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Abstract

In this thesis, we focus on the problem of estimating receiver and sender node positions
given some form of distance measurements between them. This kind of localization
problem has several applications, e.g., global and indoor positioning, sensor network
calibration, molecular conformations, data visualization, graph embedding, and robot
kinematics. More concretely, this thesis makes contributions in three different areas.

First, we present a method for simultaneously registering and merging maps. The merg-
ing problem occurs when multiple maps of an area have been constructed and need to be
combined into a single representation. If there are no absolute references and the maps
are in different coordinate systems, they also need to be registered.

In the second part, we construct robust methods for sensor network self-calibration us-
ing both Time of Arrival (TOA) and Time Difference of Arrival (TDOA) measurements.
One of the difficulties is that corrupt measurements, so-called outliers, are present and
should be excluded from the model fitting. To achieve this, we use hypothesis-and-test
frameworks together with minimal solvers, resulting in methods that are robust to noise,
outliers, and missing data. Several new minimal solvers are introduced to accommodate
a range of receiver and sender configurations in 2D and 3D space. These solvers are for-
mulated as polynomial equation systems which are solved using methods from algebraic
geometry.

In the third part, we focus specifically on the problems of trilateration and multilat-
eration, and we present a method that approximates the Maximum Likelihood (ML)
estimator for different noise distributions. The proposed approach reduces to an eigen-
decomposition problem for which there are good solvers. This results in a method that
is faster and more numerically stable than the state-of-the-art, while still being easy to
implement. Furthermore, we present a robust trilateration method that incorporates a
motion model. This enables the removal of outliers in the distance measurements at the
same time as drift in the motion model is canceled.
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Populärvetenskaplig Sammanfattning

Positionering har blivit mer och mer viktigt i dagens samhälle. Numera går de flesta
människor runt med en smartphone i fickan och nyttjar GPS för positionering och na-
vigering. Utomhus är detta ofta en fullt fungerande lösning, men inomhus fungerar det
sämre. Där dämpas och studsar GPS-signalerna mot väggar och golv vilket försvårar po-
sitioneringen, och i vissa fall går det inte alls. Således krävs det en utveckling av andra
metoder för när GPS inte är ett alternativ. En möjlighet är att använda andra radio-
signaler (t.ex. Wi-Fi och Bluetooth), men det går också att använda ljud eller ljus. För
många positioneringsproblem är geometrin den samma oberoende av vilken teknik som
används, så som exempel kan vi för tillfället fokusera på ljudmätningar.

Anta att vi har ett rum med ett antal mikrofoner godtyckligt utplacerade. Anta vidare att
vi går runt i det rum med en högtalare, spelandes musik. Kan vi med hjälp av ljudinspel-
ningar från mikrofonerna lista ut var högtalaren befann sig vid en viss tidpunkt? Kan vi
lista ut var mikrofonerna var placerade relativt högtalarens positioner, eller kanske relativt
golvet och väggarna i rummet? Svaret på dessa frågor är ja, och i den här avhandlingen
utforskar vi metoder för att lösa dessa och liknande positioneringsproblem.

Ofta jobbar vi med någon form av avståndsmätningar som har uppkommit med hjälp av
ljud- eller radiosignaler. Som exempel, säg att en högljudd trumpetare spelar en signal och
vi, som befinner oss på ett säkert avstånd, hör signalen efter en sekund. Då är avståndet
mellan oss ungefär 340m, eftersom ljudets hastighet är ca 340m/s. Endast en sådan här
avståndsmätning är dock inte tillräcklig för att exakt bestämma trumpetarens position.
Vi kan enbart säga att den entusiastiske musikern finns någonstans på en cirkel med
radien 340m och med oss i centrum. Fler mätningar gör dock problemet lösbart (se
figuren på nästa sida).

Det finns flera varianter av den här typen av problem som är svårare och mer intressanta
att lösa. Många varianter uppstår på grund av att vi inte har perfekta avståndsmätningar.
I praktiken är inga mätningar exakta utan de innehåller brus. Då kan vi inte få exakta
lösningar för positionerna, och vi måste hitta den lösning som passar data bäst. Det kan
dock förekomma mätningar som är så dåliga att det är bättre om vi kunde identifiera
dem och ta bort dem. En anledning till att så stora fel uppstår är att signaler kan studsa
på väggar och tak och skapa ekon. Då går signalen inte raka vägen mellan källan och
mottagaren, och avstånden blir således fel. Med mer avancerade metoder är det dock
möjligt att modellera hur signalerna studsar, och på så vis behöver vi inte ta bort de här
mätningarna. Som en bonus kan vi då samtidigt hitta var väggar och tak befinner sig. De
metoder som presenteras i denna avhandlingen är konstruerade för att just kunna hantera
brusiga mätningar och stora fel, vilket i slutändan resulterar i bättre positionering.

viii



Från varje mikrofon (blå) till högtalaren (orange) har vi kända avstånd som illustreras med de streckade cirklarna. Högtalaren
befinner sig där cirklarna skär varandra. Minst tre mikrofoner behövs för att exakt bestämma högtalarens position.
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Part I

Research Context
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Chapter 1

Introduction

Localization problems are ubiquitous in the modern world, as it becomes increasingly
common for people to use their smartphones and the Global Navigation Satellite Sys-
tem (GNSS) for positioning and navigation. However, GNSS does not typically perform
well indoors, so other technologies and methods need to be used in these environments.
There is also a growing need for localization indoors with applications such as guiding
visitors through museum exhibitions, navigation in large shopping centers, and tracking
personnel and equipment [1]. Though, indoor positioning is just one of the applications
for the localization methods presented in this thesis. Other applications include sen-
sor network self-calibration, molecular conformations [2, 3], data visualization, graph
embedding, and robot kinematics [4].

A more abstract description of the problems we solve in this thesis is the following.
Assume we have a set of unknown points in Euclidean space, and we are given pairwise
distances between some of them. Can we then find the location of the points? This is
the fundamental problem in a branch of mathematics called distance geometry [5]. More
accurately, it is a whole family of problems with a plethora of variations. For example,
if all possible distances are given, the problem is known as classical multidimensional
scaling [6]. If all but one point are known, it reduces to trilateration [7]. The problem
can also be made more difficult by introducing unknown offsets in the distances that
also must be estimated along with the points.

The methods presented in this thesis are mostly agnostic when it comes to how the
distance measurements are acquired. A wide range of technologies can be used, e.g.,
Received Signal Strength (RSS) measurements from Wi-Fi access points or Bluetooth
beacons, Time of Arrival (TOA) measurements using Ultra-Wideband (UWB), or Time
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Figure 1.1: Part of the setup used for one of our experiments. A number of microphones (receivers) are placed in a room
and a single speaker (sender, blue cuboid to the left) is moved through the setup while playing music or chirp
sounds. Using audio recordings from the microphones, the receiver and sender positions can be recovered. For
the purpose of collecting ground truth, both the microphones and the speaker are equipped with reflective
markers tracked by an optical motion capture system.

Difference of Arrival (TDOA) measurements extracted from audio recordings.

In this thesis, we mainly focus on two different variations of the localization problem
described above. The first one involves partitioning the points into two groups which
we refer to as receivers and senders, and distance measurements can only exist between the
two groups - not within them. This structure can be represented using a bipartite graph,
where in the case of audio measurements, the nodes correspond to microphones and
speakers (see Figure 1.1). We refer to the problem of positioning the receivers and senders
as sensor network self-calibration. The second variation of the problem is trilateration and
multilateration, where a single point is to be located.

The thesis is divided into two parts. In this first part, we provide background and context
for the scientific publications which are included in the second part. In the remainder
of this first part, Chapter 2 deals with the distance measurements and how they are ac-
quired. Chapter 3 then provides more details regarding the methods and tools used to
solve the localization problems. Chapter 4 gives an overview of some problems from
distance geometry that are relevant for the publications. Finally, in Chapter 5, we con-
clude with a summary of the scientific publications and provide possible directions for
future work.
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Chapter 2

Distance Measurements

To perform localization using the methods proposed in this thesis, we require some form
of distance measurements between our receiver and sender positions. There are a large
number techniques that can be used for this with various benefits and drawbacks. In the
scientific publications, we primarily focus on using sound, but it is important to note
that the proposed methods are largely agnostic to which technique is used. As long as
some form of distance can be acquired, the proposed methods can be used.

In the following, we will let 𝒓𝑖 ∈ ℝ𝛮 for 𝑖 = 1, … ,𝑚 and 𝒔𝑗 ∈ ℝ𝛮 for 𝑗 = 1, … , 𝑛
denote𝑚 receivers and 𝑛 senders in Euclidean space. Distances between them we notate
𝑑𝑖𝑗 = ‖𝒓𝑖 − 𝒔𝑗‖, where ‖ ⋅ ‖ is the Euclidean norm. For practical applications, we usually
have 𝛮 = 2 or 𝛮 = 3, but several of the localization methods discussed generalize to
higher dimensions.

2.1 Time of Arrival

Signals, be it radio, light, or sound, have some finite velocity through a medium. This
introduces a delay between the Time of Transmission (TOT) at the sender and the Time
of Arrival (TOA) at the receiver. If the sender and receiver have synchronized clocks,
this delay, the Time of Flight (TOF), can be measured. Assuming the velocity 𝑣 of the
signal is known, the TOF directly translates to a distance measurement. We can model
this as

(𝑡𝑖𝑗 − 𝜏𝑗)𝑣 = 𝑑𝑖𝑗 = ‖𝒓𝑖 − 𝒔𝑗‖, (2.1)
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where 𝑡𝑖𝑗 is the TOA at receiver 𝑖 and 𝜏𝑗 is the TOT at sender 𝑗. Note that 𝑡𝑖𝑗 is indexed
with both 𝑖 and 𝑗 as the signal transmitted from a sender arrives at all receivers.

When working with radio, or light the velocity 𝑣 is simply the speed of light and can be
considered constant. When working with audio, the velocity through air is dependent on
several factors, such as temperature, pressure, and humidity, although, the temperature
dominates. As an example, at 15 °C the speed of sound is approximately 340m s−1,
while at 30 °C it is 350m s−1 – an increase of 3%. Since the velocity gets multiplied
by all TOFs, the resulting node positions can be scaled with any relative error in the
velocity.

2.2 Round-Trip Time

In the above scenario, the receivers and senders were synchronized, but this is not always
the case. When the nodes are unsynchronized, we can instead use Round-Trip Time
(RTT). This technique works by the sender first transmitting a signal to the receiver,
and after a known delay, the receiver responds. The time between the TOT and TOA
on the sender’s side then equals two TOF plus the delay on the receiver’s side. After
deducting this delay it is trivial to calculate the distance.

With the release of the Wi-Fi IEEE 802.11-2016 standard, this technique has become
available in a growing number of smartphones and Wi-Fi access points. This has the
potential of greatly improving indoor positioning as methods reach submeter accuracy
[8, 9].

2.3 Received Signal Strength

Signals naturally get weaker further away from their source. If the transmission strength
is known, it is possible to estimate the distance to the source based on the Received Signal
Strength (RSS). In the case of Wi-Fi and Bluetooth radio signals, the log-distance path
loss model [10, Chapter 8] (also referred to as the one-slope model [11, Chapter 4.7]) is
commonly used, and is given by

𝐶𝑖𝑗 = 𝐶0 + 10𝜂 log10(𝑑𝑖𝑗) + 𝜖, (2.2)

where the RSS 𝐶𝑖𝑗, as measured in dBm, is a function of the distance 𝑑𝑖𝑗 in meters. 𝐶0
is the signal strength 1m from the source and 𝜂 is an attenuation factor determining
how quickly the RSS will fade. In indoor environments, RSS measurements from Wi-Fi

6



access points are commonly used for positioning. Reasonable values for 𝐶0 and 𝜂 are
then −37 dBm and 2.8, respectively (see e.g. [12]). The noise 𝜖 can be modeled as a zero-
mean Gaussian with a standard deviation in the order of 5 dBm. Alternatively, we can
view 𝑑𝑖𝑗 as our measurements with log-normal noise distribution. Additional terms can
also be added to (2.2) to account for the dampening of floors or walls [13].

Compared to RTT, RSS measurements are very noisy, and consequently do not offer
the same resulting localization accuracy. However, a benefit of RSS is that the sender
can be completely passive, as it does not need to respond to incoming packets or be
synchronized with the receiver. Furthermore, in the case of indoor environments, Wi-Fi
access points and Bluetooth beacons are ubiquitous, enabling localization without the
introduction of additional infrastructure.

2.4 Time Difference of Arrival

Time Difference of Arrival (TDOA) is similar to TOA, except that the TOT 𝜏 is un-
known due to receivers and senders not being synchronized. For example, in the case of
audio, we do not know when a particular sound event occurred, only when the micro-
phones detected it. In this scenario, the exact distance cannot be retrieved but rather a
so-called pseudo-range or pseudo-distance. Letting 𝑧𝑖𝑗 = 𝑡𝑖𝑗𝑣 and 𝑜𝑗 = 𝜏𝑗𝑣, we can write

(𝑡𝑖𝑗 − 𝜏𝑗)𝑣 = 𝑧𝑖𝑗 − 𝑜𝑗 = 𝑑𝑖𝑗 = ‖𝒓𝑖 − 𝒔𝑗‖, (2.3)

where 𝑧𝑖𝑗 is the measurement and 𝑜𝑗 is an unknown offset. Working with TDOA mea-
surements is inherently more difficult than TOA due to the additional unknowns 𝑜𝑗 that
need to be solved for. However, it is also more powerful. For example, the lack of syn-
chronization and two-way communication enables the positioning of sporadic sound
events, e.g., noisy animals. Also, since the receivers only need to passively listen for
incoming signals, introducing a large number of receivers does not clutter the medium.
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Chapter 3

Minimal Solvers and Polynomial
Equation Systems

Real data is noisy, and this needs to be taken into consideration when fitting a model.
It is often the case that the distribution of the noise is known, and it then becomes pos-
sible to construct maximum likelihood estimators. However, data can also suffer from
spurious measurements, so-called outliers, that fall outside of the expected noise distri-
bution. These measurements would be detrimental to the model fitting if included, and
we therefore wish to identify and remove them. One way of achieving this is to use min-
imal solvers in a hypothesis-and-test framework. In this chapter, we introduce minimal
solvers and the robust estimation method RANSAC [14]. As the minimal solvers in this
thesis take the form of polynomial equation systems, we conclude the chapter with an
overview of the mathematical tools used for solving these.

3.1 Minimal Solvers

Minimal problems are instances of model fitting where the minimal amount of data is
given, i.e., with any less data, the problem becomes underdetermined and has infinitely
many solutions. Minimal solvers provide solutions to minimal problems. Example 3.1
shows a minimal solver for fitting a circle to points in the plane. These kinds of solvers
are often used in hypothesis-and-test frameworks, e.g., RANSAC, for robust estimation,
as they minimize the risk of including outliers in the fitting and hence give optimal time
complexity. In this thesis, all minimal problems are formulated as polynomial equation
systems, and as we will see, this enables us to use methods from algebraic geometry and
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automated tools to construct solvers.

Example 3.1. (Circle fitting in the plane) Let 𝒑1, … , 𝒑𝑛 ∈ ℝ2 be a set of points in the
plane, to which we want to fit a circle. The circle is defined by a center point 𝒄 ∈ ℝ2

and a radius 𝑟 ∈ ℝ. Every point 𝒑𝑖 admits the equation ‖𝒑𝑖 − 𝒄‖ = 𝑟, and since we have
three unknowns (𝒄, 𝑟), the problem is minimal when 𝑛 = 3.

Squaring the equations results in the polynomial equation system ‖𝒑𝑖 − 𝒄‖2 = 𝑟2 for
𝑖 = 1, … , 3. Subtracting the first equation from the rest, we get a linear system in 𝒄.

2 [(𝒑2 − 𝒑1)
𝛵

(𝒑3 − 𝒑1)𝛵
] 𝒄 = [𝒑

𝛵
2 𝒑2 − 𝒑𝛵1 𝒑1
𝒑𝛵3 𝒑3 − 𝒑𝛵1 𝒑1

] (3.1)

Once 𝒄 is found, the radius is given by 𝑟 = ‖𝒑1 − 𝒄‖.

3.2 RANSAC

Random Sample Consensus (RANSAC) [14] is an iterative estimation method, specifi-
cally designed to be robust against outliers, with several variants developed over the years
(see e.g. [15] and references therein). In every iteration, it samples a minimal amount of
data, fits a model to the sample, and then evaluates how well the remaining data agrees
with the found model parameters. Data points that fit well can be classified as inliers,
while the remaining points are classified as outliers. Across all iterations, the parameters
with the most inliers are chosen. A common final step is then to fit the model to all in-
liers, e.g., using least squares. The method is summarized in Algorithm 1, and Figure 3.1
shows an example of how RANSAC can be applied to the circle fitting in Example 3.1.

Two parameters must be set for RANSAC: (i) the number of iterations, and (ii) the
threshold to use when classifying data as inliers and outliers. With too few iterations, we
might not find a good sample without outliers, and the resulting fit will be poor. With
too many iterations, the method becomes unnecessarily slow. A poorly chosen threshold
will result in the misclassification of inliers and outliers.

3.3 Algebraic Geometry

The minimal solvers in this thesis are formulated as polynomial equation systems. In
Section 3.4, we will describe how to solve these, but in this section, we will first lay a
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Algorithm 1 RANSAC
ℐmax ← ∅
while sufficient many iterations do

Create a minimal sample 𝒮 of the data.
Fit model ℳ to sample 𝒮 using minimal solver.
Evaluate how well remaining data fits ℳ.
Partition data into inliers ℐ and outliers 𝒪 based on errors.
if |ℐ| > |ℐmax| then

ℐmax ← ℐ
ℳmax ←ℳ

end if
end while

foundation by introducing a few concepts from algebraic geometry. For further reading,
please see [16, 17].

Definition 3.3.1. A monomial is a finite product of variables, and a polynomial is a finite
linear combination of monomials.

Given a field 𝕂, let 𝕂[𝒙] denote the set of polynomials in 𝒙 = [𝑥1, … , 𝑥𝛮]𝛵 with co-
efficients from 𝕂. For our purposes, the field in question will either be the complex
numbers ℂ or the finite field ℤ𝑝, where 𝑝 is a prime number.

Some of the following theory require there to be a way of ordering the monomials in
𝕂[𝒙] – a so-called monomial ordering. For the univariate case it is intuitive that 1 < 𝑥 <
𝑥2 < 𝑥3 ⋯ , but in the multivariate case it is less so, for example, is 𝑥𝑦 < 𝑦2? There are
several monomial orderings, such as lex, grlex, and grevlex, that disambiguate this. Given
a monomial ordering, we can define the leading term of a polynomial 𝑓 as the term with
the largest monomial, and we denote this term as LT(𝑓).

