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PREFACE

During the academic year 1973–74 I gave a series of lectures entitled “Högre

differentialkalkyl”. Lecture notes were published in Swedish with the assistance of

Tomas Claesson and Arne Enqvist. From the preface of those notes I quote in a

free translation: “The purpose of this series of lectures was to present basic facts on

differential geometry and differential calculus on manifolds, with some topological

applications, starting from elementary differential and integral calculus. Unfortu-

nately the time did not suffice to carry out the plans. For example, Riemannian

geometry and residue calculus in several complex variables are missing. Charac-

teristic classes of complex vector bundles are defined, but their properties are not

developed.”

These notes are essentially a translation with improved typography, a number

of minor corrections and a few added explanations and references. The missing

Riemannian geometry was discussed in a series of lectures during the academic

year 1976–77, and a revised set of lecture notes was produced in 1990. However,

residue calculus in several variables has been much advanced since 1973, and it is

not possible to cover this topic adequately here.

Lund in August 1994

Lars Hörmander

Typeset by AMS-TEX
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CHAPTER I

DIFFERENTIABLE FUNCTIONS

At first we shall only consider functions of one real variable but we allow them

to take their values in a Banach space. Thus let I ⊂ R be an open interval, V a

Banach space, and let f be a map I → V . Then f is called differentiable at x ∈ I
if there is an element f ′(x) ∈ V such that

(1.1) ‖(f(x+ h)− f(x))/h− f ′(x)‖ → 0 when h → 0.

Equivalently we can write (1.1) in the form

(1.1)′ ‖f(x+ h)− f(x)− f ′(x)h‖ = o(|h|), when h → 0.

If V = R
n and we write f = (f1, . . . , fn)), this is obviously equivalent to differen-

tiability of each component fj of f . The mean value theorem is replaced by the

following

Theorem 1.1. If f : I → V is differentiable at every point in the open interval

I then

(1.2) ‖f(x)− f(y)‖ ≤ |x− y| sup
z∈[x,y]

‖f ′(z)‖, x, y ∈ I.

Proof. Let M > supz∈[x,y] ‖f
′(z)‖, and set

E = {t; 0 ≤ t ≤ 1, ‖f(x+ t(y − x))− f(x)‖ ≤ Mt|y − x|}.

For a fixed s ∈ E with s < 1 we have if t > s and t− s is sufficiently small

‖f(x+t(y−x))−f(x)‖ ≤ ‖f(x+t(y−x))−f(x+s(y−x))‖+‖f(x+s(y−x))−f(x)‖

≤ M |(t− s)(y − x)|+Ms|y − x| = Mt|y − x|.

The set E is closed since f is continuous, and 0 ∈ E. Hence the supremum of E
belongs to E, and we have just proved that it is not in [0, 1), so 1 ∈ E, that is,

‖f(x)− f(y)‖ ≤ M |y − x|, if M > sup
[x,y]

‖f ′‖,

which proves (1.2).
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Corollary 1.2. Under the hypotheses in Theorem 1.1 we have

(1.2)′ ‖f(y)− f(x)− f ′(x)(y − x)‖ ≤ |y − x| sup
z∈[x,y]

‖f ′(z)− f ′(x)‖.

Proof. The function g(y) = f(y) − f(x) − f ′(x)(y − x) is differentiable with

g′(y) = f ′(y)− f ′(x), and (1.2)′ follows if (1.2) is applied to g.

We shall now generalize the notion of differentiability to functions defined in an

open subset Ω of another Banach space U , still with values in the Banach space V .

We shall denote by L(U, V ) the space of continuous linear maps U → V with the

standard norm

‖T‖ = sup
x∈U,‖x‖≤1

‖Tx‖, T ∈ L(U, V ).

Definition 1.3. A function f : Ω → V where V is a Banach space and Ω is an

open subset of another Banach space U is called differentiable at x ∈ Ω if there is

an element f ′(x) ∈ L(U, V ) such that

(1.1)′′ ‖f(x+ h)− f(x)− f ′(x)h‖ = o(‖h‖), when h → 0.

By C1(Ω, V ) we shall denote the set of continuously differentiable functions from Ω

to V , that is, the set of functions which are differentiable at every point in Ω and

for which Ω ∋ x 7→ f ′(x) ∈ L(U, V ) is continuous.

Exercise 1.4. Prove using Corollary 1.2 that if U = R
n and V = R

m then

f = (f1, . . . , fm) is in C1(Ω, V ) if and only if the partial derivatives ∂fj(x)/∂xk

exist for x ∈ Ω, j = 1, . . . , m, k = 1, . . . , n, and are continuous in Ω.

Exercise 1.5. Let K be a compact subset of Rn, let Ω be an open subset of

R
n×R

m, and let Ω ∋ (x, y) 7→ A(x, y) ∈ V be a continuous function such that the

differential A′
y(x, y) for fixed x exists for all (x, y) ∈ Ω and is a continuous function

in Ω. Prove that

F = {f ∈ C(K,Rm); (x, f(x)) ∈ Ω ∀x ∈ K}

is an open subset of C(K,Rm), and that F ∋ f 7→ A(·, f) belongs toC1(F,C(K, V )).

Here C(K, V ) denotes the space of continuous functions f : K → V with the

norm supx∈K ‖f(x)‖.

Exercise 1.6. Let Ω be the set of invertible operators in L(U, V ). Prove that

Ω is open, that Ω ∋ T 7→ T−1 is in C1(Ω,L(V, U)), and that the differential at T is

L(U, V ) ∋ S 7→ −T−1ST−1.

If f ∈ L(U, V ) then f is differentiable and f ′(x) = f for every x. Let us more

generally consider the space L(U1, . . . , Uk;V ) of continuous multilinear maps

U1 × · · · × Uk ∋ (x1, . . . , xk) 7→ f(x1, . . . , xk) ∈ V.

Continuity at the origin implies that

‖f‖ = sup
‖xj‖≤1,j=1,...,k

‖f(x1, . . . , xk)‖ < ∞,
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and we leave as an exercise to prove that conversely this implies continuity every-

where. With this norm L(U1, . . . , Uk;V ) is a Banach space. The map

U1 ⊕ · · · ⊕ Uk ∋ (x1, . . . , xk) 7→ f(x1, . . . , xk) ∈ V

is differentiable for every x, and the differential is

(U1 ⊕ · · · ⊕ Uk) ∋ (y1, . . . , yk)

7→ f(y1, x2, . . . , xk) + f(x1, y2, . . . , xk) + · · ·+ f(x1, x2, . . . , xk−1, yk).

The standard rules of differentiation are consequences of the preceding observations

and the following discussion of composite maps.

Thus let f : Ω → V where Ω is an open subset of U , assume that f(Ω) ⊂ Ω′

where Ω′ is open in V , and let g : Ω′ → W where W is a third Banach space. If

f is differentiable at a point x ∈ Ω and g is differentiable at y = f(x) ∈ Ω′, then

h = g ◦ f is differentiable at x and

(1.3) h′(x) = g′(y)f ′(x). (The chain rule.)

The proof is obvious:

h(x+ x′) = g(f(x+ x′)) = g(y + f(x+ x′)− f(x))

= g(y) + g′(y)(f(x+ x′)− f(x)) + o(‖f(x+ x′)− f(x)‖)

= g(y) + g′(y)f ′(x)x′ + o(‖x′‖).

From (1.3) it also follows that h ∈ C1 if g ∈ C1 and f ∈ C1.

The differential f ′ can be viewed as a map

Ω× U ∋ (x, ξ)
f ′

7→ (f(x), f ′(x)ξ) ∈ Ω′ × V,

which is linear along U .Then the chain rule states that if we have a commutative

diagram

Ω′

fրցg

Ω
h
→ W

where f, g ∈ C1, then h ∈ C1 and we obtain a new commutative diagram

Ω′ × V

f ′

ր ցg′

Ω× U
h′

→W ×W

3



Exercise 1.7. Prove that if f is differentiable at every point in the interval

I = [x, y] = {tx+ (1− t)y; 0 ≤ t ≤ 1}, then

‖f(x)− f(y)‖ ≤ ‖x− y‖ sup
I

‖f ′‖.

The notation df is often used instead of f ′, particularly when f is real valued.

If f is defined in an open subset of Rn and we write t =
∑n

1 tjej where ej is the

jth unit vector, we obtain

(df)(t) = (df)
(

n
∑

1

tjej

)

=

n
∑

1

tjdf(ej) =
n
∑

1

∂f/∂xjtj .

Since tj = (dxj)(t) we can write this equation in the form

df =
∑

∂f/∂xjdxj.

According to the chain rule this formula remains valid if xj are functions of y ∈ U
and both f and xj are regarded as functions in U so that both sides are linear

functions on U . This is called the invariance of the differential.

We can inductively define Ck(Ω, V ) when k is an integer > 1 as the set of all

f ∈ C1(Ω, V ) such that f ′ ∈ Ck−1(Ω,L(U, V )), and inductively we define

f (k) ∈ C(Ω,L(U,L(U, . . . ,L(U, V )))).

The vector space L(U,L(U, . . . ,L(U, V ))) is isomorphic as a Banach space to the

space L(U, . . . , U ;V ) of k linear maps from U to V , for we have quite generally

(1.5) L(U,L(U1, . . . , Uj;V )) = L(U, U1, . . . , Uj ;V ).

In fact, every element T in the left-hand side gives rise to a multilinear map

U × U1 × · · · × Uj ∋ (x, x1, . . . , xj) 7→ T (x)(x1, . . . , xj) ∈ V,

that is, an element in the right-hand side, and every such element can be obtained

in this way with T (x) defined by fixing the variable x ∈ U . It is obvious that

the identification (1.5) is linear, and it is an easy exercise to verify that it is norm

preserving.

We shall denote by Lk
s(U, V ) the symmetric k linear maps (forms) from U to

V such that the value at (x1, . . . , xk) does not change if the variables x1, . . . , xk

are permuted. The following theorem states that the order of differentiation is

irrelevant:

Theorem 1.8. If f ∈ Ck(Ω, V ) then f (k) is a symmetric multilinear form in

V .

Proof. It suffices to prove the statement when k = 2, for if a multilinear form

is invariant for interchange of two ajacent variables it is invariant for arbitrary

permutations. We shall prove that if f ∈ C2(Ω, V ) and x ∈ Ω, x1, x2 ∈ U , then

(1.6) f(x+x1+x2)− f(x+x1)− f(x+x2)+ f(x) = f ′′(x)(x2, x1)+ o(‖x1‖‖x2‖)

4



when x1 → 0 and x2 → 0. Since the left-hand side is symmetrical in x1 and x2 we

obtain by interchanging the vectors and subtracting that

f ′′(x)(x1, x2)− f ′′(x)(x2, x1) = o(‖x1‖‖x2‖).

Replacing x1 and x2 by εx1 and εx2 and dividing by ε2 we conclude when ε → +0

that f ′′(x)(x1, x2) = f ′′(x)(x2, x1).

It remains to verify (1.6). The left-hand side can be written g(x + x1) − g(x)
where g(x) = f(x+ x2)− f(x). According to Exercise 1.7 we have in analogy with

Corollary 1.2

‖g(x+ x1)− g(x)− g′(x)x1‖ ≤ ‖x1‖ sup
0≤t≤1

‖g′(x+ tx1)− g′(x)‖.

Since g′(x) = f ′(x+x2)−f ′(x) another application of Exercise 1.7 gives for 0 ≤ t ≤ 1

‖g′(x+ tx1)− f ′′(x)x2)‖ ≤ sup
0≤s≤1

‖f ′′(x+ tx1 + sx2)− f ′′(x)‖‖x2‖ = o(‖x2‖)

when x1 → 0 and x2 → 0. Hence

‖g(x+ x1)− g(x)− (f ′′(x)x2)x1‖ = o(‖x1‖‖x2‖),

which completes the proof.

From (1.3) it follows at once by induction that h = g ◦ f ∈ Ck if g, f ∈ Ck. In

fact, if k > 1 and this is proved with k replaced by k − 1, we have g′ ◦ f ∈ Ck−1

and f ′ ∈ Ck−1. Since the bilinear map L(V,W )× L(U, V ) → L(U,W ) defined by

multiplication of operators is continuous, hence infinitely differentiable, it follows

from (1.3) that h′ ∈ Ck−1, hence h ∈ Ck. It is clear that one can obtain a rather

complicated formula for h(k). If g′ = · · · = g(k−1) = 0 at y0 = f(x0) it simplifies to

(1.3)′ h(k)(x0)(t1, . . . , tk) = g(k)(f ′(x)t1, . . . , f
′(x)tk).

This is proved by entering y = f(x)− f(x0) in the Taylor expansion

g(y0 + y) = g(y0) + g′(y0)y +
1
2
g′′(y0)(y, y) + · · ·+ 1

k!
g(k)(y0)(y, . . . , y) + o(‖y‖k).

Notes. For a more detailed presentation of the topics discussed in this chapter

we refer to the following books.

References

J. Dieudonné, Foundations of modern analysis, Chap. VIII, Academic Press, 1969.

L. Hörmander, The analysis of linear partial differential operators, Chap. I, Springer Verlag, 1983.

S. Lang, Differentiable manifolds, Interscience Publ., 1962.
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CHAPTER II

INVERSE FUNCTIONS

The purpose of differential calculus is to reduce the study of general functions to

the much simpler case of linear functions. The inverse function theorem is a basic

result in this direction:

Theorem 2.1. Let f ∈ Ck(Ω, V ) where k ≥ 1 and Ω is open in U , and let

x0 ∈ Ω, f(x0) = y0. In order that there shall exist a function g ∈ Ck(Ω′, U) defined

in a neighborhood Ω′ of y0 such that

a) f ◦ g = Id in a neighborhood of y0; or
b) g ◦ f = Id in a neighborhood of x0; or
c) f ◦ g = Id in a neighborhood of y0 and g ◦ f = Id in a neighborhood of x0;

it is necessary and sufficient that there exists a linear transformation A ∈ L(V, U)

such that respectively

a) f ′(x0)A = IdV ;

b) Af ′(x0) = IdU ;

c) f ′(x0)A = IdV and Af ′(x0) = IdU .

The infinitesimal condition c) is by Banach’s theorem equivalent to bijectivity of

f ′(x0), and g is then uniquely determined in a neighborhood of x0. If V or U is of

finite dimension then a) (resp. b)) is equivalent to surjectivity (resp. injectivity) of

f ′(x0).

Here Id denotes the identity (in a space indicated by a subscript), and U, V are

Banach spaces. In case c) one calls f a local diffeomorphism.

Proof. The necessity is an immediate consequence of the chain rule (1.3). To

prove the sufficiency we first note that if f ◦ g1 = Id in a neighborhood of y0 and

g2 ◦ f = Id in a neighborhood of x0, then g1 = g2 ◦ f ◦ g1 = g2 in a neighborhood of

y0, which proves uniqueness in case c), so we only have to prove existence in cases

a) and b). Replacing f by f ◦A resp. A ◦ f we find that it suffices to consider the

case where U = V and f ′(x0) = Id. Choose δ > 0 so that

‖f ′(x)− Id ‖ < 1
2 when ‖x− x0‖ ≤ δ.

For ‖xj − x0‖ ≤ δ, j = 1, 2, it follows that

(2.1) ‖(f(x1)− f(x2))− (x1 − x2)‖ ≤ 1
2
‖x1 − x2‖.

(See Exercise 1.7.) Hence f is injective in {x ∈ U ; ‖x − x0‖ ≤ δ}. To solve the

equation f(x) = y when ‖y − y0‖ <
1
2
δ we use the iteration scheme

(2.2) xk = xk−1 + y − f(xk−1), k = 1, 2, . . .
6



as long as it leads to points with ‖xk−x0‖ ≤ δ. We have ‖x1−x0‖ = ‖y−y0‖ ≤ 1
2δ.

If k > 1 and ‖xj − x0‖ ≤ δ and ‖xj − xj−1‖ ≤ 2−jδ when 0 < j < k, then the

equation

xk − xk−1 = xk−1 − f(xk−1)− (xk−2 − f(xk−2))

implies the estimate

‖xk − xk−1‖ ≤ 1
2‖xk−1 − xk−2‖ ≤ 2−kδ

by (2.1), so we obtain using the triangle inequality

‖xk − x0‖ ≤ δ

k
∑

1

2−j < δ.

Hence xk is defined for every k and is a Cauchy sequence. If x is the limit then

‖x− x0‖ ≤ δ, and letting k → ∞ in (2.2) we obtain f(x) = y.
To prove that the inverse g(y) = x which is now defined when ‖y − y0‖ <

1
2δ is

in C1 we set

g(y) = x, g(y + k) = x+ h.

This means that f(x+ h) = y + k and that f(x) = y. Hence

k = f(x+ h)− f(x) = f ′(x)h+ o(‖h‖).

From (2.1) it follows that ‖k − h‖ ≤ 1
2
‖h‖, hence

1
2‖h‖ ≤ ‖k‖ ≤ 3

2‖h‖.

When x is sufficiently close to x0 we conclude that

h = f ′(x)−1k + o(‖k‖),

for f ′(x)−1 exists when ‖x− x0‖ ≤ δ since ‖f ′(x)− Id ‖ < 1
2 ; we have

f ′(x)−1 =

∞
∑

0

(Id−f ′(x))j .

Thus g′(y) exists and is equal to f ′(x)−1. If f ∈ Ck then f ′(x)−1 ∈ Ck−1 when

‖x − x0‖ ≤ δ (see Exercise 1.6), and since g′(y) = f ′(g(y))−1 we conclude by

induction that g ∈ Ck if f ∈ Ck.

If f ′(x0) : U → V is surjective and U is finite dimensional, then V is finite

dimensional. Whenever f ′(x0) is surjective and V is finite dimensional a right

inverse A of f ′(x0) is obtained by taking a basis v1, . . . , vn in V and defining

A
∑

tjvj =
∑

tjuj where f ′(x0)uj = vj . Similarly, if f ′(x0) is injective and V
is finite dimensional, then U is finite dimensional. Whenever U is finite dimen-

sional and f ′(x0) is injective then a left inverse of f ′(x0) is obtained by composing

the inverse of f ′(x0) : U → f ′(x0)U with a projection of V on the finite dimensional

subspace f ′(x0)U . This completes the proof.

7



There are other iteration methods than (2.2) which are more advantageous from

a numerical as well as a theoretical point of view, such as Newton’s method

(2.3) y − f(xk−1) = f ′(xk−1)(xk − xk−1).

Note that this method assumes differentiability at every point near x0 whereas

Picard’s method used in the proof of Theorem 2.1 only assumed that x 7→ f(x)−x
is a contraction in a neighborhood of x0. If f ∈ C2 in a neighborhood of x0 and

x1, x2 are sufficiently close to x0, then

‖f(x1)− f(x2)− f ′(x2)(x1 − x2)‖

≤ ‖x1 − x2‖ sup
0≤t≤1

‖f ′(x2 + t(x1 − x2))− f ′(x2)‖ ≤ C‖x1 − x2‖
2,

which implies that

‖y − f(xk)‖ ≤ C‖xk − xk−1‖
2.

Hence (2.3) with k replaced by k + 1 gives

‖xk+1 − xk‖ ≤ C′‖xk − xk−1‖
2.

If y is sufficiently close to y0 we obtain a sequence xk converging very rapidly to a

solution of the equation f(x) = y.
Note that the necessity in Theorem 2.1 only refers to the existence of a continu-

ously differentiable inverse. The function f(x) = x3, for example, is bijective on R

with inverse g(y) = y
1

3 although f ′(0) = 0. Of course, g is not differentiable at the

origin. We shall later on return to the question when the hypotheses are fulfilled

and what conclusions are otherwise possible. However, we shall first discuss some

examples starting with finite dimensional problems.

Definition 2.2. Let k be an integer ≥ 1. A subset F of Rn is called a Ck

manifold of dimension ν if for every x0 ∈ F there is a Ck map κ, called a local

parametrisation, from an open neighborhood ω ⊂ R
ν of a point t0 ∈ R

ν where

κ′(t0) is injective, such that every neighborhood ⊂ ω of t0 is mapped on a neigh-

borhood of x0 in F .

According to b) in Theorem 2.1 we can find a map g ∈ Ck from a neighborhood

of x0 in R
n to a neighborhood of t0 in R

ν such that g ◦ κ = Id in a neighborhood

of t0. Hence there is an open neighborhood ω1 ⊂ ω of t0 where κ is injective. If

κ1 is another local parametrisation, defined in a neighborhood of s0 ∈ R
ν with

κ1(s0) = x0, we can therefore write κ1 = κ ◦ ψ where ψ is continuous at s0 and

ψ(s0) = t0. Composition with g gives ψ = g ◦ κ1 ∈ Ck. In the same way we

find that ψ−1 ∈ Ck, so ψ is a local diffeomorphism. Conversely, if ψ is a local

diffeomorphism from a neighborhood of s0 to a neighborhood of t0, then κ ◦ ψ is

a local parametrisation of F ; thus local parametrisations can only differ by a local

diffeomorphism. Since the equation κ ◦ ψ = κ1 implies κ′1(s0) = κ′(ψ(s0))ψ
′(s0)

and ψ′(s0) is bijective, it follows that the vector spaces κ′1(s0)R
ν and κ′(t0)R

ν

are equal. This subspace of Rn of dimension ν is called the tangent plane of F at

x0 = κ(t0).
If h is a Ck map from a neighborhood of x0 with values in R

ν and h′(x0)κ
′(t0)

is bijective, then ψ = h ◦ κ is a Ck local diffeomorphism and κ̃ = κ ◦ ψ−1 becomes
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a local parametrisation with h ◦ κ̃ = Id. In particular, we can always choose h as

the projection

R
n ∋ (x1, . . . , xn) 7→ (x1, . . . , xν) ∈ R

ν

if the coordinates have been labelled so that det(∂κj/∂ti)j,i=1,...,ν 6= 0 at t0. Then
κ̃ represents F in a neighborhood of x0 as

xj = ϕj(x1, . . . , xν), j = ν + 1, . . . , n,

where ϕj ∈ Ck. Thus F can be defined in a neighborhood of x0 as the inverse

image of 0 under the map

R
n ∋ (x1, . . . , xn) 7→ (xν+1 − ϕν+1(x1, . . . , xν), . . . , xn − ϕn(x1, . . . , xν)) ∈ R

n−ν ,

which has surjective differential at x0. Conversely, we have:

Theorem 2.3. Let f be a Ck function, k ≥ 1, defined in a neighborhood of x0 ∈

R
n with values in R

µ such that f ′(x0) is surjective. Then {x ∈ Ω; f(x) = f(x0)}
is a Ck manifold of dimension n− µ if Ω is a sufficiently small open neighborhood

of x0.

Proof. Set ν = n − µ and choose a Ck map ψ : Rn → R
ν , for example the

projection on a suitable coordinate plane, such that the linear map f ′(x0)⊕ψ
′(x0) :

R
n → R

n is bijective. From c) in Theorem 2.1 it follows that the map Ω ∋ x 7→

(f(x), ψ(x)) ∈ R
n has a Ck inverse F , defined in a neighborhood of (f(x0), ψ(x0))

if Ω is small enough. Then t 7→ F (f(x0), t) gives a local parametrisation.

Remark. The proof also shows that if f1, . . . , fµ ∈ Ck have linearly independent

differentials at x0, then we can choose fµ+1, . . . , fn ∈ Ck so that f = (f1, . . . , fn)
is a local diffeomorphism at x0.

The hypothesis in Theorem 2.3 that f ′(x0) is surjective implies that the rank

of f ′(x) is equal to µ for every x in a neighborhood of x0. Hence the following

theorem contains Theorem 2.3.

Theorem 2.4. Let f be a Ck function from a neighborhood of x0 ∈ R
n to R

µ

such that the rank of f ′(x) is equal to r for every x in a neighborhood of x0. Then

it follows that M = {x ∈ Ω; f(x) = f(x0)} is a manifold of dimension n− r if Ω is

a sufficiently small neighborhood of x0, and f(M) is a manifold of dimension r.

Proof. We can label the coordinates so that f = (f1, . . . , fµ) and f1, . . . , fr
have linearly independent differentials at x0. By the remark after Theorem 2.3 we

can then choose gr+1, . . . , gn ∈ Ck so that

x 7→ (f1(x), . . . , fr(x), gr+1(x), . . . , gn(x))

is a local diffeomorphism at x0. Since the statement of the theorem is invariant

under local diffeomorphisms we can compose with the inverse which reduces the

proof to the case where

f1(x) = x1, . . . , fr(x) = xr.

Since ∂f(x)/∂x has rank r it follows that ∂fk(x)/∂xj = 0 in a ball with center

at x0 if j > r, and we conclude that fk(x) = fk(x1, . . . , xr) there. Hence the

equation f(x) = f(x0) is there equivalent to xj = x0j for j = 1, . . . , r, a linear

manifold of codimension r. The range of f is defined by xk = fk(x1, . . . , xr) when
k = r + 1, . . . , µ, which is a manifold of dimension r.

The statement and proof of Theorem 2.3 are very close to the following:
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Theorem 2.5 (The implicit function theorem). Let f be a Ck function,

k ≥ 1, with values in R
p defined in a neighborhood of (x0, y0) ∈ R

n ⊕ R
m, such

that f(x0, y0) = 0 and f ′
y(x0, y0) is surjective. Here f ′

y denotes the differential of

y → f(x0, y). Then there is a Ck function ϕ from a neighborhood of x0 to R
m such

that ϕ(x0) = y0 and f(x, ϕ(x)) = 0. If f ′
y(x0, y0) is bijective, then ϕ is uniquely

determined and the equation f(x, y) = 0 is equivalent to y = ϕ(x) when (x, y) is

sufficiently close to (x0, y0).

Proof. The map F (x, y) = (x, f(x, y)) from a neighborhood of (x0, y0) to

R
n ⊕ R

p has surjective (resp. bijective) differential at (x0, y0). Hence it follows

from Theorem 2.1 that there is a Ck map G from a neighborhood of (x0, 0) ∈

R
n ⊕ R

p to a neighborhood of (x0, y0) such that F ◦ G = Id near (x0, 0). Thus

G(x, z) = (x, g(x, z)) and f(x, g(x, z)) = z, so ϕ(x) = g(x, 0) satisfies the condi-

tions f(x, ϕ(x)) = 0 and ϕ(x0) = g(x0, 0) = y0. In the bijective case G is also a left

inverse, so g(x, f(x, y)) = y for (x, y) close to (x0, y0). If f(x, y) = 0 this implies

that y = g(x, 0) = ϕ(x), which completes the proof.

Exercise 2.6. Prove that if f ∈ Ck(Ω, V ) where k ≥ 1, Ω is a neighborhood

of x0 in a Banach space U and V is another Banach space, and if condition a)

in Theorem 2.1 is fulfilled, then there is a Ck map from a neighborhood of 0 in

Ker f ′(x0) to a neighborhood of x0 satisfying condition b) in Theorem 2.1 and with

range equal to {x; f(x) = f(x0)} in a neighborhood of x0.

We shall now study maps f at points where the hypotheses of Theorem 2.3 are

not fulfilled.

Definition 2.7. If f ∈ C1(Ω,Rm) where Ω is a neighborhood of x ∈ R
n, then

x is called a critical point and f(x) is called a critical value if f ′(x) is not surjective.
If y is not a critical value then y is called a regular value.

The following theorem describes the structure of the simplest kind of critical

point for a scalar valued function:

Theorem 2.8 (Morse). Let f ∈ Ck(Ω,R), k > 2, where Ω is a neighborhood

of x0 ∈ R
n, and assume that f ′(x0) = 0 but det f ′′(x0) 6= 0. Then there is a local

Ck−2 diffeomorphism of a neighborhood of 0 ∈ R
n to a neighborhood of x0 such

that ψ(0) = x0, ψ
′(0) = Id and

f ◦ ψ(t) = f(x0) +
1
2
f ′′(x0)(t, t).

Proof. By Taylor’s formula we have

f(x0 + x) = f(x0) +

∫ 1

0

(1− s)f ′′(x0 + sx)(x, x) ds = f(x0) +
1
2 〈B(x)x, x〉,

where B is the symmetric matrix

B(x) = 2

∫ 1

0

(1− s)f ′′(x0 + sx) ds ∈ Ck−2.

Set ψ(t) = x0 + R(t)t where R is a matrix to be determined so that R(0) = Id,

R ∈ Ck−2, and

R∗B(Rt)R = B(0) = f ′′(x0).
10



For t = 0 and R = Id, the differential of the map R 7→ R∗B(Rt)R is equal to

R 7→ R∗B(0) +B(0)R.

This is a surjective map from the linear space of n×n matrices to the linear space of

symmetric n×n matrices, for if C is a symmetric matrix we have R∗B(0)+B(0)R =

C if R = 1
2
B(0)−1C. The existence of the function R(t) is now a consequence of

the implicit function theorem applied to the function F (t, R) = R∗B(Rt)R−B(0)

with values in the space of symmetric n× n matrices. The proof is complete.

Exercise 2.9. Prove that if f ∈ Ck(Ω,R), k > 2, where Ω is a neighbor-

hood of x0 in R
n and f ′(x0) = 0, then there is a Ck−2 diffeomorphism ψ from a

neighborhood of 0 to x0 such that

f ◦ ψ(t) = A(t′) + g(t′′)

where A is a non-degenerate quadratic form in t′ = (t1, . . . , tj) and g is a Ck

function of t′′ = (tj+1, . . . , tn) with g
′(0) = g′′(0) = 0.

We shall now give a result on existence of solutions of a system of nonlinear

equations where the implicit function theorem is not immediately applicable since

second derivatives play an important role.

Theorem 2.10. Let f ∈ Ck(Ω,Rm), where k > 2 and Ω is a neighborhood of

x0 in R
n. For the existence of a function x(t) from R to R

n with x(0) = x0,
x′(0) = X and f(x(t)) = 0 it is then necessary that

(2.4) f(x0) = 0, f ′(x0)X = 0, f ′′(x0)(X,X) ∈ Im f ′(x0),

and sufficient that in addition

(2.5) Ker f ′(x0) ∋ Y 7→ qf ′′(x0)(X, Y ) ∈ Coker f ′(x0)

is surjective, if q is the natural map from R
m to Coker f ′(x0).

Proof. The differential of q◦f at x0 is equal to 0, so the comments at the end of

Chapter I prove that the conditions (2.4), (2.5) are invariant under composition with

a diffeomorphism in R
n. The necessity of (2.4) follows at once by differentiation

of the equation f(x(t)) = 0. To prove the sufficiency of (2.4), (2.5) we can by

composition with a diffeomorphism inR
n and a linear transformation inR

m achieve

that with a splitting of the coordinates x = (y, z) in R
n we have x0 = (0, 0) and

f(x) = (y, g(y, z)) where g′(0, 0) = 0. Then the condition (2.4) means that

g(0, 0) = 0, X = (0, Z), g′′zz(0, 0)(Z, Z) = 0,

and (2.5) means that ˜Z 7→ g′′zz(0, 0)(Z,
˜Z) is surjective. The equation f(x(t)) =

0 means that x(t) = (0, z(t)) and that g(0, z(t)) = 0. To solve the equation

g(0, z(t)) = 0 we set z(t) = tw(t) Then the condition x′(0) = X becomes w(0) = Z.
We have

g(0, tw)/t2 = h(w, t)

where h ∈ Ck−2 by Taylor’s formula (see the proof of Theorem 2.8), and

h(w, 0) = 1
2g

′′
zz(0, 0)(w,w).
11



The differential at Z is w 7→ g′′zz(0, 0)(Z,w) which is surjective. For the equation

h(w, t) = 0 the hypotheses of the implicit function theorem are thus fulfilled at

(Z, 0), which completes the proof.

Remark. By (2.4) X ∈ Ker f ′(x0), and in (2.5) X is mapped to 0 in

Coker f ′(x0), by the last condition (2.4). If ν = dimKer f ′(x0), thus m− (n− ν) =
dimCoker f ′(x0), it follows that (2.5) requires that m−(n−ν) < ν, that is, m < n.
When examining (2.5) one can also restrict Y to a hyperplane transversal to X .

This observation is useful in the following exercise.

Exercise 2.11. Let F be a C∞ function defined in a neighborhood of (x0, y0) ∈
R ⊕ R

m. Assume that F (x0, y0) = 0, that Z ∈ R
m satisfies the conditions

F ′
x(x0, y0) + F ′

y(x0, y0)Z = 0 and

F ′′
xx(x0, y0) + 2F ′′

xy(x0, y0)Z + F ′′
yy(x0, y0)(Z, Z) ∈ ImF ′

y(x0, y0),

and that F ′′
xy(x0, y0) + F ′′

yy(x0, y0)Z induces a bijection KerF ′
y(x0, y0) →

CokerF ′
y(x0, y0). Prove that the equation F (x, y) = 0 has a C∞ solution y(x)

with y(x0) = y0 and y′(x0) = Z.

Exercise 2.12. Let f ∈ Ck(Ω,Rm) where k > 2 and Ω is a neighborhood of

x0 ∈ R
m+1. Assume that f(x0) = 0, that dimKer f ′(x0) = 2, and that the map

Ker f ′(x0) ∋ X 7→ qf ′′(x0)(X,X),

where q is the natural map R
m → Coker f ′(x0), is an indefinite quadratic form.

(Note that dimCoker f ′(x0) = m − rank f ′(x0) = m − (m + 1 − 2) = 1.) Then

there are precisely two Ck−2 curves t 7→ xj(t) with xj(0) = x0 and f(xj(t)) = 0

which together give all solutions of the equation f(x) = 0 in a neighborhood of x0.
(Bifurcations of the solution x0.)

Example 2.13. Consider the nonlinear eigenvalue problem to find u ∈ C2([0, π])
with

u′′ + λu+K(λ, u, u′) = 0, u(0) = u(π) = 0,

where K ∈ C3 in a neighborhood of R × {0} × {0} and K(λ, ξ, η) = O(ξ2 + η2)
when (ξ, η) → 0. The Cauchy problem with initial data u(0) = 0, u′(0) = h has

for sufficiently small h a unique solution u(x, λ, h) in C3, and if we set f(λ, h) =
u(π, λ, h) the eigenvalue problem is equivalent to f(λ, h) = 0. By the uniqueness

theorem for the Cauchy problem we have f(λ, 0) ≡ 0, and ∂f(λ, 0)/∂h = v(π, λ)
where v(x, λ) = ∂u(x, λ, 0)/∂h satisfies

v′′ + λv = 0, v(0) = 0, v′(0) = 1.

Hence v(x, λ) = (sin
√
λx)/

√
λ and ∂f(λ, 0)/∂h = sin(

√
λπ)/

√
λ = 0 if and only

if λ = n2 where n is a positive integer. In that case ∂2f(λ, 0)/∂λ2 = 0 and

∂2f(λ, 0)/∂h∂λ = π(−1)n/2λ 6= 0, so the hypotheses in Exercise 2.12 are fulfilled.

Near h = 0 the solutions of the equation f(λ, h) = 0 therefore consist of the line

h = 0 together with a C1 curve intersecting the line transversally at (n2, 0), for
every positive integer n. Thus we have determined all solutions close to the zero

solution.

As a simple example of the infinite dimensional case of Theorem 2.1 we shall now

prove the existence theorem for ordinary differential equations assuming continuous

differentiability instead of just a Lipschitz condition.
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Theorem 2.14. Let A(x, y) be a function with values in R
m defined in a neigh-

borhood of (x0, y0) ∈ R ⊕R
m, such that A(x, y) is differentiable with respect to y

for fixed x and A and A′
y are continuous. For y sufficiently close to y0 the Cauchy

problem

(2.6) df(x)/dx = A(x, f(x)), f(x0) = y,

has one and only one solution in a neighborhood of x0.

Proof. If we make the change of variables x = x0 + εt and set f(x) = g(t), the
equations become

dg(t)/dt = εA(x0 + εt, g(t)), g(0) = y.

We shall prove that for sufficiently small ε there is a unique solution g ∈ C1(I,Rm)

where I = [−1, 1]. To do so we consider the map

C1(I,Rm)⊕R ∋ (g, ε) 7→ (dg/dt− εA(x0 + ε·, g), g(0), ε) ∈ C0(I,Rm)⊕R
m ⊕R.

