
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

RoSym: Robust Symmetric Key Based IoT Software Upgrade Over-the-Air

Nikbakht Bideh, Pegah; Gehrmann, Christian

Published in:
Proceedings of the 4th Workshop on CPS and IoT Security and Privacy

DOI:
10.1145/3560826.3563381

2022

Link to publication

Citation for published version (APA):
Nikbakht Bideh, P., & Gehrmann, C. (2022). RoSym: Robust Symmetric Key Based IoT Software Upgrade Over-
the-Air. In Proceedings of the 4th Workshop on CPS and IoT Security and Privacy: CPSIoTSec 2022 (pp. 35-
46). Association for Computing Machinery (ACM). https://doi.org/10.1145/3560826.3563381

Total number of authors:
2

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1145/3560826.3563381
https://portal.research.lu.se/en/publications/a29d7402-e6b3-4978-8beb-8aefd0374d24
https://doi.org/10.1145/3560826.3563381

RoSym: Robust Symmetric Key Based IoT Software Upgrade
Over-the-Air
Pegah Nikbakht Bideh
Christian Gehrmann

pegah.nikbakht_bideh@eit.lth.se
christian.gehrmann@eit.lth.se

Dept. of Electrical and Information Technology
Lund, Sweden

ABSTRACT
Internet of Things (IoT) firmware upgrade has turned out to be
a challenging task with respect to security. While Over-The-Air
(OTA) software upgrade possibility is an essential feature to achieve
security, it is also most sensitive to attacks and lots of different
firmware upgrade attacks have been presented in the literature.
Several security solutions exist to tackle these problems.We observe
though that most prior art solutions are public key-based, they are
not flexible with respect to firmware image distribution principles
and it is challenging to make a design with good Denial-Of-Service
(DoS) attacks resistance. Apart from often being rather resource
demanding, a limitation with current public key-based solutions
is that they are not quantum computer resistant. Hence, in this
paper, we take a new look into the firmware upgrade problem and
propose RoSym, a secure, firmware distribution principle agnostic,
and DoS protected upgrade mechanism purely based on symmetric
cryptography. We present an experimental evaluation on a real
testbed environment for the scheme. The results show that the
scheme is efficient in comparison to other state of the art solutions.
We also make a formal security verification of RoSym showing that
it is robust against different attacks.

CCS CONCEPTS
• Security and privacy→ Security protocols.

KEYWORDS
Internet of Things, Over-The-Air, Secure code dissemination, Pro-
tected software upgrade

ACM Reference Format:
Pegah Nikbakht Bideh and Christian Gehrmann. 2022. RoSym: Robust Sym-
metric Key Based IoT Software Upgrade Over-the-Air. In Proceedings of ACM
Joint Workshop on CPS&IoT Security and Privacy (CPSIoTSec) (CPSIOTSEC
2022). ACM, New York, NY, USA, Article 4, 12 pages. https://doi.org/xx.xxx/
xxx_x

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CPSIOTSEC 2022, November 7 –November 11, 2022, Los Angeles, U.S.A.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-8487-2. . . $15.00
https://doi.org/xx.xxx/xxx_x

1 INTRODUCTION
The Internet of Things (IoT) is a common term for describing sys-
tems of interconnected devices. The devices can be ofmany different
types and are used in divergent local networks and with a wide
range of capabilities. Some units are very powerful while others
are extremely tiny and resource constraint with respect to com-
puting capabilities, volatile and non-volatile memory sizes, etc. IoT
devices are not directly human operated, they are often managed
remotely [13]. This means that software updates and other critical
maintenance operations need to be performed over the network
and when the device is wireless, often referred to as Over-The-
Air (OTA) updates. Several severe attacks against IoT Firmware
upgrades have been reported in recent years. The attacks are of
different types either attacking the firmware during transfer [37]
or through Denial of Service (DoS) of the actual update process
[12]. Hence, there are very good reasons to offer highly secure
and robust software upgrades for IoT systems. As we discuss in
Section 2, lots of efforts have historically been put into code dis-
semination solutions for Wireless Sensor Networks (WSNs) [7].
Even if wireless IoT networks share many WSN characteristics,
they also have some specific characteristics and needs. Especially,
IoT firmware upgrade does not always happen through direct multi-
cast, but through many other distribution mechanisms [2]. This put
special requirements on how the upgrade packages are verified and
protected. In particular, the firmware upgrade scheme must in such
a situation be able to handle both out of order delivery and interme-
diate storage of upgrade packages. Another problem is that most
existing firmware upgrade solutions are public key-based using non
post-quantum resistant algorithms. Even if it would be possible
to transfer existing public key schemes into ones using quantum
cryptographic algorithms, those currently available do not promise
efficient enough signature algorithms in terms of performance and
size compare to currently non post-quantum resistant algorithms
[5]. This is a problem when we consider resource constraint IoT
units. On the other hand, to resist Grover’s algorithm [16] against
symmetric key primitives, only a double of the key size is needed.
Consequently, there is a need for investigating new, completely
symmetric key-based upgrade solutions.

Our new scheme, RoSym, is a new solution addressing exactly
these concerns. We have looked into the IoT firmware upgrade
problemwith a focus on the requirement of being transport agnostic
while also being able to handle the most recent DoS threats against
the upgrade procedure. We have worked with a design offering
post-quantum resistance by limiting the solution to only being
dependent on pure symmetric key operations. RoSym is an upgrade

https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x
https://doi.org/xx.xxx/xxx_x

CPSIOTSEC 2022, November 7 –November 11, 2022, Los Angeles, U.S.A. Pegah Nikbakht Bideh and Christian Gehrmann

scheme that has very low complexity. The design approach has been
very pragmatic, taking state-of-the-art symmetric cryptography
and well-proven techniques and bringing them together to make an
overall firmware upgrade solution that can easily be implemented,
both on the IoT and the software management side of the system.
The main contributions of the paper are the following:

• We consider the secure IoT software upgrade problem and
identify the main security, robustness, and performance re-
quirements for software distribution transport agnostic, pure
symmetric key protected upgrade.

• We propose a new transport agnostic and secure software
upgrade scheme with good DoS robustness fulfilling the
identified requirements.

• We implement the proposed solution and present perfor-
mance figures.

• We make a formal security verification of the proposed pro-
tected upgrade scheme.

The rest of this paper is organized as follows, in Section 2, prior
art firmware upgrade techniques for WSNs and IoT networks are
reviewed. Section 3 gives problem background and derives main
design requirements. In Section 4 and Section 5, the design of our
new scheme is given. We describe our implementation in Section
6. The evaluation results are represented in Section 7. The formal
security verification of our scheme is given in Section 8 and finally,
the paper is concluded in Section 9.

2 RELATEDWORK
Next, we present the most relevant related work. We start by dis-
cussing different code dissemination protection principles previ-
ously suggested in the literature. We then treat the DoS aspect
of firmware upgrade in the related art. A comparison of prior-art
solutions with respect to these aspects is given at the end of the
section.

2.1 Secure code dissemination approaches
The problem of software update or code dissemination has been
studied in the area of WSN and IoT for a long time. One of the first
papers discussing the code dissemination problem for WSN was
the pioneering paper on the scheme Deluge [19]. Deluge did only
treat the distribution principle as such, suggesting that a firmware
image is divided into fixed size pages and then pages are divided
into fixed size packets, which are then distributed to the networked
devices. However, the security aspect was never treated in the
original Deluge scheme.

Later, many secure versions of Deluge were proposed. For ex-
ample, in secure Deluge [11], after the division of code image to
packets, a hash is computed over the last packet and is appended
to the end of the previous packet and similar hashes are embedded
recursively to all packets. Then, the base station signs the first hash
and the receiver verifies the signature and stores the hash to au-
thenticate the next packet. Sluice [27] is similar to secure Deluge
but in Sluice page level hashes are used instead of packet level
hashes. Other Deluge protection solutions were at about the same
time proposed. The authors in [8], investigate different trade-offs
between a special hash tree structure with signed roots and a hash
chain. A rather similar approach is taken by the solution in [20],

called Seluge. Seluge builds a Merkle hash tree with hash values
of packets on the first page, the rest of the packets can then be au-
thenticated by a hash chain. All these previous methods are public
key based. Even if Seluge uses conventional public key encryption
(non post-quantum resistance), it is interesting to compare Seluge
with our approach and we present performance figures in Section 7.
Several other public key based protocols have been proposed such
as SDRP [17], SCATTER [26], SenSeOP [3] and Flexicast [28].

