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Elucidating causal relationships between energy homeostasis and cardiometabolic outcomes 
Abstract 
Energy metabolism dyshomeostasis is associated with multiple health problems. For example, abundant 
epidemiological data show that obesity and overweight increase the risk of cardiometabolic diseases and early 
mortality. Type 2 diabetes (T2D), characterized by chronically elevated blood glucose, is also associated with 
debilitating complications, high healthcare costs and mortality, with cardiovascular complications accounting for 
more than half of T2D-related deaths. Prediabetes, which is defined as elevated blood glucose below the 
diagnostic threshold for T2D, affects approximately 350M people worldwide, with about 35-50% developing T2D 
within 5 years. Further, non-alcoholic fatty liver disease, a form of ectopic fat deposition as a result of energy 
imbalance, is associated with increased risk of T2D, CVD and hepatocellular carcinoma.  
Determination of causal relationships between phenotypes related to positive energy balance and disease 
outcomes, as well as elucidation of the nature of these relationships, may help inform public health intervention 
policies. In addition, utilizing big data and machine learning (ML) approaches can improve prediction of outcomes 
related to excess adiposity both for research purposes and eventual validation and clinical translation.  

Aims 
In paper 1, I set out to summarize observational evidence and further determine the causal relationships between 
prediabetes and common vascular complications associated with T2D i.e., coronary artery disease (CAD), stroke 
and renal disease. In paper 2, I studied the association between LRIG1 genetic variants and BMI, T2D and lipid 
biomarkers. In paper 3, we used ML to identify novel molecular features associated with non-alcoholic fatty liver 
disease (NAFLD). In paper 4, I elucidate the nature of causal relationships between BMI and cardiometabolic traits 
and investigate sex differences within the causal framework. 

Results 
Prediabetes was associated with CAD and stroke but not renal disease in observational analyses, whilst in the 
causal inference analyses, prediabetes was only associated with CAD. Common LRIG1 variant (rs4856886) was 
associated with increased BMI and lipid hyperplasia but a decreased risk of T2D. In paper 3, models using 
common clinical variables showed strong NAFLD prediction ability (ROCAUC = 0.73, p < 0.001); addition of 
hepatic and glycemic biomarkers and omics data to these models strengthened predictive power (ROCAUC = 
0.84, p < 0.001). Finally, there was evidence of non-linearity in the causal effect of BMI on T2D and CAD, 
biomarkers and blood pressure. The causal effects BMI on CAD were different in men and women, though this 
difference did no hold after Bonferroni correction.  

Conclusion 
We show that derangements in energy homeostasis are causally associated with increased risk of cardiometabolic 
outcomes and that early intervention on perturbed glucose control and excess adiposity may help prevent these 
adverse health outcomes. In addition, effects of novel LRIG1 genetic variants on BMI and T2D might enrich our 
understanding of lipid metabolism and T2D and thus warrant further investigations. Finally, application of ML to 
multidimensional data improves prediction of NAFLD; similar approaches could be used in other disease research.  
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Popular summary 

Obesity is correlated with many diseases including cardiovascular disease, type 2 
diabetes (T2D), kidney diseases, and some cancers. In addition, obesity can reduce 
quality of life, is often stigmatized, lowers self-esteem and adversely affects many 
other aspects of mental health. Obesity and T2D are two of the greatest public health 
challenges of recent times; prediabetes, which is elevated blood sugar levels below 
the diagnosis threshold for diabetes, is another major concern, which is often 
unrecognized, as moderately elevated blood sugar concentrations yield few, if any, 
perceptible symptoms. This is also true during the early stages of diabetes, often 
leaving the disease undiagnosed until it has worsened, and symptoms (frequent 
urination, excessive thirst, fatigue etc) are apparent.  

Correlation does not always mean causation, and to effectively prevent the 
complications of T2D or obesity it is important to establish whether excess body fat 
or elevated blood sugar actually “cause” the development of other diseases. To be 
confident that there is a causal relationship between obesity, prediabetes, and the 
diseases with which they correlate, we must be sure that these relationships are not 
influenced by other factors, here called ‘confounders’. Further, it is important to 
establish the nature of these relations in the sense that, does risk increase gradually 
and proportionately according to the level of obesity or prediabetes, or do the 
outcomes change in some other ‘non-linear’ way?  

Accumulation of fat in the liver, non-alcoholic fatty liver disease (NAFLD), is one of 
the consequences of obesity and can progress to extensive liver damage and liver 
cancer. Early detection of NAFLD is not easy and confirmation of diagnosis requires 
invasive biopsy, which is associated with complications like infections and bleeding. 
Even when imaging methods like ultrasound are used, they do not tell us who is likely 
to progress to the severe form of liver damage. By using information that is easily 
accessible in the clinical environment, it is possible to construct statistical methods 
that can predict NAFLD and identify those at risk early. These methods can be further 
improved by additional ‘omics’ data which refers to novel assays of genetic and 
metabolites found in the blood. Such prediction models show a strong prediction 
ability and with further model refinement and as such data becomes more available, 
this offers possibilities of more accurate early detection of NAFLD and other diseases. 

There has been immense growth in the field of genetics with subsequent identification 
of genetic variants associated with many diseases, through genome-wide association 
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studies (GWAS). While these are important developments, the identified genetic 
variants are important to the biomedical field if their exact roles can be determined. 
To date, a modest number of the millions of genetic variants identified have known 
functions, and therefore research is still ongoing to determine their role. In this project, 
a polymorphism (a piece of DNA code that differs between people within the same 
population) in the LRIG1 gene was shown to influence obesity and T2D and therefore 
will be of great interest for further investigation. 

Overall, in this project, we found that prediabetes is a likely cause of heart disease 
irrespective of T2D diagnosis, but we did not find sufficient evidence to support 
prediabetes as a likely cause of stroke or kidney disease. This implies that early 
detection and correction of impaired blood glucose control is crucial in preventing 
heart disease, emphasizing the importance of maintaining a healthy lifestyle to keep 
blood sugar under control. We also showed that obesity is a probable cause of T2D, 
heart disease and hypertension, as well as variation in levels of blood glucose, blood 
lipids and blood pressure. These associations are largely non-linear. Of interest, we 
showed that the risk to cause heart disease conferred by obesity differs between men 
and women and that menopause status and age in women has substantial influence 
on the effect obesity has on a woman’s health. Again, this underscores the fact that 
maintaining a healthy weight is highly beneficial in preventing non-communicable 
diseases and the often-associated premature death.  

Using data that can be availed in the clinic, we created models for predicting NAFLD 
which showed good performance even when tested on another cohort. Further, 
addition of omics data, availed by more sophisticated assay methods, improved the 
prediction ability of the models. These methods can be used to identify people at risk 
who can benefit from timely interventions. In addition, as omics data become more 
accessible, it will lead to improved prediction tools, not only for NAFLD, but also 
other diseases. Lastly, we showed that a variant of the LRIG1 gene was associated 
with increased BMI but reduced risk of T2D, and was also associated with the size of 
fat cells (adipocytes). This variant seems to determine condition of “healthy obesity”, 
but further research is needed to fully understand its biological functions.  

In conclusion, prediabetes causes heart disease, independent of T2D. Obesity also 
causes T2D, heart disease and hypertension, as well as variation in blood levels of 
glucose and lipids, and blood pressure. These effects of obesity are largely non-
linear and it is possible to estimate the impact of weight reduction on causal risk of 
a disease. Further, effects of obesity on causation of heart disease differ in men and 
women, and in women differ between younger and older women. While general 
recommendations encourage maintaining a healthy weight, further research is 
needed to understand interventions that are best suited for men and women, as well 
as understanding the roles of newly identified genetic variants.  
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Chapter 1 

Introduction 
Living organisms sustain their core biological functions by intake, expenditure and 
storage of energy1. In humans, energy intake involves ingestion of carbohydrates, fat, 
proteins and alcohol, while expenditure includes resting metabolic rate (RMR), thermic 
effect of food (TEF), and physical activity (PA)2. If energy intake equals expenditure, 
fluctuation in body weight is negligible. In positive energy balance, energy intake 
exceeds expenditure and leads to excess calories being stored as fat; when sustained for 
long enough this results in overweight (BMI 25 – 29.9 kg/m2) or obesity (BMI ≥ 
30kg/m2). When energy expenditure exceeds intake, the result is a state of negative 
energy balance and loss of body weight3. Disturbances in this elaborate system result in 
diseases mainly associated with energy metabolism and its complications.  

The aim of aetiological studies is to establish causality i.e., cause-effect inference. 
Observational studies have major drawbacks namely confounding, bias and reverse 
causality that render causal inference unreliable. Randomized controlled trials 
(RCTs), considered the gold-standard for testing causality, are expensive, some take 
time, or are unfeasible in some situations making epidemiological studies the 
preferred design. Further, co-occurrence of exposures make it impossible to entirely 
attribute outcomes to an intervention. For instance, it is uncertain whether the 
benefits of weight loss are specifically due to reduction in adipose tissue or 
alterations in other risk factors that coincide with weight loss or other risk exposures 
that are attenuated by the intervention4. Different study situations, therefore, call for 
different designs. To answer the question of causality in epidemiological contexts, 
Mendelian randomization (MR) offers a rather powerful solution.  

Background 
Obesity and T2D are complex and inter-related conditions. The progressive increase 
in the prevalence of obesity over time has hugely contributed to the rise of T2D5. 
According to the World Health Organization (WHO), obesity has nearly tripled 
since 1975. In 2016, more than 1.9 billion adults (>18yrs) were overweight, out of 
which 650 million were obese. In the same year, 39% of adults were overweight and 
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13% were obese6. Between 1975 and 2014, the global age-standardized BMI 
increased from 21.7 kg/m2 (CI: 21.3, 22.1) to 24.2 kg/m2 (CI: 24.0, 24.4) in men, 
and from 22.1 kg/m2 (CI: 21.7, 22.5) to 24.4 kg/m2 (CI: 24.2, 24.6) in women. Over 
the same period, the prevalence of obesity increased from 3.2% to 10.8% in men 
and from 6.4% to 14.9% in women7.  

The prevalence of obesity peaked 10 years earlier in men (between 50-54 years) 
than women (60 -64 years)8. On average, the global population became >1.5 kg 
heavier each decade. Obesity was previously deemed a problem in high-income 
countries, but is now on the rise in low- and middle-income countries and if the 
secular trends in overweight and obesity continue, about 60% of the global 
population will be overweight or obese by the year 20309. 

T2D is the commonest form of diabetes and accounts for >90% of all diabetes 
globally. It develops slowly and the exact time of onset is impossible to determine10. 
Globally, an estimated 30-50% of those with T2D may be unaware of their disease or 
undiagnosed11. About 537 million adults (20-79 years) were estimated to have T2D 
globally in 2021 and this number is expected to be about 643 million by 2030 and 783 
million by 2045. In fact, in the last 20 years, the number of people with T2D has risen 
steadily from about 151 million in the year 2000 to 537 million in 202111.  

Prediabetes is a state of hyperglycaemia which is below the diagnosis threshold for 
T2D. Two distinct states define prediabetes, impaired fasting glucose (IFG) and 
impaired glucose tolerance (IGT), the co-occurrence of both is referred to as 
impaired glucose regulation (IGR). The WHO defines IFG as a fasting plasma 
glucose (FG) of 6.1- 6.9 mmol/L and IGT as 2-hr glucose of 7.8-11.0 mmol/L12. 
The American Diabetes Association (ADA) defines IFG as FG of 5.6-6.9mmol/L 
and uses the same threshold for IGT; it additionally includes HbA1c between 39-46 
mmol/mol (or 5.7 - 6.4%) to define prediabetes13.  

Prevalence of prediabetes may vary because of the different criteria for IFG by ADA 
and WHO. However, in one meta-analysis the estimated prevalence of IFG in combined 
cohorts of Asians and Caucasians was 36% using WHO and 53% using ADA criteria 
respectively, while that of IGR was 15.8% (WHO) and 20.2% (ADA) respectively. In 
Caucasians the prevalence of IFG, IGT, and IGR was 43.9%, 41.0%, and 13.5%, 
respectively, while in Asians it was 29.2%, 49.4%, and 18.2%, respectively using WHO 
definition14. Globally, in 2021, about 541 million (10.6%) adults had IGT and, 319 
million (6.2%) had IFG with these figures projected to rise to approximately 730 million 
(11.4%) and 441 million (6.9%) people by 2045, respectively11.  

Prediabetes is a high risk for progressing to overt T2D, and studies have reported 
annual conversion rates (from prediabetes to T2D) between 4-11%15-17. However, 
without interventions the long-term conversion rates are high as seen in the Da-Qing 
study, where the cumulative incidence rate of T2D was >90% after 20 years in the 
control group18. Despite this, interventions like lifestyle modification (exercise and 
diet), and/or medication can reduce the rate of progression to T2D16,18,19.  
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By and large, obesity and dysglycaemia are attributed to environmental (including 
lifestyle) or genetic factors, or interaction of both, barring sickness or other causes 
like medication.  

Environmental factors 
Our societies have changed substantially over the last 50 years. Some of the most 
important changes, with regard to rise in global prevalence of obesity, are in the 
global food system. These changes, especially agricultural policies in rich countries, 
resulted in abundance of highly processed, affordable and aggressively marketed 
energy-dense foods5,20. In addition, “westernization” of lifestyles created conditions 
that promote development of obesity such as increase in sedentary time and 
decreased PA (more sedentary jobs, screen time, reduced walkability), inadequate 
sleep and increased consumption of high-energy/sugar snacks and sugar-sweetened 
beverages, in an environment of intensive marketing20-22. Additional local factors 
like density of fast-food outlets, limited access to nutritious food, reduced 
neighbourhood walkability/recreation facilities and low socio-economic status are 
associated with increased risk of obesity5,20. Indeed, change of local environment, 
from impoverished (with high obesity rates) to wealthier neighbourhoods (with low 
obesity rates) can reduce the prevalence of extreme obesity23.  

Food systems  interact with environmental and individual factors leading to 
variation in obesity prevalence between and within populations, and between 
individuals20. Ultimately, obesity is a result of interactions between an individual’s 
innate biology and environmental factors24. Most risk factors associated with of 
obesity are also increase T2D risk, with obesity itself being a major risk factor for 
T2D. Other risk factors associated with T2D are gestational diabetes in women, 
intrauterine environment (small gestational age, maternal obesity), smoking, low 
socio-economic status, and age. More recently, microbiota have also been linked to 
obesity and especially when dysbiosis is triggered by effects of the obesogenic 
environment25,26. 

Genetic factors  
In any given environment, there are phenotypic variations between individuals and 
in the case of obesity/ or T2D, not everyone develops obesity/T2D despite being in 
the same risk environment. This implies that other individual-specific factors 
(genetics/innate biology) predispose some people to obesity/T2D and not others. 
Both obesity and T2D are fairly heritable with studies showing that they cluster 
within families. In twin, family and adoption studies, the heritability (proportion of 
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phenotypic variance explained by heritable factors) of BMI is estimated to be 40-
70%27,28. On average, the heritability of BMI adjusted for age and sex is estimated 
to be between 40-50%29. 

From a genetic perspective, obesity can either be monogenic (syndromic/non-
syndromic) or polygenic. Monogenic obesity is inherited in a Mendelian pattern 
(i.e., traits are passed from parent to child either as autosomal dominant or recessive, 
or X-linked dominant or recessive) and is caused by chromosomal deletions or 
single gene defects. Typically, monogenic obesity presents as early onset and severe 
obesity and is rare in the general population. Examples of monogenic obesity 
include mutations in the leptin and leptin receptor genes and the melanocortin 
pathway (PCSK1, MC4R and POMC). Mutations in genes of the leptin-
melanocortin pathway which regulates feeding behaviour causes hyperphagia and 
severe obesity30.  

Polygenic obesity, on the other hand, is a consequence of hundreds or thousands of 
gene variants, each with relatively small effects working together, and follows a 
pattern of heritability similar to other complex traits/diseases. GWA studies, 
scanning the genome for genetic variants associated with BMI and other obesity 
related traits, have discovered single nucleotide polymorphisms (SNPs) associated 
with polygenic obesity. Among the most studied loci, the fat mass and obesity-
associated (FTO) gene is associated with BMI and other obesity traits in both adults 
and children in diverse populations31-34. More discoveries have been made by 
research consortia formed to take advantage of increased sample size and power to 
discover more genetic variants. The Genetic Investigation for Anthropometric Traits 
(GIANT) consortium has the most recent GWAS for BMI, which included about 
800,000 participants and identified more than 750 loci35. While most of these SNPs 
are yet to be fully elucidated, computing polygenic risk scores weighted by the 
variants’ respective effect sizes provides a way of assessing their combined effect 
on variation of BMI or the respective trait. More recently, whole exome sequencing 
(WES) has facilitated exome-wide discovery studies and for BMI, a recent study (N 
= 640,000) identified 16 genes with rare variants associated with BMI36. Epigenetic 
modifications(heritable changes in gene expressions without changes in DNA 
sequence, via DNA methylation and histone modification) have also been associated 
with both obesity and T2D37 

Pathophysiological mechanisms in obesity 
Obesity is a disorder of chronic positive energy balance which results in storage of 
excess energy in the form of lipids in adipocytes38. Energy homeostasis is regulated 
by a system of multiple biological processes that work in concert to regulate 
acquisition, metabolism and storage of energy. This system responds to stimuli of 
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demand, availability, expenditure or storage and initiates processes to maintain the 
homeostatic set-point of energy.  

The central (CNS) and autonomic (ANS) nervous systems play a major role in 
mediating energy balance by influencing food intake behaviour and functions like 
brown fat thermogenesis39. This short and long-term energy balance is controlled 
via a coordinated network of central mechanisms and peripheral signals from 
adipose tissue, pancreas, the gastrointestinal tract (including microbiome), liver and 
other organs. The hypothalamus plays a central role in integrating sensory inputs 
that relate to energy balance and initiating autonomic, endocrine and behavioural 
homeostatic responses38,39. Other regions outside the hypothalamus contribute to 
energy regulation through sensory-signal input, cognitive processes (self-control of 
eating, adhering to actions like exercise), hedonic effects of food consumption, 
memory and attention39-43. Disorders in these tightly regulated systems lead to 
responses that promote energy intake and subsequent weight gain. Figure 1 depicts 
a summary of mechanisms involved in weight regulation. 

 
Figure 1 
Factors related to weight regulation. POMC = Pro-opiomelanocortin, CART = cocain- and amphetamine-regulated 
transcript, NPY = neuropeptide Y, mTOR = mechanistic target of rapamycin, AgRP = Agouti-related protein, PYY = 
peptide YY, GLP1 = glucagon-like peptide-1, CCK = cholecystokinin, BMR = Basal metabolic rate.  Created with 
www.BioRender.com   
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Pathophysiological mechanisms of dysglycaemia 
The processes that lead to overt T2D are a continuum with earliest disorder of 
glycaemic control being insulin resistance. Reduced insulin sensitivity and the 
compensatory rise in insulin secretion occur years before T2D diagnosis44,45. T2D 
mainly results from progressive beta-cell failure (inability to secrete insulin), in the 
context of insulin resistance in the liver, adipose tissue and skeletal muscle46. 
DeFronzo described the “ominous octet” of eight pathophysiological processes that 
cause hyperglycaemia and eventual T2D 46, depicted in figure 2 below. 

Figure 2. 
Pathophysiological mechanisms in T2D. The components of the “ominous octate” include muscle insulin resistance 
which reduces glucose intake; hepatic insulin resistance with excessive gluconeogenesis, insulin resistance in 
adipocytes with increased lipolysis. Insulin promotes lipogenesis and inhibits lipolysis and thus when insulin resistance 
develops in adipose tissue the inhibition of lipolysis is impaired. Uncontrolled lipolysis leads to high FFA levels in 
circulation and when the liver and muscles are constantly exposed to these levels, there is increased uptake and storage 
of ectopic fat which further worsens insulin resistance in these organs47. Progressive beta-cell failure and apoptosis 
leads to decreased insulin production, and an increase in glucagon secretion and increased hepatic sensitivity to 
glucagon. Further there is blunted incretin effect due to beta-cell resistance to glucagon-like peptide (GLP-1) and 
glucose-dependent insulinotropic peptide (GIP). In the kidney there is increased gluconeogenesis and glucose 
reabsorption by renal tubules while in brain tissue insulin resistance and neurotransmitter dysfunction lead to impaired 
appetite stimulation and weight gain. To the ominous octet, two more mechanisms have been included namely vascular 
insulin resistance and inflammation48. Boxes represent therapeutic agents targeting that particular pathophysiological 
mechanism. Picture source48  

Impaired insulin signal transduction, which leads to insulin resistance, results in 
decreased glucose transport into the cell and defective intramyocellular glucose 
metabolism in muscles, while in the liver, basal hepatic gluconeogenesis is 
unresponsive to insulin and overproduction of glucose occurs in the presence of 
elevated plasma insulin levels46. Further increase in gluconeogenesis is driven by 
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elevated glucagon levels in circulation with enhanced hepatic sensitivity49. Beta-cell 
lipotoxicity and glucotoxicity due to elevated FFAs and hyperglycaemia 
respectively, impair insulin secretion which further promotes hepatic 
gluconeogenesis50 51. In addition, there is impaired uptake of glucose by the liver 
after glucose ingestion due to impaired incretin-induced potentiation46. This 
hyperglycaemic environment is accompanied by increased insulin production by 
beta-cells up to a point where the compensatory mechanisms cannot offset the 
effects of insulin resistance. At the same time, there is progressive decline in beta-
cell mass effectively reducing the amount of insulin secreted, eventually leading to 
overt T2D disease52,53.  

Consequences of Obesity  
Excess adiposity interferes with health and overall wellbeing in multiple ways, 
ranging from psychosocial to anatomic and metabolic effects. Obesity reduces 
quality of life, leads to low self-esteem, stigma, decreased productivity and 
increased risk of overall mortality5,8,20. Adipose exerts pressure on surrounding 
organs and structures in addition to increased weight-bearing on joints, especially 
the knees, and spine. Increase intra-abdominal pressure may cause reflux and 
associated chemical injury to the oesophagus54.  

Obesity substantially increases the risk of metabolic diseases, for example T2D and 
fatty liver disease, and remains one of strongest predictors of T2D. It is also linked 
to cardiovascular diseases (hypertension, myocardial infarction and stroke), 
musculoskeletal disease (osteoarthritis, owing to pressure degradation and 
inflammation), mental and neurological disease, depression, sleep apnoea, 
gallstones and some types of cancer (for example, breast, ovarian, prostate, liver, 
kidney and colon)8,22,48,55-57. Excess adipose tissue becomes inflamed with 
macrophages and other immune secreting proinflammatory cytokines (e.g., 
interleukin 6) in addition to peptides and metabolites released during adipose 
remodelling58. There is also a decrease in levels of adiponectin which is anti-
inflammatory59. These processes create an environment of generalized 
inflammation, with elevated C-reactive protein levels, which leads to insulin 
resistance, endothelial damage, hypercoagulability, and subsequent cardiovascular 
diseases; essentially linking inflammation to the complications of obesity60. Figure 
3 summarises the consequences of obesity and the associated intermediate 
processes. 
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Figure 3. 
Diagram depicting the various consequences of obesity. Source54  

Non-alcoholic Fatty liver disease (NAFLD) 
NAFLD is spectrum of liver diseases manifesting as hepatic steatosis (NAFLD - the 
first stage recognizable when fat content >5% of liver volume), non-alcoholic 
steatohepatitis (NASH), fibrosis and eventual cirrhosis61. NAFLD affects about 20-
25% of the general population globally with highest prevalence seen in obesity and 
T2D61,62. NASH, the second stage of NAFLD, is characterized by the occurrence of 
inflammation and affects about 3-5% of the general population, predisposing 
sufferers to progressive liver fibrosis, cirrhosis and hepatocellular carcinoma63,64. 
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Diagnosis of NAFLD requires exclusion of other liver diseases like alcoholic liver 
disease, Wilson’s disease, and infections like viral hepatitis. 

Risk factors associated with NASH include diabetes, hypertension, dyslipidaemia and 
obesity (especially visceral obesity)63. NASH occurs as a result of increased lipid 
synthesis in the liver, decreased utilization of lipid stores and impaired oxidation of 
free fatty acids (FFAs), processes that promote macro-vesicular steatosis (lipid 
deposition in hepatocytes). Further, oxidative stress leads to hepatocyte injury and 
subsequent release of cytokines, which can lead to fibrosis over time 63,64.  

Diagnosis of NASH is done via liver enzyme tests (alanine aminotransferase - ALT 
and aspartate aminotransferase - AST), liver biopsy (the gold-standard), 
ultrasonography or magnetic resonance imaging (MRI) (where feasible), though the 
accuracy of imaging is contested and invasive biopsies carry complications61,64. 
There are no proven treatments specifically for NAFLD and screening programs are 
not recommended, due to uncertainties of diagnostic tests and treatment options. 
However, lifestyle change with sustained weight loss are reported to reduce liver fat 
and improve insulin sensitivity and glycaemic control61,63,65. 

Observational and experimental studies 
The associations between prediabetes and vascular outcomes, and those between 
excess adiposity and cardiometabolic outcomes have been studied extensively in 
epidemiology. In multiple cohorts, prediabetes has been associated with increased 
risk of vascular complications 66-69 with some studies demonstrating a direct relation 
between levels of baseline hyperglycaemia and risk of vascular complications70,71.  
Numerous studies have provided observational evidence of the multiple deleterious 
effects of obesity on different organ systems22,55,56,72,73. Further evidence from 
observational studies on effects of weight loss show reduced risk of cardiovascular 
disease (CVD) end points and other outcomes associated with obesity74,75.  

Inferring causality from observational studies is unreliable owing to their inherent 
shortcomings namely confounding, bias and reverse causality. To mitigate against 
these, RCTs are undertaken to establish causal relationships between an exposure 
and outcome. In one trial, lowering glucose levels in participants with IGT 
significantly reduced the relative risk of CVD events by 49% (CI: 5-72%) and 34% 
reduction in relative risk of hypertension (CI: 11-51%)76. In the DPP, Da Qing and 
the DPS studies, lifestyle and/or pharmacological interventions in participants with 
impaired glucose regulation resulted in improved glycaemia and delayed onset of 
T2D16,18,19. A more recent meta-analysis of RCTs showed decreased risk of CVD, 
mortality and cancer after weight loss interventions77. However, RCTs are not 
feasible in all situations and we are not sure whether the benefits of weight loss 
observed are due to actual reduction in adiposity levels or other risk factors that are 
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correlated with adiposity. Therefore, alternative methods like MR that are robust to 
weaknesses of observational studies and are applicable to epidemiological data, 
offer a particularly useful design to investigate causality. 

MR in causal research 
MR is a method borrowed from econometrics that uses instrumental variables (IV) 
to estimate causal effects of an exposure on an outcome78,79. An instrumental 
variable is considered a proxy of the exposure which under certain conditions can 
be used to infer causality between exposure and outcome. To be considered an IV, 
the variable must be associated with the exposure, must exert its effects on outcome 
only through the exposure, and must not be associated with any confounders of the 
exposure–outcome relationship. MR uses genetic variants (SNPs) as instrumental 
variables and is therefore not affected by the weaknesses of  observational studies ( 
chance, confounding, bias and reverse causality) making it an ideal method to 
estimate causality, provided the SNPs meet the IV criteria80. More about this is 
discussed in the methods section. 

Causal effects of prediabetes have been investigated previously using MR though 
studies used fewer instruments (SNPs) or exclusion of T2D was unclear81,82. In 
obesity causal studies using MR, different numbers and types of instruments (SNPs) 
were used as well different cardiometabolic outcomes83-85. In a recent meta-analysis 
of MR studies, BMI was associated with T2D, circulatory diseases neoplasms and 
NFLD86. Sometimes, we want to assess the nature of the causal relationships 
identified, i.e., if the causal relationship between exposure and outcome linear or 
non-linear. There is scarcity of literature on this topic, but with new methodologies, 
studies investigating these aspects are now being published. One study that 
investigated nature of causal effect of BMI on mortality found a J-shaped causal 
relationship87 and another found a non-linear causal association between BMI and 
CKD88. 

Sex differences in adiposity and cardiometabolic risk 
Sexual dimorphism in metabolism and cardiometabolic risk profile has been 
reported in observational studies. Women tend to store fat in gluteal-femoral 
subcutaneous adipose tissue (SAT) while men store fat more centrally; and on 
average women have higher body fat mass compared to men, who on the other hand 
have proportionately more muscle mass89,90. In addition, women tend to have higher 
levels of serum FFAs, intramyocellular fat and differ from men in terms of energy 
substrate preference, at rest and during activity91,92. Whether these differences are 
reflected in causal associations or whether they influence the nature of causal 
relationships between BMI (adiposity) and cardiometabolic disease is yet to be fully 
understood. At least one study assessed sex differences of causal effects of BMI on 
cardiometabolic outcomes and other leading causes of death but did not find a 
difference93.  



31 

Aims of the thesis 

Paper 1 
T2D is a chronic disease associated with severe debilitating complications, the 
commonest being micro- and macrovascular, especially coronary artery disease 
(CAD), that lead to high morbidity and mortality. Prediabetes is characterized by 
hyperglycaemia that is below the threshold for T2D diagnosis. Whether prediabetes 
is causally linked to these vascular complications independent of T2D status, or a 
mere antecedent event to the diagnosis of T2D is not clear. We investigated whether 
prediabetes is a non-causal prelude to disease, or whether it is a causal factor of T2D 
complications. Therefore, the aim of this study was to investigate the association 
between prediabetes and common micro- and macrovascular complications of T2D 
by first summarizing the observational evidence via meta-analysis and then using 
MR to conduct causal inference analyses. Here, we utilized summary GWAS data 
from various consortia to estimate causal effects of prediabetes on CAD, CKD and 
stroke.  

Paper 2  
In mammals, the leucin-rich repeat immunoglobulin-like domains (LRIG) are 
transmembrane proteins putatively associated with cancer (as aetiological and 
prognostic factors), of which three subtypes, LRIG1, LRIG 2 and LRIG3 are found 
in vertebrates. Functional studies of these proteins in mouse models have been 
hindered by inviability of Lrig-null mice. In the nematode C. elegans, the homolog 
of LRIG, Sma-10, regulates body size (mutant worms are smaller than wild-type) 
via bone morphogenic protein (BMP) signalling, and may also regulated lipid 
metabolism94. Little is known about the effects of this gene in humans, specifically 
adiposity phenotypes, T2D risk and markers of lipid metabolism.  

This study combined molecular biology, adipocyte biology and epidemiological 
aspects, essentially linking results from functional studies to population level 
effects. The aims of this study were to analyse the physiological and molecular 
functions of LRIG proteins in isogenic cells (cells with identical genes); investigate 
the effects of Sma-10/LRIG mutation in C. elegans; investigate the relationships 
between LRIG1 SNPs on human adipocyte morphology and metabolic traits (BMI, 
T2D and lipid biomarkers). We used data from the GENiAL cohort for adipocyte 
morphology investigations, and data from the UKB for metabolic phenotypes 
relationships with LRIG1 SNPs. My role in this study was in designing and 
conducting the epidemiological part of the project in the UKB. For purposes of this 
thesis, I will describe the epidemiological methods and refer the reader to the main 
paper (included at the end of the thesis) for wet lab methods.   
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Paper 3  
One of the consequences of energy dyshomeostasis is ectopic deposition of lipids in 
the liver, leading to development of NAFLD. Definitive diagnosis of NAFLD is via 
liver biopsy, which is invasive and carries risk of complications like bleeding, 
infections and pain days after the procedure. Imaging modalities like MRI are 
expensive and not routinely available, while the more common ultrasonography has 
limitations: inter-operator variability, challenges scanning obese patients, and the 
inability to distinguish between different stages of NAFLD (which is not made any 
better by the lack of a standard grading system)61. Current prediction models vary 
in their performance and use different parameters and therefore there is opportunity 
to improve prediction of NAFLD by leveraging on data from commonly collected 
clinical variables and omics data. The aim in this study was thus to develop 
prediction models for NAFLD via machine learning (ML) using common clinical 
variables and omics data. In this study we used data from the IMI-DIRECT cohort 
to develop prediction models and the UKB for validation. My role in this project 
was dimension reduction and feature selection through the least absolute shrinkage 
and selection operator (LASSO), evaluating performance metrics and data 
visualization.  

Paper 4  
This was my most independent paper, which I worked on in the final phases of my 
PhD and I was responsible for everything. It is part of a project I designed to explore 
causal effects of adiposity on cardiometabolic outcomes, and to unravel the nature 
of these causal relationships. 

Most MR studies assume a linear relationship between exposure and outcome, 
which may not be the case. For instance, observational studies have reported J-
shaped relationship between BMI and mortality. Further, men and women differ in 
their body fat distribution and energy metabolism, which drive a sex dimorphic risk 
profile of cardiometabolic disease. Whether causal relationships between BMI and 
cardiometabolic outcomes are linear or whether there are significant differences 
between men and women in these causal associations is yet to be extensively 
investigated. In this paper, therefore, the aim was to elucidate the nature of the 
causal effects of BMI on cardiometabolic outcomes and risk factor biomarkers and 
investigate sex differences within the same causal framework. In this study, I used 
data from the UKB in all the analyses. In addition, effect sizes for computing the 
BMI polygenic risk score (PRS), used as an instrument in MR analyses, were 
obtained from the latest GWAS of BMI that did not include UKB participants95.  
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Chapter 2: Cohorts used 

GWAS Summary data 
In causal inference analyses for prediabetes (paper 1) we used summary GWAS data 
that is publicly available from different consortia. For fasting glucose (FG), we used 
data from the Meta-Analyses of Glucose and Insulin-related traits Consortium 
(MAGIC). The MAGIC GWAS meta-analysis included 32 cohorts with 133,010 
participants of European descent96. HbA1c GWAS summary data were obtained 
from the most recent MAGIC transethnic GWAS meta-analysis of HbA1c which 
comprised of 82 cohorts with 159,940 participants of different ancestries (European, 
South and east Asian, and African)97. For our analysis we used data from individuals 
of European descent only (n = 120, 962) from the transethnic meta-analysis. 

GWAS summary statistics for CAD were obtained from the latest cardiomics 
GWAS meta-analysis98 which consisted of 34,541 cases and 261,984 controls  from 
the UKB and was replicated in 88,192 cases and 162,544 controls from the Coronary 
Artery (C4D) Genetics consortium (CARDIoGRAMplusC4D)99,100.  Summary 
statistics for stroke and stroke subtypes were obtained from the MEGASTROKE 
consortium which is a meta-analysis of 40,585 cases and 406,111 controls of 
European ancestry101. Renal disease summary data were obtained from the CKDgen 
consortium which is a meta-analysis for CKD (eGFRcrea <60ml per min per 
1.73m2) performed on 745,348 participants and replicated in a further 280,722102.  
T2D data, used to excluded T2D-associated SNPs from the FG and HbA1c data, were 
obtained from the latest T2D GWAs meta-analysis of 81,412 cases and 370,832 
controls of diverse ancestries followed by fine-mapping in 50,160 T2D cases and 
465,272 controls of European ancestry103. From these data, we used summary 
statistics from participants of European ancestry only. 
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GENiAL cohort 
The GENiAL cohort participants were enrolled between 1986-2016 via local 
advertisements in Stockholm, Sweden. A total of 939 participants with adipocyte 
lipolysis measurements were included of which 57% were obese, 194 had T2D, 
hypertension or dyslipidaemia, alone or in different comorbid combinations. All 
participants gave written informed consent and the study was approved by the local 
ethics board104. 