It maps (g, ε) = (y0, 0) to (0, y0, 0), and the differential at (y0, 0) is (see Exercise

1.5)

(g, ε) 7→ (dg/dt− εA(x0, y0), g(0), ε).

It is bijective, for dg/dt− εA(x0, y0) = h ∈ C0 means that

g(t) = g(0) + εtA(x0, y0) +

∫ t

0

h(s) ds ∈ C1.

Hence the map has a C1 inverse near (0, y0, 0), and it maps (0, y, ε) to the unique

solution of the Cauchy problem.

From Theorem 2.14 it follows that (2.6) has a solution f with |f(x) − y0| ≤
M |x − x0|, |x − x0| ≤ a, provided that A(x, y) and ∂A(x, y)/∂y are continuous

when |x− x0| ≤ a and |y − y0| ≤ b, that |A(x, y)| ≤M , and that b ≥Ma. In fact,

(2.6) implies that |f ′(x)| ≤M so |f(x)− y0| ≤M |x− x0| for |x− x0| ≤ α if α is so

small that the solution exists then. Let a0 be the supremum of such α. Then f is

continuous when |x− x0| ≤ a0, hence f is continuously differentiable and satisfies

(2.6) then. If a0 < a then Theorem 2.14 proves that a0 is not maximal, so a0 = a.
— The differentiability hypothesis in Theorem 2.14 can be removed without loss of

the existence statement:

Theorem 2.15 (Peano). If A is continuous and |A| ≤M in R = {(x, y); |x−
x0| ≤ a, |y − y0| ≤ b}, and b ≥ Ma, then the equation (2.6) has a solution when

|x− x0| ≤ a with |f(x)− y0| ≤M |x− x0|.

Proof. Decreasing a slightly we may assume that b > Ma. The regularisation

Aε(x, y) =

∫ 1

0

A(x, y + εt) dt =

∫ ε

0

A(x, y + t) dt/ε,

|x− x0| ≤ a, |y − y0| ≤ b− ε, ε > 0,

has a continuous derivative ∂Aε(x, y)/∂y = A(x, y+ ε)/ε−Aε(x, y)/ε with respect

to y. When ε is so small thatMa ≤ b−ε, we conclude that there exists a solution fε
of the equation f ′

ε(x) = Aε(x, fε(x)) when |x−x0| ≤ a, with |fε(x)−y0| ≤M |x−x0|.
Since |fε(x) − fε(x

′)| ≤ M |x− x′| we can choose a sequence εj → 0 such that fεj
converges uniformly to a continuous function f(x). Since Aε → A uniformly it

follows that f ′
εj
(x) → A(x, f(x)) uniformly, so f ∈ C1 and (2.6) holds.
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Exercise 2.16. Prove that the solution in Theorem 2.15 is unique if A is Lip-

schitz continuous with respect to y.

Notes. Theorem 2.10 can be found in slightly less generality in [F], where also

applications to the existence of periodic solutions of differential equations can be

found. Exercise 2.12 can be extended to the infinite dimensional case; the result

is called bifurcation theory. (See e.g. [CR].) The rapid convergence of the Newton

method (2.3) can be used to give important improvements of the implicit function

theorem where the hypotheses on the inverse of f ′ are weakened (see [M], [S] and

[H]). One can also consult [S] for the material in the following two chapters.
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CHAPTER III

THE MORSE-SARD THEOREM

The usefulness of the implicit function theorem is due to the fact that the hy-
potheses it makes on the differential are “usually” satisfied:

Theorem 3.1 (Morse-Sard). Let f ∈ C∞(Ω,Rm) where Ω is an open set in
Rn. Then the set of critical values assumed by f in Ω has Lebesgue measure 0 in
Rm.

Remark 1. A somewhat more complicated proof shows that it suffices to assume
that f ∈ Ck(Ω,Rm) where k > max(0, n−m), and an example constructed in [W]
proves that this smoothness assumption cannot be weakened.

Remark 2. If K is a compact subset of Ω, then the critical points in K form
a compact set. It is mapped by f on a compact set, with Lebesgue measure 0 by
Theorem 3.1. Thus it has even Jordan measure 0. The critical set is a countable
union of such compact sets of measure 0, hence of the first category. However, it is
convenient in the proof to use Lebesgue measure.

Proof of Theorem 3.1. The proof is by induction so we assume that the
theorem has already been proved with n replaced by n− 1 if n > 1. We set

Cj = {x ∈ Ω; f ′(x) = 0, . . . , f (j)(x) = 0}, j = 1, 2, . . . ,

and prove first that

(3.1) m(f(Cj)) = 0 if (j + 1)m > n.

It is sufficient to prove that m(f(K∩Cj)) = 0 when K is a compact cube contained
in Ω, with side A, say. If we divide the edges of the cube in ν equal parts we obtain
νn cubes with side ε = A/ν. Let I1, . . . , IN denote the cubes so obtained which
intersect Cj , and choose xk ∈ Ik ∩Cj . By Taylor’s formula and the definition of Cj

∥f(x+ xk)− f(xk)∥ ≤ B∥x∥j+1 ≤ Bεj+1, if x+ xk ∈ Ik,

and when (j + 1)m > n this implies that

m(f(Ik)) ≤ Bmε(j+1)m ≤ Cεn+1 = Cm(Ik)ε.

Hence

m(f(K ∩ Cj)) ≤
N∑
1

m(f(Ik)) ≤ C

N∑
1

m(Ik)ε ≤ CAnε,

Typeset by AMS-TEX
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which proves that m(f(K ∩ Cj)) = 0.
The next step is to note that Ek = Ck \ Ck+1 is contained in a manifold S of

dimension n − 1 in a neighborhood V of any point in x0 ∈ Ek, for there is some
component g of f (k) with g′(x0) ̸= 0. If f has a critical point x ∈ S then x is also
a critical point of the restriction of f to S, which has therefore at least as many
critical values. If the theorem is known with n replaced by n− 1 it follows that

(3.2) m(f(Ck \ Ck+1)) = 0,

for we can cover Ek with countably many neighborhoods V . When n = 1 then S
is discrete and the same conclusion is obvious.

It remains to prove that m(f(C \ C1)) = 0 if C is the set of all critical points.
By the chain rule the critical set is not changed if we replace f by f ◦ ψ where
ψ is a local diffeomorphism; as above we can work locally. At a point in C \ C1

where ∂f1/∂x1 ̸= 0, for example, we can choose ψ as the inverse of the map
x 7→ (f1(x), x2, . . . , xn) and obtain that f ◦ ψ(t) = (t1, g(t)) where g takes values
in Rm−1. If n = 1 and m = 1 then f ◦ ψ(t) = t1 has no critical point, and when
n = 1 and m > 1 then the range of f ◦ ψ(t) = (t1, g(t)) is a curve, of measure
0 in Rm. We may therefore assume that n > 1. It is then clear that f ◦ ψ has
a critical point at t = (t1, t

′) if and only if t′ 7→ g(t1, t
′) ∈ Rm−1 has a critical

point. For fixed t1 the critical values of f ◦ψ are therefore a set of measure 0 in the
plane {t1}×Rm−1. The set of critical values is a countable union of compact sets,
hence Lebesgue measurable, so it follows from the Lebesgue-Fubini theorem that
m(f((C \ C1) ∩ V )) = 0 for some neighborhood V of an arbitrary point in C \ C1.
The proof is complete.

Exercise 3.2. Prove that if f ∈ C∞(Ω,R) where Ω is an open subset of Rn,
then the critical points of fh(x) = f(x) − ⟨x, h⟩ are non-degenerate for almost all
h ∈ Rn.

Notes. The original proofs of the Morse-Sard theorem, with minimal smooth-
ness assumptions, can be found in [M] and [S]. A somewhat different proof is given
in [St].
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CHAPTER IV

THE DEGREE OF MAPPING

In this chapter we shall give sufficient conditions for solvability of an equation

f(x) = y where f is a continuous map between two Banach spaces. The method

depends on approximation by infinitely differentiable functions between finite di-

mensional spaces where the Morse-Sard theorem will allow us to apply the implicit

function theorem.

Let f ∈ C∞(Rn,Rn) and let Ω be an open, bounded subset of Rn, with closure

Ω and boundary ∂Ω. By the Morse-Sard theorem

C = {f(x); x ∈ Ω, det f ′(x) = 0}

is a closed null set. If y /∈ C ∪ f(∂Ω), then the equation f(x) = y can only have a

finite number of solutions x ∈ Ω, and det f ′(x) 6= 0 for each of them. In fact, by the

inverse function theorem the solutions in Ω are isolated and there are no solutions

in ∂Ω by assumption. We can therefore count the number of solutions with sign

(4.1) d(f,Ω, y) =
∑

f(x)=y,x∈Ω

sign det f ′(x), y /∈ C ∪ f(∂Ω).

The implicit function theorem implies also that d(f,Ω, y) is constant in a neigh-

borhood of any point /∈ C ∪ f(∂Ω), hence it is constant in any component of the

complement of C ∪ f(∂Ω). To be able to extend the definition to more general f
and y we must prove that this number is stable under perturbations of f and y.
The following lemma is the most important step:

Lemma 4.1. Let F ∈ C∞(Rn × I,Rn) where I is an open interval ⊂ R con-

taining [0, 1], and set fj(x) = F (x, j), j = 0, 1. If y /∈ F (∂Ω × [0, 1]) and y is a

regular value for f0 and for f1, then

(4.2) d(f0,Ω, y) = d(f1,Ω, y).

Proof. Without changing either side of (4.2) we can replace y by a point nearby

which is not in F (∂Ω× [0, 1]) and is not a critical value for F in Ω× [0, 1]. Then

E = {(x, t); 0 ≤ t ≤ 1, x ∈ Ω, F (x, t) = y}

is a C∞ manifold of dimension 1 which is a subset of Ω × [0, 1]. If s is a local

parameter on E then

∂Fj

∂t

dt

ds
+

n
∑

k=1

∂Fj

∂xk

dxk
ds

= 0, j = 1, . . . , n,
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so Cramer’s rule gives that (dt/ds, dx/ds) = c(s)G(s) where c(s) 6= 0 and

G0 = detF ′
x,

Gj = − det(∂F/∂x1, . . . , ∂F/∂xj−1, ∂F/∂t, ∂F/∂xj+1, . . . , ∂F/∂xn), j = 1, . . . , n.

Replacing s by a primitive function of c(s) we can make the constant factor equal

to 1, which determines the parameter up to an additive constant. It is now easy to

see that every component of E is either

a) a closed curve on which 0 < t < 1; or

b) an arc which begins when t = 0 (resp. t = 1) and ends when t = 1 (resp.

t = 0); or

c) an arc which begins and ends when t = 0 (resp. t = 1).

In fact, E is the union of finitely many arcs which do not contain more than one

point where t = 0 or t = 1 since y is not a critical value for f0 or f1. On two

overlapping arcs one can make the parameters agree and then join them. After a

finite number of such steps one obtains either a closed curve (case a)) or an arc

with end points where t = 0 or t = 1, that is, cases b) or c). The details are left

for the reader. (See also [M]; another more analytical proof of Lemma 4.1 will be

given in Chapter VIII.) Now recall that dt/ds = detF ′
x on the curves. In case b) it

follows that detF ′
x has the same sign at both end points of the arc, and in case c) it

follows that the signs are opposite. In the sums defining d(f0,Ω, y) resp. d(f1,Ω, y)
the contributions from points joined by arcs of the type c) must therefore cancel,

and the remaining terms are then equal when paired by the arcs of type b). This

proves the lemma.

Example. Let Ω = (−2, 2) and F (x, t) = x2 + 1 − 2t, y = 0. The equation

F (x, t) = 0 defines a parabola connecting the solutions x = ±1 of the equation

F (x, 1) = 0, and it is clear that these have opposite signs.

We can now prove that d(f,Ω, y) has the same value for all regular points y
in the same component of ∁f(∂Ω). To do so we choose ε > 0 smaller than the

distance from y to f(∂Ω) and let y′ be a regular value of f with |y − y′| < ε.
Then the hypotheses of Lemma 4.1 are satisfied by F (x, t) = f(x) − t(y′ − y), for
F (x, 1) = y means precisely that f(x) = y′, which by hypothesis is a regular value

for f = F (·, 1). Hence d(f,Ω, y) = d(f,Ω, y′). We can join any two regular points

in the same component of ∁f(∂Ω) by a polygon such that the vertices are regular

values of f and the edges are smaller than the distance from the polygon to f(∂Ω).
In fact, if we choose a polygon with these properties apart from the regularity of

the vertices it follows from the Morse-Sard theorem that we can replace the vertices

by regular values which are arbitrarily close.

Thus we can extend the definition of d(f,Ω, y) uniquely to all y ∈ ∁f(∂Ω) so

that the value is constant in each component. We note the following important

properties of d:

(i) d(f,Ω, y) is defined in ∁f(∂Ω) and is equal to an integer d(f,Ω, U) in every

component U of ∁f(∂Ω).
(ii) d(f,Ω, y) 6= 0 implies that y = f(x) for some x ∈ Ω.

(iii) If F ∈ C∞(Rn × I,Rn) for a neighborhood of I = [0, 1] and y /∈ F (∂Ω ×

[0, 1]) then d(F (·, t),Ω, y) does not depend on t ∈ [0, 1].
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Using the stability property (iii) we shall now weaken the hypothesis that f ∈ C∞

to just continuity. More precisely, we now assume that f ∈ C(Ω,Rn) where Ω as

before is open and bounded. For a given ε > 0 we can choose a finite open covering

O1, . . . , ON of Ω such that ‖f(x) − f(x′)‖ < ε if x, x′ ∈ Oi ∩ Ω for some i. Let

ϕ1, . . . , ϕN be a corresponding partition of unity, that is, ϕj ∈ C∞
0 (Oj), ϕj ≥ 0,

∑N

1 ϕj ≤ 1 with equality in Ω. Choose xj ∈ Ω ∩ Oj and set f1 =
∑N

1 ϕjf(xj).
Then f1 ∈ C∞(Rn,Rn) and

(4.3) ‖f(x)− f1(x)‖ < ε, x ∈ Ω,

for f(x) − f1(x) =
∑N

1 ϕj(x)(f(x) − f(xj)). If the distance from y to f(∂Ω) is

larger than ε then y /∈ f1(∂Ω), and we set

(4.4) D(f,Ω, y) = d(f1,Ω, y).

This definition is independent of the choice of f1, for if (4.3) is fulfilled with f1
replaced by f0 ∈ C∞(Rn,Rn), then (4.3) is satisfied by tf1 + (1 − t)f0 when

0 ≤ t ≤ 1, so it follows from (iii) that

d(f0,Ω, y) = d(f1,Ω, y).

When ε→ 0 it follows that the properties (i)–(iii) are inherited by D, so we obtain:

Theorem 4.2. For every f ∈ C(Ω,Rn) an integer D(f,Ω, y), called the degree

of f in Ω at y, is uniquely defined when y /∈ f(∂Ω) by (4.4) where f1 ∈ C∞(Rn,Rn)

satisfies (4.3) with ε smaller than the distance from y to f(∂Ω). We have

(i) D(f,Ω, y) is a fixed integer D(f,Ω, U) in every component U of ∁f(∂Ω).
(ii) D(f,Ω, y) 6= 0 implies that y = f(x) for some x ∈ Ω.

(iii) If F ∈ C(Ω × [0, 1],Rn) and y /∈ F (∂Ω × [0, 1]) then D(F (·, t),Ω, y) is

independent of t ∈ [0, 1].

Note in particular that (iii) implies that D(f,Ω, y) = D(g,Ω, y) if f = g on ∂Ω,
for we can then take F (x, t) = tf(x) + (1− t)g(x) which is independent of t when
x ∈ ∂Ω.

Corollary 4.3. If f ∈ C(Ω,Rn) and f(x) = x when x ∈ ∂Ω, then Ω ⊂ f(Ω).
More generally, if g : R

n → R
n is a homeomorphism and f(x) = g(x) when

x ∈ ∂Ω, then g(Ω) ⊂ f(Ω).

Proof. If f(x) = x when x ∈ ∂Ω then D(f,Ω, y) is defined when y /∈ ∂Ω and is

not changed if f is replaced by the identity map, so D(f,Ω, y) = 1 if y ∈ Ω. Thus

the first statement follows from (ii) in Theorem 4.2. To prove the second statement

we note that g−1 ◦ f : Ω → R
n is equal to the identity on ∂Ω, so Ω ⊂ g−1 ◦ f(Ω)

by the first statement, hence g(Ω) ⊂ f(Ω).

Corollary 4.4 (The Brouwer fixed point theorem). If B is a compact

convex subset of Rn, then every continuous map f : B → B has a fixed point, that

is, f(x) = x for some x ∈ B.

Proof. First assume that B is the Euclidean unit ball. If f has no fixed point

we define g(x) = x when x ∈ ∂B and if x ∈ B \∂B we let g(x) be the intersection of

∂B with the line through x and f(x) such that x lies between g(x) and f(x). This
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makes g a continuous map from B to ∂B which leaves every point on ∂B fixed,

which contradicts Corollary 4.3 and proves that f must have a fixed point. For a

general B we can assume that 0 is an interior point in B and define ϕ : Rn → R
n

so that ϕ(x) = q(x)x with q(tx) = q(x) for t > 0 and q(x) = 1/‖x‖ when x ∈ ∂B,

where ‖ · ‖ is the Euclidean norm. Then ϕ is a homeomorphism of B on the

Euclidean unit ball, so ϕ ◦ f ◦ ϕ−1 must have a fixed point in the unit ball, which

means that f has a fixed point in B.

Note that Brower’s fixed point theorem is a natural extension of the elementary

fact that a continuous real valued function in an interval [a, b] assumes all values in

[f(a), f(b)]. This follows from the case where a = f(a) and b = f(b) which is the

special case of Corollary 4.4 with n = 1. (It is an instructive exercise to determine

D(f, (a, b), y) when y /∈ {a, b}.)
Brouwer’s fixed point theorem states that the graph of f must intersect the

diagonal in B ×B. The result remains valid for more general sets than graphs:

Corollary 4.4′ (Kakutani’s fixed point theorem. Let B be a compact

convex subset of Rn, and let F ⊂ B × B be a compact set such that F (x) = {y ∈

B; (x, y) ∈ F} is convex and not empty for every x ∈ B. Then there is a point

x ∈ B with x ∈ F (x), that is, (x, x) ∈ F .

Proof. We may assume that B has interior points. For any ε > 0 we can choose

a partition of unity {ϕε
j}, j = 1, . . . , Nε, in B such that the diameter of suppϕε

j is

smaller than ε for every j. Choose xεj ∈ B ∩ suppϕε
j and yεj ∈ F (xεj), and set

fε(x) =

Nε
∑

1

ϕε
j(x)y

ε
j .

Then fε is a continuous map B → B, since B is convex, so by Brouwer’s fixed

point theorem there is a fixed point xε ∈ B. The proof will be finished if we prove

that all limit points of (xε, xε) as ε → 0 are in F . To do so we choose a point

(x0, y0) ∈ B × B \ F . Since F (x0) is convex, there is an open half space H ⊂ R
n

with y0 ∈ H and H ∩ F (x0) = ∅. Since F is closed it follows that H ∩ F (x) = ∅

when ‖x − x0‖ < 2δ, for some δ > 0. If ‖x − x0‖ < δ and ε < δ it follows that

yεj ∈ ∁H when ϕj(x) 6= 0, for ‖xεj − x0‖ < δ + ε < 2δ; hence fε(x) ∈ ∁H. If

fε(xε) = xε and ‖xε−x
0‖ < δ it follows that xε ∈ ∁H, so (x0, y0) cannot be a limit

point of (xε, xε) as ε→ 0. The proof is complete.

After these applications we shall prove further properties of the function D de-

fined in Theorem 4.2.

Theorem 4.5. If f ∈ C(Ω,Rn) and Ω1, Ω2, . . . are disjoint open subsets of Ω,

then

(iv) D(f,Ω, y) =
∑

α

D(f,Ωα, y), if y /∈ f(Ω \ ∪Ωα),

where only finitely many terms in the sum are 6= 0.

Proof. The terms in the sum are defined, for if z ∈ ∂Ωα then z ∈ Ω \ ∪Ωβ , so

y 6= f(z) by assumption. If D(f,Ωα, y) 6= 0 then y ∈ f(Ωα), that is f(xα) = y for

some xα ∈ Ωα. Such points can only exist for finitely many values of α, for in a
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limit point x ∈ Ω we would have f(x) = y, hence x ∈ Ωα for some α, and Ωα is

then a neighborhood of x. Hence it suffices to prove (iv) for finitely many Ωα, and

then the statement follows at once if we approximate f in Ω by a C∞ function and

replace y by a regular value nearby.

Before proceeding we shall relax the hypothesis that Ω is bounded since we also

want to discuss neighborhoods of infinity. From now on we just assume that Ω is

open and that f ∈ C(Ω,Rn) is proper, that is, that ‖f(x)‖ → ∞ as x → ∞. This

is sufficient to guarantee that f(∂Ω) is closed. The properties (i)–(iv) of D remain

valid with no change if we define D(f,Ω, y) when y /∈ f(∂Ω) as D(f,Ω1, y) where
the open bounded set Ω1 ⊂ Ω is chosen so large that y /∈ f(Ω \ Ω1). By Theorem

4.5 this definition is then independent of the choice of Ω1.

Theorem 4.6. Let f and g be proper continuous maps R
n → R

n, and let ωα

be the components of ∁f(∂Ω). If y /∈ (g ◦ f)(∂Ω) then

(v) D(g ◦ f,Ω, y) =
∑

α

D(f,Ω, ωα)D(g, ωα, y),

where D(g, ωα, y) 6= 0 only for finitely many α.

Proof. Since ∂ωα ⊂ f(∂Ω) we have y /∈ g(∂ωα) so the terms in the right-hand

side are defined. If D(g, ωα, y) 6= 0 then g(xα) = y for some xα ∈ ωα, and all

xα belong to a compact set since g is proper. A limit point of such points would

belong to f(∂Ω), and since g(x) = y this would contradict the hypothesis that

y /∈ g ◦f(∂Ω), which proves the last statement. In the same way we see that y has a

neighborhood Vy which only intersects g(ωα) for finitely many α1, . . . , αk. Choose

now relatively compact open subsets ω′
j of ωαj

so that Vy ∩ g(ωαj
\ ω′

j) = ∅. The

right-hand side of (v) is then equal to

k
∑

1

D(f,Ω, ω′
j)D(g, ω′

j, y),

by property (iv) of D. Approximating f and g by C∞ proper maps on a large

compact set we conclude that it suffices to prove the theorem for such f and g
when y is a regular value for g and for g ◦ f . Then there are finitely many zj with

g(zj) = y, and we have zj /∈ ∁f(∂Ω), det g′(zj) 6= 0. For every j there are finitely

many xjk ∈ Ω with f(xjk) = zj , we have det f ′(xjk) 6= 0, and

sign det(g ◦ f)′(xjk) = sign det g′(zj) sign det f
′(xjk)

by the chain rule. Hence

d(g ◦ f,Ω, y) =
∑

j

sign det g′(zj)
∑

k

sign det f ′(xjk) =
∑

j

sign det g′(zj)d(f,Ω, zj).

Summation over all j with zj ∈ ωα yields (v).

The Jordan-Brouwer theorem is an important consequence of Theorem 4.6:
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Theorem 4.7. Let K and K ′ be compact subsets of Rn such that there exists a

homeomorphism f : K → K ′. Then ∁K and ∁K ′ have equally many components.

In particular there are two components if K = Sn−1.

Proof. We can extend f to a proper map F ∈ C(Rn,Rn), and we can also

choose a proper extension G of f−1. Then G◦F and F ◦G are equal to the identity

on K and on K ′ respectively. Let Dα (resp. D′
α) be the components of ∁K (resp.

∁K ′). Then the matrices D(F,Dα, D
′
β) and D(G,D′

β , Dα) are well defined, they

have only finitely many elements 6= 0 in each column, and they are inverse to each

other. The matrices are defined since ∂Dα ⊂ K, hence F (∂Dα) ⊂ F (K) = K ′ and

similarly G(∂D′
α) ⊂ K. The finiteness follows from Theorem 4.6. If ωj are the

components of ∁F (∂Dα) then

D(G ◦ F,Dα, y) =
∑

j

D(F,Dα, ωj)D(G, ωj, y), y ∈ Dβ ,

by property (v). Since F (∂Dα) ⊂ K ′ we have D′
γ ⊂ ωj for some j, and

ωj \
⋃

D′

γ⊂ωj

D′
γ ⊂ K ′, hence y /∈ G(ωj \

⋃

D′

γ⊂ωj

D′
γ).

We can therefore use property (iv) and conclude since G◦F is the identity on ∂Dα

that

(4.5) δαβ =
∑

γ

D(F,Dα, D
′
γ)D(G,D′

γ , Dβ),

where δαβ is the Kronecker symbol. For reasons of symmetry we can let the two

matrices change places. If either the number of components Dα or the number

of components D′
γ is finite, then the finiteness of the columns proves that one of

the matrices has finite rank, and then they must both be finite, quadratic inverse

matrices. This proves the theorem.

From (4.5) with α = β it follows that for every α there is some γ with F (Dα) ⊃

D′
γ , for D(F,Dα, D

′
γ) 6= 0 for some γ. This leads to another theorem of Brouwer:

Theorem 4.8 (Invariance of domain). Let Ω be an open subset of Rn and

let f : Ω → R
n be continuous and injective. Then it follows that f(Ω) is open and

that f is a homeomorphism.

Proof. Let B be an open ball with B ⊂ Ω. Then f restricted to B is a

homeomorphism B → f(B), and f(B) must contain a component of ∁f(∂B). Since

B is connected it follows that f(B), which is disjoint with f(∂B), is also connected

which proves that f(B) is equal to a component of ∁f(∂B), hence connected. This

proves the theorem.

We shall now prove that the degree can also be defined for suitable maps in a

Banach space B (or even in a Fréchet space). Let ϕ : B → B be a continuous map

such that ϕ(B) is contained in a compact set, and set Φ(x) = x− ϕ(x). Then we

have:
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Lemma 4.9. Φ(F ) is closed if F is closed, and Φ−1(C) is compact if C is com-

pact.

Proof. Let xj ∈ F and Φ(xj) = xj − ϕ(xj) → y. We can then choose a

subsequence for which ϕ(xj) converges. The corresponding sequence xj is then

convergent, and if x is the limit we have Φ(x) = x−ϕ(x) = y since ϕ is continuous.

If Φ(xj) = xj − ϕ(xj) ∈ C then we can choose a subsequence for which ϕ(xj)
and xj − ϕ(xj) converge, which implies convergence of xj and proves the second

statement.

Lemma 4.10. Let K be a compact subset of the Banach space B, and let ε > 0.

Then there exists a continuous map ψ : K → B1 where B1 is a finite dimensional

subspace of B, such that

‖ψ(x)− x‖ < ε, x ∈ K,

and the range of ψ is contained in the convex hull of K.

Proof. By the Borel-Lebesgue lemma we can find finitely many xj ∈ K such

that K is covered by the balls {x ∈ B; ‖x − xj‖ <
1
2ε}. Let χ be a continuous

non-negative function on R with χ(t) = 1 for |t| ≤ 1
2
and χ(t) = 0 for |t| ≥ 1, and

set for x ∈ K

ϕj(x) = χ(‖x− xj‖/ε)/Φ(x), Φ(x) =
∑

j

χ(‖x− xj‖/ε).

Since Φ(x) > 0 when x ∈ K it is clear that ϕj is continuous on K, and
∑

j ϕj(x) =

1, x ∈ K. We have ϕj(x) = 0 when ‖x− xj‖ ≥ ε. The range of

ψ(x) =
∑

j

ϕj(x)xj, x ∈ K,

is contained in the convex hull of {xj}, hence in the finite dimensional vector space

spanned by {xj}, and since

ψ(x)− x =
∑

j

ϕj(x)(xj − x), x ∈ K,

it follows that ‖ψ(x)− x‖ ≤
∑

j ϕj(x)ε = ε when x ∈ K. The lemma is proved.

We can now return to the continuous map ϕ with ϕ(B) ⊂ K. Recall that

Φ(x) = x− ϕ(x). With ψ chosen according to Lemma 4.10 we set ϕ1 = ψ ◦ ϕ and

obtain ‖ϕ1(x) − ϕ(x)‖ < ε for every x. The range of ϕ1 is contained in a finite

dimensional vector space B1 ⊂ B. If now Ω is an open subset of B and y /∈ Φ(∂Ω),
which is a closed set by Lemma 4.9, then we can choose ε > 0 smaller than the

distance from y to Φ(∂Ω), which implies that y /∈ Φ1(∂Ω) if Φ1(x) = x− ϕ1(x). If
B1 has been chosen so that y ∈ B1, we can define

(4.6) D(Φ,Ω, y) = D(Φ1,Ω ∩B1, y),

but we have to prove that the definition is independent of the choice of Φ1 and of

B1. Let Φ0 and B0 be another choice, and let B′ be a finite dimensional vector

space ⊃ B1 ∪B0. Then we have

(4.7) D(Φ1,Ω ∩B1, y) = D(Φ1,Ω ∩B′, y).
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For the proof we first assume that Φ1 restricted to B′ is in C∞ and that y is a regular
value for Φ1 on Ω∩B1. If x ∈ B′ and Φ1(x) = y ∈ B1 then x = y+ϕ1(x) ∈ B1 since

ϕ1(B
′) ⊂ B1. The determinant of Φ′

1(x), taken with respect to all the variables

in B′, is equal to the determinant when the differential is taken with respect to

the variables in B1, for Φ
′
1(x) induces the identity in the quotient between the two

tangent spaces. This proves (4.7), for the property ϕ1(B
′) ⊂ B1 which we have

used is preserved by the approximation with C∞ functions used in the definition of

D in Theorem 4.2. The equality (4.7) is also valid for Φ0. Now Φt = tΦ1+(1−t)Φ0

is a homotopy with y /∈ Φt(∂Ω), 0 ≤ t ≤ 1, so it follows from the property (iii) of

the degree that

(4.8) D(Φ1,Ω ∩B′, y) = D(Φ0,Ω ∩B′, y).

Now (4.6) follows by combination of (4.8) with (4.7), also with Φ1 and B1 replaced

by Φ0 and B0. This completes the definition of D(Φ,Ω, y) when Φ(x) = x − ϕ(x)
and ϕ is continuous with compact range, y /∈ Φ(∂Ω). We leave as a simple but

tedious exercise for the reader to verify that the properties (i)–(v) in Theorems 4.2,

4.5 and 4.6 are preserved by this extension. (In property (iii) it is assumed that

the range of F (x, t)− F (x, 0) when x ∈ ∂Ω and t ∈ [0, 1] is compact.)

The proofs of Theorems 4.7 and 4.8 can now be repeated, which gives:

Theorem 4.7′. Let F and F ′ be closed subsets of B, and assume that there

exists a homeomorphism Φ : F → F ′ such that {Φ(x) − x; x ∈ F} is relatively

compact. Then it follows that ∁F and ∁F ′ have equally many components.

Theorem 4.8′. Let Ω ⊂ B be open, let Φ : Ω → B be continuous and injective,

and assume that {Φ(x)−x; x ∈ Ω} is relatively compact. Then it follows that Φ(Ω)

is open and that Φ is a homeomorphism.

The proof of Theorem 4.7′ is just a repetition of that of Theorem 4.7 since the

extension of the maps f and f−1 there can be made using the following lemma.

Lemma 4.11. If ϕ is a continuous map from a closed set F ⊂ B to a compact

set K ⊂ B, then there is another compact set ˜K ⊂ B and a continuous extension

ϕ̃ of ϕ to B such that ϕ̃(B) ⊂ ˜K.

Proof. By composing ϕ with a map given by Lemma 4.10 with ε = 2−j we

can find a continuous map χj from F to a compact subset of a finite dimensional

subspace Bj of B such that

‖χj(x)− ϕ(x)‖ < 2−j , x ∈ F.

Set ϕ1(x) = χ1(x) and ϕj(x) = χj(x) − χj−1(x) when j > 1. Then we have

‖ϕj(x)‖ < 22−j when j > 1 and x ∈ F , and

ϕ(x) =

∞
∑

1

ϕj(x), x ∈ F.

Let ‖ϕ1(x)‖ < A, x ∈ F . By Urysohn’s theorem there is a continuous extension ϕ̃j

of ϕj to B such that ϕ̃j(B) ⊂ Bj and ‖ϕ̃j(x)‖ < 22−j when j > 1 and x ∈ B, and

‖ϕ̃1(x)‖ < A when x ∈ B. Now ϕ̃(x) =
∑∞

1 ϕ̃j(x) has the required properties, for

˜K = {

∞
∑

1

tj ; tj ∈ Bj , ‖tj‖ ≤ 22−j if j > 1, ‖t1‖ ≤ A}
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is compact. In fact, from a sequence
∑∞

j=1 t
ν
j in K̃ we can use the Cantor diagonal

procedure to select a subsequence such that limν→∞ tνj = tj exists for every j, and

this implies that the sum converges in norm to
∑∞

1 tj .

Proof of Theorem 4.8 ′. If F is a closed ball contained in Ω, then Φ is

a homeomorphism F → Φ(F ). In fact, if xj ∈ F and Φ(xj) → y there is a

subsequence such that xj − Φ(xj) has a limit, hence xj has a limit x ∈ F . Then

we have Φ(x) = y, which by hypothesis determines x uniquely. Hence the full

sequence xj converges to x, for otherwise there would exist a subsequence such

that ‖x − xj‖ > δ > 0, which is a contradiction. The rest of the proof is now a

repetition of that of Theorem 4.8.

The following key result in the linear Fredholm theory is a special case of Theo-

rem 4.8′:

Theorem 4.12. Let T : B → B be a compact linear map, that is, T maps

bounded sets to relatively compact sets. If Φ(x) = x − Tx 6= 0 when 0 6= x ∈ B,

then Φ is invertible.

Proof. By hypothesis TΩ is relatively compact when Ω = {x ∈ B; ‖x‖ < 1} is

the unit ball. By Theorem 4.8′ it follows that Φ(Ω) is a neighborhood of the origin,

which proves the theorem.

Before developing the linear Fredholm theory further by means of Theorem 4.12

and connecting it to the degree of mappings we shall prove two important fixed

point theorems. The first of them depends only on the method used to define the

degree.

Theorem 4.13 (Schauder’s fixed point theorem). Let K be a convex com-

pact subset of B, and let Φ : K → K be a continuous map. Then Φ has a fixed

point, that is, Φ(x) = x for some x ∈ K.

Proof. If there is no fixed point we can choose ε > 0 so that ‖Φ(x) − x‖ > ε
when x ∈ K. Choose ψ according to Lemma 4.10 with ψ(K) ⊂ K, and consider the

map ψ ◦Φ : B1∩K → B1∩K. By Corollary 4.4 there exists some x ∈ B1∩K with

ψ(Φ(x))−x = 0, hence ‖Φ(x)−x‖ = ‖Φ(x)−ψ(Φ(x))‖ < ε. This is a contradiction

which proves the theorem.

Theorem 4.14 (Leray-Schauder’s fixed point theorem). Assume that

the continuous map ϕ : B → B maps every bounded set to a relatively compact set,

and set

Φt(x) = x− tϕ(x).

If Φt(x) = 0 implies ‖x‖ ≤ C when 0 ≤ t ≤ 1, then the equation Φt(x) = 0 has a

solution for every t ∈ [0, 1].

Proof. Let Ω = {x; ‖x‖ < C + 1}, define

ϕ̃(x) =

{

ϕ(x), if x ∈ Ω,

ϕ(x(C + 1)/‖x‖), if x /∈ Ω,

and set ˜Φt(x) = x − tϕ̃(x). Then ϕ̃(B) is relatively compact, 0 /∈ ˜Φt(∂Ω) when

t ∈ [0, 1], and since ˜Φ0(x) = x we have D(˜Φ0,Ω, 0) = 1. Hence it follows from
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property (iii) of the degree that D(˜Φt,Ω, 0) = 1 for every t ∈ [0, 1], and the theorem

follows from property (ii) of the degree.