Similar to our solution, also different pure symmetric key based
techniques have been introduced. PETRA [21] is based on symmet-
ric keys, and its security is built upon a combination of Message
Authentication Codes (MACs) and a Bloom-filter technique. One
MAC is used to protect the Bloom-filter and another to verify the
whole software image. The drawback of the Bloom-filter is that it
gives false positive answers which might not be acceptable in some
circumstances. Similar to our approach, PETRA assumes a common
MAC key among all devices.

Castor [23], another symmetric scheme, similar to [8] uses a one-
way hash function to verify the software update packages. This
approach shares the characteristics of our scheme with respect to
the usage of a hash chain with a root value. However, it does not
suggest any individual packet verification making it more vulner-
able to battery drain attempts and it uses a much less practical
distribution principle of the root hash value. Furthermore, packet
confidentiality is not considered in Castor. We compare our solution
to PETRA and Castor as well. 𝜇TESLA [30] is yet another generic
multicast data distribution scheme that uses a one-way key chain
and a delayed key method applicable also to code dissemination.
𝜇TESLA is very efficient since it purely uses symmetric cryptogra-
phy but does not give very strong integrity guarantees and requires
time synchronization between the distributing unit and the IoT
units.

Also, different combinations of asymmetric and symmetric key
approaches exist. For instance, SECNRCC [40] combines a hash tree
and key chain to provide confidentiality and authentication. Similar
to other solutions, in SECNRCC, the hash values in aMerkle tree and
the root hash are signed by the software distributor. In SECNRCC,
the packets with hash values are also encrypted with a session key.
DoS resistance is provided through the usage of a special purpose
symmetric key chain with individual keys distributed to all units.

Later, IoT oriented (instead of WSN) firmware upgrade proce-
dures have been suggested. SEDA [24] is one such multicast-based
update scheme for IoT environments. In SEDA, a secure group key
distribution mechanism is used which requires pre-installation of
public and private keys on all IoT units using classical public key
algorithms. The evaluation in [24] indicates better performance
compare to methods such as Seluge [20]. Hence, we find it relevant
to compare our approach with SEDA as well and the figures are
presented in Section 7. ASSURED [4] is another OTA firmware up-
grade solution for embedded devices taking a life-cycle perspective
on the software upgrade by considering four different system enti-
ties: 1) an original equipment manufacturer (OEM), 2) a firmware
distributor, 3) a domain controller and 4) a connected device. In
the ASSURED approach, the OEM signs the new firmware using
ECC and the devices need to perform ECC signature verification
before installing the firmware. In the adopted model, OEM and do-
main controller keys need to be stored on devices at manufacturing

RoSym: Robust Symmetric Key Based IoT Software Upgrade Over-the-Air CPSIOTSEC 2022, November 7 –November 11, 2022, Los Angeles, U.S.A.

time. This gives some additional complexity to the realization of
the solution.

All the previously discussed approaches are quite complicated
and have a performance impact due to the fact that they integrate
the verification protection under the assumption that the firmware
distribution must be done in a direct fashion (using for instance
multicast). In all these approaches when a hash or chain of hashes
is used for verification of the firmware blocks, the whole process
starts or integrates the secure distribution of these hashes into the
firmware dissemination protocol. In this paper, we take a much
more practical and pragmatic approach by dividing the firmware
upgrade into two phases, in one phase very essential integrity data
(session key material and hash value) are done prior to the phase
of actual distribution or download of the actual image. Such an
approach makes it possible to make the actual firmware loading
process independent of the transport method, i.e., it allows any
suitable distribution mechanism of the software packages. This is
inline with how most modern IoT units are connected to a back-end
management system. This is also a much more feasible principle to
use than for instance a most recent suggestion to use an injection
of integrity checks, directly into the firmware [39] as part of the
software distribution.

2.2 DoS protection aspects
The possibility for an attacker to use the software dissemination
mechanism to issue DoS depends on how the actual firmware pack-
ages are protected during transfer and when processed on the IoT
unit. If the whole image must first be installed before the integrity
can be checked, this constitutes a major security risk. This can take
for instance the form of some type of ”repacking” as reported in
[37] demonstrating a practical attack on commercial fitness track-
ers. Just the fact that large parts of the firmware image must be
processed before the validity can be checked constitutes a DoS risk
such as a battery drain attempt against a battery driven IoT unit.
This is for instance the case for the previously discussed schemes
Secure Deluge and Sluice. This type of simple DoS aspect has been
tackled by many of the later schemes such as Seluge [20] using a
Merkle tree approach or the SECNRCC scheme [40], which com-
bines a key chain with a hash chain to achieve the same thing.
Another approach with the same aim is the scheme presented in
[38], which also uses Deluge as the basic distribution scheme. It
provides confidentiality by leveraging session keys derived from
hashed data packets. In this scheme, a Cipher Puzzle is used as a
weak authenticator for DoS protection. It is here worth noticing
that a Cipher Puzzle can cause sender-side delay which might not
be acceptable in every network.

IoT units are also sensitive to direct physical tampering. This can
be used to attack the scheme by for instance using power analysis
[33]. Countermeasures to handle this are to use IoT unit individual
keys and/or public key protection of the firmware upgrade. In the
paper by Yan-Hon Fan et al., [12], it is noticed that these approaches
are not feasible for many resource constraint devices and they
instead suggest a limit to the number of allowed upgrades per 24
hours to five. This will prevent the power analysis attack described
in [33] but it also opens up for DoS attacks by the attacker managing
to fill up the number of updates to the maximum allowed number.

The authors in [12] suggest an application layer protocol between
the update server and the IoT unit to solve this issue. In this paper,
as discussed above, we use a similar approach by dividing the
update process into two phases, one phase handles the key material
and the second one handles the actual upgrade. Different from the
solution in [12], we suggest a trade-off between individual packet
MAC checks combined with a more traditional hash chain. The
advantage of this is to have better protection against the previously
discussed packet modifications [37], i.e. DoS attacks during the
actual firmware load.

A completely different way of handling the upgrade DoS problem,
which typically occurs over a wireless interface, is to instead focus
on detecting them. Such solutions have been reported in several
papers [22, 36], but that is an orthogonal problem and solution to
the prevention mechanisms and can be used in parallel with our
solution.

2.3 Protected code dissemination comparison
We compare the different state of the art solutions for code dissem-
ination in WSN or IoT networks in Table 1. Table 1 summarizes
the characteristics of the reviewed schemes in Section 2 and our
scheme includes used cryptography, DoS protection, and source
authentication mechanisms. In Table 1, the schemes which use both
symmetric and asymmetric cryptography are marked as mixed.
Table 1 indicates that in most asymmetric schemes, Merkle hash
tree and digital signatures are used to authenticate the messages
while in symmetric schemes, including our scheme different MAC
verification techniques are used instead. Different DoS protection
methods including Puzzle based approaches are used but Puzzle
based approaches have some drawbacks which will be further dis-
cussed in Section 4. The main difference between our scheme with
other symmetric approaches is the independence of the distribution
mechanism (multicast/broadcast, direct download, etc.) and also
the use of time limited MAC verification for DoS protection.

3 PROBLEM DEFINITION AND
REQUIREMENTS

We consider a threat model where an attacker is able to interfere
with any part of the software distribution chain including any
potential intermediate storage of the whole or part of the firmware
image. This means that an attacker has the power to modify and
read upgrade packages or interfere with any communication to and
from the IoT unit. However, we assume the IoTmanagement system,
or what we refer to as the Device Management System (DMS) to be
fully trusted not under the control of an attacker. When it comes
to the IoT units themselves, we adopt a trust model where attacks
on a single or a few IoT units are possible but typically time and
resources consuming as is the case for direct tampering of the unit
or if the attacker use for instance a power analysis to get access
to long or short terms keys [33]. We consider it infeasible for the
attacker to get direct control of a large number of the deployed IoT
units to perform such an attack.