Following an overnight fast, participants presented at the Karolinska clinical 
research centre for anthropometric measurements including body fat content (using 
bioimpedance). Blood samples (venous) were obtained for genotyping and 
biochemical assays. Needle aspiration biopsy was used to obtain SAT samples next 
to the umbilicus104.  

SAT samples were cleaned of blood vessels and cellular debris in sodium chloride 
and treated with collagenase to isolate adipocytes which were incubated using a 
previously described protocol105. For genetic analysis, the UKB Axiom Array r3 
platform was used for genotyping samples and the Axiom analysis suite for 
genotype calls. Samples with cryptic relatedness, ambiguous sex, or call rates <95% 
were excluded while SNPs were excluded based on Hardy-Weinberg equilibrium 
(HWE) p < 5x10-6, MAF < 1% and SNP call rates <95%. Imputation was done using 
the haplotype reference consortium (HRC) panel and 1000G phase 3 panel when 
variants were missing. In further quality control (QC) after imputation, SNPs were 
excluded if minor allele counts were < 3 and INFO score <0.4; in addition to related 
participants – only one in a pair of 1st or 2nd degree relatives104.  

UK Biobank (UKB) 
The UKB is an open-access resource accessible to researchers from all-over the 
world, after application and approval, to conduct health research of public 
interest106. It is a prospective cohort of approximately 500,000 participants of mixed 
ancestries (European, Asian and African), aged between 40-69 years at the time of 
enrolment, recruited and assessed across 22 centres in the United Kingdom from 
2006 to 2010. Response rate was 5.4% (with regional differences) and participants 
were more likely to be women, older, more affluent and healthier than the general 
population. In general, the UKB is not representative of the general UK population 
(though it is ethnically representative) but nonetheless its large size and extensive 
data would provide useful inferences, albeit generalizable to other populations107. 

Participants provided electronic signed consent at enrolment, including consent for 
follow-up via linkage to their health records, and answered interview questions on 
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socio-demographic, lifestyle and health-related factors. Standard anthropometric 
and other physical measurements were taken, in addition to biological samples 
(urine, blood and saliva) for biochemical assays and preservation for future assays. 
When it was determined that recruitment was progressing well, further assessments 
were included in the visits like electrocardiogram (ECG), arterial stiffness test, 
hearing test and a range of eye measures. To account for measurement calibration, 
correct regression dilution and estimate longitudinal changes, repeat assessments 
were undertaken in subset of the participants every few years. In 100,000 
participants, objective measures of PA were collected between 2013-2014 with 
repeat measures taken from 2500 of them107.  

The UKB study received approval from the Multi-centre Research Ethics 
Committee (REC ref: 16/NW/0274) and all participants gave informed consent108. 
Information about recruitment and data collection has been detailed elsewhere106. In 
Sweden, use of UKB data was approved by the Swedish Ethics Approval Authority 
(Etikprövningsmyndigheten, EPM), application number 2021-03174.  

Genetic data 
The UKB cohort contains genotypes from 488,377 subjects assayed using two 
closely related genotyping arrays. A sub-cohort of 49,950 participating in the UK 
Biobank Lung Exome Variant Evaluation (UK BiLEVE) study were genotyped 
using the Applied Biosystems UK BiLEVE Axiom Array by Affymetrix (now part 
of Thermo Fisher Scientific), at 807,411 markers. Subsequently, 438,427 
participants were genotyped using the Applied Biosystems UK Biobank Axiom 
Array (825,927 markers). Genotypes that were not directly assayed were imputed 
using Haplotype Reference Consortium (HRC) data as the main panel, or a 
combination of UK10K and 1000 Genomes Phase 3 reference panels. Imputed data 
from both imputation processes were combined and in cases where a SNP was 
present in both panels, HRC imputation was used.  Quality control (QC) was 
conducted by the UKB data team and the results were shared with researchers for 
their downstream analyses. For this project, we used the imputed data release 
version 3 (v3) from the UKB. Details of enrolment and genetic data handling are 
further explained in Bycroft et al.106.  

In our analyses, we excluded samples with less than 99% genotype call rate, SNPs 
with Hardy-Weinberg equilibrium P < 1 x10-10, those with less than 80% imputation 
score and any duplicated SNPs. We further selected SNPs with a minor allele 
frequency (MAF) > 0.01, and excluded individuals who were outliers for 
heterozygosity, those with indeterminate sex and aneuploidy, and one of a pair of 
related individuals (up to 3rd degree relatedness, kinship coefficient 0.0442 – 
0.0882).   
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IMI-DIRECT consortium 
The Innovative Medicines Initiative (IMI) is a collaboration between the European 
Union (EU), twenty European academic institutions and five pharmaceutical 
companies in Europe. The DIRECT consortium, formed under the IMI, aims to 
discover potential biomarkers of disease progression or response to T2D therapies; 
which could address challenges in drug development and help develop stratified 
approaches to T2D management109. Towards this end, DIRECT initiated two multi-
centre studies focused on discovering novel biomarkers of glycaemic deterioration 
in persons at high risk, or newly diagnosed with T2D.  

The first cohort (cohort 1) enrolled participants at risk of dysglycaemia from four 
existing cohorts and focused on glycaemic deterioration before T2D onset. Persons 
at risk of dysglycaemia were identified using a sex-specific validated prediction tool 
(DIRECT-DETECT) based on baseline age, BMI, waist circumference, 
antihypertensive medication, smoking, parental diabetes, and change in HbA1c 
during follow-up. Identified participants were included for screening if they were 
white European, aged between 35-75 years, had baseline FG (capillary) of 
<10mmol/L and not on T2D treatment. Exclusion was based on: previous diagnosis 
of any form of diabetes, use of a pacemaker, medical reasons, and for women if 
pregnant (or planned to be during the study) or lactating109,110. 

Cohort 2 (T2D) participants were identified through clinical practice, existing 
databases, educational clinics, routine retinal screening programmes and other 
registries. Inclusion criteria were T2D diagnosis strictly in the last 6-24 months 
before baseline examination, on lifestyle management of T2D with or without 
metformin, all Hba1c <7.6% in the previous 3 months, and estimated glomerular 
filtration rate (EGFR) > 50 ml/min. Age, ethnicity and women-specific 
considerations were as for cohort 1. Participants were excluded based on; a diabetes 
diagnosis other than type 2, previous HbA1c > 9.0%, prior insulin use or antidiabetic 
medication apart from metformin, BMI <20 kg/m2 or >50 kg/m2, or medical reasons. 
The final sample sizes after applying inclusion and exclusion criteria and data 
quality control, were 2127 and 789 participants for cohort 1 and 2 respectively109,110. 
Cohort 1 participants were followed-up at 18 and 36 months while cohort 2 were 
followed-up at 9 and 18 months after baseline visit110. 

In both cohorts, baseline measurements were done after a 10-hour overnight fast. 
Anthropometric and blood pressure (BP) measurement procedures were 
standardized across all study centres and performed by trained personnel. Blood 
samples were collected for omics (metabolomic, proteomic, genomic, epigenomic, 
and transcriptomic), beta-cell and insulin sensitivity indices, lipids (TG, cholesterol, 
HDL, LDL), liver enzymes (ALT, AST). Abdominal MRI scans were performed 
and local protocols were standardized across centres to harmonize scanning 
methodology. 
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Dietary assessment was done a day prior to visiting the study centre using a 24-hour 
multi-pass dietary record, a validated method with three levels of questioning110. 
Objective assessment of PA, sedentary time and sleep was assessed using a triaxial 
accelerometer (ActiGraph GT3X+; Actigraph LLC, Pensacola, FL, USA) worn in 
the participant’s non-dominant wrist, worn 10 days in a row without removing. 
Additional information collected in questionnaires included quality of life, dental 
health, T2D family history and medication history. 

Cohort 1 participants had frequently sampled oral glucose tolerance test (fsOGTT) 
at baseline, and at the 18 and 36-month follow-up visits, same 
measurements/assessments as baseline were conducted. Cohort 2 participants 
remained on their usual lifestyle treatment but if on metformin they paused 24 hours 
before baseline assessment and restarted immediately thereafter. Blood samples 
were collected for glutamic acid decarboxylase (GAD) and islet antigen-2 
antibodies, GLP-1, glucagon, insulin, C-peptide, metabolomics, proteomics, HbA1c, 
DNA and RNA, specifically for this cohort. In addition, a mixed meal tolerance test 
(MMTT) was performed for glucose, insulin and C-peptide analysis; and a further 
postprandial urinalysis. The 9 and 18 months follow up visit assessments were 
similar to baseline with the exception that blood samples for RNA analysis were not 
collected110. 

All study centres in DIRECT received ethical approval from their country’s 
respective ethical review boards (there was no pan-European research ethics 
approval body), and all participants in each respective cohort gave written informed 
consent.  

Genetic data 
Genotyping was done using the Illumina HumanCore array (HCE24 v1.0) and 
genotypes called using Illumina’s GenCall algorithm. Samples with a call rate 
<97%, heterozygosity, sex discordance and monozygosity were excluded. In further 
QC, samples were restricted to a genotype call rate >99%, HWE exact p < 0.001, 
MAF >1% and variants mapped to human genome build GRCh37. Duplicated 
variants were excluded110.  
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Chapter 3: Methods 

Linear and logistic regression 
Regression modelling techniques are widely used in clinical and biomedical 
research to investigate associations between an exposure and outcome or to make 
predictions about the outcome. These inferential methods require several 
assumptions about the data and nature of relationships between exposure and 
outcome to ensure valid conclusions. The most widely used are the linear and 
logistic regression, with choice of the method determined mainly by the nature of 
the outcome being investigated.  

Linear regression is used to examine the linear association between a continuous 
outcome and one or more independent variables. The pertinent assumptions are: 
normally distributed model residuals with a mean of zero, constant residual/model 
error variance, (homoskedasticity) and independence of observation units. A simple 
linear regression model can be represented as 𝑦 =  𝛼 +  𝛽𝑥 + 𝜀 

(1) 

Where y represents the outcome, 𝛼 is an intercept term, β is the regression 
coefficient of the exposure and 𝜀 is an error term. 

In logistic regression the examined association is between a categorical outcome 
and one or more independent variables. Logistic regression uses a link function to 
connect the outcome variable to a linear function of the exposure variable. This 
method assumes the association between log-outcome and the exposure is linear, in 
addition to the assumptions of linear regression. Both methods are also used to 
predict the future values or odds/ probability of an outcome based on one or more 
exposure variables111. I used these methods in paper 2 to assess the relationships 
between the LRIG1 gene variants and BMI, T2D and lipid metabolism biomarkers. 
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Systematic review and Meta-analysis 
Sometimes we want to summarize the evidence about a particular topic in a 
particular field; of which systematic reviews with/or meta-analyses are the main 
methods used. Systematic reviews involve summarising and synthesis of evidence 
from individual studies that are selected using predefined, transparent and 
reproducible criteria. The studies are then screened for content relevance and those 
that meet the criteria are retained for detailed perusal and extraction of evidence. 
Meta-analysis differs from systematic reviews in that meta-analysis aims to 
quantitatively combine and summarise results from different studies to a point 
estimate. Usually, the scope of a meta-analysis is predefined and study selection is 
done systematically and reproducibly, and the evidence validity is assessed using 
standard methods112.  

It is important that effect sizes of the individual studies are comparable, computable, 
reliable and interpretable so as to summarise them in to a single estimate. The effect 
sizes of individual studies are weighted by the inverse of the variance to account for 
each individual study’s strength of effect. For binary outcomes, alternative methods 
can be used to compute weighted estimates e.g., Mantel-Haenszel113. Meta-analyses 
can be performed assuming either fixed or random effects. 

In a fixed effects meta-analysis, the underlying assumption is that effects come from 
a single homogeneous population and share the same true effect size. In random 
effects meta-analysis, the assumption is that there is no one true effect and that a 
distribution of effects exists, resulting in heterogeneity of study results, owing to 
additional variance because studies are not from the same single population112. The 
sources of heterogeneity can be clinical (participants, intervention, and outcome 
variation), methodological (study design and bias) or statistical (due to clinical or 
methodological heterogeneity, or both). Heterogeneity affects generalization of 
results from the summary estimate, but understanding its sources helps in targeting 
interventions114. 

Finally, bias in meta-analysis can arise from publications where studies available in 
the literature search pool are usually large studies reporting positive results and this 
publication bias can be assessed using a funnel plot or Egger’s test115.We used meta-
analysis in paper 1 to summarise the observational evidence of association between 
prediabetes and vascular complications, and in paper 4 to summarise the causal 
effect of obesity on any cardiometabolic disease. 
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Causal inference analyses 
In observational studies, the confidence with which one can infer causal 
relationships is often diminished owing to concerns about confounding, reverse 
causality and bias which are characteristic weaknesses of such studies116. The 
question of causality in epidemiological research is therefore an important one given 
that the gold standard for causality, RCTs, are not always feasible in all settings, are 
expensive, undertaken in selected subgroups that are not necessarily free-living. In 
some settings, epidemiological studies are the best choice.  Therefore, methods that 
can bypass these obstacles and at the same time address the core weaknesses of 
observational studies provide a powerful tool for use in causal inference. If applied 
correctly, MR can meet these criteria. 

Mendelian Randomization (MR) 
MR takes advantage of the random assignment and independent assortment of 
homologous chromosomes during meiosis, which is unaffected by any confounders 
of the exposure outcome relationship or reverse causality. In MR, SNPs associated 
with an exposure are used as instrumental variables to test the causal relationship 
between the exposure and an outcome of interest. To be a valid instrument, a SNP 
should fulfil the criteria for instrumental variables, here referred to as the MR 
assumptions/conditions.  

Let G be the genetic variant used as the instrument, X and Y be the exposure and 
outcome, respectively, and we are interested in the causal effect of X on Y. Also, let 
U represent confounders of the association between X and Y. The instrument, G, 
must satisfy the following conditions: 

G is independent of U, i.e., it is not associated with any of the confounders of X and 
Y; G is associated with X; and G is not directly associated with Y but only through 
X (Figure 3). 

 

Figure 3  
MR assumptions. Red path and cross indicate violations of the instrumental variable conditions. 
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One-sample MR (Two Stage least squares, TSLS)  
TSLS involves two sequential stages and utilizes individual-level data to estimate 
causal effects. The instrumental variable used could be a single SNP or multiple 
SNPs combined in a PRS. For purposes of this thesis, I used a BMI PRS as the 
instrumental variable. In addition to the notation introduced above, let L represent a 
vector of covariates to adjust for. The first stage of TSLS involves regressing the 
exposure X on the instrumental variable, G, while adjusting for relevant covariates, 
L. Then, fitted values of the exposure, 𝑋෠,  are generated for use in the second stage
model. Here, the outcome is regressed on these fitted values (used as the exposure)
while adjusting for the same covariates as in the first stage. The regression
coefficients of the fitted values represent estimates of the causal effect of the
exposure on the outcome. Depending on the nature of the outcome, the second stage
can be a linear or logistic regression.

The first stage is represented as: 𝑋௜ =  𝛼଴ +  ෍𝛼௞ 𝐺௜௞௞ୀଵ + 𝛼ଵ𝐿௜ +  𝜀௑௜
(2) 

and second stage as: 𝑌௜ =  𝛽଴ +  𝛽ଵ𝑋෠௜ +  𝛽ଶ𝐿௜ +  𝜀௒௜ 
(3) 

Where i is the individual index, i = 1, …, N, k is the number of instrumental variables 
and 𝛼 and β represent regression coefficients and 𝜀 represents the error term. I 
used TSLS in paper 4 to estimate causal effects of BMI on cardiometabolic 
outcomes since I had access to individual-level data. TSLS provides a consistent 
method of estimating causal effects while allowing for covariate adjustment and 
stratified analyses.   

Two Sample MR (TSMR)  
In some situations, individual-level data are not available due to practical or 
legal/confidentiality issues related to data sharing or archiving. Two sample MR 
(TSMR) obviates the absence of these data and uses GWAS summary statistics 
(SNPs and their respective effect sizes) to estimate causal relationships between an 
exposure and outcome of interest. The SNPs must meet the IV conditions detailed 
above. Assuming all the genetic variants are instrumental variables, these summary 
data (effect size coefficients and standard errors), can be combined to generate 
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causal effect estimates117,118. Using multiple variants (SNPs) increases the power of 
an MR study compared to using a single genetic variant119. 

Let k (indexed k = 1,…,k) represent a SNP associated with observed mean change 
in exposure, Xk, per additional allele with standard error 𝜎Xk and a corresponding 
change in the outcome, Yk , with standard error 𝜎Yk. For binary outcomes, Yk can be 
represented as per-allele change in the log-odds/probability of an outcome118. 

The causal effect can be estimated using the inverse-variance weighted (IVW) 
method which combines ratios of estimates (Yk/Xk) weighted by the inverse of the 
variance. The IVW (βIVW) estimate is computed by: 

𝛽ூ௏ௐ = ∑ 𝑋௞ 𝑌௞௞ 𝜎௒௞ିଶ∑ 𝑋௞ଶ௞ 𝜎௒௞ିଶ  

(4) 

And the standard error is estimated by: 

𝑠𝑒(𝛽ூ௏ௐ) = ඨ 1∑ 𝑋௞ଶ௞ 𝜎௒௞ିଶ 

(5) 

I used TSMR in paper 1 to compute the causal estimates of relationship between 
prediabetes and vascular complications. With no access to individual-level data, 
this method offered a reliable and consistent alternative for estimating causal 
effects.  

Sensitivity analyses for TSMR 
In the event that even only one SNP is not a valid instrument, the causal estimate 
based on all variants will be biased with inflated type 1 error rates, that is, 
concluding a significant effect is there when it is in fact not120. To triangulate the 
evidence, other MR methods that relax the MR assumptions to various degrees or 
those that identify outliers/pleiotropic instruments, are used in addition to the main 
IVW analysis. These methods can be used to perform sensitivity analyses to assess 
consistency of the causal estimates121. The following methods were used for 
sensitivity analyses in paper 1. 
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MR-Egger 
This is a method that tests for directional horizontal pleiotropy without making MR 
assumptions about the genetic variants. The method was originally used to assess 
small study bias in meta-analysis and has been applied to MR where it is used to 
show that bias due to pleiotropy is similar to small study bias in meta-analysis115. 
Under this method, the intercept is included as part of the regression (unlike 
conventional IVW where the intercept is forced to be zero), and the slope coefficient 
from the regression gives an asymptotically consistent estimate of the causal effect, 
even if all SNPs have pleiotropic effects on the outcome121. This assumes that the 
association between the instrument and the exposure is independent from its 
pleiotropic effects on the outcome, referred to as the InSIDE assumption 
(Instrument Strength Independent of Direct Effect)122. The idea behind the Egger 
regression is that stronger genetic variants ought to have causal effect estimates that 
are reliable than weaker ones, if the InSIDE assumption holds. Evidence of a causal 
effect in Egger regression is indicated by any residual genetic associations (dose-
dependent) after the average pleiotropic effects of the genetic variants have been 
accounted for via the Egger intercept121. 

Median-weighted MR 
The IVW method is said to have a 0% break-down level, because its estimates will 
be biased even if only one genetic variant is invalid. A simple median estimator has 
a 50% breakdown level and provides a consistent estimate when up to (but not 
including) 50% of the genetic variants are valid. This method estimates the simple 
median of ratio estimates but can be inefficient especially when precision of 
individual estimates vary considerably. However, a weighted version of the 
estimator can account for these variations. The weighted median method provides a 
consistent estimate of causal effect if at least 50% of the weight comes from valid 
IVs123. A weighted median estimator is the median of a distribution having 𝛽 
estimates ranked by percentiles defined by the difference between sum of the 
weights and half the weight of the respective genetic variant. The weights are 
proportional to the contribution of the genetic variant and are derived from the 
inverse of the variance of the ratio estimates123. 

MR-PRESSO 
The MR-PRESSO (Mendelian Randomization pleiotropy residual sum and outlier) 
method performs three core functions: 1) detection of horizontal pleiotropy  global 
test, 2) outlier test, and 3) distortion test - differences in causal estimates before and 
after correcting for outliers124. In the conventional IVW regression, if there is no 
horizontal pleiotropy then all variants are expected to have small residuals and hence 
closer to the regression line. Pleiotropic variants can deviate from the slope of the 
regression line owing to larger or smaller effect sizes than what is mediated by the 
exposure in question124. The MR-PRESSO outlier test needs at least 50% of 
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instruments to be valid and the InSIDE assumption to hold122. In the global test, 
regression models are fitted excluding each variant in turn, here referred to as j, to 
produce causal effect estimate without the variant. Then observed residual sum of 
squares (RSS) is calculated as the squared difference between the observed effect 
of variant j on the outcome and the effect size estimated without j. The observed 
RSS is then compared to expected distribution of RSSs simulated with no outliers 
and an empirical P value calculated124. An outlier test compares observed RSSs of 
variants with the distribution of expected RSSs, and the distortion test is computed 
as a percentage of causal effect estimate that is attributed to significant pleiotropic 
SNPs.  

Non-linear MR (NLMR) 
Sometimes the purpose of a study is to assess the nature of the relationship between 
an exposure and outcome, i.e., whether it is linear or non-linear. In MR causal 
analyses, the underlying assumption is that the relationship between exposure and 
outcome is linear, which may not be the case. NLMR investigates whether the 
estimated causal relationship between an exposure and outcome is linear or not. The 
method involves calculating the local average causal effect (LACE) as a ratio of 
coefficients in quantiles that are based on the instrumental variable-free (IV-free) 
distribution of the exposure. This IV-free distribution solves the problem of 
inducing a spurious association between the IV and outcome where none exists if 
the population is stratified on the exposure directly, which would invalidate the 
mandatory IV conditions125.  

The IV-free exposure is calculated as the residuals of a model in which the exposure 
is regressed on the IV, with the IV value set to zero. This represents the expected 
value of the exposure if one had an IV value of zero and be viewed as the non-
genetic component of the exposure126,127. To assess the nature of the causal 
relationship between exposure and outcome, quantiles of the IV-free exposure are 
computed and within each quantile a LACE is calculated. From these LACE values, 
the relationship between exposure and outcome can be estimated using fractional 
polynomials or piecewise linear functions127. In the fractional polynomial method, 
the LACE estimates are meta-regressed against the mean exposure in each quantile 
in a flexible semiparametric framework. Tests of nonlinearity are then applied to 
test the null hypothesis that the resultant non-linear model is no different from a 
linear model. Fractional polynomials are described as set of functions for fitting 
nonlinear relationships between of covariates which mitigate against the 
shortcomings of both high and low order polynomials128. The powers used for 
fractional polynomials are P = (−2, −1, −0.5, 0, 0.5, 1, 2, 3), which are different 
from mathematical powers. Here, a power of 0 represents the natural logarithm 
function, and conventional powers are a subset the these chosen powers127,128. 
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We define fractional polynomials of degree 1 as127 𝑓(𝑥) =  𝛽଴ +  𝛽ଵ𝑥௣ 

(6) 

Where p ∈ P. 

A fractional polynomial of degree 2 is defined as 𝑓(𝑥) =  𝛽଴ +  𝛽ଵ𝑥௣ଵ +  𝛽ଶ𝑥௣ଶ, 𝑖𝑓 𝑝1 ≠ 𝑝2 

Or  𝑓(𝑥) =  𝛽଴ +  𝛽ଵ𝑥௣ +  𝛽ଶ𝑥௣ log(𝑥) , 𝑖𝑓 𝑝1 = 𝑝2 = 𝑝  
(7) 

Where β represents regression coefficients and p represents fractional polynomial 
power. 

In piecewise polynomial method, a linear function is fitted for each quantile to 
estimate the exposure-outcome relationship with the gradient of each line segment 
representing the LACE estimate of the respective quantile. To ensure that each line 
segment starts where the previous one ends, the function is constrained to be 
continuous127. I used NLMR to elucidate the nature of causal relationships between 
BMI and cardiometabolic outcomes in paper 4.  

Machine learning approaches 
Machine learning (ML) involves techniques that apply computation algorithms to 
identify patterns within data, between variables or subsets or variables. The 
commonest use of ML in biomedical research is in prediction of outcomes or finding 
patterns within a data sample that represent shared uniqueness in features. The two 
commonly used types are supervised and unsupervised ML. In supervised ML, the 
pattern or solution is known and algorithms are trained to be able to make the right 
“decision”. In unsupervised ML, there is no prior known pattern and algorithms 
identify groups or clusters of shared features. Supervised ML is commonly used in 
classification and regression problems. Classification involves predicting the correct 
group/class an observation belongs to given a set of predictors while regression 
involves predicting a continuous value129. 

With increased computation power and availability of big data (or high-dimensional 
data), use of ML has increased substantially in biomedical research. However, not 
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all variables/features in a given dataset are meaningful (for predicting some group 
or value of interest) and therefore selection of the most informative ones is a 
prerequisite to building reliable ML models. This can be done via dimensionality 
reduction and/or feature selection, as dictated by the question at hand.  

Dimensionality reduction and feature selection 
A regular dataset is generally composed of observations represented as rows (n), 
and features or observed variables (i.e., attributes of interest for each observation) 
represented as columns (p). In high dimensional data, p > n and this poses several 
important problems. Consider a data space where dimensions are represented by 
numerous axes. For a dataset with p variables, each is an axis in a p-dimensional 
space and as p increases data points within the space diminish (become sparse). That 
is, as the dimensions increase so does the probability of observations without similar 
values of a variable, and this, among other problems of high dimensionality, 
constitute the curse of dimensionality130.  When p » n (meaning p much greater than 
n), the normal distribution assumption is invalidated, which may lead to unreliable 
scientific conclusions131. Further, there is perfect multicollinearity and overfitting 
making it difficult to detect real associations/patterns in the data or determine the 
most important predictors (makes predictions difficult and uninterpretable). While 
many variables may be ideal for exploratory studies, confirmatory studies for 
scientific discovery require more focused variables with reduced dimensions130.   

Therefore, to overcome the curse of dimensionality, non-informative or least 
informative features in a dataset are removed while the most informative are 
retained. This is commonly done using regularization and variable selection, or 
dimensionality reduction techniques. The latter can be divided into linear and non-
linear methods. Linear methods include Principal Component Analysis (PCA), 
Multi-Dimensional Scaling (MDS), Singular Value Decomposition (SVD), 
Independent Component Analysis (ICA), and Non-negative Matrix Factorization 
(NMF) among others while some examples of non-linear methods are T-distributed 
Stochastic Neighbour Embedding (t-SNE) and Uniform Manifold Approximation 
and Projection (UMAP) 131-134. These methods are however outside the scope of this 
thesis and will not be discussed further. I will focus on regularization and variable 
selection which we used in paper 2.  

In regularization and variable selection, a penalty is included in a regression model 
such that coefficients (effects) of least informative predictors are reduced, 
sometimes to zero, therefore reducing their influence on the results. These 
regularization techniques include LASSO, ridge regression and elastic net 
regression135. If we consider ordinary least squares (OLS) regression, the aim is to 
minimise the RSS, which reflects how well predictors estimate the outcome. OLS 
estimates have a large variance and when there are many predictors, it is imperative 
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to identify the most important via exclusion or attenuating effects of the least 
informative ones.  

The LASSO attenuates some of the coefficients  (regularization) and sets others to 
0 , by minimizing the RSS subject to the sum of the absolute value of coefficients 
being constrained by an upper limit, 𝜏136. In feature selection, the LASSO includes 
variables that have non-zero coefficients and drops those with zero coefficients, 
effectively retaining in the model only coefficients that are most informative about 
the outcome137. The aim of LASSO, is therefore to reduce RSS, while retaining the 
most informative features. This can be represented as follows: 

min෍(𝑦௜ − 𝑦ො௜௡
௜ୀଵ )ଶ 

subject to: 

𝜆(𝛼෍|𝛽௜| + (1 −  𝛼)෍𝛽௜ଶ) ≤  𝜏௣
௜ୀଵ

௣
௜ୀଵ  

(8) 

Where i represents the ith individual, 𝛽 is the regression coefficient and 𝜆 is the 
tuning parameter, which controls the amount of shrinkage applied coefficient 
estimates. As shown in equation, the desired value of 𝜆 minimizes the first part of 
the equation subject to the second constraint. 𝛼 is a model selection parameter, such 
that when 𝛼 = 0, the model becomes a ridge regression, when 𝛼 = 1 the model is 
LASSO and when 𝛼 = 0.5 its elastic net. 𝜆 can be determined by cross validation 
where a range of values is run several times (folds) and the best value is assessed 
using the RSS as the accuracy metric.  
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Chapter 4: Results and discussions 

Paper 1 
In this study, which combined a meta-analysis of observational studies and causal 
inference (TSMR) analyses, we investigated the relationship between genetically 
determined non-diabetic hyperglycaemia and common micro and macro-vascular 
diabetic complications i.e., coronary artery disease (CAD), stroke and kidney 
disease. In the observational meta-analysis of 37 studies comprising a total of 
1,326,915 participants, prediabetes was significantly associated with CAD 
(RR = 1.16; 95% CI: 1.09, 1.23; Q = 52.5, PQstat = 0.058; I2 = 27.7%) and stroke (RR 
= 1.11; 95% CI: 1.03, 1.18; Q = 28.5, PQstat = 0.23; I2 = 16%) but not CKD 
(RR = 1.05; 95% CI: 0.98, 1.12; Q = 27.2, PQstat = 0.002; I2 = 63.3%). These results 
were unchanged in sub-group analyses.  

From the TSMR analyses, prediabetes was significantly associated with CAD, but 
not stroke (or any stroke subtype) or CKD, without evidence of directional 
horizontal pleiotropy (Egger intercept P > 0.05). Sensitivity analyses (MR-Egger 
and weighted median regression) yielded consistent results. Prediabetes instruments 
based on HbA1c with only 8 SNPs were not significantly associated with CAD and 
there was evidence of directional horizontal pleiotropy. Table 1 below shows details 
of the results. 

Table 1. 
Estimates of causal association between genetically determined prediabetes and vascular outcomes 

Trait associated with FG 
IVWrobust 

(OR (95% CI)) 
MR-Egger 

(OR (95% CI)) 
Egger intercept 

P value 
Weighted median 

(OR (95% CI)) 
CAD 1.26 (1.14, 1.38) 1.30 (1.09, 1.567) 0.76 1.29 (1.13, 1.47) 
Any stroke 0.88 (0.68, 1.13 0.71 (0.47, 1.08) 0.34 0.82 (0.64, 1.07) 
AIS 0.92 (0.73, 1.16) 0.70 (0.48, 1.02) 0.16 0.88 (0.67, 1.15) 
LAS 0.83 (0.49, 1.40) 0.66 (0.33, 1.35) 0.48 0.79 (0.43, 1.46) 
CES 1.10 (0.75, 1.63) 0.79 (0.39, 1.58) 0.21 1.04 (0.63, 1.73) 
SVS 0.78 (0.46, 1.31) 0.49 (0.19, 1.22) 0.23 0.61 (0.33, 1.11) 
CKD 1.04 (0.87, 1.25) 0.83 (0.56, 1.22) 0.32 0.93 (0.75, 1.16) 
HbA1c-CADa 1.03 (0.64, 1.64) 0.17 (0.04, 0.79) 0.01 0.83 (0.53, 1.31) 

IVW inverse-variance weighted, CAD coronary artery disease, AIS any ischemic stroke, LAS large artery stroke, CES 
cardioembolic stroke, SVS small vessel stroke, CKD chronic kidney disease. 
aTSMR results of the association between genetically determined HbA1c levels and CAD using robust IVW. 
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In further analyses assessing robustness of our prediabetes instrument, no 
association was found between the prediabetes instrument and T2D. In addition, 
relaxing the QC criteria (taking all FG SNPs with P < 5 × 10-8, without clumping or 
harmonization, regardless of their nominal association with T2D), showed 
associations with vascular complications but with high degree of directional 
horizontal pleiotropy. Lastly, using MR-PRESSO to correct for outliers did not 
change the results and a leave-one-out analysis did not show evidence that results 
were driven by one or more influential SNPs.  

Paper 1 discussion 
In this study, observational evidence showed that prediabetes was associated with 
stroke and CAD but not CKD while causal inference analyses showed a significant 
association with CAD but not stroke or CKD. By selecting instruments specifically 
associated with prediabetes only, we isolated the causal effects of prediabetes from 
those of diabetes, and by using MR we estimated causal effects robust to 
confounding, bias or reverse causality. These results show that glycaemic 
perturbations are likely causal of vascular complications, specifically those related 
to coronary disease. 

Causal effects of prediabetes on cardiovascular outcomes have been investigated 
before though other studies used fewer instruments or were not clear about exclusion 
of T2D81,82. The clinically used threshold for T2D diagnosis does not determine 
onset of vascular damage but hyperglycaemia seems to, in a dose-dependent 
manner. Despite the lack of approved therapeutic agents for prediabetes, studies 
show that lifestyle and/or therapeutic interventions are beneficial16,19. Perhaps it is 
intriguing that in naturally occurring prediabetes of MODY2 (mutations of GCK 
gene) patients do not develop vascular complications or insulin resistance, and have 
normal post-prandial glycaemic responses and cardioprotective lipid profiles 
indicating a higher set-point for glucose homeostasis, since there is no progressive 
deterioration of glycaemic control138,139. The differences in glucose homeostasis set-
points in MODY2 patients and the general population may explain why in the 
former elevated glucose levels are not detrimental while in the latter they are. This 
contrast shows that hyperglycaemia in the general population is a probable cause of 
CAD. 

Further these findings may explain why cardiovascular complications are the 
commonest in T2D, hard to treat and the leading cause of death. It also shows that 
by the time T2D is diagnosed, hyperglycaemia-related pathogenesis of CAD has 
already begun, which probably explains the difficulties of preventing CAD in 
already established T2D. In the LOOK-AHEAD trial, aggressive lowering of 
glucose levels did not make a difference in CAD outcomes in those who had T2D, 
likely due to the effects of prolonged hyperglycaemia on the coronary vasculature. 
Glucose levels were lowered but not the risk of mortality or CVD events140. The 
overall implication of our study is that intervening on prediabetes early, before the 
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threshold for T2D diagnosis, may prevent T2D-related CAD. In fact, there have 
been calls to consider individuals with IGT as diabetic since they have lost about 
80% beta-cell function and are highly insulin resistant46. 

Paper 2 
In functional analyses for adipogenesis in mouse embryonic fibroblasts (MEF), 
Lrig-null MEFs had impaired adipogenesis compared to wild type after adipogenic 
stimulation. BMP inhibitors prevented adipogenesis in wild-type MEFs while high 
doses of BMP4 enhanced adipogenesis in the wild-type and restored adipogenesis 
in the Lrig-null MEFs. Investigations of BMP signalling showed that Lrig-null 
MEFs had lower sensitivity to BMP4 than wild-type but in Lrig1 and Lrig3 single-
knockout MEFs this sensitivity was apparently unaltered. These differences were 
not attributed to differential receptor expression. 

