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Abstract 

Background: Type 1 diabetes is an autoimmune disease characterized by insulin 
deficiency due to pancreatic islet beta cell function loss, resulting in increased blood 
glucose levels. Beta-cell autoantibodies are markers of the autoimmune that might 
be present months to years before clinical diagnosis. HLA-DR-DQ is strongly 
associated with the risk of type 1 diabetes. The HLA-DR3/4-DQ2/8 genotype 
confers the highest risk. However, only one in 15 (7%) of individuals with this 
human leukocyte antigen (HLA) genotype develop the disease over a life-time. 

Aims: The overall aim of this thesis was to investigate immunological markers and 
survey type 1 diabetes pathogenesis. Specifically, we aimed to investigate if there 
is an association between antigen-presenting cells’ ability to present antigen to 
immune cells, HLA, and autoantibodies. In addition, we aimed to investigate plasma 
lipid profiles in relation to HLA and to identify and examine novel type 1 diabetes 
susceptibility loci.  

Methods: Participants (n = 67) in the Swedish Diabetes Prediction in Skåne (DiPiS) 
study donated a blood sample for cross-sectional analysis of white blood cells. 
Isolated peripheral white blood cells (CD16+CD66+, CD19+, CD16+, CD14+CD16-, 
CD4+, and CD8+) were investigated by flow cytometry to examine the cell surface 
median fluorescence intensity (MFI) of Class II HLA-DQ. Information on follow-
up in the DiPiS study was obtained from the DiPiS database. HLA high-resolution 
sequencing of HLA-DRB1, -DRB345, -DQA1, -DQB1, -DPA1, and -DPB1 was 
performed. Type 1 diabetes-associated autoantibodies to insulin (IAA), glutamic 
acid decarboxylase 65 (GADA), insulinoma-associated protein-2 (IA-2A), and all 
three variants of zinc transporter 8 (ZnT8A) were analysed in standardized radio-
binding assays (papers I, II and IV). In Paper I, HLA-DQ cell surface MFI on 
isolated blood cell subtypes was investigated in relation to HLA and autoantibodies. 
In Paper II, lipidomic profiles were determined using ultra-high-performance liquid 
chromatography quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-
MS). Lipid profiles were investigated in relation to HLA and autoantibodies. In 
Paper III, molecular inversion probe sequencing (MIP) technology was used to 
identify and examine additional type 1 diabetes susceptibility loci in HLA-DR3 
homozygous type 1 diabetes patients (n = 365) and control subjects (n = 668), 
originating from four large type 1 diabetes studies. In Paper IV, TaqMan® SNP 
Genotyping Assays were utilized to identify a risk haplotype of three single 
nucleotide polymorphisms (tri-SNP) in intron 1 of HLA-DRA1. The tri-SNP was 
investigated in relation to HLA, autoantibodies, and HLA-DQ MFI on isolated cell 
types.  

Results: In Paper I, a pattern of decreasing HLA-DQ cell surface MFI was observed 
with increasing autoimmunity burden, the burden of autoantibodies at cross-
sectional sampling (sAB), or over time during follow-up in DiPiS (cAB), on CD16+, 
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CD14+CD16-, CD4+, and CD8+ cells. HLA-DQ cell surface MFI was associated 
with HLA-DQ2/8 in CD4+ T lymphocytes, marginally in CD14+CD16- monocytes 
and CD8+ T lymphocytes. These associations appeared to be related to 
autoimmunity burden. In Paper II, levels of several specific phospholipid species 
varied with the level of autoimmunity but not the development of type 1 diabetes. 
Five glycosylated ceramides were increased in IAA-positive subjects compared to 
subjects without this autoantibody. Long-chain triacylglycerol levels seemed to be 
associated with HLA genotypes. Paper III describes a new tri-SNP haplotype in 
intron 1 of the HLA-DRA1 gene found to modify the risk of type 1 diabetes in HLA-
DR3 homozygous subjects. In Paper IV, four tri-SNPs (ACA, ACG, AGG, and 
GCA) were identified. HLA-DQ cell surface MFI decreased with increasing 
autoimmunity burden on CD16+, CD14+CD16-, CD4+, and CD8+ cells in subjects 
with the AGG haplotype compared to GCA.  

Conclusion: HLA-DQ cell surface MFI may be related to the degree of 
autoimmunity burden. Lipidomic profiles may improve the sub-phenotyping of 
subjects with a high risk of type 1 diabetes. The tri-SNP could help clarify the role 
of HLA in type 1 diabetes susceptibility. These parameters may increase the 
precision of predicting type 1 diabetes in subjects with increased genetic risk for 
type 1 diabetes who are followed longitudinally. 
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Introduction 

The immune system 

The immune system provides a layered defence of increasing specificity to defend 
the body against infection. A fine-tuned signalling system is important for the 
multitude of organs, cells, and proteins of the immune system to work together to 
fight infection. Pathogens that enter the body are recognized by immune system 
mechanisms that help clear the infection. 

HLA 

The human leukocyte antigen (HLA) system is a group of genes that encode proteins 
on all cells except red blood cells and particularly on immune cells in humans. HLA 
is analogous to the major histocompatibility complex (MHC) in other animals, such 
as the mouse. HLA partly determines the response of an individual to infections and 
influences the response of immune cells to pathogens. The HLA family comprises 
more than 200 genes, and more than 40% encode proteins involved in immune 
functions that play critical roles in defence against infectious diseases, cancer, and 
susceptibility and resistance to autoimmune diseases. The nomenclature of HLA 
alleles (Figure 1) is set by the WHO Nomenclature Committee1.  

 
Figure 1. Nomenclature of HLA alleles 
The name of an HLA allele has a unique number separated by colons describing allele group (1), specific HLA protein 
(2), define synonymous DNA within the coding region (3), and define differences (polymorphisms) in a non-coding region 
(4). Additional suffixes may be added to indicate expression status: ‘null alleles’ (N), ‘low’ (L) cell surface expression 
compared to normal levels, soluble ‘secreted’ (S) proteins or proteins present in the ‘cytoplasm’ (C) not expressed on 
the cell surface, ‘aberrant’ (A) expression if it is unclear if a protein is expressed, or ‘questionable’ (Q) if a mutation in 
the allele has been seen to affect expression levels in other alleles. The nomenclature of HLA alleles is set by the WHO 
Nomenclature Committee1. Adapted from http://hla.alleles.org/nomenclature/naming.html. 
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Figure 2. The HLA gene complex on chromosome 6.  
Positions of the Class II HLA-DR-DQ-DP genes are presented as a close-up. Reproduced from Regnell et. al2. 

The HLA gene complex is the most polymorphic region in the human genome, with 
close to 18,000 different HLA alleles characterized thus far. New alleles continue 
to be identified and sequenced. The most updated list can be found in the 
IMGT/HLA database3. The HLA gene complex is divided into three regions, Class 
I, II, and III (Figure 2). Class I and II genes encode molecules that bind and present 
peptide fragments to T lymphocytes via the antigen-binding groove of the mature 
HLA cell surface protein. Class I molecules are found on most cell types and present 
endogenous peptides derived from the intracellular environment of infected or 
damaged cells. The major function of the Class I molecule is to present antigens to 
cytotoxic T (TC) lymphocytes, which kill the infected or damaged cells. Class II 
molecules are primarily found on antigen-presenting cells (APCs) and present 
antigens to the helper T (TH) lymphocytes to elicit an immune response. The Class 
II molecules sample the extracellular environment and thus present peptides, such 
as bacteria or viruses, derived from outside the cell. Both Class I and Class II HLA 
genes are fundamental to the body’s recognition of self and non-self4,5. The Class 
III region contains genes for cytokines and the complement system components that 
have an important role in shaping an adapted immune response4. The complement 
system is tasked with activation inflammation, labelling pathogens and cells for 
clearance by immune cells and enhancing phagocytosis by innate immune cells. 

HLA has been widely studied for its role in transplantation biology and is important 
roles in transplantation immunology. Certain highly polymorphic HLA genes 
function as histocompatibility barriers and are critical markers for donor-recipient 
matching in bone marrow transplantation. A donor with an identical HLA type can 
donate tissue more successfully than a donor who is not matched6.  
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Immune cells 

The immune system cells develop from stem cells in the bone marrow and become 
different types of white blood cells (Figure 3). White blood cells can be found in the 
tissues and peripheral blood of the body.  

 

Figure 3. White blood cells are part of the immune system and develop in the bone marrow. 
Granulocytes cells (eosinophils, neutrophils, basophils, and mast cells), monocytes, and lymphocytes (B lymphocytes, 
T lymphocytes and natural killer cells) are the three main types of white blood cells. The image was created using 
BioRender.com. 

A general description of immune cells 

There are three main types of white blood cells: granulocytes, monocytes, and 
lymphocytes. Granulocytes (eosinophils, neutrophils, basophils, and mast cells) 
contain granules with toxic material in their cytoplasm released in response to a 
pathogen. The granules contain antimicrobial agents, enzymes, and other proteins. 
Phagocytes include macrophages, neutrophils, dendritic cells, and eosinophils, and 
their function within the immune system is to identify and eliminate pathogens that 
might cause infection. Phagocytes engulf pathogens by attaching to and wrapping 
around them, trapping them in a phagosome (a compartment in the phagocyte). The 
pathogen is destroyed when the phagosome lyses with a lysosome or granule 
containing toxic material. Eosinophils are phagocytic cells that release toxins to kill 
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parasites and bacteria and cause tissue damage. Neutrophils are granulocytes and 
phagocytes. Neutrophils are considered the first responders of the innate immune 
system that rapidly migrate to sites of inflammation. They specialize in engulfing 
and digesting cellular debris, pathogens, and other foreign substances7,8. Basophils 
are non-phagocytic cells responsible for defence against parasites. Mast cells are 
granulated tissue cells that degranulate in response to tissue injury and initiate 
inflammatory reactions through the vasoactive properties of histamine.  

Any substance capable of eliciting an adaptive immune response is called to as an 
antigen (antibody generator). An antigen taken up by an APC is combined with HLA 
and presented on the cell surface of activated T and B lymphocytes. Antibodies are 
a type of protein created by plasma B lymphocytes in response to pathogens. 
Antibodies are pathogen-specific and attach to a pathogenic antigen7,8. Antigen-
presenting cells (APCs) (dendritic cells, monocytes, macrophages, and regulatory T 
lymphocytes) process and present antigens on Class I and II MHC cell surface 
epitopes (Figure 4). Dendritic cells are professional APCs that link innate and 
adaptive immunity. Monocytes migrate to sites of inflammation and mature into 
tissue macrophages and dendritic cells. A macrophage specializes in engulfing and 
digesting cellular debris, pathogens, and other foreign substances, consequently 
stimulating other immune cells. Dendritic cells are professional APCs that display 
antigens to activate naïve T lymphocytes. 

Lymphocytes (B lymphocytes, T lymphocytes, natural killer (NK) cells and 
cytotoxic T (TC) lymphocytes) are cells of the adaptive immune system that carry 
out an immune function in response to a stimulus. Mounting an appropriate immune 
response depends on the careful regulation of lymphocyte activation. To this end, 
lymphocytes require two independent signals to become fully activated. The first, 
an antigen-specific signal is sent via the unique antigen receptor: T cell receptor 
(TCR) on T lymphocytes or surface immunoglobulin on B lymphocytes. A co-
stimulatory signal is a secondary signal independent of the antigen receptor and is 
critical to allow full activation, sustain cell proliferation, prevent anergy and/or 
apoptosis, induce differentiation to effector and memory status, and allow cell-cell 
cooperation. The expression of inhibitory receptors, in turn, regulates co-stimulation 
upon lymphocyte activation. Lymphocytes stimulated through the antigen receptor 
alone fail to produce cytokines, are unable to sustain proliferation, and often 
undergo apoptosis or become nonresponsive to subsequent stimulation9,10. 

B lymphocytes develop in the bone marrow and can mature into plasma or memory 
B lymphocytes. Plasma lymphocytes produce large volumes of antibodies in 
response to pathogens, while memory B lymphocytes carry a memory of past 
infections. Memory B lymphocytes are long-lived and capable of responding to a 
particular antigen on its reintroduction long after the exposure that prompted its 
production.  
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Figure 4. MHC class I and II pathways 
Antigen-presenting cells process and present antigens on Class I and II MHC cell surface epitopes through different 
pathways. Class I MHC molecules present peptides derived from cytosolic proteins to cytotoxic T lymphocytes while 
Class II MHC present processed antigens derived from extracellular proteins to helper T lymphocytes. Reprinted from 
"MHC Class I and II Pathways", by BioRender.com (2022), retrieved from https://app.biorender.com/biorender-
templates. 
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T lymphocytes develop in the thymus and enter the periphery as naïve T 
lymphocytes mature but are not activated. Naïve T lymphocytes become activated 
once they bind to an antigen presented on Class II MHC on a macrophage or 
dendritic cell surface and receive a co-stimulatory signal. TH lymphocytes secrete 
cytokines to mediate inflammation signals and immunity to other immune cells and 
help B lymphocytes produce antibodies. Cytokines are a protein that impacts the 
immune system by either ramping it up or slowing it down. TC lymphocytes and 
natural killer (NK) cells interact with signals from other cells to activate and inhibit 
innate, non-specific immunity. TC lymphocytes are the primary effector cells of 
adaptive immunity and eliminate infected cells. Natural killer lymphocytes are 
related to TC lymphocytes but lack antigen receptors. Memory T (TM) lymphocytes 
are derived from activated TC lymphocytes and are long-lived and antigen-
experienced. After TC lymphocytes attack a pathogen, TM lymphocytes linger to stop 
any recurrence. TM lymphocytes are quickly converted into large numbers of T 
lymphocytes upon re-exposure to a specific invading antigen, thus providing a rapid 
response to past infection. Regulatory T (TREG) lymphocytes regulate the self-
reactivity of T lymphocytes in the periphery to help suppress the immune system7,8. 

Immunity 

The innate, adaptive, and passive immune systems mediate an immune response to 
pathogens. The innate and adaptive immune systems complement each other and 
interact to efficiently form an overall system of immune defence (Figure 5)8,11. The 
innate immune system is directed towards immediate responses to pathogens. Type 
I and II interferons are cytokines and signalling proteins that signal neighbouring 
cells to raise a barrier, signal infected cells to die or recruit white blood cells to 
stimulate long-lasting immunity8,12. 

The adaptive immune response can be either humoral or cell-mediated. A series of 
interactions between APCs and B and T lymphocyte cells in a humoral response 
result in an antibody response. APCs engulf and degrade infectious agents and 
present antigen fragments on the cell surface by Class II HLA molecules (Figure 5). 
TH lymphocytes binding to Class II HLA on APCs activate the proliferation of TH 
lymphocytes and release of cytokines. TH lymphocytes then bind to the HLA 
complex on B lymphocytes, activating B lymphocyte proliferation and 
differentiation. B lymphocytes transform into plasma cells that secrete large 
quantities of antibodies directed against the specific antigen. Some B lymphocytes 
transform into memory cells that allow a faster antibody-mediated immune response 
upon future infection8,12. This process is utilized in vaccination strategies to generate 
immunity13. A cell-mediated response involves cytotoxic T lymphocytes binding 
MHC class I on APCs and results in the lysis of foreign or infected cells (Figure 
5)8,12.  
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Passive immunity is provided when antibodies to pathogens are given instead of 
producing them through the own immune system. Passive immunity can occur 
naturally during pregnancy when maternal antibodies are transferred through the 
placenta or during breastfeeding and protect the offspring from infection8,12. 
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Figure 5. The innate and adaptive immune systems and their overlap. 
In the innate immune system, responses to infectious agents are generally immediate and non-specific, such as 
phagocytosis and endocytosis by macrophages and neutrophils. Pattern-recognition receptors (PRRs), such as Toll-
like receptors (TLRs), recognize pathogen-associated molecular patterns on various microorganisms. Soluble PRRs, 
such as complement proteins, and acute phase reactants, such as C-reactive protein (CRP), also have a role in innate 
immunity as they label microorganisms and bind to apoptotic cellular debris in a non-specific manner. In the adaptive 
immune system, a specific immune response is achieved by engaging receptors with a selective reactivity with specific 
antigens (T-cell receptors (TCRs) and immunoglobulin receptors on B lymphocytes). An adaptive immune response 
includes expansion and differentiation of the specific responder cells, which establishes a memory for the specific 
antigen response. The relationship between the innate and adaptive immune systems has not yet been fully established. 
Macrophages endocytose or phagocytose antigens in a non-specific manner and present it to T lymphocytes, generating 
a highly specific immune response. Co-stimulation of B lymphocytes by TLRs can result in the production of specific 
antibodies to self-antigens. Cytokines may stimulate both an innate and adaptive immune response. Complement 
proteins also have a role in the innate and adaptive immune systems as they mediate the effector responses induced 
by antibodies. APC, antigen-presenting cell; BCR, B cell receptor; MHC I, Class I major histocompatibility complex; 
MHC II, Class II major histocompatibility complex; TH lymphocyte, helper T lymphocyte; TC lymphocyte, cytotoxic T 
lymphocyte. The image is adapted from Gregersen et. al.11 using BioRender.com. 