In Section 2, we discussed several previous design efforts for
secure and robust software upgrades of wireless units. Many solu-
tions use a reverse hash chain delivery or Merkle hash tree for the
integrity protection of the software upgrade following the threat

CPSIOTSEC 2022, November 7 –November 11, 2022, Los Angeles, U.S.A. Pegah Nikbakht Bideh and Christian Gehrmann

Table 1: Comparison of existing code dissemination procedures and our scheme

Features Cryptography DoS resistance Source authentication Multicast
Deluge [19] No security

Secure Deluge [11] Asymmetric Digital signatures and packet level hash
Sluice [27] Asymmetric Digital signatures and hash chains

[8] Asymmetric Signed hash tree verification Digital signatures
Seluge [20] Mixed Immediate authentication, Message Specific Puzzle Merkle hash tree and digital signatures
SDRP [17] Asymmetric Merkle hash tree and digital signatures
DiCode [18] Asymmetric Immediate authentication, Message Specific Puzzle Merkle hash tree and digital signatures

SCATTER [26] Asymmetric Signature verification Merkle hash tree and r-time signatures
SenSeOP [3] Asymmetric Signature verification and time lock Hash value and digital signatures Yes
SECNRCC[40] Mixed Weak authentication (delay) Digital signatures
Felxicast [28] Asymmetric Fingerprint with bloom filter

[38] Mixed Encryption-Then-MAC approach, Cipher Puzzle Digital signatures
PETRA [21] Symmetric MAC with bloom-filter
Castor[23] Symmetric MAC with hash chain
𝜇TESLA [30] Symmetric MAC with time synchronization
SEDA [24] Mixed HMAC verification HMAC and Digital signatures (Advertisement packets) Yes

ASSURED [4] Asymmetric Digital signatures
RoSym Symmetric Time limited MAC verification MAC with hash chain Yes

model above completely or in part. However, as we concluded in
the review, the existing solutions typically have one or several of
the following drawbacks in a resource constraint IoT setting:

• Depends on non post-quantum resistant public key operation
or operations on the IoT side,

• Cannot handle out of order packet delivery,
• Do not offer individual checks of packets making the scheme
vulnerable to battery drain attacks,

• Require complex Puzzle solving or time synchronization on
the IoT side,

• Require direct multicast or broadcast delivery not supporting
intermediate storage of upgrade data.

We conclude that a secure and robust software upgrade scheme of
resource constraint units using pure symmetric key should fulfill
the following requirements:

R1. Integrity and confidentiality protection: The integrity
and confidentiality of individual software packets, as well as
the complete software distribution, must be guaranteed.

R2. DoS robustness: It must not be possible for an attacker to
use false software packet distribution to force the IoT unit
to consume significant computing, power, and/or memory
resources on a single or several IoT units.

R3. Efficient communication and computational cost: The
software upgrade process shall require as little bandwidth
and resources as possible.

R4. Efficient memory requirements: The software upgrade
process shall use as little IoT volatile and non-volatile mem-
ory resources as possible.

R5. Transport agnostic upgrade: The upgrade scheme shall
support direct download from local or remote update servers
as well as direct or local multicast delivery and out of or-
der delivery of upgrade packages. The scheme shall allow
intermediate storage of the upgrade images.

In this paper, we seek a protected, robust, and secure code dis-
semination scheme that fulfills all these requirements.

3.1 Notations
For the rest of the paper we use the following notations:

• Denote the set of IoT units subject to upgrade by
𝑈 = {𝑢0, 𝑢1, . . . , 𝑢𝑤−1}.

• In our scheme, IoT units are controlled by a back-end system,
or, what we refer to as the DMS.

• We denote the complete new software upgrade information
by I = 𝐼0, 𝐼1, 𝐼2,..., 𝐼𝑛−1, i.e. the upgrade information is split
into n distinct pieces.

• The software image is distributed using a sequence of soft-
ware packages denoted by P = 𝑃0, 𝑃1, 𝑃2,..., 𝑃𝑛−1. These up-
grade packages not only hold software image parts, I, but
also additional information.

• ∀𝑢 ∈ U, a shared long-term secret between u and DMS is
denoted by 𝐾𝑢 .

• An integrity protection key used by the DMS to protect the
integrity of software upgrade packages is denoted by 𝐼𝐾𝑠𝑤 .

• A confidentiality protection key used by the DMS to encrypt
the software packages prior to distribution is denoted by
𝐾𝑠𝑤 .

• 𝑇1 is a first time parameter set by the DMS that indicates the
validity period of each upgrade packet.

• 𝑇2 is a second time parameter defining the validity of 𝐼𝐾𝑠𝑤
and 𝐾𝑠𝑤 .

• ℎ𝑖 is a one-way secure hash and denotes hash of 𝑃𝑖 .
• 𝐶𝑖 = 𝐸𝐾𝑠𝑤

(𝐼𝑖) is an encrypted software update block.
• We assume each software package is integrity protected
using a MAC denoted by𝑀𝐴𝐶𝑖 = 𝑀𝐴𝐶𝐼𝐾𝑠𝑤

(𝐷𝑖), where 𝐷𝑖
is a protected subfield of 𝑃𝑖 .

4 DESIGN FEATURES OF ROSYM
Before describing the details of RoSym, here, first, we briefly ex-
plain the communication and security features of our scheme. As
previously discussed, the basic assumption in our solution is the
possibility to distribute key material and firmware image hash val-
ues prior to the actual firmware download process. This is different
from the prior-art solutions but has the advantage that we both
achieve transport agnostic download and very low complexity with
respect to security checks and distribution format. This requires

RoSym: Robust Symmetric Key Based IoT Software Upgrade Over-the-Air CPSIOTSEC 2022, November 7 –November 11, 2022, Los Angeles, U.S.A.

that the IoT unit has a security relationship and performs a hand-
shake with a trusted entity responsible for the code distribution,
i.e. the DMS. While one might think that this limit the applicability
of the design, we instead argue that this is indeed inline with state
of the art IoT architecture, which typically is under the control of
a cloud-based management system. Examples of such systems are
Thingsboard1 and Mainflux2. Below, we further discuss the precise
design assumptions of RoSym.

Code dissemination principles: We assume a central unit,
DMS, to be responsible for the code dissemination and code pro-
tection preparations. Each IoT unit must have direct contact with
DMS prior to software installation. The DMS distributes the actual
code image according to the choice best suited for the particular
IoT scenario. A central or several local servers can be used for di-
rect download, packet by packet by the IoT unit, or a multicast or
unicast protocol can be used for the actual firmware distribution,
i.e. our solution is completely firmware transport agnostic.

Reduced Communication Load and Energy Consumption:
Energy consumption of IoT units can be significantly decreased
by reducing their active time. They can be programmed in a way
to wake up in defined time intervals to send alive packets. As our
solution allows arbitrary code distribution, the distribution server
can wait until a unit becomes alive to trigger a new upgrade.

Integrity and Confidentiality Protection: In RoSym, we used
MAC to protect the integrity of update packages. For that, the
DMS and IoT units need to setup a secure key prior to the up-
date procedure. Although symmetric cryptography requires lower
computational resources, if a single device gets compromised, the
adversary can compromise the whole procedure. As a result, any
time a group of IoT units needs to be updated, integrity and con-
fidentiality protection keys, 𝐼𝐾𝑠𝑤 and 𝐾𝑠𝑤 , are transferred to the
units subject to the software update, then the transferred keys are
stored securely on the IoT units. These keys will be revoked or
expired at the end of the upgrade procedure.

DoS Protection: DoS attacks exploiting authentication delays
are important to address [20]. There are a number of broadcast weak
authenticator mechanisms for symmetric encryption includingMes-
sage Specific Puzzle (MSP) [18, 20] and Cipher Puzzle (CP) [38] which
can be used. Although, these mechanisms have high security they
can cause unreasonable sender-side delays. In order to decrease
this delay, a Dynamic Cipher Puzzle (DCP) method was proposed
in [1]. This method decreases the sender-side delay but the used
resources, consumption time, energy and RAM will be increased on
the receiver units. In our scheme due to the mentioned limitations,
we introduce time limited MAC verification, instead of these tech-
niques. One way of deploying a time limit in the MAC verification
is to time synchronize all of the IoT units in the network. A variety
of secure time synchronization approaches have been proposed for
WSN or IoT networks [32, 35]. Although these methods are valuable
they increase the complexity, overhead, and energy consumption
of IoT units. Instead of synchronizing the IoT units, we keep local
packet arrival times on all IoT units and only allow a maximum 𝑇1
delay between individual packets and a maximum of𝑇2 for the total
upgrade time, i.e. the time from that the IoT unit received the keys

1https://thingsboard.io/
2https://www.mainflux.com/

𝐼𝐾𝑠𝑤 and 𝐾𝑠𝑤 until the upgrade must be finalized. When different
packets arrive, the arrival times will be recorded by the IoT units
based on their local time and then the time difference between
different packet arrivals will be considered, as a result, time syn-
chronization is not needed. In order to prevent other types of DoS
attacks including jamming attacks, other prevention mechanisms
can be used in parallel with our solution.

