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Populärvetenskaplig sammanfattning

Studiet av dynamiska system grundar sig i att förstå det långsiktiga beteendet hos ett
system som fortskrider i tiden, enligt vissa för systemet specifika regler. Dynamiska system
uppkommer naturligt inom olika vetenskapliga discipliner, exempelvis då man vill studera
planeternas rörelse, ta fram väderprognoser, eller förstå hur ett virus sprider sig i samhället.

För att studera dessa naturliga system behöver man matematiska modeller. Dessa modeller
är naturligt parametriserade och det är därför av intresse att inte enbart studera ett specifikt
dynamiskt system, utan en parametriserad familj av dynamiska system. En viktig fråga man
kan ställa är hur robusta dessa system är, eller med andra ord, hur dynamiken förändras vid
små störningar av parametrarna. Fastän modellerna man tar fram ofta är förenklade, och
parameterberoendet väldigt explicit, uppkommer teoretiskt intressanta och mycket icke-
triviala problem. Av betydande intresse är interaktionen mellan tamt beteende och kaotiskt
beteende. I parameterrummet är dessa två skilda företeelser ofta komplext sammanvävda.

I denna avhandling studeras små störningar av kaotiska system. Dessa system kommer
att beskrivas av funktioner på intervallet och på Riemannsfären. Systemen vi studerar
har kritiska punkter, det vill säga punkter där funktionens derivata är lika med noll. Hur
dynamiken för dessa specifika punkter ter sig visar sig ha stor betydelse för den globala
dynamiken. En viktig aspekt är rekurrent beteende: med vilken hastighet återkommer de
kritiska punkterna till varandra under iteration? Avhandlingen bygger vidare på tidigare väl
etablerade resultat, och det centrala temat är just dessa frågeställningar angående rekurrens
och dess konsekvenser.
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Introduction and summary





Chapter 1

Introduction

This introductory chapter gives a brief overview of the theory and results on which the
scientific papers of this thesis are based upon. It is divided into five sections as follows.
We begin by introducing what a dynamical system is, and some of the most fundamental
notions. The second section is devoted to the real quadratic family, which is the system
studied in Paper I, and which is one of the most well studied families of dynamical systems.
In Paper II and Paper III we study the dynamics of rational functions on the Riemann
sphere, and this topic is briefly introduced in the third section. In the fourth section we
discuss the Collet–Eckmann condition and some of its variants. These are conditions of
non-hyperbolicity and they play a central role in the thesis. In the final section we give a
schematic outline of the Benedicks–Carleson techniques, which are the foundational tools
used in Paper I and Paper II.

These sections below are by nomeans complete in terms of their scope, andmany important
results andnotions are left out. Rather, the goal is to give theminimal informationneeded to
motivate the problems studied in Paper I–III. Relevant references will be given throughout
the text, but for the more general theory of interval dynamics and complex (rational)
dynamics, we refer to [dMvS93,Dev92] and [CG93,Mil06,Bea91], respectively.

1 Some notions in dynamical systems

In this thesis we are concerned with the study of discrete dynamical systems. At its core this
constitutes a set𝑋 of points and a mapping 𝑓 ∶ 𝑋 → 𝑋. The set𝑋 is usually referred to as
the state space (or phase space), with each 𝑥 ∈ 𝑋 representing a specific state of the system.
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The mapping 𝑓 is the evolution mapping which determines the future of the system, taking
state 𝑥 to its future state 𝑓(𝑥). One of the main objectives when studying a dynamical
system is to understand its long term behaviour: given a state 𝑥 ∈ 𝑋, how does its orbit

𝑥, 𝑓(𝑥), 𝑓(𝑓(𝑥)), … , 𝑓𝑛(𝑥), …

distribute in state space? Here and elsewhere, 𝑓𝑛 always denotes the 𝑛th iterate of 𝑓. That
is, 𝑓0 = id and 𝑓𝑛 = 𝑓 ∘ 𝑓𝑛−1, with 𝑛 ≥ 1 an integer.

More generally, given one or more parameters 𝜆 belonging to some parameter space, one
can consider a family of dynamical systems 𝑓𝜆 ∶ 𝑋 → 𝑋. In this setting it is of interest
to understand how certain behaviours of the system are affected by small changes of the
parameter value.

The above questions are of course too general to answer if no structure on𝑋 nor regularity
on 𝑓 are imposed. In this thesis we study the so-called real quadratic family

𝑥 ↦ 𝑥2 + 𝑎 = 𝑄𝑎(𝑥),

acting on the real line, and more general rational functions

𝑧 ↦
𝑎𝑑𝑧

𝑑 + 𝑎𝑑−1𝑧
𝑑−1 + ⋯ + 𝑎0

𝑏𝑑𝑧𝑑 + 𝑏𝑑−1𝑧𝑑−1 + ⋯ + 𝑏0
= 𝑅(𝑧),

acting on the Riemann sphere. The quadratic family can be seen as a ‘toy model’ for the
more general study of rational maps, but has also been used in, for instance, biological
modelling [May76]. Nevertheless, already in this analytically simple family of dynamical
systems one finds very rich dynamics.

To understand the dynamics of a function 𝑓 such as above, acting on some appropriate
space, it is important to look for points which are left invariant under the action of 𝑓, and
to study the local behaviour of 𝑓 near these points. Such points are called fixed points, and
per definition they solve the equation 𝑓(𝑥) = 𝑥. More generally, one can look for so-called
periodic points. A point 𝑥 is a periodic point of 𝑓 if there exists an integer 𝑘 > 0 such that

𝑥 ↦ 𝑓(𝑥) ↦ 𝑓2(𝑥) ↦ ⋯ ↦ 𝑓𝑘(𝑥) = 𝑥.

Such an above orbit is usually referred to as a cycle, and if 𝑘 > 0 is the least integer such that
the above holds, then 𝑘 is called the length of the cycle. A cycle of length 𝑘 is classified as

• attracting if |(𝑓𝑘)′(𝑥)| < 1,
• repelling if |(𝑓𝑘)′(𝑥)| > 1,
• neutral if |(𝑓𝑘)′(𝑥)| = 1.
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These names are very suggestive: nearby points get closer to the cycle under iteration if
the cycle is attracting, get further away if the cycle is repelling, and in the neutral case both
instances may occur.