Immune tolerance 

Tolerance is defined as specific unresponsiveness of the adaptive immune system 
to particular antigens and is characteristic of the normal immune system11. 
Tolerance is classified into central or peripheral tolerance depending on where the 
state is originally induced. 

Central tolerance (negative selection) is the process of eliminating any developing 
autoreactive B or T lymphocytes reactive to the self-proteins11,14. During the 
maturation in the bone marrow, B lymphocytes undergo negative selection when 
they bind self-proteins. Autoreactive B lymphocytes either undergo apoptosis, 
induced an anergy (a state of on-reactivity), or receptor editing. The self-reactive B 
lymphocyte changes specificity by developing a new B lymphocyte receptor, 
achieved by rearranging genes. Receptor editing gives B lymphocytes a chance to 
edit the B lymphocyte receptor before apoptosis or to enter an anergic 
state11,14.Thymocytes are immature T lymphocytes that mature in the thymus and 
undergo a positive and negative selection process determined by their interaction 
with HLA and self-peptides (Figure 6). T lymphocytes must be able to recognize 
Class I or II HLA with bound non-self-peptide. During positive selection, non-
functional and strongly self-reactive thymocytes do not interact with the Class I or 
II HLA complexes and are eliminated by apoptosis. Thymocytes with a sufficient 
affinity for Class I or II HLA mature into cytotoxic or helper T lymphocytes, 
respectively. During negative selection, the thymocyte affinity to self-peptides is 
tested where self-reactive thymocytes undergo apoptosis.  
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Figure 6. Positive and negative selection of T lymphocytes. 
A positive and negative selection process of interaction with HLA and self-peptides help thymocytes mature into T 
lymphocytes. During positive selection, non-functional and strongly self-reactive thymocytes are eliminated by apoptosis 
as they do not interact with the Class I or II HLA complexes. Self-reactive thymocytes undergo apoptosis during negative 
selection as their affinity to self-peptides is tested. Reprinted from "Positive and Negative Selection of T Cells", by 
BioRender.com (2022), retrieved from https://app.biorender.com/biorender-templates. 

Thymocytes can migrate into the periphery as naïve T lymphocytes and are activated 
by HLA and self-peptides below a certain threshold. Most T lymphocytes develop 
into effector cytotoxic or helper T lymphocytes that will mediate both humoral 
(antibody-mediated) and cellular immune responses11,14 (Figure 7). 

Peripheral tolerance is a secondary mechanism to ensure that B or T lymphocytes, 
leaving the bone marrow or thymus, do not become autoreactive. Peripheral 
tolerance is distinct from central tolerance and occurs as developing immune cells 
exit the thymus or bone marrow before their export into the periphery. TREG 
lymphocytes are key mediators of peripheral tolerance and develop during the 
negative selection where the T lymphocyte receptor shows a high affinity for self-
peptides. The mechanism of the regulatory T lymphocytes is not fully understood 
but includes managing effector immune response on many levels. Regulatory T 
lymphocytes may inhibit activation of T lymphocytes by APCs, inhibit 
differentiation of T lymphocytes into cytotoxic effector cells and/or prevent T 
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lymphocytes from helping B lymphocytes in antibody production11. Peripheral 
tolerance is key to preventing over-reactivity of the immune system from 
autoreactivity to self-antigens or various environmental antigens (such as 
allergens)11,14. 

 

Figure 7. Central and peripheral tolerance. 
Strongly self-reactive and non-functional thymocytes are eliminated through a positive and negative selection process. 
In the positive selection process, self-reactive thymocytes have self-peptides that interact with major histocompatibility 
complex (MHC) proteins. Non-functional thymocytes are prompted to apoptosis in the negative selection process. 
Thymocytes that are allowed to migrate into the periphery as mature T lymphocytes are positively selected and activated 
by self-peptide and MHC below a certain threshold. In the periphery, the thymocytes mature into T lymphocytes, that 
are key mediators of peripheral tolerance. Most thymocytes develop into helper and cytotoxic T lymphocytes that 
mediate both humoral (antibody-mediated) and cell-mediated immune responses, while some develop into regulatory 
T lymphocytes. Regulatory T lymphocytes regulate or suppress other cells in the immune system to maintain immune 
homeostasis and self-tolerance, dampen inflammation, and prevent autoimmunity. The image is adapted from 
Gregersen et. al.11 using BioRender.com. 
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Autoimmunity 

Autoimmunity is an abnormal response by the immune system against self-antigens. 
Deficits in central and peripheral tolerance allow autoreactive B and T lymphocytes 
into the periphery and cause autoimmune reactions against self-antigens11. The 
immune system does not randomly lose the ability to distinguish between self and 
non-self-antigens. Certain individuals have a genetic susceptibility to developing 
autoimmune diseases. The main sets of genes suspected in many autoimmune 
diseases are related to HLA. Type 1 diabetes, celiac disease, and autoimmune 
thyroiditis are examples of autoimmune diseases where variants of Class II HLA 
genes confer a risk of developing the disease15. However, only a small fraction of 
genetically predisposed individuals may develop an autoimmune disease. 
Autoimmunity may be present without any clinical symptoms. Autoantibodies are 
common biomarkers of autoimmunity; in some cases, their presence is a risk factor 
for autoimmune disease. Genetic risk factors also have a role in determining the 
progression of clinical disease, and identifying these factors offers a possibility to 
develop targeted preventive therapies11. 
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Type 1 Diabetes 

Type 1 diabetes is an autoimmune disease characterized by insulin deficiency due 
to loss of the pancreatic islet beta cells (Figure 8), both in numbers and in function, 
resulting in increased blood glucose levels16,17. What triggers the immune-mediated 
insulitis destroying islet beta cells and ultimately type 1 diabetes is still unknown. 
When symptoms of diabetes appear, it has been estimated that only 10–20% of the 
beta cells are still functioning, and insulin therapy is necessary for survival18,19. 
Younger children often have a shorter asymptomatic period, months before clinical 
onset, whereas it may take years for the beta-cell destruction to prompt clinical 
symptoms in older individuals20,21. 

Blood glucose is regulated by cells in the islets of Langerhans. Insulin is produced 
and released by the beta cells. Insufficient insulin secretion from the beta cells 
results in hyperglycaemia and high blood glucose levels since insulin is needed to 
uptake glucose22. Low insulin levels also cause the inability to take up and convert 
glucose into glycogen, a source of energy mostly stored in the liver. Untreated lack 
of insulin or insufficient insulin release causes a life-threatening condition, 
ketoacidosis. Ketoacidosis is caused by a fast build-up of acids, ketones, in the 
blood from lipolysis (breakdown of fat) as an energy source due to glucose 
shortage in the cells but also due to uncontrolled lipolysis (normally controlled by 
insulin). Untreated type 1 diabetes is a life-threatening disease. Administration of 
insulin is essential for survival and must be continued indefinitely. 

The history of type 1 diabetes 

A condition that appears to have been type 1 diabetes was first described by the 
ancient Egyptians more than 3000 years ago. They described the condition as 
excessive urination, thirst, and weight loss. The sweet taste of the urine was 
identified as glucose in the early 1800s, and shortly after that, glucose was shown 
to be normally present in the blood. Hyperglycaemia in dogs after pancreatectomy 
was first reported in 1889 by Oscar Minkowski (1858-1913) and Josef von Mering 
(1849-1908)23. Before the 1920s, there were no treatments for the symptoms of 
diabetes, and the disease was ultimately deadly. Insulin was first discovered in 1921 
by Banting, Best, Macleod, and Collip at the University of Toronto. Banting and 
Macleod earned the Nobel prize in medicine in 1922. The first patients with diabetes 
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were treated with insulin derived from the bovine pancreas in 1922. The treatment 
resulted in lowered blood sugar and eliminated glycosuria and ketosis. Insulin 
derived from bovine the pancreas was available as treatment by 192324,25. 
Complications were common in the first decades of insulin treatment as the 
crystallized insulin was impure and had to be injected several times daily with great 
pain.  

 

Figure 8. Immune response in type 1 diabetes. 
β cells secrete insulin to lower blood glucose and are one type of the hormone-secreting cells of the Langerhans islets 
in the pancreas. In type 1 diabetes, the β cells are targeted by an autoimmune process. T lymphocytes recognize 
peptides from β cell-specific proteins leading to the β cells being the elimination target. The destruction of the β cells 
leads to a loss of insulin secretion. Reprinted from "Immune Response in Type 1 Diabetes”, by BioRender.com (2022), 
retrieved from https://app.biorender.com/biorender-templates. 
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Glycated haemoglobin (HbA1c) reflected the average glucose level in the last 8–12 
weeks and was first reported in 1968 to represent an objective measurement of 
glycaemic control. Home blood glucose control became practically feasible with the 
introduction of blood glucose test strips in the late 1970s26. Insulin injection pens 
and later the portable insulin pump replaced glass and steel injection syringes in the 
early 1980s. Glycaemic control was established to prevent and delay the progression 
of complications in patients with type 1 diabetes with the Diabetes Control and 
Complications trial published in 199327. 

Epidemiology 

In the last few decades, the incidence of type 1 diabetes has more than doubled and 
increased 3–5% per year28. There is a dramatic variation in incidence between 
countries and within Europe. Except for on Sardinia where there is a north and south 
gradient with a high incidence in the northern latitude29. The annual incidence of 
type 1 diabetes is the highest in Finland, with 57.6 patients/100,000 people aged 1-
15 years. The geographical location is less important than genetic risk as the 
incidence rate in Sardinia is close to that of Finland30,31; there is an increase in 
incidenced in Saudi Arabia 32,33, while type 1 diabetes is a rare disease in Asia34.  

Type 1 diabetes is generally assumed to be hereditary even though most patients 
lack a family history of diabetes; children with a first-degree relative (FDR) with 
diabetes only account for only about 10–12%35,36. In contrast to most autoimmune 
diseases, type 1 diabetes is slightly more common in males than females. There are 
small differences in incidence rates between the sexes. Generally, the incidence 
peak in children occurs earlier in girls, but the general differences between 0–15 
years in the age group are small. After puberty, a male predominance of 1.3-2 to 1 
is present in many populations37,38. Children whose parents have type 1 diabetes are 
at greater risk of developing type 1 diabetes than children whose parents do not have 
type 1 diabetes. Historically, the risk of diabetes in the offspring of fathers with type 
1 diabetes has been reported as being higher than that in the offspring of mothers 
with type 1 diabetes or in those with siblings who have type 1 diabetes38. The studies 
consistently show that the risk of childhood-onset diabetes in the offspring of an 
affected father is two to three times greater than that of an affected mother. Equally, 
islet autoantibodies are more commonly found in the offspring of fathers with 
diabetes than mothers with diabetes 38. The incidence of type 1 diabetes differs by 
seasonality as has been described by several studies39. More patients are diagnosed 
during the winter and autumn months, a phenomenon that is present with small 
variations between countries. This seasonal variation also seems more significant in 
the older age group, in children between 10 and 14 years at diagnosis40. 
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Aetiology  

The triggering event of the autoimmune process leading to type 1 diabetes is still 
unknown, but a possible virus-triggered autoimmune response has been suggested 
as the trigger41-43. Due to the immune system’s complexity, there may be one or a 
combination of several factors that trigger type 1 diabetes in different individuals. 

Genetic susceptibility 

HLA has been implicated in the susceptibility to diseases and the development of 
autoimmunity. Type 1 diabetes is a disease of unidentified aetiology but is strongly 
associated with two different HLA haplotypes.  

HLA and Risk for Type 1 Diabetes 

Type 1 diabetes is strongly associated with HLA-DR-DQ; the genotype HLA-
DR3/4-DQ2/8 confers the highest risk44. About 90% of children with type 1 diabetes 
have at least one of the DR3-DQ2 or DR4-DQ8 haplotypes, compared to about 20% 
of the general population of the western world45,46. Inheriting both haplotypes 
confers the highest risk of developing type 1 diabetes, and those children represent 
about 30% of all children developing the disease, compared to only 3% of the 
healthy population45. However, only one in 15 individuals (7%) with this HLA type 
develop the disease47. This suggests that factors other than or in addition to HLA 
are necessary to trigger the autoimmune process. 

Non-HLA Genetic Risk Factors 

The genetic component of type 1 diabetes cannot be explained by HLA-derived 
effects alone. More than 70 additional genetic loci have been associated with type 1 
diabetes risk in genome-wide association studies (GWAS). The functions of many 
of these candidate genes and single nucleotide polymorphisms remain unclear48. 
However, improved assays and methods add to our current understanding of gene 
interactions in the context of type 1 diabetes risk49. The prediction of early type 1 
diabetes risk can be increased to 10% by adding non-HLA genetic risk factors50. 

eQTL  

In humans, a single nucleotide polymorphism (SNP) is a variation of a single 
nucleotide at a specific genome location. It is the most common type of genetic 
variation51. A SNP may replace the nucleotide cytosine (C) with the nucleotide 
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thymine (G) in a certain stretch of DNA (Figure 9) and may or may not alter protein 
structure. 

 

Figure 9. Single nucleotide polymorphism (SNP) may or may not alter protein structure. 
A SNP is a change in a single nucleotide in a DNA sequence. When SNPs occur within a gene or in a regulatory region 
near a gene, they may play a more direct role in disease by affecting the gene's function. A SNP does not alter protein 
structure if the RNA codon encodes the same protein and if the protein folding is not altered. The image was created 
using BioRender.com. 

Most SNPs do not affect health or development. However, some of these genetic 
differences, however, have proven important in studying human health. One way to 
determine if an SNP is a causal variant is to estimate its contribution to gene 
expression (expression quantitative trait locus, eQTL). An eQTL is a locus that 
explains a fraction of the genetic variance of a gene expression phenotype. Standard 
eQTL analysis involves a direct association test between markers of genetic 
variation with gene expression levels typically measured in tens or hundreds of 
individuals. The variant most associated with disease may be near a gene of interest; 
however, that variant may regulate the expression of a different, more distal effector 
gene. This association analysis can be performed proximally or distally to the gene. 
One of the major advantages of eQTL mapping using the GWAS approach is that it 
permits the identification of new functional loci without requiring any previous 
knowledge about specific cis or trans-regulatory regions52. Type 1 diabetes-
associated eQTL mapping studies have focused on cell-specific effects in immune 
cell types53,54. This approach assumes that these tissues are critical to understanding 
the development and pathology of type 1 diabetes. 
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Linkage Disequilibrium 

Linkage disequilibrium (LD) is defined as the non-random association of alleles at 
different loci in a population. In short, LD is the tendency for alleles at two genetic 
loci to be found together more often than expected. If the frequency of association 
of alleles in different loci is higher or lower than what would be expected, and if the 
loci were independent and associated randomly, the loci are said to be in LD. LD is 
strong in the HLA region, and specific combinations of allelic variants form 
haplotypes. HLA-DR-DQ haplotypes associated with type 1 diabetes include the 
HLA-DRB1*03:01 and HLA-DQB1*02:01 as well as HLA-DRB1*04:01 and 
HLA-DQB1*03:02 alleles, which confer high risk for type 1 diabetes. Although LD 
can help detect genetic regions involved in disease, it confounds attempts to identify 
the actual gene in the region involved in disease and to identify additional genes in 
the region contributing to disease55.  

Pathogenesis 

Autoantibodies 

Autoantibodies are currently theorized to be markers of the immune cell-mediated 
destruction of the pancreatic islet beta cells. Circulating beta cell autoantibodies 
increase risk for progression to clinical onset of type 1 diabetes. The presence of 
beta cell autoantibodies may precede clinical onset by months to years20,21,56.  

Autoantibodies against beta cell proteins 

The appearance of diabetes-related autoantibodies to one or several of the 
autoantigens, insulin, glutamic acid decarboxylase 65 (GAD65), insulinoma antigen 
2 (IA-2), and Zinc transporter 8 (ZnT8), signal an autoimmune pathogenesis of beta 
cell destruction20. Therefore, it is possible to predict the appearance of type 1 
diabetes before any hyperglycaemia arises. Within 12 months, 60% of children with 
a first autoantibody may develop a second autoantibody, perhaps followed by a third 
or fourth autoantibody. The number of positive islet autoantibodies correlates to the 
risk of progressing to clinical disease56. The cumulative risk of diabetes varies with 
age, younger age at seroconversion, multiple autoantibodies, high antibody levels, 
and persistent insulin autoantibodies (IAA)57. 

IAA 

Insulin autoantibodies (IAA) are the first appearing islet autoantibodies and are 
associated with younger age at diagnosis50. IAA is more common as the first 
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appearing autoantibody in children with HLA DR4-DQ850,58-60. In longitudinal 
follow-up studies of children with genetic risk of type 1 diabetes, IAA as the first 
appearing autoantibody peaks at 1 year of age61 and has been found in 80–100% of 
children diagnosed with type 1 diabetes before the age of 4 years62. The prevalence 
of IAA decreases with increasing age61.  