5 SOLUTION
The solution we propose, is as previously discussed, based on the
principle that each IoT unit has a trusting relationship with the
DMS through the sharing of an IoT unique, long-term secret. This
secret is used by the DMS to keep control of all IoT units in the
system andwhen a firmware upgrade is about to take place, securely
transfer upgrade key material to all the IoT units. Once this is
done, the DMS can use the code dissemination channel for the
actual firmware download. Here, to defend against DoS attacks, as
discussed in Section 4 above, we use a limited time window, i.e. an
update must take place within a certain time period. This is true
both with respect to the maximum time allowed for the delay of
two consecutive download packages to arrive and the total time
allowed for an upgrade. Once this period has elapsed, the keys used
to protect the firmware are no longer valid and will be refused by
the IoT units. In this section, we described the detailed procedures
of the needed steps.

5.1 Key Establishment and Parameter Setup
We assume that on the first setup of the IoT units, the DMS URI/s
(based on the number of available DMS server/s) will be included in
all IoT units. A long-term shared key or𝐾𝑢 is stored on each unit and
the DMS server/s as well. The IoT units send with some regularity
alive messages to the ”owning” DMS server on the network. In case
of available updates, the response from the server includes update
availability, the number of seconds to wake up after receiving the
response, and a wake up time window to be awake during that time
(to avoid time synchronization requirements). If they get a response
that indicates the availability of a new software upgrade, they will
exchange upgrade parameters with the DMS on the specified wake
up time window as described below.

During the wake up time window of IoT units and before the
units receive the new software upgrade image, a secure configura-
tion session needs to be setup between the DMS and the IoT units.
Any appropriate secure protocol can be used but in this paper, the
Object Security for Constrained RESTful Environments (OSCORE)
protocol [14] is used to protect the transfer using 𝐾𝑢 as a master
secret. After configuration of the secure session, the DMS transfers
the following information to all IoT units in the network or either
the ones inside the multicast group:

(1) Two randomly generated symmetric keys, 𝐼𝐾𝑠𝑤 and 𝐾𝑠𝑤 .
(2) Timing information, 𝑇1 and 𝑇2 determines the maximum

allowed delay between two consecutive software packages
and the validity of 𝐼𝐾𝑠𝑤 and 𝐾𝑠𝑤 keys respectively.

(3) A software image one-way hash root value, ℎ0.
(4) The number of packages (n) in the new software distribution.

CPSIOTSEC 2022, November 7 –November 11, 2022, Los Angeles, U.S.A. Pegah Nikbakht Bideh and Christian Gehrmann

5.2 Upgrade Procedure
Before the upgrade procedure starts, the DMS also needs to package
the software update image into suitable size packages. The pack-
age format is indicated in Figure 1 and the different parts will be
explained in detail below. The related size selections are given in
Section 6.2. According to our solution, all software packages are
integrity and confidentiality protected. The purpose of this protec-
tion is not to give a very high protection level (as the keys need to
be shared with a large number of devices), but above all, to make it
harder for an attacker to perform a direct attack on single packets
(DoS).

The different software packages can then be distributed to the
IoT units in any way, i.e. the different packages can for instance be
downloaded to several local software upgrade servers, where they
are in turn fetched by the IoT units. They can also be distributed
using multicast by the DMS to all the units. In our proof of concept
implementation described in Section 6, this is the principle used.
According to our design, the DMS performs the following steps:

(1) The software update image is split into n distinct parts: 𝐼0,
𝐼1, 𝐼2,..., 𝐼𝑛−1.

(2) Calculate n different software upgrade packages:
𝑃𝑖 = {𝑖, 𝐸 (𝐾𝑠𝑤 , 𝐼𝑖), ℎ𝑖+1, 𝑀𝐴𝐶𝑖 }, 0 ≤ i ≤ n-2,
𝑃𝑛−1 = {n-1, 𝐸 (𝐾𝑠𝑤 , 𝐼𝑛−1), 𝑀𝐴𝐶𝑛−1},
where E() denotes the encryption using a suitable symmetric
encryption scheme under the key 𝐾𝑠𝑤3 and where:

(a) ℎ𝑖 = 𝐻 ({𝑖, 𝐸 (𝐾𝑠𝑤 , 𝐼𝑖), ℎ𝑖+1}), 0 ≤ i ≤ n-2,
ℎ𝑛−1 = 𝐻 ({𝑛 − 1, 𝐸 (𝐾𝑠𝑤 , 𝐼𝑛−1)}), and where H is a suit-
able, secure one-way hash function such as SHA-2 [31]
or SHA-3 [10]. The hash of each package is dependent on
the next package hash value.

(b) 𝑀𝐴𝐶𝑖 = 𝑀𝐴𝐶 (𝐼𝐾𝑠𝑤 , {𝑖, 𝐸 (𝐾𝑠𝑤 , 𝐼𝑖), ℎ𝑖+1}), 0 ≤ i ≤ n-2,
𝑀𝐴𝐶𝑛−1 = 𝑀𝐴𝐶 (𝐼𝑘𝑠𝑤 , {𝑛 − 1, 𝐸 (𝐾𝑠𝑤 , 𝐼𝑛−1)}), whereMAC
denotes a suitable message authentication code function
under 𝐼𝐾𝑠𝑤 , such as HMAC [25] or short MAC [15].

(3) On the wake up time window of the IoT units, ∀𝑢 ∈ U the
following happens:

(a) A confidentiality and integrity protected session based on
the key 𝐾𝑢 , is established between u and the DMS.

(b) By using the secure session, the DMS transfers at least the
following parameters to u: 𝐼𝐾𝑠𝑤 , 𝐾𝑠𝑤 , ℎ0, 𝑇1 and 𝑇2.

index: 4B Enc software: 944B ℎ𝑎𝑠ℎ𝑖 : 32B 𝑀𝐴𝐶𝑖 : 32BField name
{

index Package index, i

Enc software Encrypted software block: E(𝐾𝑠𝑤 , 𝐼𝑖)

ℎ𝑎𝑠ℎ𝑖 One-way hash, ℎ𝑖 = H({i, E(𝐾𝑠𝑤 , 𝐼𝑖), ℎ𝑖+1}), 0 ≤ i ≤ n-2

𝑀𝐴𝐶𝑖
Message Authentication Code,𝑀𝐴𝐶𝑖 = MAC(𝐼𝐾𝑠𝑤 , {i, E(𝐾𝑠𝑤 , 𝐼𝑖),
ℎ𝑖+1}), 0 ≤ i ≤ n-2

Figure 1: RoSym software package format and size

5.3 Upgrade Procedure on IoT Unit Side
On the IoT side, the procedure starts with the actual firmware
download credentials fetching and preparing as described in Section
5.1. Next, the IoT unit uses the supported firmware image fetch

3Typically this encrypted structure will also include a suitable IV.

option in the system. During the image transfer, each software
package is integrity and confidentiality protected to prevent both
malicious code read and direct packet modification done with the
purpose of for instance wasting IoT resources. Also, the IoT unit
keeps track of time parameters to prevent DoS attacks. Here it is
important to notice though that these clocks are internal, i.e. there
is no need for any synchronization across the system. The detailed
step-by-step procedure for the actual software fetch and installation
is given below:

(1) Get the time of arrival of the control parameters packet and
store it as 𝑡𝑐 .

(2) Set i = 0,
(3) Get the next software package 𝑃𝑖 , and store its’ arrival time

as 𝑡𝑖 .
(4) If 𝑡𝑖 - 𝑡𝑖−1 > 𝑇1, 1 ≤ i ≤ n-1, the software upgrade is aborted

and no more package is accepted by the IoT unit. If i == 0,
consider 𝑡𝑐 as 𝑡𝑖−1.

(5) If 𝑡𝑖 - 𝑡𝑐 > 𝑇2, 0 ≤ i ≤ n-1, the software upgrade is aborted.
Else, verify the integrity of 𝑃𝑖 , by calculating 𝑀𝐴𝐶𝑖 using
the key 𝐼𝐾𝑠𝑤 , over the fields i, E(𝐾𝑠𝑤 , 𝐼𝑖), ℎ𝑖+1, if 0 ≤ i ≤ n-2,
and over the fields i and E(𝐾𝑠𝑤 , 𝐼𝑖), if i == n-1.

(6) Compare𝑀𝐴𝐶𝑖 with𝑀𝐴𝐶 ′
𝑖
in the received package and only

if coincide, accept the new package.
• If 0 ≤ i ≤ n-2:
(a) Verify the integrity of package 𝑃𝑖 using the hash ℎ𝑖

(previously received and stored hash) and ℎ′
𝑖
(calculated

hash over 𝑖, 𝐸 (𝐾𝑠𝑤 , 𝐼𝑖) and ℎ𝑖+1). If the verification fails,
request retransmission of 𝑃𝑖 .

