq(k). In fact, the threshold-based
approach serves optional content until the threshold ψq(k) is reached and
avoids serving optional content when the threshold is passed. The number
of enqueued requests is then kept as close as possible to a function of the
threshold, therefore translating it into a setpoint rq(k).

We denote by tr the arrival time of a generic request r. At tr, the algorithm
shown in Equation (4) tries to keep the measured queue length q(tr) equal
to a setpoint rq(tr), by means of a simple on/off controller – i.e., turning on
and off the computation of the optional part of the response. The controller
takes as input the queue length error eq(tr) = rq(tr)− q(tr), and determines
the choice of executing optional content or ∈ {0, 1} as control signal.

This queue length control loop is driven by the request arrival, and acts
at times tr, when the request is received. To fully describe the algorithm
of Section 2.2, we need to complement this choice with the selection of the
setpoint rq, which as stated before, was done using a periodically executed
PI controller.

The overall scheme can then be described using the cascaded structure
depicted in Figure 1. In this representation, the generic control signal u (Fig-
ure 1), is the control signal or, CI corresponds to the on/off controller in
Equation (4) and CO the manually tuned PI controller that selects the queue
length setpoint. In [Desmeurs et al., 2015], PI and PO are left unmodeled.

64

3 The BrownoutCCapproach

The cascaded interpretation in Figure 1 lays the foundation for our ap-
proach. The generic inner loop control signal u influences the response times
of the cloud application, by changing the length of the queue of unserviced
requests. PI is the transfer function from the control signal determined by
the controller CI to the queue length, while PO models the effect of the
queue length on the response times. The outer loop control signal rq > 0 is
determined by the outer controller CO and indicates a queue length setpoint.

To complete the model, we introduce two terms – w and d – representing
disturbances acting respectively on the inner and outer loop. A web applica-
tion hosted in the cloud is always subject to disturbances, such as changes
in the number of users or in the computation speed. For example, additional
load could be co-located with the virtual machine hosting the application,
changing the efficiency of the computation resources [Mars et al., 2011]. We
distinguish between two different types of disturbances: w represents a dis-
turbance that causes the queue length q to vary due to stochastic variations
(i.e. deviations from the mean) in the arrivals, d, on the contrary, is a load
disturbance that causes τ95 to deviate even if rq is kept constant. The control
strategy, i.e., CI and CO, should be designed with both disturbance types in
mind, in order to successfully keep τ95 close to its setpoint τ̄95.

Viewing the control structure as a cascaded one has several advantages
compared to single loop structure: (a) The system is faster in rejecting distur-
bances w acting on the inner loop; (b) The dynamics of the inner closed-loop
can be linearized as shown in Section 3.2; and (c) The separation of the time-
scales simplifies the control design. The inner controller can be designed to
reject w disturbances of a fast stochastic nature, and the outer controller can
be designed to reject load disturbances d. As a drawback, the cascaded struc-
ture requires measurements of the queue lengths in addition to the response
time data. However, this is easy to solve from an implementation standpoint,
as all the needed variables are already used in the implementation provided
with [Desmeurs et al., 2015].

Motivated by the good performance obtained empirically with the event-
based brownout controller despite the lack of modeling, and by the promis-
ing benefits of the structure, the BrownoutCC approach uses a model-based
cascaded controller design and splits the modeling of the cloud application
behavior into the two introduced loops.

3.2 Inner loop modeling and control
In cloud computing, usually applications are modeled using principles from
queuing theory [Kleinrock, 1975]. We summarize in the following the back-
ground notions that inspired us in the design of the model and controller for
the inner loop.

Queuing discipline models such as first-in-first-out (FIFO) and processor

65

Paper I. BrownoutCC: Cascaded Control for Bounding...

1− γ

γ
λ µ

(a) FIFO discipline

1− γ

γ
λ µ

(b) PS discipline

waiting MC

1− γ

γ
λ µ

(c) CFPS discipline

Figure 2. Queuing discipline models.

sharing (PS) are commonly used to model the behavior of web servers, see for
example [Hoflack et al., 2008; Hellerstein et al., 2004; Cao et al., 2003; Gupta
et al., 2007]. With the FIFO model, each request is executed individually
based on the order of arrival, as represented by Figure 2(a). In the PS model,
all the active requests are assumed to be executed simultaneously, using
fractions of the computing capacity of the web server. The PS discipline can
be seen as a queue where each request is processed for an (infinitely) short
time-slice, and returned to the back of the queue, unless completed. From
the modeling perspective, a queue that uses the PS discipline is normally
seen as a queue with feedback where the single parameter, γ, represents
the proportion of requests returned to the queue, as shown in Figure 2(b).
A third option is the use of an approach that integrates both disciplines,
the Combined FIFO and Processor Sharing (CFPS) model [Kjaer et al.,
2007]. Here, the PS queue can only hold a limited MC > 0 jobs. MC models
the number of available computing entities in the computing infrastructure
– number of cores, number of threads – that can be executed in parallel.
Requests exceeding MC wait in a FIFO queue. This situation is shown in
Figure 2(c). The CFPS model is a generalization of both FIFO and PS. These
two disciplines are easily interpreted as special cases of CFPS, respectively
with MC = 1 and MC =∞.

For our approach to be as general as possible, we consider our application
to behave as a queue with the CFPS discipline as the underlying model,
without any restrictions on the value ofMC . We also avoid considering special
arrival processes A(t) or service time distributions B(x), i.e., a G/G/1 queue.

To design a proper control strategy for the cascaded controller, we need
a valid model for PI in the form of a transfer function, that represents the
behavior of the application queue length as a response to the control signal
– u = θ in the case of the original controller [Klein et al., 2014] and u = or
for the event-based version [Desmeurs et al., 2015]. Writing such a (linear)
model using queuing principles is difficult.

Here we use queuing theory as an inspiration to select a meaningful
continuous-time control signal u that would allow us to model the inner loop
plant PI using a transfer function. We define u = v = dq/dt, representing
the growth rate of the queue. Using this control signal, the transfer function

66

3 The BrownoutCCapproach

1

s
K+ +

rq
weq v q

−1

Figure 3. Inner loop control using feedback linearization.

PI(s) from v to q becomes a simple integrator:

PI(s) =
1

s
. (5)

By utilizing the concept of feedback linearization [Khalil, 1996], i.e., deter-
mining the choice of v and designing CI(s), we are able to linearize the inner
loop and choose its dynamics. The dynamics of the closed inner loop GI(s)
will affect the outer loop, leading to a desire for simplicity. To achieve this
simple dynamics for GI(s), CI(s) is then chosen as a P controller with gain
K:

CI(s) = K. (6)

As the process PI(s) is integrating, this simple controller is able to follow
reference step changes in rq without any stationary errors. However, these
might still occur due to disturbances w entering the inner loop. The inner
closed loop GI(s) becomes:

GI(s) =
K

s+K
, (7)

where the design parameter K determines the speed of the system. The
complete inner loop model is shown in Figure 3.

We have now defined how to compute the control signal v. In order to
complete the inner loop control, we should also specify how to actuate it. Our
controller is realized using a periodic sampling strategy, with the actuation
relying on the threshold-based algorithm (4). For each sampling period h:

(i) At the beginning of the sampling period h, i.e., at time ta, the con-
troller (6) calculates a control signal v(ta). The control signal represents
the derivative of the queue length that we desire to actuate;

(ii) A queue length threshold ψq(ta) is set as: ψq(ta) = q(ta) + v(ta);

(iii) For all incoming requests during h, the algorithm in Equation (4) is
used, for each request, to determine if optional content should be served
or not;

67

Paper I. BrownoutCC: Cascaded Control for Bounding...

(iv) This strategy ensures1 that the new queue length q(ta + h) stays close
to q(ta) + v(ta), actuating v(ta).

On the negative side, the actuation strategy is not exact, i.e., it does not
guarantee to exactly actuate v, as, e.g., the arrivals A(t) enter the queue
according to some general random process. These deviations from the in-
tended queue growth rate caused by actuation errors can be seen as part of
the disturbance w, entering as shown in Figure 3. On the positive side, the
algorithm above actuates the control signal v well, regardless of both MC ,
arrival process, and service time distribution. It also reacts quickly to stochas-
tic changes in the system, like modifications of the arrival rate – thanks to
its event-driven execution. Finally, it is also very simple to implement and
requires minimal execution time.

After testing the inner controller in simulations, using different values of
MC , we choose K = 1 as the best fit for the inner loop design. The closed
inner loop then becomes:

GI(s) =
K

s+K
=

1

s+ 1
. (8)

3.3 Outer loop modeling
To describe the outer open loop GP (s), i.e. from rq to the response times, we
split the model into two parts: (i) from rq to q and; (ii) from q to the response
times. The first part is completely described by the inner closed loop GI(s).

To model the second part we need to define precisely the meaning of
“response times”. We denote by τm95 the 95th percentile of the response times
served only with mandatory content and by τo95 the 95th percentile of the
response times of the requests served with mandatory and optional content.
The mandatory τm95 and optional τo95 response times are expected to diverge
depending on the value ofMC . The largerMC becomes, the more the requests
spend time being processed in the PS queue rather than waiting in the FIFO
queue. As the mean service times are assumed to be related as x̄m � x̄o, a
high value of MC causes the mandatory τm95 and optional τo95 response times
to diverge. Since we can only act on the optional response times, we measure
and use for feedback only the optional response times τo95.

1Assume that the mean inter-arrival times are denoted by t̄, the mean mandatory and
optional content service times respectively by x̄m and x̄o, and that x̄m < t̄ < x̄o holds.
If the last assumption does not hold, brownout cannot find a feasible solution, and
the inter-arrival times have to be adjusted to fit this assumption by e.g. adding or
removing servers. According to Equation (4), mandatory content or = 0 is chosen for
all q(tr) > τq(k). Then, the queue length is “stable”, i.e., kept close to (or slightly above)
the threshold τq(k), since x̄m < t̄. For a proof, see [Kleinrock, 1975]. Since optional
content or = 1 is chosen for all q(tr) ≤ τq(k), the queue stays within a bound, ξ, around
τq(k) since x̄o > t̄ below the threshold.

68

3 The BrownoutCCapproach

α

λ
K

s+K
CO(s)+ +

τ̄o95 eoτ95 rq q τo95

−1

d

Figure 4. The outer loop model.

Then, the model of the second part, i.e., from q to τo95, corresponding to
the PO block in Figure 1, can be inspired by Little’s Law τ̄ = q̄/λ [Kleinrock,
1975]. Here τ̄ and q̄ represent mean response times and queue lengths, and λ
represents the mean arrival rate. Instead of mean values, we want to model
the 95th percentile of the response times. The theorem is thus not directly
applicable, but it serves as a good approximation when we introduce a cor-
rection term, that we denote by α. The following static relation from q to τo95

is then proposed:
PO(s) =

α

λ
. (9)

Here the constant α is assumed to vary with λ and MC . The complete outer
loop model is shown in Figure 4.

3.4 Design of outer loop feedback controller
The task is to design the outer loop controller CO(s), given the open loop
transfer function from rq to τo95 as

GP (s) =
K

s+K

α

λ
=

1

s+ 1

α

λ
, (10)

using K = 1 as chosen in Section 3.2.
We design the controller using pole-placement. As GP (s) is a first order

system, the poles can be placed arbitrarily using only two controller param-
eters. In addition, the controller should be able to reject load disturbances
d, resulting from stationary errors in the inner loop as well as from changes
in the load. Furthermore, the controller should be able to handle the fact
that α is unknown and varying and cope with changes in the process gain
GP (0), especially since the arrival rate λ is expected to vary over time. The
proposed solution is to select the controller parameters assuming a nominal
process gain GN . The adaptive controller gain ka is then adjusted in order
to counteract multiplicative changes to GP (0), such that GP (0) ka ≈ GN ,
giving the adaptive PI controller:

CO(s) = ka

(
kp +

ki
s

)
. (11)

69

Paper I. BrownoutCC: Cascaded Control for Bounding...

Here, ka = GN/ĜP (0), where ĜP (0) is estimated as described in Section 4.
As GP (0) might change rapidly, it is not certain that ka is able to adapt
accordingly. Also, other model uncertainties might occur, requiring a robust
design. For the nominal design, α = 1 and λ = 20 are chosen giving
GN = 0.05, and the nominal process GNP (s) as

GNP (s) =
0.05

s+ 1
. (12)

The poles of the outer closed loop system are placed according to the char-
acteristic equation

s2 + 2ζωOs+ ω2
O, (13)

where 0 ≤ ζ ≤ 1 is the relative damping and ωO the speed of the outer
loop. In order to ensure a robust design, ζ = 1 is chosen placing the poles on
the negative real axis as (s+ ωO)

2. The choice of ωO results in a trade off
between robustness and noise rejection as the maximumMS of the sensitivity
function S in this case decreases when ωO grows. As a result, ωO = 0.6 is
chosen, setting the speed of the outer loop to about half the speed of the
inner loop (ωI = 1). The choice also ensures good robustness properties as
MS = 1.03. This results in the controller parameters kp = 4.0 and ki = 7.2,
the adaptive PI controller equation becoming

CO(s) =
0.05

ĜP (0)

(
4.0 +

7.2

s

)
. (14)

The derived controller is fairly standard. However, in our opinion this
is only an advantage made possible by the cascaded structure. Using such
a simple controller allows us not to waste computational power, that the
application could use to serve user requests.

3.5 Design of outer loop feedforward controller
Testing the feedback controller of Section 3.4, we have experienced the need
for a better disturbance rejection mechanism for the outer loop. We achieve
this with the design of a standard feedforward controller.

Equation (10) shows the outer open loop process dynamics GP (s). Se-
lecting τo95 = τ̄o95, as well as considering the dynamics in (10) in stationarity,
leads to a proposed static feedforward scheme

rff
q =

1

ĜI(0)

λ̂

α̂
τ̄o95. (15)

Here ĜI(0), λ̂ and α̂ are estimated as described in Section 4. The feedforward
scheme (15) is combined with the feedback controller designed in the previous
section, resulting in the complete control structure shown in Figure 5.

70

4 Evaluation

α

λ
1

s
K+ + ++ka

(
kp +

ki
s

)
Feedforward

+

τ̄o95
w d

eoτ95 rfb
q

rff
q rq eq v q τo95

−1

−1

λ

Figure 5. The complete cascaded structure, with the proposed models
and controllers for both outer and inner loop.

4. Evaluation

This section presents our results. We validate our control strategy using the
open source Python-based brownout simulator2, built to mimic the behavior
of cloud applications [Durango et al., 2014] and described in the following
Section 4.1.

4.1 The simulator
The simulator defines the concepts of Client, Request, Replica – a single
server, running a brownout application – and Replica Controller. Clients issue
requests to be served by the replica (server). Clients can behave according
to the open-loop or to the closed-loop client model [Schroeder et al., 2006;
Alomari and Menasce, 2014]. In the closed-loop model, clients wait for a
response and issue a new request only after some think time. In the open
loop model, clients do not wait and instead issue new requests with a specific
request rate. Being better at modelling a large number of independent users,
we performed the evaluation with open-loop clients.

For each request, the simulator computes the service time. The time it
takes to serve requests with only the mandatory or with the optional content
in addition to the mandatory one are computed as random variables, with
normal distributions, whose mean and variance are based on profiling data
from the execution of experiments on a real machine [Klein et al., 2014].
The processing time for a request with optional content is a random variable
Y ∼ N (0.07, 0.01), while the processing time for the mandatory content is a
random variable Z ∼ N (0.001, 0.001). Furthermore, the simulator supports
the CFPS queuing discipline with any MC .

Finally, replicas implement a replica controller, that takes care of selecting
– for each request – when to serve optional content. In the simulator, we im-
plemented our own replica controller, described in Section 3. The controller
code developed in the simulator can be directly plugged into brownout-aware

2 https://github.com/cloud-control/brownout-lb-simulator

71

Paper I. BrownoutCC: Cascaded Control for Bounding...

applications like RUBiS3 and RUBBoS4. For the controller implementation,
the adaptive PI controller in (14) was discretized with sample period h = 0.5 s
using the method suggested in [Åström and Wittenmark, 1997], and comple-
mented by a tracking-based anti-windup solution. The parameter estimations
that the feedback and feedforward schemes require (ĜP (0), ĜI(0), λ̂, α̂) are
implemented as exponentially weighted moving averages according to

ŷ(k + 1) = βŷ(k) + (1− β) y(k). (16)

Here ŷk is the estimate of y, yk the measurement at time k and 0 ≤ β ≤ 1
a design parameter. In our simulations we use slightly different β values for
the different parameters that we estimate, but mostly β ' 0.9.

4.2 Control validation
The response time requirements of the application are expressed in the form
of a maximum value for the 95th percentile of the response times. To bound
this value, the controller should be able to constrain the 95th percentile of
the response times for the requests that are served with optional content, τo95.
The remainder of this evaluation focuses on τo95, and uses a setpoint τ̄o95 = 1 s.

The adaptive PI controller (denoted by Cfb) derived in Section 3.4 is
compared with the combined feedback+feedforward scheme (denoted by Cff)
from Section 3.5, as well as with the original brownout design (denoted by
Corig) described in Section 2.1 and the event-based design5 (denoted by
Cevent and described in Section 2.2). Since no clear tuning rules were pro-
posed in [Desmeurs et al., 2015], we have tuned its outer controller in the
same way as Cfb without the adaptive gain. As anticipated, the simulations
are performed with Poisson arrivals generated by open-loop clients, and with
both MC = 3 and MC = 10, respectively representing behaviors close to
FIFO and PS.

Figures 6 to 11 show a simulated sequence (repeated 20 times for statis-
tical significance) of varying arrival rates for both values of MC . The arrival
rates vary following the sequence {20, 100, 30, 70, 20} s-1, representing step
changes in the load d, and each value is kept constant for 60 s. Figures 6 to 9
show the 95% confidence intervals of the plotted quantities. The upper plots
show the derivative of the queue length (i.e., the v = q̇ control signal), dis-
playing both the computed (v) and the actuated control signal (vactual). The
middle plots show the actual queue length q and its reference value rq (i.e.,
the outer loop control signal). Finally, the bottom plots display the response
times τo95 and its setpoint τ̄o95 = 1. Figures 10 and 11 show a comparison of all

3 https://github.com/cloud-control/brownout-rubis
4 https://github.com/cloud-control/brownout-rubbos
5 In the event-based design, we use τo95 as measurement signal, for fairness with respect
to our solution.

72

4 Evaluation

the four strategies. The upper plots represent the dimmer value θ (i.e., the
percentage of requests served with optional content), which is determined by
the controller in the case of Corig and a posteriori computed in the case of
the other strategies. The middle plots show the reference values of the queue
length rq for the proposed strategies (Cfb, Cff) and for the event-based con-
troller (Cevent). The lower plots show τo95 and its setpoint τ̄o95 = 1. The plots
of Figures 10 and 11 show average values over the 20 repeated sequences for
readability.

Figures 6 to 9 show one of the benefits of a cascaded structure: the in-
ner loop can be very fast6, allowing a tighter control. In some cases (e.g.,
Figures 7–9, in the time interval 60 s–120 s) the system experiences some
actuation errors, leading to a stationary error in the inner loop. Thanks to
the integral action in the outer controller, response times τo95 are still kept
close to their setpoints. In fact, the inner loop is in general able to follow the
outer loop control signal rq and drive the queue length q to acceptable values.
The good control performance that we experience can be linked directly to
the model being a better approximation compared to previous models [Klein
et al., 2014]. The cascaded structure Cfb shows no overshoot in the queue
setpoints but is slower in responding to changes in d, while Cff is faster in
handling changes in the arrival rates, but overshoots. For MC = 10, the Cff

controller gets larger overshoots in its outer loop control signal rq, as a re-
sult of the assumed model (10) not describing the dynamics as well as for
MC = 3. However, this has a minimal effort on the control performance.

Looking at Figures 10 and 11, the amount of optional content served
(shown in the θ plot) is an indication of how well the application behaves
in terms of potential revenues for the application owner. Both in the case of
the event-based strategy Cevent and our proposals Cfb and Cff , the average
dimmer value is 28%, while the original strategy Corig only achieves an av-
erage value of 25% optional content served. Quite naturally, as the arrival
rate increases the amount of optional content served decreases. As a result
of the robust design, the control performances of Cfb and Cff are able to
serve additional optional content, while keeping the response times around
the setpoint under the different conditions, clearly outperforming the original
design. Note that the results are truncated for Corig, its peak values of τo95

reaches about 5 seconds for both MC .
Table 1 presents quantitative data comparing the four strategies in the

same 20 repeated simulations, for both values of MC . The first two columns
show the Integral of the Absolute Error (

∫
|eoτ95(t)|dt), the following columns

show the variance of all the optional content response times τo and the last
two columns show the maximum value of τo. The developed controllers are
very close to the event-based controller [Desmeurs et al., 2015], but provide

6As there is no physical actuator involved, the aggressive behavior is not an issue.

73

Paper I. BrownoutCC: Cascaded Control for Bounding...

0

20

40

60

80

q

q rq

−20

−10

0

10

λ = 20 λ = 100 λ = 30 λ = 70 λ = 20

q̇

vactual v

60 120 180 240
0

0.5

1

1.5

Time (s)

τ
o 9
5

(s
)

τ̄o95 τo95

Figure 6. 95% confidence interval plots for Cfb with MC = 3.

0

20

40

60

80

q

q rq

−20

−10

0

10

λ = 20 λ = 100 λ = 30 λ = 70 λ = 20

q̇

vactual v

60 120 180 240
0

0.5

1

1.5

Time (s)

τ
o 9
5

(s
)

τ̄o95 τo95

Figure 7. 95% confidence interval plots for Cfb with MC = 10.

74

4 Evaluation

0

50

100

q

q rq

−20

0

20

40
λ = 20 λ = 100 λ = 30 λ = 70 λ = 20

q̇

vactual v

60 120 180 240
0

0.5

1

1.5

Time (s)

τ
o 9
5

(s
)

τ̄o95 τo95

Figure 8. 95% confidence interval plots for Cff with MC = 3.

0

50

100

q

q rq

−20

0

20

40
λ = 20 λ = 100 λ = 30 λ = 70 λ = 20

q̇

vactual v

60 120 180 240
0

0.5

1

1.5

Time (s)

τ
o 9
5

(s
)

τ̄o95 τo95

Figure 9. 95% confidence interval plots for Cff with MC = 10.

75

Paper I. BrownoutCC: Cascaded Control for Bounding...

0

50

100

r q

0

0.2

0.4

0.6

0.8

1
λ = 20 λ = 100 λ = 30 λ = 70 λ = 20

θ
Cevent Cff Cfb Corig

60 120 180 240
0

0.5

1

1.5

2

Time (s)

τ
o 9
5

(s
)

Figure 10. Average value plots for all 4 strategies with MC = 3.

0

50

100

r q

Cevent Cff Cfb Corig

0

0.2

0.4

0.6

0.8

1
λ = 20 λ = 100 λ = 30 λ = 70 λ = 20

θ

60 120 180 240
0

0.5

1

1.5

2

Time (s)

τ
o 9
5

(s
)

Figure 11. Average value plots for all 4 strategies with MC = 10.

76

5 Conclusion and future work

Table 1. Quantitative comparison of all 4 strategies.

IAE [·103s] var(τo) [s] τomax [s]
MC 3 10 3 10 3 10
Corig 8.23 8.34 0.695 0.745 5.68 6.27
Cevent 1.58 1.01 0.031 0.021 1.82 1.93
Cfb 1.48 0.98 0.030 0.021 1.81 1.83
Cff 1.23 1.43 0.026 0.034 1.56 1.65

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

τo (s)

C
D

F

Cfb

Cff

Cevent

Corig

(a) MC = 3.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

τo (s)

C
D

F

Cfb

Cff

Cevent

Corig

(b) MC = 10.

Figure 12. Empirical cumulative distributions of τo for all 4 strategies.

formal guarantees. Also, especially with Cff the maximum response time is
lower than with Cevent.

Finally, to complete our evaluation, we computed the empirical Cumula-
tive Distribution Function (CDF) of τo for both values ofMC , using the four
control strategies. Also in this case, the simulations are repeated 20 times (but
not averaged). Figure 12 shows the results, indicating clearly that the con-
trol strategies synthesized in this paper outperform the original design [Klein
et al., 2014] Corig, and behave similarly to the event based controller Cevent.
Cff and Cfb display much shorter tails in the response times, and are able
to keep the 95th percentile close to 1 second. Finally, Cff is able to keep the
tails slightly shorter than Cfb, thanks to its faster reactions to changes in
the arrival rate.

5. Conclusion and future work

In this paper a novel brownout controller was presented, capable of combining
the benefits of both the event-based brownout [Desmeurs et al., 2015] in
terms of performance and the advantages of the original approach [Klein et

77

Paper I. BrownoutCC: Cascaded Control for Bounding...

al., 2014], in terms of analysis.
This research was motivated by the desire of solving the autoscaling prob-

lem for brownout applications – i.e., to decide when to start a new virtual
machine for the same cloud application, taking also advantage of the knowl-
edge of the dimmer value and not only of the response times. We have real-
ized that the brownout loop, in any of its forms, was not suitable for being
directly extended with autoscaling capabilities and there was a need for a
more realistic model of the behavior of the application. Together with a bet-
ter control strategy, this paper provides such a model, which we plan to use
for brownout-aware autoscaling.

Acknowledgments

This work was partially supported by the Wallenberg Autonomous Systems
and Software Program (WASP), by the Swedish Research Council (VR) for
the projects “Feedback Computing” and “Power and temperature control for
large-scale computing infrastructures”, by the LCCC Linnaeus Center and,
by the ELLIIT Excellence Center at Lund University.

References

Abdelzaher, T. F., K. G. Shin, and N. Bhatti (2002). “Performance guaran-
tees for web server end-systems: A control-theoretical approach”. IEEE
Transactions on Parallel and Distributed Systems 13:1. issn: 1045-9219.

Alomari, F. and D. A. Menasce (2014). “Efficient response time approxi-
mations for multiclass fork and join queues in open and closed queuing
networks”. IEEE Trans. Parallel Distrib. Syst. 25:6. issn: 1045-9219. doi:
10.1109/TPDS.2013.70. url: http://dx.doi.org/10.1109/TPDS.
2013.70.

Åström, K. J. and B. Wittenmark (1997). Computer-controlled Systems
(3rd Ed.) Prentice-Hall, Inc., Upper Saddle River, NJ, USA. isbn: 0-
13-314899-8.

Barna, C., M. Fokaefs, M. Litoiu, M. Shtern, and J. Wigglesworth (2016).
“Cloud adaptation with control theory in industrial clouds”. In: 2016
IEEE International Conference on Cloud Engineering Workshop, IC2E
Workshops, Berlin, Germany, April 4-8, 2016. doi: 10.1109/IC2EW.
2016.13. url: http://dx.doi.org/10.1109/IC2EW.2016.13.

Cao, J., M. Andersson, C. Nyberg, and M. Kihl (2003). “Web server perfor-
mance modeling using an m/g/1/k* ps queue”. In: Telecommunications,
2003. ICT 2003. 10th International Conference on. Vol. 2. IEEE.

78

https://doi.org/10.1109/TPDS.2013.70
http://dx.doi.org/10.1109/TPDS.2013.70
http://dx.doi.org/10.1109/TPDS.2013.70
https://doi.org/10.1109/IC2EW.2016.13
https://doi.org/10.1109/IC2EW.2016.13
http://dx.doi.org/10.1109/IC2EW.2016.13

References

Dean, J. and L. A. Barroso (2013). “The tail at scale”. Commun. ACM 56:2.
issn: 0001-0782. doi: 10.1145/2408776.2408794. url: http://doi.
acm.org/10.1145/2408776.2408794.

Deliparaschos, K. M., T. Charalambous, E. Kalyvianaki, and C. Makarounas
(2016). “On the use of fuzzy logic controllers to comply with virtualized
application demands in the cloud”. In: 2016 European Control Conference,
ECC 2016, Aalborg, Denmark, June 29 - July 1, 2016. doi: 10.1109/ECC.
2016.7810362. url: http://dx.doi.org/10.1109/ECC.2016.7810362.