To investigate whether individual LRIG alleles could rescue the Lrig-null 
phenotype, an Lrig-null MEF line was transduced with the inducible human alleles 
LRIG1, LRIG2, or LRIG3, with an empty vector serving as a control. Induction of 
LRIG1 or LRIG3 expression rescued the regular BMP sensitivity phenotype of the 
Lrig-null MEFs, whereas the induction of LRIG2 expression, or vector control, did 
not. The induced expression of LRIG1 or LRIG3 also enhanced the adipogenesis 
rate of the MEFs.  

In investigations of LRIG/Sma-10 effects on lipid metabolism in C. elegans, mutant 
worms showed shorter body lengths and lower lipid accumulation compared to 
wild-type worms (Figure 4, panels a, b and c). Lipid accumulation, likely mediated 
via BMP signalling, appeared to be independent of body size regulation.   

The LRIG1 gene variant with the strongest effect on BMI was rs4856886(G). In 
epidemiological analyses, this SNP significantly increased BMI by approximately 
0.05 kg/m2 (95% CI: 0.03, 0.08) per each copy of the minor allele (Figure 4, panel 
d). The variant was also associated with decreased risk of T2D which was 
strengthened after adjusting for BMI, but did not show a significant association with 
liver fat percentage, p = 0.69. The variant was negatively associated with 
triglyceride (TG) levels, 𝛽 = -0.007; 95% CI: -0.013, -0.002, p = 0.01.  
Adipocyte analyses in the GENiAL cohort (n = 948) showed that the two strongest 
LRIG1 signals from the UKB were associated with adipose hyperplasia; rs4856886 
(P = 0.039) and rs9840088 (P = 0.014).  
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Figure 4 
Panel a: Representative whole-body images of Oil Red O-stained adult hermaphrodite worms. Scale bars, 200 μm. b: 
Adult body lengths of wild-type animals (n = 46), dpy-5(e907) (n = 37), sma-10(wk88) (n = 41), sma-10(wk89) (n = 32), 
daf-4(m63) (n = 32), sma-6(wk7) (n = 41), and sma-3(wk30) (n = 37). The body length of each individual animal is plotted 
as a red square. Solid lines and error bars indicate the means and 95% confidence intervals, respectively. The order of 
the dot plots, from top-to-bottom, is the same as that for the images in a. c: Oil Red O signal intensities from three 
independent experiments. Each experiment was normalized to its combined mean signal intensity across all genotypes. 
For each genotype, solid, red squares indicate the mean normalized signal in each independent experiment. Solid lines 
indicate the combined means from three experiments. The order of the dot plots, from top-to-bottom, is the same as 
those for the images in a. Statistical significance versus wild-type was determined with multiplicity-adjusted P-values, 
calculated using Holm-Sidak multiple comparisons tests. *P < 0.05, ***P < 0.001. d: Plot illustrating the difference in 
predicted BMI (least square means, LSMs) across the genotypes of rs4856886 (minor allele = G, major allele = T) and 
odds ratio for type 2 diabetes (T2D) across genotypes. The x-axis represents the rs4856886 genotypes compared. The 
y-axis on the left represents the difference in BMI LSMs per single minor allele across the genotypes, while the y-axis
on the right represents the odds ratios for T2D. In this study, the minor allele was associated with an increase in BMI
and a lower odds of T2D risk. 
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Paper 2 discussion 
In this integrated study, we found that BMP signalling was the main mechanism via 
which LRIG proteins regulate lipid metabolism, differentiation of adipocytes in 
MEFs and lipid storage in C. elegans. In population-level analyses, human LRIG1 
gene variants were associated with increased BMI, decreased risk of T2D and 
adipocyte size. Taken together, these results show that LRIG proteins regulate BMP 
signalling and lipid metabolism, and are implicated in metabolism of lipids in 
humans. 

These results may indicate a metabolically favourable adipose tissue phenotype 
characterised by hyperplastic adipose morphology and low triglyceride levels. It is 
possible that enhanced BMP signalling mediates LRIG1-associated adipogenesis. 
Hyperplastic adipose tissue has numerous metabolically active, hence energy-
efficient adipocytes. This energy efficiency attributed to a high number of 
adipocytes could explain the T2D protective effect we observed in this study. This 
is among the first studies to describe these associations and therefore offers 
opportunity for further investigations of LRIG1 gene variants in human energy 
metabolism.  
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Paper 3 
In this study, we developed and evaluated the performance of different models in 
predicting NAFLD. Different models contained different features which are 
summarised in table 3. Briefly, the variables included clinical/ anthropometric 
variables, and omics (transcriptomic, proteomic, genetic and metabolomic). 
Prediction models were constructed based on variables commonly available within 
clinical settings and also those not routinely available (Table 3). Models 1-3 
included clinically accessible variables that are also known to be associated with 
NAFLD and these were not subjected to dimension reduction. In model 4, the most 
accessible of highly correlated variables (r > 0.8, Pearson’s) were selected from the 
combined IMI-DIRECT cohorts 1 and 2. For high dimensional omics data, 
dimensionality reduction and feature selection was performed using LASSO in a 
70:30 train-test ratio with a 10-fold cross-validation, before using the data for model 
construction. Prior to LASSO reduction, a GWAS for liver fat was performed on 
the genetic data and associated SNPs (p < 5 × 10-6) selected. With the 30% test data, 
prediction models for fatty liver were developed based on features for each 
respective model, using random forest algorithm. Model evaluation was performed 
by computing the receiver operating characteristic area under the curve (ROC-
AUC) for each model and comparing the results. Different cut-off values for 
classification and their impact on the model performance evaluation measures were 
explored. Finally, we also compared our models with existing liver fat calculation 
formulae namely the fat liver index (FLI), hepatic steatosis index (HSI) and the 
NAFLD liver fat score (NAFLD-LFS). Analyses were performed on the combined, 
no diabetes (cohort 1) only and diabetes only (cohort 2) cohorts in the IMI-DIRECT 
consortium. Models 1 and 2 were then externally validated in the UKB cohort. 
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In clinical models 1-3, model 3 had the best ability to predict NAFLD in the 
combined and non-diabetic cohorts (ROC-AUC = 0.82, 95% CI 0.81, 0.83; p < 
0.001) but there was no difference when compared to the NAFLD-LS model in the 
diabetic cohort. Clinical model 1 performed below all other models. Figure 5 shows 
a summary of the ROC-AUCs and 95% CI of the different models per cohort. 

Figure 5 
Model performance (ROC-AUC with 95%) for clinical models 1-3 and the FLI, HIS and NAFLD-LFS. 



57 

Table 3 shows the optimum values for each performance metric for the different 
models including results for validation of models 1 and 2, the FLI and HIS in the 
UKB.  

Table 3 
Performance metrics of different models under optimum cut-off points 

Non-diabetes (IMI-DIRECT) Cuttoff Sensitivity Specificity F1 score Balanced accuracy 
Model 1 0.4 0.51 0.75 0.51 0.63 
Model 2 0.4 0.60 0.79 0.59 0.69 
Model 3 0.4 0.64 0.80 0.63 0.72 
FLI 60 0.89 0.41 0.58 0.65 
HSI 36 0.62 0.68 0.55 0.65 
NAFLD-LFS -0.64 1 0.04 0.51 0.52 

Diabetes (IMI DIRECT)      

Model 1 0.6 0.63 0.64 0.67 0.64 
Model 2 0.6 0.65 0.68 0.69 0.67 
Model 3 0.6 0.69 0.75 0.74 0.72 
FLI 60 0.77 0.54 0.73 0.66 
HSI 36 0.83 0.48 0.75 0.65 
NAFLD-LFS -0.64 1 0.01 0.73 0.50 

Combined (IMI DIRECT)      

Model 1 0.4 0.67 0.65 0.62 0.66 
Model 2 0.4 0.72 0.69 0.67 0.71 
Model 3 0.4 0.74 0.73 0.70 0.74 
FLI 60 0.84 0.44 0.64 0.64 
HSI 36 0.71 0.63 0.64 0.67 
NAFLD-LFS -0.64 1 0 0.58 0.50 

UK Biobank      

Model 1 0.4 0.49 0.78 0.43 0.63 
Model 2 0.4 0.67 0.74 0.52 0.71 
FLI 60 0.62 0.76 0.50 0.69 
HSI 36 0.66 0.72 0.50 0.69 

 

Model 4, which had the highest number of clinical variables yielded a ROC-AUC 
of 0.79 (95% CI 0.76, 0.81; p < 0.001). Models that contained omics data only had 
poorer predictive ability than the clinical or combined models i.e., clinical with 
omics data. Model 14 which had clinical and all omics combined, had the highest 
prediction ability (ROC-AUC = 0.84, 95% CI 0.82, 0.86, p < 0.001). Figure 6 shows 
ROC-AUCs of the omics and combined models.  
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Figure 6 
Predictive performance of (ROC-AUC and 95% CI) of clinical models and omics separately or in combination with the 
clinical model in the imi combined cohort. Clinical (C), model 4, with the 22 selected clinical variables. Genetic (G), 
model 5, with 23 SNPs. C+G, model 6, with clinical plus genetic variables. Transcriptomic (T), model 7, with 93 
protein-coding genes. T+C, model 8, with transcriptomic plus clinical variables. Proteomic (P), model 9, with 22 
proteins from exploratory proteomics. P+C, model 10, with proteomic plus clinical variables. Metabolomic (M), model 
11, with 25 metabolites from targeted metabolomics. M+C, model 12, with metabolomic plus clinical variables. 
G+T+M+P, model 13, with all omics together. C+G+T+M+P, model 14, with all the omics combined with the clinical 
model. 

Paper 3 discussion 
In this study, we developed 18 prediction models for NAFLD and where the data 
allowed (model 1 and 2) validated the models in the UKB. Inclusion of HbA1c or 
fasting glucose and fasting insulin improved the prediction ability of a model that 
had basic clinical variables and was also better than existing models in the combined 
cohort. In this study the FLI141 which is a commonly used prediction model yielded 
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similar performance in both cohorts in DIRECT (ROC ≈ 0.75) but was not superior 
to clinical model 3 (ROC = 82), and whis was no better than common 
anthropometric measures in predicting NAFLD in a comparative study142. The FLI, 
HIS and NAFLD-LFS use different parameters, with little overlap, but their 
discriminative abilities of NAFLD have been shown to be comparable143. In studies 
that deployed ML on omics data (different studies used different omics and different 
combinations), multi-domain models (models with both clinical and omics data) 
performed best in predicting NAFLD144,145. 

Given that imaging is not always present, is unable to distinguish who will progress 
beyond NALFD, and no screening recommendations are in place, prediction models 
offer a cheap and simple alternative that can be useful in many settings. As big data 
becomes more available with increase in sample size and computing power, there is 
opportunity for developing more enhanced prediction models, identifying new 
features that can be used as prediction or diagnostic biomarkers, or gene variants 
that can be further elucidated to identify intervention/therapeutic targets.  

Paper 4 
In this study, I set out to investigate causal associations between adiposity (assessed 
as BMI) and cardiometabolic outcomes, the nature of these causal relationships and 
any sex differences within the causal framework.  

I used TSLS MR to estimate the causal relationship between BMI and each of the 
outcomes and stratified the analyses by sex and age to determine if there were any 
differences. To determine differences between men and women, I computed the 
Cochran’s Q statistic for each outcome and also investigated whether BMI was 
causal of any cardiometabolic disease (T2D, CAD, hypertension, stroke, CKD) by 
combining results for each disease outcomes in a meta-analysis. To determine the 
nature of the causal relationships, I performed NLMR using both fractional 
polynomials and piecewise linear MR, in combined and sex-stratified analyses. 
Additional sensitivity analyses were performed as follows: excluding outliers of 
BMI; adjusting for lipid lowering medication and WHR; stratifying by menopause 
status in women; and applying other two different methods (G-estimator and TSLS 
with residual inclusion) to compute causal estimates.  

Characteristics of participants used in this paper are shown in table 4 below. Figure 
7 shows the prevalence of main cardiometabolic diseases across different ages in 
the cohort 
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Table 4 
Participant characteristics, UKBB, N = 387,394 

Characteristic Men Women 
Count 45.9% 54.1%
Age (years) 57.1 (8.09) 56.7 (7.92) 
BMI (kg/m2) 27.8 (4.23) 27.0 (5.13) 
TDI  -1.59 (2.89) -1.53 (2.99) 
Smoking status 

Never 41.2% 58.8%
Previous  51.1% 48.9% 
Current 53.7% 46.3%

Alcohol intake status 
Never 24.7% 75.3% 
Previous  43.0% 57.0% 
Current 46.8% 53.2% 

SBP (mmHg) 145 (19.4) 138 (21.2) 
DBP (mmHg) 86.6 (11.0) 82.4 (11.1) 
CAD  67.4% 32.6% 
Type 2 diabetes 61.5% 38.5% 
Stroke 61.3% 38.7%
CKD  55.2% 44.8% 
Mortality  60% 40% 
Glucose (mmol/L) 5.18 (1.37) 5.06 (1.04) 
Hba1c (mmol/mol) 36.3 (7.29) 35.7 (5.70) 
HbA1c (%) 6.08 (1.89) 6.04 (1.66) 
Cholesterol (mmol/L) 5.49 (1.13) 5.90 (1.13) 
HDL (mmol/L) 1.28 (0.311) 1.60 (0.377) 
LDL (mmol/L) 3.48 (0.862) 3.64 (0.872) 
Triglycerides (mmol/L) 1.98 (1.15) 1.57 (0.861) 
Urea (mmol/L) 5.64 (1.44) 5.26 (1.32) 
Continuous variables are presented as mean (SD) and categorical variables as percentage. TDI = Townsend 
Deprivation Index, CAD = Coronary artery disease, CKD = Chronic kidney disease. 
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Figure 7 
Prevalence of cardiometabolic disease in the UKB across different age groups 

From analyses estimating causal effects, BMI was significantly associated with 
T2D, hypertension and CAD but not CKD or stroke. The largest effect was observed 
for T2D. In estimates of causal effect of BMI on cardiometabolic biomarkers and 
BP (coefficients expressed in SD units), only LPA levels failed to show a 
significantly association. BMI was causally associated with elevated levels of 
glycaemia biomarkers (glucose and HbA1c) and triglycerides but decreased total 
cholesterol, LDL and HDL cholesterol. BMI was also causally associated with 
elevations in blood pressure with effect on diastolic blood pressure being almost 
double the effect on systolic blood pressure. These results remained unchanged 
when causal estimates were computed with other methods. Table 5 below shows 
details of the effect sizes in the main method and two other methods.  
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Table 5. 
Estimates of causal relationships between BMI and cardiometabolic outcomes, comparing different methods, in the 
UKB 

METHOD 
TSLS TSLS-RI G estimator 

TRAIT OR (95% CI) OR (95% CI) OR (95% CI) 

CAD 1.20(1.08,1.33) 1.19(1.07,1.32) 1.19(1.07,1.32)

T2D 3.10(2.73,3.53) 3.05(2.67,3.48) 3.08(2.68,3.55) 

Hypertension 1.53(1.44,1.62) 1.54(1.45,1.64) 1.55(1.45,1.64)

Stroke 1.08(0.92,1.28) 1.08(0.92,1.27) 1.08(0.92,1.27) 

CKD 1.08(0.67,1.72) 1.07(0.67,1.71) 1.07(0.68,1.70)
Beta (95% CI) Beta (95% CI) Beta (95% CI) 

Glucose 0.16(0.13,0.20) 0.16(0.13,0.20) 0.18(0.12,0.25)

HBA1c 0.22(0.19,0.26) 0.22(0.19,0.26) 1.43(1.14,1.72) 

HDL -0.26(-0.3,-0.22) -0.26(-0.3,-0.22) -0.10(-0.12,-0.08)

LDL -0.10(-0.14,-0.07) -0.10(-0.14,-0.07) -0.09(-0.13,-0.06) 

Triglycerides 0.13(0.09,0.16) 0.13(0.09,0.16) 0.13(0.10,0.16)

LPA 0.02(-0.02,0.05) 0.02(-0.02,0.05) 0.75(-0.99,2.50) 

DBP 0.15(0.12,0.19) 0.16(0.12,0.19) 1.60(0.82,2.39)

SBP 0.09(0.06,0.12) 0.09(0.06,0.12) 1.63(0.29,2.97) 

Urea 0.05(0.01,0.08) 0.05(0.01,0.08) 0.07(0.01,0.12)

Cholesterol -0.18(-0.21,-0.14) -0.18(-0.21,-0.14) -0.21(-0.25,-0.16) 

In the combined meta-analysis, BMI was significantly causally associated with 
increased causal odds of any cardiometabolic disease. Figure shows a forest plot of 
the combined results.  
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Figure 8 
Forest plot of meta-analysis depicting causal risk of BMI on any cardiometabolic disease 

When analyses were stratified by sex, BMI was not associated with CAD in women 
(OR = 0.97, 95% CI 0.82, 1.15, p = 0.69) but in men the association remained 
positive and significant (OR = 1.33, 95% CI 1.19, 1.49, p = 4.29 x10-7). The P value 
for difference = 0.01, however this was not significant after accounting for multiple 
testing, p < 0.001. BMI was associated with CAD in pre-menopausal women (or 
younger women <55 years) but not older women (Figure 9). The causal effects of 
BMI on variation in LDL and total cholesterol levels were also different between 
men and women, with the LDL difference persisting after multiple testing.  
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Figure 9 
Causal risk of BMI on cardiometabolic diseases in different groups. Pre-M = premenopausal, Post-M = 
postmenopausal 

From the NLMR, generally, the causal relationship between BMI and 
cardiometabolic outcomes was non-linear, for CAD and T2D and all risk factor 
biomarkers and BP when using fractional polynomials, and the results were 
supported by piecewise MR results. Results did not materially change when BMI 
outliers were excluded or between men and women, especially after triangulating 
the evidence for non-linearity.  

See table 6 and 7, and figure 10-15. Figures 10-12 represent plots with BMI values 
truncated at 40 kg/m2 and effect sizes restricted to 0 to 3 for disease outcomes, and 
-2 to 2 for biomarkers and BP. This is done to make the plots comparable. Figures
13–15 represent the untruncated plots.
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Table 6 
Tests for shapes of causal relationships between BMI and cardiometabolic phenotypes in the UKBB 

 Non-linearity tests Heterogeneity tests 
Trait PFP degree PFP non-linearity PQuadratic PCochranQ PCochranQ PTrend 
CAD 0.18 0.10 0.02 0.36 0.03 0.53 
T2D 0.28 0.01 4.25x10-3 0.60 3.07 x10-3 0.30 
HTN 0.15 1.00 0.83 0.73 0.05 0.41 
Stroke 0.99 0.74 0.79 0.10 0.04 0.24 
CKD 0.26 0.44 0.50 0.51 0.02 0.05 
GLU 1.96x10-2 2.16x10-4 2.17x10-5 0.24 0.13 0.46 
HBA1c 3.27x10-3 7.25x10-8 9.54x10-10 1.38x10-4 0.14 1.36x10-2 
HDL 2.54x10-2 1.82x10-6 7.04x10-8 2.19x10-2 0.10 0.11 
LDLD 9.00x10-9 2.78x10-5 2.56x10-13 7.94x10-4 0.28 0.12 
TG 8.76x10-8 4.07x10-5 2.36x10-9 2.61x10-5 0.15 0.73 
LPA 0.97 0.47 0.71x10-1 0.74 0.27 0.10 
DBP 0.38 9.12x10-3 3.33x10-3 0.24 4.53x10-2 6.21x10-2 
SBP 0.97 3.62x10-2 4.12x10-2 0.48 5.61x10-2 8.30x10-2 
urea 0.50 2.28x10-3 3.33x10-3 0.48 0.26 0.62 
cholesterol 6.75x10-3 3.42x10-8 2.50x10-10 5.68x10-5 0.77 0.84 

HTN = hypertension, GLU = glucose, LDLD = LDL cholesterol, HTN = hypertension, LPA = lipoprotein(a), DBP = 
diastolic blood pressure, SBP = systolic blood pressure 
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Figure 10 
Plots showing estimated shape of the causal relationships between BMI and cardiometabolic diseases in combined 
analyses (panels A to E), men (panels F to J) and women (panels K to O). Shape estimates are derived from the 
function of fractional polynomials that best fits the data. Solid black line represents the function curve, blue band 
represents 95% CI, red dot represents reference BMI of 25kg/m2 and the dashed line represents the null effect size. 
The plots have been zoomed to depict estimated causal associations for BMI up to 40 Kg/m2 and OR up to 3.0 for 
ease of comparison. Figure 13 shows the untrancated version. 
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Figure 11 
Plots showing estimated shape of the causal relationships between BMI and cardiometabolic biomarkers in combined 
analyses (panels A to E), men (panels F to J) and women (panels K to O). Shape estimates are derived from the 
function of fractional polynomials that best fits the data. Solid black line represents the function curve, green band 
represents 95% CI, red dot represents reference BMI of 25kg/m2 and the dashed line represents the null effect size.  
The plots have been zoomed to depict estimated causal associations for BMI up to 40 Kg/m2 and β between -2 and 2 
for ease of comparison. Figure 14 shows the untruncated version. GLU = glucose, T_CHOL = total cholesterol. 
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Figure 12 
Plots showing estimated shape of the causal relationships between BMI and cardiometabolic biomarkers in combined 
analyses (panels A to E), men (panels F to J) and women (panels K to O). Shape estimates are derived from the 
function of fractional polynomials that best fits the data. Solid black line represents the function curve, green band 
represents 95% CI, red dot represents reference BMI of 25kg/m2 and the dashed line represents the null effect size.  
The plots have been zoomed to depict estimated causal associations for BMI up to 40 Kg/m2 and β between -2 and 2 
for ease of comparison. Figure 15 shows the untruncated version. GLU = glucose, T_CHOL = total cholesterol. 
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Figure 13 
Untruncated plots showing estimated shape of the causal relationships between BMI and cardiometabolic diseases in 
combined analyses (panels A to E), men (panels F to J) and women (panels K to O). Shape estimates are derived 
from the function of fractional polynomials that best fits the data. Solid black line represents the function curve, blue 
band represents 95% CI, red dot represents reference BMI of 25kg/m2 and the dashed line represents the null effect 
size.  



71 

 

Figure 14 
Untruncated plots showing estimated shape of the causal relationships between BMI and cardiometabolic biomarkers 
in combined analyses (panels A to E), men (panels F to J) and women (panels K to O). Shape estimates are derived 
from the function of fractional polynomials that best fits the data. Solid black line represents the function curve, green 
band represents 95% CI, red dot represents reference BMI of 25kg/m2 and the dashed line represents the null effect 
size. GLU = glucose, T_CHOL = total cholesterol. 
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Figure 15 
Untruncated plots showing estimated shape of the causal relationships between BMI and cardiometabolic biomarkers 
in combined analyses (panels A to E), men (panels F to J) and women (panels K to O). Shape estimates are derived 
from the function of fractional polynomials that best fits the data. Solid black line represents the function curve, green 
band represents 95% CI, red dot represents reference BMI of 25kg/m2 and the dashed line represents the null effect 
size. GLU = glucose, T_CHOL = total cholesterol. 
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Paper 4 discussion 
In this study we demonstrate that the causal relationships between excess adiposity, 
assessed as BMI, and cardiometabolic diseases and risk factors are non-linear and 
that excess adiposity is causal of any cardiometabolic disease outcome. The largest 
causal effect of BMI was observed on T2D underscoring the fact that excess 
adiposity is the most important predictor of T2D. Significant sex differences were 
observed for causal effects of BMI on CAD risk and levels of total and LDL 
cholesterol but this significance only persisted for LDL after accounting for multiple 
testing. We further found evidence of non-linear causal associations between BMI 
and cardiometabolic biomarkers and disease events.  

Despite caveats of multiple testing, the sex differences observed in causal effect of 
BMI on CAD, and the impact of menopause status, or younger age in women, on 
causal effects of obesity on CAD are important results. Excess adiposity seems 
invalidate the protections of premenopausal state which shows the deleterious 
effects obesity has on health.  

Different approaches have been applied before to assess causal effects of adiposity 
various cardiometabolic outcomes. WHR adjusted for BMI was causally associated 
with T2D and CHD146, and BMI was associated with T2D, CHD, lower HDL but 
not stroke83. At least one study investigated sex differences in causal effects of BMI 
on CAD but did not find a significant difference after multiple testing which may 
owe to different SNPs used to compute BMI PRS93. Findings on lipids may reflect 
dyslipidaemia of obesity characterized by high TGs and FFAs; normal or decreased 
LDL; and decreased HDL (accompanied by HDL dysfunction which is 
characterized by altered reverse cholesterol transport and tendency towards 
proinflammation), all attributed to altered lipid metabolism favouring 
hypertriglyceridaemia147. 

Owing to the conservative nature of Bonferroni correction, the sex differences 
identified within this causal framework are worth considering. Sexual dimorphism 
has been observed in peak age of obesity, differential distribution of body fat, and 
substrate preference for energy metabolism in different states of activity/rest, with 
women having better insulin sensitivity than men8,89-92,148. Despite these differences 
being partially attributed to the protective effects of oestrogen, obesity seems to 
attenuate this protection149, which we also observed in our study. These findings are 
however contradicted by studies that showed that hormone replacement therapy 
increases the risk of CAD in postmenopausal women150 or increased the risk of other 
diseases like breast cancer151. In the Women’s Health Initiative (WHI) study, they 
did not report any important interaction with BMI nor were subgroup analyses based 
on BMI performed150. Further, there is conflicting evidence on the cardiometabolic 
risk profile in premenopausal women with some studies showing increased risk and 
others decreased152. Other studies also reported differential obesity-related risk for 
CAD by age though we only observed these differences in women only, and 
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furthermore these studies were largely observational153. In older women, other 
factors influencing cardiovascular risk other than hormonal change have been 
suggested: psychosocial factors including stress and depression; sleep disorders; 
vitamin deficiencies, especially vitamin D; and inflammation related to rheumatoid 
arthritis154.  

We demonstrate sex differences in the causal effects of BMI on CAD and describe 
in detail the shapes of causal effects of BMI on cardiometabolic diseases and risk 
factors. We found evidence of nonlinearity in the causal effect of BMI on diseases 
and risk factor biomarkers except LPA. The adverse consequences of BMI in CAD 
risk are similar in men and women at younger ages. It is possible that as adults age, 
risk of CAD due to excess adiposity diminishes or other stronger or competing risk 
factors come into play. However, in men BMI continues to convey increased CAD 
risk, whereas in older women, BMI is no longer a risk factor. Thus, whilst weight 
loss may be a sensible preventive measure in younger women and men of all ages, 
it may not be beneficial in post-menopausal women. 

The overall implication of this study is that we understand the nature of causal 
relationships between BMI and cardiometabolic and possibly can estimate benefits 
of intervening at various levels of BMI. It also highlights the role of sex in CAD, 
lipids and glucose homeostasis in the context of causal risk conferred by excess 
adiposity and underscores the need for sex consideration in the management of 
excess adiposity and cardiometabolic diseases. The study also emphasizes the 
importance of maintaining a healthy body weight even among women who are 
deemed to have natural protection by virtue of their sexual hormones. 

Overall summary and conclusions 
The advantage of establishing causality (and further elucidating the nature of the 
underlying causal relationships), is that we are able to institute interventions with a 
degree of certainty that we are targeting the right exposure and that the interventions 
will work. However, in order to develop therapeutic agents, we must discover the 
underlying biological mechanisms, through which the exposure causes disease, via 
functional studies. In this project, we established causal effects of prediabetes 
(hyperglycaemia independent of threshold-based T2D diagnosis) on micro- and 
macrovascular disease, and the causal effects of excess adiposity (BMI) on 
cardiometabolic outcomes and further described their nature of these relationships. 
Through functional studies, we described the role of Lrig/sma-10 and LRIG1 gene 
variants in lipid metabolism then investigated the effects these genetic variants on 
lipid/energy metabolism phenotypes in humans using population-level data. We 
also explored the utility of clinical and omics data in predicting NAFLD, an 
approach which can be used to identify important biomarkers for prognosis or 
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diagnosis of NAFLD or other diseases. The sum of approaches in this project thus 
summarises the wish of research: establishing associations, confirming causality 
and unravelling the biological processes that form the basis of a phenotype; and 
identifying means of diagnosing or estimating prognosis of a disease. This project 
provides insights which can be pursued further to improve our understanding of 
relationships between energy homeostasis and health outcomes. I conclude this 
project as follows: 

• Glucose metabolism and therefore glycaemic regulation is essential for energy 
homeostasis. Hyperglycaemia, which results from perturbations in glucose 
regulation progressively damages to the vasculature which ultimately manifest as 
overt vascular disease, especially CAD. These effects are unconfounded by the 
threshold-based diagnosis of T2D disease state but are rather driven by glucose 
levels that are above the tightly controlled normal range. The disproportionate 
burden of cardiovascular complications in T2D and the challenges of preventing 
these complications in established T2D may reflect prolonged exposure to 
hyperglycaemia, which leads to severe irreversible vascular damage.  

Given that cardiovascular diseases are the leading cause of death in T2D, it is 
necessary that recommendations consider simple and effective interventions for 
prediabetes, including therapeutic ones. However, therapeutic interventions are 
subject to risk-benefit and cost-benefit analyses in different population groups. 
Studies that have previously investigated use of medication for prediabetes did 
not necessarily enrol participants in their early stages of dysglycaemia leading to 
mixed results of pharmacological interventions with regards to key outcomes; 
CAD, mortality, CVD mortality and development of other vascular 
complications155. In addition, risk of both short-term and long-term side-effects 
of therapies may outweigh benefits of intervening in persons who generally are 
considered amenable to lifestyle modifications, though the ADA approves use of 
metformin for certain high-risk groups156. A more recent review of evidence 
found strong evidence for metformin but lifestyle interventions were superior to 
metformin in reducing T2D incidence which further divides opinion on whether 
to intervene pharmacologically or not157. While wading into this controversy was 
by no means the purpose of this thesis, precision medicine approaches with patient 
stratification may offer tailored solutions based on case-by-case merit. Further, 
screening for hyperglycaemia in those at risk (based on simple anthropometric 
measures, lifestyle and demographic factors) and instituting early interventions 
has the potential to significantly reduce T2D-related CAD and mortality. 

• Functional studies are important in unravelling the underlying molecular 
biology of genetic variants associated with a particular phenotype. The LRIG1 
gene variants showed important discordant relationships with BMI and T2D, 
and a healthy lipid metabolic phenotype likely driven hyperplastic adiposity. In 
humans, functional studies of this gene have mainly been conducted in cancer 
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cells making this one of the first studies to investigate associations with 
adipocyte morphology and metabolic traits. There are opportunities for further 
invitro functional studies in human cells and identification of potential 
therapeutic targets, and also population studies.  

• Undetected and untreated NAFLD can progress to fibrosis or hepatocellular
carcinoma, stages that are difficult to manage and likely fatal without liver
transplantation. It is difficult to tell who would progress from NAFLD to
cirrhosis and who would not. NAFLD however, can be managed with simple
lifestyle changes if detected in time. However, given that definitive diagnosis
with biopsy carries complications and imaging is not always available or
reliable, methods for identifying NAFLD that are simple, safe and reliable
would be helpful in bridging the detection gap. Prediction models have been
used previously with different performance rates and using different variables.
With proliferation of omics data and other big data in health and biomedical
research, ML can be useful in developing prediction models based on more
detailed data, and identifying biomarkers which can be further investigated and
for diagnostic or prognostic purposes. While the eventual clinical use of
identified biomarkers may take time, interventions with virtually no risk like
lifestyle changes can be prescribed to high-risk groups detected using a
prediction model.

• The deleterious effects of excess adiposity on cardiometabolic health have been
studied extensively, and we show that adiposity causally drives cardiometabolic
outcomes in a non-linear way. This is in line with studies that have shown non-
linear causal relationship between adiposity and mortality. Visual representation
of these relationships showed that the causal risk of disease increases
exponentially as BMI increases. The implication of this is that early intervention
in the trajectory of excess adiposity significantly reduces its detrimental effects.
From these analyses, it is also possible to estimate the magnitude of causal risk
attenuated by intervening at a particular level of exposure, BMI in this case. This
offers a useful tool and incorporating such causal estimates would offer more
valuable information to policy makers.

• Sexual dimorphism in cardiometabolic health remains an important factor in
research and design of interventions. Differential risk profiles at same age and
weight in men and women seem to favour women though some of these
advantages disappear in obesity and with advanced age. It is also possible that on
average, men are exposed to the detrimental effects of excess adiposity for a
longer duration given that obesity peaks 10 years earlier compared to women. On
the other hand, women tend to handle their naturally higher fat mass and
circulating lipids more efficiently. The detrimental effects of obesity seem to
attenuate the putative protective effects of sex hormones enjoyed by younger
women. Surprisingly, in older women we observed no causal association between
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BMI and CAD which could be due to changes in risk factor profile as women 
advance in age. Research in women’s health, especially when considering 
menopause, faces criticism of medicalization of a natural process and 
misrepresentation of facts158,159. There is thus need for more evidence to further 
our understanding of women’s cardiometabolic health and overall sexual 
dimorphism in cardiometabolic disease. Our finds thus warrant further 
investigations.  

 

Future perspectives 
Paper 1 can be extended further as follows: 

• With individual data, more detailed analyses that incorporate covariate 
adjustment and stratification by sex, age and other factors like menopause 
status. In this case, we’d be investigate any sex or age group differences and 
the effects of these factors on causal associations between dysglycaemia 
and vascular diseases. Using individual data, we can also perform time-to-
event causal inference analyses to determine if time influences these causal 
associations. We can identify genetic subgroups who develop and who do 
not develop prediabetes and investigate their underlying differences. One 
useful approach would be to stratify individuals by quantiles of a 
prediabetes PRS and then compare via the aforementioned analyses. 
Finally, for a more general study, we can compute the casual population 
attributable fractions (PAF) of CAD due to prediabetes. 

Paper two offers opportunity for both cellular and population level studies.  

• In population studies we can investigate effects of LRIG1 genetic variants 
on the following: 

o Longitudinal weight change, with and without interventions 

o Modification of cardiometabolic risk due to obesity (including 
extreme obesity) 

o Interaction with environmental factors in phenotype development 

o Other measures of adiposity and fat distribution: SAT, WHR, waist 
circumference, visceral obesity and body fat levels 

o Prognosis of T2D, including risk of complications and response to 
treatment.  
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• In cellular studies, CRISPR-cas9 can be used to edit cell-lines to investigate
the effects of different LRIG1 alleles on lipid metabolism. Further, impact
of lifestyle can be tested in vitro using lifestyle mimetic agents. Thereafter,
for alleles with confirmed functions, gene-based recall studies can be set up
to investigate population level effects.

In paper 3 we did not assess prediction of NAFLD in men and women separately 
mainly due to sample size issues. If that constraint could be overcome, we could 
determine whether our models perform equally in men and women or if there are 
differences. It would also be useful to determine subgroups of susceptibility 
especially defined by an obesity or T2D PRS and compare these groups, in terms of 
prediction yield, to subgroups defined by a NAFLD PRS.  

Finally, paper 4 being my last one towards the end of my PhD is still work in 
progress. One of the things I realized while working through the project was that it 
was quite broad and therefore it would be prudent to have smaller more focused 
extensions in the future. These extensions could cover the following: 

• Computing causal population attributable fraction of specific
cardiometabolic outcomes due to BMI

• Perform time-to-event causal effect analyses

• Investigate effects of hormone replacement therapy on causal associations
between BMI and cardiometabolic outcomes in women.