Definition 3.3.2. An affine variety 𝑉 is the set of solutions to a polynomial equation
system, i.e., for 𝑓1, … , 𝑓𝑛 ∈ 𝕂[𝒙] we have

𝑉(𝑓1, … , 𝑓𝑛) = {𝒂 ∈ 𝕂𝛮 ∣ 𝑓𝑖(𝒂) = 0, 𝑖 = 1, … , 𝑛}. (3.2)

Definition 3.3.3. An ideal generated by the polynomials 𝑓1, … , 𝑓𝑛 ∈ 𝕂[𝒙] is the set

⟨𝑓1, … , 𝑓𝑛⟩ = {
𝑛
∑
𝑖=1

ℎ𝑖(𝒙)𝑓𝑖(𝒙)∣ℎ𝑖(𝒙) ∈ 𝕂[𝒙]} . (3.3)
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(a) (b)

Figure 3.1: Example of RANSAC. (a) A set of points in the plane, some of which are from the circle but with added noise, and
some of which are drawn from the uniform distribution (outliers). (b) Three iterations of RANSAC. By sampling
three points, a circle can be fitted using the minimal solver in Example 3.1. Points sufficiently close to a circle are
considered inliers. The purple circle has the most inliers and is therefore chosen as the best model.

Ideals and varieties correspond to each other in the sense that 𝑉(𝛪) is the set of points
vanishing on 𝛪. When𝑉(𝛪) is a finite set, i.e., the polynomial equation system generating
𝛪 has a finite number of solutions, both𝑉(𝛪) and 𝛪 are referred to as zero-dimensional. An
ideal can be generated by several different sets of polynomials, e.g., ⟨𝑥, 𝑦⟩ = ⟨𝑥−𝑦, 𝑥+𝑦⟩
in ℂ[𝑥, 𝑦]. For any ideal, a particular set of generating polynomials, called a Gröbner
basis, can be calculated.

Definition 3.3.4. Given a monomial ordering on 𝕂[𝒙] and ideal 𝛪, the set 𝑔1, … , 𝑔𝑡 ∈ 𝛪
is said to be a Gröbner basis if

⟨LT(𝑔1), … , LT(𝑔𝑡)⟩ = ⟨LT(𝛪)⟩, (3.4)

where ⟨LT(𝛪)⟩ = {LT(𝑓) ∣ 𝑓 ∈ 𝛪}.

Unfortunately, this definition does not give much insight in this context. Instead, the
important part is that a Gröbner basis has several beneficial properties that enable us to
study and solve polynomial equation systems.

Let us introduce the set [𝑎] = {𝑏 ∈ 𝕂[𝒙] ∣ 𝑎 − 𝑏 ∈ 𝛪} for some ideal 𝛪. We say that the
elements in this set are congruent modulo 𝛪 or in some sense equivalent.

Definition 3.3.5. Given an ideal 𝛪, the quotient ring 𝕂[𝒙]/𝛪 is the set of equivalence
classes for congruence modulo I:

𝕂[𝒙]/𝛪 = {[𝑎]|𝑎 ∈ 𝕂[𝒙]}. (3.5)
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𝕂[𝒙]/𝛪 is a𝕂-vector space, and provided𝕂 is algebraically closed and𝑉(𝛪) is a finite set,
it is finite-dimensional [16, Finiteness Theorem]. Furthermore, the dimension of𝕂[𝒙]/𝛪
serves as an upper bound for the number of solutions in 𝑉(𝛪). Another consequence of
𝕂[𝒙]/𝛪 being a finite-dimensional vector space is that we can find a finite basis for it.
One such basis is the standard monomials, defined as all monomials not in ⟨LT(𝛪)⟩ =
⟨LT(𝑔1), … , LT(𝑔𝑡)⟩, where 𝑔1, … , 𝑔𝑡 is a Gröbner basis for 𝛪.

The last construction we define is saturation.

Definition 3.3.6. If 𝛪, 𝐽 are ideals, then the saturation of 𝛪 with respect to 𝐽 is the ideal

𝛪 ∶ 𝐽∞ = {𝑓 ∈ 𝕂[𝒙] ∣ for all 𝑔 ∈ 𝐽, ∃𝛮 ≥ 0 such that 𝑓𝑔𝛮 ∈ 𝛪}. (3.6)

Saturating an ideal roughly equates to removing solutions from the corresponding variety
(see [16, Theorem 4.10]). This can be very useful if an equation system has an infinite set
of spurious solutions that are of no interest. Removing these using saturation can then
yield a system with a finite number of solutions that we can solve using the methods
presented in the next section [18].

3.4 Solving Polynomial Equation Systems

There are several ways of solving polynomial equation systems, but in this section, we will
limit ourselves to methods that reduce to eigendecomposition problems. The benefit of
this is that eigendecomposition is a well-studied problem with fast and robust numerical
eigensolvers available in practically any linear algebra software package. However, the
required transformation of the polynomial equation system is in general far from trivial.
To start, we will look at how to solve univariate polynomials.

3.4.1 Univariate Polynomials

Univariate polynomials are significantly easier to solve than multivariate ones. Indeed, it
is well known that polynomials of degree less than five have closed-formed solutions [19].
For higher degrees, it is common to use the so-called companion matrix. Consider the
monic polynomial

𝑝(𝑥) = 𝑥𝑛 + 𝑐𝑛−1𝑥𝑛−1 + ⋯ + 𝑐1𝑥 + 𝑐0 (3.7)
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and the eigendecomposition

𝑥 [

𝑥𝑛−1
𝑥𝑛−2
⋮
𝑥
1

] = [

−𝑐𝑛−1 … −𝑐1 −𝑐0
1

⋱
1

1

]

⏟⏟⏟⏟⏟⏟⏟
≜𝐂

[

𝑥𝑛−1
𝑥𝑛−2
⋮
𝑥
1

] . (3.8)

The first row in (3.8) is equivalent to 𝑝(𝑥) = 0, and the following rows are trivial equal-
ities. The matrix 𝐂 is called the companion matrix, and its eigenvalues are precisely the
roots of 𝑝(𝑥). This is easy to see as 𝑝(𝑥) is the characteristic polynomial of 𝐂, i.e.,
det(𝜆 −𝐂) = 𝑝(𝜆). Another way of looking at it is that, if we evaluate (3.8) at a solution
to 𝑝(𝑥) = 0, we will get a valid eigenpair (eigenvalue and eigenvector) of 𝐂. However,
the converse is not necessarily true, in the sense that if 𝑥0 is a multiple root, the corre-
sponding eigenspace is multidimensional and there exists eigenvectors not in the form
in (3.8). It is nevertheless the case that the number of solutions to 𝑝(𝑥) = 0 determines
the size of 𝐂. Several of these observations will carry over to the multivariate case.

3.4.2 Variable Elimination

One way of solving multivariate polynomial equation systems is to reduce them to uni-
variate ones using elimination. The elimination can be performed, e.g., linearly, using
algebraic tools like Macaulay2 [20], or resultants [17]. However, elimination is not al-
ways an option, as the operation can be intractable even when using algebraic tools.
Furthermore, elimination usually results in a higher degree polynomial which may be-
come numerically unstable due to floating point errors.

3.4.3 Action Matrix Method

The multivariate analog of the companion matrix method in Section 3.4.1 is the action
matrix method (also called the Gröbner basis method [21]). For a more detailed descrip-
tion of this method please see [17, 22] and references therein.

Consider the polynomial system 𝑓1, … , 𝑓𝑛 ∈ 𝕂[𝒙] with the corresponding ideal 𝛪 =
⟨𝑓1, … , 𝑓𝑛⟩ and affine variety 𝑉. Furthermore, let 𝒃 ∈ 𝕂[𝒙]𝛫 be a monomial basis for the
quotient ring 𝕂[𝒙]/𝛪, and let 𝛼 ∈ 𝕂[𝒙] be a monomial. Typically, we choose 𝒃 as the
standard monomials, but other choices can result in faster solvers [23]. In the quotient
ring, the operation of multiplying with 𝛼 is linear and can consequently be expressed
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with a matrix 𝚳 ∈ 𝕂𝛫×𝛫, i.e.,
[𝛼𝒃] = [𝚳𝒃] . (3.9)

𝚳 and 𝛼 are referred to as the action matrix and action monomial, respectively. Note
that, [𝛼𝒃] = [𝚳𝒃] ⇔ 𝛼𝒃 − 𝚳𝒃 ∈ 𝛪 which vanishes on 𝑉, i.e., for an 𝒙 ∈ 𝑉, we have
𝛼(𝒙)𝒃(𝒙) − 𝚳𝒃(𝒙) = 0. Consequently, every solution in 𝑉 yields an eigenpair of the
action matrix 𝚳. However, it is not necessarily true that every eigenpair of the action
matrix corresponds to an element in 𝑉. Nevertheless, given the action matrix 𝚳, it
is often possible to perform an eigendecomposition and recover all solutions from the
eigenvalues and eigenvectors.

𝚳 can be found using Gröbner basis calculations, but this approach is seldom used in
practice due to floating point errors and runtime requirements [22]. A better approach
is to use so-called elimination templates.

Elimination Templates

First, we need to find 𝒃without performing Gröbner basis calculations involving floating
point numbers. The solution to this is to calculate 𝒃 for an integer instance of the
equation system, i.e., one where 𝑓1, … , 𝑓𝑛 ∈ ℤ𝑝[𝒙] for some prime 𝑝. This calculation
can be done exactly without any rounding errors. Typically, 𝒃 does not depend on the
exact value of the coefficients, so the basis found this way is likely correct also when
𝑓1, … , 𝑓𝑛 ∈ ℂ[𝒙].

To find the action matrix 𝚳, we need to express the elements in [𝛼𝒃] as a linear combi-
nation of the elements in [𝒃]. Since 𝛼𝒃−𝚳𝒃 ∈ 𝛪, we can write 𝛼𝒃−𝚳𝒃 = 𝚮𝒇 for some
𝚮 ∈ 𝕂[𝒙]𝛫×𝑛, where 𝒇 = [𝑓1, … , 𝑓𝑛]𝛵. If we now construct a new set of polynomials
𝒈 ∈ 𝕂[𝒙]𝑚 by multiplying every 𝑓𝑖 by all monomials in 𝛨1𝑖, … ,𝛨𝑛𝑖 , we can express
𝛼𝒃 − 𝚳𝒃 linearly in 𝒈. We can write the polynomials 𝒈 in matrix form as

𝒈 = 𝐂𝚾 = [𝐂𝑒 𝐂𝑟 𝐂𝑏] [
𝒆
𝛼𝒃
𝒃
] , (3.10)

where 𝐂 is referred to as the elimination template and contains all coefficients, and 𝜲
contains the excessive 𝒆, reducible 𝛼𝒃, and basis 𝒃 monomials. Some of the reducible
monomials may already exist in 𝒃 and will result in trivial rows in 𝚳 similar to the
companion matrix. Since we can express 𝛼𝒃 −𝚳𝒃 linearly in 𝒈, there is some matrix 𝚨
such that

𝚨𝒈 = 𝚨𝐂𝜲 = [𝚶 𝚰 −𝚳]𝜲 = 𝛼𝒃 − 𝚳𝒃. (3.11)

15



Finding 𝚳 is now a linear problem equivalent to performing Gaussian elimination on
𝐂. However, one thing that is not quite clear yet is how to find 𝚮, or more specifically,
which monomials the elements of 𝒇 should be multiplied with. A naive approach is to
simply try progressively higher degree monomials until the above procedure works, but
more systematic methods are discussed in [24].

In summary, given 𝛼, 𝒃, and 𝚮, the procedure for solving a multivariate polynomial
system is:

1. Calculate the elimination template 𝐂. This equates to evaluating several polyno-
mials in the coefficients of 𝑓1, … , 𝑓𝑛.

2. Solve the linear system involving 𝐂 to find the action matrix 𝚳.

3. Perform eigendecomposition of𝚳, and extract the solutions from the eigenvalues
and/or eigenvectors.

The third step assumes that the unknowns 𝒙 can be extracted from 𝛼 and 𝒃, which in
practice is almost always the case. For some problems though, it might be necessary to
utilize the original equations 𝒇 as well.

Automatic Solver Generators

While the above procedure for creating a solver can be done manually, it greatly benefits
from automation as even for small problems it typically involves very large polynomials.
Another benefit of automation is that the algebraic geometry can be abstracted away, re-
sulting in tools that are accessible to a wider audience. A few automatic solver generators
have been proposed [21, 24, 25]. We use the one presented in [24] which takes as input
a family of polynomial equation systems and outputs a solver as MATLAB or C++ code.
The solver in turn takes the family parameters as input and outputs all solutions to the
corresponding system.

Practical Considerations

The approach outlined above is in practice quite limited, with the largest problem being
the numerical stability of the resulting solvers. In general, as the number of unknowns,
the degree, and the number of solutions to a polynomial system increase, the size of the
elimination template increases as well, the numerical stability of the solver gets worse and
the execution time gets slower. Consequently, when constructing a solver it is beneficial
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Figure 3.2: Two instances of the equation system in (3.12) for the parameters (a) (𝜃1 , 𝜃2) = (7, −5) and (b) (𝜃1 , 𝜃2) = (7, −2).
The real solutions to 𝑓1 = 0 and 𝑓2 = 0 are shown in blue and red, respectively, and the common solutions are
indicated by black dots.

to find a parametrization of the problem that has (i) few unknowns, (ii) a low degree,
and (iii) few solutions. Finding such a parametrization is the most important part when
constructing a solver and is not handled by the automatic generator. Below follows an
example of the action matrix method for a toy equation system.

Example 3.2. (Circle and cubic intersection) Consider the polynomials 𝑓1, 𝑓2 ∈ ℂ[𝑥, 𝑦]

{ 𝑓1 = 𝑥2 + 𝑦2 − 𝜃1
𝑓2 = 𝑥3 + 𝜃2𝑥 + 1 − 𝑦

(3.12)

and the corresponding family of equation systems 𝑓1 = 𝑓2 = 0, parameterized by 𝜃1, 𝜃2 ∈
ℂ. Figure 3.2 shows two instances of this system.

We wish to construct a solver for this system using the action matrix method. First, we
consider an integer instance of the system, e.g., let 𝜃1 = 𝜃2 = 1, and using Macaulay2
[20], we can calculate the standard monomials 𝒃 = [𝑦3, 𝑦2, 𝑦, 𝑥𝑦, 𝑥, 1]𝛵. Since 𝒃 is of
length six, the problem has at most six complex solutions. We choose the action mono-
mial to be 𝛼 = 𝑦. Since 𝛼𝒃 = [𝑦4, 𝑦3, 𝑦2, 𝑥𝑦2, 𝑥𝑦, 𝑦]𝛵 and [𝛼𝒃] = [𝚳𝒃], we already know
that the action matrix 𝚳 will be on the form

𝚳 =
⎡
⎢⎢⎢

⎣

? ? ? ? ? ?
1 0 0 0 0 0
0 1 0 0 0 0
? ? ? ? ? ?
0 0 0 1 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥

⎦

. (3.13)
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It remains to find the missing rows, i.e., to express [𝛼𝑏1] = [𝑦4] and [𝛼𝑏4] = [𝑥𝑦2] as a
linear combination of the basis elements [𝒃]. To do this, we construct an extended set
of equations

𝒈 = [𝑓1 𝑥𝑓1 𝑦𝑓1 𝑥2𝑓1 𝑦2𝑓1 𝑓2 𝑥𝑓2]
𝛵 = 𝐂𝜲, (3.14)

where

𝐂 =

⎡
⎢
⎢
⎢
⎢

⎣

0 0 0 0 1 0 0 0 1 0 0 0 −𝜃1
0 0 1 0 0 0 1 0 0 0 0 −𝜃1 0
0 0 0 1 0 0 0 1 0 −𝜃1 0 0 0
1 1 0 0 −𝜃1 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 −𝜃1 0 0 0 0
0 0 1 0 0 0 0 0 0 −1 0 𝜃2 1
1 0 0 0 𝜃2 0 0 0 0 0 −1 1 0

⎤
⎥
⎥
⎥
⎥

⎦

, (3.15)

𝜲 = ⏟⏟⏟⏟⏟⏟⏟
𝒆

⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝒃

[ 𝑥4 𝑥2𝑦2 𝑥3 𝑥2𝑦 𝑥2 𝑦4 𝑥𝑦2 𝑦3 𝑦2 𝑦 𝑥𝑦 𝑥 1 ]𝛵 . (3.16)

The final solver consists of inserting the values of 𝜃1 and 𝜃2 in𝐂, solving the linear system
and finding the two missing rows of 𝚳, performing eigendecomposition of 𝚳, normal-
izing the eigenvectors such that 𝑏6 = 1, and extracting 𝑥 and 𝑦 from the eigenvalues and
eigenvectors.
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Chapter 4

Localization

Equipped with the algebraic tools from Chapter 3 and the measurements from Chap-
ter 2, we can now focus on the geometrical problems that are used and solved in this
thesis. For some of these problems, novel contributions are provided in the scientific
publications.

4.1 Trilateration and Multilateration

Trilateration and multilateration, sometimes referred to as single source localization, are
two different problems occurring when localizing a single receiver using otherwise known
data.

4.1.1 Trilateration

Trilateration is the problem of locating a single receiver 𝒓 ∈ ℝ𝛮 given distance measure-
ments 𝑑𝑗 = ‖𝒓 − 𝒔𝑗‖ ∈ ℝ to known sender positions 𝒔𝑗 ∈ ℝ𝛮, for 𝑗 = 1, … , 𝑛. Every
measurement restricts the receiver to a hypersphere centered at the corresponding sender
(see Figure 4.1). In general, at least𝛮measurements are required for the problem to have
a finite number of solutions. In the minimal case, 𝑛 = 𝛮 and there are closed-formed
solutions to the problem [7, 26, 27], and in the overdetermined case several methods
have been proposed (see Paper VIII and references therein).
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𝒔1

𝒔2

𝒔3

𝒓

Figure 4.1: Trilateration in the plane. Three senders 𝒔1 , 𝒔2 , 𝒔3 centered at circles of radii 𝑑1 , 𝑑2 , 𝑑3, respectively. The sought
receiver position 𝒓 is at the intersection of the circles.