(b) Store ℎ𝑖+1, existed in the received package, in RAM
memory. (Note: if ℎ𝑖 is not available in memory due to
out of order packet delivery, only ℎ𝑖+1 will be stored in
memory and verification of ℎ𝑖 will be postponed until
previous package arrives.)

(c) Decrypt software upgrade package, 𝐼𝑖 , using the key
𝐾𝑠𝑤 and store it in flash memory.

• Else:
(a) Verify the integrity of software package 𝑃𝑛−1 usingℎ𝑛−1

andℎ′
𝑛−1. If the verification fails, request retransmission

of 𝑃𝑛−1 or try to fetch it again from a distribution server
(if a direct download is applied).

(b) If the verification is successful, decrypt the software
upgrade package, 𝐼𝑛−1, using the key 𝐾𝑠𝑤 and store it
in flash memory.

(7) set i = i+1.
(8) If i < n, repeat step 2.
(9) Install the complete new valid software image, I = 𝐼0, 𝐼1, 𝐼2,...,

𝐼𝑛−1.

5.3.1 Error Handling. The upgrade procedure of IoT unit/s (at any
step) might be disturbed due to unexpected errors. If an error occurs
before the update procedure starts, the DMS will realize this on
receiving the next alive message and it will upgrade the failed units
in a unicast way again. On the other hand, if the error occurs in the
middle of the upgrade procedure, the failed unit will send a direct
request to the DMS, and the procedure can be resumed from where
it failed.

RoSym: Robust Symmetric Key Based IoT Software Upgrade Over-the-Air CPSIOTSEC 2022, November 7 –November 11, 2022, Los Angeles, U.S.A.

6 IMPLEMENTATION AND EXPERIMENTS
In our implementation of RoSym4, we use a multicast distribu-
tion of firmware upgrade image directly from the DMS, and the
UDP protocol is used as the underlying transport protocol. Our
implementation consists of DMS and IoT unit realizations. IoT units
communicate with the DMS over WLAN. All IoT units in the sys-
tem send alive messages periodically to the DMS server. The alive
messages include the current firmware version along with other
information about the IoT unit. Once an IoT unit sends an alive
message and receives an acknowledgment from the DMS, it goes
to sleep until the next alive message needs to be sent. If there is an
update available on the DMS, it piggybacks the number of seconds
that IoT units need to wake up after receiving the acknowledgment,
and the awake time window (this window can be decided by the
administrator based on network delay) on the acknowledgment.
Then, the IoT unit will be added to a multicast group by the DMS
as well. No extra time synchronization is needed since by receiving
the acknowledgment the IoT units calculate their wake up time
based on their internal local time and they prepare to wake up
and be awake during the specified time window, this window is
required since different devices may receive the acknowledgments
with some delay.

After identifying the IoT units which need to be updated, the
DMS generates 𝐼𝐾𝑠𝑤 and 𝐾𝑠𝑤 . The DMS divides the plain firmware
into different chunks with the size of 944 bytes (the size selection
will be explained in Section 6.2) and each chunk will be encrypted
using 𝐾𝑠𝑤 , then, the hash chain will be calculated. Finally, using
the key 𝐼𝐾𝑠𝑤 , the MAC of each chunk will be calculated using the
encrypted value of the current chunk and the hash of the next
chunk.

After preparing the secure firmware, on the wake up time win-
dow of the IoT units, a secure OSCORE session using 𝐾𝑢 as the
master secret will be established to the identified IoT units and then
the randomly generated keys along with other required information
will be sent to the units. Then, the secure session will be closed by
the DMS. Immediately after that, a multicast socket will be opened
on the target IoT units. Finally, those units will receive the upgrade
multicasted packages and they will perform the verification, and
after successful verification of all packages, the units will boot the
new firmware. The information flow between IoT units and the
DMS is shown in Figure 2.

6.1 Hardware Choice
In our implementation, we have used ESP32-S25, which is a single
core board with Xtensa 32-bit LX7 CPU which operates at up to 240
MHz. ESP32-S2 is low power and single-core WiFi microcontroller,
it is also cost-efficient, and has high performance with the following
features:

• Support for cryptographic hardware accelerators to enhance
performance

• Good protection against physical fault injection attacks
• Protection of private key and secrets from software access

4Our implementation is available at: https://github.com/pegahnikbakht/RoSym
5https://www.espressif.com/en/products/socs/esp32-s2

• Integrating a set of peripherals, with different programmable
GPIOs which can provide USB OTG, LCD interface, camera
interface, UART, etc.

• It can be configured with both MbedTLS and WolfSSL li-
braries but in this paper, the default SSL/TLS library or
MbedTLS is used.

• It has an official development framework6 and we used it in
our implementations as well.

In order to measure energy consumption and annotate the measure-
ments via UART logs, we used the Otii Arc7 device. Otii is a high
precision power supply and analyzer unit, which comes with Otii
software. Otii can be used to monitor or record real-time voltage,
current, and UART logs and it is powered by USB. We supplied
ESP32-S2 with 3.3V and we used baud rate 11520 for the logs.

Figure 2: Information flow between DMS and IoT units

6.2 Security Choices and Package Size
In our implementation, we have used AES as an encryption algo-
rithm and evaluated performance for key sizes of 128 and 256 bits
with GCM mode and a standard IV size of 128 bits. For the hash
function, we have used the SHA-256 function and for MAC, we
have used HMAC with digest mode SHA-256 and key sizes of 128
and 256 bits. Hence, the hash or MAC size in our package is 32
bytes.

The new firmware size is usually less than a fewMegabytes, thus,
we chose 4 bytes for that which is big enough to represent the index
of all chunks. In order to avoid IP fragmentation, the payload size
of packages is bound to 1012 bytes, and as a result, the encrypted
part of the package by excluding Hash, MAC, and index size will
be 944 bytes, different field sizes are shown in Figure 1.

6.3 Testbed Setup
We have designed a testbed scenario consisting of ten ESP32-S2
boards, one DMS, and a WiFi router which is used by the IoT units
to communicate with the DMS. In the test scenario, four out of ten
IoT units send alive messages to the DMS and they will be added
to a multicast group by DMS. In our testbed, the original firmware
length is 139200 bytes and it divides into 148 chunks of 944 bytes
and they were prepared by DMS for the upgrade procedure. Finally,
those four IoT units will receive the multicast update and their
firmware will be updated. In the test scenario, Otii is connected to
one of the four IoT units and is used to record the required energy
and time to complete the OTA procedure.
6https://github.com/espressif/esp-idf
7https://www.qoitech.com/

https://github.com/pegahnikbakht/RoSym

CPSIOTSEC 2022, November 7 –November 11, 2022, Los Angeles, U.S.A. Pegah Nikbakht Bideh and Christian Gehrmann

7 EVALUATION
In order to show the security and efficiency of RoSym, we have
evaluated it with respect to security as well as communication,
computation overhead, and memory footprints.

7.1 Security
RoSym firmware upgrade protection is based on the assumption of
having long term, individual keys shared between each IoT unit and
the DMS. These can and should be updated on a regular basis, but
still, if this key is compromised, the security for that single IoT unit
is lost. As long as such attack does not happen, the security of the
scheme will depend on the protocol for software dissemination as
such. We show in Section 8.1 using ProVerif that the confidentiality
and integrity of the software distribution then hold in all cases. We
also show using ProVerif that under these assumptions, the DoS
resistance with respect to the possibility for an attacker to get any
non original firmware upgrade packet to be accepted also holds in
all cases. The security of the distribution of the actual keys for the
protection of the upgrades is made using standard OSCORE (see
Section 5.1). Hence, the security of this part is kept as long as the
OSCORE protocol and the implementation are secure.

According to our threat model, a full compromise of a single or
few IoT units might happen. Under this circumstance, the confi-
dentiality and integrity proof will not hold anymore on the packet
level. However, the integrity of the final hash is protected by the
individual IoT, long-term keys, and will not be affected. This means
that compromise of a single unit, independent if it is on execution
level or through key compromise by external analysis, will destroy
the security of that unit only and not the software integrity of the
rest of the units in the same system. In this case, DoS attacks against
the complete system will be possible. However, one might argue
that the effort of a direct physical attack against an IoT unit with
just a DoS attack goal is less likely. Furthermore, if such happens,
it will be possible to detect and it should be possible to find the
compromised units in the system and replace and/or exclude them
from the system. Hence, we have a reasonable trade-off between
security, implementation complexity, and DoS resistance in our
design.