• Use different measures of adiposity e.g., WHR, body fat percentage, waist
circumference, and compare the causal effects on cardiometabolic
outcomes to those of BMI on the same outcomes.

• Lastly, we could compare causal effects generated from analyses that use
sex-specific instruments (SNPs) to generate PRSs to those that use SNPs
from combined GWAS.
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ARTICLE

An investigation of causal relationships between
prediabetes and vascular complications
Pascal M. Mutie1,6, Hugo Pomares-Millan 1,6, Naeimeh Atabaki-Pasdar1, Nina Jordan2, Rachel Adams 3,

Nicole L. Daly3, Juan Fernandes Tajes1, Giuseppe N. Giordano 1 & Paul W. Franks 1,4,5✉

Prediabetes is a state of glycaemic dysregulation below the diagnostic threshold of type 2

diabetes (T2D). Globally, ~352 million people have prediabetes, of which 35–50% develop

full-blown diabetes within five years. T2D and its complications are costly to treat, causing

considerable morbidity and early mortality. Whether prediabetes is causally related to dia-

betes complications is unclear. Here we report a causal inference analysis investigating the

effects of prediabetes in coronary artery disease, stroke and chronic kidney disease, com-

plemented by a systematic review of relevant observational studies. Although the observa-

tional studies suggest that prediabetes is broadly associated with diabetes complications, the

causal inference analysis revealed that prediabetes is only causally related with coronary

artery disease, with no evidence of causal effects on other diabetes complications. In con-

clusion, prediabetes likely causes coronary artery disease and its prevention is likely to be

most effective if initiated prior to the onset of diabetes.
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Prediabetes is an impaired state of glucose metabolism
defined by elevated but not yet diabetic levels of fasting or
2-h glucose, or HbA1c. The specific cutoffs used to define

prediabetes vary but the widely adopted American Diabetes
Association (ADA) definitions are: impaired fasting glucose
(IFG)= fasting glucose 5.6–6.9 mmol L−1; impaired glucose
tolerance (IGT)= 2-h glucose 7.8–11.0 mmol L−1; HbA1c=
39–46 mmol mol−1 (or 5.7–6.4%). The cooccurrence of IFG and
IGT is termed “impaired glucose regulation”.

Whilst the global prevalence of prediabetes in adults is about
7.3% (n= 352 million people), in Europe and the US, roughly
4.6% (n= 36 million people) and 33.9% (n= 84.1 million people)
of the adult populations, respectively, are estimated to have
prediabetes1. In the short term, a relatively small proportion
(5–10% annually) of those with prediabetes will progress to full-
blown diabetes; however, after 5 years, about half will have
developed the disease2.

As diabetes progresses, it becomes increasingly difficult to treat,
as the capacity to endogenously produce insulin diminishes and
life-threatening complications arise. About five million people
died from diabetes-related complications in 2015, of which more
than 50% of the deaths were cardiovascular in nature, with costs
attributable to diabetes amounting to about one trillion USD
globally as of 20171.

Many observational studies have shown that prediabetes is a risk
factor for cardiovascular disease (CVD), suggesting that the
pathogenic effects of dysregulated glucose metabolism have already
begun even before diabetes is manifest3. However, these observa-
tions cannot be directly interpreted as causal effects owing to the
limitations of observational epidemiology. Nevertheless, if pre-
diabetic blood glucose variation was known to cause micro- and/or
macro-vascular disease, this could profoundly impact clinical
guidelines for the prevention of micro- and macro-vascular disease.

Following a cohort of participants who remain in the pre-
diabetic state for many years would help determine if blood
glucose variations within the prediabetic range are associated with
CVD; however, such a study is probably unfeasible and would
(owing to its observational nature) be prone to confounding and
reverse causality. In theory, one could design a clinical trial in
which people with prediabetes are randomized to interventions
that either (i) maintain blood glucose at the prediabetic level (e.g.,
by clamping blood glucose and insulin concentrations), or (ii)
cause blood glucose control to deteriorate through diabetes and
thereafter assess the impact of these interventions on the devel-
opment of complications. However, for ethical and other prag-
matic reasons, such trials are unlikely to be conducted.

Mendelian randomization (MR) is a recently popularized
adjunct to randomized controlled trials (RCTs) that makes use of
epidemiological data for causal inference. The approach leverages
the strengths (stability and random assortment of alleles) of
germline DNA variation to generate so-called “instrumental
variables” that serve as proxies for environmental exposures4.
Whilst not without limitations5, MR is less prone to confounding
and reverse causality than observational epidemiology and has
been used extensively to validate causal relationships indicated by
observational studies.

For the purpose of the current analysis, we have designed an
instrumental variable that isolates the exposure of prediabetes
from diabetes by selecting single nucleotide polymorphisms
(SNPs) with robust signals for variation in nondiabetic glycaemic
traits only, with no signal for risk of type 2 diabetes (T2D). We
use these instrumental variables to test whether nondiabetic
variations in fasting blood glucose (FG) and glycated hemoglobin
(HbA1c) are causally related with the most common micro- and
macro-vascular complications of diabetes: heart disease, occlusive
and hemorrhagic stroke, and renal disease.

Results
Observational and MR results. Thirty-seven articles were
included in the meta-analysis of observational studies. The pooled
sample size was 1,326,915 participants, with mean (±SD) age
53.2 ± 10.2 years and follow-up duration of 9.6 ± 4.8 years.

In the observational data meta-analysis, prediabetes was
associated with a 16% elevated risk of coronary artery disease
(CAD) (RR= 1.16; 95% CI: 1.09, 1.23; Q= 52.5, PQstat= 0.058;
I2= 27.7%; Fig. 1). In the MR analysis, nondiabetic fasting
glucose variation was also significantly associated with CAD, such
that 1 mmol L−1 higher fasting glucose conveyed an OR of 1.26
(95% CI: 1.16, 1.38) for CAD, with no evidence of directional
horizontal pleiotropy (Egger intercept= 1, P= 0.76) (Table 1 and
Fig. 2). Sensitivity analyses (MR-Egger and weighted median
regression) yielded consistent results. Hba1c yielded eight SNPs,
which were not classifiable as erythrocytic or glycemic. The
association between HbA1c and risk of CAD was not statistically
significant (OR= 1.03; 95% CI: 0.64, 1.64) and there was evidence
of directional horizontal pleiotropy (Egger intercept= 1.03, P=
0.01; Table 1).

In observational analyses, prediabetes conveyed a RR of 1.11
(95% CI: 1.03, 1.18; Q= 28.5, PQstat= 0.23; I2= 16%) for stroke
(Fig. 3), these remained virtually unchanged in the subgroup
analysis (Supplementary Data 2); however, in the MR analysis,
prediabetes was not causally associated with overall stroke (any
stroke (AS), OR= 0.88, 95% CI: 0.69, 1.13) or any of the subtypes
of stroke (Table 1). Prediabetes was not associated with chronic
kidney disease (CKD) in the observational analysis (RR= 1.05;
95% CI: 0.98, 1.12; Q= 27.2, PQstat= 0.002; I2= 63.3%), Fig. 4, or
in the MR analyses (OR= 1.04; 95% CI: 0.87, 1.25), see below. In
the latter, there was no evidence of horizontal pleiotropy.

Sensitivity analyses. In further sensitvity and validation analyses
of the prediabetes-only instrument, as defined in our study,
prediabetes-only SNPs were not significantly associated with T2D
risk across all MR methods used, P > 0.05 (Table 2). However,
when using all FG SNPs that were genome-wide significant (P <
5 × 10−8) regardless of whether or not they were nominally
associated with T2D, there was a strong causal relationship
between FG and T2D, P < 0.01 across all methods. There was,
however, a high degree of horizontal pleiotropy, PEgger intercept <
0.01, which underscores the complex nature of T2D (Table 3). All
observational pooled estimates remained virtually unchanged in
the sensitivity analysis (Supplementary Figs. 1–3).

We further tested for pleiotropy and presence of outliers using
the Mendelian Randomization Pleiotropy RESidual Sum and
Outlier (MRPRESSO) method for outcomes where outliers were
detected—coronary artery disease (CAD), AS and any ischemic
stroke (AIS). This method detects horizontal pleiotropy, corrects
for it, and also tests the distortion between the corrected and
uncorrected causal estimates6. The outlier-corrected results did
not differ with the inverse-variance weighted (IVW) results for
these outcomes (Table 4). In addition, we conducted leave-one-
out sensitivity analyses of the relationship between prediabetes
and CAD, one using the original 28 SNPs and another using
SNPs corrected for outliers using MRPRESSO, to assess whether
this association was being driven by one or more influential SNPs.
Our results show that the relationship between prediabetes and
CAD is not driven by a single (or more) influential genetic variant
(s) (Fig. 5). When we used 2-h glucose levels as an instrumental
variable for prediabetes, only two SNPs remained after routine
quality control (QC) and use of all genome-wide significant SNPs
(n= 7 after QC) did not return significant results in association
with CAD (Supplementary Note 2 and Supplementary Table 1).
Further sensitivity assessments of the relationship between our

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18386-9

2 NATURE COMMUNICATIONS |         (2020) 11:4592 | https://doi.org/10.1038/s41467-020-18386-9 | www.nature.com/naturecommunications



Overall (I squared = 27.7%, p = 0.058)

Wang 2007

IFG−WHO

Levitzky 2008:women

McNeill 2006:men

Deedwania 2013

Wang 2007

Subtotal (I squared = 62.0%, p = 0.072)

Doi 2010:women

Liu 2007

IFG−ADA

Kim 2016

Yeboah 2011

Oizumi 2008

Subtotal (I squared = 39.2%, p = 0.066)

Wannamethee 2008

Eastwood 2015:european

Subtotal (I squared = 35.8%, p = 0.155)

HbA1c−ADA

Pankow 2007

Kim 2013

Onat 2013

McNeill 2006:men

Kim 2016

Khang 2010

Kokubo 2010

Laukkanen 2013

Tai 2004

Levitzky 2008:men

Study

IGT

Doi 2010:men

Samaras 2015

Doi 2010:men

Doi 2010:women

Levitzky 2008:women

Oizumi 2008

Pankow 2007

Eastwood 2015:south asian

Wang 2007

Levitzky 2008:men

Tai 2004

Palmieri 2006

Onat 2013

McNeill 2005:women

McNeill 2005:men

McNeill 2006:women

McNeill 2006:women

Subtotal (I squared = 8.5%, p = 0.358)

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

Outcome

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

CAD

1.16 (1.09, 1.23)

1.32 (0.77, 2.26)

1.65 (0.99, 2.75)

1.28 (1.05, 1.57)

1.02 (0.81, 1.28)

1.08 (0.64, 1.82)

1.24 (0.99, 1.56)

0.82 (0.31, 2.16)

1.42 (1.06, 1.90)

1.54 (1.20, 1.98)

1.21 (0.76, 1.93)

0.50 (0.16, 1.58)

1.15 (1.03, 1.28)

1.18 (1.03, 1.35)

1.22 (0.96, 1.55)

1.19 (0.88, 1.59)

0.87 (0.67, 1.12)

1.11 (1.03, 1.20)

1.86 (0.69, 5.03)

1.45 (1.15, 1.83)

1.00 (0.79, 1.27)

1.24 (0.86, 1.78)

1.46 (1.04, 2.04)

1.63 (1.16, 2.30)

3.00 (1.22, 7.38)

0.90 (0.62, 1.30)

Risk (95% CI)

1.11 (0.62, 1.99)

1.08 (0.30, 3.85)

0.80 (0.31, 2.06)

0.48 (0.06, 3.80)

2.09 (1.11, 3.94)

1.21 (0.69, 2.13)

0.83 (0.59, 1.17)

1.03 (0.81, 1.30)

0.89 (0.57, 1.39)

0.90 (0.53, 1.53)

1.60 (0.70, 3.66)

1.04 (0.78, 1.39)

1.02 (0.59, 1.77)

0.99 (0.69, 1.42)

1.13 (0.91, 1.40)

1.08 (0.89, 1.31)

1.31 (1.02, 1.68)

1.15 (1.08, 1.24)

Relative

Relative risk (RR) with 95% confidence intervals

10.5 1 2 3 4

Coronary artery disease (CAD)

Fig. 1 Meta-analysis of the association between prediabetes and CAD. The square and diamond shapes represent effect size (relative risk estimates),
while the horizontal bars represent the 95% confidence intervals. A total of 21 studies are included. All P values are two-sided. Source data are provided as
Source Data file.
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prediabetes instruments and other cardiovascular risk factors
(Total, LDL, and HDL cholesterol levels; tryglyceride levels; and
body mass index) did not show any significant association
(Supplementary Note 2 and Supplemetary Tables 2–6).

Discussion
It is unclear if prediabetes is pathogenic or merely a prelude to the
disease state of diabetes. We sought to address this important
question using MR to estimate the causal effect of nondiabetic
variations in FG on the major complications of diabetes. We
compared these findings with those obtained through meta-
analysis of published observational data from 1,326,915 partici-
pants. In the observational analysis, prediabetes was modestly
associated with CAD and stroke, but not with CKD. In the MR
analyses however, only prediabetic blood glucose was associated
with CAD, with a 26% higher odds of CAD per mmol L−1

increase in fasting glucose. Elevation in genetically determined
HbA1c did not confer a statistically significant increase in the odds
of CAD or any other outcomes, though the number of instru-
ments was less (n= 8) and the instruments were unclassifiable.

To date, there has been no medicinal products approved for the
treatment of prediabetes in the EU or US. While lifestyle mea-
sures are clearly recommended as first-line intervention to
improve glycaemia in people at high risk of developing diabetes, it
is widely acknowledged that additional drug therapy may be
beneficial in people with prediabetes, if their risk of diabetes is
elevated for other reasons.

Current regulatory requirements for supportive evidence
include showing that delay in disease progression is accompanied
by other indicators of clinical benefit7. To provide this evidence,
large, long-term clinical trials are needed, the high cost of which
inhibits the development of prediabetic medicinal products.
Moreover, there are reimbursement challenges of treating very

Table 1 Causal relationship between genetically determined prediabetes and vascular outcomes.

Trait associated with FG IVWrobust (OR (95% CI)) MR-Egger (OR (95% CI)) Egger intercept
P value

Weighted median (OR (95% CI))

CAD 1.26 (1.14, 1.38) 1.30 (1.09, 1.567) 0.76 1.29 (1.13, 1.47)
Any stroke 0.88 (0.68, 1.13 0.71 (0.47, 1.08) 0.34 0.82 (0.64, 1.07)
AIS 0.92 (0.73, 1.16) 0.70 (0.48, 1.02) 0.16 0.88 (0.67, 1.15)
LAS 0.83 (0.49, 1.40) 0.66 (0.33, 1.35) 0.48 0.79 (0.43, 1.46)
CES 1.10 (0.75, 1.63) 0.79 (0.39, 1.58) 0.21 1.04 (0.63, 1.73)
SVS 0.78 (0.46, 1.31) 0.49 (0.19, 1.22) 0.23 0.61 (0.33, 1.11)
CKD 1.04 (0.87, 1.25) 0.83 (0.56, 1.22) 0.32 0.93 (0.75, 1.16)
HbA1c-CADa 1.03 (0.64, 1.64) 0.17 (0.04, 0.79) 0.01 0.83 (0.53, 1.31)

Data are presented as odds ratios and 95% CI for three methods of the Mendelian randomization analysis. Source data are provided as Source Data file.
IVW inverse-variance weighted, CAD coronary artery disease, AIS any ischemic stroke, LAS large artery stroke, CES cardioembolic stroke, SVS small vessel stroke, CKD chronic kidney disease.
aTwo-sample MR results of the association between genetically determined HbA1c levels and CAD using robust IVW.
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Fig. 3 Meta-analysis of the association between prediabetes and stroke. The square and diamond shapes represent effect size (relative risk estimates),
while the horizontal bars represent the 95% confidence intervals. A total of 14 studies are included. All P values are two-sided. Source data are provided as
Source Data file.
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large numbers of people with prediabetes. Determination of the
health implications and risk assessment of prediabetes would,
therefore, aid design of smaller, shorter, and potentially less
expensive, clinical trials by providing alternative health benefits. It
would also help address the value of treating large populations
over longer periods, by showing cost effectiveness.

MR is often considered an analogue of RCTs. In the latter,
treatment allocation is randomized to help ensure that any
potential confounding factors that exist within the cohort prior
to treatment assignment are distributed evenly between treat-
ment arms, thus neutralizing their impact. In MR analyses,
germline DNA variants are used as proxies (instrumental vari-
ables) for the exposure of interest (in this case, prediabetes). The
random assortment of alleles during meiosis and the stability of
DNA variants across the lifespan reduce to a bare minimum the
possibility that the observed effect of the instrumental variable
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Fig. 4 Meta-analysis of the association between prediabetes and CKD. The square and diamond shapes represent effect size (relative risk estimates),
while the horizontal bars represent the 95% confidence intervals. In total, eight studies are included. All P values are two-sided. Source data are provided as
Source Data file.

Table 2 Causal association between prediabetes only and
risk of T2D.

Method OR Lower 95% CI Upper 95% CI P value

Weighted median 0.98 0.82 1.14 0.79
IVW 1.02 0.90 1.16 0.76
Robust IVW 1.02 0.90 1.15 0.77
MR-Egger 0.91 0.73 1.14 0.42
InterceptMR-Egger 1.00 1.00 1.01 0.23
Robust MR-Egger 0.91 0.77 1.07 0.25
InterceptRobust MR-

Egger

1.00 1.00 1.01 0.15

n= 28 SNPs. Results are from two-sample Mendelian randomization analyses and P values are
two-sided. Results are unadjusted for multiple comparisons. Source data are provided as Source
Data file.
IVW inverse-variance weighted, OR odds ratio.
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on the outcome is confounded or attributable to reverse
causality4.

Here, we specifically sought to isolate the causal effects of
prediabetes from those of diabetes by selecting variants that are
robustly associated with fasting glucose and HbA1c variation but
not with diabetes. It is hard to envisage a clinical trial where this
could be recapitulated, as participants would need to be exposed
to prediabetes without progressing to diabetes long enough for
complications to occur. Consider, too, that the method used to
maintain the prediabetic state would need to function without
directly affecting the trial’s outcomes, excluding virtually all
known blood glucose therapeutics. Thus, for this specific research
question, MR is an especially powerful method for causal
inference.

One of few naturally occurring examples where blood glucose
can remain in the prediabetic state for long periods is a rare form
of monogenic diabetes (MODY2), caused by mutations in the
glucokinase gene (GCK). In MODY2, the blood glucose set-point
is elevated, but is generally not linked with progressively dete-
riorating glycemic control. Moreover, most MODY2 patients do
not develop macro- and micro-vascular complications8. As
intriguing as this is, the physiological idiosyncrasies of the disease
limit inferences about vascular risk in prediabetes. For example,
unlike many people with prediabetes, MODY2 patients have
normal post-prandial glycemic responses, virtually no insulin
resistance and cardioprotective lipid profiles9.

Although this is the first study to our knowledge to undertake a
comprehensive systematic literature review coupled with a
detailed MR analysis to specifically examine the causal effects of
prediabetic blood glucose variation in micro- and macro-vascular
disease, previous studies have examined the cardiogenic effects of
diabetic and nondiabetic blood glucose variations. In general, the
findings from these studies support the clinical consensus that
T2D causes heart disease10.

At least one previous MR study examined fasting glucose
variation (inclusive of diabetes) in ischemic stroke and found no
statistically robust evidence of effect11. However, a published MR
analysis that, like our study, harnessed genetic variants associated
with glucose but not diabetes12, also reported evidence of causal
associations with CAD. Another measure of glycemia, HbA1c,
which reflects average glucose levels over the preceding 3 months,
was shown in a recent study to be causally associated with car-
diovascular complications13. However, as shown here, these
results may not be independent of the effects of fasting glucose
in CVD.

MR is not without limitations. Canalization is a widely described
caveat of MR analyses; the phenomenon occurs when genetic
perturbations are offset by coexisting and compensatory mechan-
isms, effectively short-circuiting the exposure-outcome relationships
that MR analyses seek to assess4. There are no established methods
to detect canalization in MR analyses. Canalization could invalidate
MR findings by altering the effect of the genetic instrument on the
outcome of interest without affecting the association between gen-
otype and exposure of interest4. There are other established
methodological limitations of MR, such as horizontal pleiotropy
and population stratification, which were overcome in the current
analysis using established statistical solutions. A further important
consideration is that the exposures characterized in MR experi-
ments should be viewed as having lifelong effects, whereas the
timeframe for prediabetes exposure will be confined to a much
shorter duration. Thus, the estimated effect of prediabetes in CAD
derived from our MR analysis may be greater in magnitude than
one would observe in the real world. However, the results from our
observational meta-analysis are largely consistent with our MR
estimates.

A major limitation of observational studies is the potential that
participants progress to diabetes. Therefore, we went to great
lengths to identify and stratify those studies which excluded
individuals with diabetes in the analysis. Those which we deemed
having the most likelihood of enrolling diabetics (i.e., those
recruiting participants only with HbA1c or fasting glucose) were
further stratified into a specific subgroup for re-analysis; results
remained virtually unchanged (see Supplementary Material 2,
Table 1, subgroup analysis). By no means do we claim that the
observational evidence is definitive; on the contrary, this moti-
vated us to contest these observational data and explore causality
through the MR approach.

In conclusion, we report the synthesis of a very large body of
epidemiological evidence linking prediabetes with the life-
threatening complications caused by diabetes and validate these
findings using MR. We found that prediabetes is likely to be
causal in CAD, whereas it is not likely to cause kidney disease or
stroke. The major implication of this finding is that interventions
for the prevention of diabetes-related CAD may be more effective

Table 3 Causal association between fasting glucose (all GWA significant) and risk of T2D.

Method OR Lower 95% CI Upper 95% CI P value

Weighted median 1.55 1.23 1.94 1.67 × 10−4

IVW 2.26 1.37 3.74 1.43 × 10−3

Robust IVW 2.35 1.50 3.67 1.75 × 10−4

MR-Egger 0.46 0.19 1.12 0.09
InterceptMR-Egger 1.05 1.03 1.08 5.05 × 10−5

Robust MR-Egger 0.96 0.45 2.03 0.91
InterceptRobust MR-Egger 1.03 1.01 1.04 5.54 × 10−3

n= 74. Results are from two-sample Mendelian randomization analyses and P values are two-sided. Results are unadjusted for multiple comparisons. Source data are provided as Source Data file.
IVW inverse-variance weighted, OR odds ratio.

Table 4 MRPRESSO analysis of relationship between
prediabetes and outcomes with detected outliers.

Outcome MR analysis OR (95% CI) P value

Coronary artery
disease

Raw 1.27 (1.09, 1.47) 4.9 × 10−3

Outlier-corrected 1.24 (1.12, 1.38) 5.8 × 10−4

Any stroke Raw 0.92 (0.73, 1.17) 0.51
Outlier-corrected 0.90 (0.72, 1.11) 0.32

Any
ischemic stroke

Raw 0.95 (0.75, 1.22) 0.71
Outlier-corrected 0.90 (0.74, 1.09) 0.28

All P values are two-sided. “Raw” refers to original FG SNPs (n= 28). Source data are provided
as Source Data file.
OR odds ratio, CI confidence interval.
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if initiated prior to diabetes onset. This may also help explain why
CAD prevention in people with established diabetes has proven
extremely challenging14.

Methods
Observational data meta-analysis. We first performed a systematic literature
review of published epidemiological studies focusing on “prediabetes and diabetic
complications” and extracted summary statistics that we, thereafter, combined
through meta-analysis. We then tested the hypothesis that these observational
associations were of a causal nature using MR and compared effect estimates
derived from the observational meta-analysis and the MR analyses.

A combined medical subject headings term and text search strategy was
formulated restricted to “humans” and English language articles (Supplementary
Data 1 shows the search strategy in detail). A search of the electronic database
PubMed was carried out for all cohort studies published through November 30th,
2017, according to the following criteria: prediabetes defined by IGT, IFG per
WHO15 or ADA criteria, and glycated hemoglobin (HbA1c) per ADA criterion16.
Studies were included if participants were drawn from the general population,
glycaemia was measured at baseline, and the subsequent outcomes at follow-up
were CAD, CKD, or stroke, and were compared with the group of normoglycaemic
participants. Studies with individuals known to be diagnosed with diabetes or with
diabetic values at baseline or follow-up were excluded from the analysis. Figure 6
shows the study selection procedure.

Data extraction: two authors (H.P-.M. and P.M.M.) independently identified,
screened, and reviewed for eligibility the papers identified using the approach
defined above. We systematically abstracted data relating to: author(s), year

published, country or region, prediabetes definition, prevalence (%), sample size,
gender ratio of the study population (%), participants’ age, duration of follow-up,
glycaemic status at baseline, outcome definition and ascertainment, covariates and
approach used to control for confounding, risk estimates and 95% confidence
intervals, in a standard form (Supplementary Data 2 shows the studies’
characteristics). Discrepancies in study identification were adjudicated by a third
researcher (G.N.G.). Quality of the studies and bias assessment was determined
using the Newcastle–Ottawa scale15 (Supplementary Data 2). Reported findings by
subgroups (i.e., sex or ethnicity) were included separately by strata for statistical
analysis. Effect estimates (relative risk, hazard ratio, and odds ratio, converted to
RR) were logarithmically transformed and standard errors calculated16. A priori,
we assumed there would be heterogeneity across the cohorts given the differences
in population characteristics, follow-up duration, research methods, and outcome
definitions. Therefore, the DerSimonian and Laird random-effects model for meta-
analysis was used, which is considered more conservative than fixed-effect
models16. Heterogeneity between and within studies was explored through
subgroup analysis (Supplementary Data 2).

Publication bias was assessed using funnel plots and the Begg’s and Egger’s test.
Sensitivity analysis was carried out by omitting one study at a time. All statistical
meta-analyses were undertaken with the software Stata 13.0 (Stata Corp LP, College
Station, TX).

MR analyses. MR is a method that employs instrumental variables to assess the
causal association between a given exposure and an outcome4. For an instrument
to be valid, it must mediate its effect on the outcome only through the exposure
and not via other pathways. Further, it should only be associated with the exposure
and not be associated with cofounders of the exposure-outcome association17. To
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Fig. 5 Leave-one-out analysis plots of causal relationship between fasting glucose and CAD. Data are presented as odds (OR) ratio and 95% confidence
interval (95% CI) of the exposure-outcome relationship for each SNP. Center points represent the causal effect estimate and the horizontal bars represent
the respective 95% CI. Left panel represents data from all SNPs that passed QC (n= 28) while right panel represents SNPs retained after correcting for
outliers using MRPRESSO, n= 25 SNPs. Source data are provided as Source Data file.
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reduce potential bias due to population stratification, we restricted MR analyses to
participants of European descent.

We defined two sets of instruments that specifically characterized variations in
fasting glucose and HbA1c within the nondiabetic range. We achieved this by
selecting SNPs that are associated with fasting glucose and HbA1c at a genome-wide
level of statistical significance (P < 5 × 10−8) within the most recent MAGIC
database18,19, but which are not associated with type 1 or T2D (P > 0.05) in the most
recent release of the Diabetes Genetics Replication and Meta-analysis database20,21.
The sets of instruments derived from these variants were then examined within
GWAS databases for any respective “diabetic” complications. Specifically, we used
publicly available GWAS meta-analysis summary statistics from various consortia.
Fasting glucose (exposure) data were obtained from the Meta-Analyses of Glucose
and Insulin-related traits Consortium (MAGIC, n= 133,010 for fasting glucose)22.
The MAGIC GWAS meta-analysis includes 32 cohorts, which comprised participants
of European descent adjusted for age and sex. Fasting glucose was expressed in mmol
L−1 and was untransformed in the analyses18.

HbA1c (exposure) data were also obtained from the latest MAGIC transethnic
genome-wide association meta-analysis of genetic variants associated with HbA1c.
This meta-analysis included 159,940 participants from 82 cohorts of different
ancestries (European, South and East Asian, and African). Individuals of European
ancestry were the majority, about 120,962 across 55 cohorts. All participants were
diabetes free and studies reported HbA1c as percentage19.

CAD GWAS summary statistics were obtained from the latest cardiomics meta-
analysis data repository23. This data comprised of 34541 cases of CAD and 26,1984
controls from the UK Biobank and replication was done in 88,192 cases and
162,544 controls from Coronary Artery Disease (C4D) Genetics consortium
(CARDIoGRAMplusC4D)24,25.

Summary statistics for five phenotypes of stroke (AS, AIS, large artery stroke,
cardioembolic stroke, and small vessel stroke) were obtained from the most recent
MEGASTROKE consortium meta-analysis data repository26 in which the analysis
for European only ancestry consisted of 40,585 cases and 406,111 controls27.

Data on renal disease were obtained from the CKDGen GWAS summary data
repository28. GWAS meta-analysis for CKD (defined as eGRFcrea <60 ml per min
per 1.73 m2) was performed on a sample of 745,348 and replicated in a sample of
280,722 giving a combined sample size of more than one million29.

Selection of glucose-associated SNPs from MAGIC30, as outlined above,
resulted in 47 SNPs for fasting glucose and 10 for HbA1c that we considered
reflective of prediabetic glucose variation. To rule out linkage disequilibrium (LD)
between SNPs, we performed LD-clumping restricted to r2 < 0.2, a 1000 kb window
and retained SNPs with the lowest P value resulting in final sets of 28 uncorrelated
fasting glucose SNPs and 8 HbA1c SNPs. For each outcome, these genetic variants
were further validated for use in the final analysis. Specifically, the exposure-
outcome datasets were harmonized to ensure the same number of SNPs in
exposure and outcome sets, similar strand orientation, correct direction of effect
sizes, and correcting for palindromic SNPs31.

Statistical analysis. All MR analyses were conducted with the R statistical soft-
ware v3.6.1 using the MendelianRandomization32 and TwoSampleMR packages33.

We used the robust IVW method for the main analysis and the robust MR-
egger and weighted median methods for sensitivity analyses. IVW is a widely-
accepted approach for MR analyses, which involves regressing the effect sizes of the
SNP-outcome association on the SNP-exposure association with the inverse of the
variance used as weights. In robust regression, extreme values are penalized to
minimize bias.

MR-Egger is used to test for directional horizontal pleiotropy, a violation of the
instrumental variable assumption where the effect of the instrumental variable on
the outcome is mediated via another pathway other than the exposure of interest.
MR-Egger tests for violation of IV assumptions and bias in the inverse variance-
weighted (IVW) methods and includes the intercept as part of the regression
(unlike IVW, where the intercept is forced to zero)34. The resulting coefficient,
therefore, provides an asymptotically consistent estimate of the causal effect, even if
all variants are pleiotropic with the outcome35. This holds when the Instrument
Strength Independent of Direct Effect assumption is true, i.e., the instrument
strength is independent of its pleiotropic effect. When this criterion is met, MR-
Egger provides an unbiased assessment of the association between the exposure
and outcome, providing the intercept, which provides the average pleiotropic effect,
does not significantly differ from the null. When the intercept is significantly
different from the null, it represents an estimate of the directional horizontal
pleiotropic effect of the genetic variants35. The median-weighted method provides
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Fig. 6 Outline of study selection procedure. Source data are provided as Source Data file.
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a reliable estimate of the causal association between exposure and outcome when at
least half of the instrumental variables are valid36.

Sensitivity analyses and instrument validation. To rule out false positive asso-
ciations, we conducted sensitivity analyses to further test the veracity of our
instrumental variables. First, we tested the association between the prediabetes
instruments with T2D to demonstrate that our instruments represented pre-
diabetes only and rule out any pleiotropic relationship with T2D. Second, we tested
the association between all fasting glucose SNPs that reached GWA significance
(n= 74 after QC) and the risk of T2D, to cement the above facts. Further, we tested
if there was any causal relationship between fasting glucose and other cardiome-
tabolic risk factors i.e., BMI, cholesterol levels (total, LDL, and HDL), and trigly-
ceride levels. We also additionally used MRPRESSO to test for horizontal
pleiotropy and outliers6.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GWAS summary statistics data analyzed here are available in the following public
repositories. CAD (Dataset: CAD_META.gz): https://data.mendeley.com/datasets/
gbbsrpx6bs/1#file-67c31537-5906-40bb-9820-8764b1554666 (https://doi.org/10.17632/
gbbsrpx6bs.1)23. CKD (Dataset: CKD overall European ancestry): http://ckdgen.imbi.
uni-freiburg.de/28. T2D (Dataset: T2D GWAS meta-analysis—Unadjusted for BMI20):
https://www.diagram-consortium.org/downloads.html21. Fasting glucose, 2-h glucose,
and HbA1c: https://www.magicinvestigators.org/downloads/22. The fasting and
2-h glucose datasets are filed under Metabochip replication datasets, and the
zipped file contains both datasets (ftp://ftp.sanger.ac.uk/pub/magic/
MAGIC_Metabochip_Public_data_release_25Jan.zip). The HbA1c dataset can be
retrieved at ftp://ftp.sanger.ac.uk/pub/magic/HbA1c_METAL_European.txt.gz. Stroke:
https://megastroke.org/download.html26. The dataset (MEGASTROKE_data.zip) is
accessible after agreeing to terms of use and submitting a brief project description. Lipids:
http://csg.sph.umich.edu/willer/public/lipids2013/37. The datasets are filed under
”RESULT FILES,” subheading “JOINT ANALYSIS OF METABOCHIP AND GWAS
DATA.” The names of the files are LDL Cholesterol, HDL Cholesterol, Triglycerides, and
Total Cholesterol. Body mass index: http://portals.broadinstitute.org/collaboration/giant/
index.php/GIANT_consortium_data_files38. The dataset is filed under “BMI and Height
GIANT and UK BioBank Meta-analysis Summary Statistics.” The name of the file is
“Meta-analysis Wood et al.+UKBiobank 2018 GZIP”. Source data are provided with
this paper.
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LRIG proteins regulate lipid metabolism via BMP
signaling and affect the risk of type 2 diabetes
Carl Herdenberg1, Pascal M. Mutie2, Ola Billing 3, Ahmad Abdullah 1, Rona J. Strawbridge 4,5,6,

Ingrid Dahlman7, Simon Tuck8, Camilla Holmlund1, Peter Arner 7, Roger Henriksson1, Paul W. Franks 2 &

Håkan Hedman 1✉

Leucine-rich repeats and immunoglobulin-like domains (LRIG) proteins have been implicated

as regulators of growth factor signaling; however, the possible redundancy among mam-

malian LRIG1, LRIG2, and LRIG3 has hindered detailed elucidation of their physiological

functions. Here, we show that Lrig-null mouse embryonic fibroblasts (MEFs) are deficient in

adipogenesis and bone morphogenetic protein (BMP) signaling. In contrast, transforming

growth factor-beta (TGF-β) and receptor tyrosine kinase (RTK) signaling appeared unaltered

in Lrig-null cells. The BMP signaling defect was rescued by ectopic expression of LRIG1 or

LRIG3 but not by expression of LRIG2. Caenorhabditis elegans with mutant LRIG/sma-10 var-

iants also exhibited a lipid storage defect. Human LRIG1 variants were strongly associated

with increased body mass index (BMI) yet protected against type 2 diabetes; these effects

were likely mediated by altered adipocyte morphology. These results demonstrate that LRIG

proteins function as evolutionarily conserved regulators of lipid metabolism and BMP sig-

naling and have implications for human disease.
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The mammalian leucine-rich repeats and immunoglobulin-
like domains (LRIG/Lrig) protein family consists of three
transmembrane proteins, LRIG1, LRIG2, and LRIG31. The

three mammalian LRIG paralogs appear to have both distinct and
redundant functions, which is evident during mouse develop-
ment2. Because Lrig-null (i.e., Lrig1-/-;Lrig2-/-;Lrig3-/-) mice
are not viable, molecular investigations regarding the functions
of the mammalian LRIG proteins have been hampered. Never-
theless, numerous reports have indicated that LRIG proteins
are important etiological and prognostic factors in cancer3,4.
In most cases, these roles have been attributed to the ability of
LRIG1 to negatively regulate various receptor tyrosine kinases
(RTKs)5,6,7,8,9,10,11. However, in the nematode Caenorhabditis
elegans (C. elegans), the sole LRIG homolog, SMA-10, regulates
body size by promoting bone morphogenetic protein (BMP)
signaling12,13. Whether the mammalian LRIG proteins also reg-
ulate BMP signaling remains to be investigated.