GADA 

Glutamic acid decarboxylase autoantibodies (GADA) are directed against GAD65. 
GADA can be detected in 70–80% of newly diagnosed type 1 diabetes patients62. In 
longitudinal follow-up studies of children with genetic risk of type 1 diabetes, 
GADA as the first autoantibody is more common in children from 2 years of age, 
when it reaches a plateau61. GADA is more common as the first appearing 
autoantibody in children with HLA DR3-DQ250,58-60. GADA can be found slightly 
more often in females63. 

IA-2A 

Islet antigen-2 autoantibodies (IA-2A) are directed against IA-2, a plasma 
membrane protein. IA-2A is detected in 50–70% of patients with recent onset type 
1 diabetes62. IA-2A is rarely the first appearing autoantibody but is more common 
together with one or multiple of the other type 1 diabetes-associated 
autoantibodies50,64.  

ZnT8A 

Autoantibodies targeting Zinc Transporter 8 (ZnT8) have been identified as a major 
islet autoantigen by autoimmunity in type 1 diabetes. ZnT8 is considered an 
autoantigen with high specificity to islet B lymphocytes. By facilitating the cellular 
outflow of zinc, ZnT8 is a transporter protein proposed to be essential in the process 
of insulin crystallization and secretion65-67. There are three variants of the ZnT8 
autoantibody (ZnT8A) that differ by tryptophan (W), arginine (R), or glutamine (Q) 
at position 32568 . Subjects may develop ZnT8A, which is either specific to one, 
two, or all three variants. Additionally, ZnT8A were also detected among type 1 
diabetes patients who were negative for conventional islet autoantibodies: IAA, 
GAD65A, and IA-2A67. ZnT8A are not commonly the first appearing autoantibody 
but more common together with one or multiple of the other type 1 diabetes-
associated autoantibodies63. 

Lipids 

Lipid biology is a major research target in understanding cellular physiology and 
pathology because of its many key biological functions. Lipids are a diverse and 
common group of compounds that act as structural components of cell membranes, 
a source of energy storage, and participate in signalling pathways69,70. A 
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comprehensive classification, nomenclature, and chemical representation system is 
important to differentiate between the great diversity in lipid structure and function. 
The complete lipid profile within a cell is described as the “lipidome” and is a part 
of the “metabolome” that also includes sugars, nucleic acids and amino acids in 
genomics and proteomics. “Lipidomics” is a relatively new research field and a 
comprehensive analysis of lipid molecules69,70. This method can be used to study 
lipids in relation to metabolic diseases, such as obesity, atherosclerosis, stroke, 
hypertension, and diabetes, as it combines mass spectrometry (MS) and 
computational methods71. 

In the Finnish Type 1 Diabetes Prediction and Prevention (DIPP) study, an 
investigation of serum metabolites in children diagnosed with type 1 diabetes at 0.5–
13.5 years of age showed that serum metabolites may mark progression to islet 
autoimmunity and from islet autoimmunity to diabetes, independent of the strength 
of HLA risk72. Another study investigated differences in serum from children 
followed from birth until clinical type 1 diabetes and healthy controls and found that 
a distinct cord blood lipidomic profile characterized type 1 diabetes progressors, a 
molecular signature of seven lipids predicted a high risk for progression to type 1 
diabetes73. Additionally, specific lipids have previously been shown to be decreased 
in children participating in the DiPiS study who develop type 1 diabetes before 4 
years of age74. 

Lipid structures 

Many factors (e.g., variable chain length), biochemical transformations (e.g., 
oxidative, reductive, substitutional, ring-forming, etc.), and modifications (with 
functional groups of different biosynthetic origin) drive the structural diversity of 
lipids. Structural information and the related features are important to describe the 
biological functions of different lipids. 

Lipid classification and nomenclature 

The LIPID MAPS Structure Database75 (LMSD) was developed in 2005 by the 
International Lipid Classification and Nomenclature Committee on the initiative of 
the LIPID MAPS Consortium. The LMSD is a comprehensive classification system 
for lipids based on well-defined chemical and biochemical principles and using a 
framework designed to be extensible, flexible, scalable, and compatible with 
modern informatics technology76,77. LMSD currently contains over 30,000 
structures obtained from a variety of sources: LIPID MAPS Consortium’s core 
laboratories and partners; lipids identified by LIPID MAPS experiments; 
computationally generated structures for appropriate lipid classes; biologically 
relevant lipids manually curated from Lipid Bank78, LIPIDAT79, Cyberlipids80 and 
other public databases; peer-reviewed journals and book chapters describing lipid 
structures.  
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Lipids included in LMSD are classified following the LIPID MAPS classification 
scheme and assigned a unique LIPID MAPS identifier (LM ID). LMSD, comprises 
eight lipid categories, Fatty Acyls [FA], Glycerolipids [GL], Glycerophospholipids 
[GP], Sphingolipids [SP], Sterol Lipids [ST], Prenol Lipids [PR], Saccharolipids 
[SL], and Polyketides [PK]. The eight lipid categories all have their own 
subclassification hierarchy (main class, sub class (where applicable) and level 4 
class (where applicable)). LMSD contains lipid structures and all relevant 
information for that molecule, such as common and systematic names, synonyms, 
molecular formula, exact mass, classification hierarchy and cross-references (if any) 
to other databases71. 

Staging type 1 diabetes 

The pathogenesis of type 1 diabetes is currently divided into three stages (Figure 
10). These stages relate to the autoimmunity level indicated by the detection of 
autoantibodies, the level of beta cell destruction, and the clinical symptoms of type 
1 diabetes. 

Pre-stage 1 

Genetic susceptibility and genetic risk of type 1 diabetes are strongly associated 
with the HLA on chromosome 6, accounting for 30–50% of the risk81. A high risk 
of developing autoantibodies is associated with the HLA DRB1*0301-DQB1*0201 
(DR3-DQ2) and DRB1*0401-DQB1*0302 (DR4-DQ8) haplotypes. The 
heterozygous HLA-DR3/4-DQ2/8 genotype is associated with the highest risk for 
developing autoantibodies and, subsequently, type 1 diabetes82. Other HLA 
haplotypes, such as HLA DRB1*04:03/04:07/04:10/1501 and DQA1*0102-
DQB1*0602, are disease-resistant or protective haplotypes15,83. 

Stage 1 

The appearance of autoantibodies is the first sign of the prodromal period of type 1 
diabetes. Subjects in Stage 1 have developed autoimmunity with two or more islet 
autoantibodies but are still asymptomatic and normoglycemic82. Due to the slow 
progression to clinical onset in single autoantibody-positive subjects56,84, two or 
more autoantibodies were selected to define Stage 182. Children at this stage, 
screening for genetic risk at birth, have an approximate 44% and 70% risk of 
symptomatic disease in 5 and 10 years, respectively, and the lifetime risk 
approached 100%56. 
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Figure 10. Staging of type 1 diabetes pathogenesis according to the 2015 statement of ADA, JDRF, and the 
Endocrine Society. Adapted from Insel et al.82. 

Stage 2 

In this stage, subjects from Stage 1 have lost beta-cell function and have progressed 
to develop dysglycemia82. The subjects are still asymptomatic. An oral glucose 
tolerance test (OGTT) or continuous glucose monitoring at this stage often reveals 
rising glucose intolerance85,86. An approximate 75% risk of symptomatic disease in 
5 years, and the lifetime risk approaches 100%87.  

Stage 3 

At this stage, symptomatic disease arises due to loss of beta cell mass and function, 
resulting in insulin deficiency, dysglycemia, and symptoms of hyperglycemia. The 
clinical symptoms include polyuria, polydipsia, weight loss, fatigue, and in some 
ketoacidosis. Insulin treatment is now essential and lifelong16,82. 

The staging of type 1 diabetes allows earlier attempts at prevention and more 
efficient intermediate end points in clinical trials87. The rate of metabolic 
decompensation and ketoacidosis is significantly decreased during early diagnosis88-

90. Further studies are necessary to address if patients and their families 
psychologically benefit from early diagnosis91-93.  
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Diagnosis of type 1 diabetes 

Recommendations (2021) for diagnosis of diabetes according to the WHO and the 
American Diabetes Association are fasting plasma glucose ≥7.0 mmol/L (≥126 
mg/dL), where fasting is defined as no caloric intake for at least 8 h or oral glucose 
tolerance test (OGTT) resulting in plasma glucose ≥11.1 mmol/L (≥ 200 mg/dL) or 
HbA1c ≥48 mmol/mol (≥6.5%) or symptoms of hyperglycaemia of hyperglycaemic 
crisis combined with random plasma glucose ≥11.1 mmol/L (≥ 200 mg/dL)94. Beta-
cell autoantibodies in combination with elevated blood glucose are necessary to 
properly classify type 1 diabetes95. The American Diabetes Association have 
updated the classification of type 1 diabetes to include the subclinical stages (Stage 
1 and 2), and the clinical stage (Stage 3) already described above82. 

OGTT is a sensitive indicator of diabetes and early impaired glucose homeostasis 
and type 1 diabetes96 and is commonly used in early diagnosis. The test should be 
performed using a glucose load containing anhydrous glucose (75 g or 1.75 g/kg up 
to 75 g for young children) dissolved in water. HbA1c has been proposed as an 
alternative criterion for diagnosis of diabetes and reflects an average of blood 
glucose concentrations over 90 days and should be performed in a laboratory setting. 
However, HbA1c is not an as good a measurement in children as it is in adults94. 

Prediction of type 1 diabetes 

Screening for type 1 diabetes risk is important for selecting subjects to enrol in 
research studies. Many potential new-born and young children were previously 
missed when hereditary data from first-degree relatives were used to screen for type 
1 diabetes risk. The majority, 85–90%, of newly diagnosed type 1 diabetes patients 
do not have a first-degree relative with the disease97. HLA genotyping is a cost-
effective and fast screening process but misses a lot of information as only 
approximately 50% of genetic risk is conferred by HLA98. Although the highest risk 
of developing the first autoantibody and subsequently type 1 diabetes is conferred 
by HLA-DR3/4-DQ2/8, only 30% of all children that developing the disease have 
this genotype45. Next-generation sequencing for high-resolution HLA genotyping 
has recently been shown to identify 80% of individuals with a lifetime risk of type 
1 diabetes, with 90% specificity and 90% sensitivity99.  

Children in follow-up studies have been hypothesized to be diagnosed with type 1 
diabetes early in the clinical onset, often before symptoms arise and have been 
shown to have better metabolic control64,94,100. Studies have proven that it is possible, 
by using a risk score based on HLA and 30-40 SNPs, to identify children at very 
high risk of developing IAA and early type 1 diabetes101,102. Both risk scores were 
validated and reproduced in data from The Environmental Determinants of Diabetes 
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in the Young (TEDDY) study. Children with no family history of type 1 diabetes 
who have the HLA DR3/DR4-DQ8 or HLA DR4/DR4-DQ8 genotype and a genetic 
risk score of >14.4 using the merged algorithm (corresponding to the upper 75th 
percentile of HLA DR3/DR4-DQ8 or HLA DR4/DR4-DQ8 TEDDY population) 
had a risk of 15.9% for developing beta-cell autoantibodies by age 5 years and 
11.4% for developing multiple beta-cell autoantibodies by age 6 years. 

Autoantibodies have been used repeatedly to study high-risk and general 
populations. Islet autoantibodies are the earliest sign of beta cell autoimmunity and 
significantly add accuracy to the prediction of type 1 diabetes. Although reversion 
of islet autoantibody positivity may occur, the risk of type 1 diabetes has increased 
from 0.4% to 14.5% in at-risk children that develop a single autoantibody56,84. The 
10-year risk of at least 70% is conferred by developing of multiple autoantibodies56. 
Additionally, children with a higher number of autoantibodies have a significantly 
higher risk of developing type 1 diabetes103-106. Autoantibody titers have recently 
been investigated in attempts to create a risk score to increase the accuracy of 
predicting type 1 diabetes risk107. However, it is unclear what individual 
autoantibody titers would contribute108. Several studies have attempted to improve 
early type 1 diabetes prediction by using previously identified type 1 diabetes-
related SNPs109. 

It is possible to predict progression to dysglycaemia and symptomatic type 1 
diabetes by several factors related to glucose metabolism (such as an intravenous 
glucose tolerance test (IvGTT) or an OGTT). Loss of glucose tolerance occurs 
months before diagnosis110.  

Prevention of type 1 diabetes 

Interventions can be targeted at three stages: before the development of 
autoimmunity (primary prevention) after autoimmunity is recognized (secondary 
prevention), or intervention after type 1 diabetes diagnosis when significant 
numbers of β cells remain (intervention). 

Primary prevention studies are possible in children with high genetic risk, while 
subjects with an ongoing autoimmune process measured by islet autoimmunity can 
be included in secondary prevention studies. Secondary prevention studies aim to 
prevent the progression of islet destruction that will lead to type 1 diabetes. To carry 
out these studies, reliable prediction models are required. Current prediction models 
utilize combinations of HLA genotyping, autoantibodies, and measures of glucose 
tolerance to stratify risk. 

Numerous studies have been performed to interrupt the type 1 diabetes process, both 
before and after a clinical diagnosis of type 1 diabetes, but there has been no 
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successful treatment to prevent type 1 diabetes111. An immune tolerance treatment 
to re-achieving self-tolerance by administrating small doses of antigen under 
appropriate conditions could be one way to prevent disease as type 1 diabetes is 
associated with an autoimmune process with circulating beta-cell autoantibodies 
and lack of self-tolerance. In the TEDDY study, introducing probiotics early in life 
decreased the risk of islet autoimmunity compared with later probiotic 
supplementation or no probiotic supplementation112. 

After initiation of insulin treatment, there is a remission period of diabetes lasting 
weeks, months, and sometimes years after diagnosis. Reduced insulin requirements, 
increasing C-peptide concentrations, and relatively easily controlled blood glucose 
levels are believed to be the result of the recovery of β cells113,114. Changes in insulin 
sensitivity could play a role in the expression of the remission period, with decreased 
sensitivity at the time of diagnosis due to the hyperglycaemia with improvement 
after the establishment of metabolic control115.  

The ability to measure C-peptide concentrations in those receiving insulin therapy 
allows an accurate assessment of residual β cell function and can be used as a marker 
of the efficacy of therapeutic intervention116. Prolonging the honeymoon period can 
potentially to have significant beneficial effects in those with type 1 diabetes, as 
metabolic control is easier to establish in the presence of some residual insulin 
secretion. As a result, long-term diabetes-related complications are significantly less 
prevalent in those with residual insulin secretion. This was well demonstrated in the 
Diabetes Control and Complications Trial, in which those subjects with sustained 
C-peptide production were found to have rates of nephropathy, retinopathy, and 
hypoglycaemia that were half of those found in subjects without any residual 
insulin117. The population of newly diagnosed type 1 diabetes patients, therefore, 
also represents an important group for intervention. Therapies that can safely 
maintain endogenous insulin secretion in the longer term would represent an 
important clinical advance. 
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Aims of the thesis 

This thesis investigates immunological markers and risk factors for type 1 diabetes 
pathogenesis. 

The specific aims of this thesis were to: 

 Investigate if there is an association between antigen-presenting cells’ 
ability to present antigen to immune cells as peripheral blood cell HLA-DQ 
cell surface expression and HLA and autoantibodies. (Paper I) 

 Investigate lipidomic profiles in adolescent subjects with a high-risk HLA 
genotype who have not progressed to type 1 diabetes, if lipid patterns could 
be tied to the HLA genotypes, and if there are any differences in plasma 
lipidomic composition in relation to several islet autoantibodies known to 
be associated with an increased risk for type 1 diabetes. (Paper II) 

 Investigate SNPs for type 1 diabetes susceptibility loci using molecular 
inversion probe sequencing technology on samples from patients and 
controls from multiple large type 1 diabetes studies homozygous for the 
HLA-DR3 high-risk haplotype. (Paper III) 

 Investigate HLA-DRA1 tri-SNP haplotypes as an additional risk element 
for type 1 diabetes relative to HLA-DQ cell surface expression on white 
blood cells, autoimmunity burden, and lipid profiles. (Paper IV) 
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Study populations 

Study cohorts 

DiPiS 

In the Diabetes Prediction in Skåne (DiPiS) study, children with an increased 
genetic risk of type 1 diabetes were followed until 15 years old. The aim was to 
investigate the genetic and environmental factors that might contribute to or trigger 
the development of type 1 diabetes. This study cohort’s subjects were included in 
papers I, II, and IV. 