Another important notion is that of critical points. A point 𝑥 is a critical point of 𝑓 if the
derivative of 𝑓 at 𝑥 vanishes, i.e. critical points are the solutions to the equation 𝑓′(𝑥) = 0.
From now on we denote the set of critical points of 𝑓 by Crit(𝑓). It turns out that the
behaviour of the critical orbit(s) is of great importance to the global dynamics, and we give
some motivation to this claim in the following sections.

The results of this thesis are in one way or another concerned with the notion of critical
recurrence. In Paper I we investigate the real quadratic family and prove a theorem regarding
the rate of recurrence of the critical point to itself. This extends a previous result, and com-
pletes the picture of so-called polynomial recurrence. In Paper II and Paper III we consider
rational functions. Here we do not prove any results regarding the rate of recurrence, rather
we investigate some of the consequences when the critical points are allowed to approach
each other only at a slow rate.

2 The real quadratic family

Aquadratic polynomial acting on the real line is from an analytic point of view the simplest
non-linear dynamical system one can study. Let 𝑥 ↦ 𝐴𝑥2 + 𝐵𝑥 + 𝐶 = 𝑝(𝑥) be a quadratic
polynomial with real coefficients 𝐴 ≠ 0, 𝐵, and 𝐶. Conjugating this polynomial with
𝑥 ↦ 𝐴𝑥we get themonic quadratic polynomial 𝑥 ↦ 𝑥2+𝐵𝑥+𝐴𝐶, and further conjugating
with𝑥 ↦ 𝑥+𝐵/2, i.e. translating the critical point to the origin, we endupwith the so-called
real quadratic family

𝑥 ↦ 𝑥2 + 𝑎 = 𝑄𝑎(𝑥),

with 𝑎 = 𝐵/2 − 𝐵2/4 + 𝐴𝐶 being the parameter. Given a real parameter 𝑎, going the other
way arounddoes not determine a unique quadratic polynomial. Rather, each 𝑎 corresponds
to a conjugacy class. In this thesis we are concerned with the recurrent behaviour of the
critical orbit. To motivate this study, and also settle some notation, let us first briefly
mention some of the major results regarding this family of dynamical systems.

To understand the dynamics of𝑄𝑎 for different values of 𝑎, understanding the behaviour
of the critical orbit is of interest, as can be understood from the following result.

Proposition 2.1. For each parameter 𝑎 there can exist at most one (finite) attracting cycle
for the corresponding quadratic map𝑄𝑎. Moreover, if an attracting cycle exists, the orbit of
the critical point 𝑥 = 0 will accumulate along this cycle.

5



As a first step towards understanding the behaviour of the iterations of the critical point,
we allow ourselves to restrict the parameter interval.

Proposition 2.2. If 𝑎 does not belong to the interval [−2, 1/4], then𝑄𝑛
𝑎(0) tends to infinity

as 𝑛 tends to infinity. On the other hand, if 𝑎 belongs to [−2, 1/4] then there exists an interval
𝐼𝑎 ⊂ [−2, 2], containing the critical point, such that𝑄𝑎(𝐼𝑎) ⊂ 𝐼𝑎.

To begin the study of the qualitative behaviour of the real quadratic family, the following
proposition can be checked by hand.

Proposition 2.3. For the quadratic family𝑄𝑎:

(1) For 𝑎 = 1/4, there is a single fixed point that is neutral.

(2) For −3/4 < 𝑎 < 1/4, there is an attracting fixed point.

(3) For 𝑎 = −3/4, the attracting fixed point given in (2) becomes neutral.

(4) For −5/4 < 𝑎 < −3/4, there is an attracting cycle of length two.

Hence, for parameter values in the interval (−5/4, 1/4], the dynamics is rather trivial. In
fact, for such a parameter, almost every point of 𝐼𝑎 (with respect to Lebesgue measure) will
tend to the attracting fixed point, or 2-cycle, under iteration. To calculate attracting cycles
by hand soon becomes impractical, and onemust rely onmore qualitative and sophisticated
techniques. The transition from an attracting fixed point to an attracting 2-cycle is an
example of a so-called period-doubling bifurcation. By plotting the iterations of the critical
point for different values of 𝑎, this period-doubling bifurcation can be illustrated as in
Figure 1.1. Here one sees, going from right to left, the transition from an attracting fixed
point to an attracting 2-cycle, from an attracting 2-cycle to an attracting 4-cycle, and so on.
At the parameter value 𝑎 = −1.401… (the so-called Feigenbaum point), we see a sudden
change in the behaviour of the orbit of the critical point. Namely, the orbit does not seem
to be attracted to any cycle. This motivates the following definition.

Definition 2.4. A parameter 𝑐 ∈ [−2, 1/4] is called a regular parameter if 𝑥 ↦ 𝑥2 + 𝑐 has
an attracting cycle, and otherwise it is called a nonregular parameter. The set of regular
parameters is denotedℛ, and the set of nonregular parameters is denoted𝒩ℛ.

It is customary to call the corresponding function𝑄𝑎 regular (or nonregular) if the para-
meter 𝑎 is regular (or nonregular). Looking at the bifurcation diagram of Figure 1.1, the
‘white windows’ correspond to regular parameters, while the ‘black lines’ correspond to
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nonregular parameters. To understand these two sets of parameters, and how they are
intertwined, has been a central topic of study during the last couple of decades.

2.0 1.5 1.0 0.5 0.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Figure 1.1: Bifurcation diagram for 𝑥 ↦ 𝑥2 + 𝑎, 𝑎 ∈ [−2, 1/4].

When studying a parameterised family of dynamical systems, one is often interested in
whether some specific property holds on a positive measure set of parameters. In the case
of the quadratic family, the natural measure on the parameter interval is the Lebesgue
measure (which we from now on denote by Leb). For instance, it is obvious that the set
of regular parameters has positive measure since the interval (−3/4, 1/4) is contained in
ℛ. Moreover, it is not difficult to show that the set of parameters having neutral cycles
constitute only a set of measure zero. More difficult is the question about the measure
of the set of nonregular parameters. In 1981, M. Jakobson [Jak81] initiated the study of
nonregular parameters by proving that there exists a set Δ𝐽 of positive measure such that
for each 𝑎 ∈ Δ𝐽 there exists an absolutely continuous (with respect to Lebesgue) invariant
probability measure (acip) for the corresponding quadratic function 𝑄𝑎. This in turn
implies that the Lebesgue measure of𝒩ℛ is positive, since for a regular parameter any
finite invariant measure is necessarily singular with respect to Lebesgue measure, being the
sum of point measures along the attracting cycle. We make the following definition for
this subset of the nonregular parameters.
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Definition 2.5. A parameter 𝑎 ∈ [−2, 1/4] is called a stochastic parameter if 𝑥 ↦ 𝑥2 + 𝑎
has an absolutely continuous (with respect to Lebesgue) invariant probability measure.
The set of stochastic parameters is denoted 𝒮.