In Chapter V we shall use Theorem 4.14 to prove existence of solutions of the

stationary Navier-Stokes equations, but first we return to the linear Fredholm the-

ory. Again we let T be a compact linear operator, that is, an operator mapping the

unit ball to a relatively compact set. However, we no longer assume as in Theorem

4.12 that I −T is injective when I = Id is the identity operator in B. To study the

kernel we need the following classical lemma of F. Riesz:

Lemma 4.15. Let B1 ⊂ B2 ⊂ . . . be a sequence of finite dimensional subspaces

of B such that (I − T )Bk ⊂ Bk−1, k > 1. Then there exists some m such that

Bj = Bm when j ≥ m.

Proof. If all Bj are different we can for j > 1 choose xj ∈ Bj with ‖xj‖ = 1

and ‖xj − x‖ ≥ 1 when x ∈ Bj−1. In fact, if X ∈ Bj \ Bj−1 and Y ∈ Bj−1 is a a

point which minimizes ‖X − Y ‖ we can take xj = (X − Y )/‖X − Y ‖. When j > k
we have

Txj − Txk = xj + (T − I)xj − Txk ≡ xj mod Bj−1,

which implies that ‖Txj − Txk‖ ≥ 1. Hence the sequence Txj does not have any

convergent subsequence which is a contradiction proving the lemma.

A first consequence of the lemma is that the vector space

Nk = {x ∈ B; (I − T )kx = 0}

is finite dimensional, for (I − T )k = I − Tk where Tk is also compact. Since

(I − T )Nk ⊂ Nk−1 we can also conclude that there is an integer m such that

Nj = Nm when j ≥ m. Thus the finite dimensional subspace Nm of B contains all

generalized eigenvectors of T with the eigenvalue 1. Moreover, (I − T )mB = Bm is

a closed subspace. To prove this it suffices to prove that for some constant C

‖x‖B/Nm
≤ C‖(I − T )mx‖, x ∈ B.

If this were not true we could find a sequence xj with

‖xj‖ = ‖xj‖B/Nm
= 1, ‖(I − T )mxj‖ → 0 as j → ∞.

We can pass to a subsequence such that Txj converges which implies that xj has a

limit x0. Then we have (I − T )mx0 = 0, that is, x0 ∈ Nm, which contradicts that

the distance from xj to Nm is ≥ 1.

We shall now prove that

B = Bm ⊕Nm,

that is, that every x ∈ B has a unique decomposition x = y + z with y ∈ Bm,

z ∈ Nm, and ‖y‖+ ‖z‖ ≤ C‖x‖. For any such decompsotion we must have

(I − T )mx = (I − T )my.

Now (I − T )m = I − Tm restricts to an injective mapping Bm → Bm, which has a

continuous inverse S : Bm → Bm by Theorem 4.12. Thus

y = S(I − T )mx, z = x− S(I − T )mx.
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Conversely, if y and z are defined in this way then y ∈ Bm and (I − T )mz =

(I − T )mx− (I − T )mS(I − T )mx = 0, so z ∈ Nm, which proves the statement.

Summing up, B has a direct sum decomposition B = Bm ⊕Nm such that

a) The restriction of (I − T ) to Bm is invertible.

b) Nm is a finite dimensional subspace with TNm ⊂ Nm and (I−T )mNm = 0.

For all λ in a neighborhood of 1 it follows that the restriction of I − λT to Bm is

invertible while the determinant of the restriction to Nm is equal to (1−λ)ν where

ν = dimNm. If Ω is an open bounded neighborhood of 0 we conclude when λ− 1

is sufficiently small but not 0 that

(4.9) D(I − λT,Ω, 0) = D(I − λT,Ω ∩Bm, 0)D(I − λT,Ω ∩Nm, 0)

= D(I − λT,Ω ∩Bm, 0)(sign(1− λ))ν .

Here we have used the extension to the continuous case of the obvious formula

D(f1 × f2,Ω1 × Ω2, (y1, y2)) = D(f1,Ω1, y1)D(f2,Ω2, y2),

where f1 ∈ C∞(Rn,Rn), f2 ∈ C∞(Rm,Rm), Ω1 ⊂ R
n, Ω2 ⊂ R

m and yj /∈
fj(∂Ωj). The formula (4.9) means that D(I − λT,Ω, 0) is defined and constant

except when λ passes the isolated points for which I − λT is not injective. It is

then multiplied by (−1)ν where ν is the dimension of the corresponding space of

generalized eigenvectors. When λ is sufficiently small the degree is equal to 1.

Hence we have

Theorem 4.16. If T is a compact operator in B and I−T is injective, we have

for every bounded open neighborhood Ω of 0

D(I − T,Ω, 0) = (−1)ν

where ν is the dimension of the space spanned by all solutions of (I − λT )kx = 0

when 0 < λ < 1 and k is a positive integer.

Using Theorem 4.16 we can connect the degree of maps in Banach spaces to the

definition which was our starting point in the smooth finite dimensional case.

Theorem 4.17. Let Φ : B → B be continuous and assume that {x− Φ(x); x ∈

B} is relatively compact. Assume that Φ is differentiable at x0, that Φ′(x0) is

injective, and that I − Φ′(x0) is compact. If Ω is a sufficiently small neighborhood

of x0 then

D(Φ,Ω,Φ(x0)) = D(Φ′(x0),Ω0, 0)

where Ω0 is a bounded open neighborhood of 0.

Proof. The differentiability means that

‖Φ(x)− Φ(x0)− Φ′(x0)(x− x0)‖ = o(‖x− x0‖).

If Φt(x) = tΦ(x) + (1− t)(Φ(x0) + Φ′(x0)(x− x0)) it follows that

‖Φt(x)− Φ(x0)− Φ′(x0)(x− x0)‖ = o(‖x− x0‖), t ∈ [0, 1],

and since Φ′(x0) is invertible it follows that Φt(x) 6= Φ(x0) when t ∈ [0, 1] and
0 < ‖x−x0‖ < δ. Hence D(Φ1,Ω,Φ(x0)) = D(Φ0,Ω,Φ(x0)) when Ω is a sufficiently

small open neighborhood of x0, which proves the theorem.

Notes. The presentation of degree theory in this chapter has mainly followed

[L]. However, references to algebraic topology in [L] have been replaced by differ-

ential calculus. The proof of the key Lemma 4.1 has been taken from [M].
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CHAPTER V

STATIONARY SOLUTIONS OF

THE NAVIER-STOKES EQUATIONS

As an application of the Leray-Schauder fixed point theorem we shall now sketch

an existence proof for stationary solutions of the Navier-Stokes equations. We

shall omit some technical details and will anticipate results from integration theory

proved later on.

The physical problem is as follows. A bounded stationary obstacle K ⊂ R
3 with

C2 boundary is immersed in a liquid with viscosity coefficient ν which moves with

a prescribed speed a = (a1, a2, a3) at infinity. One wants to determine the velocity

v(x) = (v1(x), v2(x), v3(x)) and the pressure p(x) when x /∈ K so that

−ν∆v + 〈v, ∂〉v = − grad p, div v = 0,

with the boundary conditions

v = 0 on ∂K, v(x) → a as x→ ∞.

(Here 〈v, ∂〉v means v′(v) with the notation in Chapter I.) We simplify the problem

technically by taking a large open ball B containing K and look for a solution of

the differential equations in the bounded open set Ω = B \K such that

v = 0 on ∂K, v = a on ∂B.

Assume that we have a solution with v ∈ C2(Ω) and p ∈ C1(Ω). If ϕ =

(ϕ1, ϕ2, ϕ3) belongs to the space H(Ω) of C1 vector fields with

(5.1) divϕ = 0 in Ω, ϕ = 0 on ∂Ω,

then we obtain after scalar multiplication with ϕ and integration by parts

(5.2) ν

∫

Ω

3
∑

j,k=1

∂ϕk/∂xj∂vk/∂xj dx−

∫

Ω

3
∑

j,k=1

vjvk∂ϕk/∂xj dx = 0, ϕ ∈ H(Ω).

The pressure p drops out since divϕ = 0 and another term where ϕ is not dif-

ferentiated drops out since div v = 0. Conversely, if v ∈ C2(Ω) satisfies (5.2) and

div v = 0, then −ν∆v + 〈v, ∂〉v = P where P is continuous in Ω with values in R
3

and
∫

〈P, ϕ〉 = 0 when ϕ ∈ H(Ω).
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This implies that P = − grad p for some p ∈ C1(Ω). To prove this we just have

to prove that if [0, 1] ∋ t 7→ x(t) is a closed polygonal curve contained in Ω, then
∫ 1

0
〈P (x(t)), dx(t)〉 = 0. It suffices to prove that if ψ ∈ C∞

0 (R3) has support in the

unit ball and
∫

ψ(y) dy = 1, then

∫

ψε(y)

∫ 1

0

〈P (x(t) + y), dx(t)〉 = 0, ψε(y) = ψ(y/ε)/ε3,

if ε is smaller than the distance from the curve to ∁Ω, for the integral converges to
∫ 1

0
〈P (x(t)), dx(t)〉 as ε→ 0. The double integral can be written

∫∫

0<t<1

〈P (y), dx(t)〉ψε(y − x(t)) dy =

∫

〈P (y), ϕε(y)〉 dy,

ϕε(y) =

∫ 1

0

ψε(y − x(t))dx(t).

Since suppϕε is at distance ≤ ε from the curve, we have ϕε ∈ C∞
0 (Ω), and

divϕε(y) =

∫ 1

0

〈ψ′
ε(y − x(t)), dx(t)〉 = −

∫ 1

0

dψε(y − x(t)) = 0

the claim has been proved. Thus it is reasonable to accept (5.2) and the condition

div v = 0 as a restatement of the original differential equations, with the pressure

term removed.

If A is a vector field with A = 0 near ∂K and A = a near ∂B, then the boundary

conditions mean that v − A = 0 on ∂Ω. It is easy to construct C∞ vector fields

A(x) with divA = 0 such that A = 0 near ∂K and A = a near ∂B. In fact,

ak = 1
2

3
∑

j=1

∂(akxj − ajxk)/∂xj, k = 1, 2, 3,

so if ϕ ∈ C∞ is equal to 0 in a neighborhood of K and equal to 1
2 in a neighborhood

of ∁B then

Ak(x) =

3
∑

j=1

∂(ϕ(x)(akxj − ajxk))/∂xj, k = 1, 2, 3

is a vector field with the desired properties. Note that for small δ > 0 we can choose

ϕ equal to 0 at distance > δ from ∂B and ϕ′ = O(δ−1), which yields a vector field

Aδ with the desired properties such that Aδ = 0 at distance > δ from ∂B and

Aδ = O(δ−1). This will be needed later on.

We shall now extend the notion of solution somewhat. We make H(Ω) into a

prehilbert space by introducing the norm

‖ϕ‖2H =

∫

Ω

3
∑

j,k=1

|∂ϕk/∂xj|
2 dx.
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Since

3
∑

k=1

∫

Ω

|ϕk|
2 dx = −

∫

Ω

3
∑

k=1

xk∂|ϕk|
2/∂xk dx ≤ C‖ϕ‖H

(

3
∑

k=1

∫

Ω

|ϕk|
2 dx

)
1

2

we obtain

(5.3) ‖ϕ‖L2 ≤ C‖ϕ‖H , ϕ ∈ H(Ω).

The completion H(Ω) of H(Ω) can therefore be regarded as a subset of L2(Ω,R3).

Our final formulation of the existence problem is now to find v with v −A ∈ H(Ω)

so that (5.2) is valid for every ϕ ∈ H(Ω). The condition v − A ∈ H(Ω) implies

div v = 0 in the sense of distribution theory, and it is independent of the choice

of A.1 The equation (5.2) makes sense and is then true for all ϕ ∈ H(Ω) since

Sobolev’s inequalities give a stronger version of (5.3),

(5.4) ‖ϕ‖L6 ≤ C‖ϕ‖H , u ∈ H(Ω),

which guarantees that the second term in (5.2) is a continuous function of ϕ ∈ H(Ω)

when v − A ∈ H(Ω). If we introduce u = v − A, the condition (5.2) can also be

written

(5.5) ν

∫

Ω

3
∑

j,k=1

(∂uk/∂xj + ∂Ak/∂xj)∂ϕk/∂xj dx

−

∫

Ω

3
∑

j,k=1

(uj +Aj)(uk +Ak)∂ϕk/∂xj dx = 0, ϕ ∈ H(Ω).

If b ∈ L2(Ω,M3) where M is the space of real 3× 3 matrices, we can define the

projection Pb ∈ H(Ω) by

(5.6) (ϕ, Pb)H =

∫

Ω

3
∑

j,k=1

∂ϕk/∂xjbkj dx, ϕ ∈ H(Ω).

In fact, the right-hand side can be estimated by ‖ϕ‖H‖b‖L2 and can therefore be

written as the scalar product with a uniquely defined element Pb ∈ H. The linear

operator P : L2 → H is continuous with norm 1, and P∂a/∂x = a if a ∈ H(Ω).

We can now rewrite (5.5) in the form

(5.7) ν(u+ P∂A/∂x)− Tu = 0, u ∈ H(Ω),

where T is the composition

H(Ω) → L4(Ω,R3)
(·+A)2

−→ L2(Ω,M3)
P

−→ H(Ω).

1When ∂Ω is sufficiently smooth one can prove that a solution in this sense is also smooth, so

that it is a solution in the classical sense.
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Here (u + A)2 denotes the matrix (uj + Aj)(uk + Ak), j, k = 1, 2, 3, when u ∈

L4(Ω,R3). Each of the operators is continuous, and since H(Ω) → L2(Ω) is com-

pact whileH(Ω) → L6(Ω) is continuous, the embedding H(Ω) → L4(Ω) is compact,

for a sequence which is bounded in L6(Ω) and converges to 0 in L2(Ω) must converge

to 0 in Lp(Ω) for 2 ≤ p < 6.

We shall apply the Leray-Schauder fixed point theorem (Theorem 4.14) to the

equation (5.7). This theorem guarantees the existence of a solution provided that

there is a constant M such that

(5.8) u ∈ H(Ω), t ∈ [0, 1], u+ P∂A/∂x− tTu/ν = 0 =⇒ ‖u‖H ≤M.

The equation u+P∂A/∂x− tTu/ν = 0 means that (5.5) is valid with a factor t in
front of the last term. We take ϕ = u in the so modified equation (5.5) and note

that

∫

Ω

3
∑

j,k=1

(Aj + uj)uk∂uk/∂xj dx = 1
2

∫

Ω

3
∑

j,k=1

(Aj + uj)∂u
2
k/∂xj dx = 0

since this is true for all u ∈ H(Ω). For all u satisfying the hypotheses in (5.8) it

follows that

(5.9) ν‖u‖2H ≤ CA‖u‖H +

∣

∣

∣

∫

Ω

3
∑

j,k=1

ujAk∂uk/∂xj dx
∣

∣

∣
.

Assume now that (5.8) is not valid for any constant M . Then there is a se-

quence u(n), t(n) satisfying the hypotheses of (5.8) while ‖u(n)‖H → ∞. Set

w(n) = u(n)/‖u(n)‖H . The bounded sequence w(n) has a subsequence converg-

ing weakly to a limit w ∈ H(Ω), which implies that it converges to w in L2 norm.

If we divide (5.9) by ‖u‖2H and take u = u(n), it follows when n → ∞ through a

subsequence that

(5.10) ν ≤
∣

∣

∣

∫

Ω

3
∑

j,k=1

wjAk∂wk/∂xj dx
∣

∣

∣
.

We could from the beginning have worked with another divergence free vector

field ˜A with the appropriate boundary values; then A − ˜A is an arbitrary element

in H(Ω). Since P (∂A/∂x − ∂ ˜A/∂x) = A − ˜A it follows that (5.7) implies the

corresponding equation with A replaced by ˜A (which affects the definition of T ),

provided that u is replaced by ũ and ũ+ ˜A = u+A, for then we have ũ+P∂ ˜A/∂x =

u+ P∂A/∂x. For a sequence u(n) such that ‖u(n)‖H → ∞ we have ‖ũ(n)‖H → ∞

for the corresponding sequence, so we conclude that A may be replaced by ˜A in

(5.10). Since the right-hand side of (5.10) must not vanish for any ˜A this means in

particular that
∫

Ω

3
∑

j,k=1

wjak∂wk/∂xj dx = 0, a ∈ H(Ω).
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Assume for a moment that w is smooth in Ω. Then it follows that there is a function

p such that
3

∑

j=1

wj∂wk/∂xj = −∂p/∂xk, k = 1, 2, 3.

Since w = 0 on ∂Ω this implies that grad p = 0 on ∂Ω, hence that p is constant on

∂B. Hence
∫

Ω

3
∑

j,k=1

wjAk∂wk/∂xj dx = −

∫

Ω

3
∑

k=1

Ak∂p/∂xk dx

= −

∫

Ω

div(pA) dx = −

∫

∂B

p〈A, n〉 dS = 0

since p is constant on ∂B and
∫

∂B
〈A, n〉 dS =

∫

∂K
〈A, n〉 dS = 0 by the Gauss-

Green formula. This contradiction with (5.10) means from the point of view of

physics that the Navier-Stokes equations with zero viscosity cannot be solved with

the given boundary conditions.

To give a strict proof of a contradiction without any unjustified regularity as-

sumptions we choose in (5.10) for A the vector fields Aδ constructed above. Let

B = {x ∈ R
3; |x| < R} and set Bδ = {x ∈ R

3;R− δ ≤ |x| < R}. Then (5.10) gives

for small δ

(5.11) ν ≤ Cδ−1‖w‖L2(Bδ)‖∂w/∂x‖L2(Bδ).

If f ∈ C1(Ω) and f = 0 on ∂B we have

∫

Bδ

f2 dx ≤ 1
2
R−2

δ

∫

Bδ

f2
3

∑

j=1

xj∂(|x|
2 −R2

δ)/∂xj dx

= −1
2R

−2
δ

∫

Bδ

(|x|2 −R2
δ)

3
∑

j=1

∂(xjf
2)/∂xj dx

≤ 2R2R−2
δ δ‖f‖L2(Bδ)‖∂f/∂x‖L2(Bδ),

where Rδ = R − δ, and if δ < 1
2R this implies

‖f‖L2(Bδ) ≤ 4δ‖∂f/∂x‖L2(Bδ).

We can apply this estimate to all w ∈ H(Ω), hence to all w ∈ H(Ω), and using

(5.11) we then obtain

(5.12) ν ≤ 4C‖∂w/∂x‖2L2(Bδ)
.

This gives a contradiction when δ → 0 since the right-hand side converges to 0

then. This completes the proof of the existence of a solution of the stationary

Navier-Stokes equation.

Notes. For a much more thorough discussion of the Navier-Stokes equations

using the Leray-Schauder fixed point theorem we refer to [L], which we have followed

here apart from the correction of a minor error. These methods can also be used to

prove the existence of several solutions of the stationary Navier-Stokes equations

under suitable conditions. The idea is to use Theorem 4.16 to determine the degree

(index) of an isolated solution and prove that it is not equal to the total degree

which is determined by means of a homotopy. Such results can be found in [V].
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CHAPTER VI

INTEGRATION IN A VECTOR SPACE

We assume that the reader is familiar with the basic properties of the Riemann

integral; in particular that the integral
∫

f dx is defined for all f ∈ C0(R
n), the

space of continuous functions with compact support, and that

(6.1)

∫

(af + bg) dx = a

∫

f dx+ b

∫

g dx, f, g ∈ C0, a, b ∈ R

∫

f dx ≥ 0, 0 ≤ f ∈ C0,

(6.2)

∫

f(x− h) dx =

∫

f(x) dx, f ∈ C0, h ∈ R
n.

These properties characterize the integral apart from a multiplicative constant

which is determined by the condition that the volume of the unit cube shall be

equal to 1. If A : Rn → R
n is a linear bijection and we set A∗f(x) = f(Ax), then

(6.3)

∫

f dx = | detA|

∫

A∗f dx, f ∈ C0(R
n).

In fact, the right-hand side has the properties (6.1) and (6.2) so it must be a constant

depending on A times the left-hand side. This constant must be a multiplicative

function of A which is equal to 1 for diagonal matrices and for orthogonal matrices,

hence for all A.
We shall use the essential uniqueness to calculate some important integrals. First

we note that if x 7→ ‖x‖ is an arbitrary norm in R
n then there is a constant C such

that

(6.4)

∫

Rn

f(‖x‖) dx = C

∫ ∞

0

f(t)tn−1 dt, f ∈ C0(R).

In the proof we may assume that f = 0 in a neighborhood of 0 and rewrite (6.4)

using the notation f(t)tn = g(log t),

(6.4)′
∫

Rn

g(log ‖x‖)‖x‖−n dx = C

∫

g(log t)t−1 dt, g ∈ C0(R).

Since the substitutions x 7→ eax and t 7→ eat show that both sides are unchanged

if g is replaced by g(·+ a), a ∈ R, the two sides are functions of g satisfying (6.1)

and (6.2), hence proportional. If we let f approach the characteristic function for
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[0, 1] from above and below we conclude that C/n is the volume of the unit ball.

With f(t) = e−at
2

we also obtain

(6.5)
∫

Rn

e−a‖x‖
2

dx = C

∫ ∞

0

e−at
2

tn−1 dt = 1
2
C

∫ ∞

0

e−ass
1

2
n−1 ds = 1

2
Ca−

1

2
nΓ( 1

2
n)

where the Γ function is defined by

(6.6) Γ(x) =

∫ ∞

0

e−ssx−1 ds, s > 0.

Partial integration gives

(6.7) xΓ(x) = Γ(x+ 1), x > 0,

hence

Γ(ν) = (ν − 1)!, Γ(ν − 1
2
) = (ν − 3

2
)(ν − 5

2
) . . . 1

2
Γ( 1

2
)

when ν is a positive integer.

Now we let ‖x‖ = (x21+ · · ·+x2n)
1

2 be the Euclidean norm. When n = 2 it follows

from (6.5) that
∫

R2

e−a‖x‖
2

dx = 2π/2a = π/a,

for C/n = C/2 = π. Hence

(6.8)

∫

R2n

e−a‖x‖
2

dx = (π/a)n,

which implies that

(6.9)

∫

Rn

e−a‖x‖
2

dx = (π/a)
1

2
n,

for the square of the left-hand side is the left-hand side of (6.8) since we can integrate

over n variables at a time in (6.8). With n = 1 in (6.5) we now obtain

√

π/a = Γ( 12)/
√
a,

hence Γ( 1
2
) =

√
π. If we denote the volume of the unit ball in R

n by Cn and replace

C in (6.5) by nCn, it follows from (6.9) that

(6.10) C2ν = πν/ν!, C2ν+1 = 2ν+1πν/(2ν + 1)!!.

For every vector space V over R of dimension n there exist linear forms C0(V ) ∋

f 7→ I(f) with the properties (6.1), (6.2), and they differ only by a constant factor.

For if ψ : R
n → V is a linear bijection we can choose I(f) =

∫

ψ∗f dx where

ψ∗f = f ◦ ψ ∈ C0(R
n), and the uniqueness apart from a constant factor follows

from the same fact for Rn. To fix the constant one needs some additional structure

in V such as a bilinear form B on V × V . Note that if ψ : W → V is a linear
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bijection then a bilinear form B on V induces another bilinear form ψ∗B on W
defined by

(ψ∗B)(x, y) = B(ψx, ψy), x, y ∈W.

A bilinear form on R
n can always be written

B(x, y) =
n
∑

j,k=1

Bjkxjyk,

and we associate with it the number detB = det(Bjk). If ψ : Rn → R
n is a linear

bijection then

detψ∗B = (detψ)2 detB

since the matrix of ψ∗B is tψ(Bjk)ψ. Hence it follows from (6.3) that

(6.11) | detB|
1

2

∫

f dx = | detψ∗B|
1

2

∫

ψ∗f dx, f ∈ C0(R
n).

Let now V be a finite dimensional vector space with a given bilinear form B,

and set with a linear bijection ψ : Rn → V

(6.12) IB(f) = | detψ∗B|
1

2

∫

ψ∗f dx, f ∈ C0(V ).

This definition is independent of the choice of ψ, for if ψ1 is another choice then

ψ1 = ψ ◦ ψ2 where ψ2 : Rn → R
n. If ψ∗f = g we obtain ψ∗

1f = ψ∗
2g, and if

ψ∗B = C then ψ∗
1B = ψ∗

2C, so (6.11) gives

| detψ∗B|
1

2

∫

ψ∗f dx = | detC|
1

2

∫

g dx

= | detψ∗
2C|

1

2

∫

ψ∗
2g dx = | detψ∗

1B|
1

2

∫

ψ∗
1g dx,

which proves the statement. If W is another n dimensional vector space and ψ is

a linear bijection W → V , then the definition implies that

(6.13) IB(f) = Iψ∗B(ψ
∗f), f ∈ C0(V ).

The form IB is of course identically 0 if B is degenerate, that is, if there is some

x 6= 0 in V with B(x, V ) = 0 (or B(V, x) = 0). This does not happen if V is

a Euclidean space, that is, V is provided with a positive definite quadratic form.

Then we take for B the corresponding symmetric bilinear form with B(x, x) = ‖x‖2,
for B(x, x) > 0 when x 6= 0. The normalisation of IB is then also clear from the

fact that by (6.9) and (6.13)

(6.14) IB(e
−π‖·‖2

) = 1,

for we can find a map ψ : Rn → V such that ψ∗B is the standard Euclidean scalar

product.
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Starting from (6.14) one can also define the Gaussian measure

f 7→ IB(fe
−π‖·‖2

)

when V is an arbitrary Hilbert space. For let C(V ) denote the set of all cylindrical

functions u, that is, bounded continuous functions u such that there is a closed

subspace F of finite codimension with u(x) = u(y) when x−y ∈ F . These functions
form an algebra, for the intersection of subspaces of finite codimension has finite

codimension. For f ∈ C(V ) we can define I(fe−π‖·‖
2

) as the integral over the

orthogonal complement F⊥ of F . This does not depend on the choice of F . In

fact, if F1 is another possible choice then G = F ∩ F1 has finite codimension and

it is obviously sufficient to prove that the integrals over F⊥ and G⊥ are equal.

But G⊥ = F⊥ ⊕ H where H ⊂ F so that f is constant along H. This proves

the statement since the integral of e−π‖·‖
2

over H is equal to 1. For the Gaussian

measure now defined in C(V ) we have (6.1) and

|IB(f)| ≤ sup |f |.

One can now extend the domain of definition of IB by the standard methods of

Lebesgue (Daniell) integration theory, but we shall not pursue this direction further.

38



CHAPTER VII

THE EUCLIDEAN VOLUME ELEMENT

ON A SUBMANIFOLD OF R
m

In Chapter VI we only had to use linear changes of variables, but we shall now

need a general result, which is proved by approximation with linear changes of

variables:

Theorem 7.1. Let Ω1, Ω2 be open subsets of Rn and let ψ : Ω1 → Ω2 be a C1

diffeomorphism, that is, a C1 bijection with C1 inverse. Then we have

∫

Ω2

u dx =

∫

Ω1

(ψ∗u)| detψ′| dx, u ∈ C0(Ω2).

We shall now define the Euclidean volume element on a C1 manifold F ⊂ R
m of

dimension n (see Definition 2.2). For every x0 ∈ F we can choose a C1 map from

an open set ω ⊂ R
n parametrising F in an open neighborhood Ω of x0 in F . If

u ∈ C0(Ω) we would like to define

(7.1) I(u) =

∫

√

det(tψ′(t)ψ′(t))ψ∗u(t) dt,

for if ψ and therefore F is linear we have seen in Chapter VI that this gives the

integral of u with respect to the Euclidean metric in R
m, restricted to F . To justify

(7.1) we first note that if ψ1 : ω1 → F is another parametrisation and the support

of u is contained in ψ1(ω1) ∩ ψ(ω), then

(7.2)

∫

√

det(tψ′
1(s)ψ

′
1(s))ψ

∗
1u ds =

∫

√

det(tψ′(t)ψ′(t))ψ∗u dt.

In fact, ψ1 = ψ◦ψ2 defines a diffeomorphism ψ2 from a neighborhood of ψ−1
1 (supp u)

in R
n to a neighborhood of ψ−1(supp u) in R

n, and ψ∗
1u = ψ∗

2v where v = ψ∗u,
hence

∫

√

det(tψ′(t)ψ′(t))v(t) dt =

∫

√

ψ∗
2 det(

tψ′ψ′)| detψ′
2|ψ

∗
1u ds.

By the chain rule

(7.3)
det(tψ′

1(s)ψ
′
1(s)) = det(tψ′

2(s)
tψ′(ψ2(s))ψ

′(ψ2(s))ψ
′
2(s))

= (detψ′
2(s))

2ψ∗
2 det(

tψ′ψ′),

which proves (7.2).

39



Now we generalise (7.1) further by writing

(7.4) I(u) =
∑

Ij(uj), if u =
∑

uj ,

where the sum is finite, uj is continuous with support covered by a local parametri-

sation ψj , and Ij is defined by (7.1) with ψ = ψj. Our next goal is to prove that

(7.4) defines I(u) uniquely for all u ∈ C0(F ). We can choose a partition of unity

1 =
∑

ϕk in a neighborhood of supp u so that the support of ϕk ∈ C0(F ) is covered

by a local parametrisation ψ̃k. Then u =
∑

ϕku is a decomposition for which we

can apply (7.4). Given any decomposition as in (7.4) we can choose ϕk as above

with
∑

ϕk = 1 in a neighborhood of ∪ supp uj and obtain

∑

j

Ij(uj) =
∑

j

∑

k

Ij(ϕkuj) =
∑

k

∑

j

˜Ik(ϕkuj) =
∑

k

˜Ik(ϕku)

where ˜Ik is defined by means of the parametrisation ψ̃k. This proves that (7.4)

gives a unique definition of I(u). It is obvious that I depends linearly on u and

that I(u) ≥ 0 when u ≥ 0. Thus I(u) is a positive measure on F ; it is called

the Euclidean volume measure (or area measure or arc measure depending on the

dimension), and is often denoted by dS or dσ. Thus we write

I(u) =

∫

u dσ, u ∈ C0(F ).

Let us now examine more closely what made it possible to obtain a unique global

definition starting from (7.1). Assume that we are given a continuous function U
on F ×L(Rn,Rm) with support in K ×L(Rn,Rm), where K is a compact subset

of ψ(ω) and L(Rn,Rm) is the space of linear maps Rn → R
m. The integral

(7.5)

∫

U(ψ(t), ψ′(t)) dt

reduces to (7.1) if U(x,A) =
√

det(tAA)u(x). We can repeat the calculation which

led to (7.2) to see if (7.5) is also independent of the choice of parametrisation. With

the notation used in the proof of (7.2) this requires that

U(ψ1(s), ψ
′(ψ2(s)))| detψ

′
2(s)| = U(ψ1(s), ψ

′(ψ2(s))ψ
′
2(s)),

or with a change of notation

(7.6) U(x,A)| detB| = U(x,AB); x ∈ F, A ∈ L(Rn,Rm), B ∈ L(Rn,Rn).

If we could restrict ourselves to parametrisations for which detψ′
2(s) > 0 then it

would suffice to assume (7.6) when detB > 0. It is geometrically plausible that this

means using only parametrisations giving a consistent orientation. We shall give a

precise meaning to this later on. Here we just note that with this reservation the

integral (7.5) can be defined globally in a unique way if

(7.7) U(x,A) detB = U(x,AB); x ∈ F, A ∈ L(Rn,Rm), B ∈ L(Rn,Rn).

An obvious advantage of this condition compared to (7.6) is that in (7.7) U can be

a polynomial. We shall analyse the meaning of (7.7) in the following chapter.
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CHAPTER VIII

EXTERIOR DIFFERENTIAL FORMS

Let V be a finite dimensional vector space. As a first step in the discussion of

(7.7) we shall determine all real valued polynomials U defined in L(Rn, V ) such

that

(8.1) U(AB) = U(A) detB; A ∈ L(Rn, V ), B ∈ L(Rn,Rn).

Writing

Ax =

n
∑

1

xjvj , x = (x1, . . . , xn) ∈ R
n,

where vj ∈ V , we can identify L(Rn, V ) with V × · · · × V and consider U as a

function u(v1, . . . , vn), vj ∈ V . Then the condition (8.1) becomes

(8.2) u
(

n
∑

k1=1

Bk11vk1
, . . . ,

n
∑

kn=1

Bknnvkn

)

= u(v1, . . . , vn) detB.

When B is specialized to diagonal matrices we conclude that u(v1, . . . , vn) must be

homogeneous of degree 1 in every vj , and since a homogeneous polynomial of degree

1 is linear, it follows that u is linear in every vj , that is, u ∈ Ln(V ), the set of all

real valued n linear forms on V . If π : {1, . . . , n} → {1, . . . , n} is a permutation

and we set Bjk = 1 for j = π(k) and Bjk = 0 for j 6= π(k) then (8.2) implies

(8.3) u(vπ(1), . . . , vπ(n)) = u(v1, . . . , vn) sgnπ.

Thus u is an alternating multilinear form. Conversely, it follows from (8.3) and the

multilinearity that the left-hand side of (8.2) is equal to

n
∑

k1,...,kn=1

u(v1, . . . , vn) sgn

(

1 . . . n

k1 . . . kn

)

Bk11 · · ·Bknn = u(v1, . . . , vn) detB.

For a polynomial u the condition (8.2) is therefore equivalent to u ∈ Ln
a(V,R), the

space of alternating n linear real valued forms on V . For n = 1 this is of course

equal to the dual space V ∗ of V .

Example 8.1. Let θ1, . . . , θn ∈ V ∗. Then an element in Ln
a(V,R) is defined by

(8.4) (v1, . . . , vn) 7→ det〈vk, θj〉
n
j,k=1.

41



We shall now prove that (8.4) is not just an example but that the vector space

Ln
a(V,R) is spanned by elements of this form. For the proof we select a basis {ej}

in V and a dual basis {θj} in V ∗, thus

〈ei, θk〉 = δij , i, j = 1, . . . , dimV,

and v =
∑

j〈v, θj〉ej if v ∈ V . If u ∈ Ln
a(V,R) we can now write

(8.5)

u(v1, . . . , vn) = u
(

∑

j1

〈v1, θj1〉ej1 , . . . ,
∑

jn

〈vn, θjn〉ejn

)

=
∑

j1,...,jn

u(ej1 , . . . , ejn)〈v1, θj1〉 . . . 〈vn, θjn〉

=
1

n!

∑

j1,...,jn

u(ej1 , . . . , ejn) det〈vk, θjl〉
n
k,l=1.

The last equality follows since the last expression is equal to

1

n!

∑

j1,...,jn

∑

π

u(ej1 , . . . , ejn) sgnπ〈v1, θjπ(1)
〉 . . . 〈vn, θjπ(n)

〉

=
1

n!

∑

j1,...,jn

∑

π

u(ejπ(1)
, . . . , ejπ(n)

)〈v1, θjπ(1)
〉 . . . 〈vn, θjπ(n)

〉,

where π varies over all permutations of 1, . . . , n. We can also write (8.5) in the

form

u(v1, . . . , vn) =
∑

j1<···<jn

u(ej1 , . . . , ejn) det〈vk, θjl〉
n
k,l=1.

Conversely, if we set

(8.6) u(v1, . . . , vn) =
∑

j1<···<jn

aj1...jn det〈vk, θjl〉
n
k,l=1,

then

u(ei1 , . . . , ein) = ai1...in if i1 < · · · < in.

This proves that Ln
a(V ) is a vector space of dimension

(

dimV
n

)

, and a basis is dis-

played by (8.6).

It is natural to view the element in Ln
a defined by (8.4) as a product of the

linear forms θ1, . . . , θn. We shall denote it by θ1 ∧ · · · ∧ θn, and we shall prove that

there is one and only one way in which one can define a bilinear multiplication

∧ : Ln
a(V )× Lm

a (V ) → Ln+m
a (V ) so that

(θ1 ∧ · · · ∧ θn) ∧ (σ1 ∧ · · · ∧ σm) = θ1 ∧ · · · ∧ θn ∧ σ1 ∧ · · · ∧ σm,

for all θ1, . . . , θn, σ1, . . . , σm ∈ V ∗. The uniqueness is clear since this defines the

multiplication of basis elements in Ln
a and Lm

a . Set f = θ1 ∧ · · · ∧ θn and g =
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σ1 ∧ · · · ∧ σm. Then

(f ∧ g)(v1, . . . , vn+m) = det















〈v1, θ1〉 . . . 〈vn+m, θ1〉
. . . . . . . . .