The BMP signaling system is evolutionarily conserved and
regulates major developmental and homeostatic processes14–16.
The BMP families of cytokines and their receptors belong to the
transforming growth factor-beta (TGF-β) and TGF-β receptor
superfamilies, respectively. The human genome encodes at least
20 BMP ligands, three BMP type 1 receptors, and three type 2
receptors15,17–19. Upon ligand binding, the constitutively active
type 2 receptor phosphorylates and activates an associated type 1
receptor, which, in turn, phosphorylates the downstream signal-
ing mediators SMAD1, SMAD5, and SMAD815. The phos-
phorylated SMAD1/5/8 complex then recruits the co-SMAD
SMAD4 and is translocated into the nucleus, where it regulates
expression of BMP-responsive genes20. In addition to the SMAD-
mediated signaling pathway, BMPs may also initiate SMAD-
independent signaling, including the activation of the MAP
kinases ERK1/2, p38, and JNK21,22. Furthermore, BMP signaling
is fine-tuned by regulatory proteins that either enhance or sup-
press signaling15,20,23. Although the BMP system has been
extensively studied for decades, novel regulators and key signaling
proteins may still await discovery.

Obesity constitutes a global epidemic and is a major risk factor
for several conditions, including insulin resistance, type 2 dia-
betes, heart disease, and several forms of cancer24–26. Adipose
tissue serves as a key regulator of energy homeostasis in
humans27. Adipose tissue can expand in volume either by
enlarging adipocyte size (hypertrophy) or by adipocyte pro-
liferation (hyperplasia). Of these two processes, adipocyte
hypertrophy is associated with an unfavorable metabolic profile,
whereas hyperplasia may improve metabolic homeostasis due to
the increased number of insulin-sensitive cells27,28. Adipocyte
differentiation involves the sequential commitment of mesench-
ymal stem cells to preadipocytes followed by their numerical
expansion and terminal differentiation into adipocytes29,30. In
this process, BMP signaling is involved in the commitment of
mesenchymal stem cells into preadipocytes30,31, as well as in the
choice between white or brown/beige adipocyte differentiation
and adipocyte size32. C. elegans, on the other hand, lacks dedi-
cated adipocytes;33 however, evidence suggests that BMP signal-
ing may also regulate lipid accumulation in the lipid-storing
intestinal cells of C. elegans34,35. In mice, Lrig3-deficient animals
display altered plasma lipid levels36. However, a direct link
between LRIG or SMA-10 proteins and adipogenesis, lipid
metabolism, or type 2 diabetes has not yet been studied.

In the present study, we generated Lrig-null mouse embryonic
fibroblasts (MEFs) to analyze the physiological and molecular
functions of LRIG proteins in isogenic cells, without the possibly
confounding expression of endogenous LRIG proteins. By
exploiting these cells, we demonstrated that mammalian LRIG
proteins regulate adipogenesis and sensitize cells to low

concentrations of BMPs. We also analyzed the sma-10/LRIG
mutant C. elegans and showed that LRIG also regulates fat
accumulation in the worm. Finally, we investigated possible
associations between LRIG1 single nucleotide polymorphisms
(SNPs) and human metabolic traits and revealed a striking dis-
cordant association between common LRIG1 variants, a reduced
risk of type 2 diabetes, and an increased body mass index (BMI),
which we showed was likely mediated by adipocyte morphology.

Results
Generation and characterization of Lrig-null MEFs. To inves-
tigate the molecular functions of Lrig proteins, we generated Lrig-
null cell lines by immortalizing MEFs that carried floxed Lrig1,
Lrig2, and Lrig3 alleles, followed by gene ablation via cell trans-
duction with Cre recombinase-expressing adenoviruses. Thereby,
we created four Lrig-null (herein also called Lrig triple knockout;
TKO) MEF lines (TKO1-4) together with four corresponding
wild-type control MEF lines (WT1-4). The stable ablation of
Lrig1, Lrig2, and Lrig3 was confirmed by polymerase chain
reaction (PCR) genotyping (Supplementary Fig. 1a), Western
blotting (Supplementary Fig. 1b), and a sensitive duplex droplet
digital PCR (ddPCR) assay (Supplementary Table 1). With the
ddPCR assay, the fraction of contaminating wild-type MEFs in
the Lrig-null populations was analyzed by quantifying the relative
gene copy numbers of the targeted Lrig3 exon 1 versus a reference
locus. This analysis showed that, in all the analyzed TKO MEF
populations, more than 99.6% of the MEFs were Lrig3-negative
(Supplementary Table 1). Importantly, long-term culturing of the
TKO MEF lines for 60 days did not enrich for contaminating
wild-type MEFs as assessed with any of the three genotyping
methods (Supplementary Fig. 1; Supplementary Table 1). We
then compared wild-type and Lrig-null MEF lines with regard to
their proliferation and migration rates, morphology, and basic
metabolic functions. The proliferation rates were similar between
the wild-type and Lrig-null MEFs, both under standard cell cul-
ture conditions in 10% fetal bovine serum (FBS) (Supplementary
Fig. 1c) and under proliferation-limiting FBS concentrations,
although the Lrig-null MEFs showed a higher apparent pro-
liferation rate than the wild-type MEFs specifically with 5% FBS
(Supplementary Fig. 1d). The migratory rates of wild-type and
Lrig-null MEFs were also similar, in both 10% FBS and in 0% FBS
(Supplementary Fig. 1e). We were also unable to detect any
apparent difference in cell morphology between the wild-type and
Lrig-null MEF lines by light microscopy. Accordingly, flow
cytometry analysis did not reveal any significant differences in
forward or side scatter profiles between the wild-type and Lrig-
null MEF lines (Supplementary Table 2). We then analyzed basic
metabolic functions on a Seahorse XF analysis platform. These
analyses did not reveal any significant difference between the
wild-type and Lrig-null MEF lines with regard to their aerobic or
anaerobic responses, as measured by the oxygen consumption
rate (OCR) and extracellular acidification rate (ECAR), respec-
tively (Supplementary Fig. 1f, g).

Lrig proteins promote adipogenesis in vitro. To investigate the
role of Lrig proteins in adipogenesis in vitro, wild-type and Lrig-
null MEF lines were treated with an adipogenic cocktail con-
sisting of the glucocorticoid dexamethasone, the cAMP diesterase
inhibitor 3-isobutyl-1-methylxanthine, insulin, and the PPARγ
activator rosiglitazone. After nine days of treatment, adipocytic
transformation was assessed by Oil Red O staining. Three out of
four wild-type MEF lines were clearly able to transform into
adipocytes in response to the adipogenic cocktail, whereas all the
Lrig-null MEF lines studied showed impaired adipogenesis.
However, because the adipogenic potential was highly variable
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among the wild-type MEF lines, we included four additional
biological replicates of both wild-type and Lrig-null lines in the
analysis. Taken together, the analysis of the eight wild-type and
eight Lrig-null MEF lines clearly showed that compared to wild-
type MEFs, Lrig-null MEFs had deficient adipocyte differentiation
(Fig. 1a–c). During the adipogenic process of wild-type MEFs,
Lrig1 was downregulated and Lrig2 transiently upregulated,
whereas Lrig3 did not show any significant changes (Fig. 1d–f,
Supplementary Fig. 2a–f). It has been reported that the induction
of adipogenesis results in the rapid induction of Cebpb expres-
sion, followed by the induction of Pparg expression, and finally, in
differentiated adipocytes, Ap2 expression37–40. Gene expression

analyses via quantitative reverse transcription-PCR (qRT-PCR)
revealed that the induction of Cebpb was not diminished in Lrig-
null MEFs compared to in wild-type MEFs (Fig. 1g). However,
the induction of Pparg and Ap2 was severely impaired in Lrig-null
MEFs compared to in wild-type MEFs (Fig. 1h, i). Although Oil
Red O staining is a well-established method to visualize
triglyceride-containing adipocytes, we wanted to investigate the
biochemical changes in lipid composition that were associated
with adipogenesis in our experimental system. To this end, we
performed lipid profiling of the MEFs by liquid chromatography
coupled with tandem mass spectrometry prior to the adipogenic
treatment as well as eight days after the induction of adipogenesis.
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In total, 244 putative lipids were quantified. A principal compo-
nent analysis (PCA) of all samples did not reveal any apparent
difference between the wild-type and Lrig-null MEFs prior to
adipogenesis induction (Fig. 1j). Eight days after induction of
adipogenesis, both the wild-type and the Lrig-null MEF lines
separated distinctly from the untreated control MEFs. At this
time point, separation was also evident between wild-type and
Lrig-null MEFs. Thus, all the MEF lines responded to the adi-
pogenic stimulus by altering their lipid composition; however, the
wild-type and Lrig-null MEFs did so in different ways. In fact, a
supervised orthogonal projections to latent structures dis-
criminant analysis (OPLS-DA) plot completely separated the
treated wild-type samples from the treated Lrig-null samples
(Fig. 1k). The corresponding loadings plot, using the lipid classes,
showed that the main contributors to the separation between the
treated wild-type and treated Lrig-null samples were the tria-
cylglycerides, of which the majority showed higher levels in wild-
type MEFs than in Lrig-null MEFs (Fig. 1l).

TGF-β and BMP signaling pathways have been reported to
play important roles in adipogenesis in vitro and in vivo41.
Accordingly, the BMP inhibitor noggin was able to inhibit the
adipogenesis cocktail-induced adipogenesis of wild-type MEFs
(Fig. 1m). Conversely, a high dose of BMP4 (50 ng/ml) was able
to greatly enhance the cocktail-induced adipogenesis rate of wild-
type MEFs and, intriguingly, rescued the adipogenesis deficiency
of the Lrig-null MEFs (Fig. 1n).

Lrig-null MEFs show impaired BMP signaling. To investigate
the role of the LRIG proteins in BMP signaling, we used a BMP-
responsive element-driven luciferase reporter gene assay and
analyzed the phosphorylation levels of Smad1/5 by fluorescent
immunocytochemistry and Western blotting. First, we transiently
transfected the wild-type and Lrig-null MEFs with the BMP
reporter pGL3-BRE-luciferase and then stimulated them with
different concentrations of BMP4. In this assay, the Lrig-null
MEF lines showed a lower sensitivity to BMP4 than the wild-type
MEF lines (Fig. 2a). Similarly, the pSmad1/5 analysis showed that
the Lrig-null MEFs had a lower BMP4 sensitivity than the wild-
type MEFs (Fig. 2b); however, the maximal pSmad1/5 response
did not appear to differ between the wild-type and Lrig-null
MEFs in this assay. Additionally, the Lrig-null MEFs showed a
reduced sensitivity for BMP6 (Fig. 2c), whereas the sensitivity for
BMP9/GDF2 was similar between the wild-type and the Lrig-null

MEF lines (Fig. 2d). Compared with wild-type MEFs, Lrig1 and
Lrig3 single-knockout MEF lines (Supplementary Fig. 2g, h)
showed an apparently unaltered BMP4 sensitivity (Fig. 2e, f).
BMPs are also able to activate noncanonical BMP signaling,
which includes the activation of MAPK signaling cascades21,22.
Intriguingly, the Lrig-null MEFs showed a reduced sensitivity for
BMP4 when noncanonical phosphorylation of p38 was analyzed
(Fig. 2g–i); however, the detection of increased p38 phosphor-
ylation levels required higher BMP4 concentrations than the
detection of increased pSmad1/5.

To investigate whether the BMP signaling deficiency of the
Lrig-null MEF lines was the result of reduced expression of one or
several of the BMP receptors, the BMP receptor levels were
analyzed at the transcript level by RNA sequencing (RNAseq) and
at the protein level by Western blotting. The RNAseq analysis
revealed no significant difference in the levels of the different
BMP receptor transcripts between the wild-type and Lrig-null
MEF lines (Fig. 2j). Accordingly, Acvr1 and Bmpr2 showed
similar protein expression levels in wild-type and Lrig-null MEFs
when analyzed through Western blotting (Supplementary
Fig. 4a–c). In addition, there were no significant differences in
the transcript levels of Bmp ligands, signaling mediators,
responsive genes, or Tgf-β receptors (Fig. 2j).

LRIG1 and LRIG3 rescue BMP signaling in Lrig-null MEFs. To
investigate whether individual LRIG alleles could rescue the Lrig-
null phenotype, an Lrig-null MEF line was transduced with the
inducible human alleles LRIG1, LRIG2, or LRIG3, with an empty
vector serving as a control (Supplementary Fig. 2i–k). As assessed
by flow cytometry, a majority of the transduced cells expressed
LRIG1 or LRIG3 after induction, whereas the lower expression
level of LRIG2 made it difficult to determine the fraction of
LRIG2-positive cells with this method (Supplementary Fig. 2l–o).
Intriguingly, the induction of LRIG1 or LRIG3 expression rescued
the canonical BMP sensitivity phenotype of the Lrig-null MEFs,
whereas the induction of LRIG2 expression, or vector control, did
not (Fig. 3a–d). Interestingly, noncanonical BMP signaling
through p38 and Jnk phosphorylation was only rescued by LRIG1
and not by LRIG3 (Fig. 3e, f, g–j). Increased phosphorylation of
Erk was not observed under the BMP stimulation-protocol used
(Fig. 3e, f, k, l). To investigate whether LRIG1 and LRIG3 could
also rescue the adipogenesis deficiency of Lrig-null MEFs, LRIG1-
and LRIG3-inducible MEFs were analyzed. Clearly, the induced

Fig. 1 Lrig proteins regulate adipogenesis of MEFs in vitro. Wild-type (WT) and Lrig-null (TKO) MEFs were treated with an adipogenic cocktail as
described in the Methods section for the indicated times. a–c Adipogenesis of wild-type and Lrig-null MEF lines. Wild-type and Lrig-null MEFs were treated
with the adipogenic cocktail for nine days followed by the quantification of adipocytes via Oil Red O staining. Shown are representative images of wild-type
cells with 6% covered area (a) and Lrig-null cells with 1.7% covered area (b) (scale bar, 0.6 mm) and the quantifications of percentage area coverage for
the Oil Red O stained biological replicates (n= 8 per genotype) (c). d–i Relative mRNA expression levels of Lrig1 (d), Lrig2 (e), Lrig3 (f), Cebpb (g), Pparg
(h), and Ap2 (i). Cells were treated as in a-c. At the indicated time points after induction, the cells were lysed and analyzed by quantitative RT-PCR.
Expression was normalized to the reference gene Rn18s. Shown in d-f are wild-type cells only, whereas both wild-type and Lrig-null cells are shown in g–i, as
indicated, for eight biological replicates per genotype. j–l Lipidomic analyses. Lipids were extracted from wild-type and Lrig-null MEFs before or after eight
days of treatment with the adipogenic cocktail. Lipid analysis was then performed by liquid chromatography coupled with tandem mass spectrometry. Each
symbol represents one experimental replicate; shown are the results of three biological replicates per genotype with four experimental replicates each.
j PCA score plots of all samples, labeled according to sample category. The variation explained by PC1 and PC2 was 39.6% and 33.6%, respectively. k The
score plot of the OPLS-DA model built from the lipid profiles of the 8-day samples to determine the maximal variance between the wild-type and Lrig-null
sample groups. l The corresponding loading plot explaining the contributions of different lipid species to the OPLS-DA model, indicating that triglycerides
(TGs) (red triangles) in the wild-type samples were highly enriched compared to in the Lrig-null samples. The lipids are labeled according to lipid class (DG:
diacylglycerol, PC: phosphatidylcholine, PE: phosphatidylethanolamine, PS: phosphatidylserine, SM: sphingomyelin, TG: triacylglycerol). m, n Role of BMP
for adipogenesis in vitro. Wild-type and Lrig-null MEFs were treated as in a, without (Ctrl) or with the addition of 100 ng/ml of the BMP inhibitor noggin
(Noggin) (m), or without (Ctrl) or with the addition of 50 ng/ml of BMP4 (BMP4) (n). Adipogenesis was scored through Oil Red O staining as described
under a. In c–i, m and n the means of the biological replicates (c, g–i, m and n, n= 8 per genotype; d–f, n= 3) are shown by horizontal lines, and the means
of the individual biological replicates analyzed by three experimental repeats are shown by dots and squares. Error bars represent the standard deviations
of the means of the biological replicates. nsP > 0.05, *P < 0.05, **P < 0.01 (Student’s t-test).
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Fig. 2 Lrig-null MEFs show impaired BMP signaling without any apparent changes in the expression of receptors or signaling mediators. a Wild-type
(WT) and Lrig-null (TKO) MEFs expressing the BMP reporter plasmid pGL3-BRE-luciferase were treated with the indicated concentrations of BMP4 for three
hours. Thereafter, the cells were lysed, and the luciferase activity was analyzed and normalized to the control. b–d Wild-type and Lrig-null MEFs were
stimulated with various concentrations of BMP4 (b), BMP6 (c), or BMP9 (d) for one hour followed by immunocytofluorescence analysis of nuclear
phospho-Smad1/5 (pSmad1/5). e, f Wild-type and Lrig1-null MEFs (e) or wild-type and Lrig3-null MEFs (f) were stimulated with various concentrations of
BMP4 for one hour followed by nuclear pSmad1/5 analysis. g–i Western blot analyses of canonical BMP4 signaling through pSmad1/5 and noncanonical
BMP signaling through phosphorylated p38 (pp38). Wild-type and Lrig-null MEFs were stimulated with the indicated concentrations of BMP4 for one hour
followed by cell lysis and Western blot analysis. Uncropped blots are shown in Supplementary Fig. 3. g Representative Western blots showing pSmad1/5,
pp38, total Smad1, total p38, and the loading control actin. h Quantification of the pSmad1/5/actin ratios. i Quantification of the pp38/actin ratios. j Gene
expression levels were analyzed in wild-type (WT) and Lrig-null (TKO) MEFs via RNA sequencing (RNAseq). The apparent number of RNAseq reads for
respective gene is indicated. All the values in a–f, h and i represent the means of four biological replicates that were analyzed by three experimental repeats
each. j The values represent the means of four biological replicates that were analyzed once. Error bars represent the standard deviations of means from
four biological replicates. nsP > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test).
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expression of LRIG1 or LRIG3 enhanced the adipogenesis rate of
the MEF lines (Fig. 3m). To investigate whether the observed
sensitizing effects of LRIG proteins on BMP signaling were
restricted to MEFs, or if it was a more general phenomenon, the
LRIG1-inducible human HEK293T and A375 cell lines were
analyzed. Clearly, when LRIG1 expression was induced in
HEK293T or A375 cells, both cell lines showed a greatly
enhanced sensitivity to low concentrations of BMP4 (Fig. 3n, o).
To compare the BMP4-sensitizing potencies of the human LRIG
proteins, different levels of LRIG1, LRIG2, or LRIG3 were
induced by titrating the specific transcription-inducer doxycy-
cline. Then, the correlations between the LRIG protein expression

levels and the BMP4-induced pSmad1/5 levels were determined.
This correlation analysis revealed that LRIG1 and LRIG3 were
approximately equally potent in sensitizing the Lrig-null MEFs to
BMP4; as expected, LRIG2 showed a negligible effect on
BMP4 signaling (Fig. 4a). Next, we performed a structure-
function analysis of the relationships between different protein
domains and the BMP-sensitizing function of LRIG1. To this end,
Lrig-null MEFs were transiently transfected with different
amounts of expression vectors encoding a green fluorescent
protein (GFP) -tagged full-length LRIG1, a GFP-tagged LRIG1
variant that lacked the cytosolic tail (LRIG1-Δcyto), or GFP only
(as transfection control). Because of the poor transfection

a b c

d

o

g h

*
**

**

ns
ns

ns

ns

ns
ns *

*

*

ns
ns

***

n

5 10 15 20 25
-500

0

500

1000

1500

2000

BMP4 concentration [ng/ml]

pS
m

ad
1/

5 
flu

or
es

ce
nc

e

+ dox
- dox

Dox-inducible LRIG2

0 5 10 15 20 25
0

500

1000

1500

2000

BMP4 concentration [ng/ml]

pS
m

ad
1/

5 
flu

or
es

ce
nc

e

+ dox
- dox

Dox-inducible LRIG1

0 5 10 15 20 25
0

500

1000

1500

2000

2500

BMP4 concentration [ng/ml]

pS
m

ad
1/

5 
flu

or
es

ce
nc

e

+ dox
- dox

Dox-inducible LRIG3

5 10 15 20 25
-500

0

500

1000

1500

2000

2500

BMP4 concentration [ng/ml]

pS
m

ad
1/

5 
flu

or
es

ce
nc

e

+ dox
- dox

Empty vector

Doxycycline
BMP4

+ + + +- + - +
- - - -
- + - +

Doxycycline
BMP4

+ + + +- + - +
- - - -
- + - +

0 5 10 15 20 25
0.0

0.5

1.0

1.5

2.0

2.5

BMP4 concentration [ng/ml]

pS
m

ad
1/

5 
flu

or
es

ce
nc

e

LRIG1 + dox
LRIG1 - dox
Empty vector + dox
Empty vector - dox

HEK293T

0 5 10 15 20 25
0

500

1000

1500

2000

2500

BMP4 concentration [ng/ml]

pS
m

ad
1/

5 
flu

or
es

ce
nc

e

LRIG1 + dox
LRIG1 - dox
Empty vector + dox
Empty vector - dox

A375

*
ns

ns

**
***

ns
ns

ns
ns

*

*

f
- dox + dox

BMP4 [ng/ml]20020020020
LRIG1LRIG1

Empty 
vector

Empty 
vector

0
70

70

38

KD

38

pp38

LRIG1-Flag

p38

Actin

Smad1

pSmad1/5

k

70

70

38

KD

38

pp38

LRIG3-Flag

p38

Actin

Smad1

pSmad1/5

- dox + dox

BMP4 [ng/ml]200200200200

38

125

pJnk
Jnk

pErk

Erk

LRIG
1

LRIG
3

Empty 
ve

cto
r

0

1

2

3

4

A
di

po
ge

ne
si

s 
co

ve
re

d 
ar

ea
 [%

]

Dox+
Dox-

e

***

38

125

pJnk

Jnk

pErk

Erk

50
5050

50
50

50
50

50

Doxycycline
BMP4

+ + + +- + - +
- - - -
- + - +

Doxycycline
BMP4

+ + + +- + - +
- - - -
- + - +

***

i j

Doxycycline
BMP4

+ + + +- + - +
- - - -
- + - +

Doxycycline
BMP4

+ + + +- + - +
- - - -
- + - +

l m

0.0

0.5

1.0

1.5

2.0

pp
38

 [f
ol

d 
ch

an
ge

]

Empty vector
LRIG1

0.0

0.5

1.0

1.5

2.0

pp
38

 [f
ol

d 
ch

an
ge

]

Empty vector
LRIG3

0.0

0.5

1.0

1.5

2.0

pJ
nk

 [f
ol

d 
ch

an
ge

]

Empty vector
LRIG1

0.0

0.5

1.0

1.5

2.0

pJ
nk

 [f
ol

d 
ch

an
ge

]

Empty vector
LRIG3

0.0

0.5

1.0

1.5

2.0

pE
rk

 [f
ol

d 
ch

an
ge

]

Empty vector
LRIG1

0.5

1.0

1.5

2.0

pE
rk

 [f
ol

d 
ch

an
ge

]

Empty vector
LRIG3

0.0

LRIG3LRIG3
Empty 
vector

Empty 
vector

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01613-w

6 COMMUNICATIONS BIOLOGY |            (2021) 4:90 | https://doi.org/10.1038/s42003-020-01613-w | www.nature.com/commsbio



efficiencies of our MEF lines, the background signals from the
majority of nontransformed Lrig-null cells imposed an analytical
problem. To resolve this problem, we changed the stimulation
protocol from 2.5 ng/ml BMP4 for 60 min to 20 ng/ml BMP4 for
20 min. This modified protocol enabled us to monitor the
pSmad1/5 signals among the minority of LRIG1-transformed
MEFs while keeping the background signals from the majority of
nontransformed Lrig-null MEFs to a minimum. By correlating
the BMP4-induced pSmad1/5 responses with the expression
levels of the transfected LRIG1 or LRIG1-Δcyto proteins, it was
revealed that full-length LRIG1 and LRIG1-Δcyto were approxi-
mately equally potent in promoting BMP4 signaling in the Lrig-
null MEFs (Fig. 4b). The BMP4-sensitizing function of full-length

LRIG1 was also compared with the isolated ectodomain of
LRIG1, that is, LRIG1 lacking its transmembrane and cytosolic
domains. Apparently, the LRIG1 variant lacking the transmem-
brane and cytosolic domains lost its BMP4-sensitizing function
(Fig. 4c). Thus, the cytosolic tail, but not the transmembrane
domain, was dispensable for the BMP-sensitizing function of
LRIG1 in the context studied.

TGF-β and RTK-MAPK signaling pathways appear to be Lrig-
independent in MEFs. Because the TGF-β and BMP signaling
pathways share many common features and because RTK sig-
naling has been reported to be regulated by LRIG proteins, we

Fig. 3 Ectopic LRIG1 or LRIG3 resensitize Lrig-null cells to BMP4. a–m Lrig-null MEFs were transduced with doxycycline-inducible LRIG1, LRIG2, or LRIG3
constructs or with empty vector as a noninducible control. LRIG protein expression was not induced or induced by treatment of the cells with 100 ng/ml
(a–d, m–o) or 500 ng/ml (e–l) doxycycline for 24 h followed by stimulation of the cells with different concentrations of BMP4 for one hour (a–l, n, o) or
with adipogenic cocktail for ten days (m). a–d Immunofluorescence analyses of nuclear pSmad1/5 in cells not induced (−dox) or induced (+dox) to
express LRIG1 (a), LRIG2 (b), or LRIG3 (c). The empty vector served as a negative control for doxycycline treatment (d). e–l Western blot analyses of
canonical (pSmad1/5) and noncanonical (pp38, pJnk, and pErk) BMP4 signaling. LRIG1- or LRIG3-inducible MEFs were induced, or not induced, with
doxycycline followed by stimulation with 0 or 20 ng/ml of BMP4 for one hour. Thereafter, the cells were lysed, and the lysates were analyzed by Western
blotting. e, f Representative Western blots showing pSmad1/5, total Smad1, pp38, total p38, pJnk, total Jnk, pErk, total Erk, LRIG1-FLAG (e), LRIG3-FLAG
(f), and the loading control actin. Uncropped blots are shown in Supplementary Fig. 5. g–l Quantification of pp38 (g, h), pJnk (I, j), and pErk (k, l)
normalized to actin in LRIG1-inducible (g, I, k) or LRIG3-inducible (h, j, l) MEFs. Plotted values in a–d represent means from three biological replicates, each
with three experimental repeats. Error bars represent the standard deviations of means from three biological replicates. g, h Shown are four experimental
repeats using an LRIG1- or LRIG3-inducible MEF line. Error bars show the standard deviations of the four means. i–l Shown are three experimental repeats
using an LRIG1- or LRIG3-inducible MEF line. Error bars show standard deviations of the four means.m LRIG1 or LRIG3 expression was induced or not in Lrig-
null MEFs with doxycycline followed by treatment of the cells with the adipogenic cocktail for ten days and quantification of adipocytes via Oil Red O
staining. Shown are quantifications of the percentage area coverage for the Oil Red O stained biological replicates (n= 3 per genotype and treatment).
n, o LRIG1 expression was induced or not in LRIG1-inducible HEK293T cells (n) and A375 cells (o) via the treatment of cells with doxycycline for 24 h,
followed by stimulation with different concentrations of BMP4 for one hour. Immunofluorescence analyses of nuclear pSmad1/5 in HEK293T cells (n) or
A375 cells (o) that were not induced (-dox) or induced (+dox) to express LRIG1, with empty vector serving as a noninducible control. Plotted values in
n and o represent the means from three independent experiments, performed as triplicates using one biological replicate of each cell line. Error bars
represent standard deviations from three means. nsP > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001 (Student’s t-test).
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Fig. 4 LRIG1 and LRIG3 promote BMP signaling. a Different LRIG protein expression levels were induced in LRIG-inducible MEFs by treating the cells with
different concentrations of the inducer doxycycline. Thereafter, the cells were stimulated with 2.5 ng/ml BMP4 for one hour followed by
coimmunocytofluorescence analyses of nuclear pSmad1/5 and the FLAG-epitope present as a tag on the induced LRIG proteins. Correlation plots of
phosphorylated Smad1/5 versus the FLAG-LRIG protein expression levels are shown. Fitted lines indicate the linear relationship with pSmad1/5 for each
LRIG protein. Pearson’s correlation coefficients for the respective genes were LRIG1, 0.9162; LRIG2, 0.6939; LRIG3, 0.9251; and empty vector, 0.1659.
Shown are three experimental repeats using three biological replicates. b Lrig-null MEFs were transfected with a full-length LRIG1-GFP fusion protein
(LRIG1-GFP), an LRIG1-GFP fusion protein variant lacking the cytosolic domain of LRIG1 (LRIG1-Δcyto-GFP), or empty vector (GFP) as a transfection
control. Thereafter, the cells were stimulated with 20 ng/ml of BMP4 for 20min followed by coimmunocytofluorescence analyses of nuclear pSmad1/5
and the green fluorescence from GFP fusion proteins or control GFP. The correlation plots between pSmad1/5 and GFP fluorescence are shown. The fitted
lines indicate the linear relationship to pSmad1/5 for the respective construct. Pearson’s correlation coefficients for the respective constructs were as
follows: full length LRIG1, 0.8943; LRIG1-Δcyto, 0.9663; GFP control, 0.2564. Shown are two experimental repeats using three biological replicates. c Lrig-
null MEFs were transfected with different amounts of expression vectors encoding FLAG-tagged full-length LRIG1 (LRIG1) or FLAG-tagged LRIG1
ectodomains (LRIG1-ecto). Thereafter, the cells were stimulated with 20 ng/ml of BMP4 for 20min followed by coimmunocytofluorescence analyses of
nuclear pSmad1/5 and the FLAG-epitope. Shown are the correlation plots between pSmad1/5 and FLAG-LRIG expression levels. Fitted lines indicate the
linear relationship between pSmad1/5 and the respective FLAG-LRIG construct. Pearson’s correlation coefficients for the respective constructs were as
follows: full-length LRIG1, 0.7393; and LRIG1-ecto, 0.5287. Shown are two experimental repeats using three biological replicates.
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also compared TGF-β and RTK signaling between wild-type and
Lrig-null MEFs. TGF-β signaling was assessed using a TGF-β-
responsive element-driven luciferase reporter, p(CAGA)12MLP-
Luc, assay42 or by analyzing the phosphorylation levels of Smad3
by fluorescent immunocytochemistry. Neither of these analyses
revealed any significant difference between wild-type and Lrig-
null MEFs with regard to their TGF-β1 responses (Fig. 5a, b). To
investigate the role of Lrig proteins in steady-state RTK signaling
levels in MEFs under standard cell culture conditions with 10%
FBS, a phospho-RTK array was used. Surprisingly, there was no
apparent difference in the specific RTK phosphorylation levels
between the wild-type and Lrig-null MEFs under the standard cell
culture conditions employed (Fig. 5c). To further analyze the role
of LRIG proteins in RTK signaling, a wild-type MEF line carrying
floxed Lrig alleles was stably transduced with the MAPK reporter
gene ELK1/SRF-luc. Thereafter, the stably transduced MAPK
reporter MEFs were transduced with Cre recombinase or a

control vector to generate four independent MAPK reporter Lrig-
null MEF lines together with four MAPK reporter wild-type MEF
lines (Supplementary Fig. 4d–f). When these MEF lines were
treated with different concentrations of platelet-derived growth
factor (PDGF) -BB, luciferase expression was induced; however,
there was no apparent difference in the sensitivity to PDGF-BB
between the wild-type and Lrig-null MEFs (Fig. 5d). Additionally,
the dose-response of PDGF-BB-induced proliferation was similar
between the wild-type and Lrig-null MEF lines (Fig. 5e).

The LRIG homolog sma-10 regulates lipid metabolism in C.
elegans. In C. elegans, LRIG/SMA-10 is reported to promote
normal body size through BMP signaling12. Given that several
BMP mutants have been reported to be defective in lipid
homeostasis34,35, we hypothesized that defective lipid home-
ostasis could be a general trait of BMP mutants, including
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Fig. 5 TGF-β and RTK signaling appear unaltered in Lrig-null MEFs. a Wild-type (WT) and Lrig-null (TKO) MEFs were stimulated with various
concentrations of TGF-β1 for one hour and then analyzed for nuclear phospho-Smad3 (pSmad3) by an immunocytofluorescence assay. b Wild-type and
Lrig-null MEFs were transiently transfected with the TGF-β reporter plasmid p(CAGA)12MLP-Luc followed by treatment of the cells with the indicated
concentrations of TGF-β1 for three hours. Cell lysates were then analyzed for luciferase activity. Shown is the relative luminescence on an arbitrary scale.
cWild-type and Lrig-null MEFs, cultivated under standard cell culture conditions in 10% FBS, were lysed and analyzed for RTK phosphorylation levels with a
phospho-RTK array kit (R&D Systems). dWild-type and Lrig-null MEFs stably expressing the MAPK reporter gene ELK1/SRF-luc were treated with different
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mutants for LRIG/sma-10. As a BMP pathway-independent
control for short body length, we included the cuticle collagen
mutant dpy-5(e907) in our analysis43. Both body length and fat
accumulation were assessed in wild-type and mutant worms
(Fig. 6a–c). As expected, compared to wild-type worms, all of the
dpy-5, sma-10, daf-4, sma-6, and sma-3 mutant worms showed a
reduced body length (Fig. 6a, b). Intriguingly, compared to lipid
accumulation in wild-type worms, lipid accumulation was
reduced in both the LRIG/sma-10 mutants wk88 and wk89, in the
ACVR2A and ACVR2B homolog mutant daf-4(m63) and in the
SMAD1 homolog mutant sma-3(wk30) (Fig. 6a, c). Compared to
the wild-type, also the BMPR1A/sma-6(wk7) mutants showed an
apparent, although nonsignificant (p= 0.14), reduction in lipid

accumulation. For unknown reasons, the sma-6(wk7) series
showed a higher variance than the other BMP mutants, which
might have contributed to the lack of significance for this series.
Despite being short, the dpy-5(e907) mutants had normal levels of
lipid deposits in lipid-storing intestinal cells. Short body length
per se thereby appears uncoupled from fat accumulation in
somatic tissue of C. elegans. Hence, we conclude that LRIG/sma-
10 promotes lipid accumulation in postmitotic tissue of C. ele-
gans, likely through BMP signaling and independent of body size
regulation.