4.1.2 Multilateration

Multilateration is similar to trilateration except for an added offset 𝑜 ∈ ℝ, associated
with the receiver, that results from the senders and receiver being synchronized (see Sec-
tion 2.4). The measurements 𝑧𝑗 ∈ ℝ are modeled as

𝑧𝑗 = ‖𝒓 − 𝒔𝑗‖ + 𝑜. (4.1)

A single measurement does not restrict the receiver position, as was the case for trilat-
eration. However, the difference of two measurements, 𝑧𝑖 − 𝑧𝑗 = ‖𝒓 − 𝒔𝑖‖ − ‖𝒓 − 𝒔𝑗‖,
restricts the receiver to a hyperboloid. Multilateration is then equivalent to finding the
intersection of a number of hyperboloids (see Figure 4.2). As in the trilateration case,
closed-formed solutions exist in the minimal case 𝑛 = 𝛮 + 1, as well as other methods
for the overdetermined case.

4.2 Classical Multidimensional Scaling

The contributions of this thesis are focused primarily on robust methods that deal with
missing data and outliers. With regards to missing data, it is also the case that we have a
particular sparsity in our data resulting in the partitioning of the nodes into receivers and
senders. Classical Multidimensional Scaling (MDS) on the contrary assumes no missing
data and no outliers. In particular, the nodes 𝒙𝑖 ∈ ℝ𝛮, 𝑖 = 1, … , 𝑛 are not partitioned
into receivers and senders, and there are distance measurement 𝑑𝑖𝑗 = ‖𝒙𝑖 − 𝒙𝑗‖ between
every pair of nodes. The matrix 𝐃∘2 with elements 𝑑2𝑖𝑗 is called the Euclidean Distance
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𝒔1

𝒔2

𝒔3

𝒓

Figure 4.2: Multilateration in the plane. Each pair of senders in 𝒔1 , 𝒔2 , 𝒔3 yields a hyperbola. The sought receiver position 𝒓 is
at the intersection of the hyperbolae.

Matrix (EDM) [28], and recovering the node positions (up to rigid transformations)
from 𝐃∘2 is precisely MDS. This can be formulated as an eigendecomposition problem
[6]. The squared distances are given by

𝑑2𝑖𝑗 = ‖𝒙𝑖 − 𝒙𝑗‖2 = 𝒙𝛵𝑖 𝒙𝑖 − 2𝒙𝛵𝑖 𝒙𝑗 + 𝒙𝛵𝑗 𝒙𝑗, (4.2)

or expressed using matrices

𝐃∘2 = diag(𝚾𝛵𝚾)𝟏𝛵 − 2𝚾𝛵𝚾 + 𝟏 diag(𝚾𝛵𝚾)𝛵, (4.3)

where 𝟏 denotes a vector of ones. We can w.l.o.g. assume 𝒙1 = 𝟎, and consequently,
𝑑2𝑖1 = 𝒙𝛵𝑖 𝒙𝑖 and

𝐆 ≜ 𝚾𝛵𝚾 = −12(𝐃
∘2 − 𝒅1𝟏𝛵 − 𝟏𝒅𝛵

1 ) (4.4)

where𝒅1 is the first column of𝐃. Note that𝐆 is defined completely by the distance mea-
surements. Finding the node positions is now a matter of factorizing 𝐆 and recovering
𝚾. This is done using the eigendecomposition 𝐆 = 𝐐𝚲𝐐𝛵,

𝚾 = 𝚲1/2
𝛮 𝐐𝛵

𝛮, (4.5)

where Λ𝛮 ∈ ℝ𝛮×𝛮 and 𝐐𝛮 ∈ ℝ𝑛×𝛮 are truncated to the 𝛮 largest eigenvalues and
corresponding eigenvectors. When there is no noise in the data, this reconstruction of
𝚾 is exact, while in the presence of noise the cost ‖𝚾𝛵𝚾 − 𝐆‖2𝐹 is minimized, where 𝐆
is defined using the distance measurements as in (4.4).
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4.3 Sensor Network Self-Calibration

Sensor network self-calibration is the problem of localizing a number of sensors, i.e.,
calibrating their position, possibly without any known anchor positions. For example,
we can place several microphones ad hoc in a room and then walk through the setup with
a speaker playing some music. Using only the sound recordings from the microphones,
we can then find the position of every microphone and simultaneously find the track of
the speaker.

For our purposes the sensors, also referred to as nodes, are always partitioned into re-
ceivers 𝒓𝑖 ∈ ℝ𝛮 for 𝑖 = 1, … ,𝑚 and senders 𝒔𝑗 ∈ ℝ𝛮 for 𝑗 = 1, … , 𝑛. In the case of
TOA, we have the distance measurements 𝑑𝑖𝑗 = ‖𝒓𝑖 − 𝒔𝑗‖, which we use to find the
node positions. If there is no missing data or outliers, as was the case for Classical Mul-
tidimensional Scaling (CMDS), then the problem is referred to as Multidimensional
Unfolding (MDU) [29]. One approach for solving this problem is to use the so-called
double compaction matrix.

4.3.1 Double Compaction Matrix

Consider the squared distances

𝑑2𝑖𝑗 = 𝒓𝛵𝑖 𝒓𝑖 − 2𝒓𝛵𝑖 𝒔𝑗 + 𝒔𝛵𝑗 𝒔𝑗. (4.6)

Using linear combinations of these we can construct a new equivalent system of equa-
tions

[
𝑑211 𝑑212 − 𝑑211 ⋯ 𝑑21𝑛 − 𝑑211

𝑑221 − 𝑑211
⋮ 𝚳

𝑑2𝑚1 − 𝑑211

] , (4.7)

where 𝚳 ∈ ℝ𝑚−1×𝑛−1 is the so-called double compaction matrix [30, 31] with elements
𝑑2𝑖𝑗 − 𝑑2𝑖1 − 𝑑21𝑗 + 𝑑211 = −2(𝒓𝑖 − 𝒓1)𝛵(𝒔𝑗 − 𝒔1) for 𝑖 = 2, … , 𝑛, 𝑗 = 2, … ,𝑚. If we collect
the receivers and senders, except 𝒓1 and 𝒔1, as columns in the matrices 𝐑 ∈ ℝ𝛮×𝑛−1 and
𝐒 ∈ ℝ𝛮×𝑚−1, respectively, we can write 𝚳 = −2(𝐑 − 𝒓1𝟏𝛵)𝛵(𝐒 − 𝒔1𝟏𝛵). From this, it is
clear that the double compaction matrix has rank 𝛮, and consequently, we can factor it
using Singular Value Decomposition (SVD) into 𝚳 = −2𝐔𝛵𝐕 where 𝐔 ∈ ℝ𝛮×𝑛−1 and
𝐕 ∈ ℝ𝛮×𝑚−1. In Paper II, we generalize this definition resulting in 𝚳 ∈ ℝ𝑚×𝑛, 𝐑,𝐔 ∈
ℝ𝛮×𝑛, and 𝐒, 𝐕 ∈ ℝ𝛮×𝑚, but the rank constraint remains the same. The factorization
of 𝚳 is not unique, as for any invertible 𝐋 ∈ ℝ𝛮×𝛮, 𝚳 = −2𝐔𝛵𝐋−1𝐋𝐕 is also a valid
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solution. Nevertheless, we can solve for the receiver and sender positions up to some
unknown affine transformations

𝐑 = 𝐋−𝛵𝐔 + 𝒓1, 𝐒 = 𝐋𝐕 + 𝒔1. (4.8)

To find these transformations we will use the remaining equations in (4.7). Since we are
only able to solve for the node positions up to a rigid transformation, we can w.l.o.g.
assume 𝒓1 = 𝟎. Furthermore, let 𝒔1 = 𝐋𝒒 for some 𝒒 ∈ ℝ𝛮. We can now write the
remaining equations in (4.7) as

𝑑211 = (𝒓1 − 𝒔1)𝛵(𝒓1 − 𝒔1) = 𝒔𝛵1 𝒔1 = 𝒒𝛵𝐋𝛵𝐋𝒒, (4.9a)

𝑑21𝑗 − 𝑑211 = 𝒔𝛵𝑗 𝒔𝑗 − 𝒔𝛵1 𝒔1 = 𝒗𝛵𝑗 𝐋𝛵𝐋𝒗𝑗 + 2𝒗𝑗𝐋𝛵𝐋𝒒, (4.9b)

𝑑2𝑖1 − 𝑑211 = 𝒓𝛵𝑖 𝒓𝑖 − 2𝒓𝛵𝑖 𝒔1 = 𝒖𝛵𝑖 𝐋−1𝐋−𝛵𝒖𝑖 − 2𝒖𝛵𝑖 𝒒, (4.9c)

for 𝑖 = 2, … , 𝑛, 𝑗 = 2, … ,𝑚. These can be simplified further by letting 𝚮 = (𝐋𝛵𝐋)−1.

𝑑211 = 𝒒𝛵𝚮−1𝒒, (4.10a)

𝑑21𝑗 − 𝑑211 = 𝒗𝛵𝑗 𝚮−1𝒗𝑗 + 2𝒗𝑗𝚮−1𝒒, (4.10b)

𝑑2𝑖1 − 𝑑211 = 𝒖𝛵𝑖 𝚮𝒖𝑖 − 2𝒖𝛵𝑖 𝒒. (4.10c)

Since 𝚮 is symmetric, we have a total of 𝛮(𝛮 + 1)/2 + 𝛮 unknowns in 𝚮 and 𝒒.
Consequently, in 3D space, 𝛮 = 3 and we have nine unknowns to solve for. If 𝑚 ≥
10, we have nine equations of the type (4.10c), and we can solve for 𝚮 and 𝒒 linearly.
However, the minimal cases occur when (𝑚, 𝑛) = (4, 6) or (𝑚, 𝑛) = (6, 4) and require a
bit more work to solve.

If (𝑚, 𝑛) = (6, 4), we can use the five linear constraints from (4.10c) to express 𝚮 and 𝒒
in the four unknowns 𝛼1, … , 𝛼4 as

𝚮 = 𝚮0 +
4
∑
𝑘=1

𝛼𝑘𝚮𝑘, 𝒒 = 𝒒0 +
4
∑
𝑘1
𝛼𝑘𝒒𝑘, (4.11)

where 𝚮𝑘 and 𝒒𝑘 for 𝑘 = 0, … , 4 are known. Inserting this in (4.10a) and (4.10b) and
multiplying with det𝚮, we get a the following polynomial equation system in 𝛼1, … , 𝛼4,

det(𝚮)𝑑211 = 𝒒𝛵 adj(𝚮)𝒒, (4.12)

det(𝚮)(𝑑21𝑗 − 𝑑211) = 𝒗𝛵𝑗 adj(𝚮)𝒗𝑗 + 2𝒗𝑗 adj(𝚮)𝒒, (4.13)

where adj(𝚮) = det(𝚮)𝚮−1. This system can then be solved using action matrix meth-
ods [18,30]. The problem of finding𝐋 and 𝒒 for various numbers of receivers and senders
is studied closer in Paper II.
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4.3.2 TDOA and Offset Estimation

When we have TDOA measurements 𝑧𝑖𝑗 instead of TOA, there are additional offsets
𝑜𝑗 ∈ ℝ for 𝑗 = 1, … , 𝑛 to be estimated along with the receiver and sender positions

𝑑𝑖𝑗 = 𝑧𝑖𝑗 − 𝑜𝑗 = ‖𝒓𝑖 − 𝒔𝑗‖. (4.14)

One approach for solving this problem is to use a stratified two-tier method [31,32]. In
the first step, the rank constraint on the double compaction matrix 𝚳 is used to solve
for the offsets. The second step then involves solving a TOA self-calibration problem as
explained in the previous section.

Note that 𝚳 can be written as 𝚳 = 𝐂𝛵
𝑟𝐃∘2𝐂𝑠 where 𝐃∘2 is the EDM with elements

𝑑2𝑖𝑗 = (𝑧𝑖𝑗 − 𝑜𝑗)2 and

𝐂𝑟 = [−𝟏
𝛵

𝚰 ] ∈ ℝ𝑚−1×𝑚, 𝐂𝑠 = [−𝟏
𝛵

𝚰 ] ∈ ℝ𝑛−1×𝑛. (4.15)

In contrast to the previous section, where 𝚳 was completely defined by the measure-
ments, 𝚳 now depends on the offsets. However, it is still the case that rank𝚳 = 𝛮
which is equivalent to that every minor of order 𝛮 + 1 vanishes. To solve for the off-
sets, we thus form the polynomial equation system consisting of all such minors of 𝚳
and solve these using action matrix methods. For a sufficient number of receivers and
senders, it is also possible to solve for the offsets linearly [31].

4.4 Point Cloud Registration

Localization problems involving only distance measurements, and no absolute refer-
ences, can only be solved up to a rigid transformation. That is, the found node po-
sitions can be translated, rotated, and mirrored without violating any of the distance
constraints. If two sets of node positions are to be compared, e.g., comparing estimated
positions with ground truth when evaluating some method, the two sets must first be
registered. Registering point sets with known correspondences is referred to as Procrustes
analysis [6] (see also [33–35]). The transformation can be a rigid or similarity transfor-
mation, with or without reflection.

Let 𝒙𝑖, 𝒚𝑖 ∈ ℝ𝛮 for 𝑖 = 1, … , 𝑛 be two sets of points which we collect as columns in𝚾,𝐘 ∈
ℝ𝛮×𝑛, respectively. We then wish to find a transformation (𝑠,𝐐, 𝒕) ∈ ℝ × ℝ𝛮×𝛮 × ℝ𝛮,
where 𝐐𝛵𝐐 = 𝚰, that solves

minimize
𝑠,𝐐,𝒕

𝑛
∑
𝑖=1

‖𝑠𝐐𝒙𝑖 + 𝒕 − 𝒚𝑖‖2 ⇔ minimize
𝑠,𝐐,𝒕

‖𝑠𝐐𝚾 + 𝒕𝟏𝛵 − 𝐘‖2𝐹. (4.16)
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Algorithm 2 Procrustes analysis
𝒙̅ ← 1

𝑛 ∑
𝑛
𝑖=1 𝒙𝑖, 𝒚̅ ← 1

𝑛 ∑
𝑛
𝑖=1 𝒚𝑖 ▷ Calculate centroids.

𝚾̅ ← 𝚾 − 𝒙̅𝟏𝛵, 𝐘̅ ← 𝐘 − 𝒚̅𝟏𝛵 ▷ Subtract centroids from point sets.
𝐔𝐒𝐕𝛵 ← 𝐘̅𝚾̅𝛵 ▷ Singular value decomposition.
𝐐 ← 𝐔𝐕𝛵 ▷ Rotation and reflection matrix.
𝑠 ← tr 𝐒/ tr 𝚾̅𝚾̅𝛵 ▷ Scaling factor.
𝒕 ← 𝒚̅ − 𝑠𝐐𝒙̅ ▷ Translation vector.

The method for solving this problem is shown in Algorithm 2 [6, 36, 37]. If a rigid
transformation is sought, i.e., without scaling, 𝑠 is simply set to 1. If reflections are
disallowed, we must ensure that det𝐐 = 1 by replacing the fourth row in Algorithm 2
with 𝐐 ← 𝐔𝐉𝐕𝛵, where

𝐉 = [
1

⋱
1

det𝐔 det𝐕
] . (4.17)

It is worth noting that the registration performed here assumes that the points are matched,
i.e., 𝒙𝑖 is associated with 𝒚𝑖 for 𝑖 = 1, … , 𝑛. If no such matching exists, other methods
must be employed, such as the Iterative Closest Point (ICP) algorithm [38].
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Chapter 5

Conclusions

The scientific publications in this thesis consist of seven conference papers and one un-
published manuscript. These can be divided into three parts: Paper I which addresses
the problem of registering and merging maps, Papers II-V which address the problem of
sensor network self-calibration, and Papers VI-VIII which specifically treat trilateration
and multilateration. Below follows a summary of the papers and possible directions for
future research.

5.1 Paper I: Registration and Merging of Maps

In Paper I, we address the problem of simultaneously registering and merging maps in
2D. The individual problems already have solutions, but the joint problem is shown to
be more difficult. Three solvers are proposed and evaluated against other methods using
both synthetic and real data. Although the proposed method is shown to perform better
than naive methods for certain types of synthetic data, it does not offer a clear benefit
for the particular set of real data tested.

5.2 Papers II-V: Sensor Network Self-Calibration

In Papers II-V, we address the problem of sensor network self-calibration using the strat-
ified approach in Section 4.3. The first step is to estimate any TDOA offsets. Minimal
solvers for this are presented in Paper III. Once the offsets are found and the double
compaction matrix is factorized, the next step is to upgrade the solution in 𝐔 and 𝐕
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to the receiver and senders positions 𝐑 and 𝐒. Several minimal solvers for performing
this upgrade are presented in Paper II. In Paper III, we then put these components to-
gether into a full system for self-calibration, which we evaluate on real and synthetic
data. Finally, Paper IV presents a post-processing step where robust multilateration is
used, optionally with motion priors, to further improve the calibration result.

If a reflective plane, e.g., a floor or ceiling, is present, non-line-of-sight (NLOS) mea-
surements can be incorporated into the calibration system, both to improve the node
positioning and to estimate the location of the plane. In Paper V, we deal with this
scenario and present methods for offset estimation and self-calibration.

5.2.1 Future Work

The sensor network calibration system presented in Paper III is a good start for a complete
system, but more things can be added. First, a wider range of measurement types could
be accommodated, e.g., constant offset TDOA [32] and unsynchronized TDOA [39].
Second, the current system only works with receivers and senders in 3D space, but one
could also consider the planar case or when receivers are in 3D and senders are in the
plane. There is also a need to compare the proposed system with state-of-the-art.

So far in this thesis, we have not mentioned the signal processing required to get TDOA
measurements from sound recordings. In the papers, this has been a separate preprocess-
ing step involving GCC-PHAT [40] or some other correlation method. This process can
be sensitive to noise and result in erroneous TDOA measurements. A direction of fu-
ture research could be to investigate if a joint method, where the signal processing and
geometry estimation are combined, could be more robust.

5.3 Papers VI-VIII: Trilateration

In Paper VI, we formulate trilateration as an eigendecomposition problem. Specifi-
cally, we use a fourth-order approximation of the Maximum Likelihood (ML) cost and
manually derive an action matrix for finding all stationary point. The ML estimate is
then found by enumerating the stationary points and evaluating the cost. Furthermore,
with the adjustment of a set of weights, the proposed method can accommodate various
noise distributions, such as Gaussian and log-normal. The proposed method is com-
pared against several other approaches with favorable results concerning execution speed
and positioning accuracy.
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In Paper VII, we explore how robust trilateration can be combined with a motion model
to both tolerate outliers and missing data in the distance measurements and drift in the
motion model.

Finally, Paper VIII, an intended journal extension of Paper VI, provides a number of
improvements and new insights. In particular, (i) we generalize the cost function to ac-
count for dependent noise in the measurements, (ii) we show that it is not necessary to
explicitly calculate the eigenvectors in the eigendecomposition and that the largest real
eigenvalue corresponds to the global minimum, (iii) we give special treatment to the de-
generate cases (e.g. when senders are collinear), and (iv) we describe our implementation
and compare it against a range of state-of-the-art methods.