〈v1, θn〉 . . . 〈vn+m, θn〉
〈v1, σ1〉 . . . 〈vn+m, σ1〉
. . . . . . . . .

〈v1, σm〉 . . . 〈vn+m, σm〉















=
1

n!m!

∑

π

f(vπ(1), . . . , vπ(n))g(vπ(n+1), . . . vπ(m+n)) sgnπ,

where π varies over all permutations of 1, . . . , n+m. The division by n!m! is required

since we sum over ordered groups of columns and not over subsets of columns as in

the standard Laplace expansion of determinants. Alternatively we could sum over

permutations with π(1) < · · · < π(n) and π(n+1) < · · · < π(n+m) and avoid this

division. Thus multiplication of general f ∈ Ln
a and g ∈ Lm

a must be defined by

(f ∧ g)(v1, . . . , vn+m) =
1

n!m!

∑

π

f(vπ(1), . . . , vπ(n))g(vπ(n+1), . . . , vπ(n+m)) sgnπ.

The multiplication becomes associative since this is true when one just multiplies

basis elements of the form (8.4).

Since Ln
a(V ) is spanned by wedge products (exterior products) of elements in V ∗

we shall write

Ln
a(V ) = ∧nV ∗.

The direct sum
dimV
⊕

n=0

∧nV ∗

is therefore an algebra of dimension
∑dimV

0

(

dimV
n

)

= 2dimV . It is called the exterior

algebra over V ∗. It is not commutative, for we have

f ∧ g = (−1)nmg ∧ f, if f ∈ ∧nV ∗, g ∈ ∧mV ∗.

We shall now return to (7.7) which requires us to study elements in the exterior

algebra which may depend on a variable point. If Ω ⊂ V is open and k is an integer

≥ 0, we shall consider the space Ck(Ω,∧nV ∗). If x1, . . . , xN is a coordinate system

in V , thus xj = 〈x, θj〉 where θj is a basis in V ∗, then we can write every element

u ∈ Ck(Ω,∧nV ∗) in the form

x 7→
∑

I

′uI(x)θI1 ∧ · · · ∧ θIn ,

where uI ∈ Ck(Ω) and I1 < · · · < In in the sum. Now θj = dxj so the sum can

also be written in the conventional form

∑

I

′uI(x)dxI1 ∧ · · · ∧ dxIn .
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This is called an exterior differential form. For the interpretation as n linear form

one must of course always use (8.4).

If V1 is another vector space and Ω1 ⊂ V1 is an open set, f ∈ Ck+1(Ω1, V ) and

f(Ω1) ⊂ Ω, then f ′ is a map Ω1 × V1 → Ω × V which is linear along V1. Since

an element in Ck(Ω,∧nV ∗) can be viewed as a Ck map from Ω × V × · · · × V to

R which is multilinear and alternating in the arguments from V , it is clear that

composition with f ′ gives a map

f∗ : Ck(Ω,∧nV ∗) → Ck(Ω1,∧
nV ∗

1 );

explicitly it is given by

(f∗u)(x; v1, . . . , vn) = u(f(x); f ′(x)v1, . . . , f
′(x)vn), x ∈ Ω1, vj ∈ V1.

(The notation f ′∗ might be more adequate but the traditional notation is just f∗.)

In particular, if u is an n form on Ω and ψ ∈ Ck+1(Rn,Ω) then

ψ∗u = u(ψ(t); ∂ψ/∂t1, . . . , ∂ψ/∂tn) dt1 ∧ · · · ∧ dtn.

It is clear that f∗(u ∧ v) = (f∗u) ∧ (f∗v) and that (f ◦ g)∗ = g∗ ◦ f∗ when the

composition is defined. The invariance of the differential implies that

f∗du = df∗u

when u is a 0 form, that is, a smooth function.

We shall now define the differential of a differential form. To simplify notation

we just consider C∞ forms and write λn(Ω) = C∞(Ω,∧nV ∗). The differential of

functions can be viewed as a linear map d : λ0(Ω) → λ1(Ω). If f : Ω1 → Ω is a C∞

map from an open set Ω1 in another vector space V1, the chain rule (the invariance

of the differential) gives as already mentioned a commutative diagram

λ0(Ω)
d

−−−−→ λ1(Ω)

f∗





y

f∗





y

λ0(Ω1)
d

−−−−→ λ1(Ω1)

.

We shall now prove that it is possible to extend the definition of d to a linear

operator λn(Ω) → λn+1(Ω) for all Ω and n so that the diagram

(8.7)

λ0(Ω)
d

−−−−→ λ1(Ω)
d

−−−−→ λ2(Ω)
d

−−−−→ . . .

f∗





y

f∗





y

f∗





y

λ0(Ω1)
d

−−−−→ λ1(Ω1)
d

−−−−→ λ2(Ω1)
d

−−−−→ . . .

is always commutative. Moreover we shall prove that this determines d uniquely

apart from a constant factor, depending on n, which is fixed if in addition we require

Leibniz’ rule

(8.8) d(u ∧ v) = (du) ∧ v + u ∧ dv, if u ∈ λ0(Ω), v ∈ λn(Ω).
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Finally we shall prove that

(8.9) d2u = 0, d(u ∧ v) = (du) ∧ v + (−1)nu ∧ dv, if u ∈ λn(Ω), v ∈ λm(Ω).

Assume at first only that d is defined and that (8.7) is always commutative.

Then it follows that

(i) d(dx1 ∧ · · · ∧ dxn) = 0 in R
n.

(ii) d(x1dx2 ∧ · · · ∧ dxn+1) = Cndx1 ∧ · · · ∧ dxn+1 in R
n+1.

(i) is obvious since every n+1 form in R
n is equal to 0. To prove (ii) we note that

d(x1dx1 ∧ · · · ∧ dxn+1) = u(x) dx1 ∧ · · · ∧ dxn+1

with u ∈ C∞(Rn+1), for every n + 1 form in R
n+1 can be written in this way. If

τa : x 7→ x+ a is a translation in R
n+1, we get from (8.7) and (i) that

u(x+ a)dx1 ∧ · · · ∧ dxn+1 = d((x1 + a)dx2 ∧ · · · ∧ dxn+1) = d(x1dx2 ∧ · · · ∧ dxn+1).

Hence u(x+ a) = u(x), that is, u(x) = Cn. If (8.8) holds then Cn = 1.

If now u ∈ λn(Ω) where Ω is an open subset of V , and x1, . . . , xN is a coordinate

system in V , we can write

u(x) =
∑

I

uI(x)dxI1 ∧ · · · ∧ dxIn

where u ∈ C∞(Ω). If we apply the commutative diagram (8.7) to the map Ω ∋

x 7→ (uI(x), xI1 , . . . , xIn) ∈ R
n+1, it follows from (ii) that

d(uIdxI1 ∧ · · · ∧ dxIn) = CnduI ∧ dxI1 ∧ · · · ∧ dxIn ,

and if Cn = 1 we obtain

(8.10) du =
∑

I

duI ∧ dxI1 ∧ · · · ∧ dxIn .

This proves the uniqueness which we have claimed.

Let us now with a fixed coordinate system define du by (8.10). Then we have

d2u = d
∑

I,j

∂uI/∂xjdxj ∧ dxI1 ∧ · · · ∧ dxIn

=
∑

I,j,k

∂2uI/∂xj∂xkdxk ∧ dxj ∧ dxI1 ∧ · · · ∧ dxIn = 0,

for ∂2uI/∂xj∂xk = ∂2uI/∂xk∂xj. If v =
∑

J vJdxJ1
∧ · · · ∧ dxJm

then it follows

from the elementary product rule that (8.9) is valid, for moving the differential

dvJ to the right of the differentials dxI1 , . . . , dxIn introduces a factor (−1)n. But

conversely (8.9) implies that du must be given by (8.10). Since (8.9) does not

depend on the choice of coordinates we conclude that (8.10) is also independent of

how they are chosen. We also see from (8.9) that (8.10) is valid for arbitrary C∞
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functions xi, whether they form a part of a coordinate system or not. To prove the

commutativity of (8.7) it is now sufficient to note that

f∗u =
∑

I

f∗uIdfI1 ∧ · · · ∧ dfIn ,

so it follows from the chain rule that

df∗u =
∑

I

(f∗duI) ∧ dfI1 ∧ · · · ∧ dfIn = f∗du.

Summing up, we have now defined a first order differential operator d from n
forms to n + 1 forms and proved that (8.9) is valid and that (8.7) is commutative

for every C∞ map f . Of course it suffices to assume that f and u have one or two

continuous derivatives, for this is all that these identities involve.

The first property in (8.9) gives important information about the equation

(8.11) du = v,

where v is given in λn+1(Ω) and the unknown u is in λn(Ω): the equation dv = 0

is a necessary condition for solvability. When n = 0, for example, then (8.11) is

equivalent to the system ∂u/∂xj = vj , j = 1, . . . , N , and dv = 0 is equivalent to

∂vj/∂xk − ∂vk/∂xj = 0 for j, k = 1, . . . , N . We shall prove that the converse is

true locally. Later on we shall see that the question whether the condition dv = 0

is sufficient also globally leads to basic notions of algebraic topology.

Theorem 8.1 (Poincaré’s lemma). Let v be a n+1 form with Ck coefficients,

k ≥ 1, in the open convex set Ω ⊂ V . If dv = 0 then there exists an n form u in Ω

with Ck coefficients such that du = v in Ω.

Proof. We may assume that 0 ∈ Ω. Then it follows that

˜Ω = {(x, t) ∈ V ×R; tx ∈ Ω}

is an open neighborhood of Ω× [0, 1]. With f(x, t) = ft(x) = tx we form

f∗v = f∗
t v + dt ∧ wt

where f∗
t is defined by regarding t as a parameter so that f∗

t v just as wt is a

differential form which contains no factor dt but only differentials of the coordinates

in Ω. Since df∗v = f∗dv = 0 we have

0 = dt ∧ (∂(f∗
t v)/∂t− dxwt) +R

where R is a form which does not contain dt and dxwt denotes the differential of w
when t is regarded as a parameter. Hence

∂(f∗
t v)/∂t = dxwt,

and integration from t = 0 to t = 1 gives now

f∗
1 v − f∗

0 v = du, u =

∫ 1

0

wt dt.
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But f1 is the identity and f0 maps Ω to 0 so this means that v = du and the

theorem is proved.

In this section we started from the problem of finding objects which allow integra-

tion over n dimensional submanifolds of a vector space V . If we look back at the ar-

guments we are led to define the integral of a differential form u = u(x)dx1∧· · ·∧dxn
in R

n by
∫

u =

∫

u(x) dx

where the integral in the right-hand side is the standard Riemann (or Lebesgue)

integral. For an n form in V and a C1 local parametrisationR
n ⊃ ω ∋ t 7→ ψ(t) ∈ V

of an n dimensional submanifold F of V we define

∫

F

u =

∫

ω

ψ∗u

when F supp u is a compact subset of ψ(ω). If ω1 ∋ s 7→ ψ1(s) is another parametri-

sation in a neighborhood of F ∩supp u and if det(ψ−1 ◦ψ1)
′ > 0, then the definition

is not changed if we replace ψ by ψ1, but the sign is changed if det(ψ−1 ◦ψ)′ < 0. If

F is oriented, that is, F is provided with a system of parametrisations ψj covering F

such that ψ−1
j ψk has a positive functional determinant for arbitrary j, k where it is

defined, then the discussion in Chapter VII shows that
∫

F
u can be uniquely defined

for every n form u such that F ∩ supp u is compact, if we only use parametrisations

ψ with positive functional determinant for ψ−1ψj , for every j. We shall return to

this point and add greater precision and generality after introducing the general

notion of a manifold.

As an application of the calculus of differential forms we shall end this section

by giving an alternative derivation of the basic properties of the degree of mapping

in Chapter IV.

Theorem 8.2. Let f ∈ C∞(Rn,Rn), and let Ω be an open bounded subset of

R
n. If y /∈ f(∂Ω) is a regular value for f and O is the component of y in ∁f(∂Ω),

then

(8.12)

∫

Ω

f∗u = d(f,Ω, y)

∫

O

u, if u ∈ λn0 (O),

that is, u is an n form with compact support in O. Here d(f,Ω, y) is defined by

(4.1).

In particular it follows that d(f,Ω, y) is independent of y ∈ Ω, so we have a new

proof of property (i) of d, which was an essential first step in the definition of the

degree.

Proof. If u = u(x)dx1 ∧ · · · ∧ dxn is a continuous n form with support in a

sufficiently small neighborhood of y, then Ω∩supp f∗u is contained in neighborhoods

of the finitely many points x ∈ Ω with f(x) = y where f is a diffeomorphism. By

Theorem 7.1 we therefore obtain

∫

Ω

f∗u =

∫

Ω

u(f(x)) det f ′(x) dx = d(f,Ω, y)

∫

u(x) dx = d(f,Ω, y)

∫

u.
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Thus there are n forms with
∫

u 6= 0 for which (8.12) is valid.

In the general proof of (8.12) we shall use that if v is an n− 1 form in C1 with

compact support and dv = u, then

(8.13)

∫

u = 0.

The proof is obvious: we have

v =

n
∑

1

vj(x)dx1 ∧ · · · ∧ ̂dxj ∧ · · · ∧ dxn

where ̂dxj means that dxj should be omitted, and this gives

u = dv =

n
∑

1

(−1)j−1∂vj/∂xjdx1 ∧ · · · ∧ dxn

so (8.13) follows immediately by integration. ((8.13) is a special case of Stokes’

formula which will be discussed later on. Conversely, there is an addition to The-

orem 8.1 (see Theorem 12.2 below) which states that (8.13) is sufficient for the

existence of v with the stated properties. However, we shall at this time avoid

the complete proof of this fact.) Since dv = u implies f∗u = f∗dv = d(f∗v) and

supp f∗v ⊂ f−1(supp v), which is a closed set which does not intersect ∂Ω, we also

obtain

(8.14)

∫

Ω

f∗u dx = 0.

Let ϕ ∈ C1
0 (R

n) have support in a small neighborhood of 0, and assume that

0 ≤ ϕ and
∫

ϕdx = 1. Set for a ∈ R
n

ϕa = ϕ(x− a)dx1 ∧ · · · ∧ dxn.

Then
∫

ϕa = 1, and
∫

Ω
f∗ϕa is independent of a in {a; suppϕa ⊂ ∁f(∂Ω)}. In fact,

the derivative of ϕa with respect to aj is

−∂ϕ(x− a)/∂xjdx1 ∧ · · · ∧ dxn = (−1)jd((ϕ(x− a)dx1 ∧ . . .̂dxj ∧ · · · ∧ dxn),

so it follows that
∫

∂ϕa/∂aj = 0,

∫

Ω

f∗∂ϕa/∂aj = 0.

If K is a compact subset of O and suppϕ is sufficiently close to the origin we

therefore obtain
∫

f∗ϕa = d(f,Ω, y), a ∈ K.

If u is a continuous function with support in K we obtain by multiplication with

u(a) and integration that

∫

Ω

f∗
(

∫

uaϕa da
)

= d(f,Ω, y)

∫

u(a) da.
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Here
∫

u(a)ϕa da =
(

∫

u(a)ϕ(x− a) da
)

dx1 ∧ · · · ∧ dxn.

When the support of ϕ tends to {0} the integral in the right-hand side converges

uniformly to u(x). This completes the general proof of (8.12).

Remark. The deeper reason behind this proof is the homotopy invariance which

will be proved in Chapter 11 (see Theorem 11.4).

Lemma 4.1 is an immediate consequence of Theorem 8.2. In fact, if we choose u
with

∫

u dx = 1 and support in the component of y in ∁F (∂Ω× [0, 1]) then

d(ft,Ω, y) =

∫

Ω

f∗
t u

where ft(x) = F (x, t). Here the left-hand side is an integer and the right-hand side

is a continuous function of t ∈ [0, 1], so it must be a constant. The geometrical

arguments in Lemma 4.1 have now been completely replaced by analytical proofs.
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CHAPTER IX

MANIFOLDS AND VECTOR BUNDLES, STOKES’ FORMULA

So far we have only considered submanifolds of a finite dimensional vector space.

According to Definition 2.2 they are characterized by the existence of parametri-

sations. By isolating the properties of parametrisations which are independent of

those of the embedding space we shall now define the general notion of manifold.

Definition 9.1. A Ck atlas, k ≥ 1, in a topological space X is a countable

covering of X with open subsets Xi and for every i a homeomorphism ψi : X
′
i → Xi

where X ′
i is open in Rn, such that

(9.1) ψ−1
i ◦ ψj ∈ Ck(ψ−1

j (Xi ∩Xj),R
n) for all i and j.

If U is open in X , then a function f : U → R is said to be in Ck(U) if

f ◦ ψi ∈ Ck(ψ−1
i (U ∩Xi)) for every i.

Two different atlases give rise to the same definition of Ck(U,R) for every U if

and only if their union is an atlas. Then they are said to be equivalent, and an

equivalence class of atlases is called a Ck structure on X . Their union is the

maximal atlas defining the structure.

The difference between this definition and the definition of a Ck submanifold

of RN is that now it is a priori meaningless to talk about differentiability of the

parametrisations ψi. However, it is possible to keep the condition that the maps

ψ−1
i ψj comparing different parametrisations shall be in Ck. Later on we shall

prove that every manifold can be realised as a manifold embedded in some RN , so

the general notion of manifold is not really a generalisation but consists rather in

disregarding the embedding.

Every Ck structure defines a Cj structure when j ≤ k. For the sake of simplicity

we shall usually consider C∞ structures. The corresponding manifold is then said

to be a(n infinitely) differentiable manifold.

If X and Y are two differentiable manifolds then we can define Ck(X, Y ) as the

set of maps f : X → Y such that ψ−1
j ◦ f ◦ ϕi ∈ Ck where it is defined, ψj and ϕi

denoting the parametrices in an atlas of Y and one of X .

The tangent space of an embedded manifold was defined in Chapter II as the

image of Rn under the differential of the parametrisation. The definition has to

be modified for a general manifold since we only have the differentials of the maps

(9.1) available while the differential of ψi has no sense as yet. Denote the map (9.1)

by ψij . We can regard ψ′
ij as a C

∞ map

ψ−1
j (Xi ∩Xj)×Rn → ψ−1

i (Xi ∩Xj)×Rn
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which is linear in the variable in Rn. Equivalently we can regard this as a map

gij : (Xi ∩Xj)×Rn ∋ (x, t) → (x, ψ′
ij(ψ

−1
j (x))t) ∈ (Xi ∩Xj)×Rn.

Since ψik = ψij ◦ ψjk where the right-hand side is defined, we have by the chain

rule ψ′
ik = ψ′

ij ◦ ψ
′
jk, or more precisely

gik = gijgjk in (Xi ∩Xj ∩Xk)×Rn.

We can therefore collect the parametrised vector spaces Xi×Rn to a vector bundle

in the following way: In the set {(i, x, v); x ∈ Xi, v ∈ Rn} we set

(i, x, v) ∼ (j, y, w) if x = y ∈ Xi ∩Xj and v = gij(x)w.

This is an equivalence relation. The set E of equivalence classes obtains a C∞

structure from the atlas X ′
i × Rn → Xi × Rn → E. By the definition of the

equivalence relation we also have a C∞ map p : E → X , for equivalence of two

triples requires that the two elements in X which occur are equal. Moreover,

Ex = p−1(x) is for every x ∈ X a vector space of dimension n, for all gij are

linear in the Rn variables. One calls E the tangent bundle of X , and one writes

E = T (X), Ex = Tx(X). This is a vector bundle in the sense of the following

general definition:

Definition 9.2. If X is a C∞ manifold then a C∞ vector bundle over X with

fiber of type Rn is a C∞ manifold E with a C∞ map p : E → X such that

(i) p−1(x) = Ex has a structure of n dimensional vector space over R if x ∈ X ,

(ii) every x ∈ X has a neighborhood U such that there is a diffeomorphism

p−1(U) → U × Rn which is linear on each fiber and commutes with the

projections.

For an embedded manifold X one can of course identify the tangent bundle T (X)

just defined with the tangent space introduced in Chapter II. We shall also give

an alternative definition of T (X) which only depends on the class of C∞ functions

on X ; this will confirm that the construction gives equivalent results for equivalent

atlases. The new definition depends on the observation that when U ⊂ Rn is open

and x ∈ U , v ∈ Rn, then the map

(9.2) C∞(U) ∋ ϕ 7→ 〈v, dϕ〉 = ϕ′(v) = L(ϕ)

is a linear form in ϕ such that

(9.3) L(ϕψ) = ϕ(x)L(ψ) + L(ϕ)ψ(x).

Conversely, every linear form L satisfying (9.3) is of the form (9.2). In fact, by (9.3)

we have L(1) = 2L(1), hence L(1) = 0, and L(ϕ) = 0 if ϕ vanishes of second order

at x, for then we can use Taylor’s formula to write

ϕ(y) =

n
∑

j,k=1

(yj − xj)(yk − xk)ϕjk(y)

51



where ϕjk ∈ C∞, and it follows from (9.3) that L(χ) = 0 if χ is the product

of two C∞ functions vanishing at x. Hence L(ϕ) = L(ϕ1) if ϕ1(y) =
∑n

1 (yj −
xj)∂ϕ(x)/∂xj, which proves the claim. The same conclusion is valid if we have a

derivation, that is, a map satisfying (9.3), which is only defined on C∞
0 (U). The

notion of derivation is also well defined at a point x in a manifold M , and since

C∞(M) ⊃ C∞
0 (U) if U is an open neighborhood of x ∈ M , it follows that we can

identify T (X) with the space of all derivations; Tx(X) is the space of derivations

at x.
Starting from any one of these definitions of T (X) it is also clear that if f : X →

Y is a C1 map then the differential f ′ maps T (X) to T (Y ), and f ′(x) maps Tx(X)

linearly to Tf(x)(Y ) for every x ∈ X . Here the differential f ′ is defined using local

coordinates as in Chapter I.

By a C∞ section of a vector bundle E over X one means a C∞ map s : X → E
such that p ◦ s is the identity in X , that is, sx = s(x) ∈ Ex for every x. Let in

particular s be a section of T (X). If u ∈ C∞(X) then s 7→ sxu(x) is by our second

interpretation of T (X) a function defined in X . In local coordinates of an atlas s
corresponds to functions si ∈ C∞(Xi,R

n), and if u ◦ ψi = ui ∈ C∞(X ′
i) then

(9.4) sψiu = u′i(s
i) in X ′

i,

which proves that x 7→ sxu is in C∞(X). That the right-hand side of (9.4) is a

function in X expressed in the local coordinates is also clear since uj = ui ◦ ψij in

ψ−1
j (Xi ∩Xj), and

u′j(s
j) = u′i(ψij)(ψ

′
ijs

j) = u′i(s
i) ◦ ψij .

We can now also define a vector bundle T ∗(X) with fibers T ∗
x (X) equal to the

dual spaces of the fibers Tx(X) of T (X). To do so we just replace the maps gij
above by the maps (tgij)

−1, that is, more explicitly

(Xi ∩Xj)×Rn ∋ (x, ξ) 7→ (x, tψ′
ji(ψi(x))ξ) ∈ (Xi ∩Xj)×Rn.

We leave as an exercise to prove the necessary transitivity conditions and to prove

that the scalar product in Rn defines invariantly a scalar product of elements in

Tx(X) and T ∗
x (X). If u ∈ C∞(X) then du becomes a section of T ∗(X). More

generally, we define the vector bundle λkT ∗(X) for k = 0, . . . , n by replacing Rn

with ∧kRn above. The sections of λkT ∗(X) are then in every local coordinate

system precisely the differential forms in the local coordinates. Thus a section

u of λkT ∗(X) corresponds to a differential form ui in X ′
i for every i such that

ψ∗
ijui = uj in ψ−1

j (Xi ∩ Xj) for all i, j. Conversely, such differential forms in X ′
i

define uniquely a differential form in X . (The advantage of the notion of vector

bundle is essentially that we do not have to write down these transformation rules

explicitly all the time.) The exterior differential d maps C∞ sections of λk(T ∗(X))

to sections of λk+1(T ∗(X)). (Analogous statements are of course true for manifolds

which are differentiable of finite order but we leave for the reader to consider how

they should be formulated.)

We shall now return to the definition of integration of a differential forms on a

manifold. First we need another definition:
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Definition 9.3. A manifold is called oriented if it is provided with an atlas such

that all the maps (9.1) have a positive functional determinant (that is, preserve the

orientation).

If X is an oriented manifold of dimension n, u is a continuous n form in X , and

K is a compact subset of X , then the discussion in Chapters VII and VIII proves

that
∫

K
u is uniquely defined.

An orientation of a manifold X of dimension n is often specified by giving a

continuous n form a on X which is 6= 0 at every point. If ψi : X
′
i → Xi belongs

to an atlas and X ′
i is connected, then ψ

∗
i a is either positive in X ′

i or else negative

in X ′
i. (We say that a n form f in an open subset of Rn is positive if it can be

written f(x)dx1 ∧ · · · ∧ dxn with f > 0.) In the second case we replace ψi by the

composition with the reflection in the plane x1 = 0, for example. This gives a new

atlas such that ψ∗
i a is always positive. But then it defines an orientation for X ;

one says that X is oriented by a > 0. Conversely, if X is an oriented manifold it is

easy to use a partition of unity to construct a n form a which is nowhere 0 so that

the same orientation is defined by a.

A submanifold Y of a manifold is defined precisely as we defined a submanifold

of RN . It is clear that Y itself is then a manifold. The embedding i : Y → X is

injective and has injective differential, and the range is locally closed, that is, it has

a closed intersection with some neighborhood of every point in Y . If Y is oriented

and of dimension n and u is an n form in X , we can now for a compact subset K
of Y define

∫

K

u =

∫

K

i∗u.

If u is a k form with k 6= n we define
∫

K
u = 0.

We can now state and prove Stokes’ formula. Let X be a manifold and Y an

oriented submanifold of dimension n. We assume given in Y a C∞ function χ
such that χ = 0 implies that dχ 6= 0, and Y− = {u ∈ Y ;χ(y) ≤ 0} is compact.

Then the boundary ∂Y− = {y ∈ Y ;χ(y) = 0} is also a C1 manifold which can be

oriented as follows: For every y0 ∈ ∂Y− there is a neighborhood where we can find

a parametrisation Rn ⊃ ω ∋ ψ(t) 7→ ψ(t) of Y such that χ(ψ(t)) = t1. This is

attained by taking an arbitrary parametrisation and replacing a suitable coordinate

with χ, making sure that the functional determinant of the change of variables is

not 0 at the point corresponding to y0. To avoid a trivial exceptional case we

assume that n > 1. If we choose ψ so that ψ is in the maximal atlas belonging

to the orientation of Y , then the map t′ = (t2, . . . , tn) 7→ ψ(0, t′) belongs to the

mnaximal atlas defining ∂Y−. If ψ1 is another parametrisation with χ(ψ1(s)) = s1
then

ψ−1
1 ◦ ψ(t) = (t1, g(t))

where g(t) ∈ Rn−1 and det ∂g/∂t′ 6= 0. Thus the maps t′ 7→ ψ(0, t′) define an

atlas for ∂Y− which orients ∂Y−. The preceding calculation also proves that the

orientation is independent of the choice of χ. Informally we can say that ∂Y− is

oriented by choosing positively oriented coordinate systems for Y which begin with

χ and restricting them to ∂Y−. We can now prove

Theorem 9.4 (Stokes’ formula). If Y is an oriented submanifold of X and
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u is a C1 n form in a neighborhood of Y− in X then

(9.5)

∫

∂Y−

u =

∫

Y−

du.

Proof. By a partition of unity the proof is reduced to the case where the

intersection of Y and supp u is contained in a coordinate patch of the form used to

orient ∂Y1 or a coordinate patch with closure contained in Y− \ ∂Y−. Let v = ψ∗u
where ψ is the corresponding parametrisation. Since ψ∗du = d(ψ∗u) = dv we only

have to prove that if v is a C1 form of degree n − 1 in Rn with compact support

then
∫

Rn

dv = 0,

∫

{x∈Rn;x1<0}

dv =

∫

{x∈Rn;x1=0}

v.

Writing

v =

n
∑

1

(−1)j−1vj(x)dx1 ∧ · · · ∧ ̂dxj ∧ · · · ∧ dxn

we have

dv =

n
∑

1

∂vj/∂xjdx1 ∧ · · · ∧ dxn.

The integral of ∂vj/∂xj with respect to xj over R is equal to 0, and the integral of

∂v1/∂x1 when x1 < 0 is equal to v1(0, ·), so we obtain

∫

x1<0

dv =

∫

v1(0, x2, . . . , xn) dx2 . . . dxn =

∫

x1=0

v

with the induced orientation. This completes the proof.

We shall now discuss some special cases. First we take X = Y = Rn and let

Ω ⊂ Rn be open and bounded with ∂Ω ∈ C∞. Then the preceding calculation

gives if v as above is a C1 form of degree n− 1 in a neighborhood of Ω

∫

Ω

n
∑

1

∂vj/∂xj dx =

∫

∂Ω

v.

To give the right-hand side a more familiar look we assume again that the support

of v is contained in a neighborhood of a boundary point where we can introduce

local parameters x = x(t1, . . . , tn) with t1 = χ(x). If we set t′ = (t2, . . . , tn) and

ψ(t′) = x(0, t′) then

∫

∂Ω

v =

∫ n
∑

1

vj(ψ(t
′))Nj(t

′) dt′, Nj = (−1)j−1 det(∂ψi/∂tk)i=1,...,ĵ,...,n;k=2,...,n.

The definition of N means that

〈N,w〉 = det(w, ∂ψ/∂t2, . . . , ∂ψ/∂tn), w ∈ Rn,
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which proves that N is a Euclidean normal of ∂Ω. Taking w = N we obtain

‖N‖2 = det(N, ∂ψ/∂t2, . . . , ∂ψ/∂tn), hence

‖N‖4 = det

(

〈N,N〉 0

0 (〈∂ψ/∂tj, ∂ψ/∂tk〉)

)

= ‖N‖2 det(tψ′(t′)ψ′(t′)),

which means that

(9.6) ‖N‖2 = det(tψ′(t′)ψ′(t′)).

To determine the direction of N we note that since t is a positively oriented coor-

dinate system we have

0 < det(∂x/∂t) =
n
∑

1

Nj∂xj/∂t1

and that differentiation of the equation t1 = χ(x) with respect to t1 gives

1 =

n
∑

1

∂χ/∂xj∂xj/∂t1.

Since gradχ is also a normal vector of ∂Ω it has also the same direction as N , which

proves that N has the direction of the exterior normal. If ν = N/‖N‖ denotes the

exterior unit normal we obtain

∫

∂Ω

v =

∫ n
∑

1

vjνj
√

det(tψ′(t′)ψ′(t′)) dt′.

Recalling the definition of the Euclidean surface measure dσ in Chapter VII we

have now proved that Stokes’ formula contains the Gauss-Green formula

(9.7)

∫

Ω

div v dx =

∫

Ω

n
∑

1

∂vj∂xj dx =

∫

∂Ω

〈v, ν〉 dσ, v ∈ C1(Ω,Rn).

When n = 3 we shall now also derive the classical Stokes’ formula. Let S be an

oriented smooth surface in R3 and let Y be a relatively compact open subset of S
with C∞ boundary ∂Y , which is thus an oriented curve. If v =

∑3
1 vjdxj is a C1

one form near Y then

dv =

3
∑

1

dvj ∧ dxj = w1dx2 ∧ dx3 − w2dx1 ∧ dx3 + w3dx2 ∧ dx3, where

w1 = ∂v3/∂x2 − ∂v2/∂x3, w2 = ∂v1/∂x3 − ∂v3/∂x1, w3 = ∂v2/∂x1 − ∂v1/∂x2.

We can view (w1, w2, w3) as a vector field, denoted by rot v. Then Stokes’ formula

(9.5) yields

(9.8)

∫

∂Y

3
∑

1

vj dxj =

∫

∂Y

〈v, t〉 ds =

∫

Y

〈rot v, ν〉 dσ.
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Here t is the unit tangent of the oriented curve ∂Y , ds is the arc measure on ∂Y ,

ν is the outer unit normal of S, and dσ is the Euclidean surface measure on S.
This follows at once from the calculations which led to (9.7). Formula (9.8) is the

classical Stokes’ formula.

Finally we shall use Stokes’ formula to show how the degree of mapping can be

expressed in terms of the Kronecker form

ω = ω̃/(γn‖x‖
n) in Rn \ {0}.

Here γn is the area of the Euclidean unit sphere {x ∈ Rn; ‖x‖ = 1}, and

ω̃ =

n
∑

1

(−1)j−1xjdx1 ∧ · · · ∧ ̂dxj ∧ · · · ∧ dxn,

so ω is a n− 1 form in Rn \ {0}. If g is a C∞ function then

d(gω̃) =
n
∑

1

∂(g(x)xj)/∂xjdx1∧· · ·∧dxn = (ng(x)+
n
∑

1

xj∂g(x)/∂xj)dx1∧· · ·∧dxn.

When g(x) = 1/(γn‖x‖
n) we conclude that dω = 0 in Rn \ {0}. When g = 1/γn

we obtain by Stokes’ formula that

(9.9)

∫

‖x‖=1

ω =
1

γn

∫

‖x‖=1

ω̃ =
n

γn

∫

‖x‖≤1

dx1 ∧ · · · ∧ dxn = 1.

More generally let T : Rn → Rn be a linear bijection. Then T ∗ω is closed in Rn\0,

so two applications of Stokes’ formula give for ε > 0

∫

‖x‖=ε

T ∗ω =

∫

‖Tx‖=1

T ∗ω =

∫

‖Tx‖=1

T ∗ω̃/γn =

∫

‖Tx‖≤1

T ∗dω̃/γn

= detT
n

γn

∫

‖Tx‖≤1

dx1 ∧ · · · ∧ dxn = detT/| detT | = signdetT.

It is now easy to prove

Theorem 9.5. Let f ∈ C∞(Rn,Rn) and let Ω be an open bounded subset of

Rn with smooth boundary. If 0 /∈ f(∂Ω) is a regular value of f , then

(9.10)

∫

∂Ω

f∗ω = d(f,Ω, 0).

Proof. Since Ω is compact we can then choose a C∞ function χ in Rn such

that χ < 0 in Ω, χ = 0 and gradχ 6= 0 on ∂Ω. The orientation of ∂Ω in (9.10) is

defined as in Stokes’ formula. Let now x1, . . . , xN be the finitely many solutions in

Ω of the equation f(x) = 0, and let Ui be a ball of small radius ε with center at

xi. Since d(f∗ω) = f∗(dω) = 0 in Ω \ (∪N1 Ui), we obtain from Stokes’ formula for

small ε
∫

∂Ω

f∗ω =

N
∑

1

∫

∂Ui

f∗ω.
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By Taylor’s formula f(x) = f ′(xi)(x − xi) + O(ε2) and f ′(x) = f ′(xi) + O(ε) on

∂Ui, so it follows that

∫

∂Ui

f∗ω → sign det f ′(xi) when ε→ 0,

which proves the theorem.

Remark. In Chapter XI we shall prove that the left-hand side of (9.10) only

depends on the homotopy class of f which implies that it can also be defined for

continuous maps f . Thus (9.10) holds for such f with D(f,Ω, 0) in the right-hand

side.
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CHAPTER X

EMBEDDING OF A MANIFOLD

Immediately after Definition 9.1 we pointed out that every manifold can be

realised as a submanifold of RN for some N . In this chapter we shall supply the

proof of this statement.

Let X be a C∞ manifold of dimension n. Recall that a map f : X → R
N is

called proper if for every compact set K ⊂ R
N the inverse image

f−1(K) = {x ∈ X ; f(x) ∈ K}

is compact. It is clear that f(X) is closed if f is continuous and proper. Assume

now that f ∈ C∞(X,RN). One calls f an immersion if f ′(x) is injective for every

x ∈ X . By the implicit function theorem this implies that a neighborhood of x
in X is mapped bijectively on a submanifold of RN of dimension n. One calls f
a proper embedding if f is a proper injective immersion. The range f(X) is then

a closed C∞ submanifold of RN , and f : X → f(X) is a diffeomorphism which

identifies the abstract manifold X with the closed submanifold f(X) of RN . Our

goal in this chapter is to prove the existence of a proper embedding f of X .