Human LRIG1 variants are associated with an altered risk of
type 2 diabetes and with BMI and adipocyte morphology. To
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Fig. 6 LRIG/sma-10 and other BMP pathway genes promote lipid accumulation in lipid-storing cells in C. elegans, and LRIG1 SNPs predict BMI and type
2 diabetes in humans. a Representative whole-body images of Oil Red O-stained adult hermaphrodite worms. Scale bars, 200 μm. b Adult body lengths of
wild-type animals (n= 46), dpy-5(e907) (n= 37), sma-10(wk88) (n= 41), sma-10(wk89) (n= 32), daf-4(m63) (n= 32), sma-6(wk7) (n= 41), and sma-3
(wk30) (n= 37). The body length of each individual animal is plotted as a red square. Solid lines and error bars indicate the means and 95% confidence
intervals, respectively. The order of the dot plots, from top-to-bottom, is the same as that for the images in a. c Oil Red O signal intensities from three
independent experiments. Each experiment was normalized to its combined mean signal intensity across all genotypes. For each genotype, solid, red squares
indicate the mean normalized signal in each independent experiment. Solid lines indicate the combined means from three experiments. The order of the dot
plots, from top-to-bottom, is the same as those for the images in a. Statistical significance versus wild-type was determined with multiplicity-adjusted P-values,
calculated using Holm-Sidak multiple comparisons tests. *P < 0.05, ***P < 0.001. d Plot illustrating the difference in predicted BMI (least square means, LSMs)
across the genotypes of rs4856886 (minor allele = G, major allele = T) and odds ratio for type 2 diabetes (T2D) across genotypes. The x-axis represents the
rs4856886 genotypes compared. The y-axis on the left represents the difference in BMI LSMs per single minor allele across the genotypes, while the y-axis on
the right represents the odds ratios for T2D. In this study, the minor allele was associated with an increase in BMI and a lower odds of T2D risk.
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investigate possible associations between LRIG gene variants and
human metabolism and metabolic disease, data from the UK Bio-
bank were analyzed (n= 398,810, Supplementary Table 3 for par-
ticipant characteristics). Here, we identified nine variants at LRIG1
that were strongly associated with BMI (P < 5 ×10−8) (Supple-
mentary Table 4); these signals have also been reported by others as
a part of a larger meta-analysis conducted while this study was in
progress44. In our analyses, each copy of the minor allele of
rs4856886 (G) (tag SNP with the strongest effect) increased the
BMI by ~0.05 kg/m2 (Fig. 6d); this phenomenon was largely
attributed to genetic variation (Supplementary Table 5). These
variants were also associated with a decreased risk of diabetes and
adjusting for BMI strengthened these associations (Fig. 6d; Sup-
plementary Table 6). Secondary signals for many other metabolic
traits, including plasma triglyceride levels (Supplementary Table 7),
were also observed, suggesting a metabolically favorable phenotype
in people carrying the BMI-associated LRIG1 alleles. The results of
association with liver fat percentage were not significant (Supple-
mentary Table 8), which might be attributable to the low statistical
power given the relatively small sample size (n= 3,192, compared
to n= 398,810 for other analyses). We hypothesized that the
observed relationships may be attributed to a metabolically favor-
able adipose tissue phenotype, which is typically observed in
adipose tissue comprised of many small adipocytes, i.e., hyperplastic
adipose morphology45. Thus, for the two strongest LRIG1 signals
from UK Biobank (rs4856886 and rs9840088), we tested associa-
tions with adipocyte size in adults from the GENiAL cohort (n=
948, Supplementary Table 9). In these analyses, the BMI increasing
(type 2 diabetes risk decreasing) alleles at rs4856886 (P= 0.039)
and rs9840088 (P= 0.014) were associated with adipose hyperpla-
sia. For rs9840088, the mean adipose morphology values were +7.5
picolitres for the common A allele and −9.2 picolitres for the
minor C allele (P= 0.026 by analysis of covariance, adjusted
for age).

Discussion
Lipid metabolism is central to energy homeostasis at both the
cellular and organismal levels. Here, we found that the LRIG
proteins function as regulators of lipid metabolism by regulating
BMP signaling in several different biological systems, including
adipocyte differentiation of mouse fibroblasts and in lipid accu-
mulation in C. elegans; in addition, we found that human LRIG1
gene variants were associated with a decreased risk of type 2
diabetes, an increased BMI, and altered adipocyte morphology.
Collectively, these observations show that LRIG proteins function
as evolutionarily conserved regulators of BMP signaling and lipid
metabolism and have important implications for human meta-
bolic health.

LRIG proteins regulated lipid accumulation and adipogenesis
of MEFs in response to adipogenic stimuli. The former was
shown by a reduced triglyceride accumulation, whereas the latter
was suggested by a reduced number of equally sized Oil Red O-
positive cells and impaired induction of the adipocyte markers
Pparg and Ap2 among the Lrig-null MEFs. Furthermore, the
associations between LRIG1 gene variants and adipocyte numbers
in humans suggests that LRIG proteins might also regulate adi-
pogenesis in vivo in humans. However, although the lipid profiles
of undifferentiated MEFs were indistinguishable between the
wild-type and Lrig-null cells, our experiments did not address
whether LRIG proteins could regulate metabolism in differ-
entiated adipocytes. In this regard, it was intriguing that the
LRIG/sma-10 mutant nematodes also showed a lipid accumula-
tion defect, although C. elegans lack dedicated adipocytes. Thus,
further investigations will reveal whether mammalian LRIG
proteins, in addition to regulating adipogenesis, also regulate lipid

metabolism in differentiated energy-regulating cells such as adi-
pocytes, hepatocytes, or skeletal muscle cells.

The sole C. elegans LRIG homolog, SMA-10, regulates body
size by regulating BMP signaling. Here, we showed that the BMP-
promoting function of SMA-10 is conserved in human LRIG1
and LRIG3, which promoted BMP signaling by increasing sig-
naling strength at low BMP4 and BMP6 ligand concentrations.
These results show that the BMP signal-regulating function of the
hypothesized common protein ancestor of nematode SMA-10
and mammalian LRIG proteins seems to be retained in human
LRIG1 and LRIG3, but not in LRIG2. This finding is consistent
with a recent whole genome CRISPR-Cas9 phenotypic screen for
regulators of BMP signaling in HEK293 cells46. In this dataset,
LRIG1 and LRIG3 were among the 170 significant activators of
BMP2-induced signaling, whereas LRIG2 was not (https://orcs.
thebiogrid.org/Screen/172). Our demonstration that the human
LRIG1 cytosolic domain was dispensable for its BMP signal-
promoting function is consistent with the fact that in contrast to
the mammalian LRIG proteins, C. elegans SMA-10 lacks a pro-
minent cytosolic domain but still promotes BMP signaling.
Intriguingly, the mammalian LRIG proteins showed a striking
specificity with regard to the BMP pathways that they regulated.
Thus, BMP4 and BMP6 signaling was strongly dependent on
LRIG proteins, whereas BMP9 signaling was not. This dis-
crimination between the BMP4/6 and BMP9 pathways may
indicate possible molecular targets for the mammalian LRIG
proteins. BMP4, BMP6, and BMP9 share the same type 2
receptors; however, BMP4 and BMP6 specifically interact with
the type 1 receptors BMPR1A (ALK-3) and BMPR1B (ALK-6),
whereas BMP9 specifically interacts with ACTRL1 (ALK-1).
Accordingly, it can be speculated that LRIG1 and LRIG3 may
regulate the BMP type 1 receptors BMPR1A and/or BMPR1B but
not the type 2 receptors or the type 1 receptor ACTRL1. Mam-
malian LRIG proteins specifically regulating type 1 BMP recep-
tors would be in line with the demonstration that C. elegans
SMA-10 is required for the proper trafficking of SMA-6, a type 1
BMP receptor, but not for the trafficking of DAF-4, the type 2
receptor regulating body size13. Curiously, we found that LRIG1,
but not LRIG3, could rescue noncanonical BMP signaling
through p38 and Jnk MAPKs. The molecular basis for these
specific functions of LRIG proteins remains to be elucidated.

We further examined whether genetic variation in LRIG1 was
associated with risk of type 2 diabetes, BMI, and adipocyte
morphology among humans. Intriguingly, we identified diabetes-
preventing LRIG1 alleles that were strongly associated with an
increased BMI and hyperplastic adipose morphology, e.g. many
small adipocytes given total body fat. All the identified SNPs were
intronic, and their functional exploration in humans remains to
be undertaken. However, because we also found that LRIG1
enhanced both BMP signaling and adipogenesis, it seems rea-
sonable to speculate that the diabetes-preventing LRIG1 alleles
may stimulate adipogenesis by enhancing BMP signaling. The
diabetes-protecting effect could, thus, result from a more efficient
use of excess energy by the LRIG1-mediated increased number of
adipocytes47. Further analyses of the associations between LRIG1
gene variants and human metabolic traits may unravel further
insights about the physiological function of LRIG1. Nevertheless,
LRIG1, LRIG3, or other functionally associated proteins may
provide novel targets for the prevention or treatment of type 2
diabetes or other metabolic diseases. However, the molecular
mechanisms involved need to be elucidated before potential
clinical applications can be explored.

We propose that LRIG proteins play important roles as BMP
sensitizers in the context of lipid metabolism, during develop-
ment, in tissue homeostasis, and in diseases such as cancer. In this
regard, it is intriguing that Lrig3-deficient mice show both
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craniofacial and inner ear defects48, which are consistent with the
central role for balanced BMP signaling during the development
of these anatomical structures49,50. Similarly, we suggest revisiting
the Lrig1-deficient phenotypes, including the cutaneous51,52 and
intestinal9,53 cell hyperproliferation phenotypes, to investigate the
role of dysregulated BMP signaling in these processes. In cancer,
the roles of LRIG1 and LRIG3 should be re-evaluated in light of
their functions as BMP sensitizers. In glioma, for example, LRIG1
functions as a tumor suppressor11, as does BMP signaling54–56.
Thus, it can be hypothesized that LRIG1 may suppress glioma
growth by enhancing BMP signaling, in addition to its previously
proposed regulation of RTK signaling.

Future in vitro cell culture experiments concerning LRIG pro-
teins need to take into consideration the BMP content in FBS.
Commercial FBS, which is commonly used for in vitro cell cul-
tivation, contains BMP ligands in concentrations ranging from 6
to 14 ng/ml57,58, i.e., concentrations where the sensitizing func-
tions of LRIG1 and LRIG3 were highly relevant. Thus, endogen-
ously expressed LRIG proteins are likely to affect BMP signal
transduction in cells cultured under standard conditions with FBS.

Lrig-null mice are not viable2. Nevertheless, the only clear
phenotype that we could establish for the Lrig-null MEFs was
impaired adipogenesis and a reduced sensitivity for BMP4 and
BMP6. The Lrig-null MEFs did not show any obvious phenotype
regarding their viability, morphology, proliferation, migration,
energy metabolism, or signaling through TGF-β or RTKs. The lack
of a detectable RTK phenotype was particularly intriguing given
the substantial body of evidence showing that LRIG proteins reg-
ulate RTK signaling. Thus, compared to the wild-type MEFs, the
Lrig-null MEFs showed no apparent alterations in their steady-
state levels of phosphorylated RTKs, PDGF-driven cell prolifera-
tion, or PDGF-induced reporter gene activation. The reason for the
apparent lack of an RTK phenotype in the Lrig-null cells remains
enigmatic. Hypothetically, one possible explanation could be a
canceling-out effect that occurs when knocking out of genes with
opposing functions. For example, LRIG1 and LRIG3 have been
shown to have opposing functions with regard to the regulation of
ERBB RTKs59. It is also possible that the RTK-regulating functions
of LRIG proteins become apparent only under specific conditions,
such as those observed when signaling proteins are ectopically
overexpressed, as has been the case in many of the previous
studiese.g.,5,6,7,8,10,11. It may also be relevant to consider possible
cross-talk between the BMP and RTK signaling pathways, i.e., a
primary effect on one of the pathways may indirectly affect the
other pathway and vice versa. In this regard, the timing of the
different events will be important to resolve to shed light on their
causal relationships. Nevertheless, the Lrig-null MEFs revealed that
the LRIG proteins are not required for basal RTK signaling, at least
not in MEFs under standard cell culture conditions.

In summary, we showed that mammalian LRIG proteins
function as cellular BMP sensitizers and regulators of adipogen-
esis. Furthermore, we showed that the C. elegans LRIG homolog,
sma-10, also regulates lipid accumulation in the worm. Impor-
tantly, specific human LRIG1 gene variants were associated with a
decreased risk of type 2 diabetes, increased BMI, and altered
adipocyte morphology, suggesting that LRIG proteins play
important physiological roles in the regulation of lipid home-
ostasis in humans. It will be important to further investigate the
detailed molecular mechanisms involved, which could unravel
new molecular players and treatment targets for common human
metabolic diseases.

Methods
Cell lines and cell culture. MEFs were isolated from 12-day-old mouse embryos
with floxed Lrig genes (Lrig1flox/flox;Lrig2flox/flox;Lrig3flox/flox) that had been gener-
ated through interbreeding of the previously described mouse strains B6.129-

Lrig1tm1Hhed 11, B6.129-Lrig2tm1Hhed60, and B6.129-Lrig3tm1Hhed36 or from
embryos with wild-type or deficient Lrig1 or Lrig3 genes that had been obtained
from inter crosses of B6.129-Lrig1tm1.1Hhed11 or B6.129-Lrig3tm1.1Hhed mice36,
respectively, in a C57BL/6 J genetic background. All mice were housed and
maintained and all experiments performed in accordance with the European
Communities Council Directive (86/609/EEC). Experimental protocols were
approved by the Regional Ethics Committee of Umeå University, Umeå, Sweden
(registration nos. A5-2010, A193-12, and A1-16). The cells were immortalized
according to the 3T3 protocol described by Todaro and Green61. The MEFs were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) (Sigma-Aldrich Sweden
AB, Stockholm, Sweden) supplemented with 10% FBS (Fisher Scientific GTF AB,
Gothenburg, Sweden), MEM-nonessential amino acids (Fisher Scientific GTF AB),
50 μM 2-mercaptoethanol (Sigma-Aldrich Sweden AB), and 50 μg/ml gentamicin
(Invitrogen, Fisher Scientific GTF AB). In experiments where MEFs were subjected
to multiple washes, the cell culture plates were coated with 0.1% bovine gelatin
(Sigma-Aldrich Sweden AB, catalog # G9391) for 30 min at 37 °C prior to cell
seeding. To generate Lrig-null (Lrig1-/-;Lrig2-/-;Lrig3-/-) cells, herein also referred to
as TKO cells, the triple-floxed cells were transduced with adenovirus Ad(RGD)-
GFP-iCre or its control adenovirus Ad(RGD)-GFP (Vector Biolabs, Malvern, PA,
USA) at a multiplicity of infection of 100 and a cell seeding density of 10,300 cells/
cm2. Twenty-four hours after adenovirus transduction, the cells were washed with
phosphate-buffered saline (PBS), and after an additional 24 h, the top 20% of cells
that showed the highest green fluorescence intensity were isolated using a FAC-
SAria III cell sorter (BD Biosciences, San Jose, CA, USA). The transduction-
selection procedure was repeated independently four times, thereby producing four
different cell line pairs composed of an Lrig-null and a wild-type MEF line named
TKO1-4 and WT1-4, respectively. LRIG-inducible MEF lines were generated by
stably transducing an Lrig-null MEF line with a doxycycline-inducible LRIG1,
LRIG2, LRIG3, or empty control vector according to a previously described pro-
tocol11. The LRIG1-inducible human embryonic kidney cell line HEK293T, clone
32:3:10, has been described previously62, and the human melanoma cell line A375
was obtained from Dr. Oskar Hemmingsson of Umeå University. A375 cells were
profiled for short tandem repeats (STRs) by American Type Culture Collection
(ATCC) and were confirmed to have a 100% match with the ATCC cell line CRL-
1619 (A375). HEK293T cells and A375 cells were cultured in DMEM supple-
mented with 10% FBS and 50 μg/ml gentamicin. The cell culture plates used for
HEK293T and A375 cells were coated with 10 μg/ml poly-D-lysine (Sigma-Aldrich
Sweden AB, catalog # P0899) for 30 min at 37 °C followed by washes with PBS
before the cells were plated. The LRIG1-deficient A375 subclone, clone Pc1-5-4,
was generated via CRISPR-Cas9-mediated mutagenesis. To this end, two sgRNAs
targeting both strands of LRIG1 exon 11, were cloned into the pD1401-AD plasmid
(Atum, Newark, CA, USA), which contains a Cas9(D10A)-GFP-nickase sequence
under the CMV promoter. A375 cells were transfected with the resulting plasmid
using Lipofectamine 2000 (Fisher Scientific GTF AB) according to the manu-
facturers protocol. GFP-positive cells were then single-sorted into 96-well plates
containing DMEM supplemented with 10% FBS and 200 U/ml penicillin-
streptomycin (Fisher Scientific GTF AB) using a BD FACSAria™ III sorter. Single
cells were expanded, split, and expanded as duplicates in 6-well plates. One well in
each duplicate was lysed and screened for large indels and insertions using PCR
(forward primer sequence: 5′-CATTCCATGGGCTTGTGTTG-3′, reverse primer
sequence: 5′-CCACTACCATTAATCAGAC-3′). Genomic DNA from a clone that
lacked the 278-bp wild-type band was then PCR amplified using primers flanking
LRIG1 exon 11 (forward primer sequence: 5′-GTTTGACTCTAACTCTGTTG-3′,
reverse primer sequence: 5′-GCATAATGCAATTGCAGAAG-3′). Each of the
three resulting bands were purified and cloned into a TOPO vector (Fisher Sci-
entific GTF AB), sequenced, and found to represent three different mutant variants
of LRIG1: one with a deletion and one with an insertion, both resulting in fra-
meshifts; the third had a silent intronic insertion, and both PAM sequences were
intact. By repeating the entire mutational process on this clone, we isolated the
Pc1-5-4 subclone, which was found to contain an additional insertion close to the
splice acceptor site at the intron 10/exon 11 boundary. The LRIG1-inducible A375
cell line was generated through the cotransduction of the A375 clone Pc1-5-4 with
the vectors pLVX-LRIG1-TRE3G and pLVX-Tet3G as described previously for
other cells11. Lentiviral particles with vectors for the srf/elk-1 luciferase reporter and
Renilla control were obtained from Qiagen AB (Sollentuna, Sweden, catalog nos.
CLS-010L and CLS-RCL, respectively) and were used to cotransduce triple-floxed
MEFs with 10 infection units (IU) per cell for srf/elk-1 and 3.2 IU per cell for
Renilla. Stably transduced MEFs were selected with puromycin. Thereafter, Lrig-
null (TKO) and control (WT) MEF lines were generated independently four times
from the puromycin-resistant MEFs through transduction of the cells with Ad
(RGD)-GFP-iCre or Ad(RGD)-GFP as described above.

PCR and ddPCR genotype analyses. The mouse Lrig genotypes were routinely
monitored via allele-specific PCRs using primers 5′-CATCGCATTGTCTGAG
TAGGTGTC-3′ and 5′-CTCCAGAATCACGCTCACCT-3′, yielding an 824 bp
product for the floxed wild-type Lrig1 allele and no product for the knockout allele,
primers 5′-TGCACTAGGCAGTCTTAAACCA-3′ and 5′-TCAGGCAGTGACA
GAAGGTGT-3′, yielding a 450 bp product for the floxed wild-type Lrig2 allele and
no product for the knockout allele, and primers 5′-CATCGCATTGTCTGAG
TAGGTGT-3′ and 5′-CGAGGCTGATGGTCTGCTAAT-3′, yielding a 630 bp
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product for the floxed wild-type Lrig3 allele and no product for the knockout allele.
The targeted exon 1 of Lrig3 together with an untargeted region of Lrig3 (used as
the reference locus) were quantitated using a duplex ddPCR assay. The primers and
probes for ddPCR were purchased from Integrated DNA Technologies (Leuven,
Belgium). The ddPCR primers used were for Lrig3 exon 1: 5′-CGCCTTCCCGATC
CTCTC-3′ and 5′-GTCTCCTTCACCCCACCG-3′ and for the untargeted Lrig3
locus: 5′-AACCGTCACCAAGGGAGA-3′ and 5′-CCACCAAAGGGCTGTCATC-
3′. The probes used were for Lrig3 exon 1: FAM-conjugated 5′-ATACTGATACT
CACAGCCGTGTGACCCAGG-3′ and for the untargeted Lrig3 locus, HEX-
conjugated 5’-CATTGCTGGAGGGAGCCCGCCC-3′. The final concentrations of
forward and reverse primers were 400 nM, and the final concentrations of the
probes were 200 nM. DNA, ddPCR Supermix (with no dUTP) (Bio-Rad Labora-
tories AB, Stockholm, Sweden, catalog # 1863024), Hind III restriction enzyme
(Fisher Scientific GTF AB, FastDigest, catalog # FD0505), and nuclease-free water
were mixed with primer/probe sets of the targeted and untargeted regions of Lrig3.
Droplets were generated using a QX200 droplet generator followed by PCR using
a T100 thermal cycler (Bio-Rad Laboratories AB) with PCR parameters of 37°C
for 5 min, 95 °C for 5 min; 40 cycles of 30 s at 95 °C and 1min at 58 °C, followed by
98 °C for 10 min. After PCR amplification, the plate was loaded into the QX200
droplet reader (Bio-Rad Laboratories AB) to acquire the data. The data were
analyzed using QuantaSoft software (Bio-Rad Laboratories AB, version 1.7.4.0917).
Investigators were blinded to the cell line identities at the time of performing
ddPCR and data analysis.

Western blot analysis. Cells were lysed for 30 min on ice with cell extraction
buffer (Invitrogen, Fisher Scientific GTF AB) supplemented with cOmplete,
EDTA-free Protease Inhibitor (Roche Diagnostics Scandinavia AB, Bromma,
Sweden) and, when analyzing phosphorylated proteins, phosphatase inhibitor
PhosSTOP (Roche Diagnostics Scandinavia AB). The lysates were then centrifuged
at 20,800 x g for 10 min at 4°C. The resulting pellets were discarded. The protein
concentrations of the cleared lysates were determined using a Pierce BCA Protein
Assay Kit (Fisher Scientific GTF AB). The protein samples were separated through
polyacrylamide gel electrophoresis using 3-8% Tris-acetate gels or 10% Bis-Tris gels
(Invitrogen, Fisher Scientific GTF AB, catalog # EA03752 and NP0302, respec-
tively) and then electrotransferred onto polyvinylidene fluoride or nitrocellulose
membranes (Bio-Rad Laboratories AB). The membranes were then blocked with
Odyssey blocking buffer (LI-COR Biosciences GmbH, Bad Homburg, Germany) or
5% fat-free milk in Tris-buffered saline with 0.1% Tween 20 (TBS-T). The blocked
membranes were incubated at 4°C overnight with the primary antibodies at the
indicated concentrations (Supplementary Table 10). After three washes with TBS-
T, the membranes were incubated with the appropriate secondary antibodies for an
hour at room temperature, followed by washes in TBS-T. Thereafter, immune-
reactive bands were visualized and analyzed using the Odyssey CLx imaging system
(LI-COR Biosciences GmbH) or ECL-select (GE Healthcare, Uppsala, Sweden)
together with the ChemiDoc Touch Imaging System (Bio-Rad Laboratories AB).
The primary and secondary antibodies used for Western blotting are listed in
Supplementary Table 10.

Cell proliferation assays. Cell proliferation rates were determined by direct cell
counting and an MTT assay. For cell counting, cells were seeded at a density of
2,800 cells per cm2 in TC 6-well standard plates (Sarstedt AB, Helsingborg, Swe-
den). The cells were trypsinized at different times after seeding and counted via the
use of a Countess Automated Cell Counter (Invitrogen, Fisher Scientific GTF AB).
For the MTT-assay, cells were seeded at the same density in TC 96-well standard
plates (Sarstedt AB). Twenty-four hours after the seeding, the medium was
changed to cell culture medium containing different FBS or PDGF-BB con-
centrations. Thereafter, the cells were incubated for an additional 48 h followed by
quantification of relative cell numbers via an MTT proliferation kit (Sigma-Aldrich
Sweden AB) according to the manufacturer’s instructions.

Cell migration assay. Migration assays were performed using Corning Transwell
cell culture plates with 6.5 mm inserts of 8 μm pore size (Fisher Scientific, GTF
AB). Five thousand cells were plated in the upper chamber with medium con-
taining, or not containing, 10% FBS in the bottom chamber. Twenty-four hours
after the plating, the membranes were washed with PBS, fixed in ice-cold methanol
for 20 min, and stained with 0.1% crystal violet in 20% methanol for 20 min. Five
fields from each chamber were counted manually using an Axio Vert.A1 inverted
microscope (Carl Zeiss AB, Stockholm, Sweden) equipped with a 5x objective.

Flow cytometry. For flow cytometry analyses, cells were dissociated using Accutase
cell detachment solution (Sigma-Aldrich, Sweden AB) and then washed in PBS
containing 5% FBS. For analysis of intracellular antigens, cells were fixated in 4%
phosphate-buffered formaldehyde for 10 min and then permeabilized using 0.2%
saponin from Quillaja bark (Sigma-Aldrich, Sweden AB) in PBS for 10 min. The
cells were labeled with primary antibodies for 30 min on ice, washed and then
incubated with secondary antibodies for 30 min on ice. The primary and secondary
antibodies used for flow cytometry analysis are listed in Supplementary Table 10.
The flow cytometry analyses were performed on a BD Accuri C6 instrument (BD
Biosciences).

Cell metabolism analyses. Cell metabolism was analyzed with a Seahorse XFe cell
analyzer (Agilent Technologies, Inc., Santa Clara, CA, USA) using the mito stress
test and glyco stress test assays according to the manufacturer’s instructions. In the
mito stress assay, the cells were sequentially treated with 1 μM oligomycin, 1 μM
FCCP, and 0.5 μM rotenone and antimycin A. After each treatment, the OCR was
measured at three time points. In the glycolytic stress test, the cells were glucose-
starved for 1 h followed by sequential treatments with 10 mM glucose, 1 μM oli-
gomycin, and 50 mM 2-deoxy-glucose. After each treatment, the ECAR was
measured at three time points. The measurements were normalized to the relative
cell numbers, which were determined through the measurement of cell nuclei
fluorescence after staining with Hoechst 34580 (Sigma-Aldrich Sweden AB), using
a Synergy2 microplate reader (BioTek Instruments SAS, Colmar Cedex, France).

In vitro adipogenesis assay. For adipogenic transformation, MEFs were seeded at
a density of 28,000 cells/cm2 at day −1. At day 0, cells were subjected to an initial
adipogenic cocktail containing 1 μM dexamethasone (Sigma-Aldrich Sweden AB),
0.5 mM 3-isobutyl-1-methylxanthine (Sigma-Aldrich, Sweden AB), 10 μg/ml
bovine insulin in HEPES buffer (Sigma-Aldrich Sweden AB), and 16 μg/ml rosi-
glitazone (Sigma-Aldrich, Sweden AB). At day 2, the medium was thereafter
changed to a cocktail containing 10 μg/ml insulin and 16 μg/ml rosiglitazone and
was changed every two days until day 9 when the cells were fixed with 4% for-
maldehyde (Unimedic Pharma AB, Stockholm, Sweden) for 30 min and stained
using a 60% isopropanol solution with 0.5% Oil Red O (Sigma-Aldrich, Sweden
AB). In some experiments, 100 ng/ml recombinant murine noggin (PeproTech
Nordic, Stockholm, Sweden, catalog # 250-38) was added at day −1 or 50 ng/ml
recombinant human BMP4 (PeproTech Nordic, catalog # 120-05ET) was added at
day 0. The Oil Red O stained cells were quantified in a Spectramax i3x plate reader
(Molecular Devices, San Jose, CA, USA) using the Softmax Pro 7 software
(Molecular Devices).

RNA-extraction and quantitative RT-PCR-analyses. For qRT-PCR, RNA was
prepared using a PureLink RNA Mini Kit (Invitrogen, Fisher Scientific GTF AB)
followed by treatment with PureLink DNase (Invitrogen, Fisher Scientific GTF AB)
according to the manufacturer’s instructions. The TaqMan gene expression assays
for Lrig1 (Mm00456116_m1), Lrig3 (Mm00622766_m1), Cebpb (mm00843434_s1),
Pparg (mm00440940_m1), and Fabp4 (mm00445878_m1) were purchased from
Fisher Scientific GTF AB. Primers and probes for Lrig2 and RN18S have been
previously described1. Data were acquired using a CFX96 system C1000 thermal
cycler (Bio-Rad Laboratories AB) as previously described63. The specific gene
expression levels were normalized to that of RN18S by transforming the ΔCT values
from log2 to linear values.

Lipidomics. One million cells were trypsinized, washed with PBS, and then frozen
at −80 °C until use. Lipid extraction and liquid chromatography-quadrupole time-
of-flight mass spectrometry-based lipidomics analysis was performed at the
Swedish Metabolomics Centre at the Swedish University of Agricultural Sciences
(Umeå) as previously described64.

Luciferase reporter assays. Canonical BMP and TGFβ signaling was assessed by
transiently transfecting the indicated MEFs with pGL3-BRE-Luciferase65 (Addgene) or p
(CAGA)12MLP-Luc42 (kindly provided by Serhiy Souchelnytskyi, Ludwig Institute for
Cancer Research, Uppsala, Sweden), respectively. Transfections were performed with
Fugene 6 transfection reagent (Promega Biotech AB, Nacka, Sweden) according to the
manufacturer’s instructions using a 1:3 DNA:reagent ratio, with a DNA amount cor-
responding to 0.7 μg/cm2 and a reporter plasmid;Renilla reference plasmid ratio of 1:10.
Twenty-four hours after transfection, cells were starved for one hour and treated with
BMP4 or recombinant human TGF-β1 (PeproTech Nordic, catalog # 100-21) for three
hours. PDGF signaling was assessed using the stably transduced srf/elk-1 luciferaseMEF
lines. Here, the cells were serum-starved for one hour followed by treatment with
different concentrations of PDGF-BB (PeproTech Nordic, catalog # 315-18) for four
hours. After the treatments with growth factors, cells were lysed using a Dual-Glo
Luciferase Assay System (Promega Biotech AB) with a 20-minute incubation time for
both assay reagents. Plates were analyzed with a Glomax 96 microplate luminometer
(Promega Biotech AB) using an exposure time of 1 s per well. When analyzing transient
BMP and TGFβ reporters, the data were normalized by taking the ratio of luciferase/
Renilla. For the stably transduced srf/elk-1 reporter cells, only luciferase was used.

Phospho-Smad immunofluorescence and Western blot assays. To analyze
BMP- or TGFβ-induced phosphorylation of Smad1/5 and Smad3, respectively, cells
were seeded the day before stimulation in a 96-well cell culture microplate (Greiner
Bio-One International GmbH, Monroe, NC, USA, catalog # 655090) at densities of
3,000 cells per well for wild-type or Lrig-null MEFs, 1,800 cells per well for LRIG-
inducible MEFs, and 10,000 cells per well for HEK293T and A375 cells. LRIG
expression was induced in LRIG-inducible cells by treatment of the cells with 100
ng/ml, unless otherwise indicated, of doxycycline (Clontech Laboratories, Bio-
Nordika Sweden AB, Stockholm, Sweden) for 24 hours prior to starvation. Cells
were starved in serum-free cell culture medium for one hour and then stimulated
with BMP4, recombinant human BMP6 (PeproTech Nordic, catalog # 120-06),
recombinant human GDF2/BMP9 (PeproTech Nordic, catalog # 120-07), or TGF-
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β1 for one hour. Thereafter, the cells were fixed with 4% formaldehyde for 10 min,
permeabilized with 0.2% saponin for 10 min, and blocked in blocking buffer
composed of PBS, 0.1% Tween 20, and 5% FBS. After blocking, cells were incu-
bated overnight with the appropriate primary antibody followed by washes and an
incubation for one hour with the corresponding secondary fluorescent antibodies.
For cell number normalization, 1 μg/ml Hoechst 33342 was added before analysis.
Plates were imaged using a whole-well imaging device Trophos Plate Runner HD
(Trophos/Dioscure, Marseille, France) with exposure time set to detect stained
area. Images were analyzed using the Tina analysis package (Trophos/Dioscure)
adjusting the threshold to remove background and rolling ball subtraction. Objects
at specified sizes were detected, and their fluorescence was normalized using
Hoechst 33342 nuclear staining by dividing the number of cells (for MEFs and
A375 cells) or the mean cell fluorescence (for HEK293T cells). For Western blot
analysis, cells were seeded into 6-well plates at a density of 10,344 cells/cm2. Two
days after seeding, cells were starved for one hour in serum-free medium and then
stimulated with 5 or 20 ng/ml BMP4 or serum-free medium for one hour before
lysis. The antibodies used for the phospho-Smad immunofluorescence and Wes-
tern blot analyses are listed in Supplementary Table 10.

Transcriptomics. Transcriptomes were analyzed via RNAseq. To this end, 500,000
cells were serum-starved for 1 h prior to cell lysis. RNA was isolated using the
Dynabeads mRNA DIRECT Purification Kit (Fisher Scientific GTF AB) according to
the manufacturer’s instructions. The purity and integrity of the RNA preparations
were confirmed with an RNA 6000 Nano kit and an Agilent Bioanalyzer (Agilent
Technologies). Sequencing was performed at SciLifeLab (Uppsala, Sweden) with an
Ion Technology sequencer Ion Proton (Fisher Scientific GTF AB). Reads were aligned
using STAR and bowtie2 software, and HTSeq was used to generate counts.

Correlations between LRIG1-GFP variants and BMP-induced phosphorylation
of Smad1/5. Cells were transiently transfected using Fugene 6 as described above.
pLRIG1-GFP encoding full-length LRIG1 fused to GFP has been described, pre-
viously66. pLRIG1-Δcyto-GFP encoding the extracellular/luminal and transmem-
brane parts, together with the first three cytosolic amino acids (YQT), of LRIG1
fused to GFP was generated by cloning the corresponding PCR-amplified LRIG1
fragment into the pEGFP-N1 (Clontech Laboratories) expression vector. PCR was
used to generate pLRIG1-3XFLAG and pLRIG1-ecto-3XFLAG by amplifying the
regions corresponding to the full length and the ectodomain of LRIG1, respectively,
from an LRIG1 cDNA (GenBank accession no. AF381545) and cloning these
fragments into p3XFLAG-CMV-13 (Sigma-Aldrich Sweden AB). The integrity of
pLRIG1-3XFLAG and pLRIG1-ecto-3XFLAG were confirmed by DNA sequencing
using a Big Dye Terminator v 3.1 cycle sequencing kit (Fisher Scientific GTF AB)
and a 3730xl DNA analyzer (Fisher Scientific GTF AB). Twenty-four hours after
transfection, Smad1/5 phosphorylation immunofluorescence assays were per-
formed using 20 ng/ml BMP4 for 20 min. Both GFP fluorescence and pSmad1/5
immunofluorescence were quantified simultaneously using a Trophos plate runner.