Our design also considers the possibility for an attacker to change
the delivery order of upgrade packages with the purpose of exhaust-
ing resources. Such an attack can be performed through a combi-
nation of packet modification and packet delivery delay, i.e. the
attacker just modify one of the first packets, which is then delayed
until the very end of the firmware load. This would then fill up
the firmware upgrade memory with almost a complete software
image that is invalid. Our design has protection against such an
attack by setting a maximum time value for the delay between two
consecutive packets. This considerably reduces the time window
for a DoS attack of this type while still allowing some out of order
delivery (within the selected time threshold).

7.2 Communication Overhead
Considering communication overhead, we have compared our ap-
proach to two mixed approaches, SEDA, and Seluge, and two sym-
metric approaches, PETRA, and Castor in the actual update phase.

We compare the key establishment phase only with SEDA and Sel-
uge and we exclude PETRA and Castor since they do not present
any key establishment method. SEDA support multicast upgrade
similar to our scheme, although the key establishment phase in our
scheme requires transferring the security keys to all units using
an underlying secure channel. In SEDA, a group key distribution
technique is instead used to share the private key, and Seluge uses
pairwise key establishment with neighbor units which causes loga-
rithmic overhead. The total number of bytes need to be transferred
to each IoT unit in our key establishment phase are 108 bytes in-
cluding 𝐼𝐾𝑠𝑤 , 𝐾𝑠𝑤 , ℎ0,𝑇1,𝑇2, and n. We included the byte overhead
of OSCORE in our key establishment phase as well. As it can be
seen in Figure 3a, our key establishment phase is more efficient
in medium to large sized networks in comparison to SEDA and
Seluge (the figures of SEDA and Seluge schemes are taken from
[24]). The efficiency of SEDA in a small sized network is due to the
dependency of the key establishment on the neighboring units and
not the whole network.

In Seluge the payload size is bound to 102 bytes and in order to
have a fair comparison of the number of transmitted packets for
different code sizes in the update phase, we bound the payload size
of SEDA, PETRA, Castor, and our scheme to 102 bytes, although we
can send larger payloads in our scheme. In Seluge, SNACK (Selective
Negative ACK) packets, hash packets, and data packets are included
in the communication overhead. Seluge uses sequential packet
delivery along with aMerkle hash tree for integrity protection. This
sequential delivery increase the number of SNACK packets which
further results in an increase in communication overhead and as
can be seen in Figure 3b, Seluge has the highest overhead in the
number of transmitted packets. Figure 3b represents RoSym has a
slightly higher communication overheadwith respect to the number
of transmitted packets compared to SEDA (The figures of SEDA
and Seluge schemes are taken from [24]). This is due to the fact
that SEDA uses SHA-128 bits and HMAC with SHA-128 bits which
causes lower byte overhead in comparison to our scheme which
uses SHA-256 bits for both hash function and HMAC. This allows
SEDA to have more data payload in each packet and therefore the
total number of transmitted packets will be reduced. Hence, at an
equal security level, SEDA’s overhead would be almost equal to
our scheme. Castor and PETRA have the lowest byte overhead
among all, this is due to the fact that in Castor instead of packet
level hashes, page level hashes and MACs are used and more data
payloads can be sent in each packet. PETRA also avoids MAC
verification of individual packets and it uses bloom-filter along
with the MAC verification of the whole update package. Although
Castor and PETRA have the lowest byte overhead avoiding packet
level verification makes them vulnerable to DoS attacks.

7.3 Computation Overhead
The energy consumption and required time from receiving the first
upgrade package until the last have been measured using the Otii
device and the results are shown in Table 2. All the measurements
are the average values over 10 times upgrade using the ESP32-S2
and the Otti Arc device. The required time and energy for session
setup and rebooting the IoT unit are disregarded in the measure-
ments. As can be seen in Table 2, RoSym almost doubles both energy

RoSym: Robust Symmetric Key Based IoT Software Upgrade Over-the-Air CPSIOTSEC 2022, November 7 –November 11, 2022, Los Angeles, U.S.A.

(a) Key establishment overhead (b) Number of transmitted packets

Figure 3: Comparison of communication overhead in different schemes

consumption and time compared to a completely unprotected up-
grade. The UDP row in the Table is the case without any added
security.

As mentioned earlier, ESP32-S2 has cryptographic hardware ac-
celeration support both for AES encryption and hash functions
including SHA-256. We have performed measurements both with
andwithout using them. The results of themeasurements are shown
in Table 2. Using hardware acceleration for RoSym with the sym-
metric key in the case of AES 128 and AES 256, in the case of HMAC
with the key size 128 bits saves 28 𝜇wh and 27 𝜇wh energy and
reduces the required time by around 0.67 seconds and 0.31 seconds
respectively in comparison to the case when hardware acceleration
was disabled. Though, the comparison of RoSym in the case of AES
and HMAC 128 bits to AES and HMAC 256 bits (with and without
hardware acceleration) does not indicate any significant difference.

For comparison, we tried RoSym with an asymmetric key as well.
We modified RoSym in the following way: we encrypted a 128 or
256 bits symmetric AES key with RSA key size 2048 bits and trans-
ferred it to the ESP32-S2 units. The recipient units can then access
the AES key after asymmetric decryption. We removed HMAC ver-
ification and added RSA signature verification instead. This setup
with 128 bits AES gave 1200 𝜇wh, 15.88 seconds with hardware
accelerator, and 1170 𝜇wh, 15.94 seconds without hardware accel-
erator, respectively. The figures for RSA with 256 bits AES resulted
in 1170 𝜇wh, 15.87 seconds, and 1210 𝜇wh, 15.96 seconds, with and
without hardware accelerator.

7.4 Memory Footprints
The on-chip memory on ESP32-S2 includes 320 kB SRAM and
128 kB of ROM on the MCU and it has also 4 MB SPI flash and
2 MB PSRAM. The D/IRAM is a part of RAM that can contain
both data and executable data. In each round of our scheme, other
than the newly received package, the hash of the next package
is stored in D/IRAM memory. The flash memory is used to store
the whole decrypted firmware packages, other than that, some
other information including 𝐼𝐾𝑠𝑤 , 𝐾𝑠𝑤 , the hash of the first chunk,
timing information, etc. need to be stored in flash memory. The
memory footprints of our scheme and MbedTLS library (used for
cryptographic operations) on ESP32-S2 are shown in Table 3.

8 FORMAL SECURITY VERIFICATION
We formally model and verify the security properties of our de-
signed solution using ProVerif [6] tool. ProVerif is an automated
tool that is used in verifying the security properties of protocols and
it uses Dolev-Yao model [9] as the adversarial model. In ProVerif
applied pi calculus [34] is used as the modeling language.

8.1 ProVerif Modeling
For modeling RoSym with ProVerif, we first declared types, vari-
ables, functions, assumptions, queries, events, and processes. We
have modeled DMS and two sample devices in ProVerif as top
level processes named DMS, deviceA, and deviceB. Thus, RoSym
is encoded using a main process and three other process macros
to represent DMS, deviceA, and deviceB. The process macros are
defined as (!process) in the main process.

In the model, we define free names which are globally known,
and [private] names which are not known to the attacker. We as-
sume the DMS to be fully trusted and can not be compromised.
Furthermore, we do not, in general, assume that IoT units are com-
promised, as a result, the attacker can not access the [private]
names defined in the model including device individual key 𝐾𝑢 or
authentication and encryption keys (𝐼𝐾𝑠𝑤 and 𝐾𝑠𝑤) stored on the
DMS.

The main functions of the protocol including MAC, symmetric
encryption, and decryption are modeled as constructors and the
destructor below, both mac and sencrypt take two arguments of
type key and bitstring and they return an argument of type bitstring
which is either the MAC or the encryption output. The decryption
function is modeled as the destructor sdecrypt represented below:

fun mac (key , b i t s t r i n g) : b i t s t r i n g .

fun s en c r yp t (b i t s t r i n g , key) : b i t s t r i n g .
reduc f o r a l l x : b i t s t r i n g , y : key ;
s d e c r yp t (s en c r yp t (x , y) , y) = x .

There are a number of events defined in the model including ini-
tiating and terminating device and the DMS server representing as:
initserver, initDevice, termDevice, and termserver. The relationship
between these events is denoted as correspondence assertion.