Desmeurs, D., C. Klein, A. V. Papadopoulos, and J. Tordsson (2015). “Event-
driven application brownout: reconciling high utilization and low tail re-
sponse times”. In: 2015 International Conference on Cloud and Auto-
nomic Computing. doi: 10.1109/ICCAC.2015.25.

Ding, S., S. Gollapudi, S. Ieong, K. Kenthapadi, and A. Ntoulas (2011).
“Indexing strategies for graceful degradation of search quality”. In: Pro-
ceedings of the 34th International ACM SIGIR Conference on Research
and Development in Information Retrieval. SIGIR ’11. ACM, Beijing,
China. isbn: 978-1-4503-0757-4. doi: 10.1145/2009916.2009994. url:
http://doi.acm.org/10.1145/2009916.2009994.

Durango, J., M. Dellkrantz, M. Maggio, C. Klein, A. V. Papadopoulos, F.
Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén (2014). “Control-
theoretical load-balancing for cloud applications with brownout”. In: 53rd
IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA,
USA, December 15-17, 2014. doi: 10.1109/CDC.2014.7040221. url:
http://dx.doi.org/10.1109/CDC.2014.7040221.

Gupta, V., M. H. Balter, K. Sigman, and W. Whitt (2007). “Analysis of join-
the-shortest-queue routing for web server farms”. Performance Evaluation
64:9.

Hellerstein, J. L., Y. Diao, S. Parekh, and D. M. Tilbury (2004). Feedback
Control of Computing Systems. John Wiley & Sons. isbn: 047126637X.

Hoflack, L., S. Vuyst, S. Wittevrongel, and H. Bruneel (2008). “Modeling
web server traffic with session-based arrival streams”. In: Proceedings of
the 15th International Conference on Analytical and Stochastic Model-
ing Techniques and Applications. ASMTA ’08. Springer-Verlag, Nicosia,
Cyprus. isbn: 978-3-540-68980-5. doi: 10.1007/978-3-540-68982-9_4.
url: http://dx.doi.org/10.1007/978-3-540-68982-9_4.

Jalaparti, V., P. Bodik, S. Kandula, I. Menache, M. Rybalkin, and C. Yan
(2013). “Speeding up distributed request-response workflows”. In: Pro-
ceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM. SIG-
COMM ’13. ACM, Hong Kong, China. isbn: 978-1-4503-2056-6.

79

https://doi.org/10.1145/2408776.2408794
http://doi.acm.org/10.1145/2408776.2408794
http://doi.acm.org/10.1145/2408776.2408794
https://doi.org/10.1109/ECC.2016.7810362
https://doi.org/10.1109/ECC.2016.7810362
http://dx.doi.org/10.1109/ECC.2016.7810362
https://doi.org/10.1109/ICCAC.2015.25
https://doi.org/10.1145/2009916.2009994
http://doi.acm.org/10.1145/2009916.2009994
https://doi.org/10.1109/CDC.2014.7040221
http://dx.doi.org/10.1109/CDC.2014.7040221
https://doi.org/10.1007/978-3-540-68982-9_4
http://dx.doi.org/10.1007/978-3-540-68982-9_4

Paper I. BrownoutCC: Cascaded Control for Bounding...

Kalyvianaki, E., T. Charalambous, and S. Hand (2014). “Adaptive resource
provisioning for virtualized servers using kalman filters”. TAAS 9:2. doi:
10.1145/2626290. url: http://doi.acm.org/10.1145/2626290.

Khalil, H. K. (1996). “Noninear systems”. Prentice-Hall, New Jersey 2:5.
Kjaer, M. A., M. Kihl, and A. Robertsson (2007). “Response-time control of

a single server queue”. In: 2007 46th IEEE Conference on Decision and
Control. doi: 10.1109/CDC.2007.4434617.

Kjaer, M. A., M. Kihl, and A. Robertsson (2009). “Resource allocation and
disturbance rejection in web servers using SLAs and virtualized servers”.
IEEE Transactions on Network and Service Management 6:4. issn: 1932-
4537.

Klein, C., M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez (2014).
“Brownout: building more robust cloud applications”. In: Proceedings
of the 36th International Conference on Software Engineering. ICSE
2014. ACM, Hyderabad, India. isbn: 978-1-4503-2756-5. doi: 10.1145/
2568225.2568227. url: http://doi.acm.org/10.1145/2568225.
2568227.

Kleinrock, L. (1975). Queueing Systems. Vol. I: Theory. Wiley Interscience.
Lu, C., J. A. Stankovic, S. H. Son, and G. Tao (2002). “Feedback control

real-time scheduling: framework, modeling, and algorithms*”. Real-Time
Systems 23:1. issn: 1573-1383. doi: 10.1023/A:1015398403337. url:
http://dx.doi.org/10.1023/A:1015398403337.

Maggio, M., C. Klein, and K.-E. Årzén (2014). “Control strategies for pre-
dictable brownouts in cloud computing”. IFAC Proceedings Volumes 47:3.
19th IFAC World Congress. issn: 1474-6670.

Mars, J., L. Tang, R. Hundt, K. Skadron, and M. L. Soffa (2011). “Bubble-up:
increasing utilization in modern warehouse scale computers via sensible
co-locations”. In: Proceedings of the 44th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture. MICRO-44. ACM, Porto Alegre,
Brazil. isbn: 978-1-4503-1053-6. doi: 10.1145/2155620.2155650. url:
http://doi.acm.org/10.1145/2155620.2155650.

Schroeder, B., A. Wierman, and M. Harchol-Balter (2006). “Open versus
closed: a cautionary tale”. In: Proceedings of the 3rd Conference on Net-
worked Systems Design & Implementation - Volume 3. NSDI’06. USENIX
Association, San Jose, CA. url: http://dl.acm.org/citation.cfm?
id=1267680.1267698.

Yun, S.-Y. and A. Proutiere (2015). “Distributed proportional fair load bal-
ancing in heterogenous systems”. In: Proceedings of the 2015 ACM SIG-
METRICS International Conference on Measurement and Modeling of
Computer Systems. SIGMETRICS ’15. ACM, Portland, Oregon, USA.

80

https://doi.org/10.1145/2626290
http://doi.acm.org/10.1145/2626290
https://doi.org/10.1109/CDC.2007.4434617
https://doi.org/10.1145/2568225.2568227
https://doi.org/10.1145/2568225.2568227
http://doi.acm.org/10.1145/2568225.2568227
http://doi.acm.org/10.1145/2568225.2568227
https://doi.org/10.1023/A:1015398403337
http://dx.doi.org/10.1023/A:1015398403337
https://doi.org/10.1145/2155620.2155650
http://doi.acm.org/10.1145/2155620.2155650
http://dl.acm.org/citation.cfm?id=1267680.1267698
http://dl.acm.org/citation.cfm?id=1267680.1267698

References

isbn: 978-1-4503-3486-0. doi: 10.1145/2745844.2745861. url: http:
//doi.acm.org/10.1145/2745844.2745861.

81

https://doi.org/10.1145/2745844.2745861
http://doi.acm.org/10.1145/2745844.2745861
http://doi.acm.org/10.1145/2745844.2745861

Paper II

Improved Dynamic Modeling for
Controlled Server Queues

Tommi Berner Johan Ruuskanen Martina Maggio

Karl-Erik Årzén

Abstract

Resource provisioning for applications hosted in the cloud is a difficult
task due to inherent performance variabilities in the infrastructure.
Control theory has proven to be an efficient tool for dynamic resource
provisioning, increasing the predictability of the applications. However,
an important prerequisite for a successful control design is an adequate
model of the dynamics involved in the cloud. In this paper we focus on
modeling of controlled server queues that are subject to actuators, such
as frequency scaling or admission control. We show that the models of
today are only applicable to very specific server types, characterized
by their queuing disciplines, and propose a model structure that can
be applied under more general settings. Our structure is nonlinear, yet
simple enough to allow for control design. We further describe how our
model structure can be adapted to the dynamics of a server under the
general limited processor sharing discipline. We compare our approach
to state-of-the-art models in an extensive simulation campaign, show-
ing the superior versatility of our model structure. Finally, we use our
model in a control design example to show the insights that can be
gained from our proposed structure. We identify a critical frequency
range where the characteristics of the involved service time distribution
affects the control design, and where a more advanced controller struc-
ture might be needed. We also use our model structure to identify safe
frequency ranges where simpler controllers can be utilized regardless
of service time distribution.

Journal Manuscript under Review.

83

Paper II. Improved Dynamic Modeling for Controlled Server Queues

1. Introduction

The motivation for applying control theory to the computing systems do-
main has increased with the growth in popularity of the cloud computing
paradigm, where uncertainty (and, hence, the potential gain when applying
control techniques) is an inherent component of the computing infrastruc-
ture [Barroso and Hölzle, 2009]. Applications deployed in the cloud typically
run on virtual machines or containers, which can exhibit considerable vari-
ations in their performance, due to e.g. resource contention and hardware
heterogeneity. In this uncertain environment and due to the wide perfor-
mance range, guaranteeing predictable application behavior (e.g. availability
and responsiveness) is a difficult task. One common remedy to this problem
is resource over-provisioning [Barroso and Hölzle, 2009], where the cloud de-
ployment is statically designed with respect to heavy load scenarios. This is,
however, a costly approach that lowers the resource usage. A technique that
has been applied successfully to improve the resource usage is the use of feed-
back control [Pothukuchi et al., 2020; Abdelzaher et al., 2003; Abdelzaher
and Chenyang Lu, 2000; Patikirikorala et al., 2012; Klein et al., 2014]. Using
control allows us to create a dynamic strategy for resource allocation, that
follows the current user demand.

Feedback control can be used to regulate the amount of requests queued
in a server. Controlling the request queues is an efficient way to guarantee
predictable application response times, as actions are taken if the queues
grow too large. The key for designing a fast and reliable queue length control
lies in the model, that needs to be able to capture the relevant dynamics
present in the system, while not being overly complex.

In this paper, we focus on dynamic modeling of server queues. We consider
the requests entering the servers as a stream, rather than packet-by-packet.
This dynamic modeling approach is known as fluid [Kulkarni, 1997]. For
simplicity, we will omit the usage of the word fluid in this paper, and only
denote the models as dynamic.

Today, dynamic models for server queues exist both in the field of queu-
ing theory [Wang et al., 1996; Perez and Casale, 2017], and in the field of
control theory [Arcelli et al., 2015; Paganini et al., 2012]. In queuing theory,
the vast majority of the models concern servers that are not subject to any
actuators. These are denoted as non-controlled servers, to differentiate them
from controlled servers [Kitaev and Rykov, 1995] that are subject to actua-
tion. Examples of possible server actuators include: frequency scaling [Kim
et al., 2015], admission control [Kihl et al., 2004], and graceful degradation
techniques [Klein et al., 2014; Nylander et al., 2018].

The modeling approach presented in this paper is intended for controlled
servers. An important characteristic that distinguishes this type of server
from non-controlled ones is that the dynamic models for the controlled servers

84

1 Introduction

always assume that the queues are non-empty. Naturally, the model from the
control signal to the output signal is only relevant if the queue (that can
be actuated upon) contains requests. The most commonly used model today
for this controlled queue setting is a simple integrator (see e.g. [Arcelli et
al., 2015; Nylander et al., 2018]), which is sometimes not accurate enough.
As shown later in this paper, the integrator model accuracy depends on the
processing behavior of the servers, characterized by the queuing discipline. In
our paper, we go beyond the two most common disciplines Processor Sharing
(PS) and First Come, First Served (FCFS), and explore how the queue length
dynamics are affected by a generalization of the two disciplines, denoted as
Limited Processor Sharing (LPS) [Zhang et al., 2009] and further described
in Section 2.

Paper contribution. In this paper:

• We introduce the state-of-the-art server queue models, and argue that
for some types of servers the integrator model is insufficient. This de-
pends on the servers’ processing behaviors, characterized by the queuing
discipline.

• We propose a non-linear, yet simple, model structure that is suitable
for control design under the more general queuing discipline LPS. The
model is motivated by the need and trade-off between simplicity, effi-
ciency, and accuracy.

• We evaluate our model structure using a discrete-event simulator, and
compare it to existing approaches. Our evaluation shows that our model
is the most versatile one, and performs well for a wider range of queuing
disciplines.

• We use our model structure for a control design example under the PS
discipline to identify safe and critical frequency regions. In the critical
region the characteristics of the service time distribution affect the
control design complexity, whereas the safe regions allow for a simpler
control design regardless of service time distribution.

To the best of our knowledge, this is the first research contribution that
considers the processing behaviour as a first class citizen in the modelling
phase for controlled queues, obtaining thereby a model that is versatile
enough to handle multiple queuing disciplines (and in particular LPS). The
rest of the paper is organized as follows. Section 2 introduces relevant con-
cepts from queuing theory, and describes related dynamic server queue mod-
els. In Section 3, we propose our own model, motivated by a simulation study.
We evaluate our model structure in Section 4 and use our model in a control
design example in Section 5. We evaluate the design example in Section 6
and Section 7 concludes the paper.

85

Paper II. Improved Dynamic Modeling for Controlled Server Queues

2. Background and Related Work

This section introduces relevant concepts from queuing theory that will be
used in the paper. We also describe related work, consisting of existing dy-
namic server queue models, for both non-controlled and controlled servers.

2.1 Queuing theory concepts
The field of queuing theory [Kleinrock, 1975] provides models for servers that
handle user requests. These servers are modeled as queues. Queue models are
based on statistics and their main usage is to determine server utilization and
mean response times, the latter is used to check that the server satisfies basic
user requirements and the former is used to ensure that the server is providing
useful work.

The arrival of server users (or clients) is captured by a random variable
Y following an inter-arrival time distribution with rate λ = 1/E (Y). The
behavior of the server (including the request sizes) is represented by a random
variable X following a service time distribution with mean x̄ = E (X). The
distributions of X and Y can be fully described by either a Cumulative
Distribution Function (CDF), F (z) = P (Z ≤ z), or a Probability Density
Function (PDF) f (z) = d/dz F (z), with z a general stochastic variable.

The processing of a request is modeled using queuing disciplines [Klein-
rock, 1975]. One of the most commonly used disciplines (from the theoretical
perspective) is First Come, First Served (FCFS). A queue under FCFS pro-
cesses only one request at a time (rather than more than one simultaneously).
Any other request (that arrived after the one that is currently served) waits
in a queue of infinite size and is then served in the arriving order. Another
commonly used discipline is Processor Sharing (PS). Using PS, all requests
are processed simultaneously, and each request gets a share of the comput-
ing processor that is equal to the reciprocal of the number of requests that
are currently served. The PS discipline is normally a good approximation
of the real behavior of servers, as it can be viewed as an idealization of a
time-sharing scheduling protocol. However, processing too many requests si-
multaneously can lead to considerable overhead due to switching [Zhang et
al., 2009].

A natural generalization of the FCFS and PS disciplines is to only allow
for a maximum of MC requests to be processed simultaneously, resembling
the multi-threaded structure of common applications and servers. While these
requests are processed, the others wait in a queue. As soon as one of the
currently processed requests terminates, the next in line is picked from the
queue and served. This generalized queuing discipline is denoted as Limited
Processor Sharing (LPS). Notice that both FCFS and PS are special cases of
LPS. FCFS is equivalent to LPS with MC = 1 and PS is equivalent to LPS
with MC =∞ [Zhang et al., 2009].

86

2 Background and Related Work

2.2 Dynamic models for non-controlled queues
The queuing theory models for server queues are often not directly applicable
to the field of automatic control, as they mostly describe average behaviors
for servers that are not subject to any actuators, i.e. non-controlled. To get
models that converge for average values over time, a very common prereq-
uisite in queuing theory is then to demand that the service rate µ = 1/x̄ is
greater than the arrival rate λ, i.e. λ < µ [Kleinrock, 1975].

Under the assumption λ < µ, there exists dynamic models for non-
controlled servers, such as the pointwise stationary fluid flow approximation
(PSFFA) [Wang et al., 1996], which includes support for many service time
distributions. Other examples include fluid models for more general phase-
type distributions under closed queuing networks [Perez and Casale, 2017;
Schwarz et al., 2016].

One important exception is an asymptotic dynamic model for non-
controlled PS queues [Jean-Marie and Robert, 1994]. It investigates the case
λ > µ, i.e. queues that grow to infinity. As this implies that the queues will
always be non-empty, the results are actually highly applicable to control ap-
plications even without the presence of actuators. The authors of [Jean-Marie
and Robert, 1994] find that the asymptotic growth rate α of PS queues is
actually different from FCFS queues. Their main result for PS queues states
that α > 0 is the solution to the following integral equation:

α = λ

(
1−

∫ ∞
0

e−αxf (x) dx

)
. (1)

The equation above involves the complete PDF f (x) of the service time
distribution, which implies that, for PS queues, α is dependent on the entire
distribution, and not only its mean x̄. This is however not the case for the
inter-arrival distribution, as α is only affected by its rate λ and not the shape
of its distribution. The well-known corresponding, much simpler, result for
the asymptotic growth β in FCFS queues is also given in [Jean-Marie and
Robert, 1994]:

β = λ− 1

x̄
. (2)

For FCFS queues, the growth rate is thus only dependent on arrival rate λ
and the mean service time x̄, regardless of the distributions.

Another important parameter in dynamic queue models is the remaining
work w, defined as the sum of the remaining service requirements, wi, for all
n requests in the server:

w (t) =

n∑
i=1

wi (t) . (3)

87

Paper II. Improved Dynamic Modeling for Controlled Server Queues

The dynamics for the remaining work w is a well-known result in queuing
theory, given in e.g. [Jean-Marie and Robert, 1994]:

ẇ = λ x̄− 1, (4)

that holds for any work-conserving queuing discipline, including both FCFS,
PS and LPS [Jean-Marie and Robert, 1994].

2.3 Dynamic models for controlled queues
The current state-of-the-art dynamic queue model for controlled servers is
very simple. It utilizes the fundamental physics involved in a queue (from
e.g. [Arcelli et al., 2015]):

q̇ = ri (t)− ro (t) , (5)

with q the queue length and ri and ro the input and output rate of requests.
For non-empty queues, i.e. q (t) > 0, the relation (5) is exact for all involved
queuing disciplines in this paper. However, the most common assumption
made when turning (5) into a model from some normalized control input
0 < u ≤ 1 to queue length q, is that there exists a static relation between
ro and u. This results in the following model (see e.g. [Arcelli et al., 2015;
Nylander et al., 2018]):

q̇ = λ− 1

x̄
u. (6)

Comparing (6) to the queuing theory results presented earlier in this section,
we see that it perfectly matches the asymptotic growth rate β for FCFS
queues, stated in Equation (2). However, it does not match the corresponding
asymptotic growth rate for PS, denoted as α from Equation (1). α is clearly
dependent on the entire service time distribution, whereas the dynamics in (6)
only considers the mean. It can thus be expected that the state-of-the-art
model describes the queue dynamics poorly for servers with a processing
behavior closer to PS than FCFS.

For network bandwidth applications, a dynamic model has been proposed
to describe a proportional bandwidth allocation protocol [Paganini et al.,
2012]. While the authors Paganini et.al. do not use it for queue length control,
it can be easily seen that proportional bandwidth sharing is analogous to PS
queue length dynamics as they both share processor capacity in the same
way. The model that they propose is the following partial differential equation
(PDE):

∂q (t, x)

∂t
=
∂q (t, x)

∂x

u (t)

q (t)
+ λ F̄ (x) , (7)

with F̄ (x) the complementary CDF of service times, i.e. F̄ (x) = 1− F (x).
In our paper we will denote this model (7) as the Paganini model MP .

88

3 Model

Evaluating (7), it can be seen that its asymptotic behavior perfectly matches
the growth rate α for PS queues. Furthermore, the authors of [Paganini
et al., 2012] formally show that the model (7) indeed perfectly describes the
complete dynamics of the proportional bandwidth sharing protocol, and thus
also the PS queue dynamics. While the Paganini model is exact for PS queues,
it is also very difficult to use for control design due to its PDE structure. To
the best of our knowledge, this model has not been used so far to control PS
queue lengths, most likely due to its complexity. Hence, there is a need for a
simpler more control-oriented model.

3. Model

This section motivates and describes our proposed model structure for con-
trolled server queues. We assume that the queues are always non-empty,
which is a reasonable assumption for a server control scenario. The main actu-
ator that we will focus on in this paper is server speed, denoted as 0 < u ≤ 1,
represented by e.g. changes to a normalized CPU frequency. Furthermore,
our model structure is designed to fit the behavior of PS queues. We will
later in this section show that our model structure can handle both other
actuators and be applied to the generalized queuing discipline LPS.

3.1 Simulation study
We motivate our structure based on known results from queuing theory,
physical relations and the behaviors observed in an initial simulation study.
Our simulations are performed using a discrete-event simulator developed in
Python, described in Section 4.1.

The simulation study is performed in open loop, for both queuing disci-
plines PS and FCFS, and for three example service time distributions with
same mean E(x) = 0.1s:

• Exponential Fexp(x) = 1− e−10x, x ≥ 0

• Uniform Funi(x) =

{
x/0.2 if 0 ≤ x ≤ 0.2

1 if x > 0.2

• Weibull Fwei(x) = 1− e−(20 x)0.5 , x ≥ 0

For the arrival of new requests we use the Poisson process with rate λ = 5/s,
however, as shown in [Paganini et al., 2012] the dynamics for both PS and
FCFS are not affected by the arrival distribution except for its mean. The
control input u, representing server speed, is changed in steps as the sequence
usteps ={0.1, 0.5, 0.1, 0.5, 0.8, 0.5}. For each service time distribution, the

89

Paper II. Improved Dynamic Modeling for Controlled Server Queues

0 50 200 250 500 550
0

20

40

Time (s)

R
em

ai
ni

ng
W

or
k
w

0

200

400

600

u = 0.1 u = 0.5 u = 0.1 u = 0.5 u = 0.8 u = 0.5

Q
ue

ue
L
en

gt
h
q

MP Fexp

Fwei Funi

(a) PS.

0 50 200 250 500 550
0

20

40

Time (s)

R
em

ai
ni

ng
W

or
k
w

0

200

400

600

u = 0.1 u = 0.5 u = 0.1 u = 0.5 u = 0.8 u = 0.5

Q
ue

ue
L
en

gt
h
q

Fexp

Fwei

Funi

(b) FCFS.

Figure 1. Results from the simulation study. The upper plots show queue
lengths q and the lower the remaining work w.

90

3 Model

0 50 100 150 200
0

100

200

300

u = 0.1 u = 0.5

Time (s)

Q
ue

ue
L
en

gt
h
q

MP Fexp

Fwei Funi

Figure 2. First 200 seconds of the queue length plot in Figure 1(a).

test is repeated 50 times with different random seeds. The average of all 50
sequences is then formed to ensure that we catch the statistical behaviors.

The results of the simulation study are shown in Figure 1, where Fig-
ure 1(a) shows the queuing discipline PS and Figure 1(b) the results for
FCFS. The figures show both the queue length dynamics and the remaining
work w. As expected, since all three service time distributions have the same
mean value, their queue length behaviors for FCFS are identical, acting like
pure integrators. The remaining work dynamics also comply with the theory
from Section 2, stating that FCFS and PS should have the exact same, pure
integrator, behavior. The most interesting plot is, however, the one showing
the queue length dynamics for PS. Here we see that the three example distri-
butions act completely differently, despite having the same mean value E(x).
The exponential distribution acts like a pure integrator, whereas Weibull and
uniform exhibit more complex dynamics. In fact, they suggest a nonlinear
behavior as the settling time after each step in u changes with the level of
w. The queue length simulation behaviors for PS are plotted together with
the theoretical Paganini modelMP results for comparison. Our simulations
match the theoretical model results for PS very closely, confirming the accu-
racy of our discrete-event simulator.

As a first step to describe the PS queue length dynamics, we consider the
first 200s of Figure 1(a), consisting of a single step in u, seen in greater detail
in Figure 2. Using the System Identification Toolbox1 in Matlab, we use the
simulation input-output data of Figure 2 to identify linear continuous-time,
transfer function models. We compare five different pole-zero configurations

1 https://www.mathworks.com/products/sysid.html

91

https://www.mathworks.com/products/sysid.html

Paper II. Improved Dynamic Modeling for Controlled Server Queues

Table 1. Linear identification experiment data.

Configuration (np,nz)
1,0 1,1 2,1 2,2 3,2

Funi
Fit (%) 64.3 72.3 95.8 95.9 96.4
MSE 981 588 13.8 12.8 10.2

Fexp
Fit (%) 94.2 94.2 94.3 94.4 95.1
MSE 9.92 9.92 9.50 9.24 7.02

Fwei
Fit (%) 57.1 76.0 83.2 83.4 83.8
MSE 99.2 31.0 15.3 14.6 14.2

(np, nz) with number of poles np ranging from 1 to 3 and zeros nz from 0 to
2. The results are seen in Table 1, quantified by the measures model fit and
mean squared error (MSE). The values in bold highlight the simplest config-
uration with acceptable metrics, hence the best choice without over-fitting.
For Fexp the best choice is 1,0, whereas for Funi and Fwei it is 2,1. All best-fit
configurations include an integrator pole, and the 2,1 configurations include
an additional stable pole and stable zero. Given the very small differences
between the simulation data and Paganini model results seen in Figures 1
and 2, these best-fit configurations also serve as approximate, numerical lin-
earizations of the Paganini model stated in Equation (7). Hence, assuming a
common model structure, the data of this identification experiment suggests
that our proposed model should linearize to a system of configuration 2,1.

3.2 Model structure
Based on the results of the initial simulation study, the dynamic queue model
should thus fulfill a set of requirements. It should:

• Be non-linear (time constants depend on w)

• Contain the integrating state w

• Linearize to a system with an integrator pole, a stable pole and a stable
zero

• Reduce to a pure integrator for the exponential distribution

Furthermore, the model structure also has to comply with the fundamental
physics of queues:

• Queue growth q̇ = input rate ri (t) − output rate ro (t)

92

3 Model

The input rate ri is trivial to model as the request arrival rate λ. However,
what is more interesting is how to relate the output rate ro to the involved
parameters, i.e. remaining work w, queue length q and server speed u. As
seen in the simulation study, ro depends on the service time distribution for
PS queues, which implies that a new parameter is necessary to add to the
model. We denote this distribution specific parameter as k, which describes
the impact on the output rate ro from the service time distribution. Further-
more, the simulation study shows that the time constant of the pole increases
with w, which implies that output rate can be modeled as proportional to
the inverse of w. The insights gained from the simulation study, as well as the
fundamental physics of queues thus motivate our suggested model structure.
The structure, that fulfills all of the above requirements, is the following

ẇ = λ x̄− u
q̇ = λ− k q

w
u, (8)

with λ > 0, q > 0, x̄ > 0, w > 0 and k > 0. The equation for ẇ in (8) is
completely based on previous theory for remaining work dynamics, presented
in Section 2. The novelty of our model structure thus lies in the queue length
dynamics, using a structure as motivated above.

A linearization of (8) around an operating point (w0, qo, u0) results in the
following linear system:

∆ẇ = −∆u

∆q̇ =
kq0u0

w2
0

∆w − ku0

w0
∆q − kq0

w0
∆u, (9)

with ∆w = w − w0, ∆q = q − q0 and ∆u = u − u0. Applying the Laplace
transform on (9) gives the following linear transfer function from ∆U to ∆Y :

GN (s) = − q0

w0

(
1 + sw0

u0

)
s
(

1 + s w0

ku0

) , (10)

which fulfills the specification on a linearized model with one integrator pole,
a stable zero and a stable pole.

One important property of our proposed model structure is that for k = 1,
(8) reduces to a linear integrator model:

q̇ = λ− 1

x̄
u, (11)

which is identical to the model for FCFS queues. This can be seen by ob-
serving that in (8), with k = 1, λ a time-varying continuous function and x̄

93

Paper II. Improved Dynamic Modeling for Controlled Server Queues

0 50 200 250 500 550
0

1

2

3

4

u = 0.1 u = 0.5 u = 0.1 u = 0.5 u = 0.8 u = 0.5

Time (s)

k
-v

al
ue

s
Fexp Fwei Funi

Figure 3. k-values from the simulation study for the PS discipline.

Table 2. Theoretical k∞-values for the simulation study.