Lemma 10.1. For arbitrary N ≥ 1 there exist proper maps f ∈ C∞(X,RN).

Proof. We may assume that N = 1. Choose countably many parametrisations

ψi : X
′
i → Xi ⊂ X where X ′

i ⊂ R
n, and compact sets Ki ⊂ Xi such that X = ∪Ki.

(We can repeat each parametrisation in an atlas countably many times and use that

every open set in R
n is the union of countably many compact sets.) Now choose

χi ∈ C∞
0 (Xi) such that 0 ≤ χi ≤ 1 and χi = 1 in a neighborhood of Ki. This can

be done by taking a function in C∞
0 (X ′

i) equal to 1 in a neighborhood of ψ−1
i (Ki),

composing it with ψ−1
i and extending it by 0 in X \Xi. Now

ϕj = χj(1− χj−1) . . . (1− χ1) ∈ C∞
0 (X),

suppϕj ⊂ Xj , ϕj = 0 close to K1 ∪ · · · ∪Kj−1.

(We define ϕ1 = χ1.) Every point in X has then a neighborhood where ϕj = 0

except for finitely many j, and
∑

ϕj = 1. Hence

f =

∞
∑

1

jϕj ∈ C∞(X,R),

and f has the required properties, for f(x) ≤ M implies that ϕj(x) 6= 0 for some

j ≤M , hence that x ∈ ∪M
1 suppϕj .

To construct embeddings we first study the semiglobal problem to embed com-

pact subsets of X . We keep the notation in the preceding proof and write Mj =

K1 ∪ · · · ∪Kj .
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Lemma 10.2. For every j one can find an integer N and g ∈ C∞
0 (X,RN) so

that g is an injective immersion in a neighborhood of Mj.

Proof. Since ψj : X ′
j → Xj is a parametrisation of Xj , the inverse ψ−1

j is an

embedding of Xj in R
n. Set

gj = (χjψ
−1
j , χj) ∈ R

n+1 in Xj , gj = 0 in X \Xj,

where χj is defined as in the proof of Lemma 10.1. Then gj is an injective immersion

of a neighborhood of Kj in R
n+1, and

g = g1 ⊕ · · · ⊕ gj

is an injective immersion of Mj in R
(n+1)j .

Remark. Note that if K ⊂ X is compact and K ∩Mj = ∅ then all χj can be

chosen equal to 0 in K, so one can choose g = 0 in K.

The weakness of Lemma 10.2 is that it gives no bound for the dimension N of

the embedding space when j increases. To remove this flaw we shall now discuss

how one can decrease the dimension of the embedding space. For a ∈ R
N−1 we

shall denote by πa the projection

R
N ∋ x 7→ πax = (x1 − a1xN , . . . , xN−1 − aN−1xN ),

that is, the projection on the hyperplane where xN = 0 along the vector (a, 1).

Lemma 10.3. If f ∈ C∞(X,RN) is an immersion of the compact set K ⊂ X
and N > 2n, then πaf is also an immersion of K except when a belongs to a closed

null set in R
N−1.

Proof. It is sufficient to prove the statement when K is contained in a coordi-

nate patch, for every K can be written as a union of finitely many such compact

sets. It is therefore no restriction to assume that X ⊂ R
n. Let E be the set of all

a ∈ R
N−1 such that πaf is not an immersion on K. That a ∈ E means that for

some x ∈ K and λ ∈ R
n with |λ| = 1

(10.1)

n
∑

k=1

λk(∂fj/∂xk − aj∂fN/∂xk) = 0, j = 1, . . . , N − 1.

These equations define a closed subset of {(x, λ, a) ∈ K ×R
n ×R

N−1; |λ| = 1}, so

the projection E in R
N−1 is closed since it is proper. If we set µ =

∑

k λk∂fN/∂xk
and aN = 1, then (10.1) can also be written

(10.2)

n
∑

k=1

λk∂fj(x)/∂xk = µaj, j = 1, . . . , N,

which means that (a, 1) is a tangent of f(X) at f(x). Since f is an immersion it

follows from (10.2) that µ 6= 0, so (a, 1) is in the range of the map

(10.3) R
n ×K ∋ (λ, x) 7→

n
∑

1

λk∂f(x)/∂xk ∈ R
N .

By a rather trivial case of the Morse-Sard theorem (Theorem 3.1) the range is a

null set when N > 2n, and since the intersection with the planes {a ∈ R
N ; aN = µ}

where µ 6= 0 are homothetic they are all null sets by the Lebesgue-Fubini theorem.

Hence E is a closed null set.
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Lemma 10.4. If f ∈ C∞(X,RN) is an injective immersion on the compact set

K and N > 2n + 1 then πaf is also an injective immersion on K except when a
belongs to a closed null set in R

N−1.

Proof. From Lemma 10.3 we already know that πaf is an immersion except

when a belongs to a closed null set E. Let E′ be the set of all a ∈ R
N−1 such that

πaf is not injective on K. To prove that E ∪ E′ is closed we consider a sequence

aj ∈ E′, aj → a. Then we can find x′j 6= x′′j in K with πaj
f(x′j) = πaj

f(x′′j )
for j = 1, 2, . . . . Replacing the sequence by a subsequence we may assume that

x′j → x′ and that x′′j → x′′ for some x′, x′′ ∈ K. If a /∈ E then πaj
f is by the

inverse function theorem an injective immersion on a fixed neighborhood of x′ if
j is sufficiently large, so we have x′ 6= x′′, and since πaf(x

′) = πaf(x
′′) it follows

that a ∈ E′. Hence E ∪ E′ is closed. That a ∈ E′ means explicitly that

(10.1)′ fj(x
′)− ajfN (x′) = fj(x

′′)− ajfN (x′′), j = 1, . . . , N − 1,

for some x′, x′′ ∈ K with x′ 6= x′′. With aN = 1 and µ = fN (x′) − fN (x′′) we can

write (10.1)′ in the form

(10.2)′ f(x′)− f(x′′) = µa.

Since f is injective on K we have µ 6= 0, so (a, 1) belongs to the range of the map

(10.3)′ R
n ×K ×K ∋ (t, x′, x′′) → t(f(x′)− f(x′′)) ∈ R

N .

Since N > 2n + 1 the range of this map is a null set in R
N , by Theorem 3.1, and

by the homogeneity the intersection with the plane aN = 1 is also a null set there.

The lemma is proved.

Note that in Lemma 10.3 we just avoided projecting along a tangent of f(K)

whereas in Lemma 10.4 we also avoided projecting along chords. The set of forbid-

den directions depends on 2n−1 and on 2n parameters respectively which explains

the assumptions on the dimensions. We can now prove the main result in this

chapter:

Theorem 10.5. Let f ∈ C∞(X,RN) be a proper map with N ≥ 2n + 1 where

n is the dimension of X. For every positive continuous function ε on X there is a

proper embedding g ∈ C∞(X,RN ) such that

(10.4) |g(x)− f(x)| ≤ ε(x), x ∈ X.

Proof. We may assume that ε is so small that x 7→ |f(x)| − ε(x) ∈ R is

proper and positive outside a compact set. Then (10.4) implies that g is proper.

Let M1,M2, . . . be a sequence of compact subsets of X , each contained in the

interior of the following one, such that ∪Mj = X . We shall successively construct

gj ∈ C∞(X,RN) so that g0(x) = f(x) and

(10.5) |gj(x)− gj−1(x)| < ε(x)/2j , j = 1, 2, . . . , x ∈ X.

Moreover gj shall be an injective immersion onMj and gj = gj−1 onMj−1. Suppose

that gj−1 has already been chosen and that j ≥ 1. By Lemma 10.2 we can choose
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h ∈ C∞
0 (X,Rν) for suitable ν so that gj−1 ⊕ h is an injective immersion of Mj in

R
N+ν . By the remark after the proof of Lemma 10.2 we can take h = 0 onMj−1. In

fact, there is a neighborhood ω of Mj−1 where gj−1 is an injective immersion, and

we just have to choose h as an injective immersion in Mj \ ω, which is a compact

set disjoint with Mj−1. By repeated use of Lemma 10.4 we conclude that there

exist linear transformations T : Rν → R
N with arbitrarily small norm such that

gj = gj−1 + Th

is an injective immersion on Mj . If ‖T‖ is small enough then (10.5) follows so gj
has all the desired properties.

It is now obvious that g = limj→∞ gj exists, and that g ∈ C∞(X,RN). Since

g = gj onMj and gj is an injective immersion onMj , it follows that g is an injective

immersion, and (10.5) implies (10.4). The proof is complete.

As an application of Theorem 10.5 we shall now discuss how one can approximate

maps into X with C∞ maps. We also have to prove that nearby maps f0 and f1
into X are homotopic. If X is realised as a closed submanifold of RN it is natural

to connect f0 and f1 by means of the linear homotopy tf1 + (1 − t)f0, 0 ≤ t ≤ 1.

However, this does not stay in X so we need a C∞ map from a neighborhood of

X back to X which leaves X invariant (a retraction). We shall now construct a

retraction by studying the neighborhood of a closed submanifold X of RN .

The tangent space of a closed submanifold X of R
N can be identified with

T (X) = {(x, w) ∈ X ∈ R
N ;w ∈ Imψ′(t)} where ψ is a local parametrisation in a

neighborhood of x = ψ(t). (See Chapter IX.) We define the normal bundle

N(X) = {(x, w) ∈ X ×R
N ; 〈w,w′〉 = 0 if (x, w′) ∈ T (X)}.

If ψ is a local parametrisation then the condition on w is that tψ′(t)w = 0, which

defines n coordinates of w as linear functions of the other N −n coordinates. Thus

the manifold N(X) has dimension n+N − n = N . The map

(10.6) F : N(X) ∋ (x, w) 7→ x+ w ∈ R
N

is a proper injection of N0 = {(x, 0); x ∈ X} ⊂ N(X) and has bijective differential

at every point there. In fact, the range of the differential of F at (x, 0) contains

the range of the restriction to N0, which is Tx(X), and it also contains the range of

the restriction to the fiber Nx, which is mapped linearly on the orthogonal space

of Tx(X). This implies that N0 has an open neighborhood Ω ⊂ N(X) which is

mapped diffeomorphically on a neighborhood ˜Ω of X in R
N :

Theorem 10.6. If X is a closed submanifold of R
N , then there is an open

neighborhood Ω ⊂ N(X) of the zero section in the normal bundle and an open

neighborhood ˜Ω of X in R
N such that (10.6) is a diffeomorphism Ω → ˜Ω.

The proof is left as an exercise in the following more general form:

Exercise 10.7. Let X and Y be two C∞ manifolds of the same dimension, and

assume that f ∈ C∞(X, Y ) has bijective differential at every point in a closed subset

F of X . Prove that if f |F is proper and injective then there are open neighborhoods

ΩX and ΩY of F and f(F ) such that f is a diffeomorphism ΩX → ΩY .
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Corollary 10.8. For every closed C∞ submanifold X of RN there is a positive

continuous function ε on X such that for every C∞ manifold Y and arbitrary

f ∈ C(Y,X) and f0, f1 ∈ C∞(Y,X) with |fj − f | < f∗ε there exists a function

g ∈ C∞(Y × [0, 1], X) with g(·, t) = ft when t = 0, 1.

Proof. With the notation in Theorem 10.6 we set

ε(x) = sup{ε; 0 < ε ≤ 1, |x− x′| < ε =⇒ x′ ∈ ˜Ω}, x ∈ X.

If |fj(y)− f(y)| < ε(f(y)) it follows that

f̃(y, t) = tf1(y) + (1− t)f0(y) ∈ ˜Ω, 0 ≤ t ≤ 1.

With F defined by (10.6) and p equal to the projection N(X) → X we can therefore

take g = p ◦ F−1 ◦ f̃ .

We can also prove the existence of differentiable approximations:

Corollary 10.9. Let X be a closed C∞ submanifold of RN . If Y is a C∞

manifold and f ∈ C(Y,X) one can for every positive continuous function on X
find g ∈ C∞(Y,X) such that |f(y)− g(y)| < ε(f(y)), y ∈ Y .

Proof. We may assume that Y is a closed submanifold of RN ′

. By Theorem

10.6 there exist open neighborhoods ΩX and ΩY of X and Y in R
N and R

N ′

and

C∞ retractions RX : ΩX → X and RY : ΩY → Y . (With the notation in the

proof of Corollary 10.8 we can take RX = p ◦ F−1.) Choose a positive continuous

function ε1 on X such that

x ∈ X, x′ ∈ R
N , |x− x′| < ε1(x) =⇒ x′ ∈ ΩX and |RXx

′ − x| < ε(x),

and set f̃ = f ◦RY , which is a continuous extension of f to ΩY . There is a positive

C∞ function δ on Y such that

y ∈ Y, y′ ∈ R
N ′

, |y − y′| < δ(y) =⇒ y′ ∈ ΩY and |f̃(y′)− f(y)| < ε1(f(y)).

This is clear with a constant δ on any compact subset of Y , and we can use the

proof of Lemma 10.1 to find 1/δ increasing so rapidly that this is true. Choose

ϕ ∈ C∞
0 (RN ′) with ϕ ≥ 0,

∫

ϕ(y) dy = 1 and ϕ(y) = 0 when |y| > 1
2
. Then

g(y) = RX(h(y)), h(y) = δ(y)−N ′

∫

f̃(y′)ϕ((y − y′)/δ(y))dy′

has the required properties.
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CHAPTER XI

DE RHAM COHOMOLOGY

LetX be a C∞ manifold. In Chapter IX we defined the vector bundle λp(T ∗(X)).

For the sake of brevity we shall use the notation λp(X) for its C∞ sections, the

C∞ p forms on X . For every p the exterior differential gives a map

d : λp(X) → λp+1(X),

and for every C∞ map f : X → Y where Y is another C∞ manifold we have a

pullback map f∗ : λp(Y ) → λp(X) commuting with d. Thus the diagram

(11.1)

λp(Y )
d

−−−−→ λp+1(Y )

f∗





y

f∗





y

λp(X)
d

−−−−→ λp+1(X)

is commutative. This was already discussed in Chapter VIII when X and Y are

open subsets of Rm and R
n. In view of (11.1) we can immediately take over the

definitions from local coordinate systems. When X ⊂ R
n we have proved that

d2 = 0 for every p, and this remains valid for a manifold X .

Let us now recall some elementary definitions from algebra. Let A0, . . . , An be

vector spaces, and assume that for j = 0, . . . , n− 1 we are given a map dj : Aj →

Aj+1 so that dj+1dj = 0. (We shall drop the subscript of d when it is obvious from

the context.) Then we have a complex of vector spaces. By adding spaces Aj = {0}

when j < 0 or j > n with dj = 0 when j < 0 or j ≥ n we may assume that Aj is

defined for every j which is notationally convenient.

The hypothesis that we have a complex means precisely that the range Rj of

dj−1 is a subspace of the kernel Nj of dj. If there is equality the complex is said to

be exact at Aj. Thus exactness means that the range of dj−1 is described precisely

as the kernel of dj . This is usually not the case, and as a measure of how close the

range Rj of dj−1 is to the kernel Nj of dj one introduces the quotient space

Hj = Nj/Rj,

which is called the (co)homology of the complex at Aj , or of degree j. When j = 0

we obtain H0 = N0 while Hn = An/Rn is the cokernel of dn−1.

Let us also consider purely algebraically a situation similar to (11.1) where we

have two complexes A and B and a homomorhism between them, that is, a linear

map Ti : Ai → Bi for each i, such that the following diagram is commutative:

A0 −−−−→ A1 −−−−→ A2 −−−−→ A3 −−−−→ . . .

T0





y

T1





y

T2





y

T3





y

B0 −−−−→ B1 −−−−→ B2 −−−−→ B3 −−−−→ . . .

.
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Then it follows that the kernel of the operator dj : Aj → Aj+1 is mapped by Tj

into the kernel of the operator dj : Bj → Bj+1, and similarly for the range of dj−1.

Hence a map ˜Tj : Hj(A) → Hj(B) is induced by Tj . If we have a third complex

C and a map B → C of the same kind then the composition Hj(A) → Hj(B) →

Hj(C) is equal to the map induced by the composition A → C.

If we apply the preceding discussion to the complex of p forms (called the de

Rham complex) and the maps f∗ defined by C∞ maps f : X → Y , we obtain the

following situation:

Definition 11.1. If X is a C∞ manifold then the de Rham cohomology groups

Hp(X) of X are the cohomology groups of the de Rham complex on X . We write

H∗(X) for the direct sum of all Hp(X).

The groups Hp(X) are of course vector spaces but the term group is used to

accomodate related constructions.

Theorem 11.2. For every C∞ map f : X → Y the pullback of differential

forms induces a linear map f∗ : Hp(Y ) → Hp(X). If g : Y → Z and h = g ◦ f ,
then the diagram

Hp(Z)
g∗

−→ Hp(Y )

h∗ f∗

Hp(X)

is commutative.

In Chapter VIII we also introduced a multiplication in λ∗(X) = ⊕p≥0λ
p(X)

which makes it a ring with

u ∧ v = (−1)pqv ∧ u, u ∈ λp, v ∈ λq.

From (8.9) it follows that d(u ∧ v) = 0 if du = 0 and dv = 0. The class of u ∧ v in

Hp+q(X) depends only on the classes of u and of v, for if the classes of u0 and v0
are 0, that is, u0 = du1 and v0 = dv1, then

(u+ u0) ∧ (v + v0) = u ∧ v + u0 ∧ (v + v0) + u ∧ v0

= u ∧ v + d(u1 ∧ (v + v0)) + (−1)pd(u ∧ v1).

Thus we obtain a multiplication

Hp(X)×Hq(X) → Hp+q(X)

which traditionally is denoted by ∪ and called the cup product. With this multi-

plication H∗(X) is a ring with the same anticommutativity of the multiplication

in H∗(X) as in λ∗(X). The following theorem is now trivial but quite important

anyway:

Theorem 11.3. If f : X → Y is a C∞ map then the induced map f∗ : H∗(Y ) →

H∗(X) is a ring homomorphism.

The map f∗ is stable under homotopic changes of f :
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Theorem 11.4. Let F : X × [0, 1] → Y be a C∞ map, and set ft(x) = F (x, t)
when 0 ≤ t ≤ 1. Then f∗

t is independent of t.

Proof. Let u be a differential form on Y with du = 0. We can write

F ∗u = U0 + dt ∧ U1

where U0 and U1 are differential forms in X depending on t; we have of course

U0 = f∗
t u. That dF ∗u = F ∗du = 0 means in particular that “the coefficient of

dt” is equal to 0, that is, that ∂U0/∂t− dXU1 = 0 where dX denotes the exterior

differential operator in X acting on U1 as a form in X depending on the parameter

t. Hence

f∗
1u− f∗

0 u = U0(1)− U0(0) =

∫ 1

0

dXU1 dt = dX

∫ 1

0

U1 dt.

The right-hand side is the differential of a form in X , which proves the statement.

(The proof is of course essentially a repetition of that of Theorem 8.1.)

Using the approximation method in Corollary 10.9 we can now conclude that

f∗ can be defined uniquely for an arbitrary continuous map f : X → Y , for all

sufficiently close C∞ approximations g are homotopic by Corollary 10.8 so we can

define f∗ = g∗. This extended definition of f∗ is also invariant for continuous

homotopies, for a continuous homotopy F : X × [0, 1] → Y can first be extended

to all of X × R so that it is constant for t ≤ 0 and for t ≥ 1 and then it can be

approximated by C∞ homotopies. Hence we have

Theorem 11.5. Every continuous map f : X → Y defines a ring homomor-

phism f∗ : H∗(Y ) → H∗(X) with the properties in Theorem 11.3, and Theorem

11.4 remains valid for continuous homotopies.

Corollary 11.6. If the continuous map f : X → Y is a homotopy equivalence,

that is, if there exists a continuous map g : Y → X such that f ◦ g and g ◦ f are

homotopic to the identity in Y and X respectively, then f∗ is a ring isomorphism.

The map f∗ : λp(Y ) → λp(X) is in general neither injective nor surjective. When

p = 0, for example, surjectivity requires that f is a proper embedding so that f(X)

can be regarded as a closed submanifold of Y . This is sufficient for any p:

Lemma 11.7. If f : X → Y is a C∞ proper embedding then f∗ : λ∗(Y ) → λ∗(X)

is surjective.

Proof. We may assume that Y is a closed submanifold of RN . Then f(X) is

also a closed submanifold of RN . We identify X with f(X) and can then regard f
as the natural injection i : X → Y . The lemma states that every smooth differential

form on X is then the restriction of a smooth form on Y . By Theorem 10.6 we

can choose an open neighborhood ˜Ω of X in R
N and a C∞ retraction R : ˜Ω → X ,

thus R(x) = x when x ∈ X . Let ϕ ∈ C∞(RN ) be equal to 1 on X and equal to 0

in a neighborhood of ∁˜Ω. Then ϕR∗u, defined as 0 in ∁˜Ω is a form in R
N which

restricted to X is equal to u, so the restriction to Y has the required property.

Under the assumptions of Lemma 11.7 the de Rham complexes in Y and X give

a commutative diagram

0 −−−−→ A0 −−−−→ A1 −−−−→ A2 −−−−→ . . .




y





y





y

0 −−−−→ B0 −−−−→ B1 −−−−→ B2 −−−−→ . . .

,
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where the vertical maps are surjective. If we denote their kernels by Cj we therefore

obtain a commutative diagram with exact columns

0 0 0




y





y





y

0 −−−−→ C0 −−−−→ C1 −−−−→ C2 −−−−→ . . .




y





y





y

0 −−−−→ A0 −−−−→ A1 −−−−→ A2 −−−−→ . . .




y





y





y

0 −−−−→ B0 −−−−→ B1 −−−−→ B2 −−−−→ . . .




y





y





y

0 0 0

,

where the maps Cj → Cj+1 are determined by the commutativity: If we go from

Cj to Aj to Aj+1 we obtain an element in Cj+1, for the image in Bj+1 is equal to

0 since we could also have gone from Aj to Bj+1 via Bj . Hence we obtain maps

Hj(C) → Hj(A) → Hj(B)

with composition 0. This complex is in fact exact. For let a ∈ Aj represent a class in

Hj(A) mapped to 0. This means that the image of aj in Bj comes from an element

in Bj−1. By the assumed surjectivity it can be lifted to an element aj−1 ∈ Aj−1,

and the commutativity implies that daj−1 and aj have the same image in Bj . Hence

aj−daj−1 ∈ Cj , which means that the class inHj(A) represented by aj is the image

of a class in Hj(C).

We shall now determine the range of the map Hj(A) → Hj(B). Let bj ∈ Bj ,

dbj = 0. Then bj is the image of an element aj ∈ Aj , and daj is mapped to 0 in

Bj+1, so daj ∈ Cj+1. We claim that the class of daj in Hj+1(C) only depends on

the class of bj in Hj(B). To prove this consider the case where the class of bj is 0,

that is, bj = dbj−1. Then we can lift bj−1 to an element aj−1 ∈ Aj−1 and obtain

aj − daj−1 = cj ∈ Cj . Hence daj = dcj , so daj defines the 0 class in Hj+1(C).

Thus we have defined a map

δj : H
j(B) → Hj+1(C).

We shall usually drop the subscript j. The sequence

Hj(A) −→ Hj(B)
δj
−→ Hj+1(C)

now obtained is also an exact complex. In fact, the composition is 0 for if a class

in Hj(B) is the image of a class in Hj(A) then one can choose aj so that daj = 0

with the notation above. On the other hand, if the class of bj is mapped to 0 then

daj = dcj for some cj ∈ Cj , so the element aj − cj ∈ Aj defines a class in Hj(A)

mapped to the class of bj.
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Finally we claim that the sequence

Hj(B)
δj
−→ Hj+1(C) → Hj+1(A)

is an exact complex. That the composition is 0 follows at once from the definition

of δj .On the other hand, consider an element in Hj+1(C) with image 0 in Hj+1(A),

thus an element cj+1 ∈ Cj+1 with cj+1 = daj for some aj ∈ Aj. If bj is the image

of aj in Bj then δj maps the class of bj to the class of cj+1. Summing up, we have

proved that

0 −→ H0(C) −→ H0(A) −→ H0(B) −→ H1(C)

−→ H1(A) −→ H1(B) −→ H2(C) → . . .

is an exact complex.

Remark. In the proof we never used that our objects are vector spaces. The

arguments are therefore also valid for modules over a commutative ring.

We shall now apply the results to the inclusion i : X → Y of a closed submanifold

X of Y . Thus we take Aj = λj(Y ), Bj = λj(X), and have to introduce

Cj = {u; u ∈ λj(Y ), i∗u = 0}.

However, it is better to use instead the subcomplex

C0
j = {u ∈ λj(Y ); u = 0 in a neighborhood of X}.

We claim that the map Hj(C0) → Hj(C) is an isomorphism. For the proof we

introduce the quotients Cj/C
0
j and obtain the same algebraic situation as above,

hence an exact sequence

0 −→ H0(C0) −→ H0(C) −→ H0(C/C0)

−→ H1(C0) −→ H1(C) −→ H1(C/C0) −→ . . . .

This proves that the claim is equivalent to Hj(C/C0) = 0 for every j. To prove

this we take u ∈ Cj with du ∈ C0
j+1. In a tubular neighborhood T of X where

du = 0 we have a projection p : T → X which is homotopic to the identity on T
(see Theorem 10.6), so it follows from Theorem 11.4 that u− p∗u = dv in T where

v is a form in T . Now p = i ◦ p, so p∗u = p∗i∗u = 0 for u ∈ Cj . If ϕ ∈ C∞(Y ) is

equal to 1 in a neighborhood of X and equal to 0 in a neighborhood of ∁T , then
u − d(ϕv) ∈ C0

j . The proof of Theorem 11.4 shows that we can choose v with

i∗v = 0, so it follows that the class of u in Hj(C/C0) is equal to 0.

Definition 11.8. If M is a C∞ manifold then the de Rham cohomology groups

Hp
c (M) with compact support are defined as the cohomology of the complex of p

forms of compact support. If X is a compact C∞ submanifold of a compact C∞

manifold Y we shall also write Hp(Y,X) instead of Hp
c (Y \X) and refer to this as

the relative cohomology group.

With this terminology we have now proved:
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Theorem 11.9. If X is a compact C∞ submanifold of a compact C∞ manifold

Y and i : X → Y denotes the inclusion of X in Y , then we have an exact sequence

0 −→ H0(Y,X) −→ H0(Y )
i∗

−→ H0(X)
δ

−→ H1(Y,X)

−→ H1(Y )
i∗

−→ H1(X)
δ

−→ H2(Y,X) −→ . . . .

Here the map Hk(Y,X) is defined by the inclusion of differential forms with compact

support in Y \ X among arbitrary differential forms on Y while δ : Hk(X) →

Hk+1(Y,X) maps the class of i∗u to the class of du if u is a form on Y with du = 0

in a neighborhood of X.

We give a simple but important application:

Theorem 11.10. If X is a compact C∞ submanifold of a compact C∞ manifold

Y and X is a retract of Y , that is, there exists a continuous map f : Y → X with

f(x) = x when x ∈ X, then

0 −→ Hj(Y,X) −→ Hj(Y ) −→ Hj(X) −→ 0

is exact for every j. We can therefore view Hj(Y,X) as a subspace of Hj(Y ), and

the quotient Hj(Y )/Hj(Y,X) is isomorphic to Hj(X).

Proof. f∗ : H∗(X) → H∗(Y ) is a right inverse of i∗ for i∗f∗ = (fi)∗ is the

identity on H∗(X). Hence Hj(Y ) → Hj(X) is surjective for every j, so the exact

sequence in Theorem 11.9 gives that Hj+1(Y,X) → Hj+1(Y ) is injective.

Using Theorem 11.9 we shall calculateHk(X) in Chapter XII for some important

spaces X . We end the preparations here by a few comments on the cohomology

H∗
c (X) with compact support. Let f ∈ C∞(X, Y ). (We no longer assume that X

and Y are compact.) If u is a form with compact support in Y , then supp f∗u ⊂

{x; f(x) ∈ supp u}, but this is not necessarily a compact set. An example is a

constant map f when X is not compact.

If f ∈ C∞(X, Y ) is a proper map it is clear that f∗u has compact support, so

then we get a map f∗ : H∗
c (Y ) → H∗

c (X). As before we can extend the definition

to every continuous proper f . The map is not changed by a proper homotopy, that

is, a proper map X × [0, 1] → Y .

Note that H∗
c (X) is not only a ring but even a H∗(X) module, for the product of

two forms has compact support if one of the forms has compact support. The ring

structure is obtained from the module structure and the map H∗
c (X) → H∗(X).
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CHAPTER XII

THE DE RHAM COHOMOLOGY FOR

SOME IMPORTANT MANIFOLDS

We shall first calculate the cohomology of Rn. In doing so we include the case

n = 0, noting that the results of Chapter XI remain valid also in that case if we

interpret R
0 as a single point. In that case the constants are the only differential

forms; thus Hk(R0) = 0 when k 6= 0 and H0(R0) = R. (By 0 we denote the vector

space containing only the origin.)

Theorem 12.1. H∗(Rn) is for every n the ring of real numbers, that is,

Hk(Rn) = 0 when k 6= 0 and H0(Rn) = R.

Proof. For the map i : R
0 → R

n mapping R
0 to the origin and the map

p : Rn → R
0 the composition p ◦ i is the identity while i ◦ p is the projection from

R
n to the origin. It is homotopic to the identity by the homotopy R

n × [0, 1] ∋
(x, t) 7→ tx. Hence i, p is a homotopy equivalence, so H∗(Rn) is isomorphic to

H∗(R0) (Corollary 11.6). — Note that the theorem is equivalent to Poincaré’s

lemma (Theorem 8.1), and the proof here is basically the same.

Theorem 12.2. Hk
c (R

n) = 0 when k 6= n, and

λn
c (R

n) ∋ u 7→

∫

u

induces an isomorphism between Hn
c (R

n) and R.

By the theorem the product of arbitrary elements in H∗
c (R

n) is equal to 0, if

n 6= 0.

Proof. We can assume that n > 0. The statement is obvious when k = 0 since

a closed 0 form is a constant which must be 0 if the support is compact. If n = 1

and u = v(x) dx ∈ λ1
c(R) then u = dw where w ∈ λ0

c(R) means that

w(x) =

∫ x

−∞

v(t) dt,

and w has compact support if and only if
∫

R
v(t) dt =

∫

u = 0. For n > 1 it is

convenient to combine the proof with the proof of the following:

Theorem 12.3. For the sphere Sn ⊂ R
n+1 we have Hk(Sn) = 0 when 0 < k <

n, while H0(Sn) ∼= R as a ring and the map

λn(Sn) ∋ u 7→

∫

Sn

u
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induces an isomorphism Hn(Sn) ∼= R.

Proof. If P is a point in Sn then P is a retract of Sn, and since Sn \ P is

diffeomorphic to R
n we obtain from Theorem 11.10 an exact sequence

0 −→ Hj
c (R

n) −→ Hj(Sn) −→ Hj(P ) −→ 0.

Hence it follows from Theorem 12.1 that Theorems 12.2 and 12.3 are equivalent, so

they are proved for n = 1. Assume now that n > 1 and that they are proved for

lower dimensions. Stokes’ formula implies that
∫

Sn
u = 0 if u is an exact differential

form on Sn, so λn(Sn) ∋ u 7→
∫

Sn
u induces a linear form on Hn(Sn) which is not

identically 0. For example, the value is 1 on the Kronecker form discussed at the

end of Chapter IX. Hence the dimension q of Hn(Sn) is at least equal to 1. Now

the intersection between Sn ⊂ R
n+1 and a hyperplane in R

n+1 is equal to Sn−1,

and Sn \ Sn−1 has two components diffeomorphic to R
n. This implies that

Hj
c (S

n \ Sn−1) ∼= Hj
c (R

n)⊕Hj
c (R

n) ∼= Hj(Sn)⊕Hj(Sn), j > 0.

Hence the exact cohomology sequence in Theorem 11.9 gives the exact sequence

Hn−1(Sn−1) −→ Hn(Sn)⊕Hn(Sn) −→ Hn(Sn) → 0.

The range of the first map is of dimension p ≤ 1 by the inductive hypothesis, and

the exactness implies that 2q − p = q, hence q = p. Since p ≤ 1 ≤ q it follows that

p = q = 1, so Hn(Sn) ∼= R and the preceding map from Hn−1(Sn−1) is injective

so the map Hn−1(Sn) ⊕ H(n−1)(Sn) → Hn−1(Sn) is surjective. From the exact

cohomology sequence and the inductive hypothesis we now obtain the exactness of

0 −→ Hj(Sn)⊕Hj(Sn) −→ Hj(Sn) −→ 0, 1 ≤ j ≤ n− 1,

where for j = 1 we also use that H0(Sn) −→ H0(Sn−1) is surjective. Hence

Hj(Sn) = 0 for 0 < j < n which completes the proof.

The second part of the theorem is valid in much greater generality:

Theorem 12.4. If X is a compact connected C∞ manifold of dimension n then

Hn(X) ∼= R if X is orientable and Hn(X) = 0 if X is not orientable. In the first

case the isomorphism is induced by λn(X) ∋ u 7→
∫

X
u with an orientation chosen

for X.

Proof. Assume first that X is oriented. We can write X = ∪J
1Xj where every

Xj is diffeomorphic with R
n. Let 1 =

∑J

1 ϕj where ϕj ∈ C∞
0 (Xj). If u ∈ λn(X)

and
∫

ϕju = 0, j = 1, . . . , J,

then it follows from Theorem 12.2 that ϕju = dvj where vj ∈ λn−1
c (Xj); hence u =

d(
∑J

1 vj). If V is the linear subspace of RJ consisting of all (
∫

X
ϕ1dv, . . . ,

∫

X
ϕJdv)

where v ∈ λn−1(X), then it follows that u = dv if and only if the vector

(
∫

X
ϕ1u, . . . ,

∫

X
ϕnu) ∈ V . Now V is defined by orthogonality to finitely many
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vectors c = (c1, . . . , cJ). Thus u is exact if and only if u satisfies finitely many

equations of the form
∫

X

(

J
∑

1

cjϕj

)

u = 0.

Such an equation must always hold when u = dv with v ∈ λn−1(X). In every

coordinate patch Ω diffeomorphic with R
n we conclude using Theorem 12.2 that

∑J

1 cjϕj is a constant, for if supp u ⊂ Ω then the relation must be a consequence

of the equation
∫

u = 0. Since X is connected it follows that
∑J

1 cjϕj is a constant

C in all of X . Hence u is exact if (and only if)
∫

X
u = 0.

Assuming now that X is not orientable we introduce the double cover ˜X of X
consisting of points x ∈ X with a chosen direction in the 1 dimensional fiber of

λnT ∗(X) at x, that is, an n form 6= 0 there. Over every coordinate patch in X

diffeomorphic to R
n we have two identical coordinate patches in ˜X, so it is clear

that ˜X is a manifold. The natural map p : ˜X → X is a local diffeomorphism such

that p−1(x) consists of two points in ˜X for every x ∈ X . For a component X1

of ˜X the set of points in X such that X1 ∩ p−1(x) consists of precisely j points

must be open, and since X is connected it must be the empty set or X . If ˜X is

not connected it follows that some component X1 has exactly one point over every

point in X , but this is a contradiction since it would define an orientation in X .

Hence ˜X is connected.

Let r : ˜X → ˜X be the map exchanging the two points in p−1(x) for every x ∈ X .

If u ∈ λk(X) and U = p∗u then r∗U = U since p ◦ r = r. Conversely, every

U ∈ λk( ˜X) with r∗U = U is equal to p∗u where u ∈ λk(X) is obtained by pulling

U back locally by a smooth map s : X → ˜X with p ◦ s equal to the identity; the

pullback does not change if s is replaced by r ◦ s. If u ∈ λn(X) and U = p∗u then
∫

X̃
U = 0 since the integral over the two coordinate patches over a coordinate patch

in X differ by a factor −1. Hence it follows from the first part of the theorem that

U = dV = d(r∗V ) = dW where W = 1
2(V + r∗V ), for U = r∗U = d(r∗V ). Since

r ◦ r is the identity we have r∗W = W . Now W = p∗w where w ∈ λn−1(X) and

we obtain p∗(u − dw) = 0, hence u = dw since p is a local diffeomorphism. The

theorem is proved.