We recall that the measure 𝜇 is acip with respect to the function 𝑓 if it is a probability
measure and if, for every measurable set𝐴, 𝜇(𝑓−1(𝐴)) = 𝜇(𝐴) and

𝜇(𝐴) = ∫
𝛢

𝑑𝜇
𝑑Leb𝑑Leb,

with 𝑑𝜇/𝑑Leb denoting the so-called Radon-Nikodým derivative.

Having an acip is one characterisation of being nonregular. Other characterisations can be
formulated in terms of the derivative along the critical orbit. Indeed, since for a regular
map the critical orbit accumulates on the attracting cycle, the condition

lim inf𝑛→∞ |(𝑄𝑛
𝑎)

′(𝑎)| > 0

clearly implies 𝑎 being nonregular. However this condition is not necessary: in [Bru94]
examples of parameters 𝑎 are provided such that 𝑥 ↦ 𝑥2 + 𝑎 has no attracting or neutral
cycles, but lim inf𝑛→∞ |(𝑄

𝑛
𝑎)

′(𝑎)| = 0. Instead, let us denote by 𝜒−(𝑎) the so-called lower
Lyapunov exponent

𝜒−(𝑎) = lim inf𝑛→∞

log |(𝑄𝑛
𝑎)

′(𝑎)|
𝑛 .

It turns out that the condition 𝜒−(𝑎) ≥ 0 is the correct one to consider, since it is not only
sufficient for 𝑎 to be nonregular, but also necessary [NS98,LPS16].

Focusing on a similar condition as the above,M. Benedicks and L. Carleson [BC85] proved
in the early 1980s that there exists a setΔ𝛣𝐶 of positive measure such that, for each 𝑎 ∈ Δ𝛣𝐶,
the derivative along the critical orbit grows at least subexponentially:

lim inf𝑛→∞

log |(𝑄𝑛
𝑎)

′(𝑎)|
√𝑛 > 0.

Moreover, for each 𝑎 ∈ Δ𝛣𝐶, the corresponding quadratic map has an acip. In the sub-
sequent paper [BC91], working with the so-called Hénon family, Benedicks and Carleson
improved this growth condition and showed that it is in fact exponential. This condition
of having exponential growth of the derivative along the critical orbit is called the Collet–
Eckmann condition, and itwas first introducedbyP.Collet and J. P. Eckmann [CE83,CE80]
where they used this condition to prove the abundance of functions with chaotic dynamics
within certain families of dynamical systems. The Collet–Eckmann condition, and some
of its variants, are further discussed in Section 4 below. For the quadratic family, we make
the following definition.
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Definition 2.6. A parameter 𝑎 ∈ [−2, 1/4] is called a Collet–Eckmann parameter if the
corresponding quadratic map satisfies the Collet–Eckmann condition

lim inf𝑛→∞

log |(𝑄𝑛
𝑎)

′(𝑎)|
𝑛 > 0.

The set of Collet–Eckmann parameters is denoted 𝒞ℰ.

The techniques developed in [BC85,BC91] are of great importance in the field of dynamical
systems, and are also central to this thesis. We come back to these in Section 5.

It turns out that both the property of being stochastic, and that of being Collet–Eckmann,
are typical within the real quadratic family, namely

Leb𝒩ℛ = Leb𝒮 = Leb𝒞ℰ .

That the stochastic parameters are typical within nonregular parameters was proved by
M. Lyubich [Lyu02], following the work in [Lyu00,MN00]. That the Collet–Eckmann
parameters are typical within nonregular parameters was proved by A. Avila andC. G.Mor-
eira [AM05]. For this reason, one can consider both of these conditions as good character-
isations of being nonregular.

Considering the set of regular parameters, one can with an application of the inverse
function theorem show that this set is open, i.e. small changes in the parameter value of
a regular map do not alter the existence of an attracting cycle. A much deeper result is
that these parameters form a dense set in [−2, 1/4]. This result, known as the real Fatou
conjecture, was proved by J. Graczyk and G. Świątek [GS97,GS98b], and independently by
Lyubich [Lyu97]. This genericity result was later extended to the class of real polynomials
of arbitrary fixed degree, by O. Kozlovski, W. Shen, and S. van Strien [KSvS07]. With the
characterisation of nonregular maps, and the density of regular maps, one can say that
from a qualitative point of view, the real quadratic family is well-understood.

Considering the orbit of the critical point, we know from Proposition 2.1 that if 𝑎 is a
regular parameter, then its orbit accumulates on the attracting cycle. If 𝑎 on the other
hand is a nonregular parameter then, by definition, there can be no accumulation on an
attracting cycle, and we are left with two possible cases:

either lim inf𝑛→∞ |𝑄𝑛
𝑎(0)| > 0 or lim inf𝑛→∞ |𝑄𝑛

𝑎(0)| = 0.

The first case is known as theMisiurewicz case, and it implies that there exists 𝛿 = 𝛿(𝑎) > 0
such that |𝑄𝑛

𝑎(0)| > 𝛿 for all 𝑛 ≥ 1. It was conjectured by M. Misiurewicz in the early
1980s that these parameters constitute only a set of measure zero, and this conjecture was
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proved to be true by D. Sands [San98]. Hence for a typical nonregular parameter the
second case holds, and we simply call this the recurrent case. In this recurrent case, it is
natural to ask at what rate the critical point returns to itself or, more precisely, what are the
correct conditions on 𝛿𝑛 that guarantee

|𝑄𝑛
𝑎(0)| < 𝛿𝑛 for infinitely many 𝑛. (1.1)

It was conjectured by Y. Sinai that in the recurrent case, the critical point typically returns
with exponent 1. This can be formulated as, for almost every nonregular parameter 𝑎,

lim sup
𝑛→∞

− log |𝑄𝑛
𝑎(0)|

log 𝑛 = 1.