Between September 2000 and August 2004, 48,058 children were born in Skåne, 
the southernmost part of Sweden. Following oral consent from the mothers, 
umbilical cord blood samples (n = 35,683) were collected for screening of HLA and 
cord blood autoantibody analyses. The parents were asked to complete a 
questionnaire when their child was 2 months old to collect demographic data, family 
medical history of interest, and data in relation to events and illnesses from 
pregnancy until 2 years of age. Parents of 25,378 children completed the 
questionnaire and gave written consent to participate in the study. A basic risk score 
was constructed based on HLA-DQ genotype (DQ2/8, DQ2/2, DQ2/X, DQ8/8, 
DQ8/X or DQX/X (X is neither 2 nor 8)), FDR with insulin-dependent diabetes, 
autoantibodies detected in cord blood, high or low relative birth weight, and 
infection or gestational diabetes during pregnancy. Based on the risk score, 7,826 
children were invited to participate in an annual follow-up with a questionnaire and 
blood sampling for islet autoantibodies. At the start of follow-up, 3,889 children 
were followed from 2 years of age. The DiPiS study timeline is outlined in Figure 
11.  

 

Figure 11. Timeline of key events in the Diabetes Prediction in Skåne (DiPiS) study. 
Screening of high risk for type 1 diabetes was carried out from 2000 until 2004. Children with increased risk of type 1 
diabetes were enrolled at 2 years old between 2002 and 2004 and followed either annually (negative or single 
autoantibody) or every 3 months (if multiple autoantibodies were detected at any earlier visit) until 15 years old or 
diagnosis of type 1 diabetes. 
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The follow-up of the children started at 2 years of age as very few were presumed 
to develop diabetes during the first years of life. At the annual follow-up visits, a 
blood sample for islet autoantibodies and a questionnaire covering the last year in 
the child’s life was collected. Children who seroconverted to two or multiple islet 
autoantibodies were offered more intense follow-up every 3 months, which included 
islet autoantibodies, random plasma glucose, HbA1c, growth parameters, and a 
yearly OGTT. Children who developed type 1 diabetes during their participation in 
DiPiS dropped out of the study; many of them were diagnosed early in the disease 
progression. All samples are kept in a central repository at the study coordination 
centre in Malmö, Sweden. 

The subjects included in our study had participated in annual to quarterly visits in 
the DiPiS follow-up, donating a blood sample at 10–15 years of age. Autoantibodies 
were analysed in blood samples from each visit. Autoantibody profiles for the 
subjects at birth and during follow-up are presented in Figure 12.  

 

Figure 12. Timeline of the 67 subjects’ participation in Diabetes Prediction in Skåne (DiPiS) and the sampling 
into our cross-sectional study cohort.  
Autoantibody profiles of the n = 67 children in our study during follow-up as part of the DiPiS study and at the time of 
sampling into our study. Visits (circles for visits as part of DiPiS follow-up, stars for the time of sampling into our study) 
are coloured according to the autoantibody count (negative = green, single = yellow, multiple = red) at each visit. 
Autoantibodies measured were GADA, IA2A, IAA, and any of the three variants of ZnT8A against arginine, tryptophan, 
or glutamine at position 325 (R/W/Q, respectively). Autoimmunity burden was calculated as the area under the trajectory 
of autoantibodies over time is presented to the right. 
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TEDDY 

The Environmental Determinants of Diabetes in the Young (TEDDY) study is a 
prospective cohort study that aims to identify environmental factors that influence 
the development of autoantibodies and type 1 diabetes in children. The study 
includes six clinical research centres, three in the US (Colorado, Georgia/Florida 
and Washington) and three in Europe (Finland, Germany and Sweden). Children 
screened but not enrolled in the TEDDY study were included in Paper III.  

From September 2004 to February 2010, TEDDY screened 434,620 children, of 
whom 21,321 were eligible for follow-up. The screening was performed at 
TEDDY’s six clinical centres. Eligibility was determined using separate genetic 
HLA-DQ criteria for children from the general population and children with an FDR 
with type 1 diabetes. Among the eligible children, 8676 children were enrolled in 
intensive follow-up. Follow-up started at 3 months of age and included site visits 
every 3 months until 4 years of age. After that, visits were performed every 6 months 
for autoantibody negative children and every 3 months for children with 
autoantibodies. A wide range of data is collected according to the study plan, 
including blood samples for PBMC, DNA/mRNA, HbA1c, and storage, urine, nasal 
swabs, nail clippings, tap water, salivary cortisol, accelerometer data, and body 
composition data, among others. Interviews were performed at each visit to account 
for infection, medication, immunization data, food records, negative life events, 
parental anxiety, depression, and physical activity118. All samples are kept in a 
central repository, and all data are kept in the study data coordinating centre in 
Tampa, Florida.  

BDD (Better Diabetes Diagnosis) 

The Better Diabetes Diagnosis (BDD) study is a nationwide project in Sweden that 
started in May 2005. The overall aim of the BDD study is to facilitate a precise 
classification of childhood diabetes. BDD also explores the heterogeneity of type 1 
diabetes to enable adequate treatment and reduce risks of diabetes-related 
complications, and increase the knowledge of the aetiology of the disease. Between 
2005 and 2010, the BDD study was performed within a research setting (BDD1). 
Since 2011, BDD has partly become a clinical routine in Sweden (BDD2)119. 
Subjects from the BDD1 study cohort were included in Paper III. 

BDD1 includes children and adolescents (0–18 years old) with a diagnosis of 
diabetes according to the criteria of the American Diabetes Association120,121. In 
Sweden, diabetes teams in paediatric in-patient clinics care for these patients. All 
but two of the 42 paediatric clinics in Sweden participated in the study from the start 
in 2005, and since 2011, all the clinics have been included. All newly diagnosed 
patients, approximately 800 children and adolescents every year, and their 
caregivers are informed about the BDD study and are asked to give informed 
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consent to participate in the study, and more than 99% of the patients give their 
consent.  

At the clinical onset, blood samples are collected at admission to the hospital, in the 
majority of cases before insulin is given, and sent to the BDD laboratory for analyses 
of HLA-DQ genotype, autoantibodies against glutamate decarboxylase (GADA), 
insulin (IAA), insulinoma associated protein-2 (IA-2A), zinc transporter 8 (ZnT8A), 
and levels of serum C peptide (a by-product of insulin production). Results of these 
analyses are forwarded to the referring clinics. Blood samples from all patients are 
stored in the Region Skåne Biobank. Information on patient characteristics, 
ethnicity, heredity, and clinical symptoms at the onset of diabetes are recorded in 
the Swedish Paediatric Diabetes Register; Swediabkids. As a clinical routine, all 
children are followed longitudinally after diagnosis in the Swedish Paediatric 
Diabetes Register, Swediabkids (www.swediabkids.se) and the National Diabetes 
Register (NDR, https://www.ndr.nu/#/). Diagnosis of which type of diabetes is 
based on medical history, signs and symptoms at admission, and results of HLA 
profile, levels of autoantibodies, and C peptide. The initial diagnosis and 
classification are confirmed 1year after admission119. 

In BDD 1, all analyses were performed within a research setting. Analyses of HLA-
DQ genotypes and autoantibodies were performed at the Clinical Research Centre 
(CRC), Malmö, Skåne University Hospital while analyses of C-peptide were 
performed at the Paediatric Research Laboratory, Linköping University. Results 
from analyses performed within BDD1 (i.e., HLA genotype, autoantibodies, and 
levels of C peptide) have shown benefits for correctly classifying diabetes in 
children and adolescents. Consequently, the National Diabetes Society in Sweden 
decided in December 2010 that many of the analyses performed within BDD1 were 
to be incorporated as part of the clinical routine in managing patients with new onset 
of diabetes. Thus, the BDD study continues (BDD2)119. 

T1DGC (Type 1 Diabetes Genetics Consortium) 

The Type 1 Diabetes Genetics Consortium (T1DGC) was an international, 
multicenter program organized to promote research to identify genes and alleles that 
determining an individual's risk for type 1 diabetes. The goals of the T1DGC 
included identifying genomic regions and candidate genes whose variants modify 
an individual’s risk of type 1 diabetes and help explain the clustering of the disease 
in families, making research data available to the research community, and 
establishing resources that the research communitycan use122.  

The T1DGC assembled a resource of affected sib-pair families, parent-child trios, 
trio families from ethnic groups with a lower prevalence of type 1 diabetes, and 
case-control collections with banks of DNA, serum, plasma, and EBV-transformed 
cell lines. The desired ASP family structure was two affected siblings, both 
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biological parents, and up to two unaffected siblings. The minimum family structure 
was two affected siblings. The eligibility criteria to participate in the T1DGC 
included: siblings with a diagnosis of type 1 diabetes, diagnosis before 35 years of 
age, use of insulin within 6 months of diagnosis, continuous use of insulin (without 
stopping for 6 months or more), and informed consent to collect blood, perform 
genetic analysis and exam (i.e., family history, other autoimmune diseases). 
Subjects from this study cohort were included in Paper III. 

The T1DGC has assembled renewable genetic materials for family-based linkage 
and association studies and made research data available to the research community. 
Phenotype and genotype data from study participants have been used in research 
studies concerning the genetic origins of type 1 diabetes risk in families and the 
general population122. 

The 1000 Genomes Project 

The 1000 Genomes Project was planned during a meeting at The Welcome Genome 
Campus in September 2007. The goal of the 1000 Genomes Project was to find 
common genetic variants with frequencies of at least 1% in the populations 
studied123. 

The 1000 Genomes Project took advantage of developments in sequencing 
technology, which sharply reduced the cost of sequencing. It was the first project to 
sequence the genomes of a large number of people to provide a comprehensive 
resource on human genetic variation. Data from the 1000 Genomes Project was 
quickly made available to the worldwide scientific community through freely 
accessible public databases123. Data from this study cohort was included in Paper 
III. 

The 1000 Genomes Project has elucidated the properties and distribution of 
common and rare variations, provided insights into the processes that shape genetic 
diversity, and advanced an understanding of disease biology. This resource provides 
a benchmark for surveys of human genetic variation and constitutes a key 
component for human genetic studies by enabling array design, genotype 
imputation, cataloguing variants in regions of interest, and filtering of likely neutral 
variants124. 

Papers I, II, and IV 

A subset of 67 healthy subjects from the DiPiS study cohort constitutes the study 
population in Paper I, II, and IV. From the subset of DiPiS children still under 
follow-up in 2015 and 2016, not diagnosed with type 1 diabetes, 98 children 
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between ages 10 and 15 were selected randomly and asked to participate in a sub-
study to DiPiS. The 67 subjects who agreed to participate donated 30–50 mL of 
peripheral blood. Because of random selection, autoantibody-negative children with 
high-risk HLA were overrepresented in this cohort, as children with high-risk HLA 
and single or multiple autoantibodies were likely to have already been diagnosed 
with type 1 diabetes. The study population was investigated by complete blood 
count, autoantibodies, and HLA high-resolution sequencing. The subjects were 
without or with type 1 diabetes-related autoantibodies, but all had increased genetic 
risk of type 1 diabetes. 

Data for the follow-up in the DiPiS study was obtained from the DiPiS database in 
Malmö. The children have provided capillary blood samples in DiPiS, often from 
home, for autoantibody analyses at least four times during follow-up and as many 
as 33 times until the venous blood sample into this sub study to DiPiS. Blood 
glucose and HbA1c were available for all children in intense follow-up (2 or more 
autoantibodies simultaneously); the measurements were normal (random p-glucose 
< 11.1 mmol/L and HbA1c ranged between 27 and 4094), and these children would 
therefore be classified as stage 1 type 1 diabetes according to the current 
nomenclature82. After sampling into this study cohort, seven children developed 
type 1 diabetes. These children were diagnosed between 6 - 50 months after 
sampling.  

Paper III 

The study was planned to investigate TCR gene SNPs. The study cohort included 
samples from case (n = 365) subjects with type 1 diabetes and control (n = 668) 
subjects without diabetes, but all were DR3/3 homozygous. The T1DGC samples 
(case = 222, controls = 195) represent the DR3/3 homozygotes of European ancestry 
available from 16,000 samples125,126. All DiPiS (case = 0, controls = 3), TEDDY 
(case = 0, controls = 470), and BDD (case = 143, controls = 0) samples were 
obtained in Sweden. None of the children screened for the TEDDY study who 
provided DNA for this study were subsequently enrolled in TEDDY.  

In addition, an in silico analysis was performed using data from the 1000 Genomes 
Project database. Expression of Class II HLA genes in defined tissues and cell types 
was extracted from published databases. Effects of each high-risk SNP allele on 
gene expression were identified using the database at https://www.gtexportal.org/. 
The 1000 Genomes Project124 database was interrogated for subjects expressing a 
three-SNP risk haplotype discovered in this study. Class II gene expression data 
were collected from experiments using Epstein-Barr virus (EBV)-transformed 
lymphocytes available for 483 individuals in the 1000 Genomes Project. 
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Ethical considerations 

The procedures performed in this thesis were following with the appropriate ethical 
standards of the institutional and/or national research committee. 

The Regional Ethics Board in Lund approved the Diabetes Prediction in Skåne 
(DiPiS) study (Dnr 2009/244). The Regional Ethics Board in Lund approved 
amendments (Dnr 2014/196, 2015/861) to study children with increased genetic risk 
for type 1 diabetes, who were followed longitudinally since birth without or with 
the development of beta cell autoantibodies. 

Children screened but not enrolled in the TEDDY study were included in Paper III. 
Thus no TEDDY data is included in this thesis. The TEDDY study was approved 
by local institutional review or ethics boards at each site (University of Washington, 
Seattle; University of Colorado; Medical College of Georgia, Augusta; University 
of South Florida, Tampa; University of Turku, Finland; Technische Universitat, 
Munich, Germany; Lund University, Malmö, Sweden) and is monitored by an 
External Evaluation Committee formed by the National Institutes of Health. In 
Sweden, the TEDDY study was approved by the Regional Ethics Board in Lund 
(Dnr 2004/217, 2017/667, 2019/04405). 

The Ethics Committee at Karolinska Institutet approved the BDD study (Dnr 04-
826/1 with amendments 2006/108-32/1 and 2007/1383-32/1, 2009/1684/32 and 
2011/1069-32). 

This thesis includes resources provided by the T1DGC, a collaborative clinical 
study sponsored by the National Institute of Diabetes and Digestive and Kidney 
Diseases, National Institute of Allergy and Infectious Diseases, National Human 
Genome Research Institute, National Institute of Child Health and Human 
Development, and JDRF and supported by grant U01 DK062418. All subjects have 
consented to the study. Furthermore, the analysis is carried out on de-identified 
samples. 

This thesis also includes resources provided by the 1000 Genomes Project. The 1000 
Genomes Project developed guidelines on ethical considerations for investigators 
doing sampling, outlined in an Informed Consent Background Document and an 
Informed Consent Form Template used for sample collection. The analysis is 
carried out on de-identified samples. 
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Methods 

Complete blood count  

Complete blood count (CBC) was utilized in Paper I to count white blood cells, red 
blood cells, platelets and the concentration of haemoglobin and haematocrit. CBC 
was performed using a multiparameter automated haematology analyser (CELL-
DYN®, Ruby Haematology Analyser, Abbott Laboratories, Diagnostics Division, 
Abbot Park, IL, US)127,128. The analysis was performed using 300 μl of whole blood 
(Paper I). The basic principle of the analysis includes a laser light scatter analysis 
for enumeration and differentiation of white blood cells, red blood cells and 
platelets. Analysed parameters include white blood cells (count cells × 109/L), 
lymphocytes (count cells × 109/L), neutrophils (count cells × 109/L), monocytes 
(count cells × 109/L), basophils (count cells × 109/L), eosinophils (count cells × 
109/L), red blood cells (count cells × 1012/L), haemoglobin (g/L), haematocrit (the 
volume percentage of red blood cells in the blood (L/L)), mean corpuscular volume 
(the average volume of red cells (fL), mean corpuscular haemoglobin (the average 
amount of haemoglobin per red blood cell (pg)), red blood cell distribution width 
(% coefficient of variation), platelets (109/L), and mean platelet volume (fL). 

Magnetic-activated cell separation  

In Papers I and IV, magnetic associated cell separation (MACS) was used to isolate 
six peripheral blood cell types from a blood sample obtained from the 67 DiPiS 
subjects. A thorough description of the cell isolation can be found in Paper I and IV; 
a brief description is given below. 

MACS is based on antibodies coupled to magnetic beads, and there are multiple cell 
separation strategies using MACS. Here, positive cell selection targeting cell 
isolation based on one or multiple markers was utilized to isolate CD16+CD66+ 
neutrophils, CD19+ B lymphocytes, CD16+ cells, CD14+CD16- monocytes, and 
CD4+ and CD8+ T lymphocytes. The antibody/bead complex binds to specific cells 
expressing the corresponding cluster of differentiation (CD) epitope. Magnetically 
labelled cells are retained when the cell suspension is placed into a magnetic field, 
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magnetically labelled cells are retained, while unlabelled cells can be removed 
(Figure 13). The sample is removed from the magnetic field to recover labelled cells. 