CPSIOTSEC 2022, November 7 –November 11, 2022, Los Angeles, U.S.A. Pegah Nikbakht Bideh and Christian Gehrmann

Table 2: Required energy and time for OTA using RoSym on ESP32-S2

Type Key Size (bits) Hardware Acceleration Energy (𝜇wh) Time (s)

RoSym

128 AES, 128 HMAC 848 12.19
128 AES, 128 HMAC 876 12.86
256 AES, 128 HMAC 836 12.18
256 AES, 128 HMAC 863 12.49
128 AES, 256 HMAC 831 12.19
128 AES, 256 HMAC 846 12.78
256 AES, 256 HMAC 833 12.21
256 AES, 256 HMAC 871 12.81

UDP - - 419 5.74

Table 3: Memory usage of RoSym on ESP32-S2

Module Flash (kB) D/IRAM (kB)
RoSym OTA scheme 97.7 11.1
MbedTLS library 8.4 0.05

Total 106.1 11.15

After modeling RoSym in ProVerif we have verified the following
security properties using ProVerif: 1) Confidentiality of software
packages, 2) Integrity of packages and 3) DoS resistance. In order
to verify these security properties, different properties in ProVerif
including secrecy property, correspondence assertion, and authen-
tication property were used and all of these properties had been
successfully verified in ProVerif as we show below.

8.2 ProVerif Verification
8.2.1 Confidentiality. We used the secrecy property in ProVerif to
verify the confidentiality of the keys 𝐼𝐾𝑠𝑤 and 𝐾𝑠𝑤 and the plain
software package I. The secrecy property is specified using the
queries below:

query a t t a c k e r (IKsw) .
query a t t a c k e r (Ksw) .
query a t t a c k e r (I) .

All three queries above have been successfully verified in ProVerif
which indicates that the attacker can not gain any knowledge about
I or even the keys 𝐼𝐾𝑠𝑤 and 𝐾𝑠𝑤 .

8.2.2 Integrity. The integrity of software packages is preserved if
the obtained package by all devices (from the DMS) is consistent.
This means that for the same input and the same function, all of
the devices should retrieve the same result. We prove this property
using the correspondence queries as follows.

query a : key , b : key , q : b i t s t r i n g ;
even t (te rmDevice (a , b , q))
==> even t (i n i t s e r v e r (a , b , q)) .

query a : key , b : key ,m: key , n : b i t s t r i n g ;

even t (t e rms e r v e r (a , b ,m, n))
==> even t (i n i t D e v i c e (a , b ,m, n)) .

As it can be seen the input argument of these events are type key
and bitstring and the key types are used to represent different keys
such as 𝐼𝐾𝑠𝑤 , 𝐾𝑠𝑤 , and device key 𝐾𝑢 and bitstring type is used to
represent the encrypted value of software packages. As indicated
in the queries the input values on both sides are consistent and
ProVerif had successfully verified these queries, as a result, the
integrity of software packages is preserved.

8.2.3 DoS Resistance. According to the Denial of Service defini-
tion which is defined in [29], a protocol is resistance to denial of
service attacks if and only if all of the received messages in a set of
received messages are authenticated, as a result for DoS resistance
verification, we verified all messages are authenticated in RoSym.
In RoSym, this authentication should be done in a limited time
interval which this feature adds another layer of DoS protection.
For formal verification, we only verified message authentication
in ProVerif since the time limit is out of the scope of modeling the
protocol.

The authentication property is specified as different correspon-
dence assertions, which indicates the relationships between events
as if an event has been executed then another event has been previ-
ously executed. The queries defined in integrity property Section
8.2.2 can be used to prove DoS resistance as well. Those queries
will be satisfied only if for each occurrence of the events termDevice
and termserver there is a previous execution of event initserver
or initDevice, ProVerif successfully verified these correspondence
assertions as well, therefore DoS resistance is verified.

9 CONCLUSIONS
In this paper, we proposed RoSym an efficient, robust and DoS
protected OTA upgrade procedure for IoT networks. RoSym can
be used in a multicast manner as well as through direct download
from local or remote upgrade servers. The latter is possible as each
packet is protected individually during transfer or at intermediate
storage. The scheme only uses symmetric cryptography, as required
for resource constraint IoT devices. RoSym can handle out of order
packet delivery without DoS risk as packets can be individually
verified (with weak integrity). Strong integrity verification can be

RoSym: Robust Symmetric Key Based IoT Software Upgrade Over-the-Air CPSIOTSEC 2022, November 7 –November 11, 2022, Los Angeles, U.S.A.

done as soon as the packet arrives in the correct order at the target
device. The scheme is built upon that prior to the upgrade procedure,
secret keys are transferred from a central distribution entity, the
DMS, to IoT devices targeted to upgrade. For that, a secure session
using OSCORE or similar can be used as we showed in our paper.
Unlike other existing upgrade procedures, in our scheme, command
packets are not required and IoT devices do not need to be awake
continually. Instead, they send alive messages periodically and any
information that needs to be sent to IoT devices will be sent as a
piggyback on the response of alive messages. This feature and the
use of symmetric cryptography along with a robust DoS protection
technique, make our scheme robust, secure, and at the same time
energy efficient even during idle times. As it is a purely symmetric
solution, for larger key size choices, it provides full post-quantum
resistance. Our security verification showed that RoSym offers
the expected security level fulfilling the identified confidentiality,
integrity, and DoS protection properties. Finally, our experiential
results on ESP32-S2 confirmed the efficiency and robustness of
RoSym.

ACKNOWLEDGMENTS
This work was financially supported in part by the Swedish Founda-
tion for Strategic Research, with the grant RIT17-0032, and in part
by the Wallenberg AI, Autonomous Systems and Software Program
(WASP).

REFERENCES
[1] Farah Afianti, Titiek Suryani, et al. 2018. Dynamic cipher puzzle for efficient

broadcast authentication in wireless sensor networks. Sensors 18, 11 (2018), 4021.
[2] Konstantinos Arakadakis, Pavlos Charalampidis, Antonis Makrogiannakis, and

Alexandros Fragkiadakis. 2021. Firmware Over-the-Air Programming Techniques
for IoT Networks - A Survey. ACM Comput. Surv. 54, 9, Article 178 (oct 2021),
36 pages. https://doi.org/10.1145/3472292

[3] Nils Aschenbruck, Jan Bauer, Jakob Bieling, Alexander Bothe, and Matthias
Schwamborn. 2012. Selective and secure over-the-air programming for wireless
sensor networks. In 21st International Conference on Computer Communications
and Networks (ICCCN). IEEE, 1–6.

[4] N Asokan, Thomas Nyman, Norrathep Rattanavipanon, Ahmad-Reza Sadeghi,
and Gene Tsudik. 2018. ASSURED: Architecture for secure software update
of realistic embedded devices. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 37, 11 (2018), 2290–2300.

[5] Ward Beullens. 2021. The Design and Cryptanalysis of Post-Quantum Digital Signa-
ture Algorithms. KU Leuven. https://www.esat.kuleuven.be/cosic/publications/
thesis-417.pdf

[6] Bruno Blanchet, Ben Smyth, Vincent Cheval, and Marc Sylvestre. 2018. ProVerif
2.00: automatic cryptographic protocol verifier, user manual and tutorial. Version
from (2018), 05–16.

[7] Stephen Brown and Cormac Sreenan. 2013. Software Updating inWireless Sensor
Networks: A Survey and Lacunae. Journal of Sensor and Actuator Networks 2, 4
(Nov 2013), 717–760. https://doi.org/10.3390/jsan2040717

[8] Jing Deng, Richard Han, and Shivakant Mishra. 2006. Secure code distribution in
dynamically programmable wireless sensor networks. In Proceedings of the 5th
international conference on Information processing in sensor networks. 292–300.

[9] D. Dolev and A. C. Yao. 1981. On the Security of Public Key Protocols. In
Proceedings of the 22nd Annual Symposium on Foundations of Computer Science
(SFCS ’81). IEEE Computer Society, Washington, DC, USA, 350–357. https:
//doi.org/10.1109/SFCS.1981.32

[10] FIPS PUB DRAFT. 2014. 202. SHA-3 Standard: Permutation-Based hash and
extendable-output functions. Information Technology Laboratory, National Insti-
tute of Standards and Technology. Recovered on May (2014).

[11] Prabal K Dutta, JonathanWHui, David C Chu, and David E Culler. 2006. Securing
the deluge network programming system. In 5th International Conference on
Information Processing in Sensor Networks. IEEE, 326–333.

[12] Yan-Hong Fan, Mei-Qin Wang, Yan-Bin Li, Kai Hu, and Muzhou Li. 2021. A
Secure IoT Firmware Update Scheme Against SCPA and DoS Attacks. J. Comput.
Sci. Technol. 36, 2 (2021), 419–433. https://doi.org/10.1007/s11390-020-9831-8

[13] J. Ferreira, J. N. Soares, R. Jardim-Goncalves, and C. Agostinho. 2017. Management
of IoT Devices in a Physical Network. In 21st International Conference on Control
Systems and Computer Science (CSCS). 485–492.