Theoretical k∞-values
u = 0.1 u = 0.5 u = 0.8

Funi 0.51 0.67 0.74
Fexp 1.00 1.00 1.00
Fwei 4.25 3.00 2.94

a constant, the states q and w will keep their constant relation q = w/x̄ if
q(t0) = w(t0)/x̄ for some initial time t0. For k = 1, (8) can thus be reduced
to a first-order linear model with the dynamics given by (11).

The values for k can be estimated online, but it is also possible to use
the asymptotic slope α to determine asymptotic values for k, denoted as k∞.
Solving the differential equation (8) with initial conditions q(0) = w(0) =
0, and comparing the resulting slope with Equation (1) for α, we get the
following relation

k∞ =
λ (λ x̄− α x̄− u) + αu

αu
, (12)

which is valid for any α. However, the integral equation in (1) for determining
α is only strictly valid for α > 0. In our simulations, we have noticed that
Equation (1) calculates accurate negative slopes α < 0 as well, as long as the
integral converges. As we have not been able to mathematically prove the
correctness of the negative slopes, they only serve as indicative values of k∞.

The k-values for the three example distributions from the simulation
study are shown in Figure 3. As can be seen, the behavior of Fwei corre-
sponds to k > 1, Fexp to k = 1 and Funi to k < 1. There are some variations
within the distributions, especially for Fwei, triggered by scenario changes.

94

3 Model

For comparison with the simulation results from Figure 3, the theoretical
k∞-values can be seen in Table 2. The k∞-values correspond well to the sim-
ulation results in Figure 3, which suggests that they are useful for predicting
the behaviors of the service time distributions.

3.3 Different actuators
The only actuator considered so far in our modeling has been the server
speed u. However, our model structure can easily be modified to support
other actuators as well. One example is admission control (see e.g. [Kihl et
al., 2004]), where the arrival rate λ is affected by the choice of admitting or
denying the incoming server requests. In this case, with server speed u = 1,
our model structure (8) would change to:

ẇ = uλ x̄− 1

q̇ = uλ − k
q

w
, (13)

with uλ ≥ 0 the admitted arrival rate.
Another example of a different actuator in the field of cloud computing

is graceful degradation, where the quality of the served application content
is sacrificed when necessary in order to maintain predictable response times.
One realization is the Brownout concept [Klein et al., 2014; Nylander et
al., 2018], where the application is split into two parts, one that is always
computed (mandatory), and one which is computed if possible (optional).
The choice of serving optional content is thus the control signal, and affects
the mean service time x̄ of the application. Here, the model structure (8)
thus changes to

ẇ = λux̄ − 1

q̇ = λ− k q
w
, (14)

with ux̄ ≥ 0 the mean service time under graceful degradation.

3.4 Generalizing to the LPS discipline
Our modeling approach so far has been focused on describing the queue
length behavior for the queuing discipline PS. However, one important prop-
erty of our model structure (8), is that it reduces to a pure integrator model
for k = 1. This allows our structure to perfectly describe the exponential
distribution under PS, but also any distribution under FCFS. Thus, for the
more general queuing discipline LPS, the value of k can be chosen to represent
any MC number of simultaneous requests. Values of k closer to 1 suggests
a behavior close to FCFS (with MC close to 1), and k further away from 1
suggests a behavior closer to PS. When using our model structure for a real

95

Paper II. Improved Dynamic Modeling for Controlled Server Queues

cloud server setup, the estimation of k can be performed regardless of the
true behavior of the server. This is an advantage as most servers do not follow
the PS or FCFS model exactly, they are most likely somewhere in between.

3.5 Estimations
Extensive work on estimator design for the involved components of our
model (8) is out of scope for this paper. However, we do want to mention
what states and constants that need to be estimated, in order to be able
to design a controller: (i) The arrival rate λ; (ii) Mean service time x̄; (iii)
Remaining work w; and (iv) The distribution parameter k.

The estimation of λ is straightforward as it only implies measuring the ar-
rivals of the requests, whereas the other states and constants require slightly
more effort. In order to estimate the remaining work w for the general LPS
discipline, the concurrency value MC also has to be estimated. This can be
done in a fashion similar to the approach used in [Keith et al., 2019].

4. Model Evaluation

In this section, we evaluate our proposed dynamic queue model and compare
it to two important existing models. We perform the evaluation in our simu-
lator with Poisson arrivals using PS as the queuing discipline in Section 4.2,
and then extend to the generalized LPS discipline in Section 4.3.

4.1 The simulator
The simulator used in this paper is based on the Brownout simulator2, first
used in the paper by Dürango et. al. [Dürango et al., 2014]. The simulator
allows us to, for each scenario, define (i) inter-arrival time distribution Farr;
(ii) service time distribution F ; and (iii) queuing discipline (FCFS, PS or
LPS). The requests are processed in a discrete-event based fashion. For a
more complete description of the simulator, we refer to [Dürango et al., 2014].

4.2 Comparison to existing models
In our evaluation, we compare our proposed model (8), denoted asMN , to
the following two models: (i) The integrator model MI based on (6); and
(ii) The Paganini modelMP from Equation (7). However, as the integrator
model (6) lacks parameterization, we introduce a gain parameter kI , and
modify (6) to the following:

MI : q̇ = λ− kI
x̄
u. (15)

2 https://github.com/cloud-control/brownout-simulator

96

4 Model Evaluation

As the initial simulation study showed that, for the PS discipline, the
queue length dynamics depends heavily on the chosen service time distribu-
tion, we perform the evaluation using five different distributions. First, two
that result in k > 1:

• Weibull Fwei (x) = 1− e−(2.0 x/x̄)0.5 , x ≥ 0

• Hyperexponential Fhyp (x) =
∑2
i=1 pi

(
1− e−x/x̄

)
,

with x ≥ 0, p1 = 0.87 and p2 = 1− p1 = 0.13.

Second, two that result in k < 1:

• Uniform Funi (x) =

{
x/2x̄ if 0 ≤ x ≤ 2x̄

1 if x > 2x̄

• Deterministic Fdet (x) =

{
0 if 0 ≤ x < x̄

1 if x ≥ x̄

Finally, one that results in k = 1:

• Exponential Fexp (x) = 1− e−x/x̄, x ≥ 0.

To ensure that we get a general evaluation of the models, we perform 1000
randomized scenarios using the following parameters:

• Mean service time 0.01 ≤ x̄ ≤ 0.1

• Arrival rate λ = 0.5 1
x̄ ,

such that for server speed u = 0.5, the queues are stationary.
Each scenario consists of an open loop sequence of five randomly chosen

server speeds {u1, u2, u3, u4, u5}, where each speed is maintained for 50 sec-
onds, resulting in a total scenario length of 250s. The intervals for the server
speeds are chosen to ensure that we do not get empty servers.

In each scenario, we: (i) Run 20 repeated simulations with different ran-
dom seeds; (ii) Form the average queue length behavior qsim; (iii) Numerically
solve the Paganini model; and (iv) Calculate the best fit values forMI and
MN , assuming static k-values during the scenario. The model fit percentages
0% ≤ mf ≤ 100% are calculated based on the normalized root mean squared
error criterion (NRMSE):

mf = 100 ·
(

1− || qsim − q ||
|| qsim −E (qsim) ||

)
%. (16)

Note that a fit mf = 0% represents a model that performs exactly as poor
as a straight line with value E(qsim). Fit percentages below zero are also

97

Paper II. Improved Dynamic Modeling for Controlled Server Queues

0 50 100 150 200 250
0

300

600

900

1,200

u = 0.11 u = 0.32 u = 0.68 u = 0.49 u = 0.82

Time (s)

Q
ue

ue
L
en

gt
h
q

qsim MP (97.9%)
MN (84.6%) MI (54.2%)

(a) Uniform distribution Funi.

0 50 100 150 200 250
0

200

400

600

800

u = 0.14 u = 0.34 u = 0.56 u = 0.30 u = 0.79

Time (s)

Q
ue

ue
L
en

gt
h
q

qsim MP (94.4%)
MN (69.9%) MI (0.0%)

(b) Weibull distribution Fwei.

Figure 4. Two example scenarios under the PS queuing discipline.

98

4 Model Evaluation

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Model fit %

E
m
pi
ri
ca
l
C
D
F

MP

MN

MI

Figure 5. Statistical results of the model fits for PS.

possible, but for simplicity and readability we have decided to saturate them
to zero.

Two example scenarios out of the 1000 evaluated are shown in Figure 4,
where Figure 4(a) was performed under the uniform distribution Funi and
4(b) under Weibull Fwei. The results show queue length plotted against time
for the simulated average qsim, together with the best model fits for the
evaluated modelsMN ,MI andMP . As expected, since the Paganini model
is theoretically exact for the PS discipline, it outperforms the other two
here. Our proposed modelMN performs reasonably well for both scenarios,
whereas the integrator modelMI is not able to describe the dynamics in the
Weibull scenario at all, resulting in a 0% fit.

The complete statistical results of the model fits of all 1000 scenarios are
available in Figure 5. It shows the empirical cumulative distribution function
(CDF) of the model fits for the three evaluated models. As a fit close to 100%
is desirable, the further to the right the line is plotted the better. The results
show that, for all scenarios, the Paganini modelMP performs very well (fits
80-100%), and our proposed modelMN reasonably well with a slightly larger
spread (fits 60-100%). The integrator model MI , however, exhibits a very
wide spread of fits (0-100%), where about a fifth of all scenarios resulted in
a zero fit percentage.

The model fits of the 1000 scenarios are broken down into average values
per distribution in Table 3. The most interesting results are for the integrator
model MI , where it can be seen that it only describes the dynamics well
for the exponential distribution, and reasonably well for uniform. The other
distributions range from bad to worse, and for Weibull the average is as low as
0.0%. For the Paganini modelMP , the fits are high for all distributions, but

99

Paper II. Improved Dynamic Modeling for Controlled Server Queues

Table 3. Statistical results for PS model fits per distribution.

Average Model Fit %
Fwei Fhyp Funi Fdet Fexp

MP 89.5 90.6 94.3 95.3 92.7
MN 73.9 83.8 88.2 70.3 96.3
MI 0.0 23.5 69.0 50.6 95.6

lowers slightly for hyperexponential and Weibull, that exhibit more stochastic
variations. Our proposed modelMN performs very well for exponential, and
reasonably well for the other distributions.

Recall that all model fits presented thus far have been calculated for
static k-values for both modelsMI andMN (MP has no parametrization).
In other words, if an estimation scheme would try to update the k-values
online, the model fits would become higher. For our proposed model MN

the results for the static k-values suggest that the estimations do not have
to be exact in order for the model structure to represent the dynamics fairly
well (fits 60-100%).

4.3 Generalized queuing discipline
In this section we repeat the exact same evaluation procedure from Sec-
tion 4.2, but using the generalized queuing discipline LPS instead. We simu-
late two cases of LPS, dynamically setting MC as a ratio rCM of the current
queue length q. We use ratios rCM = 0.33 and rCM = 0.67. Normally, the MC

value of a real-world server is assumed to be constant. Furthermore, for a
closed loop scenario, the server queue length would be kept close to the set-
point at all times, resulting in an approximately constant ratio between the
MC value and queue length. However, as we test open loop scenarios with
large variations in queue lengths, keeping a constant MC in our tests would
result in large variations in the ratio rCM . To emulate a real-world closed loop
setting we thus dynamically change theMC value in our simulations, in order
to keep a constant ratio rCM for our two LPS cases. For comparison purposes,
we also simulate a true FCFS case with a constant MC = 1.

The statistical results of the LPS evaluation are available in Figure 6.
Just as in Figure 5, each plot 6(d)-6(a) shows the empirical CDF of the
model fit percentages for all 1000 scenarios for the Paganini modelMP , our
proposed model MN and the integrator model MI . The results show that
the Paganini model is only able to describe the true PS case well, for all
other cases it exhibits very poor results. This is not surprising as it is only
designed for true PS, and with no parameterization, its behavior will only fit
well with PS queues. The integrator model, on the other hand, shows very
high fits for the FCFS case, and then gets much worse as the cases get closer

100

4 Model Evaluation

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Model fit %

E
m
pi
ri
ca
l
C
D
F

MP

MN

MI

(a) MC =∞ (PS)

20 40 60 80 100

Model fit %

(b) MC = 0.67q

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Model fit %

E
m
pi
ri
ca
l
C
D
F

(c) MC = 0.33q

20 40 60 80 100

Model fit %

(d) MC = 1 (FCFS)

Figure 6. Statistical results comparison for model fits between different
values for MC . The legend applies to all plots.

101

Paper II. Improved Dynamic Modeling for Controlled Server Queues

PS 0.67q 0.33q FCFS
0

0.5

1

1.5

2

2.5

3

MC-values

A
vg

.b
es
t
fit
k
-v
al
ue
s Fwei Fhyp Fexp

Funi Fdet

Figure 7. Best-fit k-values for MN under different MC values.

to PS. These results align well with the fact that FCFS queues behave like
integrators, see e.g. Equation 2.

Our proposed modelMN is the only one that exhibits acceptable fits for
all four cases. The fits are slightly higher for the cases closer to FCFS, due
to their more simplistic, integrator-like, behavior, but also the PS-like cases
perform well. This adaptability of our proposed model structure is due to the
fact that the k-value can be set to describe the dynamics for both FCFS, PS,
and everything in between. The structure is originally designed for true PS,
but for cases closer to FCFS, the best fit k-value simply tends closer to 1.
This is illustrated in Figure 7, where the average best fit k-values are plotted
for the five distributions under different concurrency values MC .

5. Control Design

The purpose of this section is to provide a queue length control design exam-
ple that highlights the insights that can be gained from our proposed model
MN . We choose to base the design on the linearization of our model, with
transfer function GN (s) re-stated for convenience:

GN (s) = − q0

w0

(
1 + sw0

u0

)
s
(

1 + s w0

ku0

) = KP
(1 + sTz)

s (1 + sTp)
, (17)

i.e. with process parameters KP = − q0
w0

, Tz = w0

u0
and Tp = w0

ku0
. As can

be seen in (17), the distribution specific k-parameter decides the location of
the process pole p1 = −1

Tp
= −ku0

w0
, in relation to the zero z1 = −1

Tz
= −u0

w0
.

102

5 Control Design

For distributions with k < 1, |p1| < |z1|, and vice versa. This is visualized
in the Bode diagram shown in Figure 8. The diagram shows a linearization
performed with q0 = 100, w0 = 2 and u0 = 0.5. The figure shows the mag-
nitude and phase of GN (s) for two example distributions, with k-values 0.5
(Funi, blue) and 3.5 (Fwei, red). For k = 0.5, the pole puni

1 appears to the
left of zero zuni

1 (i.e. puni
1 has lower frequency) in the Bode diagram, thus

resulting in a phase drop of 20 degrees. For k = 3.5, we instead see that the
zero zwei

1 appears to the left of pwei
1 , leading to a phase increase of about 30

degrees. The differences in phase between the two distributions are great-
est between p1 and z1, and we choose to denote this frequency range as
the critical range {wcritical}. In Figure 8, {wcritical} is shown for the Weibull
distribution, however, the example is constructed such that both distribu-
tions have the approximately same critical frequency range. The closer to
{wcritical} the cut-off frequency of the control design is chosen, the more the
characteristic of the distribution will affect the design.

As distributions with k > 1 result in a phase increase at the critical
frequency range, it can be concluded that distributions with k > 1 are in
fact easier to control, compared to their k < 1 counterparts! As no phase
compensation is needed for k > 1, simpler control structures can thus be
allowed. This is an interesting insight that will be further examined in the
following loop shaping design example.

In our example design, we consider a PID control structure with a first
order low pass filter on the derivative part:

C(s) = K

(
1 +

1

sTi
+

sTd
1 + sTd/N

)
, (18)

with proportional gain K, integral time constant Ti, derivative time constant
Td and filter constant N . As our model structure (8) is non-linear, we use an
adaptive approach where the system is linearized at each time step. The con-
troller parameters are designed with respect to the linearized model GN (s),
using a loop shaping based approach. The goal of the example design is not
to be optimal, but to provide a way to compare the design needs for different
service time distributions, i.e. with k less than or greater than 1.

As a first step, consider a PI design that sets the integral time constant Ti
such that the phase at the desired cut-off frequency ωc is lowered by pi > 0
radians:

Ti =
tan (−pi + π/2)

ωc
. (19)

The proportional gain K is then chosen with negative sign as KP < 0, and
with magnitude to obtain the desired ωc:

|K| =

√
1 + ω2

cT
2
p

|KP ||Ĉ(iω)|
√

1 + ω2
cT

2
z

, (20)

103

Paper II. Improved Dynamic Modeling for Controlled Server Queues

100

101

102

103

104

105
{ωcritical}

M
ag

ni
tu

de
Fwei

Funi

10−2 10−1 100 101 102

−60

−70

−80

−90

−100

−110

−120

Frequency ω (rad/s)

P
ha

se
(d

eg
re

es
)

Fwei

Funi

Figure 8. Example Bode diagram of GN (s).

where Ĉ is the controller except for its proportional gain K. This method
thus results in a loop shaping design that lowers the phase margin by p
radians, regardless of the initial phase margin in the open loop system. This
allows us to compare how distributions with different k-values can tolerate
phase margin drops due to increased integral action.

The final design of our controller includes the derivative part, composed
of its derivative time constant Td and its filter constant N . These two pa-
rameters are designed such that the phase at ωc is lifted by pd radians, and
such that the derivative gain at higher frequencies is attenuated. We choose
N as the parameter that sets the filter pole at a frequency kf times higher
than ωc:

N = kfωcTd. (21)

Solving for a derivative part that lifts the phase by pd radians does not result
in an explicit expression for Td, thus it is not shown here. Instead, we solve it
numerically in our simulator during run time. We denote these PI and PID
designs as CPIMN

and CPIDMN
.

In order to realize the implementations of the controllers, the involved
process parameters KP , Tz and Tp need to be estimated. These are in turn

104

6 Control Evaluation

composed by the states q0, u0, w0 and the distribution specific parameter k.
As both queue lengths q and control signals u are measurable, only w and
k need to be estimated. For w, we use a method that measures arrival and
departure times of all requests to estimate a CDF of the service time distri-
bution. From the CDF it is then straightforward to estimate the remaining
work for each request, and then to form an estimate of w as the sum of the es-
timated remaining work of each request. For k, we use our non-linear model
structure 8, with k as the only unknown, to form a simple exponentially
weighted moving average filter that provides an estimate of k.

6. Control Evaluation

To simplify the evaluation of our example design, we will focus entirely on
the PS queuing discipline in this section. However, the same insights also
apply to the more general LPS discipline. The evaluation will be performed
using the same discrete-event simulator as in Section 4.

The example adaptive loop shaping based designs CPIMN
and CPIDMN

, in-
cluding both the PI and PID structure, from Section 5 will be evaluated
and compared to a corresponding PI/PID control design , CPIMI

and CPIDMI

respectively, based on the integrator modelMI from Equation (15).
It uses the same expressions and calculations for Ti as in (19) and Td, but

determines K from the simple integrator modelMI instead as

|K| = 1

|kI ||Ĉ(iω)|
, (22)

in order to obtain the desired ωc.
We evaluate the four control designs for two different service time dis-

tributions, Weibull (Fwei, k > 1) and Uniform (Funi, k < 1). In the first
simulation experiment, we use a cut-off frequency ωc = 0.3, that results in
a cut-off frequency that is right in the center of the critical frequency range
{wcritical}. The integral time constant Ti is designed to obtain a phase drop
of pd = π/3 radians, and the derivative time constant Td to lift the phase by
the same amount. The filter constant N is set to 3ωcTd, i.e. with kf = 3. We
use a sequence with queue length setpoints {50, 100, 150} and load changes
d = {1.0, 0.7, 1.0, 0.7, 1.0}. The value 0.7 denotes a server slowdown of 30%,
and thus acts as a load disturbance from 1.0 that represents no slowdown.

The results of the first experiment are shown in Figures 9 and 10. Figure 9
shows the results for the control designs based on our proposedMN model.
The CPIMN

design is shown in the left subfigure, whereas CPIDMN
is shown in

the right. The upper plots show queue lengths q and the lower show server
speeds u, i.e. the control signals. For the PI designs, a significant difference
can be noted between the two distributions Fwei and Funi. For the Uniform

105

Paper II. Improved Dynamic Modeling for Controlled Server Queues

50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

Time (s)

Se
rv

er
sp

ee
d
u

50

100

150

d = 1.0 d = 0.7 d = 1.0 d = 0.7 d = 1.0
Q

ue
ue

L
en

gt
h
q

Setpoint
Funi

Fwei

(a) PI control with ωc = 0.3. Legend applies to both plots.

50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

Time (s)

Se
rv

er
sp

ee
d
u

50

100

150

d = 1.0 d = 0.7 d = 1.0 d = 0.7 d = 1.0

Q
ue

ue
L
en

gt
h
q

Setpoint
Funi

Fwei

(b) PID control with ωc = 0.3. Legend applies to both plots.

Figure 9. Control designs based on the MN model.

106

6 Control Evaluation

50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

Time (s)

Se
rv

er
sp

ee
d
u

50

100

150

d = 1.0 d = 0.7 d = 1.0 d = 0.7 d = 1.0
Q

ue
ue

L
en

gt
h
q

Setpoint
Funi

Fwei

(a) PI control with ωc = 0.3. Legend applies to both plots.

50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

Time (s)

Se
rv

er
sp

ee
d
u

50

100

150

d = 1.0 d = 0.7 d = 1.0 d = 0.7 d = 1.0

Q
ue

ue
L
en

gt
h
q

Setpoint
Funi

Fwei

(b) PID control with ωc = 0.3. Legend applies to both plots.

Figure 10. Control designs based on the MI model.

107

Paper II. Improved Dynamic Modeling for Controlled Server Queues

distributions, large oscillations occur both at setpoint changes and at load
disturbances, whereas for Weibull only relatively small over and undershoots
can be seen. It is thus clear that in this design example, the Uniform distri-
bution can not tolerate integral action well, as it lowers the phase margin.

Looking at the MN PID designs, the differences between the two dis-
tributions become much smaller. Here, Uniform and Weibull behave almost
identically, and it is clear that the introduction of a derivative part increases
the performance for Uniform greatly. At the same time, the results for Weibull
are barely affected by the derivative action. This is of course due to the fact
that the Weibull distribution has a much larger phase margin to start with.
The example Bode diagram in Figure 8 in fact shows a linearization per-
formed at approximately 80 seconds into all experiments run in Figures 9-10.
It can thus be seen that the cut-off frequency ωc = 0.3 is located in {wcritical},
and the differences in phase between the distributions are maximized. The
phase lifting effect of the derivative part thus only makes a difference for the
Uniform distribution, where Figure 8 shows that it has a phase drop in the
critical range. It should of course be noted that these highlighted differences
between the two distributions in this example are large due to the chosen
cut-off frequency ωc.

Compared to the results in Figure 9, a very similar behavior is also ob-
served in the designs based on the MI model, shown in Figure 10. This is
expected, as these designs only differ from theMN based designs by the de-
termination of the proportional constant K. The main difference is, however,
that the differences in behavior between the two distributions Weibull and
Uniform can not be explained by the simpler integrator modelMI . Our pro-
posed model structureMN can, through its linearization (17), provide much
clearer insights on where simpler or more complicated control structures are
needed. If a cut-off frequency ωc is desired close to the pole and zero of the
distributions, the differences of the distributions will be highlighted and the
controller designs will have to take that into account. However, using our
linearized model (17), it is also possible to identify frequency ranges where
simpler controllers will work for all distributions. In these ranges, the model
can be safely represented as a simple integrator.

This is demonstrated in Figure 11, where both slow (ωc = 0.05) and
fast (ωc = 10) PI controllers based on our proposed MN model are shown.
Both of these cut-off frequencies are chosen to be far away from the critical
frequency range {wcritical}. The scenarios performed here are identical to
the experiments presented in Figures 9 - 10, except for the load disturbance
sequence d in the slower design that only uses a 10% slowdown due to its
poorer performance. Furthermore, the control designs are identical to the
previous designs with the exception of the determination of K, which is set
to obtain the new desired cut-off frequencies ωc.

The faster control with ωc = 10 is shown in Figure 11(b), and at this

108

7 Conclusion

speed it is clear that the differences between the two distributions is almost
completely gone. The Uniform distribution still has slightly larger oscillations
during the setpoint changes, but other than that the behaviours are very
similar. Figure 11(a) shows the slower design with ωc = 0.05, and here the
behaviours are almost identical during the setpoint changes, but not during
the load changes. However, the Uniform distribution is not particulary more
oscillatory than Weibull, but the control design seems to be less efficient
for the load disturbances as its deviations from the queue length setpoint
are larger. This can be explained by our chosen loop shaping control design,
which focuses on keeping the same cut-off frequency ωc for both distributions.
However, this does not guarantee that all transfer functions become identical.
As the impact of load disturbances is determined in this case by the transfer
function GN (s)

1+GN (s)C(s) , it is natural that the two distributions will behave
differently.

Despite the differences that can be observed in the slow and fast scenarios
in Figure 11, it is clear that both distributions are well controlled by simple
PI controllers as can be anticipated by studying the linearization (17) of our
model structure.

7. Conclusion

In this paper, we have presented an overview of server queue models, focusing
on dynamic models for controlled servers queues subject to actuators. In the
initial simulation study, we have shown that a simple integrator model is not
sufficient for processor sharing queues, where the dynamics depend heavily
on the distribution of service times.

We have proposed a novel model structure designed for processor sharing
queues, that can also be adapted for the more general LPS discipline under
any concurrency value MC , through the structure’s k-value. This allows our
model to be useful for describing the dynamics of real-world servers that
not necessarily fit the basic queuing disciplines FCFS and PS. Additionally,
the model structure is nonlinear, yet simple enough to be useful for control
design and online estimations.

Through an extensive simulation campaign with a randomized scenario
approach, we have shown empirically that our proposed model structure is
useful for a wide range of service time distributions. Furthermore, it outper-
forms both the integrator model and the Paganini model for the LPS cases
where the concurrency value is in between the two extremes FCFS (MC = 1)
and PS (MC =∞).

Finally, using a loop shaping control design example we have shown how
our model structure can, through its linearization, be used to gain insight
into what frequency range the service time distributions impact the behav-

109

Paper II. Improved Dynamic Modeling for Controlled Server Queues

200 400 600 800 1,000 1,200 1,400 1,600
0.4

0.45

0.5

0.55

0.6

Time (s)

Se
rv

er
sp

ee
d
u

50

100

150

200

d = 1.0 d = 0.9 d = 1.0 d = 0.9 d = 1.0
Q

ue
ue

L
en

gt
h
q

Setpoint
Funi

Fwei

(a) PI control with ωc = 0.05. Legend applies to both plots.

40 60 80 100 120 140 160 180 200 220 240
0

0.2

0.4

0.6

0.8

1

Time (s)

Se
rv

er
sp

ee
d
u

50

100

150

d = 1.0 d = 0.7 d = 1.0 d = 0.7 d = 1.0

Q
ue

ue
L
en

gt
h
q

Setpoint
Funi

Fwei

(b) PI control with ωc = 10. Legend applies to both plots.

Figure 11. Slower and faster control designs based on the MN model.
Notice the differences in scale.

110

References

ior considerably. In and close to this critical frequency range {wcritical}, the
controllers need to be designed with respect to the characteristics of the dis-
tribution. However, outside this critical range, our model structure also shows
that simpler models, such as the integrator model, can be used to design well
performing PI controllers with good robustness margins only considering the
mean values of the service time distributions.

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallen-
berg Foundation, by the Nordforsk Nordic Hub on Industrial IoT (HI2OT),
and by the ELLIIT Excellence Center at Lund University.

References

Abdelzaher, T. F. and Chenyang Lu (2000). “Modeling and performance
control of internet servers”. In: Proceedings of the 39th IEEE Conference
on Decision and Control. Vol. 3, pp. 2234–2239. doi: 10.1109/CDC.2000.
914129.

Abdelzaher, T. F., J. A. Stankovic, Chenyang Lu, Ronghua Zhang, and Ying
Lu (2003). “Feedback performance control in software services”. IEEE
Control Systems Magazine 23:3, pp. 74–90. doi: 10.1109/MCS.2003.
1200252.