RTK array. To compare the RTK phosphorylation levels, whole-cell lysates con-
taining 150 μg protein were analyzed using a Human Phospho-RTK Array Kit
(R&D Systems Europe Ltd., Abingdon, UK; catalog # ARY014) according to the
manufacturer’s instructions and quantified using ChemiDoc Touch Imaging Sys-
tem and Image lab software (Bio-Rad Laboratories AB).

C. elegans analyses. All C. elegans strains used are described in WormBase
(www.wormbase.org). N2 Bristol was used as the wild-type strain in all cases.
Worms were maintained at 20 °C on standard nematode growth medium (NGM)
agar and with E. coli OP50 as a food source. One-day-old adult worms from staged
plates were stained with Oil Red O as described previously67 and imaged at a
midplane, with the mouth and the pharyngeal lumen in focus, using the 10x
objective on a DIC-equipped Olympus BX51 microscope. Color images were then
subtracted for background (rolling ball radius: 50.0 pixels) and converted to 8-bit
CIELAB using Fiji software68. Quantifications were performed in the “a” channel
by selecting an area averaging ~2,500 μm2 between the posterior end of the
pharynx and the anterior border of the gonad to avoid the signal coming from the
oocytes. The local background signal for each measurement was then subtracted.
All genotypes under study were analyzed in parallel, and each experimental round
was normalized to the combined mean signal, which was calculated from all
genotype means.

Statistics and reproducibility of cell and animal experiments. All Student’s
t-tests were 2-sided. All statistical analyses of cell and animal experiments were
performed using GraphPad Prism 8 software (La Jolla, CA, USA), and the P-values
<0.05 were considered significant. When cell lines were compared, in general, data
were obtained from at least four biological replicates per genotype and three
experimental repeats performed on separate days. The exact number of replicates
are presented in the individual figure legends.

UK Biobank population characteristics. The UK Biobank is a large project with
genotyped and well-phenotyped individuals comprising approximately 500,000

participants69. In this study, we excluded participants who did not have BMI
measurements or of any of the other outcome variables of interest (done at the
stage of that particular analysis) and those who had ambiguous information on sex
(discordance between self-reported and genetically encoded sex). The final sample
size was 398,810 participants of Caucasian ancestry. Supplementary Table 3 shows
the participants’ characteristics, and Supplementary Table 4 shows the LRIG1 tag
SNP information. This study was conducted using publicly available data from the
UK Biobank, and therefore the current analyses did not require specific ethical
approval. The reference for the approved UK Biobank project is ukb18274.

Tag SNP identification. We used snptag, an online tool of SNPinfo,
(https://snpinfo.niehs.nih.gov/snpinfo/snptag.html) to identify tag SNPs from the
nine LRIG1 SNPs that were significant in the genome-wide association (GWA)
analysis. In our tag SNP selection, the population was restricted to the Utah
residents with Northern and Western European ancestry from the CEPH collection
(CEU); the linkage disequilibrium (LD) threshold was set at r2= 0.8, the maximum
distance (bp) between SNPs for calculating the LD was 250,000 bp, and the minor
allele frequency (MAF) range was 0.01 to 0.5. Three tag SNPs and one non-
synonymous SNP were identified from the search (Supplementary Fig. 6).

Association with type 2 diabetes and BMI. To isolate the effect of BMI attributed
to genetic variance, we regressed out the effects of age, age squared, sex, batch
effect, and the first ten genetic principal components separately for men and
women and extracted the BMI residuals. The residuals were then used in sub-
sequent analyses as (a) untransformed residuals, and, (b) as inverse-normal
transformed residuals. Each case is indicated in the respective analyses. We used
these transformed residuals to create interaction terms with each of the tag SNPs
and investigated the associations between these interaction terms and the risk of
type 2 diabetes for each of the SNPs using logistic regression models adjusted for
age, batch effect (array type used for genotyping, UK BiLEVE or UKBB Axiom)
and the first ten genetic principal components. Type 2 diabetes was diagnosed by a
doctor in this population and was parameterized as a binary outcome, coded “Yes”
or “No”, for these analyses. We also tested the association of each of the SNPs with
type 2 diabetes using logistic regression models adjusted for untransformed BMI
residuals and another model without BMI, in addition to the covariates mentioned
above in the first model. We investigated the relationship between BMI and each of
the SNPs using a simple linear regression model with untransformed BMI residuals
as the outcome. All analyses were based on an additive genetic model.

Association with liver fat and biochemical measures of adiposity. To investi-
gate the relationship between these tag SNPs and liver fat percentage (LF%) among
3,858 UK Biobank participants who had liver fat measurements, we extracted LF%
residuals separately in men and women using multiple linear regression models
adjusted for age, age squared, sex, BMI, array batch, and the first ten genetic
principal components. The residuals were then inverse-normal transformed, and a
simple linear regression model was fitted to test the association between each of the
SNPs with LF% residuals as an outcome. For each of the two biochemical measures
(baseline total cholesterol (mmol/L) and triglyceride levels (mmol/L)), we extracted
residuals for participants with the relevant measures as outlined above. Cholesterol
was normally distributed, so the residuals were not further transformed, but those
for triglycerides were inversely normal transformed. The association between each
of the measures and each of the tag SNPs was modeled using a simple linear
regression model with the respective residuals as the outcome. In all analyses, the
minor allele was used as the reference allele.

GENiAL study participants. The GENetics of Adipocyte Lipolysis (GENiAL)
cohort included 273 men and 718 women and have been described previously70.
Briefly, subjects in the GENiAL cohort were recruited by local advertisement to
examine the regulation of fat cell function. Fifty-seven percent of the participants
were obese (defined as BMI ≥ 30 kg/m2). They all lived in Stockholm County,
Sweden and were at least second-generation Swedes. One hundred ninety-four
participants had type 2 diabetes, hypertension, or dyslipidemia alone or in different
combinations. None were treated with insulin, glitazones, or glucagon-like-peptide
analogs. Data on clinical variables are summarized elsewhere70. The study was
approved by the local ethics committee at the Huddinge University Hospital
(D. no. 167/02, 2002-06-03) and was explained in detail to each participant.
Informed consent was obtained from all participants. Included in this study were
948 subjects from the GENiAL cohort with adipose morphology data available70.

Clinical examination. The GENiAL participants came to the hospital’s clinical
research center the morning after an overnight fast. Their heights, weights, and
waist-to-hip ratios (WHRs) were measured. Each participant’s body fat content was
measured by bioimpedance, and their total body fat mass was indirectly calculated
using a formula based on age, sex and BMI71. A venous blood sample was obtained
for extraction of DNA and clinical chemistry by the hospital’s accredited routine
clinical chemistry laboratory. Subcutaneous adipose tissue (SAT) was obtained by a
needle aspiration biopsy lateral to the umbilicus as previously described72.
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Adipose tissue phenotyping. SAT samples were rapidly rinsed in sodium chloride
(9 mg/ml) before removal of visual blood vessels and cell debris and were subse-
quently subjected to collagenase treatment to obtain isolated adipocytes as descri-
bed73. The mean weight and volume of remaining cells were determined as
described74. A curve fit of the relationship between mean adipocyte volume and
estimated abdominal subcutaneous fat mass was performed75. The difference between
the measured and expected mean adipocyte volume at the corresponding total fat
mass determines adipose morphology. If the measured adipocyte volume is larger
than expected, SAT hypertrophy prevails, whereas the opposite is true for hyperplasia.
Thus, this measure of adipose morphology is independent of total fat mass.

Genetic analysis of the GENiAL cohort. The genetic analysis of the GENiAL
cohort has been described previously70. After quality control, 894 samples were
available for analysis. Genetic association analysis was conducted in PLINK76,
using linear regression, assuming an additive genetic model, and adjusting for
population structure (PCs1-3), age, and sex.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The transcriptomic RNAseq datasets generated and analyzed during the current study are
available in the NCBI BioProject repository, https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA684140. Relevant data and/or materials not present are available upon reasonable
request from C.He. (carl.herdenberg@umu.se) and/or H.H. (hakan.hedman@umu.se).
Source data from the UK Biobank are available upon approved application through the
UKBB data application management system. Source data for the main figures are
presented in Supplementary Data 1.
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Abstract

Background

Non-alcoholic fatty liver disease (NAFLD) is highly prevalent and causes serious health

complications in individuals with and without type 2 diabetes (T2D). Early diagnosis of

NAFLD is important, as this can help prevent irreversible damage to the liver and, ultimately,

hepatocellular carcinomas. We sought to expand etiological understanding and develop a

diagnostic tool for NAFLD using machine learning.

Methods and findings

We utilized the baseline data from IMI DIRECT, a multicenter prospective cohort study of

3,029 European-ancestry adults recently diagnosed with T2D (n = 795) or at high risk of

developing the disease (n = 2,234). Multi-omics (genetic, transcriptomic, proteomic, and

metabolomic) and clinical (liver enzymes and other serological biomarkers, anthropometry,

measures of beta-cell function, insulin sensitivity, and lifestyle) data comprised the key input

variables. The models were trained on MRI-image-derived liver fat content (<5% or�5%)

available for 1,514 participants. We applied LASSO (least absolute shrinkage and selection

operator) to select features from the different layers of omics data and random forest analy-

sis to develop the models. The prediction models included clinical and omics variables sepa-

rately or in combination. A model including all omics and clinical variables yielded a cross-

validated receiver operating characteristic area under the curve (ROCAUC) of 0.84 (95% CI

0.82, 0.86; p < 0.001), which compared with a ROCAUC of 0.82 (95% CI 0.81, 0.83; p <
0.001) for a model including 9 clinically accessible variables. The IMI DIRECT prediction

models outperformed existing noninvasive NAFLD prediction tools. One limitation is that

these analyses were performed in adults of European ancestry residing in northern Europe,

and it is unknown how well these findings will translate to people of other ancestries and

exposed to environmental risk factors that differ from those of the present cohort. Another

key limitation of this study is that the prediction was done on a binary outcome of liver fat

quantity (<5% or�5%) rather than a continuous one.
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Conclusions

In this study, we developed several models with different combinations of clinical and omics

data and identified biological features that appear to be associated with liver fat accumula-

tion. In general, the clinical variables showed better prediction ability than the complex

omics variables. However, the combination of omics and clinical variables yielded the high-

est accuracy. We have incorporated the developed clinical models into a web interface (see:

https://www.predictliverfat.org/) and made it available to the community.

Trial registration

ClinicalTrials.gov NCT03814915.

Author summary

Why was this study done?

• Globally, about 1 in 4 adults have non-alcoholic fatty liver disease (NAFLD), which

adversely affects energy homeostasis (in particular blood glucose concentrations), blood

detoxification, drug metabolism, and food digestion.

• Although numerous noninvasive tests to detect NAFLD exist, these typically include

inaccurate blood-marker tests or expensive imaging methods.

• The purpose of this work was to develop accurate noninvasive methods to aid in the

clinical prediction of NAFLD.

What did the researchers do and find?

• The analyses applied machine learning methods to data from the deep-phenotyped IMI

DIRECT cohorts (n = 1,514) to identify sets of highly informative variables for the pre-

diction of NAFLD. The criterion measure was liver fat quantified from MRI.

• We developed a total of 18 prediction models that ranged from very inexpensive models

of modest accuracy to more expensive biochemistry- and/or omics-based models with

high accuracy.

• We found that models using measures commonly collected in either clinical settings or

research studies proved adequate for the prediction of NAFLD.

• The addition of detailed omics data significantly improved the predictive utility of these

models. We also found that of all omics markers, proteomic markers yielded the highest

predictive accuracy when appropriately combined.

What do these findings mean?

• We envisage that these new approaches to predicting fatty liver may be of clinical value

when screening at-risk populations for NAFLD.
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• The identification of specific molecular features that underlie the development of

NAFLD provides novel insights into the disease’s etiology, which may lead to the devel-

opment of new treatments.

Introduction

Non-alcoholic fatty liver disease (NAFLD) is characterized by the accumulation of fat in hepa-

tocytes in the absence of excessive alcohol consumption. NAFLD is a spectrum of liver dis-

eases, with its first stage, known as simple steatosis, defined as liver fat content�5% of total

liver weight. Simple steatosis can progress to non-alcoholic steatohepatitis (NASH), fibrosis,

cirrhosis, and eventually hepatocellular carcinoma. In NAFLD, triglycerides (TG) accumulate

in hepatocytes, and liver insulin sensitivity is diminished, promoting hepatic gluconeogenesis,

thereby raising the risk of type 2 diabetes (T2D) or exacerbating the disease pathology in those

with diabetes [1–5]. Growing evidence also links an increased risk of cardiovascular events

with NAFLD [6,7].

The prevalence of NAFLD is thought to be around 20%–40% in the general population in

high-income countries, with numbers growing worldwide, imposing a substantial economic

and public health burden [8–11]. However, the exact prevalence of NAFLD has not been clari-

fied, in part because liver fat is difficult to accurately assess. Liver biopsy, magnetic resonance

imaging (MRI), ultrasound, and liver enzyme tests are often used for NAFLD diagnosis, but

the invasive nature of biopsies, the high cost of MRI scans, the non-quantitative nature and

low sensitivity of conventional ultrasounds, and the low accuracy of liver enzyme tests are sig-

nificant limitations [12–14]. To address this gap, several liver fat prediction indices have been

developed, but none of these has sufficiently high predictive ability to be considered a gold

standard [12].

The purpose of this study was to use machine learning to identify novel molecular features

associated with NAFLD and combine these with conventional clinical variables to predict

NAFLD. Our models include variables that are likely to be informative of disease etiology,

some of which may be of use in clinical practice.

Methods

Participants (IMI DIRECT)

The primary data utilized in this study were generated within the IMI DIRECT consortium,

which includes persons with diabetes (n = 795) and without diabetes (n = 2,234). All partici-

pants provided informed written consent, and the study protocol was approved by the regional

research ethics committees for each clinical study center. Details of the study design and the

core characteristics are provided elsewhere [15,16].

Measures (IMI DIRECT)

A T2�-based multiecho technique was used to derive liver fat content from MRI [17,18], and

the percentage values were categorized as fatty (�5%) or non-fatty (<5%) to define the out-

come variable. We elected not to attempt quantitative prediction of liver fat content, as this

would require a much larger dataset to be adequately powered. A frequently-sampled 75-g oral

glucose tolerance test (OGTT) or a frequently sampled mixed-meal tolerance test (MMTT)

was performed, from which measures of glucose and insulin dynamics were calculated, as pre-

viously described [15,16]. Of 3,029 IMI DIRECT participants, 50% (n = 1,514) had the liver fat
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MRI data (503 with diabetes and 1,011 without diabetes). The distribution of the liver fat data

among different centers and cohorts is shown in S1 and S2 Figs.

The list of the clinical input (predictor) variables (n = 58), including anthropometric mea-

surements, plasma biomarkers, and lifestyle factors, are shown in S1 Table. These clinical

variables were controlled for center effect by deriving residuals from a linear model including

each clinical variable in each model; these residuals were then inverse normalized and used in

subsequent analyses. Inverse normal transformation is a nonparametric method that replaces

the data quantiles by quantiles from the standard normal distribution in order to reduce the

impact of outliers and deviation from a normal distribution.

A detailed overview of participant characteristics for the key variables is shown in Table 1

for all IMI DIRECT participants with MRI data. There were no substantial differences in char-

acteristics between these participants and those from IMI DIRECT who did not have MRI

data (see S2 Table).

Genetic, transcriptomic, proteomic, and metabolomic datasets were used as input omics

variables in the analyses. Buffy coat was separated from whole blood, and DNA was then

extracted and genotyped using the Illumina HumanCore array (HCE24 v1.0); genotype impu-

tation was performed using the Haplotype Reference Consortium (HRC) and 1000 Genomes

(1KG) reference panels. Details of the quality control (QC) steps for the genetic data are

Table 1. Characteristics of IMI DIRECT participants in the non-diabetes, diabetes, and combined cohorts separated for individuals with fatty liver versus non-fatty

liver.

Characteristics Non-diabetes cohort Diabetes cohort Combined cohort

Fatty liver Non-fatty liver Fatty liver Non-fatty liver Fatty liver Non-fatty liver

N (percent) 344 (34) 667 (66) 296 (59) 207 (41) 640 (42) 874 (58)

Age (years) 61 (56, 66) 62 (56, 66) 62 (55, 67) 63 (58, 69) 61 (56, 66) 62 (56, 67)

Sex, n (percent female) 62 (18) 134 (20) 130 (44) 86 (42) 192 (30) 220 (25)

Weight (kg) 90.75 (81.50,

100.25)

81.40 (75.67,

89.60)

92.85 (81.47,

103.75)

80.80 (73.00,

93.55)

91.20 (81.50,

102.00)

81.40 (74.03,

90.17)

Waist circumference (cm) 105 (98, 112) 97 (91, 103) 107 (97, 115) 97 (90, 107) 106 (98, 113) 97 (91, 103)

BMI (kg/m2) 29.23 (26.91,

32.05)

26.69 (24.75,

28.71)

31.47 (28.37,

35.35)

27.64 (25.53,

31.07)

30.05 (27.53,

33.52)

26.85 (24.91,

29.23)

SBP 134.70 (125.30,

143.00)

129.33 (120.00,

140.00)

131 (122.00,

139.33)

127.67 (117.67,

138.33)

132.67 (124.00,

142.00)

128.83 (119.33,

140.00)

DBP 83.50 (79.33,

89.83)

80.67 (75.67,

86.00)

76.67 (72.00,

84.00)

72.67 (67.17,

80.67)

81.33 (5.33, 87.33) 80.00 (73.33,

84.67)

HbA1c (mmol/mol) 38 (36, 40) 37 (35, 39) 47 (44, 51) 45 (42, 48) 41 (37, 46) 38 (36, 41)

Fasting glucose (mmol/l) 5.90 (5.60, 6.30) 5.70 (5.40, 6.00) 7.20 (6.30, 7.90) 6.70 (5.80, 7.60) 6.30 (5.80, 7.20) 5.80 (5.40, 6.30)

Fasting insulin (pmol/l) 75.60 (54.30,

104.40)

44.10 (27.75,

66.00)

115.80 (75.80,

167.80)

60.20 (40.85,

82.90)

90.90 (61.20,

133.90)

48.60 (30.00,

69.60)

2-hour glucose (mmol/l) 6.55 (5.37, 8.20) 5.70 (4.70, 6.80) 9.00 (6.90, 10.65) 7.90 (6.20, 9.90) 7.40 (5.90, 9.60) 6.00 (4.90, 7.50)

2-hour insulin (pmol/l) 345.60 (198.40,

566.20)

169.80 (100.20,

274.20)

489.30 (297.40,

700.50)

271.00 (166.40,

418.10)

403.20 (236.60,

643.50)

190.70 (110.80,

317.60)

Triglycerides (mmol/l) 1.49 (1.13, 2.09) 1.12 (0.86, 1.47) 1.49 (1.01, 1.99) 1.12 (0.86, 1.48) 1.49 (1.08, 2.02) 1.12 (0.86, 1.47)

ALT (units/l) 21 (14, 29) 15 (10, 20) 25 (19, 33) 20 (16, 24) 23 (16, 32) 16 (12, 22)

AST (units/l) 29 (24, 37) 25 (21, 30) 24 (20, 30) 22 (19, 27) 26 (22, 33) 24 (20, 29)

Alcohol intake, n for “never,”

“occasionally,” “regularly”

21, 68, 255 91, 133, 443 52, 81, 163 38, 45, 124 73, 149, 418 129, 178, 567

Liver fat 8.80 (6.60, 13.00) 2.20 (1.50, 3.30) 11.10 (7.30, 15.82) 2.70 (1.95, 4.00) 9.50 (6.80, 14.30) 2.40 (1.60, 3.50)

Values are median (interquartile range) unless otherwise specified.

ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, diastolic blood pressure; HbA1c, hemoglobin A1C; SBP, systolic blood pressure.

https://doi.org/10.1371/journal.pmed.1003149.t001
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described elsewhere [16]. Transcriptomic data were generated using RNA sequencing from

fasting whole blood. Only protein-coding genes were included in the analyses, as reads per

kilobase of transcript per million mapped reads (RPKM). The targeted metabolomic data of

fasting plasma samples were generated using the Biocrates AbsoluteIDQ p150 Kit. Addition-

ally, untargeted LC/MS-based metabolomics was used to cover a broader spectrum of metabo-

lites. A combination of technologies and quantitative panels of protein assays were used to

generate “targeted” proteomic data. This included Olink proximity extension assays [19],

sandwich immunoassay kits using Luminex technology (Merck Millipore and R&D Systems,

Sweden), microfluidic ELISA assays (ProteinSimple, US [20]), protein analysis by Myriad

RBM (Germany), and hsCRP analysis (MLM Medical Labs, Germany). In addition, protein

data were generated by single-binder assays using highly multiplexed suspension bead arrays

[21]. This approach (denoted “exploratory” proteomics) included a combination of antibodies

targeting proteins selected by the consortium given published and unpublished evidence for

association with glycemia-related traits. More information about data generation and QC of

the transcriptomic, proteomic, and metabolomic data is provided in S1 Text. Technical covari-

ates for transcriptomics include guanine-cytosine mean content, insert size, analysis lane and

RNA integrity number, cell composition, date, and center. Technical covariates for proteomics

were center, assay, plate number, and plate layout (n = 4), and for the targeted metabolites the

technical covariates were center and plate. These technical covariates were used to correct the

omics data, and the residuals were then extracted from these models and inverse normalized

prior to further analyses.

Feature selection (IMI DIRECT)

We developed a series of NAFLD prediction models composed of variables that are available

within clinical settings, as well as those not currently available in most clinics (see S3 Table).

We had 2 strategies for selecting the clinical variables. For models 1–3, we selected variables

based on clinical accessibility and their established association with fatty liver from existing

literature without applying statistical procedures for data reduction. For model 4, a pairwise

Pearson correlation matrix was used for feature selection of the clinical variables by placing

a pairwise correlation threshold of r> 0.8, and we then selected the variables we considered

most accessible among those that were collinear. Feature selection was undertaken in the

combined cohort (diabetes and non-diabetes) in order to maximize sample size and statistical

power. Of 1,514 participants with liver fat data, 1,049 had all necessary clinical and multi-

omics data for a complete case analysis. We used k-nearest neighbor [22] imputation with k
equal to 10 as a means to reduce the loss of sample size, but found that this did not materially

improve predictive power in subsequent analyses, so we decided not to include these imputed

data. An overview of the pairwise correlations among the clinical variables available in these

1,049 IMI DIRECT participants is presented in Fig 1.

The high-dimensionality nature of omics data also necessitated data reduction using the

feature selection tool LASSO prior to building the model. LASSO is a regression analysis

method that minimizes the sum of least squares in a linear regression model and shrinks

selected beta coefficients (βj) using penalties (Eq 1). Minimizing the value from Eq 1, LASSO

excludes the least informative variables and selects those features of most importance for the

outcome of interest (y) in a sample of n cases, each of which consists of m parameters. The

penalty applied by λ can be any value from 0 to positive infinity and is determined through a

cross-validation step [26].

Xn

i¼1
ðyi � ŷiÞ

2
þ l�

Xm

j¼1
jbjj ð1Þ
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Fig 1. Pearson pairwise correlation matrix of clinical variables (data are inverse normal transformed) in the cohort combining participants with

and without diabetes in IMI DIRECT (n = 1,049). The magnitude and direction of the correlation are reflected by the size (larger is stronger) and color

(red is positive and blue is negative) of the circles, respectively. ActGLP1min0, concentration of fasting active GLP-1 in plasma; ALT, alanine

transaminase; AST, aspartate transaminase; AST_ALT, AST to ALT ratio; BasalISR, insulin secretion at the beginning of the oral glucose tolerance test/

mixed-meal tolerance test; BMI, body mass index; CHOI, total daily intake of dietary carbohydrates; Chol, total cholesterol; Clins, mean insulin clearance

during the oral glucose tolerance test/mixed-meal tolerance test, calculated as (mean insulin secretion)/(mean insulin concentration); Clinsb, insulin

clearance calculated from basal values as (insulin secretion)/(insulin concentration); DBP, mean diastolic blood pressure; FatI, total daily intake of dietary

fats; FLI, fatty liver index; FibreI, total daily intake of dietary Association of Official Analytical Chemists (AOAC) fiber; GGTP, gamma-glutamyl

transpeptidase; Glucagonmin0, fasting glucagon concentration; Glucose, fasting glucose from venous plasma samples; GlucoseSens, glucose sensitivity,

slope of the dose–response relating insulin secretion to glucose concentration; HbA1c, hemoglobin A1C; HDL, fasting high-density lipoprotein

cholesterol; IncGLP1min60, 1-hour GLP-1 increment; IncGlucagonmin60, 1-hour glucagon increment; Insulin, fasting insulin from venous plasma

samples; LDL, fasting low-density lipoprotein cholesterol; Matsuda, insulin sensitivity index according to the method of Matsuda et al. [23];

MeanGlucose, mean glucose during the oral glucose tolerance test/mixed-meal tolerance test; MeanInsulin, mean insulin during the oral glucose

tolerance test/mixed-meal tolerance test; MUFatI, daily intake of dietary monounsaturated fats; OGIS, oral glucose insulin sensitivity index according to

the method of Mari et al. [24]; PA_intensity_0_48f, number of values in high-pass-filtered vector magnitude physical activity at�0 and�48;

PA_intensity_154_389f, number of values in high-pass-filtered vector magnitude physical activity at�154 and�389; PA_intensity_389_9999f, number of

values in high-pass-filtered vector magnitude physical activity at�389 and�9,999; PA_intensity_48_154f, number of values in high-pass-filtered vector

magnitude physical activity at�48 and�154; PA_intensity_mean, mean high-pass-filtered vector magnitude physical activity intensity; PFR, potentiation

factor ratio; ProteinI, total daily intake of dietary proteins; PUFatI, daily intake of dietary polyunsaturated fats; RateSens, rate sensitivity (parameter

characterizing early insulin secretion); SatFatI, daily intake of dietary saturated fats; SBP, mean systolic blood pressure; Stumvoll, insulin sensitivity index

according to the method of Stumvoll et al. [25]; SugarI, total daily intake of dietary; TEI, total daily energy intake based on validated multi-pass food habit

questionnaire; TG, fasting triglycerides; TotalISR, integral of insulin secretion during the whole oral glucose tolerance test/mixed-meal tolerance test;

TotGLP1min0, concentration of fasting total GLP-1 in plasma; TwoGlucose, 2-hour glucose after oral glucose tolerance test/mixed-meal tolerance test;

TwoInsulin, 2-hour insulin; Waist_Hip, waist to hip ratio.

https://doi.org/10.1371/journal.pmed.1003149.g001
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To minimize bias (for example by overfitting), we randomly divided the dataset and used

70% (n = 735) for feature selection and 30% (n = 314) for the model generation (see below).

We selected these thresholds for partitioning the dataset in order to maximize the power to

select the informative features. Stratified random sampling [27] based on the outcome variable

was undertaken in order to preserve the distribution of the liver fat categories in the 2 feature

selection and model generation sets. We selected LASSO, as a nonlinear data reduction tool

might lead to overfitting owing to the high dimensionality of omics data. LASSO was con-

ducted with package glmnet in R [28] with a 10-fold cross-validation step for defining the λ
parameter that resulted in the minimum value for the mean square error of the regression

model.

Feature selection using LASSO was undertaken in each omics dataset (genetic, transcrip-

tomic, proteomic, and metabolomic) using 70% of the available data (models 5–18). For the

genetic dataset, we first performed a genome-wide association study (GWAS) prior to LASSO

in order to identify single nucleotide polymorphisms (SNPs) tentatively associated with liver

fat accumulation (p< 5 × 10−6). LASSO was then applied to these index variants for feature

selection in 70% of the study sample. The individual SNP association analysis was conducted

with RVTESTS v2.0.2 [29], which applies a linear mixed model with an empirical kinship

matrix to account for familial relatedness, cryptic relatedness, and population stratification.

Only common variants with minor allele frequency (MAF) greater than 5% contributed to the

kinship matrix. Liver fat data were log-transformed and then adjusted for age, age2, sex, center,

body mass index (BMI), and alcohol consumption. These values were then inverse normal

transformed and used in the GWAS analyses. We limited our analysis to genetic MAF > 1%

and imputation quality score > 0.3. S3 and S4 Figs show the resulting Manhattan plot, depict-

ing each SNP’s association with liver fat percentage and the quantile–quantile (QQ) plot of the

GWAS results for liver fat. For the genetic data, 23 SNPs were selected out of the 108 SNPs

with p-values < 5 × 10−6. For the transcriptomics, 93 genes were selected out of 16,209 pro-

tein-coding genes. In the exploratory and targeted proteomics, 22 out of 377 and 48 out of 483

proteins were selected, respectively. In the targeted and untargeted metabolomic data, 25 out

of 116 and 39 out of 172 metabolites were selected by LASSO, respectively.

Model training and evaluation

The remaining 30% of the data was used to develop the binary prediction models for fatty liver

(yes/no) with selected features used as input variables. We utilized the random forest super-

vised machine learning method, which is an aggregation of decision trees built from boot-

strapped datasets (a process called “bagging”). Typically, two-thirds of the data are retained in

these bootstrapped datasets, and the remaining third is termed the out of bag (OOB) dataset,

which is used to validate the performance of the model. To avoid overfitting and improve gen-

eralizability, 5-fold cross-validation was done for resampling the training samples and was

repeated 5 times to create multiple versions of the folds. The number of trees was set to 1,000

to provide an accurate and stable prediction. Receiver operating characteristic (ROC) curves

were used to evaluate model performance by measuring the area under the curve (AUC). A

ROC curve uses a combination of sensitivity (true positive rate) and specificity (true negative

rate) to assess prediction performance. In our analysis, the random forest model is used to

derive probability estimates for the presence of fatty liver. In order to make a class prediction,

it is necessary to impose a cutoff above which fatty liver is deemed probable and below which

it is considered improbable. The choice of cutoff influences both sensitivity and specificity for

a given prediction model. We considered the effect of different cutoffs on these performance

measurements. Additionally, we calculated the F1 score, which is the harmonic mean of
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precision (positive predictive value) and sensitivity, derived as follows:

F1 score ¼
2� sensitivity � precision
ðsensitivity þ precisionÞ

ð2Þ

Balanced accuracy was also evaluated, which is the proportion of individuals correctly clas-

sified (true positives and true negatives) within each class individually. Measurements of sensi-

tivity, specificity, F1 score, and balanced accuracy were computed and compared at different

cutoffs for the diabetes, non-diabetes, and combined cohorts. The variable importance was

also determined via a “permutation accuracy importance” measure using random forest analy-

sis. In brief, for each tree, the prediction accuracy was calculated in the OOB test data. Each

predictor variable was then permuted, and the accuracy was recalculated. The difference in the

accuracies was averaged over all the trees and then normalized by the standard error. Thus, the

measure for variable importance is the difference in prediction accuracy before and after the

permutation for each variable [30]. In addition, we used the ensemble feature selection (EFS)

method to determine the normalized importance value of all features [31]. With this approach,

we do not rely on only random forest for the importance ranking, and we can build the cumu-

lative importance values from different methods including Spearman’s rank correlation test,

Pearson’s product moment correlation test, beta-values of logistic regression, the error-rate-

based variable importance measure, and the Gini-index-based variable importance measure.

Statistical analyses were undertaken using R software version 3.2.5 [32], and the random forest

models were built using the caret package [33]. Fig 2 shows an overview of the different stages

involved in the data processing and model training.

Comparison with other fatty liver indices

Given the accessible data within the IMI DIRECT cohorts, several existing fatty liver indices

could be calculated and compared with the IMI DIRECT prediction models. These included

Fig 2. Overview of the different stages involved in data processing and model training. Data sources: clinical (C), genetic (G), transcriptomic

(T), exploratory proteomic (E-P), targeted proteomic (T-P), targeted metabolomic (T-M), and untargeted metabolomic (U-M). The green and

blue dashed boxes illustrate the feature selection step, the details of which can be found in S5 Fig. ROCAUC, receiver operating characteristic

area under the curve.

https://doi.org/10.1371/journal.pmed.1003149.g002
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the fatty liver index (FLI) [34], hepatic steatosis index (HSI) [35], and the NAFLD liver fat

score (NAFLD-LFS) [36].

FLI. The FLI is commonly used to estimate the presence or absence of fatty liver (catego-

rized into fatty [�60 FLI units] or non-fatty liver [<60 FLI units]) [34]. The FLI uses data on

TG, waist circumference, BMI, and serum gamma-glutamyl transpeptidase (GGTP) and is cal-

culated as follows:

FLI ¼
eðð0:953�lnðTGÞÞþ ð0:139�BMIÞ þ ð0:718�lnðGGTPÞÞ þ ð0:053�WaistÞ � 15:745 Þ � 100

ð1 þ eðð0:953�ln TGÞÞþ ð0:139�BMIÞ þ ð0:718�lnðGGTPÞÞ þ ð0:053�WaistÞ � 15:745 ÞÞ
ð3Þ

NAFLD-FLS. NAFLD-FLS was calculated using fasting serum (fs) insulin, aspartate trans-

aminase (AST), alanine transaminase (ALT), T2D, and metabolic syndrome (MS) (defined

according to the International Diabetes Federation [37]) to provide an estimate of liver fat con-

tent. A NAFLD-FLS value above −0.64 is considered to indicate the presence of NAFLD:

NAFLD-LFS ¼ � 2:89þ 1:18�MS ðyes 1; no 0Þ þ 0:45� T2D ðyes 2; no 0Þ

þ 0:15� fs Insulin ð4Þ

HSI. The HSI uses BMI, sex, T2D diagnosis (yes/no), and the ratio of ALT to AST and is

calculated as follows:

HSI ¼ 8�
ALT
AST

þ BMI þ2 if T2D yes;þ2 if femaleð Þ ð5Þ

HSI values above 36 are deemed to indicate the presence of NAFLD.

External validation (UK Biobank cohort)

The UK Biobank cohort [38] was used to validate the clinical prediction models (models 1 and

2) derived using IMI DIRECT data (UK Biobank application ID: 18274). The same protocol

and procedure have been used to quantify MRI-derived liver fat in IMI DIRECT and UK Bio-

bank [18]. In addition, we validated the FLI and HSI using UK Biobank data. Field numbers

for the UK Biobank variables used in the validation step can be found in the S4 Table. The

data analysis procedures used for the UK Biobank validation analyses mirror those used in

IMI DIRECT (as described above).

This study is reported as per the Strengthening the Reporting of Observational Studies in

Epidemiology (STROBE) guideline (S1 STROBE Checklist) and the Transparent Reporting of

a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) guideline

(S1 TRIPOD Checklist).