 

Figure 13. Magnetic-activated cell separation (MACS) by positive selection of a target cell type. 
Positive selection means that a particular target cell type is magnetically labelled. Specific MACS MicroBeads with a 
magnetic core are added, washed, and pelleted PBMC resuspended in small aliquots of the buffer. The mixture is 
incubated for a short while. A MACS column containing a matrix of superparamagnetic spheres, covered with a cell-
friendly coating, is placed in a MACS Separator where the spheres amplify the magnetic field by 10,000-fold. During 
separation, the column is placed in the magnetic field of the MACS Separator. Magnetically labelled cells are retained 
within the column, whereas unlabelled cells flow through. After a washing step, the column is removed from the magnetic 
field, and the target cells are eluted from the column. Specific MACS MicroBeads are available to select numerous cell 
types and cell subsets positively. The image was created using BioRender.com. 

Flow cytometry 

In Papers I and IV, flow cytometry was utilized to examine HLA-DQ cell surface 
expression on six peripheral white blood cells, previously isolated by MACS. The 
principle for flow cytometry is outlined as follows (Figure 14). Traditional flow 
cytometers consist of three systems: fluidics, optics, and electronics. Flow 
cytometers utilize lasers as light sources to produce both scattered and fluorescent 
light signals that detectors, such as photodiodes or photomultiplier tubes, read. Cells 
are stained using monoclonal antibodies conjugated to fluorochromes.  

The monoclonal antibodies are conjugated to specific clusters of differentiation 
(CD), proteins expressed on the cell surface, and are conjugated to fluorophores. 
The fluorochromes emit light of different wavelengths upon excitation by a specific 
laser. Flow cytometers rapidly analyse single cells or particles as they flow past 
single or multiple lasers while suspended in a buffered salt-based solution. Each 
particle is analysed for visible light scatter and one or multiple fluorescence 
parameters. Visible light scatter is measured in two directions, the forward direction 
(Forward Scatter or FSC), which can indicate the relative size of the cell and at 90° 
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(Side Scatter or SSC), which indicates the internal complexity or granularity of the 
cell. Light scatters independently of fluorescence. These signals are converted into 
electronic signals analysed by a computer and written to a standardized format (.fcs) 
data file. Cell populations can be analysed and/or purified based on their fluorescent 
or light scattering characteristics. Common characteristics measured in a flow 
cytometry experiment are cell size, relative granularity, and relative fluorescence. 

 

Figure 14. Schematics of the mechanisms of a flow cytometer. 
A target cell type within a mixture of cells is fluorescently labelled. The cell mixture leaves the nozzle in droplets, and a 
laser beam strikes each droplet. FSC detector identifies cell size. SCC detector identifies fluorescence/granularity. 
Bandpass filters are positioned in front of the detectors and determine what collection of wavelengths and, ultimately, 
which fluorophores will be measured by each detector. The image was created using BioRender.com. 

A thorough description of the monoclonal antibodies and the gating strategy can be 
found in papers I and IV; a brief description will follow. The isolated peripheral 
blood cell subsets were stained with titrated monoclonal antibodies and phenotyped 
by their CD markers using a CyAnADP® (Beckman Coulter, Brea, California, USA) 
flow cytometer with the Summit v4.3 software (DAKO, Copenhagen, Denmark). 
Quality control of the flow cytometer was performed once per week. Compensation 
beads were utilized to calibrate the flow cytometer before each run. The purpose of 
the calibration is to compensate for “spillover” when staining with multiple 
fluorescent dyes and emitted light from different fluorochromes overlap. At 
excitation, each fluorophore may emit light with higher wavelengths than own 
emission spectrum, which, to some extent, may overlap with other fluorochrome 
spectrums. A compensation process is performed by eliminating spectral overlap 
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between different channels for a specific fluorophore by mathematic deconvolution 
programmed in the flow cytometer. 

Acquired data were analysed with Kaluza Analysis Software 1.5a (Beckman 
Coulter) with a gating strategy adapted from Dang et.al129 (Figure 15). Unstained 
and unsorted PBMC or erythrocyte pellets were used as negative controls. Stained 
and unstained PBMC and stained and unstained erythrocytes were used as positive 
and negative controls in the flow analyses for each subject. First, fluorescent minus 
one (FMO) controls were used for more accurate gating when multiple monoclonal 
antibodies were used to stain a cell type. In addition to the unstained cell negative 
gate, FMO could help to distinguish the real negative from the positive population 
by staining all the fluorophores minus the one in question. FMO controls are useful 
to put the correct gate when the expression level of a specific marker is low and to 
exclude background signals from spectral overlap. Second, duplicate events were 
removed using forward scatter height (FSC-H) plotted against forward scatter area 
(FSC-A). Third, cell populations were identified in the initial gate using side scatter 
(SSC) and forward scatter (FSC). The cell populations were plotted in separate 
histograms using the appropriate cell specific for HLA-DQ antibody for 
identification of cells and HLA-DQ median fluorescence intensity (MFI), 
respectively. 
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Figure 15. Schematic of the flow cytometry gating strategy 
Duplicate events were removed using scatterplot of FS Area and FS Height. Isolated cell populations were identified in 
an initiall gate using forward scatter (FSC) and side scatter (SSC). Up to 10 000 events were recorded. The cell 
population was plotted in a histogram using the appropriate cell specific antibodies. Fluorescence intensity was identified 
in a histogram using an appropriate cell specific or HLA-DQ antibody. Unstained and not sorted PBMC or erythrocyte 
pellet were used as negative controls. The image was created using BioRender.com. 
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HLA high-resolution sequencing 

In papers I, II, and IV, HLA high-resolution sequencing, a type of next-generation 
sequencing (NGS), was used to determine Class II (-DRB3, -DRB4, -DRB5, -DRB1, 
-DQA1, -DQB1, -DPA1, and -DPB1) haplotypes. The principle of HLA NGS can 
be divided into target generation, library preparation, clonal amplification, 
sequencing, and data analysis. Target generation includes PCR amplification of 
specific HLA loci to generate and obtain a larger amount of target DNA. Longer 
amplicons are obtained, and DNA concentration is quantified. Library preparation 
includes three vital steps: DNA fragmentation, adapter ligation, and barcoding. 
DNA fragmentation is a random process which guarantees that the complete gene 
is encompassed by shorter overlapping sequencing reads. Enzymatic cleavage is 
followed by DNA repair and A-tailing in a joint reaction. The goal of adapter 
ligation is to add primers to the end of the DNA fragments with A-overhang; 
adapters come with T-overhang to enable ligation. Illumina sequencing primers later 
use the sequences of adapters for NGS. Following the adapter, ligation is a step that 
involves DNA cleaning and size selection. This step removes components which 
could eventually interfere with sequencing.  

Selection with SPR1 (Solid Phase Reversible Immobilization) beads is aimed at 
sorting larger fragments, which is preferable in the later process of phasing. 
Barcoding enables samples from different individuals to be pooled and run in a 
single sequencing analysis. Indexing PCR is performed as each fragment is 
elongated to contain individual and flow cell attachment cites. The resulting library-
pooled sample includes DNA from several individuals and loci. Clonal 
amplification is where DNA is amplified to increase the amount of DNA available 
for sequencing. Clonal amplification is performed within the sequencer through 
bridge amplification resulting in millions of clusters, each including copies of the 
same DNA fragment. Sequencing of DNA molecules generates reads. A principle 
of sequencing by synthesis is conducted. Fluorescently labelled nucleotide bases are 
incorporated for detection. A large number of short reads are obtained. The short 
reads overlap so that each nucleotide is covered multiple times. Data analysis is 
performed by software phasing short reads and obtaining longer sequences. 
Statistical computations are used to phase the complete sequences together. An 
advantage of using this technology for short reads is that it has a lower error rate 
than methods using long reads. A library of previously known sequences is used as 
a reference to yield HLA typing results for the newly included samples.  

Dried blood spots (6-mm punch-outs) were sent blinded to Scisco Genetics Systems 
and analysed with a ScisGo HLA v4 typing kit (Scisco Genetics Inc., Seattle, WA, 
US) using MiSeq v2 PE500 (Illumina, San Diego, CA, US)83,130,131. DNA was 
extracted from the 6-mm dried blood spots using a scalable protocol132. NGS was 
performed using DNA sequencing (Sequence-Based Typing). HLA-DRB3, -DRB4, 
-DRB5,-DRB1, -DQA1, -DQB1, -DPA1, and -DPB1 haplotypes were determined 
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from the allelic information, an online database (Allele Frequencies in 
WorldwidePopulation, http://www.allelefrequencies.net)133. 

Radio-binding assay 

In papers I, II, and IV, IAA, GADA, IA-2A, and the three variants ZnT8A were 
analysed by radio-binding assay (RBA). RBA is a method of detecting and 
quantifying antibodies targeted toward a specific antigen. A thorough description of 
the autoantibody analysis by RBA can be found in paper I, II, and IV; a brief 
description will follow. 

Coupled in vitro transcription and translation replicate the process of protein 
synthesis from a template DNA to synthesise a radiolabelled protein (antigen) 
(Figure 16). Radiolabelled 35S-methionine is incorporated during protein synthesis 
resulting in radiolabelled antigen for the detection of GADA, IA-2A or the three 
variants of ZnT8A, depending on the plasmid template. The specific antigen is later 
used in RBA for the detection of autoantibodies against the specific antigen in serum 
and plasma (Figure 17). In this thesis, we used ready-made 125I-insulin antigen in 
the detection of IAA developed by PerkinElmer (Massachusetts, USA). 

In RBA, duplicate samples of serum or plasma are incubated at 4°C overnight with 
a radiolabelled antigen. Free labelled antigen is separated from antibody bound by 
Protein A-Sepharose (Invitrogen, Carlsbad, California, USA). Bound radioactivity 
was determined in a β-counter (2450 Microplate Counter, PerkinElmer, Waltham, 
Massachusetts, USA) and levels expressed in U/mL using in-house standards. 
Levels (Units/mL) of GADA, IAA, IA-2A, and the three variants of ZnT8A were 
determined, using in-house verified threshold values, in serum or plasma as 
previously described65,134-136. 

Our laboratory participates in the Islet Autoantibody Standardization Program 
(IASP), which aims to improve the performance of immunoassays measuring type 
1 diabetes-associated autoantibodies and the concordance among laboratories. IASP 
organizes international interlaboratory assay comparison studies in which blinded 
serum samples are distributed to participating laboratories, followed by centralized 
collection and analysis of results, providing participants with an unbiased 
comparative assessment. IASP is performed in 18-month intervals. The 2018 
analysis was close to the autoantibody analyses performed in the papers included in 
this thesis.  
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Figure 16. Coupled in vitro transcription and translation.  
In vitro transcription and translation replicate the process of protein synthesis from a template DNA to synthesise 
radiolabelled protein (antigen). The process can be summarized in two steps: 1) transcription of cDNA template into 
mRNA and 2) translation of mRNA into 35S-labelled protein. Unincorporated antigen is removed using a purification size 
exclusion column. The purified antigen is later used in radio-binding assays for the detection of autoantibodies against 
the specific antigen in serum and plasma. The image was created using BioRender.com. 

 

Figure 17. Radio-binding assay (RBA) is performed to detect autoantibodies against a specific antigen.  
Serum or plasma samples are incubated with radiolabelled antigen overnight in a 96-well plate format, with each serum 
tested in duplicate. Antibody-bound antigen is precipitated with Protein A Sepharose. Unbound antigen is removed by 
washing. The radioactivity of antibody bound antigen is counted in a ß-counter. The image was created using 
BioRender.com. 
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Lipidomics 

In Paper II, a lipidomics approach was used to analyse lipid profiles in plasma 
originating from whole blood samples. A thorough description of the lipidomics 
analysis can be found in Paper II; a brief description is given below. 

Lipidomics is the study of the structure and function of the complete lipids (the 
lipidome) produced in a cell or organism and their interactions with other lipids, 
proteins, and metabolites. Lipidomic profiles were determined using ultra-high-
performance liquid chromatography quadrupole time-of-flight mass spectrometry 
(UHPLC-Q-TOF-MS). The two techniques, UHPLC and Q-TOF-MS, have been 
combined to employ fast, high-resolution separations with required sensitivity 
(UHPLC) and structure elucidation and identification of fragmentation patterns of 
the compounds (Q-TOF-MS) (Figure 18). 

 

Figure 18. Schematic of ultra-high-performance liquid chromatography quadrupole time-of-flight mass 
spectrometer (UHPLC-Q-TOF-MS). 
UHPLC contribute fast separation, high resolution, and high sensitivity while Q-TOF-MS contribute accurate mass, 
reliable fragmentation, structure elucidation. After HPLC separation, the lipids are injected into the Q-TOF-MS where 
they are further separated by size and charge that leads to the development of the chromatogram. The image was 
created using BioRender.com. 

UHPLC is a commonly used separation method using liquid chromatography (LC). 
LC is a technique in analytical chemistry that separates components in a mixture. 
The separation occurs due to the selective distribution of analytes between a mobile 
and a stationary phase. In LC, the mobile phase is the liquid, and the stationary phase 
is the separation column with a granular material with very small porous particles. 
The mobile phase is a solvent or solvent mixture forced at high pressure through the 
separation column and the rest of the system. The separation rate depends on the 
affinity of the analytes to the stationary phase. A sample injected into a column with 
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the mobile phase is dissolved. Subsequently, the individual components of the 
sample migrate through the column at different rates because they are retained to a 
varying degree by interactions with the stationary phase. After leaving the column, 
the individual substances are detected by a detector and passed on as a signal to the 
software on the computer. A chromatogram is created in the software, allowing the 
identification and quantification of the different substances. 

Q-TOF mass spectrometers combine quadrupole technologies with a TOF mass 
analyser, resulting in high mass accuracy for precursor and product ions, strong 
quantitation capability, and fragmentation experiment applicability. The Q-TOF MS 
uses a quadrupole (four parallel rods arranged in a square formation), a collision 
cell, and a time-of-flight unit to produce spectra. Lighter ions accelerate faster down 
the flight tube to the detector, thus determining the ions’ mass-to-charge ratios.  

Plasma samples originating from whole blood samples diluted 1:2 in RPMI1640 
media before isolation of plasma were sent blinded to Steno Diabetes Centre 
Copenhagen in Gentofte, Denmark. Lipidomic profiling Lipid extracts were 
analysed using an ultra-high-performance liquid chromatography quadrupole time-
of-flight mass spectrometer (UHPLC-Q-TOF-MS). The column was an Acquity 
UPLC™ BEH C18 2.1 × 100 mm with 1.7 μm particles from Waters (Milford, CT, 
USA). The mass spectrometer was a 6550 iFunnel quadrupole time of flight from 
Agilent Technologies (Agilent) interfaced with a dual jet stream electrospray ion 
source. Data were acquired using the MassHunters B.06.01 (Agilent). The open-
source software processing tool MZmine 2.21 was used to process the data obtained 
from the lipidomic analysis. Features in the spectra were annotated based on the 
internal spectral library and the LipidMaps online database. 

Molecular Inversion Probe Sequencing 

Molecular inversion probe (MIP) sequencing is a method for assessing genetic 
information in many loci. It is cost-effective, scalable, and an efficient technology 
for large-scale SNP analysis. MIPs are single-stranded DNA molecules containing 
two regions complementary to regions in the target DNA that flank the SNP in 
question. Each probe contains universal primers sequences separated by an 
endoribonuclease recognition site and a 20-nt tag sequence. During the assay, the 
probes undergo a unimolecular rearrangement: they are (1) circularized by filling 
gaps with nucleotides corresponding to the SNP in four separate allele-specific 
polymerizations (A, C, G, and T) and ligation reactions; and (2) linearized in the 
enzymatic reaction. As a result, they become "inverted"(Figure 19). This step is 
followed by PCR amplification. Further processing of the probes depends on 
specific assay137,138. MIP permits identifying and quantifying SNPs in all genes and 
loci targeted for analysis139. In Paper III, MIP capture was used to sequence regions 
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of interest in all samples140,141. Variant frequency was enhanced by incorporating of 
unique molecular identifiers within each molecule captured by a MIP142. This paper 
was a collaborative effort, and the MIP sequencing and analysis was performed by 
Özkan Aydemir and Jeffrey A. Bailey.  

 

Figure 19. Molecular inversion probe (MIP) library sequencing 
The MIP assay include a capture carried as a single reaction per MIP panel per sample by combining sample DNA, MIP 
panel, polymerase and ligase. MIPs bind to their targets, followed by polymerase extension and single stranded circular 
formation by ligase. Exonuclease treatment remove all remaining linear DNA (unbound probes, original template DNA). 
Captured products are amplified using universal primers with sample barcodes. Each probe have important components 
such as the extension arm (blue), ligation arm (red), molecular identifiers (green), and a shared backbone 
complementary to the target region (pink and purple). Barcoded samples are pooled to create a sequencing library that 
is purified before sequencing. Important components are color coded: extension arm (blue), ligation arm (red) molecular 
identifiers (green), and backbone (pink or purple). The image is adapted from Aydemir et. al.140 using BioRender.com. 

SNP Genotyping 

SNP genotyping measures genetic variations of single nucleotide polymorphisms 
(SNPs) between species members. It is a form of genotyping that measures more 
general genetic variation. SNPs are one of the most common types of genetic 
variation. An SNP is a single base pair mutation at a specific locus. SNP genotyping 
was performed in papers III and IV. 