Arcelli, D., V. Cortellessa, A. Filieri, and A. Leva (2015). “Control theory for
model-based performance-driven software adaptation”. In: Proceedings of
the 11th International ACM SIGSOFT Conference on Quality of Software
Architectures - QoSA ’15. ACM Press.

Barroso, L. A. and U. Hölzle (2009). The Datacenter as a Computer: An In-
troduction to the Design of Warehouse-Scale Machines. Morgan & Clay-
pool.

Dürango, J., M. Dellkrantz, M. Maggio, C. Klein, A. V. Papadopoulos, F.
Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén (2014). “Control-
theoretical load-balancing for cloud applications with Brownout”. In: 53rd
IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA,
USA, December 15-17, 2014. CDC14, pp. 5320–5327.

Jean-Marie, A. and P. Robert (1994). “On the transient behavior of the
processor sharing queue”. Queueing Systems 17:1-2, pp. 129–136.

111

https://doi.org/10.1109/CDC.2000.914129
https://doi.org/10.1109/CDC.2000.914129
https://doi.org/10.1109/MCS.2003.1200252
https://doi.org/10.1109/MCS.2003.1200252

Paper II. Improved Dynamic Modeling for Controlled Server Queues

Keith, A., D. Ahner, and R. Hill (2019). “An order-based method for robust
queue inference with stochastic arrival and departure times”. Computers
& Industrial Engineering 128, pp. 711–726. doi: 10.1016/j.cie.2019.
01.005. url: https://doi.org/10.1016/j.cie.2019.01.005.

Kihl, M., A. Robertsson, and B. Wittenmark (2004). “Control theoretic mod-
elling and design of admission control mechanisms for server systems”. In:
Mitrou, N. et al. (Eds.). Networking 2004.

Kim, D. H., C. Imes, and H. Hoffmann (2015). “Racing and pacing to
idle: theoretical and empirical analysis of energy optimization heuristics”.
In: IEEE 3rd International Conference on Cyber-Physical Systems, Net-
works, and Applications. IEEE. doi: 10.1109/cpsna.2015.23. url:
https://doi.org/10.1109/cpsna.2015.23.

Kitaev, M. Y. and V. V. Rykov (1995). Controlled queueing systems. CRC
Press.

Klein, C., M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez (2014).
“Brownout: Building more robust cloud applications”. In: 36th Interna-
tional Conference on Software Engineering. ICSE14. ACM, Hyderabad,
India, pp. 700–711. isbn: 978-1-4503-2756-5.

Kleinrock, L. (1975). Queueing Systems. Vol. I: Theory. Wiley Interscience.
Kulkarni, V. G. (1997). “Fluid models for single buffer systems”. Frontiers in

queueing: Models and applications in science and engineering 321, p. 338.
Nylander, T., C. Klein, K.-E. Årzén, and M. Maggio (2018). “BrownoutCC:

Cascaded control for bounding the response times of cloud applications”.
In: 2018 American Control Conference. Milwaukee, Wisconsin, USA.

Paganini, F., A. Tang, A. Ferragut, and L. L. H. Andrew (2012). “Network
stability under alpha fair bandwidth allocation with general file size dis-
tribution”. IEEE Transactions on Automatic Control 57:3, pp. 579–591.

Patikirikorala, T., A. Colman, J. Han, and L. Wang (2012). “A systematic
survey on the design of self-adaptive software systems using control en-
gineering approaches”. In: SEAMS ’12. IEEE Press, Zurich, Switzerland,
pp. 33–42. isbn: 9781467317870.

Perez, J. F. and G. Casale (2017). “Line: evaluating software applications in
unreliable environments”. IEEE Transactions on Reliability 66:3, pp. 837–
853. doi: 10.1109/tr.2017.2655505. url: https://doi.org/10.1109/
tr.2017.2655505.

Pothukuchi, R. P., S. Y. Pothukuchi, P. G. Voulgaris, and J. Torrellas (2020).
“Control systems for computing systems: making computers efficient with
modular, coordinated, and robust control”. IEEE Control Systems Mag-
azine 40:2, pp. 30–55. doi: 10.1109/MCS.2019.2961733.

112

https://doi.org/10.1016/j.cie.2019.01.005
https://doi.org/10.1016/j.cie.2019.01.005
https://doi.org/10.1016/j.cie.2019.01.005
https://doi.org/10.1109/cpsna.2015.23
https://doi.org/10.1109/cpsna.2015.23
https://doi.org/10.1109/tr.2017.2655505
https://doi.org/10.1109/tr.2017.2655505
https://doi.org/10.1109/tr.2017.2655505
https://doi.org/10.1109/MCS.2019.2961733

References

Schwarz, J. A., G. Selinka, and R. Stolletz (2016). “Performance analysis
of time-dependent queueing systems: survey and classification”. Omega
63, pp. 170–189. doi: 10.1016/j.omega.2015.10.013. url: https:
//doi.org/10.1016/j.omega.2015.10.013.

Wang, W.-P., D. Tipper, and S. Banerjee (1996). “A simple approximation for
modeling nonstationary queues”. In: Proceedings of IEEE INFOCOM ’96.
Conference on Computer Communications. IEEE Comput. Soc. Press.

Zhang, J., J. Dai, and B. Zwart (2009). “Law of large number limits of limited
processor-sharing queues”. Math. Oper. Res. 34, pp. 937–970.

113

https://doi.org/10.1016/j.omega.2015.10.013
https://doi.org/10.1016/j.omega.2015.10.013
https://doi.org/10.1016/j.omega.2015.10.013

Paper III

Cloud Application Predictability
through Integrated Load-Balancing and

Service Time Control

Tommi Nylander Marcus Thelander Andrén

Karl-Erik Årzén Martina Maggio

Abstract

Cloud computing provides the illusion of infinite capacity to applica-
tion developers. However, data center provisioning is complex and it is
still necessary to handle the risk of capacity shortages. To handle capac-
ity shortages, graceful degradation techniques sacrifice user experience
for predictability. In all these cases, the decision making policy that
determines the degradation interferes with other decisions happening
at the infrastructure level, like load-balancing choices. Here, we recon-
cile the two approaches, developing a load-balancing strategy that also
handles capacity shortages and graceful degradation when necessary.
The proposal is based on a sound control-theoretical approach. The
design of the approach avoids the pitfalls of interfering control deci-
sions. We describe the technique and provide evidence that it allows
us to achieve higher performance in terms of emergency management
and user experience.

© 2018 IEEE. Originally published in IEEE International Conference on
Autonomic Computing (ICAC), Trento, Italy, September 2018. Reprinted
with permission. The article has been reformatted to fit the current layout.

115

Paper III. Cloud Application Predictability through Integrated...

1. Introduction

Capacity provisioning is of crucial importance in modern distributed com-
putation infrastructures. To determine the size of data centers, and properly
dimension the resources to be allocated in each geographic location, most
data center owners use predictions of the computational needs [Lin et al.,
2018; Östberg et al., 2017]. The computational resource within a data center
is then used to serve requests coming from multiple clients, providing the
illusion of infinite capacity and, as a result, the possibility of bounding the
latency [Wang et al., 2016; Björkqvist et al., 2018; Björkqvist et al., 2016;
Javadi and Gandhi, 2017; Ghahremani et al., 2017; Kaler et al., 2017]. To do
so the architecture uses multiple instances of the same application, here called
replicas, and predictions and estimations of traffic and needed computational
capacity.

The predictions of the incoming traffic and the corresponding esti-
mates [Grimes et al., 2016; Grohmann et al., 2017] of the required com-
putational capacity are necessarily subject to errors and uncertainty [Ben-
como and Belaggoun, 2014]. The presence of these errors naturally leads
to two possible management strategies. The first strategy is over provision-
ing [Greenberg et al., 2008; Xue et al., 2016]. Over provisioning increases the
management cost for a cloud application, but guarantees user satisfaction.
The second strategy is provisioning according to expectations and handling
capacity shortages via user experience degradation [Neumann, 2009; Ding et
al., 2011; Tomás and Tordsson, 2014; Breitgand and Epstein, 2012; Klein et
al., 2014a], or via approximate computing [Perez et al., 2017; Sun et al., 2017;
Hoger and Kao, 2016]. Generally speaking, these ways of handling capacity
shortages are typically clustered under the umbrella of graceful degradation.

Graceful degradation techniques involve taking corrective actions (that
typically degrade the user experience) to ensure that the computing plat-
form achieves predictability (for example, that any request receives a response
within a given time). For example, Brownout [Klein et al., 2014a] sacrifices
the quality of the response given to users to ensure that a large fraction of
the requests experience a predictable latency. Brownout is based on a control
approach [Litoiu et al., 2013; Filieri et al., 2017; Maggio et al., 2017], and
a controller selects – at the replica level – requests to be answered with full
quality (both the mandatory and the optional part of the response are com-
puted) and requests to be given an approximate answer (only the mandatory
part is computed). The approach has proven to be successful to bound the
response times of single machines. It was then combined with load-balancing
strategies [Dürango et al., 2014; Klein et al., 2014b], showing that the control
strategy at the replica level and the load balancer could interfere with one an-
other, potentially limiting each others benefits. For example, load-balancing
strategies based on response times are to be avoided when a replica control

116

1 Introduction

strategy that bounds the response times is used [Dürango et al., 2014]. This
is not only true for brownout, but for every technique that enforces bounded
response times [Björkqvist et al., 2018; Björkqvist et al., 2016], like admission
control policies [Kihl et al., 2004; Robertson et al., 2003].

In general, the interference between two control policies is a complex
problem [Heo and Abdelzaher, 2009; Diaconescu et al., 2017]. Two differ-
ent decision making strategies, both working well in isolation, can interfere
in unpredictable ways with one another, especially when there are delays
between the two decisions. For example, the Shortest Queue First (SQF)
load-balancing policy has degraded performance when a queue control strat-
egy (like graceful degradation, or admission control) is active at the replica
level, as can be seen in the example of Section 2.

We propose a load-balancing and graceful degradation policy that takes
into account both the decisions with the advantage of better controlling the
response times and the resource utilization of the data center. This paper
makes the following contributions:

• It identifies problems with the currently used load-balancing policies,
due to the interplay between graceful degradation techniques at the
replica level and load balancers that should distribute the load to mul-
tiple replicas.

• It proposes a new architecture, with a higher degree of controllability,
that includes both load balancing and graceful degradation, solving the
mentioned problems.

• It presents the control design for each of the elements in this architec-
ture.

• It validates the proposal with an experimental campaign, comparing it
to existing techniques. The proposed architecture outperforms existing
ones in terms of predictability and resource usage. It is in fact able to
achieve lower variance for the response times, utilizing the data center
resources more efficiently.

The paper is organized as follows. Section 2 provides a more precise state-
ment of the problem our solution solves, and details why this is necessary
for modern data centers. Section 3 describes our control solution, and shows
block diagrams for all the elements involved. It also offers an analysis from the
control perspective of the behavior of the cloud platform. Section 4 provides
experimental evidence for our claims and shows that the proposed approach
is easy to implement and offers competitive advantages in terms of response
time management. Section 5 casts the proposed solution in the state of the
art, and Section 6 concludes the paper.

117

Paper III. Cloud Application Predictability through Integrated...

LB

R1

R2

...

Rn

r

1○

2○

3○

4○

Figure 1. Architecture (one load balancer and multiple replicas) and
path of one single request ρ from the user request (step 1○) to the response
forwarding (step 4○).

2. Problem Statement

This paper deals with the problem of designing a load-balancing architecture
with graceful degradation. We assume that the architecture is composed of
one single load balancer (denoted with LB) and a set of n replicas (denoted
with R = {R1, R2, . . . , Rn}. The goal of the architecture is to achieve high
service predictability. We translate predictability into two related objectives,
and measure it in terms of the response times for incoming requests. We
want a statistic on the response times (e.g., average, 95th percentile, 99th

percentile) to follow a setpoint (a predetermined value, specified for the given
cloud application). Also, we want to minimize the variance in response time.
A low variance of the worst-case response times, in fact, corresponds to a
high degree of predictability. In the remainder of this paper, we assume a
setpoint on the 95th percentile of the response times, and use the integrated
absolute error (IAE) with respect to this setpoint as our predictability metric.
However, similar considerations can be drawn using other statistics.

The path of one single request is shown in Figure 1. We assume that all
requests enter the system through one central load balancer (step 1○), which
in turn routes each request to one of the n replicas (R2 in the Figure, as
shown by step 2○). Finally, the replicas serve the requests. Each replica is
capable of performing graceful degradation, and thus can choose to serve dif-
ferent amount of content, which requires more or less service time. Here we
use brownout [Klein et al., 2014a] for graceful degradation, but other tech-
niques can be applied. Using brownout implies that a request can be served
either with or without optional content. The service time used to compute
the optional content can be spared, in case the replica detects some capacity
shortage. The replica determines the response to the request and communi-
cates it to the load balancer (step 3○), which finally replies to the user (step
4○). Notice that this is the standard path of a request in a multi-replica archi-

118

2 Problem Statement

LB

R1

R2

...

Rn

λ

control

control

control

λ1

λ2

λn

Figure 2. The standard load-balancing architecture. The load balancer
routs incoming requests directly to a replica, where the request might spend
some time queuing before service. Replicas include graceful degradation
controllers.

tecture, used in practical applications and also in earlier research [Dürango
et al., 2014; Klein et al., 2014b]. In fact, the replica cannot directly respond
to the user, that has queried the server using the IP address of the load bal-
ancer. The user would not identify the replica as the server that was queried
and would then terminate the connection.

In this architecture, the response produced in step 3○ can be used to
“piggy-back” information from the replica to the load balancer, without in-
curring an additional overhead in response time. The load balancer then tears
the envelope of the response received by the replica, and only answers to the
user with the actual message, in step 4○.

The mentioned architecture is commonly implemented as shown in Fig-
ure 2. Each replica has an individual queue for requests, and the load bal-
ancer routes requests to the queues based on some policy e.g. Round-Robin,
SQF, or a weighted probability. In turn, each individual replica has a local
graceful degradation strategy — in the brownout case, a response time con-
troller which decides if to serve optional content or not based on the last
measured response time from that replica. While this architecture is concep-
tually simple, the predictability of the response times is highly dependent on
the co-design of the load-balancing policy and the controllers in the replicas.
The design will also depend on the service discipline used in the replicas (e.g.
”First-In First-Out” (FIFO) or Processor Sharing (PS)). In this paper, we will
assume a generalized concept of PS being used in the replicas. Specifically,
the replicas will serve at a maximum MC number of requests concurrently
from the queue. FIFO and standard PS are then simply the special cases
MC = 1 and MC =∞ respectively. For further details, see [Nylander et al.,
2018].

After being routed by the load balancer, requests will spend some non-
zero time queuing before service by the replica is started. The average time
spent queuing will vary with e.g. workload λ, number of concurrently served

119

Paper III. Cloud Application Predictability through Integrated...

50 100

1

2
λ = 400 λ = 1500 λ = 400

Time (s)

R
es

po
ns

e
T

im
es

(s
) SQF random

0 0.5 1 1.5 2
0.0

0.2

0.4

0.6

0.8

1.0

Response Times (s)

C
D

F

random
SQF

Figure 3. Comparison between random and SQF load-balancing. The
left plot shows setpoint and 95% confidence intervals for the 95th percentile
of the response times of the optional-content requests served by a replica.
The right plot shows the Cumulative Distribution Function (CDF) of all
response times.

requests MC , etc., and will introduce a delay between the decisions made
by the load balancer and the local replica controllers respectively. This is a
problem, since delays in between the decisions introduce the risk of routing
and graceful degradation counter-acting each other.

Load-balancing policies which have been shown to perform well in case of
static service rates can actually counter-act the work of the local controllers
in the replicas, leading to poor predictability of response times. This can for
example be the case with SQF, despite it being regarded as one of the best
load-balancing alternatives [Dürango et al., 2014; Klein et al., 2014b]. An ex-
ample of this phenomenon is shown in Figure 3. The plots depict the results
of an experiment conducted with a simulator1 that emulates an architecture
composed of a load balancer and 5 equal replicas with local graceful degrada-
tion controllers, i.e. as in Figure 2, with n = 5. The local controllers are using
the feedback control strategy from [Nylander et al., 2018], that determines
the optional content computation. Each replica in the simulation takes on
average 0.014 s to compute the optional content part of the response (with
a variance of 0.01s2), and 0.0002s on average for the mandatory part (with
a variance of 0.001s2). A maximum of MC = 15 requests can be served con-
currently in each replica. The run was repeated 20 times, in order to be able
to show statistically significant behaviors (using 95% confidence intervals).
The simulator uses the open-loop client model and the request arrivals are
modeled using the Poisson distribution with arrival rate λ. The simulation

1For a description of the simulator used, see Section 4.1.

120

3 Proposed Solution

is split into three different time intervals, in each of them the arrival rate λ
is varied. In the time intervals [0, 50) and [100, 150], λ = 400 and in the time
interval [50, 100) λ = 1500.

The figure compares the SQF load-balancing strategy with a random load
balancer. The leftmost plot shows confidence intervals for the 95th percentile
of the response times of the requests served with optional content (the critical
ones) and their setpoint of 1 s. The rightmost plot shows the Cumulative Dis-
tribution Function (CDF) for the two strategies. The use of SQF generates
a higher variance in the response times, most notably during the period of
heavy workload with λ = 1500 when requests will spend more time queuing
at the replicas. Notably, SQF is performing worse than the simpler random
choice policy. Even using specifically “brownout-aware” load-balancing poli-
cies [Klein et al., 2014b; Gupta et al., 2007], maintaining predictable response
times using the architecture of Figure 2 (the de facto standard architecture)
remains a challenging task due to the interplay between the different control
loops.

To avoid this problem, we instead opt for designing a new architecture
where the design of the load-balancing policy and of the local controllers can
be done separately, with the aim for them to integrate well from the start.
The total response time of a request is divided into two distinct parts: (i)
waiting time, and (ii) service time. The load balancer controls the waiting
time, and the local controller keeps the service time at a setpoint. In the
following section, we describe our proposal, and detail the policies used for
both load-balancing and graceful degradation, based on a control-theoretic
approach.

3. Proposed Solution

Based on the idea of separating the control of the response times into two
distinct parts (one for queueing time and one for pure service time), we
propose the load-balancing architecture shown in Figure 4. Contrary to the
architecture shown in Figure 2, our proposal contains only one central queue
for incoming requests, situated at the load balancer.

The load balancer routes requests from the central queue in a “first come
first served” manner. When the load balancer routes a request, a controller
decides if the request should be served with optional content (normally) or
not (i.e., applying graceful degradation). Based on this decision, the load
balancer then attaches a flag to the request and forwards it to the replica
with the highest demand for a new request.

In each replica, all the forwarded requests are assumed to be served con-
currently. From the implementation perspective, each request is served in a
separate thread, and all the threads are run concurrently, sharing the com-

121

Paper III. Cloud Application Predictability through Integrated...

top-level controller

LB

R1

R2

...

Rn

λ

control

control

control

control

λ1

λ2

λn

Figure 4. The proposed load-balancing architecture.

putational capacity. At most MC requests may be served concurrently at
each replica. Intuitively, an increase in the number of concurrent requests
should result in a longer service time for each of them, and we will use this
assumption here.

When a response is produced, a local controller in the replica decides how
many more requests it desires to handle, and attaches this integer value to
the response. The response is sent back to the load balancer, triggering an
event where the attached integer value is used to update a list which keeps
track of the current demand of requests from each replica. The load balancer
then uses this list to decide where to route the next requests, distributing
the requests from to replicas according to their desires.

In summary, a request entering the proposed architecture in Figure 4 goes
through the following steps — 〈LB〉 indicates that the step is performed by
the Load Balancer, 〈R〉 that it is performed by the Replica:

1. 〈LB〉 The request is put in the queue.

2. 〈LB〉 The request waits until it reaches head of the queue.

3. 〈LB〉 Routing is triggered with replica demands.

4. 〈LB〉 An “optional content” flag is attached to the request.

5. 〈LB〉 The request is forwarded to the replica.

6. 〈R〉 The request is served by the replica.

7. 〈R〉 A response is produced.

8. 〈R〉 A new demand value is attached to the response.

9. 〈LB〉 The response triggers routing modifications.

122

3 Proposed Solution

10. 〈LB〉 The response is sent to the user.

Assuming the time overhead due to routing is negligible, the delay be-
tween routing and graceful degradation decisions is now removed. The total
response time for a request is separated into: (i) the waiting time in the cen-
tral queue at the load balancer (step 2), and (ii) the service time in one of
the replicas (step 7). The controller in the load balancer decides if optional
content should be served or not (step 4), based on a setpoint on the waiting
time in the queue (on the time needed to complete step 2). We will refer
to this controller as the waiting time controller. By flagging a request to be
served with optional content or not, the waiting time controller increases or
decreases the throughput of the queue, thus affecting the waiting time of
future requests.

The local controller in each replica decides how many more requests the
replica should demand (step 8). This is based on a setpoint for the service
time of requests (for the time needed to complete step 7). We will refer to this
controller as the service time controller. Each service time controller affects
the requests’ service time by deciding the number of concurrently served
requests and informing the load balancer. The service time setpoint is the
same for all replicas, which ensures fairness among the requests.

Finally, we desire the overall infrastructure to follow a global setpoint
that prescribes statistics on the response times (e.g., the 95th percentile of
the response times of all the replicas should follow a given setpoint). A third
controller is then responsible for determining the two setpoints of the other
controllers – the setpoint on waiting and service time – dynamically. We refer
to the third controller as the top-level controller.

In the following, we discuss the design of each of these three controllers
in a separate section. Section 3.1 describes the waiting time controller, Sec-
tion 3.2 details the service time controller, Section 3.3 discusses the top-level
controller, and, finally, Section 3.4 describes additional implementational as-
pects, including our anti-windup strategy.

3.1 Waiting Time Control Design
The waiting time controller is located in the load balancer, and uses the
decision of serving optional content or not as an actuator to steer the average
waiting time t̄w to its setpoint rt̄w . Feedback is achieved by directly measuring
the waiting time tw(ρ) of each request ρ right before it is being routed.
The controller then attaches a flag, o(ρ) ∈ {0, 1}, to the request based on
this measurement, where o(ρ) = 1 indicates that optional content should be
computed and served. For each request ρ, the decision on the value of o(ρ)
is based on a threshold ψt on the waiting time. The threshold ψt is updated
periodically, and denoting with k the time interval [k · t, (k + 1) · t), and with
ψt(k) the value of the threshold in said time interval, the controller behaves

123

Paper III. Cloud Application Predictability through Integrated...

Kw

z

kwi
z − 1

+ +

nw
rt̄w et̄w ψt t̄w

−1

Figure 5. The waiting time control loop design in discrete time.

according to Equation (1). If the measured waiting time is higher than the
threshold, then no optional content is served. Otherwise, the request is served
with optional content.

tw(ρ) > ψt(k) =⇒ o(ρ) = 0
tw(ρ) ≤ ψt(k) =⇒ o(ρ) = 1

(1)

In stationarity, the average waiting time t̄w will stay in the vicinity of
the threshold ψt. However, the exact relation will depend on the current
state of the system. This motivates the need for a feedback controller, which
dynamically changes the threshold ψt such that t̄w always follows the setpoint
rt̄w . In order to design this controller, a model describing the dynamics from
ψt to t̄w is required. As a simplification, if the controller that determines the
value of ψt is designed to be slow in comparison with the threshold algorithm
specified in Equation (1), then t̄w can be approximated as always staying close
to the threshold ψt. This is a reasonable approximation, since Equation (1)
is very effective at keeping the request waiting times close to the threshold
ψt, thanks to its event-driven execution. Using this reasoning, the dynamics
from ψt to t̄w can be modeled in discrete time as:

t̄w(k + 1) = Kwψt(k) + nw, (2)

whereKw is a gain close to 1 and nw is a stochastic disturbance related to the
non-deterministic nature of the arrivals to the load balancer and service times
in the replicas. We here use control-theoretical design principles [Åström and
Wittenmark, 2011] and compute the Z-transform of Equation (2). The pulse
transfer function Hw(z) from ψt to t̄w then becomes

Hw(z) =
Kw

z
. (3)

In order to achieve zero stationary error with respect to the setpoint rt̄w ,
integral action is required in the controller. A pure integral controller is here
used,

Cw(z) =
kwi
z − 1

, (4)

124

3 Proposed Solution

where kwi is the integral gain to be determined. The proposed design for the
waiting time control loop is shown in the block diagram in Figure 5.

Closing the loop with the proposed controller leads to the following char-
acteristic equation for the closed loop system:

z2 − z +Kwk
w
i = 0. (5)

We desire to place the poles of the closed-loop system system within the
unit circle for stability, and on the positive real axis for a desirable transient
behavior. This corresponds to the following desired characteristic equation

z2 − (a+ b)z + ab = 0, (6)

where 0 ≤ a, b ≤ 1, for the desired locations of the poles. Comparing coeffi-
cients in Equations (5) and (6) results in the following system of equations:

a+ b = 1,
Kwk

w
i = ab.

(7)

Simulations suggest that the pole placement b = 0.92, a = 1− b = 0.08 gives
a good transient behaviour of the closed-loop system, in terms of disturbance
rejection and response speed of the controller. Using (7), this implies that
we should choose kwi = 0.07/Kw. Since we expect that Kw ≈ 1, a reasonable
choice for the integrator gain is kwi = 0.07.

The robustness of this design choice can be tested by using Equation (5)
to examine for what values of the process gain Kw the closed-loop system
remains asymptotically stable (i.e. when the poles are within the unit circle).
Inserting kwi = 0.07 in (5), the closed loop system remains stable for Kw ≤
14.3. Since Kw is expected to have a value close to one, this implies a very
robust control design.

An example showing the control action of the waiting time controller
when using the proposed architecture during different workloads is presented
in Figure 6. The setup is the same as for the comparison made in Figure 3,
and the 95% confidence intervals are based on 20 runs. Here we see how
the waiting time controller dynamically adjusts the threshold ψt with the
changing workload such that the mean waiting time t̄w follows the setpoint
rtw , which has a static value of 0.5 in this example.

3.2 Service Time Control Design
Each replica has a service time controller, responsible for keeping the average
service times (for requests serving optional content) t̄s at the setpoint rt̄s .
The value used for feedback is thus the average value of the service times of all
completed requests during each time interval k. The service time controller
can affect the service times by changing the integer number of simultaneous

125

Paper III. Cloud Application Predictability through Integrated...

0.4

0.5

0.6
λ = 100 λ = 500 λ = 150 λ = 350 λ = 100

ψ
t

(s
) ψt

50 100 150 200
0.4

0.5

0.6

Time (s)

t̄ w
(s

)

rt̄w t̄w

Figure 6. 95% confidence intervals from 20 runs on thresholds ψt (up-
per) and average waiting times t̄w (lower) using the proposed waiting time
controller in the load balancer. The setpoint on the mean waiting time rt̄w
is 0.5.

requests ua ∈ Z+ to run. However, the control signal u ∈ R+ computed by
the controller is a non-negative real-valued number, which thus has to be
quantized as ua = due before it can be actuated (the ceiling function is used
here for the quantization).

To be able to assess the behaviour of the control strategy and theoretically
analyze the system, we need a model relating u to t̄s. In the modeling process,
the quantization effects are neglected, i.e. we assume ua = u. Assuming that
all forwarded requests to the replica will be served concurrently, and assuming
that a change in u is reflected very fast in t̄s, we can use the following simple
discrete-time model:

t̄s(k + 1) = Ksu(k) + ns, (8)

where Ks is a gain relating the number of simultaneous requests to the aver-
age service times and ns is a stochastic disturbance describing the variance
in the service times. Note that this model (8) has the same structure as the
waiting time model (2). As a result, a majority of the analysis in Section 3.1
can be re-used. However, in this case, the gain Ks can not be assumed to al-
ways stay close to 1. In fact, Ks is directly related to the speed of the replica,
which can vary greatly with time and also be different among the different
replicas. This gain thus has to be estimated by the replica controller. The
estimation K̂s is performed, in each replica, using an exponentially weighted
moving average filter:

K̂s(k + 1) = (1− α)K̂s(k) + α
t̄s(k)

ua(k)
, (9)

126

3 Proposed Solution

Ks

z

ksi
z − 1

+ +
nsrt̄s et̄s u ua t̄s

−1

Figure 7. The service time control loop design in discrete time.

where α is a design parameter, here set to α = 0.5 (based on preliminary ex-
periments). Using this estimated gain and the controller design in Section 3.1,
and in particular the results from Equation (7), the following adaptive inte-
gral controller is proposed for the service time:

ksi =
c(1− c)
K̂s

. (10)

The location of the slowest closed-loop pole 0 ≤ c ≤ 1 is a trade-off between
rejection of control errors caused by changes in server speed, robustness to
estimation errors in K̂s, quantization errors, and rejection of the stochastic
noise ns. Taking these elements into consideration, we place the pole in c =
0.8, which results in a stable closed-loop system as long as K̂s ≥ Ks/6.25. We
consider this a robust enough design. The adaptive integral control design is
thus:

ksi =
0.16

K̂s

. (11)

The block diagram of the complete service time model and control design
is shown in Figure 7.