If X and Y are compact, orientable, connected and have the same dimension n,
and if f : X → Y is a continuous map, then the corresponding map f∗ : Hn(Y ) →

Hn(X) can be viewed as a linear map R → R, that is, multiplication by a number

D ∈ R. If f ∈ C1(X, Y ) this means that

∫

X

f∗u = D

∫

Y

u, u ∈ λn(Y ).

D is an integer called the degree of f . The reason is clear: if we choose f1 ∈

C∞(X, Y ) in the homotopy class of f and take u with supp u close to a regular

value y ∈ Y for f , then D is the number of points x ∈ X with f(x) = y counted as

+1 or −1 depending on whether f maps the orientation of X at x to the orientation

of Y at y or the opposite one. We leave the details as an exercise for the reader,

and as another exercise to prove that if Ω ⊂ R
n is open and bounded with C∞

boundary, y /∈ ∂f(Ω), thenD(f,Ω, y), defined in Section 4, is the sum of the degrees
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of the map x 7→ (f(x) − y)/|f(x) − f(y)| ∈ Sn−1 on the different components of

∂Ω, oriented as the boundary of ∂Ω. (Cf. Chapter IX.)

Now that we know the cohomology of Sn we can turn the proof of Theorem 12.3

around:

Theorem 12.5 (The Alexander duality theorem). Let X be a C∞ com-

pact submanifold of the sphere Sn. Then there are isomorphisms

Hk−1(X) ∼= Hk(Sn, X), 1 < k < n,

and for n > 1 there is an exact sequence

0 −→ Hn−1(X) −→ Hn(Sn, X) −→ R −→ 0,

which implies that dimHn(Sn, X) = 1 + dimHn−1(X).

Proof. In the exact sequence

Hk−1(Sn) −→ Hk−1(X) −→ Hk(Sn, X) −→ Hk(Sn)

the first and last spaces are 0 if 1 < k < n, by Theorem 12.3, which proves the first

statement. We have Hn(X) = 0 since dimX < n. Hence the second statement

follows if we take k = n and continue the sequence with −→ Hn(X).

If X is an orientable connected compact submanifold of Sn of dimension n− 1,

then dimHn−1(X) = 1, hence dimHn(Sn, X) = 2. From duality theorems proved

later on we may then conclude that Sn \X has two components, so we have again

proved the Jordan-Brouwer theorem (Theorem 4.7) although only in a very regular

case.

We shall now study the real projective space Pn
R
, defined as the set of equivalence

classes in R
n+1 \ {0} if one identifies points which differ only by a real factor. For

equivalence classes of points x ∈ R
n+1 with xi 6= 0 we can use xj/xi, 1 ≤ j ≤ n+1,

j 6= i, as local coordinates and conclude at once that Pn
R

is a C∞ manifold. We

shall drop the subscript R for a moment.

The definition of Pn shows that we have a surjective map p : Sn → Pn such

that p−1(x) consists of two points in Sn for every x ∈ Pn. If r is the antipodal

map x 7→ −x on Sn then p ◦ r = p. If u is a differential form on Pn then U = p∗u
is a form on Sn, and we have

r∗U = r∗p∗u = (p ◦ r)∗u = p∗u = U.

Conversely, if U is a form on Sn with r∗U = U then there is a form u on Pn

with U = p∗u. The argument is the same as at the end of the proof of Theorem

12.4: Every point in Pn has a neighborhood Ω such that there is a smooth map

s : Ω → Sn with p ◦ s equal to the identity in Ω. There are two such maps, the

other one is r ◦ s. We can therefore define u = s∗U = (r ◦ s)∗U in Ω and obtain a

globally defined form u on Pn with p∗u = U .

If u is a closed k form on Pn with 0 < k < n then we know from Theorem 12.3

that p∗u = U = dV where V is a k−1 form on Sn. We have also U = r∗U = dr∗V ,

hence U = dV1 where V1 = 1
2 (V + r∗V ) has the property r∗V1 = V1, since r ◦ r is

the identity. This means that V1 = p∗v where v is a k− 1 form on Pn with dv = u,
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which proves that Hk(Pn) = 0 when 0 < k < n. For k = 0 we obtain H0(Pn) = R

since Pn is connected. To determine Hn(Pn) we first consider the Kronecker form

ω =

n+1
∑

j=1

(−1)j−1xjdx1 ∧ · · · ∧ ̂dxj ∧ · · · ∧ dxn+1

on Sn. We have r∗ω = (−1)n+1ω, dω = 0 and
∫

Sn
ω 6= 0 by (9.9), so the class of ω

generates Hn(Sn). Hence the cohomology class of r∗U is equal to (−1)n+1 times

the cohomology class of U if U is a (closed) n form on Sn. But if r∗U = U this

implies that the cohomology class of U is 0 if n is even, and then it follows as above

that Hn(Pn) = 0. If n is odd then ω = p∗u where u is a (closed) n form on Pn

with cohomology class 6= 0 since the class of ω is not 0. By the arguments above it

follows that Hn(Pn) = R, so we have proved

Theorem 12.6. Hk(Pn
R
) = 0 when 0 < k < n, H0(Pn

R
) = R, and Hn(Pn

R
) = R

when n is odd, Hn(Pn
R
) = 0 when n is even. Thus Pn

R
is orientable if and only if

n is odd.

The preceding theorem is disappointing in the sense that it does not allow one

to distinguish Pn
R

from spheres and Euclidean spaces for all n. More satisfactory

results are obtained by different definitions of cohomology which do not allow divi-

sion by 2, which was essential above. However, the de Rham cohomology is quite

satisfactory for complex projective spaces which we shall now discuss.

The complex projective space Pn
C
is defined as Pn

R
but with real numbers replaced

by complex numbers. Thus it is the quotient of Cn+1 \ {0} when elements differing

by a complex factor are identified. The dimension of Pn
C

as a real manifold is 2n.
When n = 1 it is equal to S2 so we know the cohomology in that case already.

Theorem 12.7. Hk(Pn
C
) = 0 when k is odd and Hk(Pn

C
) = R when k is even,

0 ≤ k ≤ 2n. More precisely: If 0 6= x ∈ H2(Pn
C
) then every element in H∗(Pn

C
) can

be written in a unique way as a polynomial

n
∑

0

ajx
j

in x with real coefficients aj. The ring operations in H∗(Pn
C
) correspond to the

operations in the polynomial ring with the relation xn+1 = 0; thus H∗(Pn
C
) is a

truncated polynomial ring.

Proof. We have already proved the theorem for n = 1. We shall prove it in

general by induction. Note that Pn−1
C

is embedded in Pn
C

by the map

C
n \ {0} ∋ (z1, . . . , zn) 7→ (z1, . . . , zn, 0) ∈ C

n+1 \ {0}.

Then Pn
C
\Pn−1

C
consists of points with homogeneous coordinates such that zn+1 6=

0. They can be uniquely represented by points for which zn+1 = 1 which proves

that Pn
C
\ Pn−1

C
is diffeomorphic to C

n ∼= R
2n. Hence we have an exact sequence

Hk
c (R

2n) −→ Hk(Pn
C
) −→ Hk(Pn−1

C
) −→ Hk+1

c (R2n).
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When k < 2n− 1 the first and last spaces are 0, hence Hk(Pn
C
) ∼= Hk(Pn−1

C
) then.

When k = 2n−1 the first and the third space are equal to 0, hence H2n−1(Pn
C
) = 0.

When k = 2n we obtain by adding H2n−1(Pn−1
C

) −→ to the left that H2n(Pn
C
) ∼=

H2n
c (R2n) ∼= R, which completes the proof of the first part of the theorem. To prove

the second one we shall write down explicitly a form defining x and verify that xn

defines an element 6= 0 in H2n(Pn
C
). This implies that xj 6= 0 when 1 ≤ j ≤ n

which will complete the proof,

At this point it is convenient to make a digression concerning analytic functions

and analytic manifolds.1 If U and V are two vector spaces over C, then a complex

linear map T : U → V is of course also a linear map between U and V considered

as vector spaces over R. However, if T is linear with respect to real scalars then T
is not complex linear unless T (ix) = iTx for every x ∈ U . For a general real linear

T : U → V we can write T = T1 + T2 where

T1x = 1
2 (Tx− iT (ix)), T2x = 1

2 (Tx+ iT (ix)).

Here T1(ix) = iT1x but T2(ix) = −iT2x, that is,

T1(ax) = aT1x, T2(ax) = āT2x, x ∈ U, a ∈ C.

The decomposition is obviously unique; one calls T1 complex linear and T2 antilin-

ear.

Now consider the case where U = V = C
n. If T is complex linear we can form

the determinant detC T of the n×n complex matrix for T . We can also consider T
as a map R

2n → R
2n with a 2n× 2n real matrix and form its determinant detR T .

Then

(12.1) detR T = | detC T |2.

Since every T can be written U1DU2 where Uj are unitary and D has a diagonal

matrix it suffices to prove the formula for the unitary and the diagonal case. It

is obvious in the unitary case for both sides are then equal to 1. (The unitary

group is connected so its elements considered as orthogonal transformations must

have the determinant +1.) When T has a diagonal matrix it suffices to consider

the case n = 1, thus Tx = ax, x ∈ C. Complex multiplication by a = a1 + ia2

corresponds to the real matrix

(

a1 −a2
a2 a1

)

with determinant a21 + a22 = |a|2. In

particular (12.1) implies that detR T > 0 if T is a bijection. This proves that in a

complex vector space there is a natural orientation, corresponding to orienting C
n

with complex coordinates zj = x2j−1 + ix2j , j = 1, . . . , n, by dx1 ∧ · · · ∧ dx2n > 0.

If now f ∈ C1(U, V ) where Ω is open in a finite dimensional complex vector space

U , then f is called analytic if f ′ is complex linear. Then it follows that f ∈ C∞.

We can now define the notion of analytic manifold by demanding in Definition 9.1

that X ′
i ⊂ C

n and that the maps (9.1) are analytic. By the observations above

every analytic manifold has a natural orientation.

1For more details we refer to [C] and to [H].
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The differential of any function f ∈ C1(Ω,C) where Ω is an open subset of Cn

can be split into a complex linear term ∂f and an antilinear term ∂̄f ,

∂f =

n
∑

1

∂f/∂zjdzj , ∂̄f =

n
∑

1

∂f/∂z̄jdz̄j , where

∂/∂zj =
1
2
(∂/∂x2j−1 − i∂/∂x2j), ∂/∂z̄j =

1
2
(∂/∂x2j−1 + i∂/∂x2j).

The chain rule remains valid for analytic maps since they have complex linear

differentials. Thus ∂f∗u = f∗∂u and ∂̄f∗u = f∗∂̄u when f is analytic.

Every differential form in Ω of degree k has a unique decomposition as a sum of

forms of bidegree p, q where p+ q = k, that is, forms which can be written

(12.2)
∑

|I|=p,|J|=q

uI,Jdz
I ∧ dz̄J .

The decomposition is invariant under pullback by analytic maps. The differential

du of a form of bidegree p, q is the sum of a form ∂u of bidegree p+1, q and a form

∂̄u of bidegree p, q + 1, obtained by applying ∂ and ∂̄ to the coefficients in (12.2).

Since d2 = (∂ + ∂̄)2 = 0 we have

∂2 = 0, ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0.

Note that it follows that i∂∂̄u is a real two form if u is a real valued C2 function.

End of proof of Theorem 12.7. Let p be the natural map C
n+1\{0} → Pn

C
.

We shall prove that there is a real two form u on Pn
C

such that

p∗u = (i/2π)∂∂̄ log |z|2.

It is obvious that this defines u uniquely. Set Fi(p(z)) = log |z/zi|
2 when z ∈ C

n+1

and zi 6= 0. This makes Fi well defined in the open subset Ui of P
n
C
where zi 6= 0 for

the homogeneous coordinates. Since p∗Fi = log |z|2 − log |zi|
2 and ∂∂̄ log |zi|

2 = 0

when zi 6= 0 we have when zi 6= 0

∂∂̄ log |z|2 = ∂∂̄p∗Fi = p∗∂∂̄Fi.

In Ui ∩ Uj we have Fi − Fj = log |zj/zi|
2, and since zj/zi is analytic in Ui ∩ Uj it

follows that

∂∂̄Fi = ∂∂̄Fj in Ui ∩ Uj .

Hence a closed real two form u is defined in Pn
C

by

u = (i/2π)∂∂̄Fi in Ui,

and we have p∗u = (i/2π)∂∂̄ log |z|2.
We shall now calculate

∫

un over Pn
C
. Since Pn

C
\ Un+1 is a null set, it is equal

to the integral over Un+1, and the map C
n ∋ z 7→ p(z, 1) is an analytic bijection

C
n → Un+1. The pullback of u under this map is i/2π times

∂∂̄ log(1 + |z|2) = (1 + |z|2)−1
n
∑

1

dzj ∧ dz̄j − (1 + |z|2)−2
n
∑

1

z̄kdzk ∧

n
∑

1

zjdz̄j .
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Since differential forms of even degree commute, we can calculate the nth power

using the binomial theorem. The square of the second term is 0, so we can drop

terms where it occurs to a power greater than 1. Since dzj is everywhere else paired
with dz̄j we may also replace the second term by (1 + |z|2)−2

∑n

1 |zj |
2dzj ∧ dz̄j

without changing the nth power. Hence the pullback of un to C
n is

(i/2π)n(n!(1 + |z|2)−n − n(n− 1)!(1 + |z|2)−n+1|z|2(1 + |z|2)−2)τ

= (i/2π)nn!(1 + |z|2)−n−1τ, τ = dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n.

We integrate over C
n by replacing each complex coordinate by polar coordinates,

noting that dzj ∧ dz̄j = −2idx2j−1 ∧ dx2j , which gives

∫

un = n!π−n

∫

R2n

(1 + |x|2)−n−1 dx1 ∧ · · · ∧ dx2n

= n!π−n

∫ ∞

0

· · ·

∫ ∞

0

(1 + r21 + · · ·+ r2n)
−n−1d(πr21) . . . d(πr

2
n) = 1.

This completes the proof of Theorem 12.7. At the same time we have proved:

Theorem 12.8. If U is the differential form on Pn
C
which pulled back to C

n+1\0

is the form

(i/2π)(|z|−2
n+1
∑

1

dzj ∧ dz̄j − |z|−4
n+1
∑

1

z̄jdzj

n+1
∑

1

zjdz̄j),

then
∫

Pk

U j = δjk

for every subspace P k of dimension k. Here δ is the Kronecker delta.

Proof. The homotopy invariance shows that it suffices to prove this for the

coordinate planes, and then it is a consequence of what we have just verified.

Remark. Theorems 12.7 and 12.8 prove that every closed differential form v on

Pn
C

is cohomologous to

n
∑

0

akU
k where ak =

∫

Pk

v.
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CHAPTER XIII

DE RHAM’S THEOREM AND POINCARÉ DUALITY

The de Rham cohomology is defined as the quotient of two infinite dimensional

spaces. Nevertheless we found in Chapter XII that it is finite dimensional in all

the cases discussed there. We shall now give a general method for computing the

cohomology which will prove that this is a quite general fact.

Let X be a compact C∞ manifold. We want to give a constructive method for

deciding if a form u ∈ λ∗(X) is exact, that is, if u = dv for some v. A necessary

condition is that u is closed, that is, that du = 0. As a motivation we first consider

the case where u ∈ λ1(X) is a closed form. Let Ui, i ∈ I, be open connected and

simply connected subsets of X which cover X . Then there is in each Ui a function

vi with dvi = u, obtained by integrating u from a fixed point in Ui. In Ui ∩ Uj we

have d(vi − vj) = 0. If Ui ∩Uj is connected and 6= ∅ it follows that vi − vj = cij in

Ui ∩ Uj , where cij are constants with

(13.1) cij + cjk + cki = 0 if Ui ∩ Uj ∩ Uk 6= ∅; cij = −cji if Ui ∩ Uj 6= ∅.

Assume now that there exists a function v with dv = u. Then v − vj = cj in Uj

where cj is a constant. Hence

(13.2) cij = cj − ci when Ui ∩ Uj 6= ∅.

Conversely, if there exist such numbers cj then vi + ci = vj + cj in Ui ∩Uj so there

is a function v defined in X such that v = vj + cj in Uj for every j, which implies

that dv = u in X . Thus we have reduced the determination of H1(X) to the study

of solvability of the system of equations (13.2) when (13.1) is valid.

If one repeats the procedure for a form u ∈ λ2(X) and Poincaré’s lemma is valid

for Ui, then the difference is just that cjk and ci become closed 1 forms in Uj ∩ Uk

and Ui respectively. If Ui ∩ Uj is simply connected we can express the fact that

dcij = 0 and dci = 0 by writing cij = dγij and ci = dγi with functions γij and γi.
We can take γij = −γji when Ui ∩ Uj 6= ∅ and obtain from (13.1) with constants

δijk that

γij + γjk + γki = δijk

if Ui ∩ Uj ∩ Uk is connected and 6= ∅. Moreover, we have by (13.2) that δij =

γij − γj + γi must be constant. We have

(13.1)′ δjkl − δikl + δijl − δijk = 0 if Ui ∩ Uj ∩ Uk ∩ Ul 6= ∅,

δijk is antisymmetric in the indices, and we must find δij antisymmetric in the

indices when Ui ∩ Uj 6= 0 so that

(13.2)′ δij + δjk + δki = δijk when Ui ∩ Uj ∩ Uk 6= ∅.
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This is again a finite system of linear equations, and it is easy to see that it captures

everything one needs to determine H2(X).

To organize a general proof along these lines it is clear that one must introduce

suitable notation. We shall do so as soon as we have proved the existence of

coverings which satisfy all the conditions we needed in the course of the preliminary

discussion above.

Lemma 13.1. Let X be a compact C∞ submanifold of RN of dimension n. If

{Ui} is a covering of X formed by the intersections of X and balls in R
N with

radii < ε, then all intersections Ui1...ik = Ui1 ∩ · · · ∩ Uik are diffeomorphic to open

convex subsets of Rn if ε > 0 is sufficiently small. In particular this implies that

Hj(Ui1...ik) = 0 when j > 0.

Proof. Let ψ : ω → X be a local parametrisation of X where ω is an open

convex subset of Rn, and let ω′ be a convex open relatively compact subset of ω.
The inverse image in ω′ of the neighborhoods in the lemma are of the form

ω′
x0,r

= {t ∈ ω′; |ψ(t)− x0|
2 < r2}

where x0 ∈ R
N , the norm is Euclidean, and r < ε. To prove that ω′

x0,r
is convex we

first observe that if s, t ∈ ω′
x0,r

then |s−t| < Mr whereM is a constant independent

of r and x0. Choose a fixed t ∈ ω′
x0,r

. Then

|ψ(s)− x0| ≤ |ψ(t)− x0|+ |ψ(s)− ψ(t)| ≤M ′r if s ∈ ω′, |s− t| < Mr,

and this implies that for a ∈ R
n

1
2

n
∑

j,k=1

ajak∂
2|ψ(s)− x0|

2/∂sj∂sk = |ψ′(s)a|2 +O(r)|a|2 ≥ c|a|2

with a constant c > 0, provided that r is small enough. Since

ω′
x0,r

= {s ∈ ω′; |s− t| < Mr, |ψ(s)− x0| < r}

it follows that ω′
x0,r

is a convex set. Since we can cover X by finitely many coordi-

nate patches ψ(ω′) with the properties above, and all Ui1 , . . . , Uik with Ui1...ik 6= ∅

must be completely covered by some ψ(ω′), the lemma is proved.

Let {Ui}i∈I where I is a finite set be a fixed covering of X with the properties

stated at the end of the lemma. (Such a covering is called acyclic.) Motivated by

the introductory remarks in this chapter we introduce the following notation:

a) Cp(λq) where p ≥ 0, q ≥ 0, the vector space of p cochains with values in

λq, consists of all |I|p+1 tuples c = (cs) where s = (s0, . . . , sp) ∈ Ip+1 and

cs ∈ λq(Us), Us = Us0 ∩ · · · ∩ Usp , interpreted as 0 if Us = ∅, such that

cπs = sgnπ cs

when π is a permutation of s. Thus it suffices to specify cs when s0 < s1 <
· · · < sp; in particular cs = 0 when two indices are equal.

b) Cp(Zq) is the set of cochains c = (cs) ∈ Cp(λq) with dcs = 0 for every s.
In particular, Cp(Z0) consists of cochains with constant real coefficients.
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These definitions are clearly motivated by (13.1) and (13.1)′. In view of (13.2) and

(13.2)′ we also introduce

c) a map δ : Cp(λq) → Cp+1(λq) defined by

(δc)s =

p+1
∑

j=0

(−1)jcs0,...,ŝj ,...,sp+1
, in Us, s ∈ Ip+2,

where ŝj means omission of sj . (The equation is vacuous when Us = ∅.)

It is clear that δ maps Cp(Zq) to Cp+1(Zq). An elementary verification left for the

reader shows that δδc = 0 when c ∈ Cp(λq), so we have a complex

0 −−−−→ C0(λq)
δ

−−−−→ C1(λq)
δ

−−−−→ . . .

which we denote by C(λq). (In the same way we define the subcomplex C(Zq).)

The cohomology is easy to determine at C0. In fact, if c = (ci) ∈ C0(λq) and

δc = 0 then cj − ci = 0 in Ui ∩Uj which means that there is a form u ∈ λq(X) with

u = ci in Ui for every i. Hence we can identify H0(C(λq)) with λq(X). Similarly

H0(C(Zq)) ∼= {u ∈ λq(X); du = 0}.

For q ≥ 0 we now consider the commutative diagram

0 0




y





y

0 −−−−→ C0(Zq) −−−−→ C1(Zq) −−−−→ . . .




y





y

0 −−−−→ C0(λq) −−−−→ C1(λq) −−−−→ . . .

d





y
d





y

0 −−−−→ C0(Zq+1) −−−−→ C1(Zq+1) −−−−→ . . .




y





y

0 0

The vertical maps are given by the inclusion of C(Zq) in C(λq) and the exterior

differential operator C(λq)
d

−→ C(Zq+1). Since Hq+1(Us) = 0 by hypothesis the

columns are exact. Hence we obtain (see Chapter XI) an exact sequence

0 −→ H0(C(Zq)) −→ H0(C(λq))

d
−→ H0(C(Zq+1)) −→ H1(C(Zq)) −→ H1(C(λq)) . . . −→ Hk(C(λq))

d
−→ Hk(C(Zq+1)) −→ Hk+1(C(Zq)) −→ Hk+1(C(λq)) −→ . . . .

We shall prove later on:

Lemma 13.2. For every k ≥ 1 we have Hk(C(λq)) = 0.
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Accepting the lemma without proof for a moment we conclude from the first line

in the exact sequence that

H1(C(Zq)) ∼= H0(C(Zq+1))/dH0(C(λq)),

and since H0(C(Zq+1)) can be identified with closed q+1 forms inX and H0(C(λq))
can be identified with arbitrary q forms in X , we obtain

H1(C(Zq)) ∼= Hq+1(X).

This conclusion is just an elaboration of the beginning of the motivating discus-

sion at the beginning of the chapter. Furthermore we obtain for every k ≥ 1,

corresponding to the end of that discussion,

Hk(C(Zq+1)) ∼= Hk+1(C(Zq)).

Hence it follows that

Hq+1(X) ∼= H1(C(Zq)) ∼= H2(C(Zq+1)) ∼= · · · ∼= Hq+1(C(Z0)), q ≥ 0.

But Z0 consists of cochains with real (constant) coefficients. Hence we have proved:

Theorem 13.3 (de Rham). If {Ui} is an acyclic covering of the compact C∞

manifold X then Hq(X) is equal to the cohomology in degree q of the complex of

real cochains.

Corollary 13.4. If X is a compact C∞ manifold then Hq(X) is a finite di-

mensional vector space.

Proof of Lemma 13.2. Let c = (cs) ∈ Ck(λq) and assume that δc = 0. Choose

a partition of unity ϕj ∈ C∞
0 (Uj), thus

∑

j ϕj = 1, and set

c′s =
∑

j

ϕjcj,s, s ∈ Ik.

We define ϕjcj,s as 0 outside supp ϕj which gives a smooth form in Us since

ϕj ∈ C∞
0 (Uj), so we have defined a cochain c′ ∈ Ck−1(λq). For s ∈ Ik+1 we have

in Us

(δc′)s =
∑

j

k
∑

i=0

ϕj(−1)icj,s0,...,ŝi,...,sk =
∑

ϕjcs = cs,

where we have used the hypothesis that δc = 0. This proves the lemma.

Remark. Even if X is not a manifold but for example an arbitrary compact

space, and if R is an arbitrary ring, one can for open coverings {Ui} of X form

the complex of cochains with values in R corresponding to the covering. When the

covering is refined indefinitely one can prove that the cohomology of this complex

converges to a ring H∗(X,R) and prove that the results in Chapter XI are valid

for it with minor modifications. By suitable choice of R one can obtain more

information about X than when R = R. For example, H∗(Pn
R
,Z2) where Z2

denotes the integers mod 2 is the polynomial ring in one variable with coefficients in

Z2, truncated at degree n, in analogy to the cohomology H∗(Pn
C
,R) determined in

Theorem 12.7, while the de Rham cohomology H∗(Pn
R
,R) was fairly uninteresting.

For a general discussion of cohomology we refer to [G].

We shall now return to the study of the de Rham cohomology of a compact C∞

manifold X . The proof of Theorem 13.3 will be used to prove some important facts

on the solvability of the equation dv = u.
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Theorem 13.4. Let X be a compact, oriented C∞ manifold, and let u ∈ λ∗(X).

Then u = dv for some v ∈ λ∗(X) if and only if

∫

u ∧ w = 0 for every w ∈ λ∗(X) with dw = 0.

Before the proof we shall give an equivalent statement of the theorem. If u and

w are closed differential forms then
∫

u∧w only depends on the cohomology classes

a and b of u and w, for they determine the cohomology class of u∧w. Thus we can
write

∫

u ∧ w = 〈a, b〉

where 〈a, b〉 is a bilinear form on H∗(X) × H∗(X). With this notation Theorem

13.4 states that if 〈a, b〉 = 0 for every b ∈ H∗(X) then a = 0, that is, the bilinear

form is non-degenerate so it establishes a duality between Hk(X) and Hn−k(X)

for 0 ≤ k ≤ n. We state this as a theorem:

Theorem 13.5 (Poincaré’s duality theorem). Let X be a compact ori-

ented C∞ manifold. Then the bilinear form

λ∗(X)× λ∗(X) ∋ (u, w) 7→

∫

X

u ∧ w

induces a non-singular bilinear form on H∗(X)×H∗(X) which makes Hk(X) and

Hn−k(X) dual spaces (hence of the same dimension). If n = 2k then Hk is self

dual, and 〈a, b〉 = (−1)k
2

〈b, a〉 when a, b ∈ Hk(X). When k is even the form is thus

symmetric and when k is odd it is skew symmetric, so dimHk is even then.

Example. If X = Pn
C

and a =
∑n

0 ajx
j , b =

∑n

0 bjx
j where x ∈ H2(X) is the

class defined by U in Theorem 12.8, then 〈a, b〉 =
∑n

0 ajbn−j .

To prove Theorem 13.4 we shall verify inductively a closely related statement

which easily gives Theorem 13.4. Using the same covering as in the proof of

Theorem 13.3 we denote by Cp(λn−q
c ) the space of p cochains c = (cs) where

cs ∈ λn−q
c (Us). If u ∈ Cp(λq) and v ∈ Cp(λn−q

c ) we define

〈u, v〉 =
∑

s

∫

Us

us ∧ vs.

If u ∈ Cp(λq−1) and v ∈ Cp(λn−q
c ) then

〈du, v〉 = (−1)q〈u, dv〉,

for
∫

(dus) ∧ vs + (−1)q−1
∫

us ∧ dvs =
∫

d(us ∧ vs) = 0. Moreover,

〈δu, v〉 = 〈u, δ∗v〉, u ∈ Cp(λq), v ∈ Cp+1(λn−q
c ), where

(δ∗w)s =
∑

j

wj,s, s ∈ Ip+1.

The verification is left as an exercise. We can now formulate a variant of Theorem

13.4 which is adapted to the inductive proof of Theorem 13.3.
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Theorem 13.4′. If u ∈ Cp(Zq), p ≥ 1, then u = δv for some v ∈ Cp−1(Zq) if

and only if 〈u, w〉 = 0 for all cochains w ∈ Cp(λn−q
c ) with δ∗w ∈ dCp−1(λn−q−1

c ).

Proof. The necessity is obvious, for if u = δv then 〈u, w〉 = 〈v, δ∗w〉. If q = 0

then the sufficiency is also elementary, for u = (us) is then a real cochain and the

condition in the theorem means in view of Theorem 12.2 that
∑

us

∫

ws = 0

for all (ws) with
∫

(δ∗w)s = 0 for every s. But this means precisely that
∑

usWs = 0

for all real (Ws) such that this is true whenever u = δv.
We may now assume that 1 ≤ q ≤ n and that the theorem has been proved for

smaller values of q. If we write w = δ∗w′ where w′ ∈ Cp+1(λn−q
c ) the hypothesis

gives 〈δu, w′〉 = 0, hence δu = 0. Since q > 0 we can by Poincaré’s lemma write

u = dv where v ∈ Cp(λq−1). Then we have 0 = δu = dδv, so δv ∈ Cp+1(Zq−1). If

w ∈ Cp+1(λn−q+1
c ) and δ∗w = dW , W ∈ Cp(λn−q

c ), then

〈δv, w〉 = 〈v, δ∗w〉 = 〈v, dW 〉 = (−1)q〈dv,W 〉 = (−1)q〈u,W 〉.

We have dδ∗W = δ∗δ∗w = 0, and since δ∗W is a cochain of compactly sup-

ported differential forms of degree < n, it follows from Theorem 12.2 that δ∗W ∈

dCp−1(λn−q−1
c ). Hence 〈u,W 〉 = 0 by hypothesis, so the inductive hypothesis

gives that δv = δu′ where u′ ∈ Cp(Zq−1). In view of Lemma 13.2 it follows that

v − u′ = δV where V ∈ Cp−1(λq−1), which implies that δdV = dδV = dv = u, and
since dV ∈ Cp−1(Zq), the theorem is proved.

Proof that Theorem 13.4′ implies Theorem 13.4. The proof of Theorem

13.4′ can be continued to prove that Theorem 13.4 follows from Theorem 13.4′.

The necessity is obvious in Theorem 13.4 too. If u satisfies the conditions in the

theorem we conclude that du = 0 by taking w = dw′. If u is a 0 form, this means

that u is a constant in every component of X , and since every n form is closed we

can then conclude that u = 0. Thus we may assume that u ∈ λq(X) where q > 0.

By Poincaré’s lemma there is a q − 1 form vi in Ui such that u = dvi in Ui. These

forms define v ∈ C0(λq−1), and dδv = δdv = 0. We shall prove that δv satisfies

the hypotheses of Theorem 13.4′. Let q ∈ C1(λn−q+1
c ) and assume that δ∗w = dW

where W ∈ C0(λn−q
c ). Then we have

〈δv, w〉 = 〈v, δ∗w〉 = 〈v, dW 〉 = (−1)q〈dv,W 〉 = (−1)q
∫

u ∧
∑

iWi.

Since dWi =
∑

j wji and wji = −wij , we have d(
∑

iWi) = 0, so the hypothesis

in the theorem gives 〈δv, w〉 = 0. By Theorem 13.4′ we can therefore find u′ ∈

C0(Zq−1) with δu′ = δv. But then v − u′ defines a form V ∈ λq−1(X) with

dV = u, which completes the proof.

Remark. Note that the proof of Theorem 13.4′ and the proof that Theorem 13.4

follows from Theorem 13.4′ are parallel to two parts of the proof of Theorem 13.3

— the reading of the exact sequence far away and at the beginning, respectively.

In Chapter XIV we shall have to study the solvability of the equation dv = u
when u depends on parameters, and we shall now make some preparations for that.

Let ω be an open subset of Rν . A form ut ∈ λ∗(X) depending on the parameter

t ∈ ω is said to be a C∞ function of the parameter if in every local coordinate system

(x1, . . . , xn) on X one can write ut =
∑

aI(t, x)dxi1 ∧· · ·∧dxik with aI(t, x) ∈ C∞

as a function of (t, x).
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Theorem 13.6. Let X be a compact C∞ manifold. If ut ∈ λ∗(X) is a C∞

function of the parameter t ∈ ω ⊂ R
ν and if for every t ∈ ω there is a form vt such

that dvt = ut, then one can choose vt as a C∞ function of t ∈ ω.

Just as in the proof of Theorem 13.4 we must first prove a related result adapted

to the inductive proof of Theorem 13.3:

Theorem 13.6′. Let X be a compact C∞ manifold. If ut ∈ Cp(Zq), p ≥ 1, is

a C∞ function of t ∈ ω ⊂ R
ν , and if ut = δvt for some vt ∈ Cp−1(Zq) when t ∈ ω,

then vt can be chosen as a C∞ function of t ∈ ω.

The proof requires two simple lemmas:

Lemma 13.7. Let U be an open convex set in R
n, and let ut ∈ λq(U), q > 0, be

a C∞ function of the parameter t ∈ ω with dut = 0. Then ut = dvt where vt can

be chosen as a C∞ function of t ∈ ω.

Proof. This follows at once from the construction of vt in the proof of Theorem

8.1.

Lemma 13.8. Let ut ∈ Cp(λq), p > 0, be a C∞ function of the parameter t ∈ ω
such that δut = 0. Then we have ut = δvt where vt ∈ Cp−1(λq) can be chosen as a

C∞ function of t ∈ ω.

Proof of Theorem 13.6 ′. The theorem is true when q = 0, for if A : V1 → V2
is a linear transformation between finite dimensional vector spaces, then there exists

a linear map B : V2 → V1 such that ABu = u when u ∈ ImA. The solution v = Bu
of the equation Av = u is then a C∞ function of u.

Now assume that q > 0 and that the theorem has already been proved for smaller

values of q. By Lemma 13.7 we can write ut = dVt where Vt ∈ Cp(λq−1) is a C∞

function of t ∈ ω. Since dδVt = δdVt = δut = 0 it follows that δVt is a C
∞ function

of t ∈ ω with values in Cp+1(Zq−1). Since ut is cohomologous to 0 in the complex

C(Zq) we know from the proof of Theorem 13.3 that δVt is also cohomologous to

0 in the complex C(Zq−1). By the inductive hypothesis it follows that δVt = δu′t
where u′t ∈ Cp(Zq−1) is a C∞ function of t ∈ ω. By Lemma 13.8 we can now write

Vt − u′t = δWt where Wt ∈ Cp−1(λq−1) is a C∞ function of t ∈ ω. This implies

that δdWt = dVt = ut, so vt = dWt has the desired properties.

Proof that Theorem 13.6 ′ implies Theorem 13.6. We may assume that

ut ∈ λq(X) where q > 0. By Lemma 13.7 we have ut = dVt,i in Ui where Vt ∈

C0(λq−1) is a C∞ function of t ∈ ω. As in the proof of Theorem 13.3 we obtain

using Theorem 13.6′ that δVt = δu′t where u
′
t ∈ C0(Zq−1) is a C∞ function of t ∈ ω.

This implies that Vt − u′t defines a form vt ∈ λq−1(X) which is a C∞ function of

t ∈ ω, and since dvt = ut this completes the proof.

Remark. The proof gives easily that there is a linear continuous map E :

dλ∗(X) → λ∗(X) with dEf = f when f ∈ dλ∗(X). However, the notation be-

comes somewhat heavier in the proof so it will not be given here.

We shall now give two supplements to the Poincaré duality theorem which de-

scribe the modifications needed for manifolds which are not compact or not ori-

entable. We shall begin with the second problem.

Let X be a compact C∞ manifold. As in the proof of Theorem 12.4 we form a

new manifold ˜X consisting of pairs (x, o) where x ∈ X and o is an orientation of the
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tangent space Tx(X). We set p(x̃) = x if x̃ = (x, o). For a neighborhood Ui as in

Lemma 13.1 we obtain for the two choices of orientation two right inverses Ui → ˜X

of p, and they define a differentiable structure in ˜X. For the map p : ˜X → X the set

p−1(x) has precisely two points for every x ∈ X . If X is connected and orientable

then ˜X has two components diffeomorphic with X , but if X is connected but not

orientable then ˜X is connected. By the definition ˜X is oriented in any case.