In Paper IV, SNP genotyping was used to investigate the genetic variation of SNPs 
in the cohort of 67 DiPiS subjects. A thorough description of the cell isolation can 
be found in Paper III; a brief description is given below. 

Genotyping of HLA-DRA1 SNPs was performed using DNA isolated from 
previously obtained PBMC143. Polymorphisms of three SNPs (tri-SNP) in intron 1 
of the HLA-DRA1 gene were investigated with predesigned TaqMan® SNP 
Genotyping Assays using the dried-down DNA delivery method, as described in the 
TaqMan® SNP Genotyping Assays User Guide (Thermo Fisher Scientific) (Figure 
20). The dried-down DNA delivery method can be used with low DNA 
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concentration, a limited number of DNA templates repeatedly tested on different 
SNP targets or when many DNA samples are prepared in plates, dried down, and 
stored before use. The workflow of SNP genotyping includes the preparation of a 
reaction mixture, performing the PCR, setting up plate documentation, performing 
a post-PCR plate read, analysing the plate, reading the document, and calling allele 
types.  

 

Figure 20. SNP genotyping.  
Extract and purify genomic DNA, Quantitate gDNA (Concentration, Equalize sample concentration), set up PCR 
reactions (Add gDNA to the bottom surface of an optical reaction plate duplicate samples no template controls). Add 
gDNA to the bottom surface of an optical reaction plate duplicate samples no template controls. DNA sample is dried 
down completely by evaporation dark room temperature amplicon-free location. DNA dry-down method is appropriate 
when• low DNA concentration results in large sample volumes (2 to 5 μL) to run the assay. limited number of DNA 
templates tested repeatedly on different SNP targets. large number of DNA samples prepared in plates, dried down, 
and stored before use. The image was created using BioRender.com.  

The reaction mixture containing the assay was added to dried-down DNA samples 
in a 96-well plate. In the polymerase chain reaction (PCR), the target DNA region 
determined by the assays is amplified and copied. During the post-PCR plate read, 
fluorescence measurements collected during the PCR are used to plot the reporter 
signal, and this data is used to determine the genotypes present in the DNA samples. 
Each of the three genotyping assays consists of two sequence-specific primers and 
two TaqMan® minor groove binder (MGB) probes with non-fluorescent quenchers 
(NFQ). Allele 1 and 2 sequences are detected by one probe. each labelled with VIC 
and FAM dye, respectively. The software automatically assigned the SNP transition 
substitutions for each of the assays were automatically assigned by the software as 
Homozygous Allele 1, Homozygous Allele 2, or Heterozygous Allele 1/Allele 1 2. 
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The context sequence [VIC/FAM], provided by the manufacturer, identified the 
transition substitution for rs3135394, rs9268645, and rs3129877 as [A/G], [C/G], 
and [A/G] respectively. Hence, the SNP typing results were decoded to the 
corresponding polymorphism. Haplotypes of the SNPs, a tri-SNP (rs3135394, 
rs9268645 and rs3129877), were assembled in association with HLA-DRB345-
DRB1-DQA1-DQB1 haplotypes. 

In Silico Class II HLA Gene Expression 

In silico gene expression analysis is an experiment performed on a computer or via 
computer simulation. With this technique, it is possible to profile gene expression 
for studying biological processes at the molecular level as most biological 
distinctions are now observed at a genomic level, and a large amount of expression 
information is now openly available via public databases144,145. In Paper III, the 
expression of Class II HLA genes in defined tissues and cell types was extracted 
from published databases. Effects of each high-risk SNP allele on gene expression 
were identified using the database at https://www.gtexportal.org/. The 1000 
Genomes Project124 database was also interrogated for individuals expressing the 
three-SNP risk haplotype we discovered (see below) using four populations (CEU, 
FIN, GBR, and TSI) that reflect the ancestral origins of our type 1 diabetes cohort. 
In addition, Class II gene expression data were also collected from experiments 
using Epstein-Barr virus (EBV)-transformed lymphocytes available for 483 
individuals in the 1000 Genomes Project. Class II gene expression was then 
stratified according to tri-SNPs of interest. This paper was a collaborative effort, 
and the in silico analyses were performed by Elizabeth P. Blankenhorn and John P. 
Mordes.  

Data management  

R is a free software environment for statistical computing and graphics146. Creating 
a database in R is essentially writing a script specifying what will happen to the 
information loaded into the software. R never automatically overwrites or changes 
the original data. Each time R is opened, the data is loaded anew. In the script, you 
can change the data without altering the raw data file, create tables and plots, and 
model data. The most important aspect is the traceability of the analyses. With the 
script, it is possible to know exactly what has been done regarding data handling 
and analyses. Thus, it is easier to backtrack and troubleshoot than with other 
software types. Data can be saved in many different formats enabling you to send 
and receive data to and from collaborators using different software. 
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R statistics have been used to create, update, and maintain “the 67 DiPiS subject 
cohort” database used in papers I, II, and IV. Descriptive data along with DiPiS 
follow-up data was obtained from the DiPiS study database. Data generated with 
each method (complete blood count, magnetic-activated cell separation, flow 
cytometry, HLA high-resolution sequencing, lipidomics and SNP genotyping) was 
added to the database. The software was also used to create plots and tables and 
perform statistical computations in Paper I and IV.  

Generating and managing lipidomics data (Paper II), MIP data (Paper III) as well as 
obtaining In silico gene expression data (Paper III) were managed by co-authors in 
the respective published papers. 

Statistical methods 

Autoimmunity burden at sampling (sAB) and cumulative autoimmunity burden 
(cAB) were used to group subjects in paper I, II, and IV. sAB is defined as the 
number of autoantibodies at the time of sampling, and cAB is defined as the number 
of autoantibodies over a period of time and is calculated as the sum of the products 
of the number of autoantibodies by the period of time (in years) the subject had that 
number of autoantibodies. In the DiPiS study sAB was the number of autoantibodies 
at the time of sampling of the 67 DiPiS subjects, and cAB was the sum of the 
products of the number of autoantibodies and time over the entire DiPiS follow-up 
from 2 years of age until the time of sampling. 

Boxplots and likelihood ratio tests were used to examine and test, respectively, the 
associations between a parameter of interest and autoimmunity burden level or 
group the associations between a parameter in groups or with varying autoimmunity 
burden (Paper I and IV). Histograms were used to assess the distribution and identify 
potential outliers in different parameters (Paper I and IV). 

In papers I and IV, linear mixed-effects models (LMEM) were used to examine the 
association between HLA-DQ cell surface MFI and autoimmunity burden. LMEMs 
are used when independence between data points cannot be assumed. One example 
of when this occurs is when more than one data point was collected from the same 
individual, as was the case in our study. We fit linear models with HLA-DQ as the 
outcome, autoimmunity burden (or tri-SNP haplotypes), as the main predictor, with 
a random intercept. The models were adjusted for age at sampling, sex, HLA-DQ2/8 
(Paper I and IV) as well as CBC (Paper I). To determine whether autoimmunity was 
a mediator of the association between the outcome and predictor, additional models 
were fitted adjusting for autoimmunity burden (sAB and cAB). Due to the small 
sample size, the standard errors were estimated using robust methods, as well as 
model based as a sensitivity analysis. Robust standard errors adjust the model-based 
standard errors using the empirical variability of the model residuals that are the 
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difference between observed outcome and the outcome predicted by the statistical 
model147. For example, in estimating the mean difference between two groups, the 
residuals are the difference between the observed outcome and the mean in each 
group. A sensitivity analysis is an approach used to determine how sensitive the 
results are to the modelling assumptions. 

Lipidomics data were analysed according to genotype. Hierarchical clustering was 
used to cluster subjects based on their HLA genotype. First, a dissimilarity matrix 
was calculated by computing all pairwise dissimilarities (distances) between the 
individual data points using “Gower’s distance” as the distance metric. The subjects 
were clustered using agglomerative hierarchical clustering using the complete 
linkage method. Agglomerative clustering initially starts with n clusters, where n is 
the number of observations, assuming each is its own separate cluster. Then, the 
algorithm identifies the most similar clusters using the complete linkage method and 
groups them into larger clusters. This process was repeated until four clusters were 
identified, and cluster statistics were assessed. 

In papers I, III and IV, statistical analyses were performed using R146 (versions 3.6.1 
and 4.2.1). Statistical analyses and hierarchical cluster analyses were performed 
using SPSS from IBM and R, respectively. Differences between groups were 
assessed using one-way ANOVA), Chi-squared test, Student’s t-test, Mann-
Whitney, Kruskal-Wallis, or likelihood ratio tests in paper I, II, and IV.  

P-values reported in paper I, II, and IV were corrected for multiple comparisons 
using the Benjamini-Hochberg method. A p-value of <0.05 was considered 
statistically significant. In Paper III, odds ratios (ORs) were calculated from 2 × 2 
tables. Two-sided p-values were calculated using Fisher’s exact tests to analyse 2 × 
2 tables. The Chi-square statistic was used to analyse higher-order tables with 
Bonferroni adjustment for multiple comparisons. For evaluating published Class II 
RNA expression data from EBV transformed lymphoblasts, RPKM (reads per 
kilobase of transcript per million mapped reads) values were stratified by haplotype 
and tested for significance by two-way ANOVA (GraphPad Prism), corrected for 
multiple comparisons by the Holm-Sídák method, with a = 0.05.  
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Results 

The results of each paper are briefly summarized below. 

Paper I 

A differential expression of HLA-DQ on isolated peripheral blood cells, relative 
autoimmunity burden, and Class II HLA were investigated. At the time of sampling 
into the present study, 13 children were autoantibody negative at any measured, 23 
had a single autoantibody and 18 had multiple autoantibodies (Stage I diabetes). 
Detailed information was obtained on HLA-DR, -DQ, and -DP genes. 

Decreased HLA-DQ cell surface MFI was observed with an increasing number of 
autoantibodies on CD16+, CD14+CD16-, CD4+, and CD8+. HLA-DQ cell surface 
MFI was associated with HLA-DQ2/8 in CD4+ T lymphocytes, marginally in 
CD14+CD16- monocytes and CD8+ T lymphocytes. These associations appeared to 
be related to autoimmunity burden. The results suggest that HLA-DQ cell surface 
expression was related to HLA and autoimmunity burden. Additionally, differential 
HLA-DQ cell surface MFI was observed with age and HLA-DQ2/8 genotype in the 
two models not adjusted for autoimmunity burden. 

Paper II 

The lipidomic profiling in this study provides insight into the lipid composition in 
children with an increased genetic risk for type 1 diabetes and at different stages of 
autoimmunity. Analysis of lipids revealed four major clusters depending on HLA 
haplotypes. Additionally, HLA seems to influence levels of long chain TG. 
Variations in type and levels of several specific lipid species were related to the 
number of beta cell autoantibodies.  

At cross-sectional sampling, 13 of the subjects had never had detectable 
autoantibodies at any time measured. Five subjects had progressed to type 1 diabetes 
after the cross-sectional sampling in the present investigation. These five subjects 
diagnosed with type 1 diabetes 6–26 months after the cross-sectional sampling did 
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not differ in lipid composition compared to the other subjects with multiple 
autoantibodies at sampling. 

The lipidomic analysis detected 128 lipid features annotated based on the internal 
standard. The detected lipids were members of the following lipid classes: 
sphingomyelin (SM), lysophosphatidylcholine (LPC), phosphatidylcholine (PC), 
phosphatidylethanolamine, alkylphosphatidylcholine (PC(O)), alkenylphos- 
phatidylcholine, alkylphosphatidylethanolamine or phosphatidylethanolamine, 
phosphatidylinositol, cholesterol ester, ceramide (Cer), and triacylglycerol (TG). 

A hierarchical cluster analysis grouped the subjects based on their HLA profiles and 
haplotypes, followed by the generation of heat maps of lipid expression based on 
the observed clusters, was used to identify lipidomic specific phenotypes in relation 
to HLA haplotypes. 

According to the HLA haplotypes, four major clusters, according to the HLA 
haplotypes were identified in the hierarchical cluster analysis. The largest cluster 
contained many different haplotypes, whereas more specific haplotypes defined the 
other three clusters. Cluster 3 was the most distinct as it was characterized by the 
presence of the DPB1*20:01:01, DRB4*01:03:01:02N, and DPB1*13:01:01 alleles 
in 50% of the participants and the DRB4*01:01:01 allele in 75% of the participants. 
In addition, levels of PC (O-38:6) (a) were lower and PC (36:5) higher in this cluster. 
Overall, the levels of TG (18:2/18:2/18:2) or TG (18:3/18:2/18:1) decreased from 
clusters 1–4, and several long chain TG were lower detected in cluster 4. 

Variation in the lipidome due to autoimmunity was assessed by dividing the subjects 
into two groups: negative for any autoantibody or positive for one or more 
autoantibodies 

Three LPCs and two PCs were detected at significantly higher levels in children 
positive for autoantibodies. A single SM was detected in higher levels in 
autoantibody-positive research subjects. One PC and one TG were detected in lower 
amounts in subjects positive for autoantibodies. 

Glycosylated ceramides (GlcCer) were investigated in relation to specific 
autoantibodies. Five GlcCer differed between the positive or negative for IAA 
groups. Individuals who were positive for IAA, independent of other autoantibodies, 
had significantly higher levels of the five GlcCer. No correlations with any of the 
other autoantibodies were observed. 

  



69 

Paper III 

A previously unreported and unexpected haplotype of tri-SNP, located in intron-1 
of the HLA-DRA1 gene, was identified. The tri-SNP was identified because the 
MIPs designed to interrogate rs9268645 revealed the presence of the other SNPs 
(Figure 21).  

 

Figure 21. Schematic of the tri-SNP in intron 1 of the DRA gene and certain Class II HLA genes 
The tri-SNP is a haplotype of the transition substitutions in rs3135394, rs9268645, and rs3129877 in intron-1 of the 
HLA-DRA1 gene on chromosome 6. Tri-SNPs were assembled in association with HLA-DRB345-DRB1-DQA1-DQB1 
haplotypes. The image was created using BioRender.com. 

The tri-SNP was strongly associated with type 1 diabetes risk in DR3/3 homozygous 
individuals. High-risk, intermediate-risk, and protective haplotypes were designated 
related to the major and minor alleles of the three SNPs as reference (0) and alternate 
(1), respectively. The 010 haplotypes were strongly associated with type 1 diabetes 
in the T1DGC and Swedish DR3/3 cohorts. The 010 haplotype appears to confer 
significant type 1 diabetes risk compared with the 101 haplotypes. In addition, risk 
association remained highly significant when data were re-analysed, restricting the 
Swedish cases to the Skåne region, from which all the control samples were 
obtained. The 101-containing haplotypes (especially 101/101) are significantly 
protective for type 1 diabetes compared with the 010 haplotypes. These results 
effectively stratify the high-risk DR3/3 individuals into two groups: those who carry 
the 010 haplotypes and those who do not. 

The eQTL database at https://www.gtexportal.org/home/ groups gene expression in 
numerous tissues and cell types by the allele at any given SNP. Using this eQTL 
database, we found that RNA expression changes have been associated with the risk 
alleles of each of our three SNPs and that they are statistically significant in affecting 
the expression of HLA genes such as DQB1 
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Paper IV 

Four tri-SNPs were identified in the cohort of 67 DiPiS subjects and were associated 
with 13 extended HLA-DR-DQ haplotypes. Among the haplotypes, AGG was the 
most common representing 50.0% (n = 67) of the entire cohort, followed by GCA 
(35.1%, n = 47), ACG (8.2%, n = 11), and ACA (6.7%, n = 9). In AGG subjects, 13 
HLA-DR-DQ haplotypes were identified, distributed over three different DRB345, 
types where DRB4*01:03:01 (n = 57) was the most common, followed by 
DRB3*02:02:01 (n = 6) and DRB4*01:03:02 (n = 4). In GCA, only a single HLA-
DR-DQ haplotype was identified (DRB3*01:01:02-DRB1*03:01:01-
DQA1*05:01:01-DQB1*02:01:01). In ACA and ACG subjects, four and eight 
HLA-DR-DQ haplotypes were identified, distributed over two and six DRB345 
variants, respectively. Furthermore, three prominent HLA-DRB1-DQA1-DQB1 
haplotypes were identified with AGG and GCA tri-SNPs; DRB1*03:01:01-
DQA1*05:01:01-DQB1*02:01:01 (AGG, n = 6; GCA, n = 47), DRB1*04:01:01-
DQA1*03:01:01-DQB1*03:02:01 (AGG, n = 31), and DRB1*04:04:01-
DQA1*03:01:01-DQB1*03:02:01 (AGG, n = 15). Furthermore, the AGG and GCA 
tri-SNPs were found in subjects with the HLA-DQ2/8 genotype (n = 32 and n = 21, 
respectively) and non-HLA-DQ2/8 genotype (n = 24 and n = 11, respectively). ACA 
and ACG tri-SNPs were only present in subjects with non-HLA-DQ2/8 genotypes 
(n = 9 and n = 11, respectively).  