5.3.1 Future Work

Multilateration is briefly treated in Paper VI but did not receive the same attention trilat-
eration did in Paper VIII. In particular, future work could include investigating whether
or not there is a similar eigendecomposition for the multilateration case, and if we can
say anything about which eigenvalue (e.g. largest real one) corresponds to the global
minimizer.
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Abstract: In this paper we address the problem of registering and merging two maps
in two dimensions, given covariance estimates of the two maps. We show that if two
maps are given in the same coordinate system, then the problem of merging them in a
statistically optimal way can be formulated as a linear least squares problem, but if they
are given in different coordinate systems as well the problem becomes highly non-linear
and non-convex. We show how we can relax the problem slightly in order to optimize
over the registration (i.e. putting the two maps in the same coordinate system) and at
the same time optimize over the merged map. The approach is based on finding all
stationary points of the optimization problem and evaluating these to choose the global
optimum. We show on synthetic data that in many cases the proposed approach gives
better results than naively registering and merging the maps. We also show results on
real data, where we merge maps given by time-of-arrival measurements, and in these
cases simpler linear methods perform just a good as the proposed method.
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1 Introduction

In this paper we will study the problem of aligning and merging two maps. In our set-
ting, the map is a set of points in 2D. We will also assume that with each map comes an
estimate of its uncertainty, represented by a covariance matrix. The goal is now to find
a new map that combines the information in the two maps in an optimal way, given
the uncertainties and positions of the maps. This is general problem which is frequently
occurring in many types of mapping applications. The maps could represent landmark
features used in localization systems based on different sensor modalities. Examples are
feature points extracted from images, GPS satellite positions, WiFi-locations, Bluetooth
beacons, laser landmarks or microphone positions. Figure 1 shows a few examples of sen-
sor technologies used for map estimation. Our own interest and motivation for solving
it comes from time-of-arrival estimation and calibration problems. A typical scenario is
when several maps have been created of the same surroundings, at different times. In
order to get a more accurate map we would like to use the information from two differ-
ent maps in a statistically correct way. One of the main difficulties and also the reason
behind the non-linearity in merging maps in this way is that we need to both register
the point sets (since they in general are estimated in different coordinate systems) and
merge them.

Registration of point sets has a long standing tradition. It is well known that, finding
the optimal rigid transformation between two given point sets has a closed form solu-
tion, using singular value decomposition (SVD). This has been shown at least two times
independently, by Horn in [5] and by Kabsch in [6]. The method works for similar-
ity transformation as well and in [7] it was shown how to also handle correpondences
with planes and lines. If the correpondences between the point sets are unknown the
problem becomes much harder, and there exist numerous variants of solutions to this,
most based on variants of the iterative closest point (ICP) algorithm [8]. In this paper
we assume the correspondences are known as would be the case when working with e.g.
WiFi access points, ultra-wideband (UWB) transmitters or other landmarks that have
unique identifiers.

The rest of the paper is structured as follows. In Section 2 we provided some background
to the problem and explain the maps we are considering. In Section 3 we present our
proposed solution to the problem and in Section 4 we compare it to other methods
using synthetic and real data. Finally, in Section 5 we summarize and provided our
conclusions.
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Figure 1: Examples of sensor technologies for map estimation. Top-left: Structure from motion
using multiple images, [1]. Top-right: Mobile phones that measure distances to UWB
tags, [2]. Bottom-left: Microphones measure difference of distances to ambient sound,
[3]. Bottom-right: Massive MIMO units measure distances to radio transmitters, [4].
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2 Background

The idea of map estimation using non-linear least-squares optimization is quite general
and works for different sensor modalities. However, for simplicity we will describe this
in terms of distance measurements from sensor positions 𝑠𝑗 ∈ ℝ2 to map points 𝑥𝑖 ∈ ℝ2

in the plane. Each noise-free measurement 𝑑𝑖𝑗 = ||𝑥𝑖 − 𝑠𝑗|| is a non-linear function
of the map features 𝑥𝑖 and sensor features 𝑠𝑗. The actual measurements 𝑑̃𝑖𝑗 are typically
noisy and can be modelled as

𝑑̃𝑖𝑗 = ||𝑥𝑖 − 𝑠𝑗|| + 𝑒𝑖𝑗, (1)

where 𝑒𝑖𝑗 are stochastic variables. The complete sets of sensor positions and map points
are represented by the vectors 𝑠 ∈ ℝ2𝑘 and 𝑚 ∈ ℝ2𝑛 respectively, where 𝑠 = (𝑠𝛵1 , … , 𝑠𝛵𝑘 )𝛵

and𝑚 = (𝑥𝛵1 , … , 𝑥𝛵𝑛 ). The vector 𝑧 = (𝑚𝑠 ) is used for all unknown parameters. Assuming

that the errors are independent and Gaussian, the maximum likelihood estimate is found
by minimizing 𝑟(𝑧)𝛵𝑟(𝑧), where 𝑟 is the vector of all residuals

𝑟 = (||𝑥1 − 𝑠1|| − 𝑑̃11, … , ||𝑥𝑛 − 𝑠𝑘|| − 𝑑̃𝑛𝑘)𝛵. (2)

Estimation of the parameters often involve obtaining initial estimates of 𝑧0, e.g., using
minimal solvers and then local optimization based on the calculated residual 𝑟(𝑧0) and
the derivatives 𝐽(𝑧0) of the residual with respect to all unknowns at the current estimate.
The next estimate is found by

𝑧𝑛𝑒𝑤 = 𝑧0 − (𝐽𝛵𝐽)−1(𝐽𝛵𝑟). (3)

At the optimum, the Jacobean 𝐽 provides an estimate of the covariance of the estimated
map 𝑚 and sensor points 𝑠 according to

𝐶𝑧 = 𝜎2(𝐽𝛵𝐽), (4)

where 𝜎 is the standard deviation of the stochastic variables 𝑒𝑖𝑗. From the Jacobian we
can also obtain the estimate of the covariance 𝐶 of the map 𝑚 alone. This is shown in
Section 3.4.

This gives us the setting that we will investigate in this paper, namely the maps that
we consider are point sets in two dimensions, i.e., 𝑛 points 𝑥𝑖 ∈ ℝ2, 𝑖 = 1, … , 𝑛. The
whole map is represented by the vector 𝑚 ∈ ℝ2𝑛 and its uncertainty is represented by
the covariance matrix 𝐶 ∈ ℝ2𝑛×2𝑛. We will in the following sections show how we can
formulate and solve the simultaneous merging and registration of two such maps.
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3 Merging maps

3.1 Merging without registration

We assume that two estimates 𝑚1 and 𝑚2 (both in ℝ2𝑛) of the same map are given. We
also assume that the local error structures of these maps are known. This could typically
be given by the linearizations of the estimates from previous non-linear refinement of the
two solutions. The covariance matrices of𝑚1 and𝑚2 are given by 𝐶1 and 𝐶2 respectively.
We will also define the weighted norm of a vector by

‖𝑥‖2𝛢 = 𝑥𝛵𝛢−1𝑥. (5)

We would now like to find the best estimate of the true map 𝑚. In this case finding the
maximum likelihood estimate of 𝑚 is given by the solution to the following problem.

Problem 1 (Weighted merging of two maps) Given two maps 𝑚1 and 𝑚2, with covari-
ances 𝐶1 and 𝐶2, find the merged map 𝑚 such that

min𝑚 ‖𝑚 − 𝑚1‖2𝐶1 + ‖𝑚 − 𝑚2‖2𝐶2 . (6)

The solution to (6) is given by the least squares solution to

(𝐶−1
1 + 𝐶−1

2 )𝑚 = 𝐶−1
1 𝑚1 + 𝐶−1

2 𝑚2. (7)

If we instead represent our uncertainties with 𝐿1 and 𝐿2 representing the linearization
around the two estimates, we have the following problem.

Problem 2 (Weighted merging of two maps) Given two maps 𝑚1 and 𝑚2, and 𝐿1 and
𝐿2, find the merged map 𝑚 such that

min𝑚 ‖𝐿1(𝑚 − 𝑚1)‖2 + ‖𝐿2(𝑚 − 𝑚2)‖2. (8)

The optimal solution to (8) is again given by the least squares solution, i.e., the solution
to

[𝐿1𝐿2
]𝑚 = [𝐿1𝑚1

𝐿2𝑚2
] . (9)

If 𝐶−1
𝑖 = 𝐿𝛵𝑖 𝐿𝑖, then (8) is an equivalent formulation to (6).
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3.2 Merging and registration

In the previous section we assumed that 𝑚1 and 𝑚2 were already registered and put in
a common coordinate system. In many applications this is not the case. We will now
address the much more difficult problem when the two maps are unregistered. In this
case we set out to find a rigid transformation mapping𝑚1 onto𝑚2 simultaneously as we
merge the maps, i.e., we want to solve

Problem 3 (Weighted merging and registration of two maps) Given two maps 𝑚1 and
𝑚2, and 𝐿1 and 𝐿2, find 𝑅̂, 𝑡̂ and the merged map 𝑚 such that

min
𝑚,𝑅̂,𝑡̂

‖𝐿1(𝑚 − 𝑚1)‖2 + ‖𝐿2(𝑅̂𝑚 + 𝑡̂ − 𝑚2))‖2, (10)

where 𝑅̂ and 𝑡̂ represent the rotation and translation of the transform, respectively, defined by

𝑅̂ = [
𝑅

𝑅
⋱

𝑅
] , 𝑡̂ = [

𝑡
𝑡
⋮
𝑡
] , (11)

where

𝑅 = [cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃 ] and 𝑡 = [𝑡𝑥𝑡𝑦

] . (12)

Using the substitutions 𝑎 = cos 𝜃 and 𝑏 = sin 𝜃 (10) becomes polynomial in the un-
knowns 𝑎, 𝑏, 𝑡 and 𝑚. Adding a Lagrangian term for the constraint 𝑎2 + 𝑏2 = 1 and
differentiating results in a polynomial system whose solutions are the stationary points
of (10). Given the stationary points the minimum can be found by evaluation, however,
finding them in the general case is not easy.

The problem is non-linear and does not scale well with the number of points 𝑛. By
generating random interger instances of the problem we can use Macaulay2 [9] to inspect
the corresponding solution set (affine variety). We find that there are a finite number
of solution but the number increases with 𝑛. Table 1 shows the number of stationary
points found by Macaulay2 for various 𝑛. As can be seen the relationship is linear and
assuming this holds the problem will be unfeasible to solve for large 𝑛, since in general
actually solving the polynomial system will increase in difficulty with increasing number
of solutions.
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Table 1: The Number of Solutions When Solving (10) for Different Number of Points 𝑛

n # solutions

2 6
3 14
4 22
5 30
6 38
7 46
8 54

3.3 Approximate merging and registration

In order to address the difficulties from the previous section we will now relax our prob-
lem formulation slightly. We assume that the two map estimates 𝑚1 and 𝑚2 are mea-
surements of two true maps 𝑚 and 𝑚′ with

𝑚1 = 𝑚 + 𝜖1, (13)
𝑚2 = 𝑚′ + 𝜖2, (14)

where 𝜖𝑖 is drawn from a zero-mean multivariate Gaussian distribution with covariance
𝐶𝑖. We assume that the true maps are represented in two different coordinate systems
related by a translation and a rotation so that

𝑚′ = 𝑅̂𝑚 + 𝑡̂ ⇔ 𝑚 = 𝑅̂𝛵(𝑚′ − 𝑡̂). (15)

Using (15) to substitute 𝑚 and taking the difference between (13) and (14) gives

𝑅̂𝑚1 + 𝑡̂ − 𝑚2 = 𝑅̂𝜖1 − 𝜖2 ≡ 𝜖3. (16)

Here, 𝜖3 will follow a zero-mean Gaussian distribution with covariance𝐶3 = 𝑅̂𝐶1𝑅̂𝛵+𝐶2.
If we are given two maps 𝑚1 and 𝑚2 and want to find the most likely 𝑅̂ and 𝑡̂ we should
maximize the probability of getting the error 𝜖3, i.e.,

max
𝑅̂,𝑡̂

𝛲(𝜖3) ⇔ max
𝑅̂,𝑡̂

𝑒−(𝑅̂𝑚1+𝑡̂−𝑚2)𝛵𝐶−1
3 (𝑅̂𝑚1+𝑡̂−𝑚2). (17)

Finding the maximum of this is equivalent to minimizing the log-likelihood, i.e.,

min
𝑅̂,𝑡̂

(𝑅̂𝑚1 + 𝑡̂ − 𝑚2)𝛵𝐶−1
3 (𝑅̂𝑚1 + 𝑡̂ − 𝑚2). (18)
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The problem described in (18) is highly non-linear and non-convex. Indeed, the problem
suffers from the same issues as (10) with the same number of solutions as presented in
Table 1. Note that 𝐶3 also depends on the rotation 𝑅̂.

A simpler problem is to replace 𝐶−1
3 with a matrix 𝛲 that is independent of the rotation

𝑅̂. Then (18) becomes

min
𝑅̂,𝑡̂

(𝑅̂𝑚1 + 𝑡̂ − 𝑚2)𝛵𝛲(𝑅̂𝑚1 + 𝑡̂ − 𝑚2). (19)

Solving (19) for some initial 𝛲, we can then update 𝛲 as 𝛲 = (𝑅̂𝐶1𝑅̂𝛵 + 𝐶2)−1 and solve
(19) again. This approach can then be iterated until convergence. Once the registration
is found the merged points 𝑚 can be found by solving the system

[ 𝐿1𝐿2𝑅̂
] 𝑚 = [ 𝐿1𝑚1

𝐿2(𝑚2 − 𝑡̂)
] . (20)

To solve (19) we rewrite the problem as a polynomial system that can be solved using
the action matrix method [10]. We present three such systems and hence three solvers
are constructed, that are increasingly faster and more stable. We start by rewriting the
expression in (19) as

𝑓 = (𝛢𝑟 + 𝛣𝑡 − 𝑚2)𝛵𝛲(𝛢𝑟 + 𝛣𝑡 − 𝑚2), (21)

where

𝛢 =
⎡
⎢⎢

⎣

𝑚(1)
1 −𝑚(2)

1
𝑚(2)
1 𝑚(1)

1
⋮ ⋮

𝑚(𝑛−1)
1 −𝑚(𝑛)

1
𝑚(𝑛)
1 −𝑚(𝑛−1)

1

⎤
⎥⎥

⎦

, 𝛣 = [

1 0
0 1
⋮ ⋮
1 0
0 1

] , (22)

𝑟 = [cos 𝜃
sin 𝜃] (23)

and 𝑚(𝑘)
1 denotes the 𝑘th element of the vector 𝑚1. Differentiating with respect to 𝑡 and

𝜃 results in

∇𝑡𝑓 = 𝛣𝛵𝛲(𝛢𝑟 + 𝛣𝑡 − 𝑚2), (24)

∇𝜃𝑓 = 𝑟𝛵𝐷𝛵𝛢𝛵𝛲(𝛢𝑟 + 𝛣𝑡 − 𝑚2), (25)

where

𝐷 = [0 −1
1 0 ] . (26)
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Using the substitution 𝑎 = cos 𝜃 and 𝑏 = sin 𝜃 and adding the constraint 𝑎2 + 𝑏2 = 1 we
get the first polynomial system

{
∇𝑡𝑓 = 0
∇𝜃𝑓 = 0
𝑎2 + 𝑏2 = 1,

(27)

which has at most four solutions when finitely many. Note that by directly differen-
tiating with respect to 𝜃 instead of with respect to 𝑎 and 𝑏 we get lower degree of our
polynomials. This is because we in this case do not have to add the normalization con-
straint on 𝑎 and 𝑏 in the Lagrangian, and the derivative of 𝑟 with respect to 𝜃 is linear in
𝑟, i.e., 𝑟′(𝜃) = 𝐷𝑟(𝜃).

The system can be reduced by eliminating the translation. Let 𝛦 = (𝛣𝛵𝛲𝛣)−1𝛣𝛵𝛲 and
𝐹 = 𝐷𝛵𝛢𝛵𝛲. Since ∇𝑡𝑓 = 0 we can solve for the translation and get 𝑡 = 𝛦(𝑚2 − 𝛢𝑟).
Insertion of this into ∇𝜃𝑓 results in

∇𝜃𝑓 = 𝑟𝛵𝐹(𝛢𝑟 + 𝛣𝑡 − 𝑚2)
= 𝑟𝛵𝐹(𝛢 − 𝛣𝛦𝛢)𝑟 + 𝑟𝛵𝐹(𝛣𝛦𝑚2 − 𝑚2)

= 𝑟𝛵 [𝑐1 𝑐2
𝑐3 −𝑐1

] 𝑟 + 𝑟𝛵 [𝑐4𝑐5
] = 𝑝(𝑎, 𝑏) (28)

for some real numbers 𝑐1, … , 𝑐5. Similar to before, 𝑝(𝑎, 𝑏) together with the constraint
𝑎2 + 𝑏2 = 1 form our second polynomial system, now with two equations in two un-
knowns:

{𝑝(𝑎, 𝑏) = 0
𝑎2 + 𝑏2 = 1.

(29)

The system can be reduced even further into a single polynomial in only 𝑏. By separating
the even and odd powers of 𝑎 in 𝑝(𝑎, 𝑏) and utilizing that 𝑎2 = 𝑏2−1, we define 𝑝(𝑎, 𝑏) =
𝑝1(𝑏) + 𝑎𝑝2(𝑏), where

𝑝1(𝑏) = −2𝑐1𝑏2 + 𝑐5𝑏 + 𝑐1, (30)
𝑝2(𝑏) = (𝑐2 + 𝑐3)𝑏 + 𝑐4. (31)

Additionally, by multiplying with 𝑎 we get 𝑎𝑝(𝑎, 𝑏) = 𝑎𝑝1(𝑏) + (1 − 𝑏2)𝑝2(𝑏). Since
𝑝(𝑎, 𝑏) = 𝑎𝑝(𝑎, 𝑏) = 0 we construct the system

[ 𝑝1(𝑏) 𝑝2(𝑏)
(1 − 𝑏2)𝑝2(𝑏) 𝑝1(𝑏)

] [1𝑎] = 0, (32)
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which has a solution if and only if the determinant is zero, i.e., if

𝑝1(𝑏)2 − (1 − 𝑏2)𝑝2(𝑏)2 = 0. (33)

This is a quartic polynomial in only 𝑏 and can consequently be solved in closed-form [11].
Given a solution for 𝑏 we can then get 𝑎 as 𝑎 = −𝑝1(𝑏)/𝑝2(𝑏) provided 𝑝2(𝑏) ≠ 0. The
original system in (27) is now reduced to a single univariate polynomial. This is our
third polynomial system.