This conjecture was indeed proved to be true by Avila andMoreira [AM05]. Another way
to phrase this result is as follows: for almost every nonregular parameter 𝑎, the set of 𝑛 such
that |𝑄𝑛

𝑎(0)| < 1/𝑛𝜃 is finite if 𝜃 > 1, and infinite if 𝜃 < 1. This result motivated Paper I,
namely to study the case of the critical exponent 𝜃 = 1.

3 Rational dynamics

The study of iterations of rational maps on the Riemann sphere ℂ̂ was first initiated by
P. Fatou [Fat19,Fat20a,Fat20b] andG. Julia [Jul18] around the 1920s. With the emergence
of computers with better power of computation, this theory got more popular in the 1980s,
much due to themany beautiful pictures. Let us briefly introduce the fundamental notions
of rational dynamics.

We consider rational functions of one complex variable 𝑧 belonging to theRiemann sphere
ℂ̂. The Riemann sphere is the complex plane together with the abstract ‘point at infinity’.
Through stereographic projection, ℂ̂ is identified with the usual euclidean sphere inℝ3,
and by pulling back the euclidean metric | ⋅ | this provides us with the so-called chordal
metric 𝜎. For points 𝑧 and 𝑤 in the plane the distance between them with respect to the
chordal metric is

𝜎(𝑧, 𝑤) = 2|𝑧 − 𝑤|
√1 + |𝑧|2√1 + |𝑤|2

,

and if 𝑤 = ∞ then
𝜎(𝑧, ∞) = lim𝑤→∞ 𝜎(𝑧, 𝑤) =

2
√1 + |𝑧|2

.

Instead of the chordal metric one can also consider the equivalent so-called spherical metric
𝜎0, which is defined as

𝜎0(𝑧, 𝑤) = inf𝛾 ∫
𝛾

|𝑑𝑡|
1 + |𝑡|2

,

10



where the infimum is taken over all continuous curves 𝛾 joining 𝑧 and 𝑤.

Each rational function can be represented as the quotient of two polynomials

𝑧 ↦
𝑎𝑑𝑧

𝑑 + 𝑎𝑑−1𝑧
𝑑−1 + ⋯ + 𝑎0

𝑏𝑑𝑧𝑑 + 𝑏𝑑−1𝑧𝑑−1 + ⋯ + 𝑏0
= 𝑃(𝑧)
𝑄(𝑧) = 𝑅(𝑧),

with 𝑎𝑖 and 𝑏𝑖 belonging toℂ. We always assume that the𝑃 and𝑄 donot share any common
factors, and if not both 𝑎𝑑 and 𝑏𝑑 are equal to 0, we say that the degree of R deg(𝑅) is equal
to 𝑑. Thus, a rational map of degree 𝑑 is a 𝑑-to-1 covering of the Riemann sphere onto
itself. The spherical derivative of 𝑧 ↦ 𝑅(𝑧) is defined as

𝐷𝑅(𝑧) = 𝑅′(𝑧) 1 + |𝑧|2

1 + |𝑅(𝑧)|2
,

and we notice that it satisfies the chain rule.

The parameter space of rational maps (of a fixed degree 𝑑) is more complicated than that of
the interval. We can assume that either 𝑎𝑑 = 1 or 𝑏𝑑 = 1, thus the parameter space of rational
maps of degree 𝑑 is a (2𝑑 + 1)-dimensional complex manifold, and also a subspace of the
projective space ℂℙ2𝑑+1. On each of the two charts corresponding to 𝑎𝑑 = 1 and 𝑏𝑑 = 1,
respectively, the Lebesgue measures are mutually absolutely continuous. The Lebesgue
measures on each chart are also mutually absolutely continuous to the induced Fubini-
Study measure onℂℙ2𝑑+1. In Paper II we use a special normalisation of rational functions
of degree 𝑑, due to G. Levin [Lev14]. We identify two rational functions of degree 𝑑 as
being equal if they are conjugated by aMöbius transformation. Up to equivalence, we then
consider the space of rational functions (of degree 𝑑) with exactly 𝑝′ different critical points
𝑐1, 𝑐2, … , 𝑐𝑝′ , with corresponding multiplicities 𝑝′ = (𝑚1, 𝑚2, … , 𝑚𝑝′). Within this space,
which we denote byΛ𝑑,𝑝′ , critical points move analytically with respect to the parameter.
In particular, if all critical points are simple, i.e. 𝑝′ = (1, 1, … , 1), thenΛ𝑑,𝑝′ is locally equal
to the entire parameter space.

An early and important step in the theory of rational dynamics was made by Fatou and
Julia when they described a decomposition of the Riemann sphere into two invariant sets
with respect to a rational function, namely the Fatou set and its complement, the Julia
set. The Fatou set of a rational map 𝑅 is denotedℱ(𝑅) and is by definition the domain of
normality: for each 𝑧 ∈ ℱ(𝑅) there exists a neighbourhood𝑈, containing 𝑧, such that the
set of consecutive iterates of 𝑅 restricted to𝑈 forms a normal family. That is to say, there
exists an increasing sequence 𝑛𝑘 such that 𝑓

𝑛𝑘|𝑈 converges locally uniformly on compact
subsets of 𝑈, with respect to the spherical metric. Intuitively, nearby points belonging
to the Fatou set share similar limiting behaviour, and for this reason the dynamics on the
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Fatou set is considered stable. From the definition, it follows that the Fatou set is open,
hence the Julia set is compact. We denote the Julia set by𝒥(𝑅). Using Montel’s theorem,
one can prove that the Julia set is equal to the closure of the repelling cycles. Hence, nearby
points belonging to the Julia set will repel each other, and one speaks of chaotic dynamics.
On the Julia set, it therefore makes sense to talk about Lyapunov exponents, invariant
measures, and so on.

The dynamics in the Fatou set for a rational function is well understood, and for complete-
ness we state the following classification result. A component𝑈 of the Fatou setℱ(𝑅) is
called fixed if 𝑅(𝑈) = 𝑈, periodic if 𝑅𝑘(𝑈) = 𝑈 for some 𝑘 > 0, and pre-periodic if 𝑅𝑙(𝑈)
is periodic for some 𝑙 > 0. That these are the only possibilities was proved by D. Sulli-
van [Sul85]: a component𝑈 of the Fatou set of a rational map is either fixed, periodic,
or pre-periodic. This result by Sullivan, which is often called Sullivan’s no-wandering-
domain theorem, is a milestone in rational dynamics, and introduced the new idea of using
quasiconformal mappings in dynamics.