The 13 subjects that were autoantibody negative in their follow-up in DiPiS, all have 
the HLA-DQ2/8 genotype, the AGG (n = 14), and GCA (n = 12) tri-SNPs. We found 
no association between the tri-SNPs and autoimmunity burden, defined as the 
presence or absence of autoantibodies. However, we observed an association with 
autoimmunity burden defined as sAB but not cAB. We observed no indication that 
the HLA-DRA1 tri-SNPs were impacting the type of first appearing autoantibody, 
be it GADA or IAA, in subjects with HLA-DQ2/8 or non-DQ2/8 genotypes (Table 
VI). 

A pattern of decreased HLA-DQ cell surface MFI on peripheral blood cells was 
observed with the AGG relative to the GCA tri-SNP. HLA-DQ cell surface MFI 
was lower on CD4+ T lymphocytes with the AGG tri-SNP. Further stratifying HLA-
DQ cell surface MFI by autoimmunity burden revealed a pattern of decreasing 
HLA-DQ cell surface MFI with increasing autoimmunity burden in both AGG and 
GCA tri-SNPs. For the AGG tri-SNP, lower HLA-DQ cell surface MFI was found 
on some but not all isolated peripheral blood cell types.  

In this cohort, HLA-DRB3 01:01:02 and DRB3*02:02:01 is the only allele 
separating subjects with the GCA (n = 47) and AGG (n = 6) tri-SNPs. The HLA-
DQ MFI did not differ between GCA and AGG subjects, as previously seen on CD4+ 
T lymphocytes. However, HLA-DQ MFI still decreases with increasing cAB on 
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some but not all isolated peripheral blood cell types. Similarly, HLA-DQ MFI 
decreases with increasing sAB. 

Stratifying the tri-SNP genotypes by autoimmunity burden and the HLA-DQ2/8 or 
non-HLA-DQ2/8 genotype, we found that most subjects with HLA-DQ2/8 and 
AGG/AGG or GCA/AGG had no or low autoimmunity burden. 

HLA-DQ MFI was lower in subjects with homozygous AGG/AGG than 
heterozygous GCA/AGG on some but not all isolated peripheral blood cell types. 
The pattern of decreasing HLA-DQ MFI with increasing cAB was identified for 
subjects heterozygous for GCA/AGG and homozygous for AGG/AGG. 

In addition, differential HLA-DQ cell surface MFI was observed with age and HLA-
DQ2/8 genotype on the isolated peripheral white blood cells without, but not when, 
adjusting for autoantibodies in a model based on linear regression with robust 
standard errors (adjusting for age at sampling, sex, and HLA-DQ). Without 
adjusting for autoimmunity burden, HLA-DQ cell surface MFI measured in subjects 
with the HLA-DQ2/8 genotype compared to non-HLA-DQ2/8 subjects were lower 
on CD14+CD16-, CD4+, and CD8+ cells, and marginally lower on CD19+ and CD16+ 
cells. Additionally adjusting for autoimmunity burden, HLA-DQ cell surface MFI 
measured in subjects with the HLA-DQ2/8 genotype compared to non-HLA-DQ2/8 
subjects was lower on CD8+ cells and marginally lower in CD4+ T lymphocytes for 
sAB as well lower on CD4+ and CD8+ cells and marginally lower on CD16+ and 
CD14+CD16- for cAB.  

Adjusting for sAB, HLA-DQ cell surface MFI was marginally lower on CD4+ cells 
for subjects with one autoantibody compared to no autoantibodies. The association 
was shifted adjusted for cAB; HLA-DQ cell surface MFI was lower on CD16+ cells 
for subjects with high compared to low autoimmunity burden.  
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Discussion 

Type 1 diabetes is typically diagnosed based on clinical symptomatology associated 
with overt hyperglycaemia and metabolic imbalance. However, the disease can now 
be identified at earlier presymptomatic stages. Longitudinal follow-up studies have 
shown that patients have better metabolic control and fewer long-term 
complications due to less fluctuating blood glucose8,59,60. As only 7% of individuals 
with the highest HLA risk, HLA-DQ2/8, develop type 1 diabetes47, it is important 
to differentiate between individuals at high-risk of developing type 1 diabetes and 
identify those that will develop the disease. 

This study aimed to investigate the immunological process that precedes type 1 
diabetes in relation to HLA and the burden of autoimmunity using flow cytometry, 
metabolomics, and genotyping. A subset of DiPiS subjects at risk of developing type 
1 diabetes is the backbone of papers I, II, and IV. The study was designed to 
investigate samples from healthy children with risk for type 1 diabetes and a variable 
number of autoantibodies. The subjects with multiple autoantibodies were classified 
as stage 1 type 1 diabetes according to the current nomenclature82. At the time of 
cross-sectional sampling, none of the children with multiple autoantibodies had 
dysglycaemia without symptoms (Stage 2) or had developed clinical type 1 diabetes 
(Stage 3) at the time of sampling. Paper III was performed using cases and controls 
to investigate new genetic markers of type 1 diabetes.  

This thesis, through four projects, investigates several factors that may shed light on 
the autoimmune process leading to the development of type 1 diabetes. This thesis 
aimed to test the hypothesis that there is an association between HLA, the capacity 
of the antigen-presenting cells to present antigen and chronic beta cell autoimmunity 
or autoimmunity burden. The latter is quantified by the number and type of 
autoantibodies at cross-sectional sampling and as well as during follow-up. The sub-
aims corresponding to each of the four projects in this thesis is to test whether the 
expression of HLA-DQ on peripheral blood cells is associated with either the 
number of autoantibodies or autoimmunity burden or both (Paper I); to test the 
hypothesis that lipids in the blood of the children in the present cohort are associated 
with beta cell autoimmunity (Paper II); to investigate additional type 1 diabetes 
susceptibility loci in patients and controls homozygous for the HLA-DR3 high-risk 
haplotype (Paper III) and to explore whether the newly identified tri-SNP in intron 
1 of HLA-DRA can be observed and whether it is associated with the number of 
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autoantibodies and high-risk HLA in a cohort of a subset of DiPiS subjects (Paper 
IV).  

Class II HLA haplotypes and risk of type 1 diabetes 

Although much is known about the risk associated with certain HLA genes, 
haplotypes, and genotypes, much remains to be discovered and explained. It is well 
established that HLA-DQ2/8 contributes to the highest risk for type 1 diabetes, and 
the risk for progression to clinical onset increases with an increasing number of 
autoantibodies56,148. Therefore, we believe that the burden of autoantibodies over 
time puts a strain on the immune system and could contribute to T cell exhaustion. 
T cell exhaustion is thought to allow partial containment of chronic infections by 
the persistence of T lymphocytes, without causing immunopathy149,150. It has been 
suggested that T cell exhaustion may be important to limit immunopathology or 
autoreactivity149,151, and it cannot be excluded that our observation that the decrease 
in HLA-DQ cell surface MFI by sAB and cAB is related to T cell exhaustion. 

In the cohort of the 67 DiPiS subjects (papers I, II, and IV), the HLA-DQ2/8 subjects 
are mostly autoantibody negative. This is not surprising as 3.5% of new-borns have 
this genotype, and only a fraction of such children will develop one or several 
autoantibodies, let alone autoimmune type 1 diabetes. It is also possible that some 
DiPiS HLA-DQ2/8 subjects have already been diagnosed with type 1 diabetes and 
were therefore not asked to participate in the present investigation. 

Autoimmunity burden 

Autoantibody data obtained from the long-term follow-up of subjects randomly 
selected from the DiPiS study made it possible to study the burden of autoantibodies 
over time during follow-up and at cross-sectional sampling (papers I, II, and IV). 
The number of autoantibodies defined autoimmunity burden during DiPiS follow-
up or at cross-sectional sampling. For this thesis, we aimed to quantify that burden, 
i.e., the burden of autoantibodies over time, and estimating the area under the 
trajectory of the autoantibodies over time was a natural choice. The length of the 
prodrome period, the time from the appearance of multiple autoantibodies until the 
diagnosis of diabetes, is inversely proportional to the number of autoantibodies: the 
more autoantibodies, the faster the rate of progression to clinical onset56,104,152.  

To our knowledge, autoimmunity burden has not been considered in studies of 
children who have been beta cell autoantibody-positive from an early age. The 
subjects had been positive for autoantibodies between 3 and 13 years. Progression 
to clinical onset may be faster in children with seroconversion early in life56. 
Infections constantly train the immune system in young children for adaptive 
immune response; thus, exhaustion of immune cells could potentially speed up the 
progression to diabetes. Immune exhaustion refers to immune dysfunction, and poor 
effector function of immune cells, due to autoimmune burden (reviewed in 153,154). 
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Relative levels of T-cell exhaustion are associated with clinical outcomes in chronic 
viral infection151. 

Interestingly, as of June 2022, there are seven subjects from the subset DiPiS cohort 
(papers I, II, and IV) who have subsequently developed type 1 diabetes (6.0, 8.9, 
9.8, 11.3, 26.0, 49.0, and 50.6 months after sampling). Therefore, the subjects 
represent children at various stages of type 1 diabetes pathogenesis. 

Genetic, primarily non-HLA genetic factors, in addition to the beta cell 
autoantibody markers and environmental factors155,156, also seem to increase the 
disease’s progression rate. Thus, the number of autoantibodies is a strong predictive 
marker of pathogenesis. However, it is still unclear when mononuclear cells begin 
to invade the pancreatic islet in beta cell autoantibody-positive subjects. It has been 
reported that pancreas organ donors with beta cells autoantibodies are negative for 
insulitis, which was only found in donors with multiple autoantibodies22,157. 

Identifying HLA-DQ cell surface expression in at-risk subjects 

There is a lack of understanding of the triggering and progression of the autoimmune 
destruction of the beta cells in type 1 diabetes. An association between HLA and the 
risk of a first autoantibody have been suggested to be primary to an association 
between HLA and type 1 diabetes21,50,64,158. Recent data support an association 
between HLA-DR-DQ and the first appearing autoantibody21,50,64, and that the first-
appearing autoantibody may be associated with the age at clinical onset of type 1 
diabetes. HLA-DQ cell surface expression on CD4+ and CD8+ T lymphocytes has 
previously been documented in healthy individuals159 and in relation to autoimmune 
conditions (for example, type 1 diabetes, coeliac disease and vitiligo) and infectious 
episodes160,161. 

Variation in HLA-DQ cell surface expression was investigated on six peripheral 
blood cell types in children with an increased genetic risk for type 1 diabetes and at 
different stages of autoimmunity. 

The calculated autoimmunity burden and measured HLA-DQ cell surface MFI 
indicated a trend of lower HLA-DQ cell surface expression in children at an 
increased risk for type 1 diabetes and increasing autoimmunity burden (Paper I). 
While we have defined autoimmunity burden as exposure to autoantibodies, it can 
only be speculated to what extent reduced HLA-DQ cell surface expression on T 
lymphocytes and monocytes reflects the type of T cell exhaustion reported in other 
autoimmune diseases. HLA-DQ is constitutively expressed on monocytes, and 
activated T lymphocytes express Class II HLA heterodimers162. Further studies are 
therefore warranted to determine whether children with multiple autoantibodies 
exhibit T cell exhaustion as defined by poor effector function, sustained expression 
of inhibitory receptors or a transcriptional pattern different from that of functional 
effector or memory T lymphocytes (reviewed in 153,154). 
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Characterizing lipid profiles in at-risk subjects 

The development and function of immune cells depend on different aspects of lipid 
metabolism, affecting features such as the expression of enzymes and the transport 
of proteins. Lipid metabolism is important for the differentiation and function of T 
lymphocytes, as well as maintaining immune tolerance163. As patients with type 1 
diabetes also present with lipid disorders, lipidomic profiles have the potential to be 
used in assessing beta-cell function in type 1 diabetes as well as the effects of 
dysregulated lipid metabolism on the progression of beta-cell destruction. 

Predicting disease progression and status has been the focus of establishing 
lipidomic profiles164,165. Lipidomic profiling provides a snapshot of information 
about lipids in a sample. Both genetic and environmental factors influence 
susceptibility to develop chronic diseases, such as type 1 diabetes, and reflect 
changes in lipidomic phenotypes as they are sensitive to subtle modifications and 
nutrition166. Distinct lipidomic signatures have been suggested to characterize 
children who progress to islet autoimmunity or overt type 1 diabetes, which may be 
helpful in the identification of at-risk children before the initiating autoimmunity. 
Early immune developmental processes in type 1 diabetes progressors have in 
previous studies been suggested to be disturbed by distinct cord blood phospholipids 
and TGs. A characteristic lipidomic profile of lower phospholipid levels has been 
found to be present already at birth in type 1 diabetes progressors73,74. 

Paper II investigated the variation in blood lipids in adolescent subjects, 10–15 years 
of age, with increased genetic risk for type 1 diabetes and different stages of 
autoimmunity. We investigated variation in the lipidome in relation to 
autoimmunity (positive or negative for autoantibodies) and not the number of 
autoantibodies, due to the cohort size and the size of our groups. Our results indicate 
that variation in phospholipids is related to autoimmunity but not necessarily 
progression to type 1 diabetes, since we did not see any differences in five subjects 
that developed type 1 diabetes after the follow-up. However, this may be the result 
of lack of power as this analysis included very few subjects.  

Sphingolipids are important cellular components of membranes and regulators of 
immune cell activity and several cellular processes, including apoptosis, autophagy, 
cell cycle arrest, and cellular senescence167-169. Cer is a type of sphingolipid and is 
an important intermediate in the biosynthesis and metabolism of all sphingolipids, 
such as SM. Cer’s have a detrimental effect on pancreatic β cells, where they 
activate the stress-induced apoptotic pathway. Cer also modulates many of the 
insulin signalling intermediates and causes insulin resistance. Cer quenches the 
expression of the insulin gene resulting in reduced insulin synthesis170. Cer’s are up-
regulated following seroconversion to positivity for islet autoantibodies171. TGs are 
a type of fatty acid and an important source of cellular energy but are also precursors 
to producing complex lipids, such as cholesterol and membrane phospholipids172. 
Reduced plasma TG levels result from lipoprotein lipase promoting the catabolism 
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of TG-rich lipoproteins. Lipoprotein lipase is an enzyme activated by insulin173. TGs 
accumulate in intracellular droplets in macrophages as a response to inflammatory 
activation by pathogens. TG levels are often elevated during ketoacidosis, a state of 
insulin deficiency174. The formation of TGs is important for limiting the activation 
of protein kinase C163, a family of kinases that regulate numerous cellular 
functions175. The mechanisms underlying TG accumulation and its exact role in the 
inflammatory response of macrophages are not fully understood176. 

In previous studies, it has been suggested that SMs and TGs are potent regulators of 
immunogenic processes and play a potent role in inflammatory disease177,178. Other 
studies indicate that the presence of autoantigens in the development of type 1 
diabetes is preceded by modulation of multiple serum phospholipids72,179. Another 
study showed that several lipid classes were associated with a decrease in beta-cell 
function after diagnosis of type 1 diabetes in children and the observations support 
the hypothesis of lipid disturbances as explanatory factors for residual beta-cell 
function in children with new onset type 1 diabetes180. In the Finnish Type 1 
Diabetes Prevention and Prediction Study (DIPP), SMs were persistently 
downregulated in children who progressed to type 1 diabetes compared to children 
with at least one autoantibody but did not progress to type 1 diabetes and control 
groups. TGs and PCs were mainly downregulated in children who progressed to 
type 1 diabetes compared to children with at least one autoantibody but did not 
progress to type 1 diabetes at the age of 3 months. In Paper II, we did not find any 
differences in lipid levels when comparing the five subjects who developed type 1 
diabetes after sampling to those who did not. However, it would be necessary to 
investigate further as this analysis was performed with very few subjects. 

Dysregulation of lipid metabolism has been suggested to precede islet autoimmunity 
and type 1 diabetes. Up-regulation of Cer’s and down-regulation of SM and LPC 
have been associated with autoantibody appearance. Disruption of SM metabolism 
has been suggested to precede the appearance of islet autoantibodies from an early 
age in children progressing to type 1 diabetes171.  

Distinct lipidomic profiles associated with progression to type 1 diabetes have been 
most pronounced in very young children73,181. Children who develop type 1 diabetes 
later in life have distinctly different lipidomic signatures in infancy than those who 
do seroconvert to a single islet autoantibody but do not develop the disease181. 
Dietary patterns may mask type 1 diabetes-associated signatures, and using 
metabolites to predict type 1 diabetes may be most feasible early in life, before the 
appearance of islet autoantibodies.  

Since the current stratifications in studies aimed at type 1 diabetes prevention are 
based on the detection of islet autoantibodies, lipidomic profiles may thus provide 
a valuable complementary tool for identifying children at the highest risk of 
progression to type 1 diabetes. In the future, we need to consider two possibilities: 
that increase or decrease in levels of specific lipids are associated with 1) risk of 
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developing and maintaining autoantibodies or 2) an ongoing pathogenic process 
causing different lipidomic profiles in individuals without and with autoantibodies. 
A better understanding of lipid metabolism and lipid profiles associated with type 1 
diabetes will increase our understanding of the contribution of specific lipids, such 
as TGs and Cer’s, to the pathogenesis of diabetes and further help identify potential 
therapeutic targets for the management of type 1 diabetes and its complications.  