The two systems (27) and (29) can be solved using the action matrix method and solvers
for these kinds of problems can be generated automatically [10, 12]. Since (33) is uni-
variate it can be solved simply by finding the eigenvalues of the companion matrix or
as mentioned above, using a closed-form solver. The univariate solver will have slightly
better numerical accuracy since we have done all the eliminations algebraically exact,
as opposed to the action matrix solvers that include online elimination steps based on
Gaussian elimination.

3.4 Merging time-of-arrival data

In this section we show how to adapt time-of-arrival (ToA) datasets to the presented
merging scheme. As first described in Section 2, let𝑚 ∈ ℝ2𝑛 denote the column-stacked
coordinates of a set of anchors {𝑥𝑖}𝑛1 . Similarly, let 𝑠 denote the coordinates of a set of
scan points {𝑠𝑗}𝑘1 and let 𝑑̃𝑖𝑗 be a distance measurement between anchor 𝑥𝑖 and scan point
𝑠𝑗. Also, assume that the optimal solution to the minimum least squares problem

arg min
𝑚,𝑠

∑
𝑖𝑗
(‖𝑥𝑖 − 𝑠𝑗‖ − 𝑑̃𝑖𝑗)

2
(34)

is denoted 𝑚⋆ and 𝑠⋆, and has the residuals 𝑟𝑜𝑝𝑡 = 𝑟(𝑚⋆, 𝑠⋆) where

𝑟𝑖𝑗(𝑚, 𝑠) = ‖𝑥𝑖 − 𝑠𝑗‖ − 𝑑̃𝑖𝑗. (35)

Then the residuals can be linearized around 𝑚⋆ and 𝑠⋆ as

𝑟(𝑚, 𝑠) ≈ 𝑟𝑜𝑝𝑡 + 𝐽 [
𝑚 − 𝑚⋆

𝑠 − 𝑠⋆ ] , (36)

where 𝐽 is the Jacobian of 𝑟(𝑚, 𝑠) with respect to 𝑚 and 𝑠. The problem can be reformu-
lated as

𝑟(𝑚, 𝑠) ≈ 𝑟𝑜𝑝𝑡 + [𝐽𝑚 𝐽𝑠] [
Δ𝑚
Δ𝑠 ] . (37)
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Due to the nature of the ToA problem our coordinate system has three degrees of freedom
(translation and rotation). Hence, to fix the coordinate system, we remove three columns
from 𝐽𝑠, fixing the corresponding coordinates. To express the residuals as functions in
only 𝑚 we eliminate the scan points by minimizing the residual norm over Δ𝑠

min
Δ𝑠

‖𝑟𝑜𝑝𝑡 + 𝐽𝑚Δ𝑚 + 𝐽𝑠Δ𝑠‖2 (38)

which has the closed form solution

Δ𝑠 = −(𝐽𝛵𝑠 𝐽𝑠)−1(𝐽𝛵𝑠 𝑟𝑜𝑝𝑡⏟
=0

+𝐽𝛵𝑠 𝐽𝑚Δ𝑚)

= −(𝐽𝛵𝑠 𝐽𝑠)−1𝐽𝛵𝑠 𝐽𝑚Δ𝑚. (39)

Insertion into (37) yields

𝑟(𝑚, 𝑠) ≈ 𝑟𝑜𝑝𝑡 + (𝛪 − 𝐽𝑠(𝐽𝛵𝑠 𝐽𝑠)−1𝐽𝛵𝑠 )𝐽𝑚⏟⏟⏟⏟⏟
=𝑈

Δ𝑚, (40)

where 𝛪 denotes the identity matrix of proper size. In some cases the matrix 𝑈 can be
large and cumbersome to deal with. We therefor decompose it into 𝑈 = 𝑄𝐿 where 𝐿 is
an upper triangular matrix and 𝑄 is a unitary matrix. Consequently,

‖𝑟(𝑚, 𝑠)‖2 ≈ ‖𝑄𝛵𝑟𝑜𝑝𝑡 + 𝐿Δ𝑚‖2

= ‖𝑟𝑜𝑝𝑡‖2 + ‖𝐿Δ𝑚‖2
(𝑟𝛵𝑜𝑝𝑡𝑄𝐿Δ𝑚=0)

. (41)

If two datasets are to be merged the resulting anchor points can be found by minimizing
the sum of the residual norms:

min𝑚 ‖𝑟1(𝑚, 𝑠)‖2 + ‖𝑟2(𝑚, 𝑠′)‖2. (42)

Using the approximation in (41) this is equivalent to the merging in (8), i.e., the 𝐿
found above represents the linearization around the estimated anchor positions as in the
previous sections.

4 Experiments

In Section 4.1 we investigate the numerical stability of the three non-linear solvers pro-
posed in Section 3.3. In Sections 4.2 and 4.3 we compare five different methods for
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registering and merging maps using simulated and real data. The five methods are de-
scribed below.

Problem 3 can be expressed as a separable non-linear least squares problem. Given the
rotation 𝜃, (10) is linear in 𝑚 and 𝑡 and can be solved using the linear system

[ 𝐿1 0
𝐿2𝑅̂ 𝐿2𝛣

]
⏟

𝛨

[𝑚𝑡 ] = [𝐿1𝑚1
𝐿2𝑚2

]
⏟

𝑦

. (43)

Note that 𝑅̂ and consequently 𝛨 is dependent on 𝜃. The 𝜃 that minimizes (10) is then
found by maximizing the univariate non-linear expression [13]

max
𝜃

𝑦𝛵𝛨(𝛨𝛵𝛨)−1𝛨𝛵𝑦. (44)

This can be done using standard iterative optimization methods. We call this method
NLS.

In the second method we use singular value decomposition to find the rigid transfor-
mation (see e.g. [5]). After the two point sets are registered (9) is used to perform the
merge. We call this method SVDRt. The rotation found in this method is also used as
the initial 𝜃 in NSL.

If we take only the rotation from SVDRt and then perform the merging using (43) we
get our third method called SVDR. SVDRt and SVDR are both linear methods but differ
in that SVDR takes into consideration the uncertainty of the points when finding the
translation in (43).

The fourth method is a registration using SVD followed by a naive merging scheme
where the covariances are ignored and the corresponding points of the two datasets are
simply averaged: 𝑚 = (𝑚1 + 𝑚2)/2. We call this method AVG.

The fifth and proposed method is the univariate registration explained in Section 3.3
followed by merging using (9).

4.1 Numerical stability

To test the numerical stability of the three solvers proposed in Section 3.3, we gener-
ate random datasets consisting of 𝑛 = 10 2D points 𝑚1 with coordinates in the range
[0, 10], ground truth transformation (𝑅, 𝑡) with 𝜃 ∈ [0, 2𝜋] and 𝑡𝑥, 𝑡𝑦 ∈ [−10, 10], and
covariance matrices 𝐶1 and 𝐶2, where 𝐶𝑖 = 𝛫𝛵

𝑖 𝛫𝑖 and the elements of 𝛫𝑖 are drawn from
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Figure 2: Residual error histogram for 100,000 runs of the three proposed solvers. The two first
solvers (blue and red) overlap almost completely.

the range [−𝜎, 𝜎] with 𝜎 = 1. From these we get the second point set 𝑚2 = 𝑅𝑚1 + 𝑡
and the precision matrix 𝛲 = (𝑅𝐶1𝑅𝛵 + 𝐶2)−1. Since we have not explicitly introduced
any errors, the residual in (19) can be attributed to numerical errors in the optimization.
Figure 2 shows residual histograms for 100,000 runs of the three solvers. One can see
that all solvers give residuals that are close to machine precision.

When the solvers for (27) and (29) are automatically generated Macaulay2 is used to
first solve a random integer instance of the problem. Knowledge of this specific instance
is then used when generating the solvers [10]. As a consequence of this, the solvers
produced might only work for similar instances of the problem. This is the case for the
two solvers produced here. When the covariance in the anchor points are isotropic and
independent there are only two solutions to (27) and (29) instead of four, which the
generated solvers fail to handle. The univariate solver however do not suffer from these
issues while being just as numerically stable.

4.2 Simulated data

We test the proposed registration and merging scheme on simulated point sets with
Gaussian errors. Similar to the previous section we generate random ground truth po-
sitions 𝑚 with coordinates in the range [0, 10] and transform them as 𝑚′ = 𝑅𝑚 + 𝑡
where 𝑡𝑥, 𝑡𝑦 ∈ [−10, 10]. Gaussian noise is then added to the positions: 𝑚1 = 𝑚+ 𝑒1 and
𝑚2 = 𝑚′ + 𝑒2, where 𝑒𝑖 are sampled from 𝒩(0, 𝐶𝑖). The random covariances are calcu-
lated as 𝐶𝑖 = 𝛫𝛵

𝑖 𝛫𝑖 where elements from 𝛫𝑖 are in the range [−𝜎, 𝜎] for some constant
𝜎. Figure 3 shows the RMS error in the merged positions for various values of 𝜎. All
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Figure 3: RMS error in merged position for various amounts of noise.

methods but the naive AVG produces similar results.

A second test was performed to see how the methods compare as the anisotropy of the
Gaussian noise increases. To this end we define new covariance matrices

𝐶𝑖 = [
𝑆𝑖1Λ𝑆𝛵𝑖1

𝑆𝑖2Λ𝑆𝛵𝑖2
⋱

𝑆𝑖𝑛Λ𝑆𝛵𝑖𝑛

] , (45)

where 𝑆𝑖𝑗 ∈ ℝ2×2 are random rotation matrices and

Λ = [√𝜂 0
0 1/√𝜂] , (46)

where 𝜂 is the ratio between the minor and major axes of the Gaussian ellipses called
the anisotropy ratio. Figure 4 shows the RMS error in the merged positions for various
values of 𝜂. For isotropic errors (𝜂 = 1) all methods find the optimal solution. For
higher anisotropy ratios the non-linear NLS and proposed methods perform similarly
and better than the remaining linear ones. Note how SVDR performs better than SVDRt.
There is clearly a benefit in solving the translation during the merging step in (43) rather
than during the registration.
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Figure 4: RMS error in merged position for various level of anisotropy.

4.3 Real data

A series of real ToA datasets were captured using an ultra-wideband (UWB) positioning
system. Six anchors where placed in a plane covering an area of approximately 3 × 6m.
The ground truth positions of the anchors were found by accurately measuring the pair-
wise distance between them. A receiver was then moved in the same plane while distance
measurements were recorded. From these measurements the anchors 𝑚 and scan points
𝑠 were estimated by solving (34) and the remainder of Section 3.4 was carried out to
produce the upper triangular matrix 𝐿.

We present eight datasets constructed in this fashion. In three of them, called S1-S3, the
receiver was moved in a straight line through the anchor setup. Three similar datasets,
called S4-S6, were created where the receiver was moved in a straight line perpendicular
to S1-S3. Finally, two longer datasets, called L1 and L2, were created where the receiver
was moved freely around the anchor setup (see Figure 5). Pairs of these datasets were
registered and merged using the five discussed methods. Table 2 shows the resulting
RMS errors in merged position measured against the ground truth. All methods but the
naive AVG produced similar errors.

Figure 6 shows the registered and merged anchors when using the proposed method on
S1 and S4. The fact that the receiver moved in a straight line resulted in anisotropic
covariances that are taken into account when merging. Similarly, Figure 7 shows the
registered and merged anchors from datasets S1 and L1. The longer datasets resulted
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Table 2: RMS Error (meters) in Anchor PositionsWhen Registering andMerging Various Datasets.

Dataset 𝑚1 𝑚2 NLS SVDRt SVDR AVG Proposed

S1 - S4 0.44 0.41 0.28 0.28 0.28 0.35 0.28
S2 - S5 0.42 0.39 0.26 0.27 0.27 0.34 0.27
S3 - S6 0.42 0.38 0.25 0.25 0.25 0.33 0.25
S1 - L1 0.44 0.18 0.18 0.18 0.18 0.28 0.18
L2 - L1 0.18 0.18 0.17 0.17 0.17 0.17 0.17
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Figure 5: The estimated scan points and ground truth anchor positions for the datasets S1 (green)
and L1 (red).

in lower and more isotropic covariances and, as a consequence, the merged points are
drawn towards the more reliable L1.

5 Conclusions

In this paper we presented five different methods for performing rigid registration of 2D
point sets that takes into consideration the covariance of the points. We also presented a
merging scheme for combining multiple such point sets in an optimal way and showed
how this can be applied to ToA data. Synthetic data showed that the proposed method
performed better than simpler linear methods for very anisotropic noise. When the
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Figure 6: The registered and merged anchors (blue) resulting from datasets S1 (green) and S4
(red) using the proposed method. The ellipses illustrate the covariance of the anchors.
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Figure 7: The registered and merged anchors (blue) resulting from datasets S1 (green) and L1
(red) using the proposed method. The ellipses illustrate the covariance of the anchors.
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noise is more isotropic real and synthetic data showed that all methods but the naive
AVG method performed similarly.

Even though the full problem in (10) is highly non-linear, as indicated by Table 1, simple
methods produce good results. In particular, if the rotation of the transformation is
found without considering the uncertainties of the points, then the problem becomes
linear (SVDR) and can be solved efficiently with decent results even for anisotropic noise.

However, it is possible that in higher dimensions the non-linearity increases and more
complicated non-linear methods, such as the proposed or NLS methods, are required.
We did not investigate this as the proposed method does not easily extend to higher
dimensions.
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1 Introduction

The problem of estimating receiver-sender node positions from radio or sound signals
is a key issue in different applications such as microphone array calibration, radio an-
tenna array calibration, mapping and positioning [1]. If all senders and receivers are
synchronized, it is possible to obtain absolute distance measurements between senders
and receivers. These measurements can be used for self-calibration and such problems
(Time-of-Arrival problems, TOA) have been studied in, e.g., [2–17]. Some variants of
this TOA problem are (i) TDOA - if the receivers are synchronized, whereas the senders
are unsynchronized [18–20]; (ii) (COTDOA) - constant offset time-difference-of-arrival
[21]; and (iii) UTDOA - if neither senders nor receivers are calibrated [22].

A popular strategy to analyze and solve these tasks is to follow a two-tiered stratified ap-
proach [18,21,23]. The first part of this approach is based on solving a relaxed version of
the problem. For this part it is possible to estimate the unknown offsets in the TDOA,
COTDOA and UTDOA cases. The first part also involves estimating a low rank de-
composition of a matrix derived from the measurements and offsets [24, 25]. The rank
here depends on the minimum of the dimensions of the affine spans of the receivers and
of the senders. Thus, for the general 3D case the rank is three, whereas the rank is two
if, e.g., the receivers are coplanar and one if, e.g., the senders are colinear.

The second part of the two-tiered approach can be seen as an affine upgrade and it
involves estimating a few parameters. This part is common for the cases of TOA, TDOA,
COTDOA and UTDOA, since the offsets have already been estimated in the first part.
Here, it is also possible to handle degenerate cases such as when the dimensions of the
affine spans of the receivers and senders are different [26, 27]. The stratified approach
is an efficient way of separating the full calibration problem into several well-defined
sub-problems.

In this paper we study the upgrade problem, i.e., the second part of the two-tiered ap-
proach, and provide solvers for the most interesting minimal cases.1 We also demonstrate
how such solvers can be used in combination with nonlinear least squares optimization,
[28, 29], to produce efficient algorithms for these upgrades. This can be used for all
above mentioned stratified sensor network self-calibration problems.

1The solvers were implemented in C++ and MATLAB and the code is available at
https://github.com/martinkjlarsson/upgrade-methods.
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2 A Stratified approach to self calibration

The problem we address involves 𝑚 receiver positions 𝒓𝑖 ∈ ℝ3, 𝑖 = 1, … ,𝑚, 𝑛 sender
positions 𝒔𝑗 ∈ ℝ3, 𝑗 = 1, … , 𝑛, and possibly unknown offsets. This could for example
represent the microphone positions and locations of sound emissions, respectively. The
arrival time of a sound 𝑗 to receiver 𝑖 is denoted 𝑡𝑖𝑗 and the time that sound 𝑗 is emitted
is 𝜏𝑗. Multiplying the travel time 𝑡𝑖𝑗 − 𝜏𝑗 with the speed 𝑣 of the signal, we obtain the
distance between senders and receivers

𝑣(𝑡𝑖𝑗 − 𝜏𝑗) = ‖𝒓𝑖 − 𝒔𝑗‖2, (1)

where ‖.‖2 denotes the ℓ2-norm. The speed 𝑣 is throughout the paper assumed to be
known and constant. Assume that we have measurements 𝑧𝑖𝑗 of 𝑣(𝑡𝑖𝑗 − 𝜏𝑗). Then we
have

𝑧𝑖𝑗 = ‖𝒓𝑖 − 𝒔𝑗‖2. (TOA)

Estimating 𝒓𝑖 and 𝒔𝑗 from 𝑧𝑖𝑗 is known as the node calibration problem. For the cases of
COTDOA, TDOA and UTDOA the measurement equations are similar:

𝑧𝑖𝑗 = ‖𝒓𝑖 − 𝒔𝑗‖2 + 𝑜, (COTDOA)

𝑧𝑖𝑗 = ‖𝒓𝑖 − 𝒔𝑗‖2 + 𝑜𝑗, (TDOA)

𝑧𝑖𝑗 = ‖𝒓𝑖 − 𝒔𝑗‖2 + 𝑞𝑖 + 𝑜𝑗. (UTDOA)

The first part of the stratified approach involves estimating the offsets and will not be
covered in this paper. We can thus assume that these offsets are known and subtract them
from 𝑧𝑖𝑗 to get the actual distances 𝑑𝑖𝑗. Additionally, since the distances are assumed to
be positive we can without loss of generality square them and for all the cases above we
get the problem

𝑑2𝑖𝑗 = ‖𝒓𝑖 − 𝒔𝑗‖22 = 𝒓𝛵𝑖 𝒓𝑖 − 2𝒓𝛵𝑖 𝒔𝑗 + 𝒔𝛵𝑗 𝒔𝑗. (2)
In addition to finding the offsets, the first step also includes finding a solution to the
following relaxed problem

𝑑2𝑖𝑗 = −2𝒖𝛵𝑖 𝒗𝑗 + 𝑎𝑗 + 𝑏𝑖, (3)

where 𝒖𝑖 and 𝒗𝑗 are columns of two sought matrices 𝐔 ∈ ℝ3×𝑚 and 𝐕 ∈ ℝ3×𝑛, respec-
tively, and 𝒂𝛵 ∈ ℝ𝑛 and 𝒃 ∈ ℝ𝑚 only depend on data. Due to noise there is typically not
an exact solution to (3). Furthermore, the matrix −2𝐔𝛵𝐕 forms a low-rank approxima-
tion of the so called double compaction matrix 𝚳 [18], where the rank is determined by
the smallest dimension of the affine spans of the receivers and senders. For our purposes
the rank will be three. The second part in the stratified approach is to take a solution to
the relaxed problem and upgrade it to find the receivers and senders. This second part is
the main focus of the paper.