The actuation of the quantized control signal ua, representing the number
of simultaneous requests to run in a replica, is as previously mentioned per-
formed using piggy-backing. In more detail, the following steps are involved:

1. At startup, both u and ua are initialized to zero.

2. The control signal u is updated every time interval k according to the
scheme in Figure 7.

3. At every request completion, a new value of ua is computed: unewa =
due. The difference u

′
a = unewa − ua is determined and the old value of

ua is updated to unewa .

4. The response of the completed request is sent back to the load balancer,
using piggy-back to send also 1 + u

′
a, the number of new requests that

the replica wants to serve.

127

Paper III. Cloud Application Predictability through Integrated...

The steps above constitute the actuation of ua, completing the control design.
The mentioned design ensures stability, tackles robustness issues, and guar-
antees a fast convergence, as shown in the experimental validation presented
in Section 4.

An example showing the control action and gain estimation of the service
time controller when using the proposed architecture is presented in Figure 8.
The setup is the same as for the comparison made in Figure 3, but here we
instead vary the service times for both optional and mandatory content by
scaling them by a factor 1/µ during different time intervals of 50 s. The service
time controller is able to efficiently estimate the gain Ks and dynamically
adjust the number of concurrently served requests ua such that the mean
service time t̄s follows the setpoint rts , which has a constant value of 0.5 in
this example.

3.3 Top-Level Control Design
To ensure that the global setpoint on respose times is followed, we employ
a top-level controller. This controller decides the setpoints of the other two
controllers, i.e., the setpoint on the waiting and on the service time, respec-
tively rt̄w and rt̄s . The setpoint rtc prescribes a statistical measure obtained
from the vector of response times, e.g. the 95th percentile. The top-level con-
troller receives the measured value of the same statistic of the response times
tc as a feedback signal. The controller then dynamically adjusts the setpoints
rt̄w and rt̄s .

While the top-level controller should react to persistent errors in the
response times, we also wish to avoid being too sensitive to outliers and
transient errors in the inner control loops. This motivates the choice of a
top-level controller which is slow with respect to the dynamics of the waiting-
and service-time control loops. We can then re-use again the analysis from
Section 3.1, and propose the following simple integral controller:

Cc(z) =
kci
z − 1

. (12)

The integral gain kci is chosen as a sufficiently small value. Studying the
behavior of the system, we selected kci = 0.01.

Using this controller’s output signal, we change both the other setpoints
simultaneously. We specify a fixed ratio γ ∈ [0, 1], which divides the total
response time into a fraction γ (due to the waiting time) and 1 − γ (due to
service time).

A block diagram of our proposed design for the top-level controller is
shown in Figure 9. The dashed area in the figure represents the plant to
control, while the rest is the top-level controller. In the plant, the inner
control loops (Sections 3.1 and 3.2) are represented by the blocks Gwcl and

128

3 Proposed Solution

5

10

u

u ua

0.05

0.1

µ = 1 µ = 1.5 µ = 0.67 µ = 1.5 µ = 1

K
s

Ks K̂s

50 100 150 200

0.5

1

Time (s)

t̄ s
(s

)

rt̄s t̄s

Figure 8. 95% confidence intervals from 20 runs on estimated gain K̂s

(upper), service time control signals u and ua (middle) and average service
times t̄s (lower) using the proposed service time controller in one replica.
The true gain values Ks (upper) and the setpoint on average service time
rt̄s = 0.5 (lower) are plotted for reference.

Gc

Gw
cl

Gs
cl

+kci
z − 1

+ +

×

×

1-γ

r
′
tc

rt̄s

rtc

t̄w

t̄s

γ

etc

rt̄w

t̄c tc

−1

Figure 9. The complete control loop design in discrete time. GC repre-
sents the relation between average response times t̄c and chosen statistical
measure for feedback tc.

129

Paper III. Cloud Application Predictability through Integrated...

Gscl for the waiting time- and service time control loop respectively. These
control loops are given in detail in Figures 5 and 7. The block Gc represents
the conversion block that translates average response times into the statistic
that is used as a feedback signal.

In the real system, the top-level controller will be located in the load
balancer. From there, updated setpoints on service time can be propagated
to the replicas using the requests.

The design parameter γ decides which part of the system the requests
will spend most time in, and can be tuned to handle uncertainties in the
system. With γ close to one the requests will spend most time waiting in
the queue, while the replicas will serve fewer requests concurrently. This is
beneficial for the overall predictability of the response times in the case when
most uncertainty lies in the service times. The opposite case with γ close to
zero is beneficial when most uncertainty lies in the arrival rate of incoming
requests.

3.4 Implementation Aspects
The solution proposed in this paper is capable of handling graceful degrada-
tion for a wide range of arrival rates. However, it clearly cannot cover all the
possible arrival rates, as there are limitations (on the amount of simultaneous
requests that can be served in general terms), imposed by the capacity of the
replicas. Computing these limitations is fairly straightforward.

If n replicas serve only mandatory content, with a service time of tm per
request, we can compute the upper bound on the overall rate of requests
that can be served by the system (with full degradation) as µmax = n/tm. In
turn, this means that arrival rates λ > µmax will lead to over-utilization and
instability. In this case, it is possible to detect that additional replicas should
be started and an auto-scaler can efficiently take care of ensuring a viable
operation region. The design of such auto-scaling policy is beyond the scope
of this paper. Alternatively, over-utilization can be handled using admission
control in the central queue.

During periods of abnormally small workloads, the response times will
stay below the setpoint, even though optional content is served to all re-
quests. This poses no issue to the user, but the controllers in the system
will see a persistent error in response time, and would ideally like to throttle
the throughput further by serving more optional content and more requests
concurrently in the replicas. However, since it is not possible to serve more
than 100% optional content and route more requests if the central queue is
empty, the control signals will be saturated and unable to eliminate the error
in response time. Controllers with integral action which experience persis-
tent control errors under saturation are prone to integrator wind-up, a well
known phenomenon in control theory [Åström and Wittenmark, 2011]. The

130

4 Experimental Validation

effect of integrator wind-up is that the controller will be unresponsive for a
period of time when returning to normal workloads, which of course is unac-
ceptable. Being a well-studied problem however, there exists several efficient
algorithms in the control literature for removing wind-up from controllers,
and the implementation done in our simulator features anti-windup.

Another aspect to consider when implementing strategies for load-
balancing and graceful degradation is how the computational time needed
to compute the control decisions scale with growing arrival rates and num-
ber of replicas. The controllers presented in Section 3 update their decisions
based on a fixed sampling period. This means that their computational time
is unchanged with respect to the arrival rate. Despite this, some logic has to
be executed on a per-request basis (e.g. the decision on optional content, a
single comparison of two floating point numbers). The computation that is
done per request is in all cases simple, and has negligible execution times.
The most expensive computation done on a per-request basis is sorting of
the list with number of desired requests for each replica. The time it takes
from when a request sends its desired new incoming request value to the time
it actually gets forwarded new requests is negligible, and when request are
routed to the replica, the corresponding element is removed from the vector
that should be sorted. Given the speed of other components in the system,
it is unlikely that the list contains demands from more than one replica at
any given time, which makes the sorting operation negligible in terms of time
complexity.

4. Experimental Validation

This section presents our results. We validate our control strategy using the
open source Python-based brownout simulator2, built to mimic the behavior
of cloud applications [Klein et al., 2014a] and described in Section 4.1. We
present the results obtained with the new architecture proposal in Section 4.2.

4.1 The simulator
The simulator defines the concepts of Client, Request, Replica, Replica Con-
troller, and Load Balancer. Clients issue requests to be served by a replica.
Clients can behave according to any inter-arrival time distributions and both
according to the open-loop or to the closed-loop client model [Schroeder et
al., 2006; Alomari and Menasce, 2014]. In the closed-loop model, clients wait
for a response and issue a new request only after some think time. In the open
loop model, clients do not wait and instead issue new requests with a specific
request rate. Being better at modelling a large number of independent users,
we performed the evaluation with open-loop clients.

2 https://github.com/cloud-control/brownout-lb-simulator

131

Paper III. Cloud Application Predictability through Integrated...

Table 1. Bounds on randomized scenario parameters.

Parameter Min Max
n 3 10
to [10−2s] 1 4
tm [10−4s] 2 8
θ 0.1 0.9
MC 5 30

For each request, the simulator computes the service time. The time it
takes to serve requests with only the mandatory or with the optional content
in addition to the mandatory one are computed as random variables, with
normal distributions, whose mean and variance are based on profiling data
from the execution of experiments on a real machine [Klein et al., 2014a].

Replicas implement a replica controller, that takes care of selecting – for
each request – when to serve optional content. In the simulator, we used the
replica controller described in [Nylander et al., 2018] and used the suggested
tuning parameters. For the control strategy presented in Section 3.2, we use
a sampling period of 0.25 s. The controller code developed in the simulator
can be directly plugged into brownout-aware applications like RUBiS3 and
RUBBoS4.

4.2 Experimental Results
To evaluate the predictability of our solution and compare it to the state of
the art, we run simulations of 100 randomized scenarios in sequence, each
lasting 50s. We then aggregate the results on response times for all the re-
quests in all the scenarios. For the request generation, we use the open-loop
client model and the same random seed generator, ensuring that the same
number of requests are generated in all the scenarios and that the throughput
of the cloud application is the same across the experiments, irrespective of
the strategy used.

We use a fixed setpoint rtc = 1s on the 95th percentile of the response
times throughout all scenarios. For each scenario, we randomize the number
of replicas n, the average service times to (optional content) and tm (manda-
tory content) for each individual replica (with the variance fixed to 0.01 s2
and 0.001s2 respectively), the number of concurrently running requests MC

(i.e., roughly the number of threads that replicas use to serve requests) and
the expected optional content ratio θ.
The values are sampled from uniform probability distributions, with bounds
in Table 1.

3 https://github.com/cloud-control/brownout-rubis
4 https://github.com/cloud-control/brownout-rubbos

132

4 Experimental Validation

The arrival rate for each scenario is set to

λ = n

(
θ · 1

t̄o
+ (1− θ) · 1

t̄m

)
, (13)

where t̄o and t̄m are the average service times for optional and mandatory
content respectively over the replicas (replicas can be different in their speed).
We specify the arrival rate to avoid degenerate scenarios where the system
either becomes unstable or where the workload becomes too low – assuming
that an auto-scaler is in charge of selecting a correct number of replicas to
run in the system.

We compare our proposed solution to three alternative strategies for the
same 100 scenarios. For our solution, we use the ratio parameter γ = 0.9
(i.e. that each request is supposed to spend 90% of its time in the waiting
process and 10% of its time being served) as well as γ = 0.7, as we expect
great variations in service times between each scenario. The other evaluated
strategies are state of the art solutions from the literature [Nylander et al.,
2018; Klein et al., 2014b; Dürango et al., 2014], using the architecture in
Figure 2. The evaluated strategies are:

ILAC-γ: The integrated load-balancing and service time control (ILAC)
architecture of this paper, with the marked γ parameter. We use both
γ = 0.9 and γ = 0.7.

BrownoutCC + EPBH: A solution that employs cascaded control,
BrownoutCC [Nylander et al., 2018], paired with a brownout-aware
weighted probability algorithm for load balancing (EPBH) [Dürango
et al., 2014].

BrownoutCC + SQF: The BrownoutCC controller, with the SQF algo-
rithm for load balancing.

Brownout + EPBH: The original brownout controller [Klein et al.,
2014a], using the EPBH weighted probability algorithm for load bal-
ancing.

To evaluate the predictability of each strategy, we measure the Integrated
Absolute Error (IAE) of deviations from the setpoint on the 95th percentile
of response times. Given a sampling interval of length h, we compute the
IAE as:

IAE := h
∑
k

|rtc(k)− tc(k)|, (14)

where the summation is done over all sampling intervals k of the experiment.
To complement this metric, we also record the standard deviation of the
overall response times and the maximum recorded response time.

133

Paper III. Cloud Application Predictability through Integrated...

Table 2. Results from the experiment.

Strategy IAE
[s]

Standard
Deviation

[s]

Max
Response
Time [s]

ILAC-0.9 134.4 0.0953 1.41
ILAC-0.7 254.9 0.1412 2.36
BrownoutCC + EPBH 423.3 0.2640 2.58
BrownoutCC + SQF 823.1 0.2961 3.25
Brownout + EPBH 10980 1.3577 7.27

0 0.5 1 1.5 2 2.5 3 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Optional Content Response Times (s)

C
D

F

ILAC-0.9
ILAC-0.7
BrownoutCC+EPBH
BrownoutCC+SQF
Brownout+EPBH

Figure 10. Cumulative Distribution Function (CDF) of response times
for all requests with optional content.

The results of the experiment for each strategy are summarized in Ta-
ble 2, along with Cumulative Distribution Functions of the optional content
response times in Figure 10. Comparing the results of ILAC-γ for γ = 0.9
with γ = 0.7 indicates that a large value of γ indeed was favourable in the
experiment. Still, the ILAC-γ significantly outperforms the other considered
strategies in both cases. The closest competitor, BrownoutCC combined with
EPBH, has a roughly 3 times larger IAE value that ILAC-0.9. The corre-
sponding factor to the BrownoutCC + SQF strategy is roughly 6, and over
80 for the Brownout + EPBH strategy. The superior predictability of the
proposed ILAC-γ strategy is also reflected in the overall standard deviations
and maximum recorded response times, with the maximum response time
for ILAC-0.9 being 1.41 seconds. The results show the effectiveness of our
proposal and highlight the problem of co-design with the standard architec-
ture in Figure 2, where the efficiency of the EPBH load-balancing alternative
varies greatly with the choice of the controller used for graceful degradation.

134

4 Experimental Validation

Table 3. Parameters of 5 selected scenarios (out of the 100 tested).

Scenario #1 #2 #3 #4 #5
n 9 6 4 6 9
λ [s-1] 570 890 330 310 570
t̄o [10−2s] 2.5 2.2 2.7 2.3 2.5
t̄m [10−4s] 5.4 4.3 6.3 4.6 5.4
θ 0.62 0.29 0.43 0.84 0.62
MC 11 13 15 29 11

0 50 100 150 200 250
0

1

2

3
Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Time (s)

95
th

P
er

ce
nt

ile
of

R
es

po
ns

e
T

im
es

(s
)

ILAC-0.9 ILAC-0.7
BrownoutCC + EPBH BrownoutCC + SQF
Brownout + EPBH Setpoint (1s)

Figure 11. Averaged values of the 95th percentile of response times from
20 runs of 5 selected scenarios. The parameter sets of each scenario is given
in Table 3.

The performance of the evaluated strategies are also exemplified in Fig-
ure 11, which shows averaged values of the 95th percentile of response times
from 20 runs of 5 of the 100 scenarios. The parameter set for each scenario
is given in Table 3. We see in in the figure that the performance of the
BrownoutCC + SQF and BrownoutCC + EPBH strategies are heavily de-
pendent on the given scenario, whereas the proposed strategy keeps a high
predictability regardless of the parameters used for the simulations. This
robustness clearly highlights the benefits of the architecture proposed in Fig-
ure 4 combined with a control-theoretical design approach for the decision-
making.

135

Paper III. Cloud Application Predictability through Integrated...

5. Related work

Building distributed systems that offer guarantees on their timely execution
while the system is subject to uncertainty and changes is a challenging task.
Bounding latencies is of utmost importance, but this is quite difficult in the
presence of changes [Wang et al., 2016; Björkqvist et al., 2018; Björkqvist
et al., 2016; Javadi and Gandhi, 2017; Ghahremani et al., 2017; Kaler et
al., 2017]. Changes are unpredictable, they can be dramatic, and they can
include malfunctioning [Iosup et al., 2011], slow down [Fallahi et al., 2013],
failures [Guo et al., 2013], and much more. Graceful degradation [Lin and
Kulkarni, 2013] is then introduced into the runtime system, to handle these
changes and guarantee performance in the presence of uncertainty. This paper
shows that graceful degradation and load-balancing can interfere with one
another. We focus on a unified solution, to avoid this interference.

In replicated cloud services, load balancers have a crucial role for ensuring
resilience and performance [Barroso and Hölzle, 2009; Hamilton, 2007]. Load-
balancing algorithms can either be global (inter-data center) or local (intra-
data center or cluster-level). Global load-balancing decides what data center
to direct a user to, depending on geographic proximity [Lin et al., 2012]
or price of energy [Doyle et al., 2013]. Once a data center is selected, a
local algorithm directs the request to a machine in the data center. Our
contribution is of the local type.

Various local load-balancing algorithms have been proposed. For non-
adapting replicas, SQF has been considered very close to optimal, despite it
using little information about the state of the replicas [Gupta et al., 2007].
Previous results show that for self-adaptive, brownout replicas, SQF performs
quite well [Klein et al., 2014b], but can be outperformed by weight-based,
brownout-aware solutions [Dürango et al., 2014]. In this article, we improve
on brownout-aware load balancing, by combining the load-balancing strategy
with the graceful degradation decision, obtaining better performance in terms
of variance of response times, and show improved performance, compared to
previously developed algorithms.

6. Conclusion

This paper proposes a new load-balancing architecture that combines the ac-
tion of the load balancer with graceful degradation techniques like brownout
or admission control. We have designed the system and synthesized the load
balancing strategies. The advantage of the proposed solution lies in the inter-
play between the two control solutions. While in previous solutions the two
different components – load-balancer and graceful degradation controller –
could compete and generate oscillations in response times, our proposal does

136

References

not suffer from this issue.
Our proposed architecture has an important tuning parameter: the per-

centage of time that should be spent waiting and in service for each request.
Our experimental campaign showed that – irregardless of the selected per-
centage time – the response times using the proposed load-balancing strategy
are much more predictable than with any other previously explored strategy.
Their variance is in fact much smaller than with other strategies, and their
maximum is much closer to the desired setpoint than if other strategies are
used.

In the future, we plan to combine the proposed architecture with auto-
scaling features, that trigger new replicas to be started or old replicas to
be removed. We also envision using the architecture for fault detection and
countermeasures.

Acknowledgments

This work was partially supported by the Wallenberg AI, Autonomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wal-
lenberg Foundation, by the Swedish Research Council (VR) for the projects
“Feedback Computing” and “Power and temperature control for large-scale
computing infrastructures”, by the LCCC Linnaeus Center and, by the EL-
LIIT Excellence Center at Lund University.

References

Alomari, F. and D. A. Menasce (2014). “Efficient response time approxi-
mations for multiclass fork and join queues in open and closed queuing
networks”. IEEE Trans. Parallel Distrib. Syst. 25:6. issn: 1045-9219. doi:
10.1109/TPDS.2013.70. url: http://dx.doi.org/10.1109/TPDS.
2013.70.

Åström, K.-J. and B. Wittenmark (2011). Computer-Controlled Systems.
3rd ed. Dover Publications Inc., Mineola, NY.

Barroso, L. A. and U. Hölzle (2009). The Datacenter as a Computer: An In-
troduction to the Design of Warehouse-Scale Machines. Morgan & Clay-
pool.

Bencomo, N. and A. Belaggoun (2014). “A world full of surprises: bayesian
theory of surprise to quantify degrees of uncertainty”. In: 36th Interna-
tional Conference on Software Engineering, ICSE14, Companion Proceed-
ings, pp. 460–463.

137

https://doi.org/10.1109/TPDS.2013.70
http://dx.doi.org/10.1109/TPDS.2013.70
http://dx.doi.org/10.1109/TPDS.2013.70

Paper III. Cloud Application Predictability through Integrated...

Björkqvist, M., R. Birke, and W. Binder (2016). “Resource management of
replicated service systems provisioned in the cloud”. In: NOMS 2016
- 2016 IEEE/IFIP Network Operations and Management Symposium,
pp. 961–966.

Björkqvist, M., N. Gautam, R. Birke, L. Chen, and W. Binder (2018). “Op-
timizing for tail sojourn times of cloud clusters”. IEEE Transactions on
Cloud Computing 6:1, pp. 156–167.

Breitgand, D. and A. Epstein (2012). “Improving consolidation of virtual
machines with risk-aware bandwidth oversubscription in compute clouds”.
In: Proceedings of the IEEE INFOCOM 2012, Orlando, FL, USA, March
25-30, 2012, pp. 2861–2865.

Diaconescu, A., K. L. Bellman, L. Esterle, H. Giese, S. Götz, P. R. Lewis,
and A. Zisman (2017). “Architectures for collective self-aware computing
systems”. In: Self-Aware Computing Systems. Pp. 191–235.

Ding, S., S. Gollapudi, S. Ieong, K. Kenthapadi, and A. Ntoulas (2011).
“Indexing strategies for graceful degradation of search quality”. In: ACM
SIGIR conference on Research and development in Information Retrieval.
ACM, pp. 575–584.

Doyle, J., R. Shorten, and D. O’Mahony (2013). “Stratus: load balancing the
cloud for carbon emissions control”. TCC 1:1. doi: 10.1109/TCC.2013.4.

Dürango, J., M. Dellkrantz, M. Maggio, C. Klein, A. V. Papadopoulos, F.
Hernández-Rodriguez, E. Elmroth, and K.-E. Årzén (2014). “Control-
theoretical load-balancing for cloud applications with Brownout”. In: 53rd
IEEE Conference on Decision and Control, CDC 2014, Los Angeles, CA,
USA, December 15-17, 2014. CDC14, pp. 5320–5327.

Fallahi, N., B. Bonakdarpour, and S. Tixeuil (2013). “Rigorous performance
evaluation of self-stabilization using probabilistic model checking”. In:
SRDS. doi: 10.1109/SRDS.2013.24.

Filieri, A., M. Maggio, K. Angelopoulos, N. D’Ippolito, I. Gerostathopoulos,
A. B. Hempel, H. Hoffmann, P. Jamshidi, E. Kalyvianaki, C. Klein, F.
Krikava, S. Misailovic, A. V. Papadopoulos, S. Ray, A. M. Sharifloo, S.
Shevtsov, M. Ujma, and T. Vogel (2017). “Control strategies for self-
adaptive software systems”. TAAS 11:4, 24:1–24:31.

Ghahremani, S., H. Giese, and T. Vogel (2017). “Efficient utility-driven self-
healing employing adaptation rules for large dynamic architectures”. In:
2017 IEEE International Conference on Autonomic Computing (ICAC),
pp. 590–68.

Greenberg, A., J. Hamilton, D. Maltz, and P. Patel (2008). “The cost of
a cloud: research problems in data center networks”. ACM SIGCOMM
computer communication review 39:1, pp. 68–73.

138

https://doi.org/10.1109/TCC.2013.4
https://doi.org/10.1109/SRDS.2013.24

References

Grimes, D., D. Mehta, B. O’Sullivan, R. Birke, L. Chen, T. Scherer, and I.
Castineiras (2016). “Robust server consolidation: coping with peak de-
mand underestimation”. In: 2016 IEEE 24th International Symposium on
Modeling, Analysis and Simulation of Computer and Telecommunication
Systems (MASCOTS), pp. 271–276.

Grohmann, J., N. Herbst, S. Spinner, and S. Kounev (2017). “Self-tuning
resource demand estimation”. In: 2017 IEEE International Conference
on Autonomic Computing, pp. 21–26.

Guo, Z., S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo, T. Bergan, P.
Bodik, M. Musuvathi, Z. Zhang, and L. Zhou (2013). “Failure recovery:
when the cure is worse than the disease”. In: HotOS, pp. 8–14.

Gupta, V., M. Harchol Balter, K. Sigman, and W. Whitt (2007). “Analysis
of join-the-shortest-queue routing for web server farms”. Perform. Eval.
64:9-12, pp. 1062–1081.

Hamilton, J. (2007). “On designing and deploying internet-scale services”. In:
LISA. USENIX, 18:1–18:12.

Heo, J. and T. Abdelzaher (2009). “Adaptguard: guarding adaptive systems
from instability”. In: Proceedings of the 6th International Conference on
Autonomic Computing, pp. 77–86.

Hoger, M. and O. Kao (2016). “Record skipping in parallel data processing
systems”. In: 2016 International Conference on Cloud and Autonomic
Computing, pp. 107–110.

Iosup, A., N. Yigitbasi, and D. Epema (2011). “On the performance variabil-
ity of production cloud services”. In: Cluster, Cloud and Grid Computing
(CCGrid), 2011 11th IEEE/ACM International Symposium on, pp. 104–
113.

Javadi, S. A. and A. Gandhi (2017). “DIAL: reducing tail latencies for cloud
applications via dynamic interference-aware load balancing”. In: 2017
IEEE International Conference on Autonomic Computing.

Kaler, T., Y. He, and S. Elnikety (2017). “Optimal reissue policies for reduc-
ing tail latency”. In: Proceedings of the 29th ACM Symposium on Paral-
lelism in Algorithms and Architectures, pp. 195–206.

Kihl, M., A. Robertsson, and B. Wittenmark (2004). “Control theoretic mod-
elling and design of admission control mechanisms for server systems”. In:
Mitrou, N. et al. (Eds.). Networking 2004.

Klein, C., M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez (2014a).
“Brownout: Building more robust cloud applications”. In: 36th Interna-
tional Conference on Software Engineering. ICSE14. ACM, Hyderabad,
India, pp. 700–711. isbn: 978-1-4503-2756-5.

139

Paper III. Cloud Application Predictability through Integrated...

Klein, C., A. V. Papadopoulos, M. Dellkrantz, J. Dürango, M. Maggio, K.-E.
Årzén, F. Hernández-Rodriguez, and E. Elmroth (2014b). “Improving
cloud service resilience using brownout-aware load-balancing”. In: IEEE
33rd International Symposium on Reliable Distributed Systems. SRDS14.
IEEE Computer Society, pp. 31–40. isbn: 978-1-4799-5584-8. doi: 10.
1109/SRDS.2014.14. url: http://dx.doi.org/10.1109/SRDS.2014.
14.

Lin, A.-D., C.-S. Li, W. Liao, and H. Franke (2018). “Capacity optimization
for resource pooling in virtualized data centers with composable systems”.
IEEE Transactions on Parallel and Distributed Systems 29:2, pp. 324–
337.

Lin, M., Z. Liu, A. Wierman, and L. L. H. Andrew (2012). “Online algorithms
for geographical load balancing”. In: IGCC. IEEE. doi: 10.1109/IGCC.
2012.6322266.

Lin, Y. and S. S. Kulkarni (2013). “Automated multi-graceful degradation:
a case study”. In: SRDS. doi: 10.1109/SRDS.2013.17.

Litoiu, M., M. Shaw, G. Tamura, N. M. Villegas, H. A. Müller, H. Giese, R.
Rouvoy, and É. Rutten (2013). “What can control theory teach us about
assurances in self-adaptive software systems?” In: Software Engineering
for Self-Adaptive Systems III. Assurances, pp. 90–134.

Maggio, M., T. F. Abdelzaher, L. Esterle, H. Giese, J. O. Kephart, O. J.
Mengshoel, A. V. Papadopoulos, A. Robertsson, and K. Wolter (2017).
“Self-adaptation for individual self-aware computing systems”. In: Self-
Aware Computing Systems. Pp. 375–399.

Neumann, T. (2009). “Query simplification: graceful degradation for join-
order optimization”. In: Proceedings of the 2009 ACM SIGMOD Interna-
tional Conference on Management of data. ACM, pp. 403–414.

Nylander, T., C. Klein, K.-E. Årzén, and M. Maggio (2018). “BrownoutCC:
Cascaded control for bounding the response times of cloud applications”.
In: 2018 American Control Conference. Milwaukee, Wisconsin, USA.