Assuming𝑈 to be a fixed component, the dynamics can be classified as follows.

Proposition 3.1. Let𝑈 be a fixed component of the Fatou set of a rational function. Then
one of the following alternatives is true.

(1) 𝑈 contains an attracting fixed point for which all points in𝑈 converge to under iteration,

(2) 𝜕𝑈 contains a neutral fixed point for which all point in𝑈 converge to under iteration,

(3) 𝑈 is either conformally equivalent to the disk or an annulus, and the dynamics is conjug-
ated to a euclidean rotation.

In case (2) above, the neutral fixed point, say 𝑧 = 𝑅(𝑧), is in fact a so-called parabolic
fixed point. By definition this means that𝐷𝑅(𝑧) = 𝑒𝑖𝑝/𝑞, with 𝑝 and 𝑞 being integers. If
𝑈 is of type (3), it is called a Siegel disk if it is conformally equivalent to the disk, and a
Herman ring if it is conformally equivalent to an annulus. The rotation angle is, in either
case, irrational. Proposition 3.1 can be naturally generalised to periodic components by
considering a suitable iterate of the rational map.

Let us now begin to consider the dynamics on the Julia set. It is illustrative to consider the
most simple function, namely a complex quadratic one

𝑧 ↦ 𝑧2 + 𝑎 = 𝑃𝑎(𝑧),

with 𝑎 ∈ ℂ. The following result tells us that the behaviour of the critical point has direct
consequences for the geometry of the Julia set.

12



Proposition 3.2. If 𝑃𝑛
𝑎 (0) tends to infinity as 𝑛 tends to infinity, then the Julia set𝒥(𝑃𝑎) is

totally disconnected. Otherwise it is connected.

The above resultmotivates the definition of the so-called connectedness locus, which is the set
consisting of those parameters 𝑎 for which𝒥(𝑃𝑎) is connected. In the case of the (complex)
quadratic family this set is usually called theMandelbrot set, after B. Mandelbrot [Man80]
who was the first to obtain high quality pictures of it (see also [BM81]). We denote the
Mandelbrot set byℳ, and from Proposition 2.2 we know thatℳ intersects the real line
in [−2, 1/4]. Moreover we have the following result.

Proposition 3.3. ℳ is a closed simply connected subset of the disk {|𝑎| ≤ 2}, and consists of
precisely those 𝑎 such that 𝑃𝑛

𝑎 (0) ≤ 2 for all 𝑛 ≥ 0.

Figure 1.2 provides a picture of the Mandelbrot set, and we notice the close connection
with the bifurcation diagram of Figure 1.1. Indeed, the parameter values for which period
doubling bifurcation occurs are precisely those parameters in the Mandelbrot set lying on
the real axis connecting the components.

2.0 1.5 1.0 0.5 0.0 0.5
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Figure 1.2: Connectedness locus for 𝑧 ↦ 𝑧2 + 𝑐.

In the rational setting there is no analogue of Proposition 3.2, however the behaviour of the
critical orbits are equally important for the global dynamics. The following result resembles
that of Proposition 2.1.
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Proposition 3.4. For each attracting cycle of a rational function of degree 𝑑 ≥ 2 there is at
least one critical point whose orbit accumulates on this cycle. The number of critical points
(counting multiplicity) is at most 2𝑑 − 2, hence there are at most 2𝑑 − 2 attracting cycles.

In order to understand the dynamics on the Julia set, the following definition is of central
importance. We notice the resemblance with Definition 2.5.

Definition 3.5. A rational function 𝑧 ↦ 𝑅(𝑧) is called hyperbolic if every critical point
belongs to the Fatou setℱ(𝑅) and is attracted to an attracting cycle. Otherwise it is called
non-hyperbolic.

Being hyperbolic is equivalent to the existence of a metric, smoothly equivalent to the
spherical metric in a neighbourhood of the Julia set, for which𝑅 is expanding. If we assume
that∞ ∉ 𝒥(𝑅), then this is equivalent to the existence of 𝐶 > 0 and 𝛾 > 0 such that

|(𝑅𝑛)′(𝑧)| ≥ 𝐶𝑒𝛾𝑛

for all 𝑧 ∈ 𝒥(𝑅) and 𝑛 ≥ 1. (This latter notion of expanding on the Julia set is in fact the
usual definition of being hyperbolic, and our definition can be proved to be equivalent.)

One of the great open conjectures in the field of rational dynamics is the so-calledHyperbol-
icity conjecture: the set of hyperbolic rational maps form an (open) dense set in parameter
space. Even in the case of the quadratic family 𝑧 ↦ 𝑧2 + 𝑎 it is not yet known whether the
set of (complex) parameters 𝑎 forms an open dense set (this is the so-called Fatou conjecture).

4 The Collet–Eckmann conditions

As mentioned earlier, the Collet–Eckmann condition was first introduced by Collet and
Eckmann [CE83,CE80] in their study of certain real families of dynamical systems, and
was used to prove the abundance of acip’s.

The Collet–Eckmann condition has proven to be very fruitful to consider also in the
rational setting, although things naturally become more complex. We give the following
definition.

Definition 4.1. A rational function𝑅without parabolic cycles is said to satisfy the Collet–
Eckmann condition (CE) if there exist 𝐶 > 0 and 𝛾 > 0 such that, for each critical point 𝑐
in the Julia set of 𝑅,

|𝐷𝑅𝑛(𝑅(𝑐))| ≥ 𝐶𝑒𝛾𝑛,

for all 𝑛 ≥ 0.
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The requirement of no parabolic cycles is a technical one since, for instance, one usually
wants uniform expansion outside a neighbourhood of the critical points in the Julia set.
From now on we denote by Crit′(𝑅) the set of critical points in the Julia set of 𝑅, i.e.
Crit′(𝑅) = Crit(𝑅) ∩ 𝒥(𝑅).

The study of rational Collet–Eckmann maps was initiated by F. Przytycki [Prz96,Prz98].
For instance, in [Prz96] it is proved that if𝒥(𝑅) ≠ ℂ̂, then Leb𝒥(𝑅) = 0, i.e. for a rational
Collet–Eckmann map, either the Julia set is the entire sphere, or it has measure zero.
Moreover, by assuming an extra condition byM. Tsujii, namely that the average distance of
𝑅𝑛(Crit′) toCrit′ is not too small, it was also proved that theHausdorff dimension of𝒥(𝑅)
is strictly less than 2 (provided𝒥(𝑅) ≠ ℂ̂, of course). Later, Graczyk and Smirnov [GS98a]
proved, among other things, that rational Collet–Eckmann maps can have no rotation
domains, and the Fatou components are Hölder domains. (Using a result by P. Jones and
N. Makarov [JM95], this latter property implies that, for a rational Collet–Eckmann map
with at least one fully invariant Fatou component, the Hausdorff dimension of its Julia set
is strictly less than 2.)