65



3 Upgrade

Let 𝐑 and 𝐒 be the matrices whose columns are 𝒓𝑖 and 𝒔𝑗, respectively. The problem of
upgrading a relaxed solution (𝐔,𝐕, 𝒂, 𝒃) to a solution in (𝐑, 𝐒) was first introduced in
[11] and later improved upon in [17]. In this section we generalize the problem slightly
and provide conditions which must be satisfied in the relaxed solution for the upgrade
to work. We will assume that the receivers and senders are points in 3D but the scheme
generalizes to any dimension. We start by introducing the matrices

𝐂𝑟 = 𝚰 − 𝒘𝑟𝟏𝛵, (4)

𝐂𝑠 = 𝚰 − 𝒘𝑠𝟏𝛵, (5)

where 𝒘𝑟 ∈ ℝ𝑚 and 𝒘𝑠 ∈ ℝ𝑛 are vectors such that 𝒘𝛵
𝑟 𝟏 = 𝒘𝛵

𝑠 𝟏 = 1. Additionally, let
𝒓0 = 𝐑𝒘𝑟 and 𝒔0 = 𝐒𝒘𝑠 be affine combinations of the receiver and sender positions,
respectively. The double compaction matrix, 𝚳, can then be expressed in the distances,
𝐃, as

𝚳 = 𝐂𝛵
𝑟𝐃∘2𝐂𝑠 = 𝐃∘2 − 𝟏𝒂 − 𝒃𝟏𝛵 + 𝑐𝟏𝟏𝛵 (6)

where 𝒂 = 𝒘𝛵
𝑟 𝐃∘2, 𝒃 = 𝐃∘2𝒘𝑠 and 𝑐 = 𝒘𝛵

𝑟 𝐃∘2𝒘𝑠. Here 𝐃∘2 denotes the element-wise
square of 𝐃. By inserting (2) we get, after some simplifications,

𝚳 = −2(𝐑 − 𝒓0𝟏𝛵)𝛵(𝐒 − 𝒔0𝟏𝛵), (7)
𝑎𝑗 = 𝒘𝛵

𝑟 diag(𝐑𝛵𝐑) − 2𝒓𝛵0 𝒔𝑗 + 𝒔𝛵𝑗 𝒔𝑗, (8a)

𝑏𝑖 = 𝒓𝛵𝑖 𝒓𝑖 − 2𝒓𝛵𝑖 𝒔0 + 𝒘𝛵
𝑠 diag(𝐒𝛵𝐒), (8b)

𝑐 = 𝒘𝛵
𝑟 diag(𝐑𝛵𝐑) − 2𝒓𝛵0 𝒔0 + 𝒘𝛵

𝑠 diag(𝐒𝛵𝐒). (8c)

From (7) we see that, by decomposing𝚳 = −2𝐔𝛵𝐕 using, e.g., singular value decompo-
sition, we can find the receiver and sender positions up to some full rank transformation
𝐋 and reference points 𝒓0 and 𝒔0, such that

𝐑 = 𝐋−𝛵𝐔 + 𝒓0𝟏𝛵 and 𝐒 = 𝐋𝐕 + 𝒔0𝟏𝛵. (9)

3.1 Conditioning the relaxed problem

Due to the larger gauge freedom in the relaxed problem than in the original problem
some constraints need to be added before it fits into the upgrading scheme. Firstly, we
see from (9) that

𝒖0 ≜ 𝐔𝒘𝑟 = 𝐋𝛵(𝐑 − 𝒓0𝟏𝛵)𝒘𝑟 = 𝟎, (10)

𝒗0 ≜ 𝐕𝒘𝑠 = 𝐋−1(𝐒 − 𝒔0𝟏𝛵)𝒘𝑠 = 𝟎. (11)
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This results from our definition of 𝚳 and is not true for a general 𝐔 and 𝐕. However,
we can ensure that the conditions are met by translating 𝐔 and 𝐕:

𝐔 → 𝐔 − 𝒖0𝟏𝛵, 𝐕 → 𝐕 − 𝒗0𝟏𝛵 (12)

and compensating 𝒂, 𝒃 and 𝑐 accordingly

𝒂 → 𝒂 − 2𝒖𝛵0𝐕, 𝒃 → 𝒃 − 2𝐔𝛵𝒗0, 𝑐 → 𝑐 − 2𝒖𝛵0 𝒗0. (13)

Secondly, from (6) we see that 𝑐 = 𝒂𝒘𝑠 = 𝒘𝛵
𝑟 𝒃 which can be ensured by adding appro-

priate constants to 𝒂, 𝒃 and 𝑐, making sure (3) still holds.

3.2 Solving for the upgrade parameters

We are now left with finding the unknowns 𝐋, 𝒓0 and 𝒔0 using the equations in (8). Any
solution to 𝐑 and 𝐒 is only determined up to a rigid transform. To fix the translational
part of the transform we let 𝒓0 = 𝟎. We then parameterize the remaining unknowns as
𝒔0 = 𝐋𝒒 and 𝚮 = (𝐋𝛵𝐋)−1 where 𝒒 ∈ ℝ3 and where 𝚮 ∈ ℝ3×3 is a symmetric matrix.

To simplify the equations we will henceforth assume that 𝒘𝑟 and 𝒘𝑠 are zero vectors
except for one element which is set to 1, i.e., 𝒓0 = 𝒓𝑖 for some 1 ≤ 𝑖 ≤ 𝑚 and 𝒔0 = 𝒔𝑗 for
some 1 ≤ 𝑗 ≤ 𝑛. The equations in (8) can now be written as

𝑎𝑗 = (𝒗𝑗 + 𝒒)𝛵𝚮−1(𝒗𝑗 + 𝒒), (14a)

𝑏𝑖 = 𝒖𝛵𝑖 𝚮𝒖𝑖 − 2𝒖𝛵𝑖 𝒒 + 𝒒𝛵𝚮−1𝒒, (14b)

𝑐 = 𝒒𝛵𝚮−1𝒒. (14c)

𝚮 is symmetric and can together with 𝒒 be parameterized in nine unknowns. However,
the equations above are not independent due to the two linear constraints 𝑐 = 𝒂𝒘𝑠 = 𝒘𝑟𝒃.
Consequently, we need 𝑚 + 𝑛 + 1 ≥ 11 for the problem to be well-defined.

If we subtract 𝑐 from the first two equations,

𝑎𝑗 − 𝑐 = 𝒗𝛵𝑗 𝚮−1𝒗𝑗 − 2𝒗𝛵𝑗 𝚮−1𝒒, (15a)

𝑏𝑖 − 𝑐 = 𝒖𝛵𝑖 𝚮𝒖𝑖 − 2𝒖𝛵𝑖 𝒒, (15b)

𝑐 = 𝒒𝛵𝚮−1𝒒, (15c)

we get 𝑚−1 linear constraints on the unknowns from (15b). With 𝑚 ≥ 10 the problem
becomes linear and if 𝑚 < 10, 𝚮 and 𝒒 can be parameterized in 10 − 𝑚 unknowns 𝛼𝑘
for 𝑘 = 1, … , 10 − 𝑚:

𝚮 = 𝚮0 +
10−𝑚
∑
𝑘=1

𝛼𝑘𝚮𝑘, 𝒒 = 𝒒0 +
10−𝑚
∑
𝑘=1

𝛼𝑘𝒒𝑘. (16)
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If we multiply the nonlinear equations (15a) and (15c) with det(𝚮) they become poly-
nomial in 𝛼𝑘 and can be solved, e.g, using action matrix methods [9]. We might have
introduced additional solutions for the case where det(𝚮) = 0. However, these can be
removed using saturation as described in [17]. Once 𝚮 is solved for, 𝐋 can be found us-
ing Cholesky decomposition and finally the receiver and sender positions can be attained
using (9).

4 Minimal Solvers

In [11] two problems are considered. The first involves six receivers and four senders
and results in five linear equations corresponding to (15b), three nonlinear equations
corresponding to (15a) and one nonlinear equation corresponding to (15c). Because of
this, we introduce a new notation and denote this problem with 531. Similarly, the
second problem in [11] involves five receivers and five senders which we would denote
441.

Problem 531 is minimal in the sense that there are 24 distance measurements and 24
degrees of freedom in 𝐑 and 𝐒. However, problems 531 and 441 are both minimal in
the sense that they have nine equations and nine unknowns in (15). There is indeed a
total of 19 possible minimal configurations of the equations, 10 of which are listed in
Table 1. The first solver, 900, is linear and subsequent solvers get increasingly nonlinear.
Note that, although we used the same scheme as in [17], our templates for setting up the
action matrices for solvers 531 and 441 are slightly smaller.

5 Validation

5.1 Numerical stability of solvers

To test the numerical stability of the solvers we generated 10 random receiver and 10
random sender positions within a unit cube, 𝐑, 𝐒 ∈ [0, 1]3×10, from which we could
calculate the distance matrix 𝐃. The relaxed version of the problem (𝐔, 𝐕, 𝒂, 𝒃 and 𝑐)
could then be found as described in Section 3. For every solver in Table 1 a minimal
sample of the relaxed problem was taken and solved. From the estimated receiver and
sender positions the RMS error in the estimated distances was calculated. Figure 1 shows
histograms of the RMS errors over multiple runs. As can be seen the 900, 810 and 801
solvers performed best and the numerical stability generally worsens as more nonlinear
equations are added.
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Table 1: The number of solutions and template sizes for the solvers, with and without saturation,
together with their execution time.

# Solutions Template size Exec.

Solver no sat. sat. no sat. sat. time

900 1 - - - 39 μs
810 3 3 - - 130 μs
801 4 4 - - 130 μs
720 9 9 12 × 21 12 × 21 170 μs
711 12 12 16 × 28 16 × 28 210 μs
630 21 17 88 × 109 112 × 129 600 μs
621 30 26 122 × 152 156 × 182 1.2 ms
540 ∞ 21 - 310 × 331 5.3 ms
531 ∞ 38 - 493 × 531 19 ms
441 ∞ 42 - 817 × 859 72 ms
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Figure 1: Error histograms for all solvers in Table 1 when provided with noise free data. Note
that the graphs for 900, 810 and 801 extend beyond the plot.
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Figure 2: Error histograms for all solvers in Table 1 when provided with noise free data from
points located on a sphere.

5.2 Degenerate configurations

The solvers behave differently when it comes to certain degenerate configurations of
𝐑 and 𝐒. For example, during testing we observed that the rank of the linear system
resulting from (15b) never exceeds eight when the receivers are confined to certain two-
dimensional manifolds (e.g. ellipsoids, paraboloids, hyperboloids). Consequently, the
linear 900 solver performs poorly for such configurations. More generally, one could
imagine a distance matrix 𝐃 for which there are several possible embeddings of 𝐑 and
𝐒. If the number of embeddings exceeds the number of solutions of a solver, that solver
might not find the correct embedding.

Figure 2 shows RMS distance errors for the solvers in Table 1 when the receivers and
senders are located on a unit sphere. It can be seen that only solvers that include equation
(15c) are stable.

5.3 Minimal solvers in a RANSAC system

In this section we show how our upgrade solvers can be used in a simple system. We
assume that we have a solution to the first part in the stratified approach, i.e., we have a
low rank approximation solution (𝐔, 𝐕, 𝒂, 𝒃 and 𝑐), and want to upgrade this solution
to actual receiver and sender positions. From the given (𝐔, 𝐕) (and a chosen minimal
solver) we sample minimal configurations and solve using the chosen upgrade solver.
From the solution we can estimate the distance errors. We then iterate a small number
of times and choose the best solution. The results of this can be seen in Figure 3 for three
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Figure 3: Results using different minimal upgrade solvers as initialization, with subsequent non-
linear optimization on synthetic data.

example solvers. Here we have used synthetic data, and show the results for varying levels
of added noise. The graph also shows the results after nonlinear optimization over the
upgrade parameters 𝐋 and 𝒒 respectively after subsequent nonlinear optimization over
the receiver and sender positions. The rationale for optimizing over 𝐋 and 𝒒 first, is that
this is in general faster and more robust, since it only involves nine parameters. For larger
problems, optimizing over the full receiver and sender positions would involve hundreds
or thousands of parameters.

5.4 Real data from UWB

We evaluate the solvers on real TOA datasets gathered with an ultra-wideband (UWB)
setup. Six senders were kept stationary in an area of 3×3×2 meters while a receiver
was moved through the setup. Ground truth positions were gathered using an optical
motion capture system. The noise in the UWB measurements corresponds roughly to
𝜎 = 0.26. The RANSAC scheme discussed in the previous subsection was used to find a
good initialization with three selected solvers. Table 2 shows the RMS errors in sender
positions from the solver initialization, after nonlinear optimization over 𝐋 and 𝒒, and
after nonlinear optimization over 𝐋 and 𝒒 followed by 𝐑 and 𝐒. None of the solvers
performed best for all datasets and after optimization they all performed similarly.
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Table 2: RMS errors (meters) in sender positions for three real UWB datasets.

Init Opt. (𝐋, 𝒒) Opt. (𝐋, 𝒒),(𝐑, 𝐒)
Data 900 801 441 900 801 441 900 801 441

1 0.75 1.85 1.01 0.96 0.95 0.96 0.33 0.32 0.33
2 0.62 0.73 0.48 0.38 0.38 0.38 0.28 0.28 0.28
3 0.41 0.40 0.57 0.49 0.49 0.49 0.21 0.21 0.21

6 Conclusions

In this paper, several novel solvers have been constructed to efficiently solve the up-
grade step in a two-tiered stratified approach to solving TOA, TDOA and COTDOA
problems. These have been verified using simulated data to test the solver and real ex-
perimental data to test our algorithms in realistic scenarios.

For future work, it would be interesting to further study how best to combine low rank
estimation problems for TOA, TDOA and similar problems with affine upgrade meth-
ods. This would make it possible to produce systems that could solve a wide variety of
estimation problems (TOA, TDOA, UTDOA) with a wide variety of assumptions on
senders and receivers, e.g., spanning 3D or being coplanar or colinear.
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approach. In the first step the problem is converted to a low-rank matrix estimation
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1 Introduction

Precise localization of sender/receiver node positions using radio or sound signals is a
key enabler in numerous applications such as microphone array calibration, speaker di-
arization, beam-forming, radio antenna array calibration, mapping and positioning [1].
There are several variants of this problem, for example (i) TOA, (ii) TDOA, (iii) COT-
DOA and (iv) UTDOA. The time-of-arrival (TOA) problem refers to the problem where
measurements of absolute distances between senders and receivers can be obtained [2–4].
One example of this is when senders and receivers are jointly synchronized. The time-
difference-of-arrival problem (TDOA) is the problem when the receivers are synchro-
nized, whereas the senders are unsynchronized, or vice versa [5, 6]. The constant offset
time-difference-of-arrival problem (COTDOA) is similar to the TDOA problem, but
the unknown offset is constant [7]. Finally the UTDOA refers to the problem where
neither senders nor receivers are synchronized [8].

In addition, the self-calibration problem becomes fundamentally different depending
on the respective dimension of the affine hull of the senders and of the receivers. The
senders and receivers can, for example, separately be confined to a line, a plane or span
3D space [9, 10].

Considering each combination of calibration type (TOA, TDOA, COTDOA, UT-
DOA) with each combination of sender/receiver dimensionality within a common frame-
work is a challenge. One strategy to understand and solve the self-calibration problem is
to follow a two-tiered stratified approach [6, 7]. The first part of this approach is based
on solving a relaxed version of the problem where, in the case of TDOA, COTDOA
and UTDOA, any offsets are solved for. The second part consists of upgrading a relaxed
solution to a solution to the original problem. This was recently studied in [11].

A different approach for performing robust TDOA self-calibration was proposed in [12],
where subsets of the TDOA measurements were selected to calculate candidate TOA
measurements. After poor candidates were discarded the median of the remaining ones
was used to perform TOA self-calibration. In [13] the redundancy of the full set of
TDOA measurements was exploited using low-rank approximation to perform denois-
ing, fill in missing data and remove outliers. However, no system for self-calibration was
proposed.

In this paper we follow the stratified approach, focusing on the TDOA case in 3D. Our
contribution here is twofold. First, we improve on existing minimal solvers for finding
the TDOA offsets [6], making them notably faster and reducing their memory require-
ments. Second, utilizing these improved solvers in efficient RANSAC [14] methods we
produce a system for TDOA self-calibration that is robust to noise, missing data and
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outliers1. We also verify the solvers and system using synthetic and real data.

2 Stratified Self-Calibration

The problem we address involves 𝑚 receiver positions 𝒓𝑖 ∈ ℝ3, 𝑖 = 1, … ,𝑚 and 𝑛 sender
positions 𝒔𝑗 ∈ ℝ3, 𝑗 = 1, … , 𝑛. These could for example represent the microphone
positions and locations of sound emissions, respectively. The arrival time of a sound 𝑗 to
receiver 𝑖 is denoted 𝑡𝑖𝑗 and the time that sound 𝑗 is emitted is denoted 𝜏𝑗. Multiplying
the travel time 𝑡𝑖𝑗 − 𝜏𝑗 with the speed 𝑣 of the signal, we obtain the distance between
sender and receiver

𝑑𝑖𝑗 = 𝑧𝑖𝑗 − 𝑜𝑗 = ‖𝒓𝑖 − 𝒔𝑗‖, (1)

where 𝑧𝑖𝑗 = 𝑣𝑡𝑖𝑗, 𝑜𝑗 = 𝑣𝜏𝑗 and ‖.‖ denotes the ℓ2-norm. Let 𝑧̂𝑖𝑗 be noisy measurements of
𝑧𝑖𝑗 that suffer from small approximately Gaussian noise, outliers with substantially larger
errors and missing data. Estimating 𝒓𝑖, 𝒔𝑗 and 𝑜𝑗 from 𝑧̂𝑖𝑗 is known as the TDOA node
calibration problem.