Let r : ˜X → ˜X be the map corresponding to a change of the orientation. Thus

r ◦ r is the identity, p ◦ r = p, and r(x̃) 6= x̃ for every x̃ ∈ ˜X. If u is a differential

form on X then v = p∗u is a form on ˜X with r∗v = v. Conversely, if v is a form on
˜X with r∗v = v then v = p∗u where u is a form on X which is uniquely defined.

This was explained in the proof of Theorem 12.4.

A closed form u on X is exact if and only if p∗u is exact. In fact, if u = dv then

p∗u = dp∗v. On the other hand, if p∗u = dV then p∗u = r∗p∗u = dr∗V = dV1
where V1 = 1

2
(V + r∗V ). Since r ◦ r is the identity we have r∗V1 = V1, hence

V1 = p∗v where v is a form on X with u = dv.
By Theorem 13.4 a form u on X is thus exact if and only if

∫

X̃

(p∗u) ∧ V = 0

for all closed forms V on ˜X . Now we have

∫

X̃

(p∗u) ∧ V = −

∫

r∗((p∗u) ∧ V ) = −

∫

(p∗u) ∧ r∗V

since r reverses the orientation of ˜X . Hence it follows that

∫

(p∗u) ∧ V =

∫

(p∗u) ∧ V ′ where V ′ = 1
2
(V − r∗V ), thus r∗V ′ = −V ′.

For V ′ we therefore have a symmetry which is opposite to that for forms lifted

from X . Every form V on ˜X can uniquely be written as V = V + + V − where

r∗V + = V + and r∗V − = −V −, for this is equivalent to V + = 1
2 (V + r∗V ) and

V − = 1
2
(V − r∗V ). This decomposition commutes with the exterior differential

operator d since d commutes with r∗.

Definition 13.9. By the twisted cohomology H∗
t (X) for X one means the

cohomology of the complex of odd forms V on ˜X, that is, forms with r∗V = −V .

There is an obvious injection H∗
t (X) → H∗( ˜X) so H∗

t (X) can be viewed as a

subset of H∗( ˜X). If u is a form on X and V is a form on ˜X with r∗V = −V then

the bilinear form

(u, V ) 7→ 1
2

∫

(p∗u) ∧ V

induces a bilinear form on H∗(X)×H∗
t (X) which by the discussion above is non-

singular. If X is orientable then we can identify H∗
t (X) with H∗(X) and we have

just recovered the duality in Theorem 13.5. However, we have now proved with no

hypothesis on orientability:
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Theorem 13.10. If X is a compact C∞ manifold then H∗(X) and H∗
t (X) are

dual.

Combining the result and its proof with Theorem 13.6 we obtain:

Theorem 13.11. Let X be a compact C∞ manifold, and let α1, . . . , αN be closed

forms on X such that their cohomology classes form a basis for H∗(X). If ut ∈

λ∗(X) is a C∞ function of t and dut = 0 for every t, then we can write

ut =
N
∑

1

aj(t)αj + dvt

where aj ∈ C∞ and vt ∈ λ∗(X) is a C∞ function of t.

Proof. If A1, . . . , AN are odd closed forms on ˜X with cohomology classes in

H∗
t (X) forming a basis which is biorthogonal to the classes of α1, . . . , αN in H∗(X),

then we must have

aj(t) =
1
2

∫

X̃

p∗ut ∧ Aj ,

which is a C∞ function of t. Now ut −
∑N

1 aj(t)αj is exact, so the theorem follows

from Theorem 13.6.

We shall now discuss the cohomology of a non-compact C∞ manifold X . For

the sake of simplicity we assume that X is oriented and leave for the reader to

state and prove an anlogue of Theorem 13.12 below for the case where X is not

oriented. The case of main interest to us is that which occurred in Theorem 11.9,

where there exists a compact C∞ manifold Y and a compct submanifold Z such

that X is diffeomorphic to Y \Z. If T is a sufficiently small tubular neighborhood

of Z then X is also diffeomorphic to Y \ T , by Theorem 10.6, which makes the

following theorem applicable.

Theorem 13.12. Let X be diffeomorphic to a relatively compact open subset of

an oriented manifold M and assume that the boundary ∂X is C∞ and of codimen-

sion 1. Then H∗
c (X) and H∗(X) are dual with respect to the bilinear form induced

by
∫

X
u ∧ v when u ∈ λ∗c(X) and v ∈ λ∗(X), du = dv = 0.

Note that Theorem 12.2 is a consequence of Theorem 12.1 and Theorem 13.12.

As just observed, the hypotheses of Theorem 13.12 are fulfilled if X = Y \Z where

Z is a compact C∞ submanifold of a compact oriented C∞ manifold Y .

Proof. An open neighborhood of ∂X is diffeomorphic to ∂X × (−1, 1) and

we identify it with ∂X × (−1, 1). We may assume that ∂X × (−1, 0) ⊂ X , that

∂X × 0 = ∂X and that M = X ∪ (∂X × [0, 1)). We form a new manifold ˜M
consisting of two copies of M where we identify a point (ξ, t) ∈ ∂X × (−1, 1) in

one copy with (ξ,−t) in the other copy. Then we obtain an oriented manifold ˜M

where ∂X is a submanifold Y and ˜M \ Y consists of two copies X+ and X− of X ,

with X+ having the orientation of X and X− the opposite orientation. On ˜M we

have a map r : ˜M → ˜M with r ◦ r equal to the identity which maps X+ to X− and

leaves every point in Y fixed. If p+ : X+ → X and p− : X− → X are the natural

maps then p+ ◦ r = p− and p− ◦ r = p+. The map r reverses the orientation, so
∫

M̃
r∗u = −

∫

M̃
u for u ∈ λ∗(˜M).
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If u ∈ λ∗c(X) we can define a form U ∈ λ∗(M) by U = p+∗u on X+ and

U = −p−∗u on X−. Then r∗U = −U , U = 0 in a neighborhood of Y , and dU = 0

if du = 0. If
∫

X
u∧ v = 0 for every v ∈ λ∗(X) with dv = 0 then

∫

U ∧ V = 0 for all

V ∈ λ∗(˜M) with dV = 0. By Poincaré’s duality theorem it follows that U = dV

where V is a form on ˜M . Since

U = −r∗U = −r∗dV = d(−r∗V )

we have also U = dV1 where V1 = 1
2
(V − r∗V ), thus r∗V1 = −V1. If i is the

embedding Y → ˜M then r ◦ i = i, hence i∗V1 = i∗r∗V1 = −i∗V1, so i
∗V1 = 0. But

we proved before Definition 11.8 that this implies that there is a form V2 ∈ λ∗(˜M)

vanishing in a neighborhood of Y such that U = dV2. The pullback v = (p+)−1∗V2 is
then in λ∗c(X) and dv = u, so we have proved that an element in H∗

c (X) orthogonal

to H∗(X) must be 0.

Let us now consider an element in H∗(X) which is orthogonal to H∗
c (X). It is

represented by a closed form u ∈ λ∗(X) with
∫

X
u ∧ v = 0 for every v ∈ λ∗c(X)

with dv = 0. Let f : ˜M → X be equal to p± in ˜M \ (∂X × (−1
2 ,

1
2 )) and define

f((y, t)) = (y, ϕ(t)) when y ∈ ∂X and t ∈ (−1, 1) where ϕ ∈ C∞(R) is an increasing

function of |t|, and ϕ(t) = |t| when |t| > 1
2 , ϕ(t) =

1
4 when |t| < 1

5 . Then we have

f ◦ r = f . Since u is a closed form on X it follows that f∗u is a closed form on ˜M ,

and we claim that

(13.3)

∫

M̃

(f∗u) ∧ V = 0

for every closed form V on ˜M . Since f∗ is homotopic to p± in X± we know that

this is true for forms V which vanish in a neighborhood of ∂X . In view of the exact

sequence

Hk
c (

˜M \ ∂X) −→ Hk(˜M)
i∗

−→ Hk(∂X)

we only have to prove that for every closed form V on ˜M there is a closed form V ′

with i∗V = i∗V ′ such that
∫

M̃
(f∗u)∧V ′ = 0, for V −V ′ is cohomologous to a form

which vanishes in a neighborhood of Y . Since i∗V = i∗r∗V we have i∗V ′ = V if

V ′ = 1
2
(V + r∗V ), and then it follows that

∫

M̃

(f∗u) ∧ V ′ = −

∫

M̃

(r∗f∗u) ∧ r∗V ′ = −

∫

M̃

(f∗u) ∧ V ′

since r reverses the orientation and f ◦ r = f . This proves (13.3), and it follows

that f∗u is exact. Hence (p+−1)∗f∗u is exact, and since f ◦ p+−1 is homotopic to

the identity in X , it follows that u is exact. The proof is now complete.

In connection with de Rham’s theorem we shall also discuss the definition of

the Chern class of a complex line bundle. In analogy to Definition 9.2 a complex

vector bundle L over X with fiber of type C
n is by definition a C∞ manifold with

a projection p : L→ X such that

(i) Lx = p−1(x) is for every x ∈ X a n dimensional vector space over C;

(ii) every x ∈ X has a neighborhood U such that there is a diffeomorphism

p−1(U) ∼= U ×C
n which respects the projection and the vector structure of

the fibers.
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We shall only consider complex line bundles, that is, the case n = 1.

Choose an acyclic covering {Ui} of X such that for every i there is a diffeomor-

phism

ψi : p
−1(Ui) → Ui ×C

with the properties (ii); they are called local trivialisations. The map

ψiψ
−1
j : (Ui ∩ Uj)×C → (Ui ∩ Uj)×C

consists of multiplication of the component in C by a function gij ∈ C∞(Ui ∩ Uj)

with no zeros. We have

gijgjkgki = 1 in Ui ∩ Uj ∩ Uk; gijgji = 1 in Ui ∩ Uj ; gii = 1 in Ui.

The functions gij are called transition functions. To define a section of L is equiv-

alent to defining in each Ui a complex valued function ui such that ui = gijuj in

Ui ∩ Uj for all i, j.
We shall now examine if L is isomorphic to X×C, that is, if there exists a global

trivialisation. In that case ψi could be viewed as multiplication by a function gi ∈
C∞(Ui) without zeros, and we would have gij = gi/gj. The problem is therefore

to decide when there exist such functions. Since Uj ∩ Uk is simply connected we

can choose C∞ functions hjk with gjk = exp(−2πihjk) and hjk = −hkj when

Uj ∩ Uk 6= ∅, and obtain

hij + hjk + hki = cijk ∈ Z, if Ui ∩ Uj ∩ Uk 6= ∅.

If the line bundle is trivial and we write gj = exp(−2πihj) then we obtain hij =

hi − hj + cij with cij ∈ Z, if Ui ∩ Uj 6= ∅, and this implies

(13.4) cij + cjk + cki = cijk, if Ui ∩ Uj ∩ Uk 6= ∅.

This means that (cijk)must define the 0 cohomology class in H2(C(R)). Conversely,

if this is true and we choose a solution cij ∈ R of the preceding equations then

Hij = hij − cij satisfies

Hij +Hjk +Hki = 0, if Ui ∩ Uj ∩ Uk 6= ∅.

By Lemma 13.2 we can then write

Hij = Hj −Hi, if Ui ∩ Uj 6= ∅,

where Hi ∈ C∞(Ui). If cij ∈ Z this means that gjk = exp(2πiHj)/ exp(2πiHk), so

the line bundle is trivial. (In general we just conclude that the line bundle can be

represented with the transition functions exp(−2πicjk) which are constants with

absolute value 1.) Apart from the distinction between integer and real solutions of

(13.4) we conclude that the line bundle is trivial precisely when (cijk) defines the

class 0 in H2(C(R)). We shall now go back to the proof of de Rham’s theorem

and determine a differential form defining the corresponding cohomology class in

H2(X). It is called the Chern class of the line bundle.
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Choose a partition of unity ϕi ∈ C∞
0 (Ui). By the proof of Lemma 13.2 (cijk)

considered as element in C2(λ0) is equal to δ applied to the cochain in C1(λ0)
defined by

∑

i

ϕicijk ∈ λ0(Uj ∩ Uk).

If we apply d to this cochain we obtain the cochain in C1(Z1)

∑

i

cijkdϕi ∈ Z1(Uj ∩ Uk).

which defines the corresponding cohomology class in H1(C(Z1)). If we introduce

the definition of cijk and use that
∑

i dϕi = 0, the 1 cochain becomes

∑

i

(hij + hjk + hki)dϕi =
∑

i

hkidϕi −
∑

i

hjidϕi ∈ Z1(Uj ∩ Uk),

which is δ applied to the cochain in C0(λ1)

∑

i

hjidϕi ∈ λ1(Uj).

The differential of this cochain

∑

i

dhji ∧ dϕi ∈ λ2(Uj)

is a cocycle in C0(Z2) (that is, annihilated by δ), so it is a globally defined closed

two form in X . We can verify this directly, for

∑

i

(dhji − dhki) ∧ dϕi =
∑

i

dhjk ∧ dϕi = 0 in Uj ∩ Uk

since
∑

i dϕi = 0. Now we have dhji = −dhij = dgij/(2πigij), so the Chern class

is defined by the differential form

(13.5) α = (2πi)−1
∑

i

(dgij/gij) ∧ dϕi in Uj .

The form (13.5) is defined for any covering of X by open sets Ui such that L
is trivial in Ui for every i. We shall now prove that the cohomology class of α is

independent of the choices of covering, trivialisations and partition of unity.

a) If {ψi} is another partition of unity and

uj =
∑

i

(ϕi − ψi)dgij/(2πigij) ∈ λ1(Uj)

then we have

uj − uk =
∑

i

(ϕi − ψi)dgkj/(2πigkj) = 0 in Uj ∩ Uk
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so the forms uj define together a form u ∈ λ(X). The the definitions of

(13.5) using the two partitions of unity differ by the exact form du.
b) If we keep the covering and change the trivialisations, then they are just

multiplied by functions gi ∈ C∞(Ui) with no zeros, that is, gij is replaced

by gijgig
−1
j . This means adding to (13.5)

(2πi)−1
∑

i

(dgi/gi − dgj/gj) ∧ dϕi = d
(

(2πi)−1
∑

i

−ϕidgi/gi
)

which is an exact form.

c) Finally we shall study what happens if one refines the covering but keeps

the trivialisations. Thus we take a new covering {Vj} such that there is

a map j → i(j) with Vj ⊂ Ui(j) for every j. Choose a partition of unity

χj ∈ C∞
0 (Vj). Then

ϕi =
∑

i(j)=i

χj

is a partition of unity for the covering {Ui}, and with these partitions of

unity we even get the same differential form (13.5) for the two coverings. For

two arbitrary coverings one can choose a third covering which is a refinement

of both, so the result is true for arbitrary coverings.

We have now completed the definition of the Chern class c(L) ∈ H2(X), which is

defined by the form (13.5). The proof in c) above also shows that if f : Y → X is

a C∞ map then c(f∗L) = f∗c(L).

Example. On the complex projective space Pn
C

there is a natural complex line

bundle L, for every point in Pn
C

corresponds to a complex line in C
n+1. For

i = 1, . . . , n+ 1 let Ui be the set of points in Pn
C

with the homogeneous coordinate

zi 6= 0. The restriction to Ui of L with the zero section removed can then be

identified with {z ∈ C
n+1; zi 6= 0}, and we trivialise L in Ui by mapping it to

(p(z), zi) where p : Cn+1 \ {0} → Pn
C

is the natural map. Then we obtain the

transition functions zi/zj in Ui∩Uj . The dual bundle with the reciprocal transition

functions

gij = zj/zi in Ui ∩ Uj

is called the Hopf bundle, and we shall calculate its Chern class.

First assume that n = 1. Then P 1
C

can be considered as C extended by a

point at infinity. A point z ∈ C corresponds to the class of p(z, 1), and infinity to

p(1, 0). Thus U1 is the extended plane except 0, and U2 is the finite plane. Choose

ϕ2 ∈ C∞
0 (C) equal to 1 in a neighborhood of 0. We regard ϕ2 as a function in

C∞
0 (U2) and choose ϕ1 = 1 − ϕ2 ∈ C∞

0 (U1). Then g21 = z = 1/g12 so the Chern

form (13.5) is given in the finite plane by

(2πi)−1(dg12/g12) ∧ dϕ1 = (2πi)−1(−dz/z) ∧ (−dϕ2)

which vanishes in a neighborhood of infinity. The integral is

(2πi)−1

∫∫

C

∂ϕ2/∂z̄dz ∧ dz̄/z = ϕ2(0) = 1,

by Cauchy’s integral formula. This proves that the Chern class is the natural

generator of H2(P 1
C
). We can extend this conclusion as follows:
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Theorem 13.13. The Chern class of the Hopf bundle on Pn
C

is the generator

of H∗(Pn
C
) defined in Theorem 12.8.

Proof. The restriction to a one dimensional projective subspace is equal to the

Chern class of its Hopf bundle, and we have just proved that its integral is equal

to 1.

Exercise. Let X be a compact Riemann surface, that is, a compact one dimen-

sional analytic manifold. For a covering of X with local analytic coordinate patches

Ui we give for every i a meromorphic function gi in Ui such that gij = gi/gj is an-

alytic in Ui ∩Uj , hence 6= 0 there. Prove that the Chern class of the corresponding

line bundle is the generator of H2(X) times the number of zeros minus the number

of poles of the given functions.
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CHAPTER XIV

COHOMOLOGY OF PRODUCT AND FIBER SPACES

Let X and Y be compact C∞ manifolds, not necessarily connected, but we

assume that every component ofX (resp. Y ) has the same dimension. If α ∈ H∗(X)

and β ∈ H∗(Y ) then we can define the direct product α× β ∈ H∗(X × Y ) by

α × β = (π∗
Xα) ∪ (π∗

Y β)

where πX : X × Y → X and πY : X × Y → Y are the projections. Conversely we

can recover the cup product from the direct product, for if X = Y and δ denotes

the diagonal map X ∋ x 7→ (x, x) ∈ X ×X , then

δ∗(α× β) = ((πX ◦ δ)∗α) ∪ ((πY ◦ δ)∗β) = α ∪ β.

Theorem 14.1 (Künneth’s formula). If α1, . . . , αµ is a basis for H∗(X)

and β1, . . . , βν is a basis for H∗(Y ), then αi × βj , i = 1, . . . , µ, j = 1, . . . , ν, is a

basis for H∗(X × Y ).

We postpone the proof until we have made some comments on this result. Since

(α× β) ∪ (α′ ∪ β′) = (−1)pq(α ∪ α′)× (β ∪ β′)

if α′ is of degree p and β is of degree q, it follows from Theorem 14.1 that the ring

H∗(X × Y ) is completely determined by H∗(X) and H∗(Y ).

The Poincaré polynomial for X is defined as the polynomial

p(X, t) =
dimX
∑

0

tj dimHj(X).

The degree is dimX if and only if X has an orientable component. The coefficients

are called the Betti numbers. Theorem 14.1 implies:

Corollary 14.2. If X and Y are compact C∞ manifolds then

p(X × Y, t) = p(X, t)p(Y, t).

Example. For the sphere Sn we have p(Sn, t) = 1 + tn. For a product

X = Sn1 × · · · × Snk

it follows that p(X, t) = (1+ tn1) . . . (1+ tnk). We leave as a simple exercise for the

reader to prove that two such products X are not homeomorphic unless the factors
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are the same apart from the order. — We have p(Pn
C
, t) = 1 + t2 + · · · + t2n =

(t2(n+1) − 1)/(t2 − 1), hence

p(Pn1

C
× · · · × Pnk

C
, t) =

k
∏

1

(

(t2(nj+1) − 1)/(t2 − 1)
)

,

and it is easy to see that two such products are also different unless the factors are

the same apart from the order.

By Poincaré’s duality theorem the Poincaré polynomial p(X, t) of any orientable

compact manifold X is a reciprocal polynomial, that is,

tdimXp(X, 1/t) = p(X, t),

as we saw in examples above.

Let aj and bk be closed differential forms in the classes αj and βk respectively. To

prove Theorem 14.1 we must verify that every closed form onX×Y is cohomologous

to a sum
∑

cijai ∧
×
bj with constant coefficients, and also prove that cij = 0 for all

i, j if the sum is cohomologous to 0. (If a ∈ λ∗(X) and b ∈ λ∗(Y ) we denote by

a ∧
×
Y the exterior product π∗

Xa ∧ π
∗
Y b. This is not a standard notation but it may

clarify the formulas below.) The following lemma will allow us to prove both these

facts at the same time. We use

Lemma 14.3. Let u ∈ λ∗(X × Y ) and assume that

du =
∑

j

Aj ∧
×
bj

for some Aj ∈ λ∗(X). Then one can find v ∈ λ∗(X×Y ) and A′
j ∈ λ∗(X) such that

u =
∑

A′
j ∧
×
bj + dv.

Proof. We may assume that bj ∈ λpj (Y ) for some pj . Let {Ui} be a finite

covering of X with local coordinate patches. If x denotes the local coordinates in

Ui, then we can write

u =
∑

I

dxI ∧ uI,x in Ui × Y

where I = (i1, . . . , ik) is increasing, dxI = dxi1 ∧ · · · ∧ dxik , and uI,x is a form on

Y which is a C∞ function of x ∈ Ui. We shall prove the lemma inductively under

the hypothesis that the degree of uI,x is ≤ σ for every Ui in the covering. This

hypothesis is obviously independent of the choice of covering and local coordinates.

The statement proves the lemma when σ = dimY , and it is vacuous when σ = −1.

In the proof we may therefore assume that σ ≥ 0 and that the statement has been

proved for lower values of σ.
Let uσI,x be the part of uI,x of degree σ. If dY denotes the differential of uI,x

when x is considered as a parameter then the only terms in du of degree σ + 1 in

the Y variables are
∑

I

(−1)|I|dxI ∧ dY u
σ
I,x.
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Hence dY u
σ
I,x must for fixed x be a linear combination of the forms bj of degree

σ+1. Since their cohomology classes are linearly independent and dY u
σ
I,x is exact,

the coefficients must be 0 so dY u
σ
I,x = 0. If σ = 0 it follows that uσI,x is a function

of x, hence that u is a form in X lifted to X × Y . The statement is true then, for

1 is cohomologous in Y to a linear combination of the forms bj. If σ > 0 it follows

from Theorem 13.11 that

uσI,x =
∑

j

aI,j,xbj + dvI,x

where bj is of degree σ in the sum, and aI,j,x ∈ R and vI,x ∈ λσ−1(Y ) are C∞

functions of x ∈ Ui. Set

vi =
∑

I

(−1)|I|dxI ∧ vI,x

where the upper index i indicates that vi is a form defined in Ui × Y . It is a form

of degree σ − 1 with respect to the Y variables. Set

Ai
j =

∑

I

aI,j,xdx
I .

Then the difference

u−
∑

j

Ai
j ∧
×
bj − dvi ∈ λ∗(U i × Y )

has degree ≤ σ − 1 with respect to the Y variables.

Let ϕi ∈ C∞
0 (Ui) be a partition of unity, thus

∑

i ϕi = 1, and set

A′
j =

∑

i

ϕiA
i
j ∈ λ∗(X), v =

∑

ϕiv
i ∈ λ∗(X × Y ),

where as usual a product by ϕi is defined as 0 outside suppϕi. Then

u1 = u−
∑

j

A′
j ∧
×
bj − dv =

∑

i

ϕi(u−
∑

j

Ai
j ∧
×
bj − dvi)−

∑

i

(dϕi) ∧ v
i

is of degree ≤ σ − 1 with respect to the Y variables. We have

du1 = du−
∑

j

(dA′
j) ∧

×
bj

so u1 satisfies the hypotheses of the lemma. By the inductive hypothesis we conclude

that

u1 =
∑

j

A′′
j ∧

×
bj + dv1,

where A′′
j ∈ λ∗(X), and this gives

u =
∑

j

(A′
j +A′′

j ) ∧
×
bj + d(v + v1).
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The proof is complete.

Proof of Theorem 14.1. If u is a closed form on X × Y it follows from

Lemma 14.3 that u is cohomologous to a sum
∑

j Aj ∧ bj where Aj ∈ λ∗(X). Since
∑

j(dAj) ∧
×
bj = 0 we have dAj = 0. But Aj is cohomologous to a sum

∑

i cijai

with constant coefficients, which proves that u is cohomologous to
∑

i,j cijai ∧×
bj .

If
∑

i,j cijai ∧×
bj = dv it follows from Lemma 14.3 that

v =
∑

j

A′
j ∧
×
bj + dw

where A′
j ∈ λ∗(X) and w ∈ λ∗(X × Y ). Hence

dv =
∑

j

(dA′
j) ∧

×
bj =

∑

i,j

cijai ∧
×
bj

which proves that dA′
j =

∑

i cijai. Since {ai} is a basis for the cohomology in X it

follows that dA′
j = 0 and cij = 0, which completes the proof.

Lemma 14.3 was clearly the main point in the proof of Theorem 14.1, and in the

proof of the lemma the spaces X and Y did not play symmetrical roles. We shall

now see that the proof can actually be used to prove a generalisation of Theorem

14.1 where X × Y is replaced by a fiber space over X . This extension will be

essential for the study of characteristic classes.

Definition 14.4. Let E,X be compact C∞ manifolds, and let π : E → X be

a C∞ map. One calls E a fiber space with base X and projection π if the rank of

π is everywhere equal to dimX .

The definition implies that

Ex = π−1(x) = {e ∈ E; πe = x}, x ∈ X,

which is called the fiber of E over x, is a manifold for every x ∈ X . Every x0 ∈ X has

an open neighborhood U such that π−1(U) is diffeomorphic to U × π−1(x0) under
a fiber preserving diffeomorphism π−1(U) ∋ e 7→ (πe, ξ(e)) where ξ(e) ∈ π−1(x0).
In fact, it follows from Theorem 10.6 that in a neighborhood of π−1(x0) in E we

have a projection p on π−1(x0) with rank equal to the dimension of π−1(x0). The
map

e 7→ (πe, p(e)) ∈ X × π−1(x0)

is therefore locally bijective since dimE = dimX +dimπ−1(x0). Since the restric-

tion to π−1(x0) is injective it follows that it is bijective in a neighborhood (see

Exercise 10.7), so we have

Lemma 14.5. If E is a compact C∞ fiber space over the compact C∞ manifold

X, then there exists a finite covering {Ui} of X such that π−1(Ui) for every i is
diffeomorphic to Ui × π−1(xi) where xi ∈ Ui, with a diffeomorphism preserving the

fibers.

If E is a fiber space over X with projection π, then we have a map π∗ : H∗(X) →

H∗(E), so we can view H∗(E) as a H∗(X) module.
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Theorem 14.6 (Leray-Hirsch). Let E be a C∞ compact fiber space with the

C∞ compact manifold X as base and projection π : E → X. Assume that there exist

cohomology classes ε1, . . . , εN ∈ H∗(E) such that for every fiber F = π−1(x) the

restrictions i∗ε1, . . . , i
∗εN , where i is the inclusion F → E, form a basis for H∗(F ).

Then it follows that H∗(E) is the free H∗(X) module generated by ε1, . . . , εN . Thus

every ε ∈ H∗(E) has a unique representation of the form

ε =
N
∑

1

π∗αj ∪ εj with αj ∈ H∗(X), j = 1, . . . , N.

Corollary 14.7. E and X × F have the same Poincaré polynomial if the

hypotheses of the theorem are fulfilled.

However, H∗(E) and H∗(X × F ) may have quite different structure as rings

although the additive structures are the same. — Theorem 14.6 contains Theorem

14.1, for if E = X × Y we can take εj = π∗
Y βj where β1, . . . , βN are a basis for

H∗(Y ) and πY is the projection E → Y .

It will clearly suffice to prove Theorem 14.6 whenX is connected. Then it suffices

to assume that there is one point x0 ∈ X such that i∗ε1, . . . , i
∗εN is a basis for

H∗(F ) if F = π−1(x0) and i is the inclusion F0 → X . In fact, let U ⊂ X be an open

connected neighborhood of x0 such that there is a fiber preserving diffeomorphism

ψ : U × F0 → π−1(U), and set ε̃j = ψ∗εj . The maps ix : ξ 7→ (x, ξ) from F0 to

U × F0 are homotopic when x ∈ U , so i∗xε̃j = (ψ ◦ ix)
∗εj is independent of x ∈ U .

Since ψ ◦ ix is a diffeomorphism F0 → π−1(x) we conclude that i∗x0
εj , j = 1, . . . , N ,

is a basis for H∗(F0), hence that i
∗
xε̃j , j = 1, . . . , N , is a basis. This proves that the

restrictions to π−1(x) of εj , j = 1, . . . , N , form a basis for H∗(π−1(x)) for every

x ∈ U . Since X is connected this is true for every x ∈ X .

Decomposing each εj in its homogeneous parts, that is, as a sum of elements

in Hn(E), n = 0, 1, . . . , dimE, we obtain homogeneous cohomology classes ε̂j ,

j = 1, . . . , ̂N , such that the restrictions to π−1(x) generate H∗(π−1(X)) for every

x ∈ X . For a fixed x0 we can choose N of them which give a basis. From the

preceding discussion it follows that they will then give a basis for every x ∈ X . Thus

we can replace the basis ε1, . . . , εN in the hypothesis of Theorem 14.6 by another

homogeneous basis, and this does not affect the hypothesis or the conclusion. We

may therefore assume that εj ∈ Hnj (E) for some nj when j = 1, . . . , N . Then the

restrictions i∗εj with n(j) = ν are for every ν a basis for Hν(F ) if i is the inclusion
of a fiber F in E. For j = 1, . . . , N we choose a form ej ∈ λnj (E) in the cohomology

class εj .

Lemma 14.3′. Let u ∈ λ∗(E) and assume that

du =
∑

j

π∗aj ∧ ej , where aj ∈ λ∗(X).

Then one can find v ∈ λ∗(E) and Aj ∈ λ∗(X) such that

u =
∑

j

π∗Aj ∧ ej + dv.
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Proof. Let {Ui} be a finite covering ofX with coordinate patches diffeomorphic

to convex subsets of Rn which is so fine that with Fi = π−1(xi), where xi ∈ Ui,

there is a fiber preserving diffeomorphism

ψi : Ui × Fi → π−1(Ui), thus ψi(x, ξ) = (x, ψi(x, ξ)) if x ∈ Ui, ξ ∈ Fi.

If the local coordinates in Ui are denoted by x, then we can write

ψ∗
i u =

∑

I

dxI ∧ uI,x

where uI,x ∈ λ∗(Fi) is a C
∞ function of x. We shall prove by induction over σ that

the lemma is valid when the degree of uI,x is ≤ σ for every Ui in the covering. This

hypothesis only depends on u and not on the choice of covering, local coordinates

and trivialisations ψi. For let

ψ : U × F1 ∋ (x, ξ) 7→ (x, ψ(x, ξ)) ∈ U × F2

be a C∞ map preserving the fibers. Then ψ∗dxi = dxi whereas for a local coor-

dinate η in F2 the pullback ψ∗dη = d(η(ϕ(x, ξ)) is a sum of differentials along F1

and along U . If V is a form on U × F2 of degree ≤ σ along F2 it follows that ψ∗V
is of degree ≤ σ along F1.

When x ∈ Ui we denote the map Fi ∋ ξ 7→ ψi(x, ξ) by ψi,x. By hypothesis ψ∗
i,xe1,

. . . , ψ∗
i,xeN is a basis for the cohomology in Fi, and by the homotopy invariance it

is independent of x. Let u be of degree ≤ σ with respect to the fiber variables and

write

ψ∗
i u =

∑

I

dxI ∧ uI,x,

as in the proof of Lemma 14.3, where uI,x is a form on Fi which is a C∞ function

of x ∈ Ui. Denote the part of uI,x of degree σ by uσI,x. Using Theorem 13.11 it

follows as in the proof of Lemma 14.3 that

uσI,x =
∑

1≤j≤N,nj=σ

aI,j,xψ
∗
I,xej + dFi

vI,x,

where vI,x is of form of degree ≤ σ − 1 in Y which is a C∞ function of x ∈ Ui,

and aI,j,x ∈ C∞(Ui). Now we define vi and Ai
j as in the proof of Lemma 14.3 and

obtain that

ψ∗
i u−

N
∑

j=1

π∗Ai
j ∧ ψ

∗
i ej − dFi

vi

is of degree < σ with respect to the fiber variables. After pulling this form back to

π−1(Ui) by the inverse of ψi we can use a partition of unity in X as at the end of

Lemma 14.3 to complete the proof. The details are left for the reader.

Proof of Theorem 14.6. The proof of Theorem 14.6 is essentially a repetition

of that of Theorem 14.1, with Lemma 14.3 replaced by Lemma 14.3′, so it is left

for the reader.

As an application of Theorem 14.6 we shall now define the Chern classes of a

complex vector bundle V of fiber dimension n over X by determining the coho-

mology of the corresponding projective bundle. By the definition of a complex
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vector bundle, given in Chapter XIII, there is an open covering X = ∪Xi such

that V |Xi
is diffeomorphic to Xi ×C

n with a diffeomorphism respecting the fibers

and the vector operations in them. Now form the fiber space P (V ) with fiber over

x ∈ X consisting of the projective space defined by the fiber Vx. Thus P (V )x is

Vx \ {0} with elements differing by a complex factor identified. It is clear that

P (V )Xi
∼= Xi × Pn−1

C
, which proves at once that P (V ) is a fiber space over X .

On P (V ) there is a natural line bundle H, for every element in P (V ) determines

a complex line in the corresponding vector space. (In Chapter XIII we used the

dual bundle but here we prefer not do so in order to get the desired sign.) The

restriction of H to P (V )x is the natural line bundle on P (V )x. If c(H) is the Chern

class of H, it follows from Theorems 12.7 and 13.13 that c(H)x
j , 0 ≤ j < n, is a

basis for the cohomology in P (V )x. Hence the theorem of Leray and Hirsch proves

that every element in H∗(P (V )) can be written

n−1
∑

0

(p∗aj) ∪ c(H)j , aj ∈ H∗(X),

where p is the projection P (V ) → X , and the representation is unique. In particu-

lar, c(H)n is of this form, so we have an equation

c(H)n − c1c(H)n−1 + · · ·+ (−1)ncn = 0, cj ∈ H2j(X),

with uniquely determined coefficients cj(V ). The ring structure of H∗(P (V )) can

be calculated by means of them. It is clear that the coefficients cj give important

topological information on the vector bundle V . They are called the Chern classes

of the vector bundle. For a line bundle V we have P (V ) = X and H = V , so c1(V )

is then the Chern class defined in Chapter XIII.

Notes. For a thorough discussion of Chern classes we refer to [Hi]. For the

definition of Chern classes by means of differential forms we refer to [BC] and to

[Hö]. A systematic discussion of fiber bundles can be found in [Hu].
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CHAPTER XV

DIRECT IMAGES OF COHOMOLOGY CLASSES

Let X and Y be compact C∞ oriented manifolds, and let f be a continuous

map X → Y . Then we have a mapf∗ : H∗(Y ) → H∗(X), which only depends

on the homotopy class of f . By Theorem 13.5 (the Poincaré duality theorem) a

non-singular bilinear form (α, β) 7→ 〈α, β〉 on H∗(X) is induced by the bilinear

form (u, v) 7→
∫

X
u ∧ v when u, v ∈ λ∗(X) are in the cohomology classes α and β.

The bilinear form 〈α, β〉 identifies H∗(X) with its dual space. Similarly we have a

non-singular bilinear form on H∗(Y ). The adjoint of the map f∗ can therefore be

viewed as a map f∗ from H∗(X) to H∗(Y ). It is defined by

(15.1) 〈f∗α, β〉Y = 〈α, f∗β〉X , α ∈ H∗(Y ), β ∈ H∗(X).