Östberg, P., J. Byrne, P. Casari, P. Eardley, A. Anta, J. Forsman, J. Kennedy,
T. L. Duc, M. Marino, R. Loomba, M. Pena, J. Veiga, T. Lynn, V. Man-
cuso, S. Svorobej, A. Torneus, S. Wesner, P. Willis, and J. Domaschka
(2017). “Reliable capacity provisioning for distributed cloud/edge/fog
computing applications”. In: 2017 European Conference on Networks and
Communications (EuCNC), pp. 1–6.

Perez, J., R. Birke, and L. Chen (2017). “On the latency-accuracy trade-
off in approximate mapreduce jobs”. In: IEEE Conference on Computer
Communications, pp. 1–9.

140

https://doi.org/10.1109/SRDS.2014.14
https://doi.org/10.1109/SRDS.2014.14
http://dx.doi.org/10.1109/SRDS.2014.14
http://dx.doi.org/10.1109/SRDS.2014.14
https://doi.org/10.1109/IGCC.2012.6322266
https://doi.org/10.1109/IGCC.2012.6322266
https://doi.org/10.1109/SRDS.2013.17

References

Robertson, A., B. Wittenmark, and M. Kihl (2003). “Analysis and design
of admission control in web-server systems”. In: Proceedings of the 2003
American Control Conference, 2003. Vol. 1, 254–259 vol.1.

Schroeder, B., A. Wierman, and M. Harchol-Balter (2006). “Open versus
closed: a cautionary tale”. In: Proceedings of the 3rd Conference on Net-
worked Systems Design & Implementation - Volume 3. NSDI’06. USENIX
Association, San Jose, CA. url: http://dl.acm.org/citation.cfm?
id=1267680.1267698.

Sun, H., R. Birke, W. Binder, M. Björkqvist, and L. Chen (2017). “Accstream:
accuracy-aware overload management for stream processing systems”. In:
2017 IEEE International Conference on Autonomic Computing (ICAC),
pp. 39–48.

Tomás, L. and J. Tordsson (2014). “Cloud service differentiation in over-
booked data centers”. In: Proceedings of the 2014 IEEE/ACM 7th Inter-
national Conference on Utility and Cloud Computing, pp. 541–546. isbn:
978-1-4799-7881-6.

Wang, C., B. Urgaonkar, A. Gupta, L. Chen, R. Birke, and G. Kesidis
(2016). “Effective capacity modulation as an explicit control knob for
public cloud profitability”. In: 2016 IEEE International Conference on
Autonomic Computing (ICAC), pp. 95–104.

Xue, J., R. Birke, L. Chen, and E. Smirni (2016). “Managing data center
tickets: prediction and active sizing”. In: 2016 46th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN),
pp. 335–346.

141

http://dl.acm.org/citation.cfm?id=1267680.1267698
http://dl.acm.org/citation.cfm?id=1267680.1267698

Paper IV

Modeling of Request Cloning in Cloud
Server Systems using Processor Sharing

Tommi Nylander Johan Ruuskanen Karl-Erik Årzén

Martina Maggio

Abstract

The interest for studying server systems subject to cloned requests has
recently increased. In this paper we present a model that allows us to
equivalently represent a system of servers with cloned requests, as a
single server. The model is very general, and we show that no assump-
tions on either inter-arrival or service time distributions are required,
allowing for, e.g., both heterogeneity and dependencies. Further, we
show that the model holds for any queuing discipline. However, we fo-
cus our attention on Processor Sharing, as the discipline has not been
studied before in this context.

The key requirement that enables us to use the single server G/G/1
model is that the request clones have to receive synchronized service.
We show examples of server systems fulfilling this requirement. We
also use our G/G/1 model to co-design traditional load-balancing al-
gorithms together with cloning strategies, providing well-performing
and provably stable designs.

Finally, we also relax the synchronized service requirement and
study the effects of non-perfect synchronization. We derive bounds for
how common imperfections that occur in practice, such as arrival and
cancellation delays, affect the accuracy of our model. We empirically
demonstrate that the bounds are tight for small imperfections, and
that our co-design method for the popular Join-Shortest-Queue (JSQ)
policy can be used even under relaxed synchronization assumptions
with small loss in accuracy.

© 2020 ACM/SPEC. Originally published in ACM/SPEC International
Conference on Performance Engineering (ICPE), Edmonton, April 2020.
Reprinted with permission. The article has been reformatted to fit the current
layout.

143

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

1. Introduction

In cloud computing, cloning is used as a way of speeding up the generation
of responses to requests. In this setting, the technique is also known as the
generation of redundant requests. The basic idea is that, instead of sending
requests to only one server, the requests are cloned and sent to multiple
servers simultaneously. The response to the request is the result of the server
that first completes the processing required to handle the request. When this
happens, the pending requests (i.e., the clones that are being processed in
the other servers) are cancelled.

Cloning can yield significant improvements to the performance of data
centers, as shown in [Ananthanarayanan et al., 2013]. The motivation for
cloning comes from the desire to reduce the mean and tail response times of
applications running in the cloud. Hosted virtual machines or containers are
allocated on shared resources. This means that their behavior is sometimes
unpredictable, and the computation times of similar requests can vary among
different instances [Dean and Barroso, 2013]. Cloning can thus be viewed as
an intuitive way to increase the predictability of cloud applications, by relying
on multiple simultaneous copies of a user request. This is the reason why there
has recently been an upsurge in the interest for modeling the behaviour of
cloud applications subject to cloning.

Existing Results. Cloning is a particular case of the (n, k) fork-join
model, where a request is split into n sub-tasks that are distributed to servers.
The request completes when at least k ≤ n of those task are completed.
Cloning implies that the n sub-tasks are identical and k = 1. Approximate
analysis and latency bounds have been extensively studied for the general
(n, k) fork-join systems [Joshi et al., 2012; Shah et al., 2014; Wang et al.,
2018], but unfortunately no exact analysis exists when n ≥ 3. This is, how-
ever, not the case for cloning. The first exact analysis of cloning was per-
formed by Gardner et al. [Gardner et al., 2015]. They modeled servers using
M/M/1 queues, i.e., queues where the arrivals follow a Poisson process and
job service times have an exponential distribution. Other notable contribu-
tions concerning cloning with exponential distributions include [Qiu et al.,
2016; Gardner et al., 2016b; Ayesta, 2019]. Qiu et al. [Qiu et al., 2016] com-
pares the use of multiple queues (in a distributed servers setting) to a central
queue. Gardner et al. [Gardner et al., 2016b] derived results on the largest
marginal improvement that can be obtained using the Redundancy-d cloning
policy, that clones each request to exactly d servers. Ayesta et al. [Ayesta,
2019] improved the analysis of Redundancy-d, including different alternatives
for handling the request cancellation.

Subsequently, researchers started investigating cloning with specific prob-
ability distributions for inter-arrival times and service times, identifying the
characteristics of the stochastic (inter-arrival and service time) processes that

144

1 Introduction

make cloning beneficial [Shah et al., 2016]. Joshi et al. [Joshi et al., 2015; Joshi
et al., 2017; Joshi, 2018] extended the results obtained with the M/M/1 model
to an M/G/1 model, i.e., queues where the arrivals are still determined by a
Poisson process, but job service times have a general distribution. However,
an underlying assumption for the extension was that all service time distri-
butions are independent and identically distributed (i.i.d.), which rules out
heterogeneity. This showed that cloning is beneficial if the tail distribution
of the service time is log-convex and disruptive if log-concave.

Contribution. In this paper we relax the assumptions made in earlier
research contributions. We require no assumptions on either inter-arrival or
service time distributions, effectively handling heterogeneity. We present a
model that is valid with any queuing discipline, however, in this paper we
focus on the Processor Sharing (PS) discipline [Kleinrock, 1975]. In fact, to
the best of our knowledge, PS has not been studied before in conjunction
with request cloning.

The main contributions of this paper are the following:

• We show that the existing equivalent M/G/1 model for cloned systems
under i.i.d assumptions can be generalized to allow for any inter-arrival
or service time distributions, i.e., not requiring the i.i.d assumption.
Our G/G/1 model thus allows for both heterogeneous and dependent
service time distributions under any queuing discipline, as long as the
server system guarantees synchronized service to all request clones. We
explore the assumptions that the computing infrastructure needs to
fulfill for this to be true.

• For such server systems, we analyze and compute the optimal cloning
factor, with respect to the average response times of the server system,
for any service time distribution under any load – i.e., the cloning factor
that allows us to obtain the lowest possible average latency.

• We analyze more complex server systems, consisting of multiple clus-
ters, and provide a co-design method for joint synthesis of cloning strat-
egy and load-balancing technique. To the best of our knowledge, we
present the first provably stable co-designed load-balancing and cloning
strategy for the PS discipline.

• We relax the synchronized service assumption and derive bounds for
how practical imperfections, such as arrival and cancellation delays,
affect the accuracy of our model.

To validate our theoretical findings from a practical standpoint, we built a
discrete event simulator with support for request cloning. Our experimental
results show that we are able to accurately predict the behaviour of server

145

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

s1
F1

s2
. . .

sn-1

sn
Fn

sync

Fmin
Farr

Figure 1. Synchronized service system.

systems subject to cloning. We empirically demonstrate the benefits of co-
designing the cloning factor and load-balancing policy, and that the synchro-
nized service assumption can be relaxed for the popular Join-Shortest-Queue
(JSQ) policy with small loss in accuracy. Using simulations, we also show
that our theoretical bounds can, especially for low arrival and cancellation
delays, be used to predict the effect of practical imperfections on our model.

The remainder of the paper is organized as follows. Section 2 presents our
model and Section 3 two examples of results that can be obtained. Section 4
shows applications of the model to capture commonly-used data center struc-
tures. Section 5 relaxes the synchronized service assumption and shows how
this affects our model. Section 6 shows our experimental evaluation. Section 7
presents related research and Section 8 concludes the paper.

2. Synchronized Model

This section formally describes cloning, and presents the server system that
is the subject of this study. Figure 1 shows a setup example, where n syn-
chronized servers accept requests. An incoming stream of requests is received
and each of them is cloned to the n servers. In the most common type of
cloning, Cancel-on-Complete cloning, the response to the client is produced
by the server that completes the request in the minimum amount of time (s2

in Figure 1, denoted by thick arrows). The request processing in the other
servers is then immediately canceled. In the rest of the paper, we describe
the statistical distribution of a random variable Xi using its Cumulative Dis-
tribution Function (CDF) and denote the CDF with Fi(x) = P (Xi ≤ x).
Coherent with this notation, in Figure 1 the CDFs of s1 and sn are respec-
tively indicated with F1 and Fn, the CDF of the request inter-arrival times
is indicated with Farr, and the CDF of the minimum service time is marked
with Fmin.

146

2 Synchronized Model

We first define the Cancel-on-Complete cloning approach that we use
throughout the paper. Then we discuss synchronized service and the as-
sumptions needed for our theoretical analysis. Finally, we present the main
results obtained with our model. Our model holds for any queuing discipline,
but we focus our analysis and modeling on the PS discipline due to the lack
of prior literature results that properly model this discipline and its closeness
to real servers implementations.

Definition 1
(Cancel-on-Complete cloning – CoC cloning) We define Cancel-on-
Complete (CoC) cloning as the act of creating n copies of an original request
ro, denoted with rc1:n. More precisely, rc1:n indicates the vector of n cloned
requests. We refer to the i-th request in the vector using the notation rci . We
use a similar notation to indicate servers, where s1:n is the vector of servers
and si indicates the i-th server. The n requests are simultaneously sent to
n servers, s1:n, on which they eventually enter service. In time, one of the
n servers first terminates the computation needed to serve ro. When this
happens, the response that is produced is forwarded to the client and all
remaining n− 1 clones are immediately canceled. 2

Another possible cloning approach is Cancel-on-Start (CoS), where all
remaining clones get canceled when the first request clone starts its service.
However, CoS does not apply to the PS discipline as all clones rc1:n always
enter service immediately. As a result, we only consider the CoC approach.
For the remainder of this paper, we simply use the word cloning to refer to
CoC cloning.

We need perfect cancellation to describe the concept of synchronized ser-
vice that forms the basis for enabling our G/G/1 model.

Assumption 1
(Perfect cancellation) We assume perfect cancellation, i.e. that cancella-
tion of requests takes zero time. 2

Definition 2
(Synchronized service) The rc1:n request clones (sent to servers s1:n) re-
ceive synchronized service if the clones rc1:n both enter and leave service
simultaneously, i.e., they are dispatched to the servers simultaneously and
they are removed from the servers simultaneously at completion of the first
clone, implying CoC cloning. This implies the following conditions for the
cloning of all original requests ro:

1. Clones rc1:n have to be sent simultaneously to all servers s1:n.

2. The service in the n−1 clones that did not produce a complete response
has to be terminated using perfect cancellation, as soon as the fastest
server completes the response generation for its clone. 2

147

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

Note that synchronized service does not imply immediate service. Re-
quest clones rc1:n do not have to enter service immediately, and can queue at
the servers s1:n. Synchronized service only requires that requests enter (and
leave) service simultaneously. In other words, the synchronized service con-
cept is compatible with any queuing discipline as long as the chosen queuing
discipline is the same across all servers s1:n. For PS, synchronized service im-
plies that all clones rc1:n of the same original request ro experience identical
processor shares.

The basic setup in Figure 1, with s1:n servers that receive clones, can be
the basic block for more complex structures where – for example – a load
balancer can be placed in front of multiple of these blocks, each containing a
different number of servers, creating a possibly heterogeneous hierarchy. For
the remainder of this section, we discuss the basic theoretical concepts using
a single block with n servers s1:n, as shown in Figure 1. The extension to
more complex structures is described in Section 4.

To derive our results, we use the following Theorem, developed in the
field of statistics.

Theorem 1
(Cumulative Distribution Function of the Minimum) Given a set
of n random variables {X1, . . . , Xn} with any CDF, and denoting with
Fi(x) the CDF of Xi; the CDF of the random variable Xmin, where Xmin =
min{X1, . . . , Xn} is given by

Fmin(x) = (−1)0
n∑
i=1

Fi(x) +

(−1)1
∑
i<j

Fi,j(x, x) +

(−1)2
∑

i<j<k

Fi,j,k(x, x, x) + . . . +

(−1)n−1 Fi,j,...,n(x, · · · , x),

(1)

where Fi,j(x, x) is the joint CDF of random variables Xi and Xj . If Xi and
Xj are independent, i.e. if Fi,j(x, x) = Fi(x)Fj(x), Equation (1) reduces to

Fmin(x) = 1−
n∏
i=1

{1− Fi(x)} . (2)
2

Proof. This fact is well-known in statistics. The proof uses the inclusion-
exclusion principle. A more detailed explanation can be found (for example)
in [Modica and Poggiolini, 2012, Proof of Corollary 2.70]. 2

Theorem 1 is utilized in the following theorem, which is the main result
presented in this section.

148

2 Synchronized Model

Theorem 2
(The Equivalent G/G/1 Model) Assume cloning to a set of n servers
using the same queuing discipline with service time distributions F1:n (x)
with x ≥ 0, that guarantee synchronized service. For all original requests
ro arriving with inter-arrival distribution Farr (y) with y ≥ 0, the service
time of the single request clone that completes service can be equivalently
modeled using the distribution of the minimum value Fmin(x), determined
according to Theorem 1. The server system with cloned requests then behaves
equivalently to a G/G/1 server with inter-arrival distribution Farr and service
time distribution Fmin. 2

Proof. Each server si can be considered as a general and heterogeneous
G/G/1 queue with inter-arrival distribution Farr (y) and service time distri-
bution Fi (x). Assume that there exists some G/G/k server model with some
inter-arrival distribution F (s)

arr (y) and service time distribution F (s) (x), that
governs the response time of requests over the entire system. Synchronized
service guarantees that all request clones rc1:n of an original request ro en-
ter all servers simultaneously, and that the servers are kept in the same
state. Thus the n servers can be seen as a single server of the same queu-
ing discipline with F (s)

arr (y) = Farr (y). This further implies that the shortest
completion time for rc1:n corresponds to the shortest service time for rc1:n,
giving F (s) (x) = Fmin(x). Finally, the minimum of n draws from F1:n(x)
distributions is equivalent to one draw from Fmin(x), thus k = 1. 2

Theorem 2 allows us to properly model and analyze the service time for
server systems with cloned requests.

Remark 1
Theorem 2 does not require any assumptions on properties of either the inter-
arrival distribution Farr or the service time distributions F1:n. Furthermore,
the theorem holds for any queuing discipline. 2

Compared to previous research effort, the theorem extends the state of
the art, in terms of the assumptions needed for its validity. In fact, previous
research required to specify properties of either the inter-arrival distribution
or the service time distributions. On the contrary, removing the need for
these assumptions makes the theorem very general. Using Theorem 2, we de-
fine an equivalent G/G/1 model and by that can incorporate in our models
both heterogeneity and dependencies across servers. Modeling dependencies
across servers allows us to take into account things like the effect of database
queries, that are the same no matter which machine is executing the query.
We do, however, have to assume synchronized service which implies assump-
tions that might be unrealistic in practical implementations, such as perfect

149

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

cancellations of clones. In Section 5, we study how our model is affected when
the synchronized service assumption is relaxed.

3. Examples

In this section, we present two examples of how to use the model described
in the previous section. In both examples, we assume synchronized service
with n servers under PS.

3.1 Independent Exponential Distributions
The first example describes n heterogeneous servers s1:n whose service times
behave according to the same distribution with different parameters. Specifi-
cally, we present results obtained with exponentially distributed inter-arrival
times y with mean 1/λ. Servers have exponentially distributed service times
x with means 1/µi. Here, we assume that the service time distributions are
independent. This is the most common assumption made in all past research
and the aim of this example is to verify that we can analytically obtain re-
sults covering the most commonly studied case. For example, using queuing
theory, Gardner et al. [Gardner et al., 2015] derived results about the distri-
bution of service time of this setup and the FCFS queuing discipline. Here,
we show that the same result also applies to any other queuing discipline.
The described setup implies

Farr (y) = 1− e−λy,
Fi (x) = 1− e−µix,

(3)

with x ≥ 0, y ≥ 0. Using Theorem 2, we can model the synchronized service
system composed of n servers as a single equivalent server having service time
distribution Fmin(x) as

Fmin(x) = 1−
n∏
i=1

{1− Fi(x)} = 1−
n∏
i=1

e−µix = 1− e
−

n∑
i=1

µix
. (4)

The equivalent single server distribution Fmin(x) is thus also exponential,
with rate µtot =

∑n
i=1 µi. This means that the n server synchronized service

system with cloned requests is equivalent to an M/M/1 server with arrival
rate λ and service rate µtot. As anticipated, the expression derived in Equa-
tion (4) is the same presented in [Gardner et al., 2015] for the FCFS queuing
discipline. However, Theorem 2 allows us to be more general and to show that
the same result also holds for any queuing discipline, such as PS, assuming
synchronized service.

150

4 Applications

3.2 Independent Heterogeneous Distributions
In the second example we want to show how to apply the results of Theorem 2
for the case of a synchronized service with n servers having independent and
heterogeneous distributions, i.e., where the distribution type changes for each
of the servers. We will present a practical example with n = 3, assuming that
the inter-arrival times y are uniformly distributed between 0 s and 4 s,

Farr (y) =

{
y/4 if 0 ≤ y ≤ 4.0

1.0 if y > 4.0
. (5)

The service time distributions for s1:3 are respectively an exponential, a
Weibull, and a uniform distribution, with x ≥ 0 and the following parame-
ters.

F1 = Fexp (x) = 1− e−0.480x

F2 = Fweibull (x) = 1− e−0.125x3

F3 = Funi (x) =

0 if 0 ≤ x < 0.5
(x− 0.5)/3.5 if 0.5 ≤ x ≤ 3.5

1 if x > 3.5

(6)

We choose these three distributions as they are typically used to model service
times. Furthermore, the three distributions have different mean service times
(relaxing the assumption of homogeneity, usually made in the literature).

Using Theorem 2, we can compute the equivalent single server service
time distribution Fmin(x) as follows.

Fmin(x) = 1− (1− F1) (1− F2) (1− F3)
= 1− {1− Fexp (x)} {1− Fweibull (x)} {1− Funi (x)}

The resulting equivalent model is a G/G/1 model with inter-arrival distribu-
tion Farr and service time distribution Fmin. Figure 2 shows the service time
distributions F1, F2, and F3, together with Fmin(x).

To demonstrate that the G/G/1 model is in fact equivalent to the cloned
server system, we ran 20 simulations with 106 requests each, using the sim-
ulator described in Section 6. Figure 3 shows the empirical response time
CDFs for this example when we simulate both the three servers with cloning
case and the equivalent single server case, using the PS discipline. The two
response time CDFs are identical, demonstrating the equivalence between the
two models.

4. Applications

Here, we use the equivalent G/G/1 model derived in Theorem 2 to analyze
different systems under the PS discipline that fulfil the synchronized service

151

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

0 1 2 3 4
0

0.2

0.4

0.6

0.8

1

Service time (s)

C
D

F Fexp
Fweibull
Funi
Fmin

Figure 2. The service time CDFs for the Example with Heterogeneous
Servers presented in Section 3.2.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Response time (s)

E
m

pi
ri

ca
lC

D
F

Three Servers with Cloning
Equivalent Single Server

Figure 3. Empirical response time CDFs for the Example with Heteroge-
neous Servers presented in Section 3.2. Data retrieved through 20 repeated
simulations of 106 requests each. The 95% confidence intervals lie within
the lines.

criterion. The G/G/1 model is compliant with any inter-arrival process Farr
and service time distributions F1:n, but in order to simplify the analysis, here
we restrict ourselves to Poisson arrivals. For the service time distributions,
we use the S&Z model, described in Section 4.1.

4.1 S&Z - A Service Time Model
Theorem 2 supports dependencies across service time distributions repre-
sented by joint CDFs. However, determining and analyzing these joint distri-
butions is in general difficult. Gardner et al. [Gardner et al., 2016a] propose
a model decoupling the task size of the original request ro, denoted with Zo,
from the server slowdowns affecting clones rc1:n, which we indicate with Sc1:n.
In our paper, we use the multiplicative version, expressing the service time

152

4 Applications

Xc
1:n for clones rc1:n as

Xc
1:n = Zo · Sc1:n. (7)

The idea behind this concept is to model the dependencies across servers s1:n

that serve clones rc1:n of the same original request ro. As these clones have
identical task sizes, it is natural to include the shared task size Zo in the
service time model for clones rc1:n.

The service time model in Equation (7) simplifies our analysis of depen-
dent clones, as the server slowdowns S1:n can be viewed as independent across
servers and original requests ro. This allows us to use the simpler expression
discussed in Theorem 1 – Equation (2) – when calculating the distribution of
the minimum server slowdown Smin for each original request ro. The complete
minimum service time Xmin for each ro is defined as

Xmin = Zo · Smin. (8)

As shown in Equation (8), Xmin belongs to a product distribution. Calcu-
lating this complete distribution is difficult, but its first moment can be
determined according to:

E[Xmin] = E[Zo] ·E[Smin]. (9)

Exploiting the independence for S1:n, we can use Equation (2) to determine
the CDF of its minimum distribution FSmin as

FSmin = 1−
n∏
i=1

{
1− FSi

}
, (10)

assuming FSi known for all Si. Using FSmin, it is straightforward to determine
the first moment of Smin. We can then calculate the first moment of Xmin

using Equation (9), assuming a known task size distribution Zo. This pro-
cedure is used in this section when required by expressions for determining,
e.g., response times.

The task sizes Zo are modeled using a two-phase hyperexponential dis-
tribution with balanced means, using E[Zo] = 1/4.7 and squared coefficient
of variation C2

Zo = 2. For the server slowdowns Si, we use the empirical
Dolly distribution, with probability density function defined in Table 1 for
the Dolly(1,12) case. First published in [Ananthanarayanan et al., 2013], and
later on used in e.g. [Gardner et al., 2016a], the Dolly distribution is based
on empirical data on server slowdowns from traces collected from Microsoft
Bing’s Dryad and Facebook’s Hadoop clusters.

In Section 4.2, we derive the results for homogeneous servers, i.e. with
server slowdowns Si from the same Dolly(1,12) distribution.

153

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

Table 1. The empirical Dolly(1,12) distribution from [Ananthanarayanan
et al., 2013], used to model server slowdowns S.

S 1 2 3 4 5 6 7 8 9 10 11 12
Prob. 0.230 0.140 0.090 0.030 0.080 0.100 0.040 0.140 0.120 0.021 0.007 0.002

4.2 Server Systems
Here, we present two server systems that both fulfill the synchronized service
criterion. We investigate, using known expressions in queuing theory, how the
cloning factor cf ∈ Z+ (i.e., the number of clones for each request) affects
performance and stability.

Clone-to-All. The simplest server system enabling synchronized service
is where each request ro is cloned and clones rc1:n are sent to all n servers,
i.e. with cloning factor cf = n. This system is shown in Figure 1. Using the
equivalent G/G/1 model presented in Section 2, we can represent the distri-
bution Fmin of service times Xmin of this system according to the expression
in Theorem 2. This enables us to calculate the mean response times E[T]
of the cloned server system. We use the fact that the mean response time
E[TM/G/1/PS] for the PS queuing discipline only depends on the first mo-
ment of the service time distribution G. For our server system under PS, we
can thus determine E[TM/G/1/PS] as

E[TM/G/1/PS] =
E[Xmin]

1− λE[Xmin]
. (11)

For stability, Equation (11) requires the utilization ρ of the cloned server
system to be less than 1, thus we get

ρ = λE[Xmin] < 1. (12)

Equations (11)–(12) allow us to exactly determine stability, utilization and
mean response time of the Clone-to-All server system for any cloning factor
cf , any arrival rate λ and any service time distribution Fmin from which we
know the first moment.

Using service times X distributed according to the S&Z model with ho-
mogeneous server slowdowns, we can analytically retrieve the first moment
of its equivalent service time distribution Xmin as described in Section 4.1.
By exhaustive search over λ and cf , we can use Equation (11) to find the
optimal cloning factors copt

f and the corresponding optimal mean response
times E[T]opt, that minimize the mean response times of the server system.

Figure 4 shows an example with exact theoretical results for PS, assuming
service times distributed according to the S&Z model described in Section 4.1.
The dashed red lines show the optimal cloning factors copt

f , whereas the
blue lines show the corresponding optimal mean response times E[T]opt. The

154

4 Applications

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

E
[T

]
(s

)

Arrival rate / server (1/s)

C
lo

ni
ng

fa
ct

or
c f E[T]opt

copt
f

Figure 4. Clone-to-All: Optimal cloning factors together with the cor-
responding optimal mean response times. Data retrieved from theoretical
analysis using Poisson arrivals and S&Z distributed service times.

comparison between cloning factors is performed such that the arrival rate
per server is preserved, i.e. if a new server is added λ is scaled accordingly. As
expected, higher cloning factors are more beneficial for lower system loads
since the clones utilize servers that otherwise would be in idle. A less expected
result is that cf = 2 is not optimal for any λ for this example. For high
system loads, the service time dependencies introduced in the S&Z model,
limit the use of cloning and for λ > 0.6s−1 per server, no cloning (copt

f = 1)
is optimal.

Clone-to-Clusters. The natural extension to only consider cloning to all n
servers in the system is to allow for cloning to subsets of servers, as proposed
in [Joshi et al., 2017]. To simplify the analysis, we partition the set of n
servers into m subsets of equal sizes, containing d servers each, i.e., such that
m · d = n. We denote these subsets as clusters. If an original request ro is
sent to a cluster it gets replicated to all d servers in the cluster. The clusters
enable synchronized service for all request clones rc1:d, which means that each
cluster can be equivalently represented as a G/G/1 model using Theorem 2.

This cloning strategy allows us to combine an arbitrary load-balancing
strategy ` that decides to what cluster the original request ro should be sent,
together with the choice of cloning factor cf = d. Figure 5 shows the complete
system, that includes the load-balancing strategy ` and m clusters.