We will use the notation 𝜃1 = {𝐑, 𝐒, 𝒐} for the unknown parameters, where 𝒓𝑖 and 𝒔𝑗 are
columns of𝐑 and 𝐒, respectively, and 𝒐 is the vector of offsets. We will also let 𝚭̂ ∈ ℝ𝑚×𝑛

denote the matrix with entries 𝑧̂𝑖𝑗 and let 𝒲in denote the index set where (𝑖, 𝑗) ∈ 𝒲in

indicates that 𝑧̂𝑖𝑗 is not missing and is an inlier. Given the measurements 𝚭̂ and an initial
solution 𝜃1 the refinement of the estimate can be found by local optimization methods,
e.g., Levenberg-Marquardt [15, 16], by minimizing

𝑓(𝜃1) = ∑
(𝑖,𝑗)∈𝒲in

𝐿 (𝑧̂𝑖𝑗 − (‖r𝑖 − s𝑗‖ + 𝑜𝑗)) , (2)

where 𝐿(⋅) is a loss function, e.g., the quadratic loss or the robust Huber loss [17].

The stratified approach is based on a relaxation of the problem, that exploits the fact that
𝐃∘2 has rank 5 [5], where𝐃∘2 ∈ ℝ𝑚×𝑛 is the matrix with entries 𝑑2𝑖𝑗 = (𝑧𝑖𝑗−𝑜𝑗)2. Further
simplifications use the double compaction method [6]. The double compaction matrix
𝚳 ∈ ℝ𝑚×𝑛 is defined as the matrix with elements 𝛭𝑖𝑗 = (𝑧𝑖𝑗 − 𝑜𝑗)2 − 𝑎𝑖 − 𝑏𝑗, where
𝒂 and 𝒃 are, apart from a scalar offset, affine combinations of the columns and rows of
𝐃∘2, respectively (see [11]). The matrix 𝚳 can be shown to have rank 3, i.e., it can be
expressed as 𝚳 = 𝐔𝛵𝐕, where 𝐔 ∈ ℝ3×𝑚 and 𝐕 ∈ ℝ3×𝑛. The relaxed problem thus
involves a set of parameters 𝜃2 = {𝐔,𝐕, 𝒃, 𝒂, 𝒐}. Here the constraints can be written

1MATLAB and C++ source code can be found at https://github.com/martinkjlarsson/
tdoa-self-calibration.
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Table 1: Execution times and elimination template sizes for our implementation of five minimal
offset solvers.

Rank 𝑚 𝑛 # solutions Exec. time Template size

2 7 4 1 37 μs 14 × 15
2 5 6 5 810 μs 37 × 42
3 9 5 1 36 μs 29 × 30
3 7 6 5 1.4 ms 52 × 57
3 6 8 14 7.1 ms 320 × 334

as 𝑧𝑖𝑗 = √𝒖𝛵𝑖 𝒗𝑗 + 𝑎𝑖 + 𝑏𝑗 + 𝑜𝑗, where 𝒖𝑖 and 𝒗𝑗 denote columns 𝑖 and 𝑗 of 𝐔 and 𝐕,
respectively. Refinement of the parameters can be done by local minimization of

𝑓(𝜃2) = ∑
(𝑖,𝑗)∈𝒲in

𝐿 (𝑧̂𝑖𝑗 − (√𝒖𝛵𝑖 𝒗𝑗 + 𝑎𝑖 + 𝑏𝑗 + 𝑜𝑗)) . (3)

3 Minimal Solvers for the Offsets

The first step in the stratified approach is to estimate the unknown offsets 𝒐. In [6] a
technique for solving five minimal problems is presented (see Table 1). Throughout the
paper we will use (𝑚r/𝑛s) to denote the problem or solver that requires𝑚 receivers and 𝑛
senders. Two of the problems, (7r/4s) and (9r/5s), are linear, while the remaining three
are nonlinear. In this section we propose improvements to the nonlinear ones, using
automated tools from [18], making them significantly faster than in [6].

The constraint on𝚳 to be of rank 3 is equivalent to all minors of order 4 being zero. This
results in a polynomial system in 𝑜𝑗, which can be solved using action matrix methods
[19]. In the resulting solver all polynomial coefficients must be calculated from data, i.e.,
a large number of polynomials in 𝑧𝑖𝑗 must be evaluated. The worst solver in this regard
is (6r/8s), where there are 5025 coefficients of degrees between four and eight in 𝑧𝑖𝑗. To
explicitly evaluate these one by one is time consuming and results in code that requires
a lot of memory to compile if implemented in, e.g., C++.

However, using Laplace expansion the minors can be written using combinations of
lower order minors and consequently, the polynomial system in 𝒐 has many common
subexpressions. This in turn results in common subexpressions in the coefficients which
we eliminate to decrease the execution time and memory requirements of the solvers.
Table 1 shows the execution time of our solvers implemented in MATLAB. These are
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significantly faster than the original solvers in [6], where times in the order of 500 ms
was reported.

4 Minimal Solvers in RANSAC

We propose the use of the fast minimal solvers in a hypothesize and test framework to
obtain (i) an initial estimate of the offsets 𝒐 and (ii) an initial inlier set.

We start by randomly picking one of the minimal cases with𝑚′ receivers and 𝑛′ senders.
We then randomly select 𝑚′ rows and 𝑛′ columns of 𝚭̂ containing no missing data and
solve for the corresponding offsets 𝒐′. For each real solution 𝒐′ we can find the corre-
sponding 𝒂′, 𝒃′ and double compaction matrix 𝚳′. From 𝚳′ we can extract 𝐔′ and 𝐕′

using singular value decomposition (SVD).

A partial solution can then be extended by utilizing more columns of 𝚭̂. For each re-
maining column 𝑗 we pick 5 measurements randomly from the 𝑚′ selected rows and
solve for 𝒗𝑗, 𝑏𝑗 and 𝑜𝑗. However, we require there to be at least 6 measurements avail-
able, so that there are extra measurements to use for testing the extension and to classify
as inliers or outliers according to the residuals in (3).

5 Systems

In this section we put the offset solvers into a robust system for solving TDOA. We
use a two-tiered stratified approach as in [6] where we start by constructing a solution
𝜃2 = {𝐔,𝐕, 𝒂, 𝒃, 𝒐} which is later upgraded to a solution 𝜃1 = {𝐑, 𝐒, 𝒐}. Some of the
components are described in detail below and the system as a whole is summarized in
Algorithm 1. For comparison we also implemented a naïve system relying on random
initialization, see Algorithm 2.

5.1 Initialization of 𝜃2

We start by initializing a solution 𝜃2 as described in Section 4. It is worthwhile finding a
reasonable initial solution supported by many inliers, as a good initialization will speed
up the remainder of the system.
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Algorithm 1 Proposed system
1: Initialize solution 𝜃2 (Section 4).
2: Local nonlinear optimization over 𝜃2.
3: Extend rows and columns (Section 5.2).
4: Upgrade relaxed solution 𝜃2 to solution 𝜃1 (Section 5.3).
5: Reestimate receiver and sender positions (Section 5.4).
6: Local nonlinear optimization over 𝜃1 using robust norm.

Algorithm 2 Random initialization system
1: Initialize solution 𝜃1 randomly.
2: Local nonlinear optimization over 𝜃1.

5.2 Extending Solution in 𝜃2

The initialization will most likely yield only a partial solution in the sense that not all 𝒖𝑖
and 𝒗𝑗 are estimated, and that not all available measurements in 𝚭̂ are used. The solution
is extended with additional rows and columns using robust techniques as described in
[20]. During this process it is useful to keep the errors down by occasionally refining
the solution using local optimization. This has been shown to reduce failures (see e.g.
[21, 22]).

5.3 Upgrade Solution in 𝜃2 to Solution in 𝜃1

A solution in 𝜃2 is upgraded to a solution in 𝜃1 using the minimal solvers presented
in [11]. In RANSAC fashion a solver is randomly selected to find the upgrade parameters
𝐋 ∈ ℝ3×3 and 𝒒 ∈ ℝ3. Receiver and sender positions are then given by the affine
transformations 𝐑 = 𝐋−𝛵𝐔 and 𝐒 = 𝐋(𝐕 + 𝒒𝟏𝛵), and inliers/outliers are classified
according to the residuals in (2).

5.4 Reestimate Rows and Columns in 𝜃1

At this stage in the process, we can end up with receivers or senders that have not yet
been estimated or that have ended up in incorrect locations, e.g., gotten stuck at a local
minimum. To mitigate this, all receivers and senders are reestimated using trilateration
and multilateration, respectively. If a new node position reduces the residuals in (2) it is
kept, otherwise the old position is used.
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Figure 1: Histograms of the logarithm of the errors for our minimal solvers.

6 Experimental Validation

To test the numerical accuracy and robustness of our minimal solvers we generated
10,000 synthetic problem instances with known offsets. We then ran our solvers and
compared the solutions with the ground truth solution. In Figure 1 the resulting his-
tograms of the logarithm of the errors are shown. The linear solvers, (7r/4s) and (9r/5s),
performed best and overall the solvers show better numerical stability as the rank and
number of solutions decrease.

Note that while the linear solvers seem to be more numerically stable and faster (see
Table 1), the other solvers are still useful in scenarios where we do not have a sufficient
number of receivers. One could also imagine measurements that admit multiple possible
solutions to the offsets, and in those cases the linear solvers will only give one of them.

To investigate the robustness of our systems with respect to outliers and missing data we
generated 15 receivers 𝐑 and 100 senders 𝐒 with each coordinate drawn from 𝒩(0, 1),
and corresponding offset values 𝒐 ∈ 𝒩(0, 1). These were used to acquire distance mea-
surements 𝚭̂ according to (1), with additive measurement noise 𝜖𝑖𝑗 ∈ 𝒩(0, 0.01). Ad-
ditionally, a number of values were deleted from 𝚭̂ to simulate missing data, and some
were changed to uniformly distributed values 𝑧𝑖𝑗 ∈ 𝒰(−2, 6), to simulate gross outlier
measurements.

We then solved for 𝜃1 = {𝐑, 𝐒, 𝒐} using (i) Algorithm 1 and the (9r/5s) solver, (ii) Al-
gorithm 1 and the (7r/6s) solver, (iii) Algorithm 1 and the (6r/8s) solver, and (iv) Algo-
rithm 2. This was done 100 times to get an estimate on how often the different systems
converge. A solution counted as successful if the Euclidean distance between the ground
truth receiver position and the corresponding estimated receiver position was at most
0.03 for any of the receivers.
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Figure 2: Convergence ratio with respect to ratio of missing data (top) and ratio of outliers (bot-
tom) for four different systems.
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Table 2: Results from seven real TDOA datasets including the RMSE in the estimated receiver
positions.

Dataset 𝑚 𝑛 RMSE Est. speed of sound

1 12 89 58 mm 347 m/s
2 12 106 50 mm 347 m/s
3 12 97 45 mm 348 m/s
4 12 105 52 mm 347 m/s
5 12 108 82 mm 348 m/s
6 12 131 64 mm 354 m/s
7 12 115 55 mm 350 m/s

The experiment above was conducted with a fixed outlier ratio of 1 % while the ratio of
missing data was varied from 0–40 %. The results from this are shown in the top plot
in Figure 2. We then kept the missing data ratio fixed at 1 % while varying the ratio of
outliers between 0–20 %. These results can be seen in the bottom plot of Figure 2. It
is clear that our systems, from Algorithm 1, outperforms Algorithm 2. The choice of
minimal solver only has a small impact on the result, but overall, the (9r/5s) solver is
a better choice for the type of data synthesized here considering it is significantly faster
than the other two solvers (see Table 1).

We also evaluated our system using real data. The setup consisted of 12 omni-directional
microphones (the T-bone MM-1) spanning a volume of 4.0×4.6×1.5meters. A speaker
was moved through the setup while emitting sound. Ground truth positions for the mi-
crophones and speaker positions where found using a Qualisys motion capture system.
Seven datasets were gathered in which a chirp sound was played with regular (dataset 1-5)
or irregular (dataset 6-7) intervals. The arrival times were found using cross-correlation
between the recordings and the original chirp. There was no missing data. The tem-
perature in the room was measured to be 20.1 °C which indicates a speed of sound of
𝑣 = 343m/s. However, we choose to disregard this estimate and consider 𝑣, and thus
the scale of the solution, unknown. Because of this, the estimated microphones were
registered to the ground truth using a similarity transform. The scale component of the
transform was then used to estimate the speed of sound. Table 2 shows the RMS er-
rors in the estimated microphone positions and the estimated speed of sound for each
dataset. The errors are overall low with a consistent estimate of 𝑣 that is close to the esti-
mate based of the room temperature. While the true outlier rate is unknown our system
classified 14–20 % of the measurements as outliers. The estimated node positions for the
fourth dataset are shown in Figure 3. As can be seen, the estimated speaker positions
closely follow the ground truth.
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Figure 3: Top view of ground truth and estimated microphone/receiver and speaker/sender po-
sitions for the fourth dataset. The scale is in meters.

7 Conclusions

In this paper we have made several improvements to three minimal solvers for estimating
offsets from time-difference-of-arrival data. The new solvers require less memory and
some are two orders of magnitude faster than the state-of-the-art solvers. In the paper
we also develop hypothesis and test algorithms that incorporate these new solvers and
develop software systems that combine these with robust nonlinear estimation. The
resulting components and systems have been tested on both synthetic and real data,
where they demonstrate high quality solutions even in the presence of missing data and
outliers. Consolidating further calibration types and dimensionality constraints in one
coherent framework is future work.
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Figure 1: A setup consisting of 12 omni-directional microphones used to collect TDOA measure-
ments from a moving sound source. In the figure is shown 3D reconstructions (light
blue) and ground truth (orange) of sound source path.

1 Introduction

Precise localization of sender/receiver node positions using radio or sound signals is a
key enabler in numerous applications such as microphone array calibration, speaker di-
arization, beamforming, radio antenna array calibration, mapping and positioning [1].
In this paper we study the problem of self-calibration of sender/receiver positions using
time-difference-of-arrival (TDOA) measurements from a set of fixed and synchronised
microphones. The problem is simpler if the sound source has distinct sound events,
which are easy to detect [2], or if the sound profile is known [3]. Recent advances in
robust parameter estimation has made it possible to solve such problems even for the rel-
atively difficult scenario of unknown ambient sound [4–8]. In many cases it is possible
to achieve at least partial estimates of sound source positions and microphone positions.
However, these methods typically do not provide good estimates of sound source posi-
tions for all time instants, at least not for difficult situations.

In this paper we develop improved robust multilateration methods and show how such
methods can improve on sender/receiver node position calibration systems. While focus-
ing on the problem of multilateration, we envision that the proposed method works as
a part of a larger self-calibration system, in order to increase robustness. For this reason,
our experiments are focused on this scenario.
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Figure 2: System overview: The input consists of a number of sound recordings (a). Using GCC-
PHAT, a number of putative TDOA estimates for each time instant and for each pair of
microphones are produced (b). Heuristics are used to prune these matches (c), which
then are used to estimate microphone and source positions (d). In this paper we study
methods for improved sound source localization using microphone positions from (d)
and putative matches from (b). The aim is to achieve robust sound source localization
(e).

The contributions of this paper are (i) new datasets for robust TDOA multilateration1,
(ii) a new fast solver for the minimal problem of TDOA multilateration, (iii) new meth-
ods for robust TDOA multilateration and (iv) evaluation of state-of-the-art methods for
robust TDOA multilateration.

2 Structure from sound pipeline

For the solution of the structure from sound problem, we use the following structure,
inspired by [5]. The input to the system is a number 𝑚 of synchronised sound record-
ings (Figure 2a). For each pair (𝑖, 𝑗) of recordings we use a detector to generate a set
of putative time-difference-of-arrival measurements 𝑧 for a number of time instants
𝑡𝑘, 𝑘 = 1, … , 𝑛 (Figure 2b). After a heuristic step for removing outliers (Figure 2c),

1We provide both dataset https://vision.maths.lth.se/sfsdb/ and code https://github.
com/kalleastrom/StructureFromSound.
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the data is used as input to a system for robust structure from sound (Figure 2d). When
successful, the system outputs all or a subset of the microphone positions, but often only
a subset of the sound source positions. In this paper we study methods for extending
an initial solution to additional sound source positions (Figure 2e). The idea is that the
set of putative matches (Figure 2b), contains valuable information that could be better
exploited using the sound source positions in (Figure 2d).

3 Multilateration Methods

Using sound to measure distances has been exploited for a long time, see for example [9].
Multilateration of sound source positions from a set of known microphones has been
utilized, at least since World War I, to locate the source of artillery fire using sound
waves [10].

For the multilateration problem, we assume that the microphone positions (𝒓1, … , 𝒓𝑚)
are known. As an example, these microphone posiitons could have been estimated using
a self-calibration system, e.g., [8]. At each time instant 𝑡𝑘 we estimate time-differences
𝜏𝑖𝑗 of the arrival of sound to the two microphones 𝒓𝑖 and 𝒓𝑗. When multiplied with the
speed of sound 𝑐, each such time-difference 𝜏𝑖𝑗 gives a distance-difference estimate

𝑧𝑖𝑗 = 𝜏𝑖𝑗𝑐 ≈ ‖𝒓𝑖 − 𝒔‖ − ‖𝒓𝑗 − 𝒔‖ + 𝜖, (1)

where 𝒔 is the unknown sound source position and ‖⋅‖ denotes the ℓ2-norm. The noise 𝜖 is
either an inlier, assumed to be normally distributed with a relatively small standard devi-
ation, or an outlier, assumed to be drawn from a uniform distribution with a significantly
larger standard deviation. Henceforth, we will use the term TDOA (time-difference-of-
arrival) for the measurements 𝑧𝑖𝑗, even though they actually represent distances and not
time. Early algorithms were constructed for solving for 𝒔 in (1), often assuming a pla-
nar geometry, and further assuming that the TDOA measurements are outlier free and
without missing data. Such algorithms were often iterative and assumed that an initial
guess of 𝒔 was given.

In this paper we assume that we have a pool of hypotheses for the measurements 𝑧𝑖𝑗.
Each measurement is a collection of tuples 𝛭 = (𝑖 𝑗 𝑧𝑖𝑗). The pool 𝒫 consists of all
of these putative measurements 𝒫 = {𝛭1, … ,𝛭𝛮}, where several measurements could
be to the same (𝑖, 𝑗) combination.

In the experiments the measurements 𝒫 were obtained by taking the top 𝛫 = 4 peaks
in the GCC-PHAT score [11], for each microphone pair (𝑖, 𝑗). In [12], a system was
proposed that uses a few top peaks in the GCC-PHAT score and tracks through time
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using continuity constraint using the Viterbi algorithm. Another method was proposed
in [5], where RANSAC together with continuity constraints was used to track peaks over
time. Collecting distance-difference measurements in an 𝑚 × 𝑚 matrix

𝜡 = (
𝑧11 ⋯ 𝑧1𝑚
⋮ ⋱ ⋮
𝑧𝑚1 ⋯ 𝑧𝑚𝑚

) (2)

we obtain a TDOA matrix. In the suggested computational pipeline, we can view the
step in Figure 2b as having a TDOA matrix at each time instant. Again, note that for
each element of these matrices there are several putative entries.