On the left we have the bilinear form in H∗(Y ) and on the right the bilinear form

in H∗(X). The subscripts will often be omitted. (The notation f∗ is meant to

suggest that f∗ goes in the same direction as f while the notation f∗ is meant to

indicate the opposite direction.) If β ∈ Hj(X) it suffices to take α ∈ HdimX−j(Y )

in (15.1), which implies that f∗β ∈ HdimY−dimX+j(Y ). (We assume tacitly that

X and Y are connected or at least that every component has the same dimension.)

Example 1. Let us assume that X and Y are connected of the same dimension

n. Then we have defined the degree m of f by

〈f∗α, 1X〉 = m〈α, 1Y 〉, α ∈ Hn(Y ),

where 1X (resp. 1Y ) is the 0 form which is identically 1 in X (resp. Y ). By (15.1)

this means that f∗1X = m · 1Y .

Example 2. For the embedding i : Pn−k
C

→ Pn
C

we have i∗1 = αk where α
is the cohomology class of the form U in Theorem 12.8. (Here 1 is the 0 form in

Pn−k
C

which is identically 1.) In fact, every cohomology class γ on Pn
C

contains a

polynomial
∑n

0 ajU
j with constant real coefficients, and we have

〈i∗γ, 1〉
P

n−k

C

=

∫

P
n−k

C

n
∑

0

ajU
j = an−k =

∫

Pn
C

(

n
∑

0

ajU
j) ∧ Uk = 〈γ, αk〉Pn

C

by Theorem 12.8.

The map f∗ is not multiplicative, but we can translate the multiplicative prop-

erties of f∗ to a property of f∗. To do so let α, β ∈ H∗(Y ) and γ ∈ H∗(X). Then

f∗(α ∪ β) = (f∗α) ∪ (f∗β), hence

〈f∗(α ∪ β), γ〉X = 〈(f∗α) ∪ (f∗β), γ〉X = 〈f∗α, (f∗β) ∪ γ〉X = 〈α, f∗((f
∗β) ∪ γ)〉Y .
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This implies that

(15.2) β ∪ f∗γ = f∗((f
∗β) ∪ γ), β ∈ H∗(Y ), γ ∈ H∗(X).

For γ = 1X we obtain in particular

(15.3) f∗f
∗β = β ∪ f∗1X , β ∈ H∗(Y ).

If X and Y are connected manifolds of the same dimension we saw in Example 1

that f∗1X = m · 1Y where m is the degree. Hence it follows then that

f∗f
∗β = mβ, β ∈ H∗(Y ),

which proves that f∗ is injective and that f∗ is surjective if m 6= 0. Thus we have

proved:

Theorem 15.1. If X and Y are compact connected oriented manifolds of the

same dimension and f : X → Y is a continuous map with degree 6= 0, then f∗ :

H∗(Y ) → H∗(X) is injective, which implies that H∗(Y ) is a subring of H∗(X).

In particular, the Betti numbers of Y are at most equal to those of X. If they are

equal then f∗ is an isomorphism. This is true in particular if there also exists a

map g : Y → X with degree 6= 0.

Example 3. If Y is the sphere Sn then H∗(Y ) consists of all pairs (x0, xn) ∈ R
2

with componentwise addition and the multiplication

(x0, xn) ∪ (y0, yn) = (x0y0, x0yn + xny0).

This ring is a subring of H∗(X) for every connected orientable X of dimension n,
so the theorem gives no restrictions on manifolds which can be mapped with degree

6= 0 into the sphere of the same dimension. In fact, there is always such a map, for

we can choose an open subset X1 ⊂ X which is diffeomorphic to R
n, hence with

Sn \P where P is a point in Sn. The diffeomorphism X1 → Sn \P extended to X
by mapping X \X1 to P is a map X → Sn with degree 1.

However. if we take X = Sn in Theorem 15.1 we find that Hk(Y ) must be 0 for

0 < k < n, so H∗(Y ) must be isomorphic to H∗(Sn) if Sn can be mapped into Y
with degree 6= 0. For example, Sn cannot be mapped into the torus Tn with degree

6= 0 although the torus can be mapped into Sn with degree 1.

We can allow X and Y to be oriented but not necessarily compact manifolds

provided that the duality theorem 13.12 is valid for them. For every continuous

map f : X → Y we still have a linear map f∗ : H∗(Y ) → H∗(X), and we can

define the adjoint map f∗ : H∗
c (X) → H∗

c (Y ). If f is proper we also have a map

f∗ : H∗
c (Y ) → H∗

c (X) which has an adjoint map f∗ : H∗(X) → H∗(Y ). The

map f∗ : H∗
c (X) → H∗

c (Y ) only depends on the homotopy class of f , and the map

f∗ : H∗(X) → H∗(Y ) only depends on the proper homotopy class of f .

Theorem 15.2. Let X and Y be oriented C∞ manifolds such that X is compact

and Poincaré duality is valid for Y . If f : X → Y and g : Y → X define a homotopy

equivalence, then f∗ : H∗(X) → H∗
c (Y ) is an isomorphism, and we have

(15.4) f∗α = (g∗α) ∪ (f∗1X), α ∈ H∗(X).
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Proof. Since f ◦ g and g ◦ f are homotopic to the identity in Y and X , re-

spectively, it follows that f∗g∗ and g∗f∗ are the identity in H∗(X) and H∗(Y )

respectively. Hence f∗ is an isomorphism H∗(X) = H∗
c (X) → H∗

c (Y ). We ob-

tain (15.4) by taking β = g∗α in (15.3) which remains valid under our present

hypotheses.

We shall now discuss the special case where f : X → Y is an embedding. For

every sufficiently small tubular neighborhood of X in Y the hypotheses of Theorem

15.2 are fulfilled with Y replaced by T and g equal to the projection π : T → X .

Hence we see that H∗(X) is isomorphic to H∗
c (T ); the isomorphism is given by a

map

(15.5) H∗(X) ∋ α 7→ (π∗α) ∪ ε ∈ H∗
c (T ),

where ε = f∗1X ∈ H∗
c (T ). Note that if e ∈ λ∗c(T ) is a form representing ε, then the

definition of ε means that
∫

T

u ∧ e =

∫

X

u,

when u is a closed form in T . In the particular case where Y is a real vector bundle

— which is in fact the general case modulo diffeomorphisms — the class ε is called
the Euler class of the bundle, and (15.5) is called the Thom-Gysin isomorphism.

For an embedding f : X → Y we shall now study the integral of f∗1X over

submanifolds of Y . Since f∗1X can be represented by forms with support arbitrarily

close to X , the integral is 0 over every manifold which does not intersect X ; the

integral can only depend on the intersections. (We identify X with f(X).) When

studying the intersections we shall also examine the more general case where f is

not necessarily an embedding.

Definition 15.3. Let X1, X2, Y be oriented C∞ manifolds such that X1 and

X2 are compact, dimX1 + dimX2 = dimY , and let fj : Xj → Y , j = 1, 2,
be C∞ maps. One calls the maps transversal if for all (x1, x2) ∈ X1 × X2 with

f1(x1) = f2(x2) = y the map

f ′
1(x1)⊕ f ′

2(x2) : Tx1
(X1)⊕ Tx2

(X2) ∋ (t1, t2) 7→ f ′
1(x1)t1 + f ′

2(x2)t2 ∈ Ty(Y )

is bijective. One calls (x1, x2) a positive (negative) intersection if this bijection

preserves (reverses) the orientations. (A direct sum A⊕B of two finite dimensional

oriented vector spaces is oriented by letting a positive basis for A followed by a

positive basis in B be a positive basis in A⊕B.)

Transversality is a very strong hypothesis:

Lemma 15.4. Let f1 and f2 be transversal as in Definition 15.3. If f1(x1) =

f2(x2) = y there exists an open neighborhood Uj of xj, j = 1, 2, and a diffeomor-

phism f of U1 × U2 on an open neighborhood of y such that

(15.6) f(x1, ξ2) = f2(ξ2), f(ξ1, x2) = f1(ξ1), if ξj ∈ Uj .

In particular, if (ξ1, ξ2) ∈ U1 × U2, then f1(ξ1) = f2(ξ2) implies that (ξ1, x2) =

(x1, ξ2), that is, ξ1 = x1 and ξ2 = x2, so (x1, x2) is the only intersection in U1×U2.
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Proof. Let ψ : Rn → Y be a coordinate system in a neighborhood of y with

ψ(0) = y. For (ξ1, ξ2) in a neighborhood of (x1, x2) we can define f by

f(ξ1, ξ2) = ψ
(

ψ−1(f1(ξ1)) + ψ−1(f2(ξ2))
)

.

Then (15.5) is valid, and for (ξ1, ξ2) = (x1, x2) we have

f ′ = ψ′(0)(ψ−1)′(y)(f ′
1(x1)⊕ f ′

2(x2)) = f ′
1(x1)⊕ f ′

2(x2).

Since this is a bijection it follows from the inverse function theorem that f is a

diffeomorphism of some neighborhood U1 × U2 of (x1, x2) on a neighborhood of y,
which proves the lemma.

Theorem 15.5. Let X1, X2, Y be compact C∞ oriented manifolds with

dimX1 + dimX2 = dimY , and let fj : Xj → Y be transversal C∞ maps. Then

〈f1∗1X1
, f2∗1X2

〉Y is equal to the number of (x1, x2) ∈ X1×X2 with f1(x1) = f2(x2)
counted with the sign in Definition 15.3, that is, the number of signed intersections

of f1(X1) and f2(X2).

Proof. We shall first assume that f1 is an embedding. Then we know that

the class f1∗1X1
contains forms e with support in an arbitrarily small tubular

neighborhood T in Y of the manifold f1(X1). For every x2 ∈ X2 we can find at

most one x1 ∈ X1 with f1(x1) = f2(x2). If we label the intersections (xj1, x
j
2),

j = 1, . . . , ν the components xj2 are therefore different. Choose for j = 1, . . . , ν

open neighborhoods U j
1 and U j

2 of xj1 and xj2 according to Lemma 15.4 so that

U j
2 are disjoint, and choose corresponding diffeomorphisms f j from U j

1 × U j
2 to a

neighborhood of yj = f1(x
j
1) = f2(x

j
2). We have

〈f1∗1X1
, f2∗1X2

〉Y = 〈f∗
2 f1∗1X1

, 1X2
〉X2

=

∫

X2

f∗
2 e.

If we choose the support of e sufficiently close to f(X1) then supp f∗
2 e ⊂ ∪ν

1U
j
2 , and

we obtain
∫

X2

f∗
2 e =

ν
∑

j=1

∫

U
j

2

f∗
2 e.

The definition of e means that

(15.7)

∫

f(X1)

u =

∫

T

u ∧ e

for arbitrary closed forms u in T . Choose U j
1 so small that f j(U j

1 × ∂U j
2 ) ∩ Y =

∅. If v ∈ λd1

c (U j
1 ) where d1 = dimX1, then dv = 0. Let u be the pullback of

v ∧
×
1 ∈ λd1(U j

1 × U j
2 ) to f j(U j

1 × U j
2 ) by the inverse of f j . Since u vanishes near

the intersection of the boundary with T , we can set u = 0 in the the rest of T and

obtain a form u in T with du = 0. From (15.7) it follows now that

∫

U
j

1

v =

∫

f(X1)

u =

∫

T

u ∧ e = ±

∫

f j∗(u ∧ e) = ±

∫

U
j

1
×U

j

2

(v × 1) ∧ e′
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where e′ = f j∗e and the sign is that in Definition 15.3. Since e′ has degree d2 =

dimX2 the integral I of e′ over U j
2 for fixed ξ1 ∈ U j

1 is a function I(ξ1) there, and
we obtain

∫

U
j

1

v = ±

∫

U
j

1

Iv, v ∈ λd1

c (U j
1 ),

which proves that I(ξ1) = ±1. In particular we obtain when ξ1 = xj1 that

∫

U
j

2

f j
2
∗e = ±1.

This completes the proof of the theorem when f1 is an embedding. It is therefore

also valid when f2 is an embedding, for if we let f1 and f2 change places then both

sides of the asserted inequality are multiplied by (−1)dimX1 dimX2 .

To prove the theorem without such restrictions on f1 or f2 we introduce the map

f : X = X1 ×X2 ∋ (x1, x2) 7→ (f1(x1), f2(x2)) ∈ Y × Y,

and the diagonal map

δ : Y ∋ y 7→ (y, y) ∈ Y × Y.

The intersections of f and δ consist of all (x1, x2, y) ∈ X×Y with f1(x1) = f2(x2) =
y, so they are in 1− 1 correspondence with the intersections of f1 and f2. The sign
of an intersection of f and δ is the sign of the linear map

ϕ1 : Tx1
(X1)⊗ Tx2

(X2)⊗ Ty(Y ) ∋ (ξ1, ξ2, η)

7→ (f ′
1(x1)ξ1 + η, f ′

2(x2)ξ2 + η) ∈ Ty(Y )⊕ Ty(Y ),

and the sign of the corresponding intersection of f1 and f2 is the sign of the map

ϕ2 : Tx1
(X1)⊕ Tx2

(X2) ∋ (ξ1, ξ2) 7→ (f ′
1(x1)ξ1 + f ′

2(x2)ξ2) ∈ Ty(Y ).

For the linar maps

ψ1 : Ty(Y )⊕ Ty(Y ) ∋ (η1, η2) 7→ (η1 − η2, η2) ∈ Ty(Y )⊕ Ty(Y ),

ψ2 : Tx1
(X1)⊕ Tx2

(X2) ∋ (ξ1, ξ2) 7→ (ξ1,−ξ2) ∈ Tx1
(X1)⊕ Tx2

(X2)

we have detψ1 = 1 and detψ2 = (−1)dimX2 , and

(ψ1 ◦ ϕ1)(ξ1, ξ2, η) = (f ′
1(x1)ξ1 − f ′

2(x2)ξ2, f
′
2(x2)ξ2 + η)

is bijective, so f and δ are transversal. The linear map

Tx1
(X1)⊕ Tx2

(X2)⊕ Ty(Y ) ∋ (ξ1, ξ2, η)

7→ (f ′
1(x1)ξ1 − f ′

2(x2)ξ2, tf
′
2(x2)ξ2 + η) ∈ Ty(Y )⊕ Ty(Y )

is bijective for every t. The sign is therefore independent of t, and when t = 0 it is

equal to the sign of ϕ2 ◦ ψ2. Hence the sign of ϕ1 is (−1)dimX2 times the sign of

ϕ2. Now we have

〈f1∗1X1
, f2∗1X2

〉Y = 〈(f1∗1X1
) ∪ (f2∗1X2

), 1Y 〉Y

= 〈δ∗(f1∗1X1
× f2∗1X2

), 1Y 〉Y = 〈(f1∗1X1
)× (f2∗1X2

), δ∗1Y 〉Y×Y .
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To calculate (f1∗1X1
)× (f2∗1X2

) we take αj ∈ HdimXj (Y ), j = 1, 2, and obtain

〈α1 × α2, (f1∗1X1
)× (f2∗1X2

)〉Y×Y = (−1)(dimX2)
2

〈α1, f1∗1X1
〉Y 〈α2, f2∗1X2

〉Y

= (−1)dimX2〈f∗
1α1, 1X1

〉X1
〈f∗

2α2, 1X2
〉X2

= (−1)dimX2〈(f∗
1α1)× (f∗

2α2), 1X〉X

= (−1)dimX2〈f∗(α1 × α2), 1X〉X = (−1)dimX2〈α1 × α2, f∗1X〉Y×Y .

(The first equality is clear if one thinks of the corresponding differential forms.)

Hence

〈f1∗1X1
, f2∗1X2

〉Y = (−1)dimX2〈f∗1X , δ∗1Y 〉Y×Y ,

and since δ is an embedding this is (−1)dimX2 times the number of intersections

between f and δ which is precisely the number of intersections of f1 and f2. The

proof is complete.

An important part of Theorem 15.5 remains valid for arbitrary continuous maps:

Theorem 15.6. Let X1, X2, Y be compact oriented C∞ manifolds with

dimX1 + dimX2 = dimY.

If fj : Xj → Y are continuous maps, then 〈f1∗1X1
, f2∗1X2

〉Y is always an integer.

In view of Theorem 15.5 it is natural to call this number the intersection number

between f1 and f2 or, with some suggestive abuse of language, between f1(X1) and

f2(X2).

For the proof of Theorem 15.6 we first note that 〈f1∗1X1
, f2∗1X2

〉Y only depends

on the homotopy classes of f1 and of f2, and by Corollary 10.9 every homotopy

class contains C∞ maps. Theorem 15.6 will follow from Theorem 15.5 and the

following more precise fact:

Theorem 15.7. Let X1, X2, Y be compact C∞ manifolds with

dimX1 + dimX2 = dimY.

If fj : Xj → Y are continuous maps, j = 1, 2, then one can find C∞ transversal

maps gj : Xj → Y , j = 1, 2, which are arbitrarily close to fj, hence homotopic to

fj.

Proof. We have just seen that it is no restriction to assume that fj ∈ C∞.

If Y is embedded in R
N we can for a sufficiently small open neighborhood U of

0 ∈ R
N define

ϕ(y, t) = π(y + t), y ∈ Y, t ∈ U,

where π is the projection on Y in a tubular neighborhood of Y . We have ϕ ∈

C∞(Y × U, Y ), ϕ(y, 0) = y, y ∈ Y , and the differential of ϕ is surjective even for a

fixed y. Now we claim that the C∞ maps

g1(x1) = f1(x1), gt2(x2) = ϕ(f2(x2), t)

are transversal for all t ∈ U \ C where C is a set of measure 0. To prove this we

shall study the intersections

Σ = {(x1, x2, t) ∈ X1 ×X2 × U ; f1(x1) = ϕ(f2(x2), t)}.
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If we prove that Σ is a manifold of dimension N and that g1 and gt2 are transversal

if and only if t is not a critical value of the projection Σ → U , then the theorem

will follow from the Morse-Sard theorem (Theorem 3.1). Since these statements are

local it suffices in the proof to consider points (x01, x
0
2, t

0) ∈ Σ such that f1(x
0
1) ∈ V1

where V1 is an open subset of Y with a diffeomorphism h : V1 → R
dimY . In a

neighborhood of this point Σ is defined by the equation

F (x1, x2, t) = h(f1(x1))− h(ϕ(f2(x2), t)) = 0.

Since F ′
t is surjective this equation defines a manifold of dimension dimX1 +

dimX2 + N − dimY = N . At a point in Σ with f2(x2) = y the tangent space

is given by

{(ξ1, ξ2, τ) ∈ Tx1
(X1)⊕Tx2

(X2)⊕R
N ; f ′

1(x1)ξ1−ϕ
′
y(y, t)f

′
2(x2)ξ2−ϕ

′
t(y, t)τ = 0},

and its projection on the component τ ∈ R
N is therefore bijective if and only if

f ′
1(x1)ξ1 − ϕ′

y(y, t)f
′
2(x2)ξ2 = 0 implies (ξ1, ξ2) = 0, which means precisely that g1

and gt2 are transversal. The proof is complete.

To explain the significance of Theorem 15.6 we shall give two examples.

Example 4. Let f : X → Y be a continuous map where X and Y are compact

oriented connected C∞ manifolds of the same dimension. Then f∗1X = m · 1Y
where m is the degree of f (see Example 1). If P is a point and i : P → Y is an

embedding of P in Y , then

〈f∗1X , i∗1P 〉 = m〈1Y , i∗1P 〉 = m〈i∗1Y , 1P 〉 = m

so Theorem 15.6 proves again that m is an integer.

Example 5. Let f : Pn
C

→ Pn
C

be continuous. For 0 ≤ k ≤ n we let ik : P k
C

→

Pn
C

be an embedding of the k dimensional complex projective space as a subspace.

Then ik∗1Pk
C

= αn−k where α is the generator for H2(Pn
C
) constructed in Theorem

12.7 (see Example 2 above). Now Theorem 15.6 gives that

(15.8)

〈f∗αk, αn−k〉Pn
C
= 〈f∗i(n−k)∗1Pn−k

C

, ik∗1Pk
C

〉Pn
C
= 〈i(n−k)∗1Pn−k

C

, (f ◦ ik)∗1Pk
C

〉Pn
C

is an integer. Since Hk(Pn
C
) = Rαk we have f∗αk = ckα

k where ck ∈ R. However,

ck is equal to the left-hand side of (15.8) so ck is an integer. This is nothing new

when k = n, for cn is the degree of f . However, since ck = ck1 we may now conclude

that the degree is of the form mn where m is an integer. This result is optimal. In

fact, for every positive integer m we can choose f with the degree (±m)n, for in

terms of the homogeneous coordinates such a map is given by

(z0, . . . , zn) 7→ (zm0 , . . . , z
m
n ) resp. (z0, . . . , zn) 7→ (z̄m0 ., . . . , z̄

m
n ).

With X1, X2, Y as in Theorem 15.5 we shall now derive a method for calculating

the intersection number between f1 and f2 when the intersections

S = {(x1, x2) ∈ (X1 ×X2); f1(x1) = f2(x2)}

form a finite set. This will be proved by rewriting the result in Theorem 15.5 in

the transversal case so that it is still meaningful under this weaker assumption.

Let V be an open set in Y such that there exists a diffeomorphism ψ : V →

R
dimY preserving the orientation. Let U be an open subset of X1 ×X2 such that

a neighborhood of U is diffeomorphic to an open subset of RdimY .
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Lemma 15.8. Let fj ∈ C∞(Xj, Y ) be transversal and assume that fj(xj) ∈ V

when (x1, x2) ∈ U , and that f1(x1) 6= f2(x2) when (x1, x2) ∈ ∂U . Then the number

of intersections (x1, x2) ∈ U of f1 and f2, counted with sign as in Theorem 15.5,

is equal to (−1)dimX2D(ϕ, U, 0) where ϕ : U → R
dimY is defined by

(15.9) ϕ(x1, x2) = ψ(f(x1))− ψ(f(x2)).

Here the degree D(ϕ, U, 0) was defined in Theorem 4.2.

Proof. Since ϕ(x1, x2) 6= 0 when (x1, x2) ∈ ∂U , the degree D(ϕ, U, 0) is de-

fined. When (x1, x2) ∈ U and ϕ(x1, x2) = 0, then f(x1) = f(x2) = y, and

ϕ′(x1, x2) = ϕ′(y)(f ′(x1)⊕ (−f ′(x2)),

so 0 is not a critical value of ϕ and the sign of detϕ′(x1, x2) is equal to (−1)dimX2

times the sign of the intersection of f1 and f2 at (x1, x2) according to Theorem

15.5. This proves the lemma.

We have given other expressions for D(ϕ, U, 0) in Chapters VIII and IX and will

not repeat them here.

Theorem 15.9. Let X1, X2, Y be compact C∞ oriented manifolds with

dimX1 + dimX2 = dimY.

If fj : Xj → Y are continuous maps and the intersections

S = {(x1, x2) ∈ X1 ×X2; f1(x1) = f2(x2)}

form a finite set, then the intersection number between f1 and f2 is the sum over

S of the indices of the intersections, defined as follows. For every (x1, x2) ∈ S
we take an orientation preserving diffeomorphism ψ of a neighborhood V of y =

f1(x1) = f2(x2) on R
dimY and a neighborhood U of (x1, x2) ∈ X1 ×X2 such that

a neighborhood of U is diffeomorphic to an open bounded subset of R
dimY and

U ∩ S = {(x1, x2)}. Then the index of (x1, x2) is (−1)dimX2D(ϕ, U, 0) where ϕ is

defined by (15.9).

Proof. Choose neighborhoods U1, . . . , Uν of the intersections such that the clo-

sures are disjoint. If gj ∈ C∞(Xj , Y ) are transversal and sufficiently close to fj ,
then there are no intersections between g1 and g2 outside ∪ν

1Uj . By Lemma 15.8

the theorem is true for the intersection number between g1 and g2, which is equal

to the intersection number between f1 and f2 when gj is sufficiently close to fj ,
j = 1, 2. The degrees at 0 of gj and fj are then also equal in U1, . . . , Uν , which

proves the theorem.

In Chapter XVI we shall give an important application of this theorem. We end

this chapter with some comments on the intersections between f1 ∈ C∞(X1, Y ) and

f2 ∈ C∞(X2, Y ) when dimX1 +dimX2 is not necessarily equal to dimY . Then f1
and f2 are called transversal if for arbitrary (x1, x2) in

X3 = {(x1, x2) ∈ X1 ×X2; f1(x1) = f2(x2)}
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the map

f ′
1(x1)⊕ f ′

2(x2) : Tx1
(X1)⊕ Tx2

(X2) → Ty(Y )

is surjective. Then it follows from the implicit function theorem that X3 is a C∞

manifold of dimension dimX1 + dimX2 − dimY (hence empty if this is a negative

number). We have also a C∞ map f3 : X3 → Y defined by f3(x1, x2) = f1(x1) =
f2(x2) when (x1, x2) ∈ X3. If X1, X2 and Y are oriented, then X3 has a unique

orientation such that

(f1∗1X1
) ∪ (f2∗1X2

) = f3∗1X3
.

One can extend Theorem 15.7 so that the restrictions on the dimensions are elimi-

nated. The cohomology class (f1∗1X1
)∪(f2∗1X2

) can therefore always be written in

the form f3∗1X3
where X3 is a compact manifold of dimension dimX1 + dimX2 −

dimY and f3 is a C∞ map X3 → Y , and one can regard f3(X3) as a representative

of the intersection between f1(X1) and f2(X2).

Notes. The intersection numbers studied here by means of de Rham cohomol-

ogy are historically much older. They were the starting point of the duality in the

classical homology theory of Poincaré. The theorems in this chapter can essentially

be found in [H] although the formulations there are somewhat different.

References

[H] H. Hopf, Zur algebra der Abbildungen von Mannigfaltigkeiten, J. Reine Angew. Math. 163

(1930), 71–88.

106



CHAPTER XVI

THE FIXED POINT THEOREMS OF LEFSCHETZ AND HOPF

Let X be a compact oriented C∞ manifold of dimension n, and let f : X → X
be a continuous map. We want to study the fixed points of f , that is, the points

x ∈ X with f(x) = x. If Gf is the graph of f ,

Gf = {(x, f(x)); x ∈ X} ⊂ X ×X,

then the fixed points are the intersections between Gf and the diagonal ∆ ⊂ X×X ,

and we can calculate the intersection number using the methods in Chapter XV.

Let δ be the diagonal map X ∋ x 7→ (x, x) ∈ X × X , and let F be the map

X ∋ x 7→ (x, f(x)) ∈ X × X . We choose a basis {αi} for H∗(X) consisting of

homogeneous elements and denote by {βj} the biorthogonal basis, thus

〈αi, βj〉 = δij .

The existence of the dual basis follows from the Poincaré duality theorem, and

the cohomology classes βj are also homogeneous. By Künneth’s formula (Theorem

14.1) we have

F∗1X =
∑

i,j

cijαi × βj , cij = 0 if degαi + deg βj 6= n,

so the intersection number between Gf and ∆ is

〈F∗1X , δ∗1X〉X×X = 〈δ∗F∗1X , 1X〉X =
∑

i,j

cij〈αi, βj〉 =
∑

i

cii.

By the definition of F∗ we have

〈βi × αj, F∗1X〉X×X = 〈F ∗(βi × αj), 1X〉X = 〈βi, f
∗αj〉X .

When i = j we obtain

(−1)degαi deg βi〈f∗αi, βi〉X = 〈βi × αi, F∗1X〉X×X

= cii〈βi × αi, αi × βi〉 = cii(−1)degαi(deg βi+degαi)〈αi, βi〉X〈αi, βi〉X .

(Note that for the corresponding differential forms one must let the form rep-

resenting the last αi commute through the form representing βi × αi.) Since

degαi − (degαi)
2 is even it follows that

∑

i

cii =
∑

i

(−1)degαi〈f∗αi, βi〉 =
∑

j

(−1)j Tr(f∗|Hj(X)),

where Tr(F ∗|Hj(X)) denotes the trace of the linear map f∗ : Hj(X) → Hj(X).

Hence we have proved:
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Theorem 16.1 (Lefschetz). Let X be a compact oriented manifold, and let

f : X → X be a continuous map. If F is the map X ∋ x 7→ (x, f(x)) → X×X and

δ is the diagonal map corresponding to the identity, then the intersection number

between F and δ is equal to

(16.1)

dimX
∑

j=0

(−1)j Tr(f∗|Hj(X)),

which is called the Lefschetz number of f . It only depends on the homotopy class

of f . When the Lefschetz number of f is not 0 then f must have a fixed point.

Example 1. If f is homotopic to the identity map then the Lefschetz number

is
dimX
∑

j=0

(−1)j dimHj(X)

which is called the Euler characteristic of X . Note that the Poincaré duality theo-

rem implies that it is equal to 0 when n is odd.

Before giving other examples we shall write out explicitly the special cases of

Theorem 16.1 when F and δ are transversal or just have finitely many intersections.

Suppose first that f ∈ C∞ and that F and δ are transversal. This means that for

a fixed point x ∈ X the linear map

Tx(X)⊕ Tx(X) ∋ (ξ1, ξ2) 7→ (ξ1 + ξ2, f
′(x)ξ1 + ξ2) ∈ Tx(X)⊕ Tx(X)

is bijective, and the sign of the intersection is the sign of this map. As in the second

part of the proof of Theorem 15.5 we find that this is equivalent to the map

(ξ1, ξ2) 7→ (ξ1 − f ′(x)ξ1, f
′(x)ξ1 + ξ2)

which is bijective if and only if ξ1 6= f ′(x)ξ1 when ξ1 6= 0. The sign is the same

as for det(I − f ′(x)) where I is the identity in Tx(X). The fixed point is said to

be non-degenerate when this determinant is not equal to 0. As a special case of

Theorem 16.1 we now obtain:

Corollary 16.2. If X is a compact C∞ (oriented) manifold and f is a C∞

map X → X with no degenerate fixed point, then the number of fixed points x,
counted with the sign of det(I − f ′(x)), is equal to the Lefschetz number (16.1) of

f .

Here the hypothesis that X is oriented has been put inside a parenthesis since

it is not essential for the statement and not required for the result. However, we

have only proved the theorem in the orientable case. We leave the extension to the

reader and pass to a discussion of a continuous map f : X → X with only isolated

fixed points. Let x0 be a fixed point and identify a small open neighborhood of

x0 with a neighborhood of 0 ∈ R
n by a diffeomorphism preserving the orientation.

In order to apply Theorem 15.9 we must determine (−1)nD(ϕ, U × U, 0) if U is a

small convex neighborhood of 0 in R
n and

ϕ(x1, x2) = (x1, f(x1))− (x2, x2).
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For the homotopy

ϕt(x1, x2) = (tx1 − x2, f(x1)− x1 + t(tx1 − x2)), (x1, x2) ∈ U × U, t ∈ [0, 1],

we have ϕt(x1, x2) 6= 0 unless f(x1) = x1 and x2 = tx1, hence x1 = x2 = 0. This

implies that

D(ϕ, U × U, 0) = D(ϕ1, U × U, 0) = D(ϕ0, U × U, 0) = (−1)nD(I − f, U, 0),

since the determinant of the map (y1, y2) 7→ (−y2,−y1) in R
n ⊕ R

n is equal to

(−1)n. Thus we have proved:

Corollary 16.3. Let X be a compact C∞ (oriented) manifold and let f :

X → X be a continuous map. If f has finitely many fixed points then the Lefschetz

number (16.1) of f is equal to the sum of the indices of the fixed points. The index

of a fixed point x0 is defined by taking a diffeomorphism ψ : Rn → U where U is a

neighborhood of x0 containing no other fixed point. If

ϕ(x) = x− ψ−1 ◦ f ◦ ψ(x), x ∈ R
n,

then the index of x0 is equal to D(ϕ,Ω, ψ−1(x0)) where Ω is a bounded neighborhood

of ψ−1(x0).

Example 2. A continuous map f : Sn → Sn must have a fixed point unless

the degree is equal to (−1)n+1, which is the degree of the antipodal map x 7→ −x
which obviously has no fixed point. In fact, the Lefschetz number is 1 + (−1)nm
where m is the degree.

Example 3. A continuous map f : Pn
C

→ Pn
C

must have at least one fixed

point unless n is odd and the degree is equal to −1. In fact, by Example 5 in

Chapter V, given after Theorem 15.7, we know that if α is a generator for H2(Pn
C
)

then f∗α = cα, hence f∗αk = ckαk, where c is an integer. (We do not need this

information yet.) The Lefschetz number is therefore

1 + c+ c2 + · · ·+ cn = (cn+1 − 1)/(c− 1), c 6= 1,

which has no real zero if n is even and only the real zero c = −1 when n is odd.

If c = −1 and n is odd then the degree is cn = −1. An example of a map without

fixed point is defined in homogeneous coordinates by

(z0, . . . , zn) 7→ (z̄1,−z̄0, z̄3,−z̄2, . . . , z̄n,−z̄n−1)

when n is odd so that the number of homogeneous coordinates is even. For a fixed

point the two n+ 1 tuples must be proportional, hence z0z̄0 + z1z̄1 = 0, . . . . This
implies that zj = 0 for every j, which does not define a point in Pn

C
.

As a special case of the Lefschetz formula (16.1) we shall now derive a theorem

of Hopf on the zeros of a vector field on a manifold. Let v be a C∞ vector field

on the compact oriented manifold X , that is, a C∞ section of the tangent bundle

T (X). By integration of the differential equation

(16.2) df(x, t)/dt = v(f(x(t)), f(x, 0) = x,
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we define a one parameter family (in fact a group) of C∞ maps ft : X ∋ x 7→

f(t, x) ∈ X with f0 equal to the identity. Since ft is homotopic to the identity the

Lefschetz number is equal to the Euler characteristic of X (see Example 1 above).

On a compact set where v 6= 0 there is no fixed point for ft when t is small, but

a zero of v is a fixed point for every t. To determine when it is non-degenerate we

choose local coordinates x1, . . . , xn vanishing at a zero of v. Then the differential

equations (16.2) for f(x, t) = (f1(x, t), . . . , fn(x, t)) have the form

∂fj(x, t)/∂t = vj(f(x, t)), fj(x, 0) = xj , j = 0, . . . , n.

By Taylor’s formula

f(x, t) = x+ tv(x) +O(t2);

more precisely, (f(x, t) − x)/t → v(x) in C∞ in a neighborhood of 0 ∈ R
n when

t→ 0. If det ∂v(0)/∂x 6= 0, it follows from the implicit function theorem that there

is a neighborhood of the origin where the equation f(x, t) = x has only the zero

x = 0 when t is small enough. We have

(I − f ′
x(0, t))/t→ −∂v(0)/∂x when t→ 0

which implies that

(−t)n det(I − f ′
x(0, t)) → det ∂v/∂x when t→ 0.

Hence the fixed point is non-degenerate and the sign is equal to the sign of ∂v/∂x
when n is even. When n is odd the sign also depends on the sign of t. This does

not affect the following statement since the Euler characteristic is equal to 0 then.

Theorem 16.4 (Hopf). Let X be a compact oriented C∞ manifold, and let v
be a C∞ vector field on X such that det ∂v/∂x 6= 0 at every zero of v if ∂v/∂x
is calculated in terms of local coordinates there. Then there are only finitely many

zeros of v, and the number of zeros counted with the sign of det ∂v/∂x is equal to

the Euler characteristic
dimX
∑

j=0

(−1)j dimHj(X).

We have of course a similar result for continuous vector fields with only finitely

many zeros. The Euler characteristic is then equal to the sum of the indices of the

zeros where the index of a zero is the degree of the map defined by the vector field

in a small sphere around the zero in terms of local coordinates. The details of the

statement and proof are left as an exercise.

Example 4. On a sphere of even dimension there are no vector fields without

zeros since the Euler characteristic is equal to 2. However, such vector fields exist

on all spheres of odd dimension (in fact, on all manifolds of odd dimension). An

example on S2n−1 ⊂ R
2n is given by

v(x) = (−x2, x1,−x3, x2, . . . ,−x2n, x2n−1), x ∈ R
2n.

Example 5. The Euler characteristic for Pn
C

is equal to n + 1, so vector fields

on Pn
C

have n+ 1 zeros “in general”.

Notes. The fixed point theorems in this chapter were first proved in [H] and

[L]. They are included in most textbooks on algebraic topology. A relatively recent

extension of the Lefschetz fixed point theorems to complexes of differential operators

other than the de Rham complex of exterior differential operators has been given

in [AB]. Another proof can be found in [Hö, Section 19.4].
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