Results

The following section describes fatty liver prediction models that are likely to suit different sce-

narios. We focus on a basic model (model 1), which includes variables that are widely available

in both clinical and research settings. Models 2 and 3 focus on variables that could in principle

be accessed within the clinical context, but that are not routinely available in the clinical setting

at this time. Model 4 includes clinical variables, more detailed measures of glucose and insulin

dynamics, and physical activity. Models 5 to 18 are more advanced models that include omics

predictor variables alone or in combination with clinical predictor variables. See S3 Table for a

full description of models.
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Clinical models 1–3

We developed models 1–3 for NAFLD prediction, graded by perceived data accessibility for

clinicians. These models were developed on the full dataset without applying any statistical

procedures for feature selection. Model 1 includes 6 non-serological input variables: waist cir-

cumference, BMI, systolic blood pressure (SBP), diastolic blood pressure (DBP), alcohol con-

sumption, and diabetes status. Model 2 includes 8 input variables: waist circumference, BMI,

TG, ALT, AST, fasting glucose (or hemoglobin A1C [HbA1c] if fasting glucose is not available),

alcohol consumption, and diabetes status. Model 3 includes 9 variables: waist circumference,

BMI, TG, ALT, AST, fasting glucose, fasting insulin, alcohol consumption, and diabetes status.

Clinical models 1–3 along with the FLI, HSI, and NAFLD-LFS were applied to the non-diabetes

and diabetes cohort datasets separately, as well as to the combined cohort dataset; the ROCAUC

results are presented in Fig 3. Model 1 yielded a ROCAUC of 0.73 (95% CI 0.72, 0.75; p<
0.001) in the combined cohort. Adding serological variables to model 2 (with either fasting glu-

cose or HbA1c) for the combined cohort yielded a ROCAUC of 0.79 (95% CI 0.78, 0.80; p<
0.001). Model 3 (fasting insulin added) yielded a ROCAUC of 0.82 (95% CI 0.81, 0.83; p<
0.001) in the combined cohort. The FLI, HSI, and NAFLD-LFS had ROCAUCs of 0.75 (95% CI

0.73, 0.78; p< 0.001), 0.75 (95% CI 0.72, 0.77; p< 0.001), and 0.79 (95% CI 0.76, 0.81; p<
0.001), respectively, in the combined cohort. The predictive performance of clinical models 1–3,

FLI, HSI, and NAFLD-LFS in the non-diabetes and diabetes cohorts is presented in S5 Table.

Performance metrics

We further investigated sensitivity, specificity, balanced accuracy, and F1 score (a score con-

sidering sensitivity and precision combined). These measurements were calculated for differ-

ent cutoffs applied to the output of the random forest model (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,

and 0.9) using clinical models 1–3 in the diabetes, non-diabetes, and combined cohorts. The

performance metrics for models 1 and 2 are presented in S6 and S7 Figs, and the metrics for

model 3 are presented in Fig 4. We aimed to find the optimal cutoff for these models based on

the cross-validated balanced accuracy. The highest balanced accuracy for models 1–3 in the

non-diabetes, diabetes, and combined cohorts was observed at cutoffs of 0.4, 0.6, and 0.4,

respectively (see Table 2).

Measurements of sensitivity, specificity, F1 score, and balanced accuracy were computed

for the FLI, HSI, and NAFLD-LFS and compared with those of clinical models1–3. These

measurements were computed at the optimal cutoff values for these indices: −0.640 for

NAFLD-LFS, 60 for the FLI, and 36 for the HSI. A comprehensive overview of the predic-

tion models’ performance metrics for all of the fatty liver indices listed above is shown in

Table 2.

Validation in UK Biobank and IMI DIRECT

Liver fat data were available in 4,617 UK Biobank participants (1,011 with�5% liver fat and

3,606 with<5% liver fat). Of these individuals, 4,609 had all the required variables to replicate

clinical model 1. To perform model 2, with either fasting glucose or HbA1c, 3,807 participants

had data available for a complete case analysis. Given the limited availability of variables in

the UK Biobank dataset, only models 1 and 2 of the NAFLD prediction models we developed

could be externally validated. To facilitate this validation analysis, the random forest models

developed in the IMI DIRECT cohorts were used to predict the liver fat category (participants

with fatty liver versus non-fatty liver) for the UK Biobank participants. The performance of the

FLI and HSI was also tested in the UK Biobank cohort. We validated both models 1 and 2 in

the UK Biobank cohort with a similar ROCAUC as seen in the IMI DIRECT dataset. The
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ROCAUCs were 0.71 (95% CI 0.69, 0.73; p< 0.001), 0.79 (95% CI 0.77, 0.80; p< 0.001), and

0.78 (95% CI 0.76, 0.79; p< 0.001) for model 1, model 2 with fasting glucose, and model 2

with HbA1c, respectively. The FLI had a ROCAUC of 0.78 (95% CI 0.76, 0.80; p< 0.001),

which is similar to the ROCAUC of model 2. The HSI yielded a ROCAUC of 0.76 (95% CI

0.75, 0.78; p< 0.001).

Measurements of sensitivity, specificity, F1 score, and balanced accuracy were also com-

puted at the optimal cutoff values for these models: 0.4 for clinical models 1 and 2, 60 for the

FLI, and 36 for the HSI (see Table 2).

Fig 3. Receiver operating characteristic area under the curve (ROCAUC) with 95% confidence interval (error

bars) for clinical models 1–3, fatty liver index (FLI), hepatic steatosis index (HSI), and non-alcoholic fatty liver

disease liver fat score (NAFLD-LFS) in the IMI DIRECT cohorts. Model 1 includes 6 non-serological input

variables: waist circumference, body mass index(BMI), mean systolic blood pressure, mean diastolic blood pressure,

alcohol consumption, and diabetes status. Model 2 includes 8 input variables: waist circumference, BMI, fasting

triglycerides (TG), alanine transaminase (ALT), aspartate transaminase (AST), fasting glucose (or hemoglobin A1C if

fasting glucose is not available), alcohol consumption, and diabetes status. Model 3 includes 9 variables: waist

circumference, BMI, TG, ALT, AST, fasting glucose, fasting insulin, alcohol consumption, and diabetes status. The FLI

uses TG, waist circumference, BMI, and gamma-glutamyl transpeptidase. NAFLD-FLS was calculated using fasting

insulin, AST, ALT, type 2 diabetes (T2D), and metabolic syndrome defined according to the International Diabetes

Federation. The HSI uses BMI, sex, T2D diagnosis (yes/no), and the ratio of ALT to AST.

https://doi.org/10.1371/journal.pmed.1003149.g003
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Clinical model 4 and omics models 5–14

More advanced models using omics data were also developed. These models were generated

using the omics features selected by LASSO in the combined cohort. The models include only

omics or include omics plus 22 clinical variables as the input variables. Twenty-one of these

clinical variables were selected based on the pairwise Pearson correlation matrix: BMI, waist

circumference, SBP, DBP, alcohol consumption, ALT, AST, GGTP, HDL, TG, fasting glucose,

2-hour glucose, HbA1c, fasting insulin, 2-hour insulin, insulin secretion at the beginning of

the carbohydrate challenge test (OGTT or MMTT), 2-hour oral glucose insulin sensitivity

index (OGIS), mean insulin clearance during the OGTT/MTT, fasting glucagon concentra-

tion, fasting plasma total GLP-1 concentration, and mean physical activity intensity. Diabetes

status (non-diabetes/diabetes) was also included as a clinical predictor in the models, given

that analyses were undertaken in the combined diabetes and non-diabetes cohort. The

ROCAUCs for models 4–14 are shown in Fig 5. The clinical model with the 22 selected clinical

Fig 4. Measurements of sensitivity, specificity, F1 (a score considering sensitivity and precision combined), and

balanced accuracy at different cutoffs for model 3 in the diabetes, non-diabetes, and combined cohorts of

IMI-DIRECT. The measurements are calculated by defining the predicted probabilities of fatty liver equal to or above

these cutoffs as fatty liver, and below as non-fatty liver. Model 3 includes 9 variables: waist circumference, body mass

index, fasting triglycerides, alanine transaminase, aspartate transaminase, fasting glucose, fasting insulin, alcohol

consumption, and diabetes status.

https://doi.org/10.1371/journal.pmed.1003149.g004
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variables (model 4) yielded a ROCAUC of 0.79 (95% CI 0.76, 0.81; p< 0.001). Omics models

with only the genetic (model 5), transcriptomic (model 7), proteomic (model 9), and targeted

metabolomic (model 11) data as input variables resulted in ROCAUCs of 0.67 (95% CI 0.65,

0.70; p< 0.001), 0.72 (95% CI 0.69, 0.74; p< 0.001), 0.74 (95% CI 0.71, 0.76; p< 0.001), and

0.70 (95% CI 0.67, 0.72; p< 0.001), respectively. Including all the omics variables in one model

(model 13) resulted in a ROCAUC of 0.82 (95% CI 0.80, 0.84; p< 0.001). Adding the clinical

variables to each omics model improved the prediction ability; models with the clinical vari-

ables plus genetic (model 6), transcriptomic (model 8), exploratory proteomic (model 10), and

targeted metabolomic (model 12) data resulted in ROCAUCs of 0.82 (95% CI 0.80, 0.84; p<
0.001), 0.81 (95% CI 0.79, 0.83; p< 0.001), 0.80 (95% CI 0.78, 0.83; p< 0.001), and 0.80 (95%

CI 0.77, 0.82; p< 0.001), respectively. The highest performance was observed for model 14

(ROCAUC of 0.84; 95% CI 0.82, 0.86; p< 0.001). The variable importance for model 14 from

Table 2. An overview of the prediction models’ performance metrics for clinical models 1–3, fatty liver index (FLI), hepatic steatosis index (HIS), and non-alcoholic

fatty liver disease liver fat score (NAFLD-LFS) in the IMI DIRECT and UK Biobank datasets.

Cohort and model Cutoff Sensitivity Specificity F1 score Balanced accuracy

Non-diabetes (IMI DIRECT)

Model 1 0.4 0.51 0.75 0.51 0.63

Model 2 0.4 0.60 0.79 0.59 0.69

Model 3 0.4 0.64 0.80 0.63 0.72

FLI 60 0.89 0.41 0.58 0.65

HSI 36 0.62 0.68 0.55 0.65

NAFLD-LFS −0.64 1 0.04 0.51 0.52

Diabetes (IMI DIRECT)

Model 1 0.6 0.63 0.64 0.67 0.64

Model 2 0.6 0.65 0.68 0.69 0.67

Model 3 0.6 0.69 0.75 0.74 0.72

FLI 60 0.77 0.54 0.73 0.66

HSI 36 0.83 0.48 0.75 0.65

NAFLD-LFS −0.64 1 0.01 0.73 0.50

Combined (IMI DIRECT)

Model 1 0.4 0.67 0.65 0.62 0.66

Model 2 0.4 0.72 0.69 0.67 0.71

Model 3 0.4 0.74 0.73 0.70 0.74

FLI 60 0.84 0.44 0.64 0.64

HSI 36 0.71 0.63 0.64 0.67

NAFLD-LFS −0.64 1 0 0.58 0.50

UK Biobank

Model 1 0.4 0.49 0.78 0.43 0.63

Model 2 0.4 0.67 0.74 0.52 0.71

FLI 60 0.62 0.76 0.50 0.69

HSI 36 0.66 0.72 0.50 0.69

Model 1 includes 6 non-serological input variables: waist circumference, body mass index (BMI), mean systolic blood pressure, mean diastolic blood pressure, alcohol

consumption, and diabetes status. Model 2 includes 8 input variables: waist circumference, BMI, fasting triglycerides (TG), alanine transaminase (ALT), aspartate

transaminase (AST), fasting glucose (or hemoglobin A1C if fasting glucose is not available), alcohol consumption, and diabetes status. Model 3 includes 9 variables:

waist circumference, BMI, TG, ALT, AST, fasting glucose, fasting insulin, alcohol consumption, and diabetes status. The FLI uses TG, waist circumference, BMI, and

gamma-glutamyl transpeptidase. NAFLD-FLS was calculated using fasting insulin, AST, ALT, type 2 diabetes (T2D), and metabolic syndrome defined according to the

International Diabetes Federation. The HSI uses BMI, sex, T2D diagnosis (yes/no), and the ratio of ALT to AST.

https://doi.org/10.1371/journal.pmed.1003149.t002
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the permutation accuracy importance measure, presented in Fig 6, shows that measures of

insulin secretion rank amongst those having the highest variable importance of all input vari-

ables. Moreover, the importance list derived from EFS, shown in S20 Fig, is highly consistent

with that derived from the random forest analysis. Rankings for the individual clinical and

omics variables from the permutation accuracy importance measure and EFS are presented in

S8–S19 Figs. The minor inconsistencies in results from the 2 approaches are likely to reflect

the ability of the random forest analysis to detect variables that interact with others, which the

linear methods are not designed to detect.

Additional proteomic and metabolomic analyses (models 15–18)

Data from targeted proteomic and untargeted metabolomic data were further utilized to

develop the omics models separately or in combination with the clinical data. However,

Fig 5. Receiver operating characteristic area under the curve (ROCAUC) with 95% confidence interval for the

clinical model and the omics separately or in combination with the clinical model in the IMI DIRECT combined

cohort. Clinical (C), model 4, with the 22 selected clinical variables. Genetic (G), model 5, with 23 SNPs. C+G, model

6, with clinical plus genetic variables. Transcriptomic (T), model 7, with 93 protein-coding genes. T+C, model 8, with

transcriptomic plus clinical variables. Proteomic (P), model 9, with 22 proteins from exploratory proteomics. P+C,

model 10, with proteomic plus clinical variables. Metabolomic (M), model 11, with 25 metabolites from targeted

metabolomics. M+C, model 12, with metabolomic plus clinical variables. G+T+M+P, model 13, with all omics

together. C+G+T+M+P, model 14, with all the omics combined with the clinical model.

https://doi.org/10.1371/journal.pmed.1003149.g005
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as some participants lacked these omics data, their models were developed using a smaller

data subset and were, hence, not included in the advanced (model 14) analyses. The complete

case analysis was primarily defined on the availability of the 22 selected clinical variables

(n = 1,049). Within this complete case set, 511 had a complete set of untargeted metabolomic

data, and 686 had a complete set of targeted proteomic data. The models with targeted proteo-

mic data only and with proteomic and clinical variables combined resulted in ROCAUCs of

0.81 (95% CI 0.78, 0.84; p< 0.001) and 0.84 (95% CI 0.81, 0.87; p< 0.001), respectively. The

untargeted metabolomic model alone had a ROCAUC of 0.66 (95% CI 0.63, 0.69; p< 0.001),

which increased to 0.78 (95% CI 0.75, 0.80; p< 0.001) when the 22 clinical variables were

added.

Fig 6. Variable importance for the advanced model 14 with 185 omics and clinical input variables (clinical = 22,

genetic = 23, transcriptomic = 93, exploratory proteomic = 22, and targeted metabolomic = 25). The y-axis shows

the top 20 predictors in the model. The x-axis shows the variable importance calculated, via a permutation accuracy

importance measure using random forest analysis, as the difference in prediction accuracy before and after the

permutation for each variable scaled by the standard error. ALT, alanine transaminase; AST, aspartate transaminase;

BasalISR, insulin secretion at the beginning of the oral glucose tolerance test/mixed-meal tolerance test; BMI, body

mass index; Clins, mean insulin clearance during the oral glucose tolerance test/mixed-meal tolerance test calculated as

(mean insulin secretion)/(mean insulin concentration); FLT3, fetal liver tyrosine kinase-3; Insulin, fasting insulin from

venous plasma samples; MYLIP, myosin regulatory light chain interacting protein; OGIS, oral glucose insulin

sensitivity index according to the method of Mari et al. [24]; TG, fasting triglycerides; TotGLP1min0, concentration of

fasting total GLP-1 in plasma; TwoInsulin, 2-hour insulin after oral glucose tolerance test/mixed meal tolerance test.

https://doi.org/10.1371/journal.pmed.1003149.g006
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Discussion

Using data from the IMI DIRECT consortium, we developed 18 diagnostic models for early-

stage NAFLD. These models were developed to reflect different scenarios within which they

might be used: These included both clinical and research settings, with the more complex (and

less accessible) models having the greatest predictive ability. The models were successfully vali-

dated in the UK Biobank where data permitted such analysis (clinical models 1 and 2). Overall,

the basic clinical variables proved to be stronger predictors of fatty liver than more complex

omics data, although adding omics data yielded the most powerful model, with very good

cross-validated predictive ability (ROCAUC = 0.84).

NAFLD is etiologically complex, rendering its prevention and treatment difficult, and diag-

nosis can require invasive and/or relatively expensive procedures. Thus, noninvasive and cost-

effective prediction models with good sensitivity and specificity are much needed. This is espe-

cially important because if NAFLD is detected early, treatment through lifestyle interventions

can be highly effective [39]. However, simple steatosis is usually asymptomatic, and many

patients only come to the attention of hepatologists when serious complications arise [40].

To date, several prediction models have been developed to facilitate the diagnosis of steato-

sis (thoroughly reviewed elsewhere [13]). The FLI is one of the most well-established and com-

monly used fatty liver indices, initially developed using ultrasound-derived hepatic steatosis

data [34]. The FLI yielded similar predictive performance in the diabetes and non-diabetes

cohorts of IMI DIRECT (both ROCAUCs approximately 0.75).

Though commonly used for liver fat prediction, the FLI has a similar discriminative ability

as waist circumference alone [41]. Better discrimination can be obtained by incorporating

additional serological and hemostatic measures, which is the case with NAFLD-LFS [14], the

SteatoTest [42], and the HSI [35], for example. Notwithstanding the added complexity and

cost of these scores, the FLI, HSI, and NAFLD-LFS yielded similar predictive ability in a series

of liver-biopsy-diagnosed NAFLD cases (n = 324) [36].

Omics technologies have been used in a small number of studies to identify molecular bio-

markers of NAFLD [43–45]. These include tests utilizing genetic data such as FibroGENE for

staging liver fibrosis [46], and tests using metabolomic data derived from liver tissue to differ-

entiate simple hepatitis from NASH [47], as well as a multi-component NAFLD classifier

using genomic, proteomic, and phenomic data [45]. Machine learning models based on lipido-

mic, glycomic, and free fatty acid data were also developed for the diagnosis of NASH and

liver fibrosis [48,49]. In a recent retrospective case series of patients with obesity, EFS was

applied for feature selection, using a set of sociodemographic and serum variables to predict

the presence or absence of NASH [50].

Using data from IMI DIRECT, we explored the predictive ability of genetic, transcriptomic,

proteomic, and metabolomic data from blood in the diagnosis of NAFLD. The top 20 features

of each omics model are presented in S9–S14 Figs. The details of the LASSO selected features

are summarized in S7 Table. Reassuringly, several of the features that ranked highest have

been previously described for their association with liver fat content or closely related traits;

these include PNPLA3 gene variants [44,51], fetal liver tyrosine kinase-3 (FLT3) transcripts

[52], IGFBP1 [53–55] and lipoprotein lipase (Lpl) [56] proteins, and the metabolite glutamate

[57]. In the analysis of the targeted metabolites, phosphatidylcholines (including PC.aa.C32,

PC.aa.C38, PC.aa.C40, and PC.aa.C42), glycerophospholipids, and valine were amongst the

highest-ranked metabolites that are known for their correlation with NAFLD and metabolic

disorders [58,59]. For exploratory proteomics, the most important variables were proteins

secreted into the blood, expressed by the liver as well as those leaking from the blood cells [60].

The prediction model that only included targeted proteomic data (model 15) performed well
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(ROCAUC = 0.81), rendering it an interesting candidate biomarker for future clinical tests.

Among the top 20 most important proteins were many secreted into the blood or leaked by

the liver, as well as the pancreas, fat, or muscle tissue [61].

Our intention by including all features in the same model (model 14) was to maximize pre-

dictive power by leveraging interactions between features. Moreover, we explored the value of

boosting ensemble algorithms for each data source. The purpose of this was to enhance predic-

tions. We trained a stochastic gradient boosting algorithm for each data source separately and

then applied a weighted averaging on the probabilities of observations. The optimal weighting

was observed at 0.5 for the clinical data and 0.125 for each omics data layer (i.e., genetic, tran-

scriptomic, exploratory proteomic, and targeted metabolomic). The ensemble prediction

model of omics and clinical datasets resulted in a ROCAUC of 0.83 (95% CI 0.78, 0.87; p<
0.001), which is not materially different from the ROCAUC derived for the advanced model

14 (described in the Results), which includes all the omics and clinical features in a single

model (ROCAUC of 0.84; 95% CI 0.82, 0.86; p< 0.001). The models developed here may be

useful for screening for NAFLD, and this should be evaluated in future clinical studies.

In order to stratify people into groups of those unlikely and likely to have NAFLD, the latter

of whom might subsequently undergo more invasive and/or costly clinical assessments, it

would be important for the prediction model to have high sensitivity. However, the predictive

utility of a given model can be further improved by selecting model cutoffs that optimize sensi-

tivity or specificity, as the 2 metrics rarely perform optimally at the same cutoff. This issue was

apparent for models 1–3 in the current analyses, where we selected cutoffs that maximized

balanced accuracy (considering both sensitivity and specificity); these features are especially

important in screening algorithms, where the cost of false negatives can be high. Models 1–3

resulted in higher sensitivity in the diabetes cohort than the non-diabetes cohort, whereas the

specificity was higher in the non-diabetes and combined cohorts than in the diabetes cohort.

The linear LASSO method was used to minimize overfitting that can occur with high-

dimensionality data, while random forest analysis was used to identify nonlinear associations

where data structure allowed. We also considered several other machine learning approaches

including generalized linear model, stochastic gradient boosting, support vector machines,

and k-nearest neighbor, and the random forest analysis yielded similar or better results com-

pared with any of these other approaches (see S6 Table).

A limitation of the analytical approach used here is that the methods required a complete

case analysis, which diminishes sample size considerably; although imputing missing data here

helped preserve sample size, it did not improve the prediction ability of the models, and we

hence elected to use the complete case analysis. Heavy alcohol consumption is a key determi-

nant of fatty liver, but is unlikely to be a major etiological factor in IMI DIRECT owing to the

demographics of this cohort. Nevertheless, a further limitation of this analysis is that alcohol

intake was self-reported and may lack validity. To address this limitation, we removed all self-

reported heavy alcohol consumers from the UK Biobank cohort and undertook sensitivity

analyses, but this did not materially affect the results.

Here we considered lifestyle variables, but not medications. The use of medicines affecting

liver fat is likely to be less in the non-diabetes than in the diabetes cohort, yet the models fit

better in the latter, suggesting that glucose-lowering medication use in the IMI DIRECT

cohorts did not have a major detrimental impact on prediction model performance.

A further consideration for future work is the impact lifestyle and medications are likely to

have on the prediction of NAFLD. Furthermore, this study was undertaken in people of Euro-

pean ancestry, and the extent to which the results will generalize to other ethnic groups is

unknown. Moreover, the prediction is for a binary liver fat outcome (<5% or�5%), and
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neither fully quantifies liver fat volume nor elucidates the degree of liver damage (cirrhosis).

These key limitations of the current work will be the focus of future research.

Our finding that a model focused on proteomic data yielded high predictive utility may

warrant further investigation. Our analysis also suggests that insulin sensitivity and beta-cell

dysfunction may be involved in liver fat accumulation, which are at present not considered as

features of conventional NAFLD risk models.

In summary, we have developed prediction models for NAFLD that may have utility for

clinical diagnosis and research investigations alike. A web interface for the diagnosis of

NAFLD was developed using the findings described above (https://www.predictliverfat.org),

which renders clinical models 1–3 developed here accessible for the wider community of clini-

cians and researchers.

Supporting information

S1 Fig. Violin plot showing the distribution of liver fat percentage for the diabetes and

non-diabetes cohorts of IMI DIRECT.

(TIFF)

S2 Fig. Distribution of liver fat percentage among the different centers contributing to the

IMI DIRECT cohorts.

(TIFF)

S3 Fig. Manhattan plot showing SNPs associated with liver fat level (approximately 18 mil-

lion imputed SNPs) in the IMI DIRECT cohorts. The chromosomal position is plotted on

the x-axis, and the statistical significance of association for each SNP is plotted on the y-axis.

Red line indicates genome-wide significance level (5 × 10−8).

(TIFF)

S4 Fig. Quantile–quantile (QQ) plot showing results of genome-wide association study

(GWAS) for liver fat content in the IMI DIRECT consortium (1,514 individuals). The x-

axis illustrates the expected distribution of p-values from the association test across all SNPs,

and the y-axis shows the observed p-values.

(TIFF)

S5 Fig. Details of the feature selection step for models 4–14 and models 15–18 using the

IMI DIRECT data. Models 4–14 (blue box); models 15–18 (green box).

(TIFF)

S6 Fig. Measurements of sensitivity, specificity, F1 score (a score considering sensitivity

and precision combined), and balanced accuracy at different cutoffs for model 1 in the dia-

betes, non-diabetes, and combined cohorts of IMI DIRECT.

(TIFF)

S7 Fig. Measurements of sensitivity, specificity, F1 score (a score considering sensitivity

and precision combined), and balanced accuracy at different cutoffs for model 2 in the dia-

betes, non-diabetes, and combined cohorts of IMI DIRECT.

(TIFF)

S8 Fig. Variable importance for the clinical model via a permutation accuracy importance

measure. The y-axis shows the top 20 predictors in the model. The x-axis shows the variable

importance, calculated using random forest analysis as the difference in prediction accuracy

before and after the permutation for each variable scaled by the standard error. ALT, alanine

transaminase; AST, aspartate transaminase; BasalISR, insulin secretion at the beginning of the
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OGTT/MMTT; BMI, body mass index; Clins, mean insulin clearance during the OGTT/MMTT

calculated as (mean insulin secretion)/(mean insulin concentration); DBP, diastolic blood pres-

sure; Diabetes_status2, non-diabetes/diabetes; GGTP, gamma-glutamyl transpeptidase; Gluca-

gonmin0, fasting glucagon concentration; Glucose, fasting glucose from venous plasma samples;

HbA1c, hemoglobin A1C; HDL, fasting high-density lipoprotein cholesterol; Insulin, fasting

insulin from venous plasma samples; OGIS, oral glucose insulin sensitivity index according to

the method of Mari et al. [24]; PA_intensity_mean, mean high-pass-filtered vector magnitude

physical activity intensity; SBP, systolic blood pressure; TG, fasting triglycerides; TotGLP1min0,

concentration of fasting total GLP-1 in plasma; TwoGlucose, 2-hour glucose after OGTT/

MMTT; TwoInsulin, 2-hour insulin.

(TIFF)

S9 Fig. Variable importance for the genetic model via a permutation accuracy importance

measure. The y-axis shows the top 20 predictors in the model. The x-axis shows the variable

importance, calculated using random forest analysis as the difference in prediction accuracy

before and after the permutation for each variable scaled by the standard error.

(TIFF)

S10 Fig. Variable importance for the transcriptomic model via a permutation accuracy

importance measure. The y-axis shows the top 20 predictors in the model. The x-axis shows

the variable importance, calculated using random forest analysis as the difference in prediction

accuracy before and after the permutation for each variable scaled by the standard error.

(TIFF)

S11 Fig. Variable importance for the exploratory proteomic model via a “permutation

accuracy importance” measure. The y-axis shows the top 20 predictors in the model. The x-

axis shows the variable importance, calculated using random forest as the difference in predic-

tion accuracy before and after the permutation for each variable scaled by the standard error.

(TIFF)

S12 Fig. Variable importance for the targeted metabolomic model via a permutation accu-

racy importance measure. The y-axis shows the top 20 predictors in the model. The x-axis

shows the variable importance, calculated using random forest analysis as the difference in

prediction accuracy before and after the permutation for each variable scaled by the standard

error.

(TIFF)

S13 Fig. Variable importance for the targeted proteomic model via a permutation accuracy

importance measure. The y-axis shows the top 20 predictors in the model. The x-axis shows

the variable importance, calculated using random forest analysis as the difference in prediction

accuracy before and after the permutation for each variable scaled by the standard error.

(TIFF)

S14 Fig. Variable importance for the untargeted metabolomic model via a permutation

accuracy importance measure. The y-axis shows the top 20 predictors in the model. The x-

axis shows the variable importance, calculated using random forest analysis as the difference

in prediction accuracy before and after the permutation for each variable scaled by the stan-

dard error.

(TIFF)

S15 Fig. Variable importance for the clinical model derived from ensemble feature selection

(EFS). The y-axis shows the 22 clinical variables ordered by importance value. The x-axis shows
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the cumulative importance values, calculated via an ensemble of feature selection methods

including Spearman’s rank correlation test (S_cor), Pearson’s product moment correlation test

(P_cor), beta-values of logistic regression (LogReg), error-rate-based variable importance mea-

sure (ER_RF), and Gini-index-based variable importance measure (Gini_RF). ALT, alanine

transaminase; AST, aspartate transaminase; BasalISR, insulin secretion at the beginning of

the OGTT/MMTT; BMI, body mass index; Clins, mean insulin clearance during the OGTT/

MMTT calculated as (mean insulin secretion)/(mean insulin concentration); DBP, diastolic

blood pressure; Diabetes status, non-diabetes/diabetes; GGTP, gamma-glutamyl transpeptidase;

Glucagonmin0, fasting glucagon concentration; Glucose, fasting glucose from venous plasma

samples; HbA1c, hemoglobin A1C; HDL, fasting high-density lipoprotein cholesterol; Insulin,

fasting insulin from venous plasma samples; OGIS, oral glucose insulin sensitivity index accord-

ing to the method of Mari et al. [24]; PA_intensity_mean, mean high-pass-filtered vector

magnitude physical activity intensity; SBP, systolic blood pressure; TG, fasting triglycerides;

TotGLP1min0, concentration of fasting total GLP-1 in plasma; TwoGlucose, 2-hour glucose

after OGTT/MMTT; TwoInsulin, 2-hour insulin.

(TIF)

S16 Fig. Variable importance for the genetic model derived from EFS. The y-axis shows the

23 genetic variables ordered by importance value. The x-axis shows the cumulative importance

values, calculated via an ensemble of feature selection methods including Spearman’s rank cor-

relation test (S_cor), Pearson’s product moment correlation test (P_cor), beta-values of logistic

regression (LogReg), error-rate-based variable importance measure (ER_RF), and Gini-index-

based variable importance measure (Gini_RF).

(TIFF)

S17 Fig. Variable importance for the transcriptomic model derived from EFS. The

y-axis shows the 93 transcriptomic variables ordered by importance value. The x-axis

shows the cumulative importance values, calculated via an ensemble of feature selection

methods including Spearman’s rank correlation test (S_cor), Pearson’s product moment

correlation test (P_cor), beta-values of logistic regression (LogReg), error-rate-based vari-

able importance measure (ER_RF), and Gini-index-based variable importance measure

(Gini_RF).

(TIFF)

S18 Fig. Variable importance for the exploratory proteomic model derived from EFS. The

y-axis shows the 22 exploratory proteomic variables ordered by importance value. The x-axis

shows the cumulative importance values, calculated via an ensemble of feature selection meth-

ods including Spearman’s rank correlation test (S_cor), Pearson’s product moment correlation

test (P_cor), beta-values of logistic regression (LogReg), error-rate-based variable importance

measure (ER_RF), and Gini-index-based variable importance measure (Gini_RF).

(TIFF)

S19 Fig. Variable importance for the targeted metabolomic model derived from EFS.

The y-axis shows the 25 targeted metabolomic variables ordered by importance value.

The x-axis shows the cumulative importance values, calculated via an ensemble of feature

selection methods including Spearman’s rank correlation test (S_cor), Pearson’s product

moment correlation test (P_cor), beta-values of logistic regression (LogReg), error-rate-

based variable importance measure (ER_RF), and Gini-index-based variable importance

measure (Gini_RF).

(TIFF)
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S20 Fig. Variable importance for the clinical plus multi-omics model (clinical = 22,

genetic = 23, transcriptomic = 93, exploratory proteomic = 22, and targeted metabolo-

mic = 25) derived from EFS. The y-axis shows the top 20 predictors in the model. The x-axis

shows the cumulative importance values, calculated via an ensemble of feature selection meth-

ods including Spearman’s rank correlation test (S_cor), Pearson’s product moment correlation

test (P_cor), beta-values of logistic regression (LogReg), error-rate-based variable importance

measure (ER_RF), and Gini-index-based variable importance measure (Gini_RF). ALT, ala-

nine transaminase; AST, aspartate transaminase; BasalISR, insulin secretion at the beginning

of the OGTT/MMTT; Clins, mean insulin clearance during the OGTT/MMTT calculated as

(mean insulin secretion)/(mean insulin concentration); Insulin, fasting insulin from venous

plasma samples; OGIS, oral glucose insulin sensitivity index according to the method of Mari

et al. [24]; TG, fasting triglycerides; TotGLP1min0, concentration of fasting total GLP-1 in

plasma; TwoInsulin, 2-hour insulin after OGTT/MMTT.

(TIFF)

S1 STROBE Checklist. The STROBE (Strengthening the Reporting of Observational Stud-

ies in Epidemiology) checklist.

(DOCX)

S1 Table. The list of the clinical input variables with the abbreviation used in the analyses

and their meaning.

(XLSX)

S2 Table. Characteristics of the study in the non-diabetes, diabetes, and combined cohorts

separated for participants from IMI DIRECT who had MRI data versus those who did not

have MRI data. Values are median (interquartile range) unless otherwise specified. ALT, ala-

nine transaminase; AST, aspartate transaminase; BMI, body mass index; DBP, diastolic blood

pressure; HbA1c, hemoglobin A1C; SBP, systolic blood pressure.

(XLSX)

S3 Table. Variables used to construct each of the NAFLD prediction models developed

in IMI DIRECT. ALT, alanine transaminase; AST, aspartate transaminase; BMI, body mass

index; DBP, diastolic blood pressure; GGTP, gamma-glutamyl transpeptidase; Glucagonmin0,

fasting glucagon concentration; HbA1c, hemoglobin A1C; HDL, fasting high-density lipopro-

tein cholesterol; MMTT, mixed meal tolerance test; OGIS, oral glucose insulin sensitivity

index according to the method of Mari et al. [24]; OGTT, oral glucose tolerance test; PA_in-

tensity_mean, mean high-pass-filtered vector magnitude physical activity intensity; SBP, sys-

tolic blood pressure; TotGLP1min0, concentration of fasting total GLP-1 in plasma.

(XLSX)

S4 Table. UK Biobank field number with the description used in the analyses.

(XLSX)

S5 Table. Receiver operating characteristic area under the curve (ROCAUC) with 95%

confidence interval for clinical models 1–3, fatty liver index (FLI), hepatic steatosis index

(HSI), and NAFLD liver fat score (NAFLD-LFS) in the non-diabetes and diabetes cohorts

of the IMI DIRECT separately.

(XLSX)

S6 Table. Receiver operating characteristic area under the curve (ROCAUC) with 95% con-

fidence interval of each separate dataset obtained from random forest (RF), generalized

linear model (GLM), stochastic gradient boosting (GBM), support vector machine (SVM),
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and k-nearest neighbor (KNN) analyses in the cross-validated test data of the IMI DIRECT

combined cohort.

(XLSX)

S7 Table. The details of the LASSO (least absolute shrinkage and selection operator)–

selected features of the omics layers in separate sheets (genetic, transcriptomic, explor-

atory proteomic, targeted proteomic, targeted Metabolomic, and untargeted metabolo-

mic).

(XLSX)

S1 Text. QC of the transcriptomic, proteomic, and metabolomic variables in the IMI

DIRECT datasets.

(DOCX)

S1 TRIPOD Checklist. The TRIPOD (Transparent Reporting of a Multivariable Prediction

Model for Individual Prognosis or Diagnosis) checklist.

(DOCX)
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