The HLA-DRA1 tri-SNP 

Over 60 risk regions marked by SNPs confer a genetic predisposition to type 1 
diabetes have been identified in the human genome through GWAS182. Using gene 
expression as the phenotype in typical eQTL is equivalent to GWAS. A study of 
gene expression signatures early in life identified 67 differently expressed genes in 
children that developed autoantibodies relative to children who remained 
autoantibody negative. The genes contribute to cell-related immune responses 
through B and T lymphocytes and dendritic cells183. To better understand the impact 
of variants on target genes, it would be useful to determine if it is causal52. Analysis 
of peripheral blood by eQTL has suggested possible causal effects of variants 
associated with type 1 diabetes. Investigating specific immune cell types (such as T 
lymphocytes and monocytes) could improve understanding of variants’ influence 
on target genes182. A gene of interest and a variant associated with disease may be 
in nearby. However, the variant may regulate the expression of another gene far 
away182,184. In one study, spatially regulated genes that exhibit tissue-specific effects 
in multiple tissues have been implicated in tissue and cell type-specific regulatory 
networks contributing to pancreatic beta cell inflammation and destruction, adaptive 
immune signalling, and immune-cell proliferation and activation185. 

In Paper III, we identified a three-SNP haplotype that appears to modify the risk of 
type 1 diabetes in individuals homozygous for the HLA-DR3 haplotype. This 
intronic SNP haplotype may function as an eQTL, affecting the expression of Class 
II HLA genes and perhaps other genes. The attempt to analyse genetic susceptibility 
to type 1 diabetes was performed by studying a population of case and control 
subjects homozygous for HLA-DR3. This result is consistent with discoveries 
reported in patients with multiple sclerosis literature186, suggesting that HLA-
specific susceptibility loci may be important. Our data support a possible 
explanation that most persons with homozygous HLA-DR3 (more than 90% even 
with the highest risk, the HLA-DR3/4 haplotype47) do not develop diabetes. 
Notably, 75% of the Swedish samples in this study are homozygous for the 
relatively low-risk haplotype. 

The tri-SNP was an unexpected finding and made it possible to investigate if it is 
somehow associated with different HLA haplotypes, autoantibodies, and HLA-DQ 
cell surface expression on isolated peripheral white blood cells (Paper IV). In Paper 
III, the study cohort was limited to subjects with homozygous “HLA-DR3” 
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haplotypes, while the subjects in Paper IV had many different HLA haplotypes. The 
risk and protective tri-SNPs identified in Paper III correspond to the AGG and GCA 
haplotypes identified in Paper IV, respectively. In Paper IV, we confirmed that the 
tri-SNP occurs outside of the cohort in Paper III, but whether it is diabetes predictive 
for other high-risk haplotypes, such as “DR4”, is unknown. The tri-SNP may add 
new knowledge in relation to different HLA haplotypes and the risk of developing 
autoantibodies. Future studies need to investigate if the tri-SNP affect the risk of 
developing a first autoantibody and subsequently type 1 diabetes.  
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Strengths and limitations 

Paper I, II, and IV utilize a well-characterized prospective cohort of subjects 
identified by early screening as being of high risk for developing type 1 diabetes. 
Developing reliable genetic risk markers for type 1 diabetes could improve disease 
prediction and trial design for preventive therapies. We believe this is very 
important to investigate and are incredibly thankful for the subjects and their 
families participating in longitudinal follow-up. 

The cohort used in papers I, II, and IV is small and only provides limited power. 
However, as this is a unique cohort of subjects with an incredible follow-up and 
monitoring of autoantibodies and well-being, we believe that the investigation and 
comparisons are important for the research community and to shed light on the 
combination of HLA cell surface expression and HLA haplotypes and genotypes 
combined with autoantibodies. In addition, it was possible to obtain comprehensive 
data on HLA by NGS, autoantibodies, CBC, and HLA-DQ cell surface MFI at the 
time of sampling. It is noted that HLA-DQ2/8 children in this cohort are mostly 
autoantibody negative. This is not surprising as 3.5% of new-borns have this 
genotype, and only a fraction of such children will develop one or several 
autoantibodies, let alone autoimmune type 1 diabetes. It is also possible that some 
children in DiPiS with HLA-DQ2/8 have already been diagnosed with type 1 
diabetes and, therefore, not asked to participate in the present investigation. In Paper 
III, the cases and controls are largely derived from different cohorts – which appear 
to be sourced from various geographic areas. It should be noted that the Swedish 
cases and controls are derived from different cohorts, and there exists the possibility 
that the effect could be due in part to population stratification. 

The HLA-DQ cell surface MFI used in Papers I and IV was obtained in two steps: 
manually isolating peripheral blood cells and white blood cells and applying classic 
flow cytometry to identify HLA-DQ cell surface MFI. Limitations of this method 
include large blood samples, a variety of materials and reagents that increase cost, 
and a time-consuming protocol. The many steps in the protocol increase risk of 
contamination. A possible substitute for this method is fluorescence-activated cell 
sorting (FACS), which automatically sorts a cell sample stained with monoclonal 
antibodies and simultaneously records the fluorescence emitted by all monoclonal 
antibodies attached to each cell. Applying FACS technology would decrease the 
required blood volume, cost of material and reagents, lead time, and risk of 
contamination as there would not be steps in the protocol. 
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A weakness of our study is the lack of cellular analyses during follow-up, which 
was impossible to accomplish for reasons of resources, place of residence, and 
logistics. Another potential weakness is using a pan-HLA-DQ monoclonal 
antibody; it would have been interesting to use allele-specific HLA-DQ antibodies. 
Unfortunately, such antibodies were not available. However, the pan-HLA-DQ 
antibody used allowed us to test the hypothesis that HLA-DQ expression was related 
to sAB and cAB. The follow-up in DiPiS was not critical for the lipidomics analysis 
in Paper II but enabled detailed interrogation of the development of autoantibodies 
before cross-sectional sampling in relation to HLA haplotypes. 

A weakness of the study would be the limited number of participants, making it 
difficult to generalize since many different HLA haplotypes are represented, and 
cellular analyses were unavailable during follow-up. Another limitation is that the 
subjects were not fasting before the blood draw. The blood samples from the 
participants were drawn in the morning (and in the afternoon for a few), and the 
participants were not instructed to fast before and, therefore, must be expected to 
have had breakfast (and in some cases, lunch). Drawing blood from young 
individuals is more complicated when fasting and has to be done in the morning. 
The participants donated blood to the present study during their annual DiPiS visit, 
and on top of that, some participants had to travel a long way to take the blood 
sample. Ideally, we would have preferred to have used blood samples from fasting 
individuals; however, originally, this study cohort was obtained for other purposes 
and fasting before the blood draw is also not a part of the preparations before a DiPiS 
visit. Based on previously published data showing a small direct effect on test meal 
fatty acid composition and postprandial lipid composition of the blood187 and a long-
term twin study showing high heritability of particularly phospholipids, irrespective 
of a 5-week dietary intervention188, we decided to conduct our study regardless. 

In Paper III, the preliminary database finding and transformed cell line mRNA data 
are premature at this time and should be validated in primary cells from genotype-
selected individuals. The analysis is limited and needs additional in vivo studies to 
directly address the putative enhancer’s functionality. The eQTL analysis is limited 
due to the limited amount of data available. The analysis is limited, and there is a 
need for additional in vivo studies to address the functionality of the putative 
enhancer directly. 



83 

Future perspectives 

It would be interesting for future studies to analyse autoantibodies between groups 
of research subjects without and with one or multiple autoantibodies. Flow 
cytometry could then be used to study PBMC in subjects with autoantibodies 
progressing from Stage 2 to Stage 3 of the current nomenclature. Planned future 
studies include determining whether the tri-SNP risk haplotype is present in another 
type 1 diabetes risk haplotype. We expect that there will be a difference in risk or 
protection by the tri-SNP depending on the linkage disequilibrium to either DR3-
DQ2 or DR4-DQ8. We hypothesize that combining HLA, tri-SNP genotyping, and 
autoantibodies may improve the risk assessment of type 1 diabetes. Additionally, 
with variations in lipid levels, lipidomic profiling could potentially be a novel way 
to improve prediction and monitor disease progression. The lipidomic profiling in 
Paper II provides insight into the lipid composition in subjects who had developed 
islet autoimmunity and are at an increased risk of type 1 diabetes. Future 
investigations of the observed tendencies that lipidomic profiles may be associated 
with HLA will be necessary. However, it needs to be clarified to what extent lipids 
are rather associated with PBMC profiles than with autoantibodies.  

We speculate that this type of analysis would increase the knowledge of lipids levels 
and if they tend to vary with an increasing number of autoantibodies. Future studies 
will have to confirm the value of combining the markers presented in this thesis and 
if the findings can be used as early markers for type 1 diabetes.  
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Conclusions 

Previous studies have shown that children in close follow-up, at an increased risk of 
type 1 diabetes, are diagnosed earlier in the disease process and have better 
metabolic control, even after diagnosis, compared to children not in follow-up 
before diabetes diagnosis189,190. Suppose we can identify markers that predict type 1 
diabetes with increased precision other than autoantibodies. In that case, they could 
be used to predict type 1 diabetes in groups that are followed with increased risk, 
e.g., first-degree relatives to type 1 diabetes patients and individuals with increased 
genetic risk, perhaps based on a genetic risk score in population screening. This 
could increase the knowledge behind triggers and help to discover new methods to 
prevent (primary prevention) or impede (secondary prevention) the autoimmune 
process. Identifying such triggers and, thus, preventing diabetes is the ultimate goal 
of diabetes research.  
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Summary in Swedish 

Typ 1 diabetes är en autoimmun sjukdom som karaktäriseras av att kroppens 
förmåga att reglera nivån av socker (glukos) i blodet kraftigt försämrats eller helt 
slagits ut. Orsaken är en autoimmun reaktion där kroppens egna celler angriper delar 
av bukspottskörteln som om de vore bakterier eller virus. Insulin är ett hormon som 
produceras i bukspottskörteln och hjälper kroppen att ta upp glukos i olika vävnader. 
Kraftigt försämrad eller förlorad förmåga att producera insulin resulterar i ökande 
blodsockernivå. Då symptom på typ 1 diabetes uppträder, så som ökad törst, stora 
urinmängder, viktnedgång och trötthet, beräknas endast 10–20% av de 
insulinproducerande beta cellerna i bukspottskörteln fortfarande fungera. Det är då 
livsnödvändigt att tillföra det insulin kroppen själv inte kan producera. Perioden 
innan symptom framträder kan variera från månader till år. Yngre barn har ofta en 
kortare asymtomatisk period, månader, innan klinisk debut medan det kan ta år 
innan kliniska symptom framträder hos äldre personer.  

Typ 1 diabetes är starkt relaterat till vissa gener i HLA-regionen på kromosom 6. 
HLA-gener används för att producera så kallade klass II humana leukocyt antigen 
(HLA). Klass II HLA är proteiner som presenteras på cellytan av immunceller. 
Proteinerna används av kroppens immunsystem för att signalera mellan celler och 
vävnader samt att upptäcka främmande antigen, bakterier och virus, för att kunna 
bekämpa dem. HLA-DR och HLA-DQ är två typer av gener som tillsammans bildar 
en haplotyp, där varianterna HLA-DR3 och HLA-DQ2 samt HLA-DR4 och HLA-
DQ8 ofta ärvs tillsammans och bidrar med hög risk för sjukdomen. Varje människa 
har två haplotyper som tillsammans bildar en genotyp. Ungefär 90% av alla barn 
som utvecklar typ 1 diabetes har åtminstone en av typerna HLA-DR3-DQ2 eller 
HLA-DR4-DQ8, jämfört med den generella populationen. Ärvs båda haplotyperna 
bidrar dessa med den högsta risken att utveckla typ 1 diabetes. Barn med högst risk 
representerar 30% av alla barn som utvecklar typ 1 diabetes, jämfört med endast 3% 
i den generella populationen. 

Autoantikroppar är markörer som kan mätas i blodet månader till år innan diagnos 
av typ 1 diabetes. Hittills har man kunnat identifiera sex olika autoantikroppar som 
är kopplade till typ 1 diabetes. Dessa autoantikroppar är riktade mot 
betacellsproteinerna GAD65, insulin, IA-2 och tre varianter av Zink Transporter 8. 
Förekomsten av autoantikroppar är tecken på en pågående autoimmun process och 
ökar risken för typ 1 diabetes.  
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Ett blodprov kan avgöra om en person har ärftlig risk för att utveckla typ 1 diabetes. 
Vissa gener brukar beskrivas som skyddande mot sjukdomen och individer med 
denna genuppsättning utvecklar sällan eller aldrig sjukdomen. Drygt hälften av alla 
barn som föds har denna typ av genuppsättning. Neutrala gener, som inte är 
skyddande men inte heller ger högre risk att insjukna än för hela befolkningen i 
övrigt, finns hos 25 procent av befolkningen. De resterande barnen, ungefär 20 
procent av befolkningen, har däremot en förhöjd ärftlig risk att utveckla typ 1 
diabetes. Drygt 90 procent av alla barn som insjuknar har dessa gener och har 
därmed ökad risk att insjukna. Slutsatsen blir att enbart ärftlig risk trots allt inte är 
tillräckligt för att utveckla typ 1 diabetes eftersom endast sju av hundra barn med 
ärftlig risk insjuknar. Därför måste det vara något annat som bidrar och triggar igång 
den autoimmuna processen. 

Denna avhandling är uppdelad i fyra projekt som undersöker olika faktorer som 
skulle kunna bidra med kunskap om den autoimmuna processen som leder till typ 1 
diabetes. Det övergripande syftet med avhandlingen är att testa hypotesen att det 
finns en association mellan HLA, förmågan att presentera proteiner på cellytan av 
vita blodceller och autoimmunitet. Tre projekt (delarbete I, II och IV) data från 67 
friska barn, med risk för typ 1 diabetes och varierande antal autoantikroppar, som 
deltog i uppföljningsstudien DiabetesPrediktion i Skåne (DiPiS). Med 
flödescytometri kunde vi mäta typer och mängd av olika proteiner på cellytan av 
sex isolerade vita blodceller. Genom att analysera DNA kunde vi även ta reda på 
HLA-genotypen för varje individ. Typ och antal autoantikroppar kunde mätas i 
plasma från blodprov. Genom att individerna deltagit i DiPiS under väldigt lång tid 
så kunde vi beräkna ett snitt av hur lång tid varje individ hade varit utan eller haft 
en eller flera autoantikroppar, dvs bördan av autoantikroppar. 

I delarbete I undersökte vi om utvecklingen av autoantikroppar och risk för typ 1 
diabetes är associerat med olika uttryck av HLA-DQ proteiner på cellytan av vita 
blodceller. Vi observerade att mängden HLA-DQ proteiner på cellytan hade en 
nedåtgående trend med ökande börda av autoantikroppar. I delarbete II studerade vi 
sammansättningen av lipider vid olika stadium av autoimmunitet. Vi identifierade 
fyra grupper av lipider relaterade till olika HLA-typer. Typ och nivå av vissa lipider 
varierade med antal autoantikroppar. I delarbete III använde data från olika 
nationella och internationella studier och stora databaser. Vi identifierade en ny 
haplotyp (tri-SNP), som utgörs av tre enbaspolymorfier (substitution av en nukleotid 
på en specifik position i DNA), i en icke-kodande del av HLA-DRA1 genen, en gen 
som bidrar med risk för typ 1 diabetes. I delarbete IV undersöktes denna tri-SNP i 
relation till HLA, autoantikroppar och HLA-DQ uttryckt på cellytan av isolerade 
vita blodceller. Vi fann fyra olika tri-SNP:ar som associerades med olika HLA 
haplotyper, autoantikroppar och olika uttryck av HLA-DQ på cellytan av isolerade 
vita blodceller. 

I framtida studier skulle det vara intressant att analysera autoantikroppar mellan 
grupper utan och med en eller flera autoantikroppar. Flödescytometri skulle sedan 
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kunna användas för att studera vita blodceller hos individer med en eller flera 
autoantikroppar och som går från att inte ha några symptom till att utveckla 
symptom på typ 1 diabetes. Dessutom, om HLA, autoantikroppar kan kombineras 
med variationer i lipider så skulle lipidprofiler potentiellt kunna bidra till prediktion 
och övervaka utvecklingen av typ 1 diabetes. Framtida studier måste studera värdet 
i att kombinera markörerna presenterade i denna avhandling.  
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pathogenesis prior to clinical diagnosis
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to investigate immunological markers and survey the type 1 diabetes 
pathogenesis. Factors that may contribute to the immunologic process 
preceding type 1 diabetes were investigated in four projects.
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