The choice of the cloning factor cf depends on the load-balancing strategy
`, and we will now show that there is an advantage in conducting a joint
design of the two. Given a load-balancing strategy `, the cloning factor cf = d
to be used in each cluster should be chosen such that the mean response time
E[T] for the complete server system is minimized. Varying the value of the

155

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

Farr
LB`

F 1
min

F 2
min

. . .
Fm
min

Figure 5. Clone-to-Clusters server system. Each rectangle represents a
cluster of d servers that guarantees synchronized service to all clones rc1:d.

cloning factor cf allows us to design and determine the statistical properties
of the behavior of the m clusters (using n available servers), by using the
equivalent G/G/1 modeling from Theorem 2 to each cluster separately. Using
methods like exhaustive search, it is thus possible to determine the cloning
factor cf and the m clusters that minimize E[T] under `. An important
prerequisite for a successful co-design is that there exists a good enough
(possibly approximate) expression for E[T] (or some other metric) when using
the load-balancing strategy `. If ` has a well-defined stability criterion, we can
co-design a system with a provably stable cloning factor cf . Here we consider
two very common strategies, Random and Join-Shortest-Queue (JSQ).

The Random strategy distributes the original requests uniformly to the
servers in the cluster, thus preserving the Poisson properties of the arrival rate
λ towards the server system. Each cluster then receives the Poisson arrival
rate λ/m. The exact analysis presented in Section 4.2 is directly applicable
to the random load-balancing strategy, when deciding the optimal cf = d.
We denote this complete co-design as cluster-Redundancy-d (c-R-d), with d
representing the cloning factor of each cluster.

The JSQ load balancer always selects the cluster with the shortest queue
and sends the cloned requests to that cluster. To co-design the cloning factor
with the JSQ strategy, we need to use approximations as no exact results
exist for E[T]. As we model our servers using the PS discipline, we utilize
the approximation presented in [Gupta et al., 2007]. Exploiting the near-
insensitivity towards variability in service time distributions for JSQ under
PS, it gives a very good approximation (error within 2-3%) for E[T], given
Poisson arrivals, m clusters and the first moment of the service time distribu-
tion. This approximation is thus compatible with the S&Z model. Utilizing
this approximation for E[T] thus allows us to find the optimal cloning fac-
tor copt

f , assuming that the approximations are accurate enough. We denote
the complete co-design as cluster-Join-Shortest-Queue-d (c-JSQ-d), where d

156

5 Non-Synchronized Service

Table 2. Theoretical analysis of the co-design example in Section 4.2, us-
ing Poisson arrivals and homogeneous service times distributions according
to the S&Z model. The arrival rate λ is per server per second.

λ = 0.30 λ = 0.38 λ = 0.52 λ = 0.62 λ = 0.70
copt
f E[T]opt(s) copt

f E[T]opt(s) copt
f E[T]opt(s) copt

f E[T]opt(s) copt
f E[T]opt(s)

c-R-d 6 0.569 6 0.783 4 1.515 1 2.618 1 3.312
c-JSQ-d 6 0.404 4 0.482 3 0.692 2 0.955 1 1.112

represents the cloning factor of each cluster.

Theoretical Co-design Example. To exemplify the co-design procedures
of choosing the optimal copt

f , described in Section 4.2, we study the follow-
ing example. Assume n = 12 servers, i.e. the cluster sizes d = 1, 2, 3, 4, 6
and 12 are available. We use Poisson arrivals and homogeneous service times
distributed according to the S&Z model, and analyze the optimal cloning
factors for each co-design using the exhaustive search method. We consider
the queuing discipline PS, and investigate co-designs c-Redundancy-d and c-
Join-Shortest-Queue-d. The theoretical results for five selected arrival rates
are available in Table 2. In this particular example, the optimal cloning fac-
tors copt

f are equal for both co-designs for λ = 0.30s−1 and λ = 0.70s−1,
whereas they are different for the other three arrival rates. As the co-design
procedure implies optimization criteria that depend on `, copt

f will in general
also depend on `. However, as the example shows, two different co-designs
can of course also find the same copt

f under certain conditions.
For λ = 0.70s−1 / server, copt

f is equal to 1 for both co-designs, implying
that no cloning is optimal. The fact that we can compare no cloning (cf = 1)
to cloning (cf > 1), using the same framework for both results, is powerful
as it stops us from recommending cloning when it is not beneficial. Note that
for c-JSQ-d the optimal cloning factors are based upon evaluating approx-
imations for E[T], and their results are thus subject to the quality of the
approximations.

5. Non-Synchronized Service

In this section we study the impact of relaxing the assumption of synchro-
nized service, implying that the clones of an original request are no longer
guaranteed to receive identical processor shares. First, we consider the ef-
fects of non-perfect arrivals and cancellations in the system. This is of high
importance as it is most likely impossible to design a perfectly synchronized
service in practice. Second, we relax the clone-to-cluster structure to allow
for a more general cloning co-design approach, for which we cannot guarantee
synchronized service.

157

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

In order to analyze our model in a non-synchronized context, the following
definitions are needed. Consider a single, specific original request cloned over
n servers. Let Xi be the stochastic variable (s.v.) associated with the service
time distribution for server si. Denote with Ri the runtime of the cloned
request on si, i.e., its time from service start to departure. Define θ as a vector
of n inverse average processor shares for the clones during their runtime, i.e.,
θi ≥ 1 states how many requests are present at si in average during Ri.
Further, let N =

∑n
i=1 θi be the total average amount of requests in the

system during the runtimes of the clones of an original request.
The expected response time of the original request for a specific N can

then be written as a function of θ as

E[T |θ] = E[min({θjXj}j=1:n)]. (13)

If one assumes that the service time distributions are homogeneous the fol-
lowing interesting result can be obtained.

Theorem 3
The expected response time of an original request cloned to n servers at a
specific N is maximized when all elements in θ are equal,

argmax
θ

E[T |θ] = θh, where θh = {N/n}j=1:n .

Proof. (13) can be rewritten using the Law of Total Expectation

n∑
k=1

E[min({θjXj}j=1:n)|Xk ≤ ∀Xi] ·P(Xk ≤ ∀Xi), (14)

as all Xi belong to the same distribution, P(Xk ≤ ∀Xi) = 1/n. Using that
the minimum over a set is bounded by all of its members gives

E[min({θjXj}j=1:n)] ≤
n∑
k=1

θkE[Xk|Xk ≤ ∀Xi]
1

n

=
N

n
E[min({Xj}j=1:n)] = E

[
min

({
θhjXj

}
j=1:n

)]
. (15)

This proves the theorem. The homogeneous service time distributions yield
E[Xk|Xk ≤ ∀Xi] = E[min({Xi}i=1:n)] for each k. 2

Theorem 3 holds under any value of N . For synchronized service, θ = θh

at all times, but in the non-synchronized case this is not true which makes
Theorem 3 an important tool for comparison of the two cases.

158

5 Non-Synchronized Service

5.1 Arrival and Cancellation Delays
In real settings, it is highly unlikely that perfect synchronization can be
achieved. Instead, imperfections such as slightly different starting times for
clones or latency differences between cancelling requests can occur. The im-
perfections can arise in two stages of the request handling, at arrival and at
cancellation, which we model using the notion of arrival delays and cancel-
lation delays.

Definition 3
Let the arrival delay ai ≥ 0 be a s.v. representing the time difference between
original request arrival and cloned request arrival on si. Further, let the
cancellation delay ci ≥ 0 be a s.v. representing the time difference between
the first completed cloned request on sk and the departure (cancellation) on
si. 2

We will assume that the distributions of ai and ci are independent and ho-
mogeneous, we further assume that the service time distributions are homo-
geneous.

The presence of these imperfections becomes troublesome, as the clone-to-
all system can no longer be guaranteed to be synchronized. No synchroniza-
tion implies that the equivalent G/G/1 model can not be directly applied.
It is, however, possible to derive a computable upper bound on the response
time of the non-synchronized service. First, the following Lemma is stated.

Lemma 1
Let S1 and S2 be two, possibly non-synchronized, clone-to-all sys-
tems with same number of servers n and arrival rate. If for all N ,
E[T |N,S1] ≤ E[T |N,S2] and E[Ri|N,S1] ≤ E[Ri|N,S2], then

E[T |S1] ≤ E[T |S2]. (16)
2

Proof. As E[Ri|N,S1] ≤ E[Ri|N,S2] is true for any N , then if S1 and S2

are subject to the same arrival rate, the expected number of requests present
in the system must be smaller for S1 than S2

E[N |S1] ≤ E[N |S2]. (17)

Using the definition of the expected value, (17) can be written as∫
Np(N |S1)dN ≤

∫
Np(N |S2)dN. (18)

159

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

This inequality still holds if the function g(N) = N is replaced by two func-
tions that uphold the same inequality for all N , hence∫

E[T |N,S1]p(N |S1)dN ≤
∫

E[T |N,S2]p(N |S2)dN

→ E[T |S1] ≤ E[T |S2]. (19)
2

It is now possible to compute bounds on the effects of arrival and cancellation
delays on the expected response time, by letting S1 be a clone-to-all system
affected by delays and S2 a synchronized system such that S1 and S2 fulfill
Lemma 1. Since S2 is synchronized, the equivalent G/G/1 model can be
directly applied to explicitly compute a bound for S1. We proceed by first
considering the two delays separately.

Theorem 4
(Arrival delays) Let S1 be a clone-to-all system with arrival delay, and
S2 an identical system but synchronized (without delays). Let S1 and S2 be
subjected to the same arrival rate. Then

E[T |S1] ≤ E[T |S2] + E[a]. (20)
2

Proof. Consider S1. For a specificN , the response time of an original request
and the runtime of its clones becomes

T |θ,S1 = min{aj + θjXj}j=1:n,

Ri|θ,S1 = max(min{aj + θjXj}j=1:n − ai, 0). (21)

The maximum is introduced to prohibit negative Ri when the fastest clone
completes before arrival at si. The maximum can be dealt with by introduc-
ing bi = min(ai,min{aj + θjXj}j=1:n). By definition, bi ≤ ai and further,
min{aj + θjXj}j=1:n = min{bj + θjXj}j=1:n as θjXj ≥ 0. The following
upper bound can then be created

Ri|θ,S1 ≤ max(min{bj + θjXj}j=1:n − bi, 0)

= min{bj + θjXj}j=1:n − bi. (22)

The expected runtime is bounded as

E[Ri|θ,S1] ≤ E [min{bj + θjXj}j=1:n]−E [b] . (23)

Following the proof of Theorem 3, we can state that

E[min({bj + θjXj}j=1:n)] ≤
n∑
k=1

(E[bk + θkXk|Xk ≤ ∀si])
1

n

= E[b] + E[min{θhjXj}j=1:n], (24)

160

5 Non-Synchronized Service

which gives

E[Ri|θ,S1] ≤ E[min{θhjXj}j=1:n] + E[b]−E[b]

= E[min{θhjXj}j=1:n] = E[Ri|θh,S2]. (25)

Further, using Eq. (24) the response time for a request under a specific N
can be bounded as

E[T |θ,S1] = E[min{aj + θjXj}j=1:n]

≤ E[min{θhjXj}j=1:n] + E[a] = E[T |θh,S2] + E[a]. (26)

As the two inequalities Eq. (25) and (26) hold for all θ ∈ {∑ θi = N, θi ≥
1 ∀i}, the statements can be conditioned on N instead without loosing the
inequality property. Then using Lemma 1 the original statement is proven.2

Note that for Theorem 4, E[a] does not affect the stability of S2. Thus if S2

is stable, then so is S1 regardless of arrival delays.

Theorem 5
(Cancellation delays) Let S1 be a clone-to-all system with cancellation
delays, and S2 an identical system but synchronized (without delays) and
with service time Xi|S2 = Xi|S1 + E[c]. Let S1 and S2 be subject to the
same arrival rate. Then

E[T |S1] ≤ E[T |S2]. (27)
2

Proof. Consider S1. For a specificN , the response time of an original request
and the runtime of its clones become

T |θ,S1 = min{θjXj}j=1:n,

Ri|θ,S1 = min{θjXj}j=1:n + min(ci, θiXi −min{θjXj}j=1:n). (28)

The runtime incorporates the chance that a cloned request completes after
min{θjXj}j=1:n but before ci has passed, thus the extra minimum. Further,
the response time for a specific N is unaffected by the cancellation delay. As
the response time is longer if the service time is longer, it can be trivially
stated that

E[T |θ,S1] ≤ E[T |θh,S2]. (29)

The runtime for each server is thus bounded by the cancellation delay

Ri|θ,S1 ≤ min{θjXj}j=1:n + ci. (30)

161

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

The expected runtime for each server can thus be bounded as

E[Ri|θ,S1] ≤ E[min{θjXj}j=1:n + ci]

≤ E[min{θj(Xj + E[c])}j=1:n]

≤ E[Ri|θh,S2], (31)

using Theorem 3 in the last step. As the two inequalities Eq. (29) and (31)
hold for all θ ∈ {∑ θi = N, θi ≥ 1 ∀i}, the statements can be conditioned
on N instead without losing the inequality property. Then using Lemma 1
the original statement is proven. 2

Note that for Theorem 5, for large E[c] the upper bound can become infinite
despite potential stability of S1. Thus the arrival rate of the system has
to be less than 1/(E[Xi] + E[c]) to guarantee stability for both S1 and S2.
The following Theorem shows that the effect of both arrival and cancellation
delays can be bounded by the sum of the individual bounds.

Theorem 6
(Combined delays) Let S1 be a clone-to-all system with both arrival and
cancellation delays, and S2 an identical system but without delays and thus
synchronized and Xi|S2 = Xi|S1 + E[c]. Let both systems be subject to the
same arrival rate. Then

E[T |S1] ≤ E[a] + E[T |S2]. (32)
2

Proof. Consider S1. For a specific N , the response time is still unaffected
by the cancellation delay and the runtime for each clone becomes a clear
combination of the two separate delay cases,

T |θ,S1 = min{aj + θjXj}j=1:n,

Ri|θ,S1 = max
(

min{aj + θjXj}j=1:n − ai

+ min(ci, ai + θiXi −min{aj + θjXj}j=1:n), 0
)
. (33)

Following the proofs to Theorems 4 and 5 with the previous two equations,
it is easy to see that the two bounds are additive. 2

The benefit of Theorems 4-6 is two fold. First, they show that small imper-
fections are not detrimental when trying to implement synchronized service
in practice. Further, the bounds are computable given that the expected
response time of the equivalent G/G/1 model is computable, which gives
a way of making informed decisions in capacity planning of such systems.
However, the Theorems are only strictly valid if one assumes that ai, ci, Xi

are homogeneous and known, which is not the case for all systems.

162

5 Non-Synchronized Service

5.2 Clone-to-Any
The co-design procedure denoted c-`-d in Section 4.2, assuming a clone-to-
clusters structure, is of interest as it provides a way to compute and quantify
the performance of such systems. The design itself is, however, not that intu-
itive as it is superfluous to pre-partition the servers into clusters. In practice, a
more natural approach would instead be to allow the load-balancing strategy
` to, for each original request, choose cf unique servers from s1:n to clone to.
We define this as the clone-to-any cloning strategy, and denote co-designs
under clone-to-any as a-`-d for cloning factor cf = d and load-balancing
strategy `.

For a-`-d co-designs, synchronized service is no longer guaranteed which
implies that the equivalent G/G/1 model is not directly applicable. A mea-
sure that quantifies this non-perfect synchronization is the clone error ε,
defined for clones rc1:d to an original request ro as ε = D[pc1:d]/E[pc1:d], with
D the standard deviation and pc1:d the processor shares for r

c
1:d. For E[ε] > 0,

the system is non-synchronized, for E[ε] = 0 it is synchronized and for small
E[ε] we have near-synchronization.

It is intuitive to believe that c-`-d could be used to form an adequate
approximation of a-`-d. In fact, the less utilization ρ a system under a-`-d
is subject to, the more similar to c-`-d it becomes. This is formalized in the
following theorem.

Theorem 7
Consider the two server systems S1 and S2, where S1 uses a-`-d and S2 c-`-d
but otherwise are identical.

Then as ρ→ 0, E[T |S1]→ E[T |S2]. (34)
2

Proof. The smaller the utilization, the larger the probability that all clones
rc1:d to an original request ro execute alone on their servers. As ρ → 0 then
processor shares pci → 1 for all rci . If pci = 1 for all rci , then E[ε] = 0 and the
clones are synchronized. 2

As small E[ε] implies near-synchronization, it is using c-`-d possible to
derive an accurate approximation for the mean response time of a-`-d under
low loads, for any ` and cf . For more general system loads ρ, the similarity
between a-`-d and c-`-d depends on the choice of `. In particular, if ` is good
at keeping pi similar for all clones to the same original request, a-`-d will
behave close to synchronized as E[ε] will be small. In Section 6, the load-
balancing strategies random and JSQ, with clone-to-any co-designs denoted
a-R-d and a-JSQ-d, are compared to their c-`-d counterparts.

163

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

6. Evaluation

In this section, we demonstrate and evaluate the examples and claims stated
in the two previous sections, using our own discrete-event simulator1. We re-
frained from using existing simulators like CloudSim [Calheiros et al., 2011],
because our evaluation requires us to simulate the cloud application-level
behavior and not only the infrastructure behavior. For this reason, we took
inspiration from the brownout [Klein et al., 2014] simulator2 and modified
it to remove the adaptation layer and added cloning functionality. In the
simulator we include the options to define: (i) the inter-arrival time distri-
bution Farr(x), (ii) the service time distributions F1:n(x) for our n servers,
(iii) the cloning factor cf , (iv) the load balancing strategy and (v) arrival
and cancellation delays. The arrival and service time distributions can be
heterogeneous and we allow the user to set them based on empirical CDF
data. All simulations in this section are run using the PS discipline.

Our artifacts are available at Zenodo3. They consist of our simulator code
complete with the scripts that we ran for our simulations. Furthermore, the
artifacts provide more details on the simulator architecture, and instructions
on how to reproduce our results.

6.1 Server Systems
All experiments in this subsection are evaluated over 20 independent simula-
tions per scenario with unique random seeds, each with 106 incoming requests
from Poisson arrivals. The service time distribution is the S&Z model as de-
scribed in Section 4.1.

Clone-to-All. The clone-to-all system in Section 4.2, for which the G/G/1
model yields an exact analysis for copt

f and E[T]opt, was simulated with a
sweep over the arrival rates. The 95% confidence intervals for the results of
the simulations are shown together with the theoretical values in Figure 6.
As can clearly be seen, the simulated copt

f and E[T]opt follow their theoretical
values closely.

Theoretical Co-designs. We further evaluate the co-designs presented
in Section 4.2 using the simulator. The results are shown as 95% confidence
intervals in Figure 7, plotted together with the theoretical values for both co-
designs c-R-d and c-JSQ-d. For the optimal clone factor copt

f , the simulated
and theoretical values match perfectly. The same applies for the matching of
E[T], at least for c-R-d where the theoretical values are obtained via exact
analysis. In fact, the simulated c-JSQ-d mean response times are slightly (1-
3%) off compared to the theoretical values. The reason is that the JSQ values

1 https://github.com/tomminylander/cloning-simulator
2 https://github.com/cloud-control/brownout-simulator
3 https://doi.org/10.5281/zenodo.3635905

164

6 Evaluation

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

E
[T

]
(s

)

Arrival rate / server (1/s)

C
lo

ni
ng

fa
ct

or
c f

E[T]opt (theory)
E[T]opt (sim)

copt
f (theory)
copt
f (sim)

Figure 6. Clone-to-All: Comparison of theoretical values with 95% con-
fidence intervals for the simulation results.

are based on (highly accurate) approximations. As our co-designs succeed in
finding all optimal cloning factors copt

f , the simulations suggest that the co-
designs perform well even when the accuracies of the involved approximations
of E[T] are not perfect.

6.2 Non-Synchronized Service
In order to perform a general evaluation, all experiments in this subsection
are evaluated over 1000 randomized scenarios with unique random seeds,
each with 106 incoming requests from Poisson arrivals. We use the following
service time distributions: (i) S&Z model from Section 4.1, (ii) Exponential
(µ = 1), (iii) Weibull (shape=0.5, scale=0.5), (iv) Pareto (Type 1, shape=2.5,
scale=0.6) and (v) Uniform (Xi ∈ [0, 2]). The mean service time E[X] of all
the above distributions at cloning factor cf = 1 is 1s. The utilizations consid-
ered are ρsim = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]. For each scenario, we
randomly select a service time distribution from (i)-(v), a utilization from
ρsim, a number of servers from ssimn and a cloning factor from csimf . The two
latter are defined below.

Arrival and Cancellation Delays. First, we evaluate the theoretical
bounds from Section 5.1 for clone-to-all server systems. We use csimf =

ssimn = [2, 3, 4, 5, 6, 7, 9, 10]. Additionally, from delaysim = [0.01, 0.02, 0.05,
0.1, 0.2, 0.5] · E[X], we randomly select a normalized mean delay. We run
three separate experiments: (a) arrival delays only, (b) cancellation delays
only and (c) both delays present. In the latter experiment, the mean delays
for each scenario are chosen such that, for 0 ≤ γ ≤ 1 uniformly random,

165

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

0.3 0.38 0.52 0.62 0.7

1

2

3

4

6

C
lo

ne
fa

ct
or
c f

0.3 0.38 0.52 0.62 0.7
0

1

2

3

Arrival rate λ / server (1/s)

E
[T

]
(s

)

c-JSQ-d (sim) theory
c-R-d (sim) theory

Figure 7. Co-designs: Comparison of theoretical values with 95% confi-
dence intervals for the simulation results. The legend applies to both figures.

γE[a] + (1− γ)E[c] becomes the chosen delay from delaysim. The results are
available in Figure 8, and show that for low normalized delays (0.01-0.05)
all normalized E[T] are close to 1. This implies that the synchronized model
describes these cases accurately. Further, for the low delays the bounds are
tight in all three experiments, which implies that the bounds are very useful
for these delays. However, for the higher delays the normalized E[T] is larger.
Also, the bounds for the cancellation delay become very large, and for some
scenarios with delay 0.2 and 0.5 they even become infinite as the bound can
not guarantee stability for these cases. As none of our simulated scenarios
were unstable, it is obvious that the cancellation delay bound has limited
usage for these higher delays.

Clone-to-Any. Second, the clone-to-any co-designs are compared to their
synchronized counterparts. Here we set ssimn = [4, 6, 9, 12, 15, 21, 27, 30, 45,
48] and randomly choose cf , such that for each scenario the chosen number
of servers is evenly divisible by cf .

Figure 9 shows the results for both random and JSQ. The upper plot
shows the mean clone errors E[ε], and it can clearly be seen that for a-JSQ-d
the values are much smaller than for a-R-d. This implies that a-JSQ-d is a

166

7 Related Work

much better approximation of its synchronized counterpart than a-R-d. The
lower plot, showing normalized E[T], confirms this statement as the values
for a-JSQ-d are much closer to 1. For low ρ, both co-designs approximate the
synchronized behavior well in accordance with Theorem 7. For a-JSQ-d, the
normalized E[T] are very close to 1 for all utilizations suggesting that we have
near-synchronized service regardless of the arrival rate. This property can be
intuitively explained by looking into the JSQ algorithm. As JSQ always sends
the clones to the servers with the least amount of running requests, this will
cause the servers to always have very similar amounts of running requests.
The clones rc1:d of the same original request ro will then always receive very
similar processor shares, leading to small mean clone errors E[ε].

Looking more closely at the normalized E[T], it can be observed that the
values for a-JSQ-d and a-R-d never exceed 1. As our simulation study is fairly
general, considering many different parameters, this suggests that the mean
response times for the synchronized c-`-d co-design might actually form an
upper bound for the a-`-d counterparts. This claim is partially supported by
Theorem 3, which can be read as that synchronized service in fact always
is worse than non-synchronized. However, we have not been able to finalize
the proof to hold for complete co-designs, and it will thus have to be left for
future work.

6.3 Summary
Our simulation campaign shows good compliance with our theoretical find-
ings. For both the clone-to-all plots in Figure 6, and the co-design plot in
Figure 7, our model predicts the optimal cloning factors copt

f with high accu-
racy. Figure 8 shows that, especially for low arrival and cancellation delays,
our theoretical bounds can be used to predict the effect of practical imperfec-
tions on our model. Figure 9 shows the interesting near-synchronized service
property of the JSQ policy, suggesting that our model could accurately de-
scribe setups involving the JSQ load-balancer, where synchronized service is
not guaranteed.

7. Related Work

Cloning has been studied in the research literature, although in most of
the cases previous studies were limited to exponential distributions for ser-
vice times and the FCFS discipline. We briefly presented an overview of the
cloning literature in the introduction of this paper. Here we provide addi-
tional details and comparisons with the most related research contributions.

In contrast to pure cloning, speculative execution [Ananthanarayanan et
al., 2010; Zaharia et al., 2008] has previously been studied to remedy the
effects of slow tasks in large data frameworks such as MapReduce [Dean and

167

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

0.010.02 0.050.1 0.2 0.5
1

1.1

1.2

1.3

E[a]/E[X]

N
or

m
al

iz
ed

E
[T

]
Upper bound
Delays
No delays

(a) Arrival delays only.

0.010.02 0.050.1 0.2 0.5
1

1.5

2

2.5

E[c]/E[X]

N
or

m
al

iz
ed

E
[T

]

(b) Cancellation delays only.

0.010.02 0.050.1 0.2 0.5
1

1.5

2

2.5

E[a+ c]/E[X]

N
or

m
al

iz
ed

E
[T

]

(c) Both delays present.

Figure 8. Arrival and cancellation delay simulations. The normalization
of E[T] is performed such that each value is divided by the theoretical value
without delays. The intervals represent 95% confidence intervals. The legend
applies to all figures.

Ghemawat, 2008] or Spark [Zaharia et al., 2012]. Using speculative execu-
tion, the infrastructure keeps track of request handling progress and launches
copies of slow tasks to reduce the total execution time. As explained by
Ganesh et al. [Ananthanarayanan et al., 2013], cloning can be viewed as an
extreme case with no speculation time.

Restricting the arrival and service time distributions to being exponential
and the queuing discipline to FCFS, the method presented in [Gardner et
al., 2015] is able to handle cases that are not covered by the synchronized
service definition, e.g., to simultaneously handle both cloning and non-cloning
request classes. However, as a result of Theorem 2, here we show that the
result presented in [Gardner et al., 2015] is valid also — in the case of server
systems with synchronized service — for other queuing disciplines, including
for example PS.

168

7 Related Work

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

E
[ε
]

a-JSQ-d
a-R-d

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization ρ

N
or

m
al

iz
ed

E
[T

]

a-JSQ-d
a-R-d
c-`-d

Figure 9. Simulations comparing a-`-d to c-`-d for random and JSQ.
The normalization of E[T] is performed such that each value is divided by
the value for the c-`-d counterpart. The intervals represent 95% confidence
intervals.

Gardner et al. [Gardner et al., 2016a] propose a service time model decou-
pling task sizes from server slowdowns, conveniently allowing for modeling
of dependencies between request clones. We use this model throughout our
paper (denoting it as the S&Z model), and show that using our G/G/1 mod-
eling concept, its statistical properties under cloning can be analyzed even
under PS. In the same paper [Gardner et al., 2016a], the authors propose
the cloning strategy Redundant-to-Idle-Queue (RIQ), a policy that clones
requests to all idle servers that it finds. The RIQ strategy is both provably
stable and analytically tractable within the S&Z model, but cannot detect
scenarios where cloning actually deteriorates performance. Our co-design pro-
cedure presented in Section 4 is, on the contrary, able to identify scenarios
where cloning is not beneficial and should be avoided. In these scenarios, the

169

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

optimal cloning factor is equal to 1.
It is possible to determine guidelines for cloning factors for service time

distributions with specific properties [Shah et al., 2016]. The results pre-
sented in [Shah et al., 2016] are applicable to arbitrary arrival processes, and
examples where cloning is beneficial include i.i.d. memoryless service time
distributions. In our paper, we go beyond this and utilize the G/G/1 mod-
eling in Section 2 to determine optimal cloning factors for any service time
distributions. However, we do require server systems to guarantee synchro-
nized service.

In an attempt to make cloning models closer to real implementations, Lee
et al. [Lee et al., 2017] worked on modeling and analyzing the overhead of
cancellations, and the effects on the optimal scheduling policy. We also con-
sider practical imperfections in our paper, but we instead focus on studying
the accuracy of our synchronized model when subjected to e.g. arrival and
cancellation delays.