That rational Collet–Eckmann maps are interesting from a measure point of view was
established by M. Aspenberg [Asp04, Asp13] in his doctoral thesis: the set of Collet–
Eckmannmaps has positive (Lebesgue)measure in the parameter space of rational functions
of any fixed degree𝑑 ≥ 2. Moreover, using the results of Przytycki [Prz96], andGraczyk and
Smirnov [GS98a], these maps described by Aspenberg also support acip’s. The existence of
a positive measure set of rational maps having acip’s was first proved byM. Rees [Ree86].

Considering the recurrent nature of rational functions, Aspenberg [Asp09] furthermore
proved that the set of rational Misiurewicz functions of any fixed degree 𝑑 ≥ 2 constitutes
only a set of measure zero in the parameter space. Therefore, analogous to the case of real
quadratic functions, the critical points belonging to the Julia set of a typical non-hyperbolic
rational function are recurrent. Results regarding the rate of recurrence of the critical points
for non-hyperbolic rational functions are more sparse than in the real quadratic setting.
In the quadratic (and even unicritical) setting 𝑧 ↦ 𝑧2 + 𝑎 = 𝑃𝑎(𝑧), the Collet–Eckmann
parameters are known to constitute only a set of measure zero [ALS11]. However, Graczyk
and Świątek [GS00] proved that for a typical parameter with respect to harmonic measure
on the boundary of the Mandelbrot set, the Collet–Eckmann condition is satisfied (see
also [Smi00]). Moreover, they proved in [GS15] that the Lyapunov exponent 𝜒(𝑎) exists:
for a typical parameter 𝑎 ∈ 𝜕ℳwith respect to harmonic measure,

𝜒(𝑎) = lim𝑛→∞

log |(𝑃𝑎)
′(𝑎)|

𝑛 = log 2.

This in turn immediately gives us a recurrence result: for every 𝛼 > 0 there exists a constant
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𝐶 = 𝐶(𝛼) > 0 such that
|𝑃𝑛
𝑎 (0)| ≥ 𝐶𝑒−𝛼𝑛,

for all 𝑛 ≥ 1. For a rational function, we make the following definition.

Definition 4.2. A rational function 𝑅 of degree 𝑑 ≥ 2 is said to satisfy the slow recurrence
condition (SR) if for every 𝛼 > 0 there exists𝐶 = 𝐶(𝛼) > 0 such that, for every critical point
𝑐 ∈ Crit′(𝑅),

dist(𝑅𝑛(𝑐),Crit′) ≥ 𝐶𝑒−𝛼𝑛,

for all 𝑛 ≥ 1.

Not much is known about the measure of rational functions satisfying the slow recur-
rence condition, however it is conjectured to be satisfied for almost every rational Collet–
Eckmann map. We should also mention that, to the author’s knowledge, no results exist
regarding the typical rate of recurrence in the rational setting, i.e. for what 𝛿𝑛 do we have,
given 𝑐 ∈ Crit′,

dist(𝑅𝑛(𝑐),Crit′) < 𝛿𝑛

for infinitely many 𝑛? We do believe, however, that the techniques of Paper I can be carried
over to the rational setting.

Focusing on this slow recurrence condition, Aspenberg [Asp21] recently proved the follow-
ing consequence. Let 𝑅 be a rational Collet–Eckmann map of degree 𝑑 ≥ 2, satisfying the
slow recurrence condition, and such that𝒥(𝑅) = ℂ̂. Then 𝑅 is a Lebesgue density point
of rational Collet–Eckmann maps of degree 𝑑 within the space Λ𝑑,𝑝′ . In particular, this
generalises the results in [Asp04,Asp13]. Motivated by this result, together withAspenberg
and W. Cui, in Paper II we consider functions as above but with𝒥(𝑅) ≠ ℂ̂, and prove
that these are density points of hyperbolic maps. In particular, assuming that almost every
rational Collet–Eckmann map satisfies the slow recurrence condition, then almost every
Collet–Eckmann map has its Julia set equal to the Riemann sphere.

Let us finish this section with discussing some other closely related conditions of non-
hyperbolicity. Already in [CE83,CE80], a conditionnowknownas the second (or backward)
Collet–Eckmann condition was considered. The definition in the rational setting is as
follows.

Definition 4.3. A rational map 𝑅 of degree 𝑑 ≥ 2 is said to satisfy the second Collet–Eck-
mann condition (CE2) if there exist constants 𝐶2 > 1 and 𝛾2 > 0 such that, for every 𝑛 ≥ 1
and every 𝑤 ∈ 𝑅−𝑛(𝑐), for 𝑐 ∈ Crit′(𝑅) not in the forward orbit of other critical points,

|𝐷𝑅𝑛(𝑤)| ≥ 𝐶2𝑒
𝛾2𝑛.
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Graczyk and Smirnov [GS98a] proved that CE and CE2 are equivalent in the unicritical
setting 𝑧 ↦ 𝑧𝑑 + 𝑎. In Paper I and Paper II, this condition is utilised to prove strong
expansion results outside a neighbourhood of the critical point(s).

In their studyof the geometry ofCollet–Eckmann Julia sets, Przytycki andS.Rohde [PR98]
formulated the following condition.

Definition 4.4. A rational map 𝑅 of degree 𝑑 ≥ 2 is said to satisfy the topological Collet–
Eckmann condition (TCE) if there exist𝑀 ≥ 0, 𝑃 ≥ 0 and 𝑟 > 0 such that for every
𝑧 ∈ 𝒥(𝑅) there exists a strictly increasing sequence of positive integers 𝑛𝑗, 𝑗 = 1, 2, …, such
that 𝑛𝑗 ≤ 𝑃𝑗 and, for each 𝑗,

# {𝑘 ∶ 0 ≤ 𝑘 < 𝑛𝑗,Comp𝑅𝑘(𝑧) 𝑅
−(𝑛𝑗−𝑘) (𝐵(𝑅𝑛𝑗(𝑧), 𝑟)) ∩ Crit ≠ ∅} ≤ 𝑀.

Here in the above definition, Comp𝑤 denotes the connected component containing 𝑤.
Since the above condition is formulated in topological terms, it is invariant under topolo-
gical conjugacy. One of the more useful properties of the topological Collet–Eckmann
condition is its many equivalent formulations [PRLS03,PRL07,RL10]. In particular, CE
and CE2 independently imply TCE.