[14] F. Palombini G. Selander, J. Mattsson. 2019. Object Security for Constrained
RESTful Environments (OSCORE). https://tools.ietf.org/html/rfc8613. [Online;
accessed 24-March-2021].

[15] Christian Gehrmann, Marco Tiloca, and Rikard Höglund. 2015. SMACK: Short
message authentication check against battery exhaustion in the Internet of Things.
In 12th Annual IEEE International Conference on Sensing, Communication, and
Networking (SECON). IEEE, 274–282.

[16] Lov K. Grover. 1996. A Fast Quantum Mechanical Algorithm for Database
Search. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory
of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96). Association for
Computing Machinery, New York, NY, USA, 212–219. https://doi.org/10.1145/
237814.237866

[17] Daojing He, Chun Chen, Sammy Chan, and Jiajun Bu. 2011. SDRP: A secure
and distributed reprogramming protocol for wireless sensor networks. IEEE
Transactions on Industrial Electronics 59, 11 (2011), 4155–4163.

[18] Daojing He, Chun Chen, Sammy Chan, and Jiajun Bu. 2012. DiCode: DoS-
resistant and distributed code dissemination in wireless sensor networks. IEEE
Transactions on Wireless Communications 11, 5 (2012), 1946–1956.

[19] Jonathan W Hui and David Culler. 2004. The dynamic behavior of a data dis-
semination protocol for network programming at scale. In Proceedings of the 2nd
international conference on Embedded networked sensor systems. 81–94.

[20] Sangwon Hyun, Peng Ning, An Liu, and Wenliang Du. 2008. Seluge: Secure and
dos-resistant code dissemination in wireless sensor networks. In 2008 Interna-
tional Conference on Information Processing in Sensor Networks. IEEE, 445–456.

[21] Wassim Itani, Ayman Kayssi, and Ali Chehab. 2009. PETRA: a secure and energy-
efficient software update protocol for severely-constrained network devices. In
Proceedings of the 5th ACM symposium on QoS and security for wireless and mobile
networks. 37–43.

[22] Irene Joseph, Prasad B. Honnavalli, and B. R. Charanraj. 2022. Detection of
DoS Attacks on Wi-Fi Networks Using IoT Sensors. In Sustainable Advanced
Computing, Sagaya Aurelia, Somashekhar S. Hiremath, Karthikeyan Subramanian,
and Saroj Kr. Biswas (Eds.). Springer Singapore, Singapore, 549–558.

[23] Donnie H Kim, Rajeev Gandhi, and Priya Narasimhan. 2007. Exploring symmetric
cryptography for secure network reprogramming. In 27th International Conference
on Distributed Computing Systems Workshops (ICDCSW’07). IEEE, 17–17.

[24] Jun Young Kim, Wen Hu, Hossein Shafagh, and Sanjay Jha. 2016. Seda: Se-
cure over-the-air code dissemination protocol for the internet of things. IEEE
Transactions on Dependable and Secure Computing 15, 6 (2016), 1041–1054.

[25] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. 1997. HMAC: Keyed-hashing
for message authentication.

[26] Ioannis Krontiris and Tassos Dimitriou. 2011. Scatter–secure code authentication
for efficient reprogramming in wireless sensor networks. International Journal
of Sensor Networks 10, 1-2 (2011), 14–24.

[27] Patrick E Lanigan, Rajeev Gandhi, and Priya Narasimhan. 2006. Sluice: Secure
dissemination of code updates in sensor networks. In 26th IEEE international
conference on Distributed Computing Systems (ICDCS’06). IEEE, 53–53.

[28] JongHyup Lee, LeeHyung Kim, and Taekyoung Kwon. 2015. Flexicast: Energy-
efficient software integrity checks to build secure industrial wireless active sensor
networks. IEEE Transactions on Industrial Informatics 12, 1 (2015), 6–14.

[29] Bo Meng, Wei Wang, and Wei Chen. 2012. Verification of Resistance of Denial of
Service Attacks in Extended Applied Pi Calculus with ProVerif. J. Comput. 7, 4
(2012), 890–899.

[30] Adrian Perrig, Robert Szewczyk, Justin Douglas Tygar, Victor Wen, and David E
Culler. 2002. SPINS: Security protocols for sensor networks. Wireless networks 8,
5 (2002), 521–534.

[31] FIPS PUB. 2012. Secure hash standard (shs). Fips pub 180, 4 (2012).
[32] Tie Qiu, Xize Liu, Min Han, Huansheng Ning, and Dapeng Oliver Wu. 2017. A

secure time synchronization protocol against fake timestamps for large-scale
Internet of Things. IEEE Internet of Things Journal 4, 6 (2017), 1879–1889.

[33] Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. 2017. IoT Goes
Nuclear: Creating a ZigBee Chain Reaction. In IEEE Symposium on Security and
Privacy (SP). 195–212. https://doi.org/10.1109/SP.2017.14

[34] Mark D Ryan and Ben Smyth. 2011. Applied pi calculus. In Formal Models and
Techniques for Analyzing Security Protocols. Ios Press, 112–142.

[35] David Sanchez. 2007. Secure, accurate and precise time synchronization for
wireless sensor networks. In Proceedings of the 3rd ACM workshop on QoS and
security for wireless and mobile networks. 105–112.

[36] Zakir Ahmad Sheikh and Yashwant Singh. 2021. Lightweight De-authentication
DoS Attack Detection Methodology for 802.11 Networks Using Sniffer. In Pro-
ceedings of Second International Conference on Computing, Communications, and
Cyber-Security, Pradeep Kumar Singh, Sławomir T. Wierzchoń, Sudeep Tanwar,
Maria Ganzha, and Joel J. P. C. Rodrigues (Eds.). Springer Singapore, Singapore,
67–80.

[37] Jaewoo Shim, Kyeonghwan Lim, Jaemin Jeong, Seong-je Cho, Minkyu Park,
and Sangchul Han. 2017. A case study on vulnerability analysis and firmware

https://doi.org/10.1145/3472292
https://www.esat.kuleuven.be/cosic/publications/thesis-417.pdf
https://www.esat.kuleuven.be/cosic/publications/thesis-417.pdf
https://doi.org/10.3390/jsan2040717
https://doi.org/10.1109/SFCS.1981.32
https://doi.org/10.1109/SFCS.1981.32
https://doi.org/10.1007/s11390-020-9831-8
https://tools.ietf.org/html/rfc8613
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1109/SP.2017.14

CPSIOTSEC 2022, November 7 –November 11, 2022, Los Angeles, U.S.A. Pegah Nikbakht Bideh and Christian Gehrmann

modification attack for a wearable fitness tracker. IT Converg. Pract 5, 4 (2017),
25–33.

[38] Hailun Tan, Diethelm Ostry, John Zic, and Sanjay Jha. 2013. A confidential
and DoS-resistant multi-hop code dissemination protocol for wireless sensor
networks. Computers & security 32 (2013), 36–55.

[39] Luca Verderame, Antonio Ruggia, and Alessio Merlo. 2021. PATRIOT: Anti-
Repackaging for IoT Firmware. CoRR abs/2109.04337 (2021). arXiv:2109.04337

https://arxiv.org/abs/2109.04337
[40] Mande Xie, Urmila Bhanja, Guiyi Wei, Yun Ling, Mohammad Mehedi Hassan,

and Atif Alamri. 2015. SecNRCC: a loss-tolerant secure network reprogramming
with confidentiality consideration for wireless sensor networks. Concurrency
and Computation: Practice and Experience 27, 10 (2015), 2668–2680.

https://arxiv.org/abs/2109.04337
https://arxiv.org/abs/2109.04337

	Abstract
	1 Introduction
	2 Related Work
	2.1 Secure code dissemination approaches
	2.2 DoS protection aspects
	2.3 Protected code dissemination comparison

	3 Problem Definition and Requirements
	3.1 Notations

	4 Design Features of RoSym
	5 Solution
	5.1 Key Establishment and Parameter Setup
	5.2 Upgrade Procedure
	5.3 Upgrade Procedure on IoT Unit Side

	6 Implementation and Experiments
	6.1 Hardware Choice
	6.2 Security Choices and Package Size
	6.3 Testbed Setup

	7 Evaluation
	7.1 Security
	7.2 Communication Overhead
	7.3 Computation Overhead
	7.4 Memory Footprints

	8 Formal Security Verification
	8.1 ProVerif Modeling
	8.2 ProVerif Verification

	9 Conclusions
	References