Joshi et al. [Joshi et al., 2017] show that an (n,1) fork-join system can
be equivalently represented by an M/G/1 queue, under i.i.d assumptions
for service time distributions. Utilizing Theorem 1 and 2, we show that,
under synchronized service, a server system under cloning can equivalently
be represented by a G/G/1 model, without any assumptions on either inter-
arrival or service time distribution. A group-based random cloning policy is
presented in [Joshi et al., 2017], that roughly corresponds to our cluster co-
design with ` as the random load-balancing algorithm. Our G/G/1 modeling
holds for any queuing discipline, allowing us to present and analyze a wider
class of cloning co-designs. Specifically, we are able to co-design the JSQ
policy together with the cloning factor for the PS discipline. Joshi et al. [Joshi
et al., 2017] show that for log-convex tail distributions, cloning to all n servers
is optimal even in the heavy traffic regime. Additionally, the paper also takes
the computing cost into account when deciding cloning factors, which we do
not consider in our paper.

Our cloning model presented in this paper is using a standard, high-level
queuing theoretic approach. As described in e.g. [Franks et al., 2008], a com-
puting application can be modeled in greater detail using a layered queuing
networks (LQN) approach, where the model is split into smaller components.
An interesting possible extension to our work would be to investigate if our
proposed techniques also apply to more complex LQN models.

8. Conclusion

This paper presented a theoretical analysis that extends and generalizes
known results about request cloning in data centers. We used the concept
of synchronized service to denote a certain number of servers that simulta-

170

References

neously serve clones of a request. We demonstrated that request cloning in
a server system under synchronized service can equivalently be modeled as
a G/G/1 server. We showed that no assumptions on either inter-arrival or
service time distributions are required, and that the G/G/1 model holds for
any queuing discipline. In this paper, we focused on the PS discipline and
show further results for it.

We further extended our theoretical results and discussed the optimal
cloning factor. We also analyzed more complex server systems, consisting of
multiple clusters. To demonstrate the possible applications of the equivalent
G/G/1 modeling, we presented a co-design method that, under homogeneity
assumptions, found the optimal cloning factor copt

f and the server system’s
corresponding mean response time E(T) under both random and JSQ load-
balancing for clusters with synchronized service. To the best of our knowl-
edge, this paper presents the first provably stable combined load-balancing
and cloning strategy for the PS queuing discipline. Further, we relaxed the
synchronized service assumption and derived bounds for how practical im-
perfections, such as arrival and cancellation delays, affect the accuracy of our
model. We demonstrated using simulations that removing the synchronized
service constraint for the JSQ co-design seems to only marginally reduce the
accuracy of the model. We provided an intuitive explanation to this phe-
nomenon, which implies that our theoretical model could be used to design
the non-synchronized a-JSQ-d version as well.

Acknowledgments

This work was partially supported by the Wallenberg AI, Auto-nomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallen-
berg Foundation, by the Nordforsk Nordic Hub on Industrial IoT (HI2OT),
and by the ELLIIT Excellence Center at Lund University.

References

Ananthanarayanan, G., A. Ghodsi, S. Shenker, and I. Stoica (2013). “Effec-
tive straggler mitigation: Attack of the clones”. In: Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation.
nsdi’13. USENIX Association, Lombard, IL, pp. 185–198.

Ananthanarayanan, G., S. Kandula, A. Greenberg, I. Stoica, Y. Lu, B. Saha,
and E. Harris (2010). “Reining in the outliers in map-reduce clusters using
mantri”. In: Proceedings of the 9th USENIX Conference on Operating Sys-
tems Design and Implementation. OSDI’10. USENIX Association, Van-
couver, BC, Canada, pp. 265–278. url: http://dl.acm.org/citation.
cfm?id=1924943.1924962.

171

http://dl.acm.org/citation.cfm?id=1924943.1924962
http://dl.acm.org/citation.cfm?id=1924943.1924962

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

Ayesta, U. (2019). “On redundancy-d with cancel-on-start a.k.a join-shortest-
work (d)”. ACM SIGMETRICS Performance Evaluation Review 46:2,
pp. 24–26. doi: 10.1145/3305218.3305228. url: https://doi.org/
10.1145/3305218.3305228.

Calheiros, R. N., R. Ranjan, A. Beloglazov, C. A. F. De Rose, and R. Buyya
(2011). “Cloudsim: a toolkit for modeling and simulation of cloud com-
puting environments and evaluation of resource provisioning algorithms”.
Softw. Pract. Exper. 41:1, pp. 23–50.

Dean, J. and L. A. Barroso (2013). “The tail at scale”. Communications of
the ACM 56:2, p. 74.

Dean, J. and S. Ghemawat (2008). “Mapreduce: simplified data processing
on large clusters”. Commun. ACM 51:1, pp. 107–113. issn: 0001-0782.
doi: 10.1145/1327452.1327492. url: http://doi.acm.org/10.1145/
1327452.1327492.

Franks, G., T. Al-Omari, M. Woodside, O. Das, and S. Derisavi (2008).
“Enhanced modeling and solution of layered queueing networks”. IEEE
Transactions on Software Engineering 35:2, pp. 148–161.

Gardner, K., M. Harchol-Balter, and A. Scheller-Wolf (2016a). “A better
model for job redundancy: decoupling server slowdown and job size”.
In: 2016 IEEE 24th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems (MASCOTS).
IEEE. doi: 10.1109/mascots.2016.43. url: https://doi.org/10.
1109/mascots.2016.43.

Gardner, K., S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia
(2015). “Reducing latency via redundant requests: Exact analysis”. ACM
SIGMETRICS Performance Evaluation Review 43:1, pp. 347–360.

Gardner, K., S. Zbarsky, M. Harchol-Balter, and A. Scheller-Wolf (2016b).
“The power of d choices for redundancy”. ACM SIGMETRICS Perfor-
mance Evaluation Review 44:1, pp. 409–410. doi: 10.1145/2964791.
2901497. url: https://doi.org/10.1145/2964791.2901497.

Gupta, V., M. H. Balter, K. Sigman, and W. Whitt (2007). “Analysis of join-
the-shortest-queue routing for web server farms”. Performance Evaluation
64:9-12, pp. 1062–1081. doi: 10.1016/j.peva.2007.06.012. url:
https://doi.org/10.1016/j.peva.2007.06.012.

Joshi, G. (2018). “Synergy via redundancy: boosting service capacity with
adaptive replication”. ACM SIGMETRICS Performance Evaluation Re-
view 45:2, pp. 21–28. doi: 10.1145/3199524.3199530. url: https:
//doi.org/10.1145/3199524.3199530.

Joshi, G., Y. Liu, and E. Soljanin (2012). “Coding for fast content download”.
CoRR abs/1210.3012. arXiv: 1210.3012. url: http://arxiv.org/
abs/1210.3012.

172

https://doi.org/10.1145/3305218.3305228
https://doi.org/10.1145/3305218.3305228
https://doi.org/10.1145/3305218.3305228
https://doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
https://doi.org/10.1109/mascots.2016.43
https://doi.org/10.1109/mascots.2016.43
https://doi.org/10.1109/mascots.2016.43
https://doi.org/10.1145/2964791.2901497
https://doi.org/10.1145/2964791.2901497
https://doi.org/10.1145/2964791.2901497
https://doi.org/10.1016/j.peva.2007.06.012
https://doi.org/10.1016/j.peva.2007.06.012
https://doi.org/10.1145/3199524.3199530
https://doi.org/10.1145/3199524.3199530
https://doi.org/10.1145/3199524.3199530
https://arxiv.org/abs/1210.3012
http://arxiv.org/abs/1210.3012
http://arxiv.org/abs/1210.3012

References

Joshi, G., E. Soljanin, and G. Wornell (2015). “Efficient replication of queued
tasks for latency reduction in cloud systems”. In: 2015 53rd Annual Aller-
ton Conference on Communication, Control, and Computing (Allerton).
IEEE.

Joshi, G., E. Soljanin, and G. Wornell (2017). “Efficient redundancy tech-
niques for latency reduction in cloud systems”. ACM Transactions on
Modeling and Performance Evaluation of Computing Systems 2:2, pp. 1–
30. doi: 10.1145/3055281. url: https://doi.org/10.1145/3055281.

Klein, C., M. Maggio, K.-E. Årzén, and F. Hernández-Rodriguez (2014).
“Brownout: building more robust cloud applications”. In: Proceedings of
the 36th International Conference on Software Engineering. ICSE 2014,
pp. 700–711.

Kleinrock, L. (1975). Queueing Systems. Vol. I: Theory. Wiley Interscience.
Lee, K., R. Pedarsani, and K. Ramchandran (2017). “On scheduling redun-

dant requests with cancellation overheads”. IEEE/ACM Transactions on
Networking 25:2, pp. 1279–1290. doi: 10.1109/tnet.2016.2622248.
url: https://doi.org/10.1109/tnet.2016.2622248.

Modica, G. and L. Poggiolini (2012). A First Course in Probability and
Markov Chains. John Wiley & Sons, Ltd. doi: 10.1002/9781118477793.
url: https://doi.org/10.1002/9781118477793.

Qiu, Z., J. F. Pérez, and P. G. Harrison (2016). “Tackling latency via repli-
cation in distributed systems”. In: Proceedings of the 7th ACM/SPEC on
International Conference on Performance Engineering - ICPE ’16. ACM
Press.

Shah, N. B., K. Lee, and K. Ramchandran (2014). “The mds queue: analysing
the latency performance of erasure codes”. In: 2014 IEEE International
Symposium on Information Theory, pp. 861–865. doi: 10.1109/ISIT.
2014.6874955.

Shah, N. B., K. Lee, and K. Ramchandran (2016). “When do redundant
requests reduce latency?” IEEE Transactions on Communications 64:2,
pp. 715–722. doi: 10.1109/tcomm.2015.2506161. url: https://doi.
org/10.1109/tcomm.2015.2506161.

Wang, H., J. Li, Z. Shen, and Y. Zhou (2018). “Approximations and bounds
for (n, k) fork-join queues: a linear transformation approach”. In: 2018
18th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). IEEE. doi: 10.1109/ccgrid.2018.00069. url:
https://doi.org/10.1109/ccgrid.2018.00069.

Zaharia, M., M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J.
Franklin, S. Shenker, and I. Stoica (2012). “Resilient distributed datasets:
a fault-tolerant abstraction for in-memory cluster computing”. In: Pre-
sented as part of the 9th USENIX Symposium on Networked Systems

173

https://doi.org/10.1145/3055281
https://doi.org/10.1145/3055281
https://doi.org/10.1109/tnet.2016.2622248
https://doi.org/10.1109/tnet.2016.2622248
https://doi.org/10.1002/9781118477793
https://doi.org/10.1002/9781118477793
https://doi.org/10.1109/ISIT.2014.6874955
https://doi.org/10.1109/ISIT.2014.6874955
https://doi.org/10.1109/tcomm.2015.2506161
https://doi.org/10.1109/tcomm.2015.2506161
https://doi.org/10.1109/tcomm.2015.2506161
https://doi.org/10.1109/ccgrid.2018.00069
https://doi.org/10.1109/ccgrid.2018.00069

Paper IV. Modeling of Request Cloning in Cloud Server Systems...

Design and Implementation (NSDI 12). USENIX, San Jose, CA, pp. 15–
28. url: https://www.usenix.org/conference/nsdi12/technical-
sessions/presentation/zaharia.

Zaharia, M., A. Konwinski, A. D. Joseph, R. Katz, and I. Stoica (2008). “Im-
proving mapreduce performance in heterogeneous environments”. In: 8th
USENIX Conference on Operating Systems Design and Implementation.
OSDI’08. San Diego, California, pp. 29–42.

174

https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

Paper V

Towards Performance Modeling of
Speculative Execution for Cloud

Applications

Tommi Nylander Johan Ruuskanen Karl-Erik Årzén

Martina Maggio

Abstract

Interesting approaches to counteract performance variability within
cloud datacenters include sending multiple request clones, either im-
mediately or after a specified waiting time. In this paper we present a
performance model of cloud applications that utilize the latter concept,
known as speculative execution. We study the popular Join-Shortest-
Queue load-balancing strategy under the processor sharing queuing
discipline. Utilizing the near-synchronized service property of this set-
ting, we model speculative execution using a simplified synchronized
service model. Our model is approximate, but accurate enough to be
useful even for high utilization scenarios. Furthermore, the model is
valid for any, possibly empirical, inter-arrival and service time distribu-
tions. We present preliminary simulation results, showing the promise
of our proposed model.

© 2020 ACM/SPEC. Originally published in International Conference on
Performance Engineering Companion, Edmonton, July 2020. Reprinted with
permission. The article has been reformatted to fit the current layout.

175

Paper V. Towards Performance Modeling of Speculative Execution...

1. Introduction

Speculative execution is a popular method employed by cloud providers as
a tool for increasing predictability of the execution time of jobs [Dean and
Barroso, 2013; Ren et al., 2015]. Redundancy is introduced by launching
copies of tasks that have been running for an unusually long time. The general
idea is that the unpredictability of task execution times due to effects such as
resource contention or network queues, can be mitigated by identifying slow
running instances and launching copies that will hopefully complete before
the original.

A closely related topic which has recently received increased attention
from researchers is cloning. As explained by Ganesh et al. [Ananthanarayanan
et al., 2013], cloning can be seen as a special case of speculative execution with
no speculation time, i.e. all clones are sent immediately. We refer to [Nylander
et al., 2020] for more related work on this topic.

Much of the research on speculative execution have been done consider-
ing the case of straggler mitigation in distributed computing using big data
frameworks such as MapReduce [Dean and Ghemawat, 2008]. Here a job is
split into several tasks, and is not considered completed until all, or a subset,
of tasks have been completed. The ultimate response time of a job is thus
highly sensitive to slow running tasks. Modeling and analysis of such systems
often either assume that each server can only take a single job at a time [Xu
and Lau, 2017], or that the introduction of redundancy does not affect the
service times of other jobs. An exception for the latter is the recent contribu-
tion of Aktas et al. [Aktaş and Soljanin, 2019], which shortly considers the
effect of redundancy on the response time distribution of tasks.

In this work we instead consider the case of replicated cloud applications
subject to independent user requests, and seek to model the behaviour of
such systems under speculative execution from a queuing model perspective.
Our approach is dependent on two key concepts from [Nylander et al., 2020],
summarized in the following paragraph.

Near-Synchronized Service. The concept of synchronized service was
introduced in [Nylander et al., 2020] to simplify modeling of request cloning.
Its full definition is given in [Nylander et al., 2020], but in short, cloning un-
der synchronized service implies that the clone that completes first is the one
that receives the shortest service time. For the processor sharing (PS) queu-
ing discipline, synchronized service implies that all n request clones rc1:n of an
original request ro experience identical processor shares across all n servers.
As synchronized service is very difficult to achieve in practice, the concept of
near-synchronized service was further introduced in [Nylander et al., 2020] to
model scenarios that include imperfections such as arrival and cancellation
delays. Additionally, it was shown empirically that the widely used load-
balancing strategy Join-Shortest-Queue (JSQ) provides near-synchronized

176

2 Model

service for all request clones rc1:n, when using PS as queuing discipline. This
property is very interesting as it allows for accurate approximate performance
modeling of JSQ cloud applications subject to cloning, by using a simplified
synchronized service model.

Contributions. Using the near-synchronization property of JSQ under
PS, we (i) derive a novel performance model for replicated cloud applications
subject to speculative execution; (ii) assuming Poisson arrivals, use existing
results from queuing theory to obtain an approximate yet accurate expression
for the average response time; and (iii) empirically demonstrate the potential
of our model through simulations.

2. Model

We consider performance modeling of a cloud application replicated over m
homogeneous servers, modeled using the PS queuing discipline with service
rate µ. User requests ro with rate λ enter at the load balancer, leading to a
system utilization ρ = λ/(mµ). The requests are dispatched to the servers
using the JSQ strategy, that always chooses the least occupied server. We
do not assume any specific distributions, however, for simplicity we require
the service times to be independent and identically distributed (i.i.d.) across
all m servers. When a specified amount of service time has been processed
for an original request ro, a speculative clone ris is dispatched to a unique
server, again using JSQ. This server system under JSQ and PS was shown
in [Nylander et al., 2020] to provide near-synchronized service, while our
modeling approach is performed assuming synchronized service. Our derived
performance metrics, including utilization ρ and average response time T ,
are thus approximate.

Define si as the service time when the speculative clone ris is dispatched to
the server system and Sn = {s1, s2, . . . , sn} as the ordered set of the service
times of all speculative cloning instances with si−1 ≤ si. Denote by F (x)
the cumulative distribution function (CDF), and F 0

r as the original service
time CDF. Using Theorem 2 in [Nylander et al., 2020], the following iterative
formula (1) can be used to determine the resulting service time CDF Fnr for
the speculation scenario Sn:

F ir(x) =

F 0
r (x), x ≤ s1

F 0
r (s1) + (1− F 0

r (s1)) · F 1
c (x), s1 < x ≤ s2

...
F i−1
r (si) + (1− F i−1

r (si)) · F ic(x), si < x

(1)

177

Paper V. Towards Performance Modeling of Speculative Execution...

with the intermediate CDF F ic(x) determined as

F ia(x) = F i−1
r (x|si < x) (2)

F ib (x) = F 0
r (x− si) (3)

F ic(x) = 1− (1− F ia(x)) · (1− F ib (x)). (4)

The algorithm is visualized in Figure 1 for an example scenario S2.
From (1), we can calculate the new average service rate µ(Sn) for a sce-

nario using n speculative clones as

µ(Sn) =

(∫ ∞
0

(1− Fnr (x))dx

)−1

. (5)

We define the service factor fµ(Sn) as the normalized increase of µ(Sn)
compared to the original µ(S0) = µ:

fµ(Sn) =
µ(Sn)

µ
. (6)

To model the changes to the server system load, we need to consider the
amount of speculative clones sent for each original request ro and the time
they spend in the system. We define the speculation factor f ip for a speculative
clone at time si as the probability f ip = 1 − F ir(si) that the clone is sent.
Furthermore, we define the sojourn factor f is for a speculative clone sent at
time si as its time spent in the system compared to the original request ro

f is =

∫∞
si

(1− Fnr (x|si < x))dx∫∞
0

(1− Fnr (x))dx
. (7)

Now we define the arrival factor fλ(Sn) for the total contributions to system
load from all n speculative clones as

fλ(Sn) = 1 +

n∑
i=1

f ip · f is. (8)

Finally, the load factor fρ(Sn) can then be defined as

fρ(Sn) =
fλ(Sn)

fµ(Sn)
. (9)

fρ(Sn) > 1 thus means that speculative cloning under scenario Sn results
in an increase of the original system load ρ(S0) = ρ, whereas fρ(Sn) < 1
represents a decrease. Also, we can define the modeled utilization of scenario
Sn as

ρ(Sn) = fρ(Sn) · ρ. (10)

178

2 Model

s1
0

0.2

0.4

0.6

0.8

1

Service Time
(a) Original service time CDF F 0

r

s1

Service Time

F 1
a

F 1
b

F 1
c

(b) Three intermediate CDFs

s1
0

0.2

0.4

0.6

0.8

1

Service Time
(c) Resulting service time CDF F 1

r

s1 s2

Service Time
(d) Resulting service time CDF F 2

r

Figure 1. Speculative cloning for an example scenario S2 = {s1, s2}.
From F 0

r at s1, three intermediate CDFs are formed using equations (2)-
(4). Then F 1

c is added to F 0
r at s1 according to Eq. (1) to form F 1

r . The
procedure is then repeated at s2 to form F 2

r .

179

Paper V. Towards Performance Modeling of Speculative Execution...

Equation (10) is very useful as it allows us to determine stability for the
scenario Sn by studying if ρ(Sn) < 1. Note that the arrival factor fλ(Sn) > 1
does not imply an increase in the arrival rate of original requests ro, i.e.
λ(Sn) = λ(S0) = λ for all n. Instead, it represents the contributions to the
system load from all speculative clones. We model this as a decrease in the
number of available servers m(S0) = m as

m(Sn) =
m

fλ(Sn)
. (11)

As a result, m(Sn) ∈ R+ is defined as a positive real number. Note that for
non-speculative cloning (with all clones sent at si = 0), fλ(Sn) and m(Sn)
assume integer values. The clone-to-clusters model in [Nylander et al., 2020],
which divides n servers into m clusters thus fits as a special case in our
speculative execution model.

To be able to get explicit response time measures, we need to assume Pois-
son arrival rates for λ(Sn). This allows us to utilize the very accurate (within
2-3%) approximate response time model for JSQ under PS from [Gupta et al.,
2007]. It provides average response times T (Sn) from the inputs (i) arrival
rate λ(Sn); (ii) service rate µ(Sn); and (iii) number of servers m(Sn).

Using a simplified synchronized service approach, we are thus able to
approximately model utilization, stability and average response times for a
replicated cloud application under a speculation scenario Sn, assuming a
JSQ+PS setup. The model accuracy is a potential issue that is examined in
the next section. Another drawback with our approach is that it might be
complicated to implement triggering of speculative clones at processed service
times si as these can be cumbersome to keep track of in a real system.

We evaluate our model using a discrete-event simulator, based on the
cloning-simulator from [Nylander et al., 2020] but extended with support
for speculative execution. We use Poisson arrivals and our service times are
distributed as Pareto (Type 1, shape=2.1, scale=0.5). We simulate using
m = 10 servers under system loads ρ(Sn) from 0.3 to 0.9 and consider three
different speculation scenarios: (i) S1 = {1.5}; (ii) S2 = {0.7, 1.0}; and (iii)
S3 = {0.3, 0.6, 0.9} (all units in seconds).

3. Evaluation

Figure 2 shows our preliminary results. In Figure 2(a), the simulated system
utilization ρ(Sn)sim is normalized against our modeled ρ(Sn). The results are
very close to 1 for all scenarios and loads, which points towards that our
model is very accurate at predicting utilization and stability.

Figure 2(b) shows the results of the simulated average response times
T (Sn)sim normalized against our modeled T (Sn). As can be seen, the accu-

180

3 Evaluation

0.4 0.6 0.8
0.98

0.99

1

1.01

1.02

Utilization ρ(Sn)

ρ
(S

n
)s

im
/
ρ
(S

n
) S1 S2 S3

(a) Simulated vs modeled ρ(Sn).

0.4 0.6 0.8
0.85

0.9

0.95

1

1.05

Utilization ρ(Sn)

T
(S

n
)s

im
/
T
(S

n
)

(b) Simulated vs modeled T (Sn).

0.4 0.6 0.8
0.8

0.9

1

1.1

1.2

Utilization ρ(S0)

T
(S

n
)s

im
/
T
(S

0
)s

im

(c) Speculation scenarios Sn vs S0.

Figure 2. Simulation results using 20 repeated runs with 106 requests.
Confidence intervals are tight and left out for readability.

181

Paper V. Towards Performance Modeling of Speculative Execution...

racy of our model is very high for low to medium loads for all three specu-
lation scenarios. However, for higher loads our model accuracy is worse (but
still reasonable) for the more complicated scenarios. A probable explanation
is that the service is further away from synchronization here. The final Fig-
ure 2(c) shows the results of the simulated average response times T (Sn)sim

for the speculation scenarios normalized against T (S0)sim, where no specu-
lation is present. A value below 1 indicates that the speculation scenarios
are beneficial, and as can be seen all three scenarios perform well for low
loads. Scenario S1 distinguishes itself from the the other two by actually out-
performing the no speculation case at all system loads. The reason is that
its load factor fρ(S1) is below 1, i.e. it always decreases the system load.
This is very interesting as it can be shown, using techniques from [Nylander
et al., 2020], that standard cloning (all si = 0) under this particular Pareto
distribution is only beneficial for low loads. Speculative execution thus has
the potential to be more useful than cloning under high loads.

4. Conclusion

We have presented a novel model of a replicated cloud application subject to
speculative execution, that looks promising in our preliminary evaluation. We
plan to expand our evaluation to be more general, and to use our model to find
optimal speculation configurations S?n, providing the shortest response times.
A possible approach could be to search for the configurations that minimize
the system utilization, in order to provide performance enhancements even
for server systems under high load.

Acknowledgments

This work was partially supported by the Wallenberg AI, Auto-nomous Sys-
tems and Software Program (WASP) funded by the Knut and Alice Wallen-
berg Foundation, by the Nordforsk Nordic Hub on Industrial IoT (HI2OT),
and by the ELLIIT Excellence Center at Lund University.

References

Aktaş, M. F. and E. Soljanin (2019). “Straggler mitigation at scale”.
IEEE/ACM Transactions on Networking 27:6, pp. 2266–2279. issn: 1558-
2566.

182

References

Ananthanarayanan, G., A. Ghodsi, S. Shenker, and I. Stoica (2013). “Effec-
tive straggler mitigation: Attack of the clones”. In: Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation.
nsdi’13. USENIX Association, Lombard, IL, pp. 185–198.

Dean, J. and L. A. Barroso (2013). “The tail at scale”. Communications of
the ACM 56:2, p. 74.

Dean, J. and S. Ghemawat (2008). “Mapreduce: simplified data processing
on large clusters”. Commun. ACM 51:1, pp. 107–113. issn: 0001-0782.
doi: 10.1145/1327452.1327492. url: http://doi.acm.org/10.1145/
1327452.1327492.

Gupta, V., M. H. Balter, K. Sigman, and W. Whitt (2007). “Analysis of join-
the-shortest-queue routing for web server farms”. Performance Evaluation
64:9-12, pp. 1062–1081. doi: 10.1016/j.peva.2007.06.012. url:
https://doi.org/10.1016/j.peva.2007.06.012.

Nylander, T., J. Ruuskanen, K.-E. Årzén, and M. Maggio (2020). “Modeling
of request cloning in cloud server systems using processor sharing”. In:
Proceedings of the 2020 ACM/SPEC International Conference on Per-
formance Engineering (ICPE ’20), April 20–24, 2020, Edmonton, AB,
Canada.

Ren, X., G. Ananthanarayanan, A. Wierman, and M. Yu (2015). “Hopper:
decentralized speculation-aware cluster scheduling at scale”. In: Proceed-
ings of the 2015 ACM Conference on Special Interest Group on Data
Communication - SIGCOMM ’15.

Xu, H. and W. C. Lau (2017). “Optimization for speculative execution in big
data processing clusters”. IEEE Transactions on Parallel and Distributed
Systems 28:2, pp. 530–545. issn: 2161-9883.

183

https://doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
https://doi.org/10.1016/j.peva.2007.06.012
https://doi.org/10.1016/j.peva.2007.06.012

	Title Page
	Contents
	Acronyms
	1 Introduction
	1.1 Thesis Outline
	1.2 Contributions of the Thesis

	2 Background
	2.1 Cloud Computing
	2.2 Queuing Theory
	2.3 Control Concepts

	3 Improving Cloud Application Predictability
	3.1 Simulation Environment
	3.2 Control-Theoretical Methods
	3.3 Queuing-Theoretical Methods
	3.4 Common Themes

	4 Future Work
	Bibliography
	Paper I. BrownoutCC: Cascaded Control for Bounding the Response Times of Cloud Applications
	1 Introduction
	2 The brownout approach
	3 The BrownoutCCapproach
	4 Evaluation
	5 Conclusion and future work
	References

	Paper II. Improved Dynamic Modeling for Controlled Server Queues
	1 Introduction
	2 Background and Related Work
	3 Model
	4 Model Evaluation
	5 Control Design
	6 Control Evaluation
	7 Conclusion
	References

	Paper III. Cloud Application Predictability through Integrated Load-Balancing and Service Time Control
	1 Introduction
	2 Problem Statement
	3 Proposed Solution
	4 Experimental Validation
	5 Related work
	6 Conclusion
	References

	Paper IV. Modeling of Request Cloning in Cloud Server Systems using Processor Sharing
	1 Introduction
	2 Synchronized Model
	3 Examples
	4 Applications
	5 Non-Synchronized Service
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Paper V. Towards Performance Modeling of Speculative Execution for Cloud Applications
	1 Introduction
	2 Model
	3 Evaluation
	4 Conclusion
	References