Much work has been done to understand the relationships between these three character-
isations of non-hyperbolicity. Przytycki, Smirnov, and J. Rivera-Letelier [PRLS03] made
an extensive study and proved, among other things, that these conditions are equivalent
within the family of unicritical functions 𝑧 ↦ 𝑧𝑑 + 𝑎. In Paper III, we observe yet another
consequence of the slow recurrence condition, namely that within the family of slowly
recurrent rational maps of degree 𝑑 ≥ 2, all of these conditions are equivalent. Since there
are known examples where CE does not imply CE2, CE2 does not imply CE, and TCE
does not imply CE or CE2, this shows that the slow recurrence condition is in some sense
essential for equivalence to hold.

5 The Benedicks–Carleson techniques

In their seminal papers, Benedicks and Carleson [BC85,BC91] developed techniques to
prove the abundance of Collet–Eckmann real quadratic functions, and the existence of
acip’s. However, this machinery of theirs is far reaching, as can be realised by the many
papers utilising it. In fact, it is the foundational tool used in Paper I and Paper II of this
thesis. In this section we try to provide a schematic outline of these parameter exclusion
techniques.
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At its core, these techniques constitute a technical induction argument, with the Collet–
Eckmann condition being the driving force. For the sake of explanation, let 𝑓 = 𝑓0 be
the so-called unperturbed map, acting on some space𝑋. We ask of this map to satisfy the
Collet–Eckmann condition: there exist constants 𝐶 > 0 and 𝛾 > 0 such that, for all critical
points 𝑐 of 𝑓 belonging to𝒥(𝑓),

|(𝑓𝑛)′(𝑓(𝑐))| ≥ 𝐶𝑒𝛾𝑛,

for all 𝑛 ≥ 0.

For 𝑎 in some subset Δ = Δ0 of the parameter space, we let 𝑓𝑎 denote a perturbation of
𝑓. The goal is to show that for a large (or small) set of parameters, the corresponding
perturbations 𝑓𝑎 share similar properties as the unperturbed map.

To this end, suppose that 𝑓 only has one critical point 𝑐 = 𝑐(0), and that the corresponding
perturbation 𝑓𝑎 only has one critical point 𝑐(𝑎). In fact, let us assume a normalisation so
that 𝑐(𝑎) = 0 for all 𝑎 ∈ Δ. We will iterate the critical point simultaneously for different
parameters, and we let 𝜉𝑛 ∶ Δ ↦ 𝑋 denote the function 𝑎 ↦ 𝜉𝑛(𝑎) = 𝑓𝑛

𝑎 (0).

If Δ is chosen sufficiently small then, up to some large time 𝑁, the Collet–Eckmann
condition is inherited by all perturbations. In particular, as long as the derivatives of
𝑓𝛮
𝑎 and 𝑓𝛮

𝑏 , evaluated at their corresponding critical values, are comparable, the Collet–
Eckmann condition gives expansion of the image. This property of having comparable
derivatives is called distortion. At some time𝑚1 ≥ 𝑁, the image ofΔwill come very close to,
and might even cover, the critical point. At this stage one makes a partition: Δ = ⋃𝑘 Δ1,𝑘.
This partition is made so that on each partition element Δ1,𝑘, we have good distortion
control. Each of the partition elements will then be iterated individually until the same
situation occurs. That is to say, the partition element Δ1 = Δ1,𝑘, for instance, will be
iterated until at some time𝑚2 ≥ 𝑚1 its image 𝜉𝑚2

(Δ1) gets close to the critical point. At
this stage we once again make a partition Δ1 = ⋃𝑘 Δ2,𝑘, and the procedure continuous
indefinitely.

At each stage of partitioning, one might have to discard parameters that belong to partition
elements that come too close to the critical point. The reason for this is to make sure that
not too much derivative is lost, hence ensuring a Collet–Eckmann condition for future
iterates. This approach rate condition is usually referred to as the basic assumption: for all
𝑎 ∈ Δwe ask that

dist (𝑓𝑛
𝑎 (0), 0) ≥ 𝛿𝑛,

for all 𝑛 ≥ 1, and for some suitable sequence 𝛿𝑛.
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Even though some derivative is lost when returning close to the critical point, much (but
not all) of what was lost will be recovered during the so called bound period. Indeed, the
Collet–Eckmann condition is a standing induction assumption, and for some time after
the partition, the future iterates will stay close to the past iterates. Using this fact, one can
show that during this bound period, derivative from the past iterates will be inherited by
the future iterates.

In order to estimate what is left in parameter space after each partition stage, one needs
to be able to compare the parameter derivative of 𝜉𝑛 with the phase derivative of 𝑓𝑛−1

𝑎 .
This kind of comparison is called transversality. Assuming good distortion estimates, and
good transversality estimates, the measure of what is left in parameter space after infinitely
long time is essentially determined by whether the sequence 𝛿𝑛 in the basic assumption is
summable or not.
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Chapter 2

Summary of results

Paper I

In this paper we study the real quadratic family

𝑥 ↦ 𝑥2 + 𝑎 = 𝑄𝑎(𝑥),

acting on 𝑋 = [−2, 2], and with parameter 𝑎 ∈ [−2, 1/4]. Our goal is to investigate the
typical recurrence rate of the critical point 𝑥 = 0 to itself, when 𝑎 is a nonregular parameter,
i.e. when 𝑎 is such that 𝑥 ↦ 𝑥2 + 𝑎 has no attracting cycle. With typical recurrence rate we
mean a sequence 𝛿𝑛 such that, for almost every nonregular parameter 𝑎,

|𝑄𝑛
𝑎(0)| < 𝛿𝑛

holds true for infinitely many 𝑛. Without loss of generality we may assume 𝑎 ∈ [−2, −1],
and for such parameters we instead study the equivalent family

𝑥 ↦ 1 − 𝑎𝑥2 = 𝐹(𝑥; 𝑎),

acting on𝑋 = [−1, 1], and with parameter 𝑎 ∈ [1, 2].

A. Avila and C. G. Moreira [AM05] proved two important results regarding the real
quadratic family. The first result states that almost every nonregular parameter satisfies the
Collet–Eckmann condition. The second result concerns recurrence, and states that for
almost every nonregular parameter 𝑎

lim sup
𝑛→∞

− log |𝐹𝑛(0; 𝑎)|
log 𝑛 = 1.
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Introducing the set Λ(𝛿𝑛) = {𝑎 ∈ 𝒩ℛ ∶ |𝐹𝑛(0; 𝑎)| < 𝛿𝑛 for infinitely many 𝑛} the above
equality can be rephrased as

LebΛ(𝑛−𝜃) = {
Leb𝒩ℛ if 𝜃 < 1,
0 if 𝜃 > 1.

The above lim sup-result is strong and gives us both a typical recurrence rate, namely
𝛿𝑛 = 𝑛−(1−𝜖) for any 𝜖 > 0, but also a typical approach rate: for almost every nonregular
parameter 𝑎 and 𝜖 > 0 there exists a constant 𝐶 = 𝐶(𝑎, 𝜖) such that

|𝐹𝑛(0; 𝑎)| ≥ 𝐶
𝑛1+𝜖

for all 𝑛 ≥ 1.

What the lim sup cannot see, though, is the sharpness of the exponent, i.e. the case of 𝜖 = 0,
and to investigate this is the main concern of Paper I.

Let us call a sequence 𝛿𝑛 admissible if there exists a constant𝐾 > 0 and an exponent 𝜎 ≥ 0
such that

𝛿𝑛 ≥
𝐾
𝑛𝜎 for all 𝑛 ≥ 1.

In Paper I we prove the following result. There exists 𝜏 ∈ (0, 1) such that if 𝛿𝑛 is admissible
and

∑
𝛿𝑛

log 𝑛𝜏
(log∗ 𝑛)3 = ∞,

then LebΛ(𝛿𝑛) = Leb𝒩ℛ. Here log∗ is the so-called iterated logarithm, and it is defined
as

log∗ 𝑥 = {
1 if 𝑥 ≤ 1,
1 + log∗ log 𝑥 if 𝑥 > 1.

In particular, log∗ grows slower than any log𝑗 = log ∘ log𝑗−1, 𝑗 ≥ 0. Therefore as a direct
corollary we find that

LebΛ(𝑛−1) = Leb𝒩ℛ,

thus covering the missing case of 𝜃 = 1.

The proof utilises the Benedicks–Carleson techniques [BC85,BC91], together with more
recent developments [Asp21,Lev14]. Themain innovation of this paper is the introduction
of unbounded distortion estimates.
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Paper II

We consider slowly recurrent rational functions of a fixed degree and whose Julia set is not
equal to the entire sphere. By assuming that the critical points approach each other only at
a slow rate, i.e. by assuming the so-called slow recurrence condition, we prove that these
functions can be approximated in a strong sense by hyperbolic functions.

Let us call two rational functions equivalent if they are conjugated by aMöbius transforma-
tion. In the parameter space of rational functions of a fixed degree𝑑 ≥ 2, letΛ𝑑,𝑝′ denote the
subspace of rational functions, up to equivalence, with exactly 𝑝′ critical points 𝑐1, 𝑐2, … , 𝑐𝑝′ ,
and with corresponding multiplicities 𝑝′ = (𝑚1, 𝑚2, … , 𝑚𝑝′). Within this subspace, critical
points do not split, and move analytically with the parameter. In this paper, we look at
small perturbation of 𝑅 = 𝑅0 ∈ Λ𝑑,𝑝′ , where 𝑅 satisfies the Collet–Eckmann condition,
and𝒥(𝑅) ≠ ℂ̂. Moreover, 𝑅 also satisfies the slow recurrence condition: for any 𝛼 > 0
there exists 𝐶 > 0 such that, for every 𝑐 ∈ Crit′,

dist (𝑅𝑛(𝑐),Crit′) ≥ 𝐶𝑒−𝛼𝑛,

for all 𝑛 ≥ 1. In Paper II we prove that such a rational function is a Lebesgue density point
of hyperbolic functions (withinΛ𝑑,⏞𝑝′). Moreover, if all critical points are simple, then such
a function is a Lebesgue density point of hyperbolic functions in the entire space of rational
functions of degree 𝑑.

To prove the above result, we utilise the parameter exclusion techniques developed by
Benedicks and Carleson [BC85,BC91], together with its evolvement in the rational set-
ting by Aspenberg [Asp04, Asp13, Asp09, Asp21], and strong transversality results by
Levin [Lev14]. In fact, Aspenberg [Asp21] recently proved a contrasting result. Namely, if
𝑅 ∈ Λ𝑑,𝑝′ satisfies the Collet–Eckmann condition, if𝒥(𝑅) = ℂ̂, and if 𝑅 satisfies the slow
recurrence condition, then it is a Lebesgue density point of Collet–Eckmann functions
(withinΛ𝑑,𝑝′).

The techniques used in Paper II are similar to those in [Asp21]. We begin with a small
parameter square centred at𝑅, and our goal is for this square to reach to so-called large scale.
Since𝒥(𝑅) ≠ ℂ̂, the measure of the Julia set𝒥(𝑅) is equal to zero [Prz96]. Therefore,
upon reaching the large scale, a large portion of our square will correspond to parameters
whose critical points lie in the Fatou set. We show that the large scale is reached under
bounded transversality, and bounded distortion, and the conclusion is that in parameter
space, most parameters correspond to hyperbolic maps, hence our density result.
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Paper III

In Paper III we consider rational functions acting on the Riemann sphere ℂ̂, and the
relationships between the Collet–Eckmann condition (CE), the second Collet–Eckmann
condition (CE2), and the topological Collet–Eckmann condition (TCE). Much work has
been made investigating these conditions. In particular it is known that CE or CE2 implies
TCE, whereas to any other possible implication there are known counterexamples. In the
unicritical, on the other hand, all of these conditions are equivalent. (See [PRLS03] and
references therein.)

In this paper we observe that within the family of slowly recurrent rational functions, all
of the above conditions are equivalent. Moreover these conditions are invariant under
topological conjugation. The proofs in this paper are short, even though the results on
which they are based upon require technical machinery. Indeed, the techniques are those
of shrinking neighbourhoods as developed by Przytycki [Prz98], and used by Graczyk and
Smirnov [GS98a].
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