The true TDOA matrix is at most rank 2, [13], and can be written as

𝜡 = 𝒗𝟏𝛵 − 𝟏𝒗𝛵, (3)

where
𝒗 = (𝑣1 ⋯ 𝑣𝑚)

𝛵
(4)

is a vector of distance-differences, which will be called aTDOA vector. Adding a constant
to 𝒗 will not change the matrix 𝜡. Notice that each column of the TDOA matrix could
be used as a TDOA vector, if they are outlier-free and without missing data. In the
TDOA vector formulation, the measurement equation is

𝑣𝑖 = ‖𝒓𝑖 − 𝒔‖ + 𝑜, (5)

where the unknown 𝑜 can be interpreted as the unknown offset of the TDOA vector as
discussed above. Alternatively, it can be interpreted as the unknown starting point of the
sound. If the vector is obtained by measuring time-differences to a fixed microphone,
e.g. 𝒓1, then we have 𝑣𝑖 = 𝑧𝑖1 = ‖𝒓𝑖 − 𝒔‖ + 𝑜 with 𝑜 = −‖𝒓1 − 𝒔‖.

A common trick is to use four or more equations of type (5) to derive three or more
equations of the form

(𝑣𝑖 − 𝑜)2 − (𝑣1 − 𝑜)2 = 𝒓𝛵𝑖 𝒓𝑖 − 𝒓𝛵1 𝒓1 − (𝒓𝑖 − 𝒓1)𝛵𝒔, (6)

where two equations of type (5) are used for microphone 𝑖 and 1. Note that the square
terms 𝒔𝛵𝒔 and 𝑜2 disappear, and the constraints become linear in 𝒔 and 𝑜.

In terms of the computational pipeline, we can view the step in Figure 2c as having a
TDOA vector at each time instant, although, possibly with missing data and outliers.

Several closed-form solutions exist for multilateration using the TDOA vector formu-
lation and the elimination in (6), e.g., [14–18]. Thus, all of these methods assume that
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all time-differences are given to the same microphone. The minimal problem for the
3D case is to use four microphones and it has in general two solutions (counted with
complex solutions and multiplicity of solutions). This can be seen as using three linear
constraints of type (6) to reduce the four unknowns in 𝒔 and 𝑜. This parameterizes the
solution affinely with one parameter. Inserting this into the first equation

𝑣1 = ‖𝒓1 − 𝒔‖ + 𝑜,

gives a quadratic constraint, which has at most two solutions.

An initial solution can be refined iteratively by minimizing

𝑓𝒗(𝒔, 𝑜) =
𝑚
∑
𝑖=1

𝐿(𝑣𝑖 − (‖𝒓𝑖 − 𝒔‖ + 𝑜)), (7)

for the TDOA vector formulation or

𝑓𝜡(𝒔) =
𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

𝐿(𝑧𝑖𝑗 − (‖𝒓𝑖 − 𝒔‖ − ‖𝒓𝑗 − 𝒔‖)), (8)

for the TDOA matrix formulation. Here 𝐿 is a loss function, e.g., the ℓ2-loss 𝐿(𝑥) = 𝑥2.
Other common choices are the ℓ1-loss 𝐿(𝑥) = |𝑥| or a robust version such as the Huber
loss or truncated versions of ℓ1or ℓ2. We will also assume that 𝐿 removes datapoints that
are missing or known to be outliers (e.g. from our proposed bootstrapping in Section 5.1).

Building on previous results [19, 20], Velasco et al. used the redundancy of measure-
ments in the TDOA matrix to perform denoising, detect outliers and fill in missing
data [13]. The output from their approach is a TDOA vector, which can be used for
trilateration using, e.g., [18]. Unlike the proposed method, [13] does not exploit the
known microphone positions when denoising and allows for at most one TDOA mea-
surement for each microphone pair. Additionally, the number of expected outliers is a
nuisance parameter that must be specified prior to denoising.

4 Minimal Solvers

The closed-form solution for determining 𝒔 using TDOA measurements, as presented
in previous papers, e.g., [14–18], all assume (for the 3D case) that four elements of the
TDOA vector are given, or that four elements of the TDOA matrix from the same row
(or column) are given. The trick that is used in (6) does not work for the minimal case of
any three measurements of the TDOA matrix. Here we introduce a fast and numerically
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stable solver for this minimal case. We derive this for the general 𝛮-dimensional case
although in practice we most often use it for 2D and 3D problems.

Let 𝛮 be the dimension of the space, i.e., 𝒔 ∈ ℝ𝛮. Suitably rearranging and squaring (1)
twice results in the quadratic constraint

𝒔𝛵𝚨𝒔 + 𝒃𝛵𝒔 + 𝑐 = 0, (9)

where

𝚨 = 4(𝒓𝑖 − 𝒓𝑗)(𝒓𝑖 − 𝒓𝑗)𝛵 − 4𝑧2𝑖𝑗𝚰, (10)

𝒃 = 4𝑧2𝑖𝑗(𝒓𝑖 + 𝒓𝑗) − 4(𝒓𝛵𝑖 𝒓𝑖 − 𝒓𝛵𝑗 𝒓𝑗)(𝒓𝑖 − 𝒓𝑗), (11)

𝑐 = (𝒓𝛵𝑖 𝒓𝑖 − 𝒓𝛵𝑗 𝒓𝑗)2 − 2(𝒓𝛵𝑖 𝒓𝑖 + 𝒓𝛵𝑗 𝒓𝑗)𝑧2𝑖𝑗 + 𝑧4𝑖𝑗. (12)

Constructing 𝛮 quadratic combinations for different (𝒓𝑖, 𝒓𝑗, 𝑧𝑖𝑗) results in a polynomial
system in 𝒔. Using methods from algebraic geometry [21, p. 235] we conclude that there
are at most four solutions for 𝛮 = 2 and eight when 𝛮 = 3. Some of the solutions
may be complex and some may not satisfy (1) since we have lost the sign of 𝑧𝑖𝑗 due
to the squaring. These solutions are however easily discarded. To produce a solver for
the system we use an automatic solver generator [22]. Although there are dependencies
between the polynomial coefficients, the problem does not admit smaller elimination
template sizes (see [22]) than the case of independent coefficients (6 × 10 and 26 × 34 for
𝛮 = 2 and 𝛮 = 3, respectively).

An efficient method for solving three quadratics in three variables, corresponding to
𝛮 = 3, was presented in [23]. There, the problem was reduced to a single univariate
polynomial of degree eight whose real solutions were found using Sturm sequences [24].
We implemented their solver but found no clear improvement in execution time or
numerical stability over our generated solver.

5 Robust Multilateration Algorithms

5.1 Proposed RANSAC scheme using minimal pairwise solver

We propose to use random sampling consensus (RANSAC) [25]. In the hypothesis and
test loop we randomly choose three measurements from the pool of putative matches
𝒫. From these three TDOA measurements we use the fast minimal solver to obtain hy-
potheses for the sound source position 𝒔 and choose the one whose inlier set is maximal.
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Inliers are measurements for which

∣𝑧 − ‖𝒓𝑖 − 𝒔‖ − ‖𝒓𝑗 − 𝒔‖∣ < 𝛵, (13)

where 𝛵 is a threshold chosen to distinguish between inliers and outliers. This initial
estimate is then improved by optimizing truncated ℓ2-loss according to (8).

5.2 Using smoothness over time

In the experiments we also consider using smoothness priors on the sound source path.
The solution (including the microphone positions) is refined by local minimization of

𝑓𝑟𝑒𝑔(𝒔, 𝒓) =
𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

𝑛
∑
𝑘=1

𝐿(𝑧𝑖𝑗𝑘 − (‖𝒓𝑖 − 𝒔𝑘‖ − ‖𝒓𝑗 − 𝒔𝑘‖)) + 𝜆
𝑛−1
∑
𝑘=2

‖𝒔𝑘−1 − 2𝒔𝑘 + 𝒔𝑘+1‖2.

(14)

This requires a good initial estimate of the sound source path.

6 Experimental Validation

6.1 Real data

We collected one dataset consisting of seven recordings with different songs and different
sound source motion. The setup consisted of 12 omni-directional microphones (the T-
bone MM-1) spanning a volume of 4.0 × 4.6 × 1.5 meters (see Figure 1). Ground truth
positions for the microphones and speaker positions were found using a Qualisys motion
capture system. The microphones were all internally synchronized, but we assume that
the time of sound emission from the speaker is unknown. For each recording a song was
played as the speaker was moved around in the room and approximately one minute
was recorded using a soundcard with sampling rate 96, 000 Hz. The temperature in the
room was measured to be 20.1 °C which indicates a speed of sound of 𝑐 = 343m/s.

For each pair of microphones, the GCC-PHAT score [11] was calculated. We used a
window of 2, 048 samples centered at every 1, 000:th sample points. The search width
for the GCC-PHAT score was cropped to ±800 sample points. Thus we are able to find
time-difference-of-arrival measurements corresponding to ±2.85m distance-difference
to microphone pairs. For each time instant and each pair of microphones we selected at
the four strongest local maxima in the GCC-PHAT score, resulting in a pool of putative
measurements. In Figure 2.b these are shown for microphone pair 6 och 8.
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Thus, for each recording and for each time window we had time-difference-of-arrival
measurements and ground truth microphone and sound source positions. In total there
were 46,066 such examples to validate the algorithms on.

6.2 Simulated/real data

The real dataset is quite challenging. It contains outliers, missing data and multiple
hypotheses. In order to understand the behaviour of the algorithms we also constructed
simulated data. This was done using the ground truth positions of the microphones
and the sound source for the seven datasets above. In this way we could make datasets
that were similar in geometry, but for which there was less noise, less outliers and/or
less missing data. Together with the real recordings, this resulted in the following four
datasets:

(a) Simulated TDOA measurements. One hypothesis. Gaussian noise with 𝜎 = 2
sample points. No missing data. No outliers. Ground truth microphone posi-
tions.

(b) Simulated TDOA measurements. One hypothesis. Gaussian noise with 𝜎 = 2
sample points. Missing data: 20%. Outliers: 20%. Ground truth microphone
positions.

(c) Real TDOA measurements. Four hypotheses. Inlier noise estimated to have 𝜎 ≈ 5
sample points. Outliers: ≈ 86%. Ground truth microphone positions.

(d) Real TDOA measurements. Four hypotheses. Inlier noise estimated to have 𝜎 ≈ 5
sample points. Outliers: ≈ 86%. Estimated microphone positions from a state-
of-the-art self-calibration system, [8].

6.3 Evaluation of the multilateration methods

We first evaluate methods that only use one individual time instant. We tested two state-
of-the-art routines. For both methods we initially, from the pool of putative matches𝒫,
generate the TDOA matrix 𝚭 by selecting the measurement for each microphone pair
for which the GCC-PHAT score is the strongest. For (i) Chan and Ho [18], we then use
one of the microphones (no 6 in our experiment) to calculate the TDOA vector 𝒗 from
𝚭. The 6th microphone was considered to be best for this purpose since it was in the
centre of the room. Finally we estimate the sound source position 𝒔 using microphone
positions and the TDOA vector according to [18]. For the second method (ii) Velasco et
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al., we use [13] to robustly estimate the TDOA vector 𝒗 from 𝚭. Finally, we estimate the
sound source position 𝒔 using microphone positions and the TDOA vector according
to [18] as suggested in [13]. We also compared our method to four search based meth-
ods. These were (iii) ℓ2-optimization from a random starting point, (iv) ℓ1-optimization
from a random starting point, (v) truncated ℓ1-optimization from a random starting
point and (vi) truncated ℓ1-optimization from ten random starting points, choosing the
solution with the lowest truncated ℓ1-loss, as well as the proposed algorithm based on
(vii) RANSAC loop to select starting point followed by truncated ℓ2-optimization.

For each scenario above we calculated the percentage of times the estimated sound source
came within 15 cm of the ground truth position. The results are shown in Figure 3. No-
tice that most methods work well for the outlier free dataset (a), except the truncated
ℓ1-loss optimization with one single random starting point. This shows that finding a
good starting point is critical for robust loss optimization. With more outliers (dataset
(b)), we see that Chan and Ho and several other methods struggle to find a good solu-
tion. For the real data problem with ground truth microphone positions (dataset (c))
the proposed method clearly outperforms the other methods. The final (dataset (d)), is
even more challenging, but the overall trend is the same.

6.4 Applying motion priors

We used the result from the different multilateration methods to optimize over the whole
sound recording using the motion prior as described in Section 5.2. This optimization
needs a fairly good initial estimate in order to converge to the global optimum. The
result is also shown in Figure 3. In Table 1 we show the results for dataset (d), with a
breakdown to the individual seven recordings in the dataset. As can be seen in the table,
there are four songs for which no methods work well. This is clearly a result of having
a poor estimate of the microphone positions, since the result from dataset (c) works
significantly better, indicating a need for further research. Finally we visualize how the
suggested improvements affect the reconstructed 3D path. In Figure 4 we show the
improvement to the 3D reconstruction with the proposed system for recording nr 6. It
is clear that the proposed improvements (Figure 4-right) reduce the noise and improves
the estimation of the sound source path as compared to the current state-of-the-art self-
calibration system (Figure 4-left).
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Figure 3: Performance aggregated over all datasets, as a function of varying difficulty in experi-
mental setup, without (left) and with (right) temporal smoothing. The performance is
measured by computing how often the source position was estimated within 15 cm
from the ground truth position.

Table 1: The results for the seven different recordings from dataset (𝑑) measured as the percent-
age of times the sound source position was estimated within 15 cm of the ground truth
position.

Recording 1 2 3 4 5 6 7
Chan and Ho 0 0 0 1 0 4 4
Velasco et al. 0 0 0 3 0 23 28
ℓ2, single 0 0 0 0 0 0 0
ℓ1, single 0 0 0 0 0 4 6
trunc. ℓ1, single 0 0 0 0 0 3 4
trunc. ℓ1, multiple 0 0 0 1 0 20 25
Proposed 0 0 0 10 0 70 78

103



Figure 4: 3D reconstruction (blue) and ground truth (orange) of sound source path from calibra-
tion system (left) and from the proposed method (right).

7 Conclusions

In this paper we have made several improvements on robust multilateration using TDOA
matrices with multiple hypotheses for each entry. We have developed a fast and efficient
solver for the minimal problem of disjoint pairwise TDOA measurements. We have
combined this solver with RANSAC algorithms and robust nonlinear estimation and
obtained better results than state-of-the-art algorithms for robust multilateration. The
resulting system has been tested on both synthetic and real data, producing high quality
solutions even in the presence of missing data and high amount of outliers.
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Abstract: Recent advances in simultaneous estimation of both receiver and sender po-
sitions in ad-hoc sensor networks have made it possible to automatically calibrate node
positions – a prerequisite for many applications. In man-made environments there are
often large planar reflective surfaces that give significant reverberations. In this paper,
we study geometric problems of receiver-sender node calibration in the presence of such
reflective planes. We establish a rank-1 factorization problem that can be used to sim-
plify the estimation. We also show how to estimate offsets, in the Time difference of
arrival case, using only the rank constraint. Finally, we present a new solver for the
minimal cases of sender-receiver position estimation. These contributions result in a
powerful stratified approach for the node calibration problem, given a reflective plane.
The methods are verified with both synthetic and real data.
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1 Introduction

Accurate receiver-sender node positions are a key prerequisite for many applications such
as microphone array calibration, radio antenna array calibration, mapping and position-
ing [1]. If all senders and receivers are synchronized, it is possible to obtain absolute
distance measurements between senders and receivers. These measurements can be used
for self-calibration and such problems (time of arrival problems, TOA) have been stud-
ied in a large body of work [2–10]. A variant of the TOA-problem is time difference
of arrival (TDOA), where the receivers are synchronized and the senders are unsynchro-
nized [11–13].

Large planar surfaces that act as acoustic or radio mirrors exist in both natural and man-
made environments. In such cases, the received signal contains both the part from the
direct path as well as parts that have been reflected against surfaces. This has been utilized
for GNSS altimetry [14], estimating the shape of a room [15,16], and has the potential to
be used in receiver-sender node position calibration [17,18]. In this paper, we study how
such reverberations can be exploited. In particular, we study the case of a dominant un-
known plane, e.g., the floor plane. In this case, for each receiver there are two detections,
the direct and the indirect one reflected in the floor. We assume that these detections
are correctly identified, although, in general, finding which surfaces a particular echo
has bounced of is a problem in itself known as echo labeling [16, 19]. We study how the
geometry of this situation can be used, study minimal cases of reconstruction and use
the new solvers for robust structure from motion estimation1 . This leads to a powerful
stratified formulation that separates the problem into TDOA offset estimation, height
estimation and planar position estimation.

2 System Overview and Contributions

The general problem we address involves 𝑚 receiver positions 𝑹𝑖 ∈ ℝ3, 𝑖 = 1, … ,𝑚
and 𝑛 sender positions 𝑺𝑗 ∈ ℝ3, 𝑗 = 1, … , 𝑛. These could for example represent the
microphone positions and locations of sound emissions, respectively. The arrival time of
a signal sent from sender 𝑗 to receiver 𝑖 is denoted 𝑡𝑖𝑗, and the time that it is emitted is
denoted 𝜏𝑗. Multiplying the travel time 𝑡𝑖𝑗 − 𝜏𝑗 with the speed 𝑣 of the signal, we obtain
the distance between sender and receiver

𝐷𝑖𝑗 = 𝛧𝑖𝑗 − 𝑜𝑗 = ‖𝑹𝑖 − 𝑺𝑗‖, (1)

1Code: https://github.com/Etomer/Reflective-Self-Calibration
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Figure 1: Schematic of the geometry for one sender 𝑺 and a mirror pair of receivers (𝑹∧, 𝑹∨).
Also shown is the direct distance 𝐷∧ and the reflected distance 𝐷∨. The sender and
the receivers project to 𝒔 and 𝒓 respectively in the unknown mirror plane, with corre-
sponding distance 𝑑.

where 𝛧𝑖𝑗 = 𝑣𝑡𝑖𝑗, 𝑜𝑗 = 𝑣𝜏𝑗 and ‖.‖ denotes the ℓ2-norm. The speed 𝑣 is throughout the
paper assumed to be known and constant. Let 𝛧𝑖𝑗 be noisy measurements that typically
suffer from small approximately Gaussian noise, outliers with substantially larger errors
and missing data. Estimating 𝑹𝑖, 𝑺𝑗 and 𝑜𝑗 from 𝛧𝑖𝑗 is known as the TDOA node cali-
bration problem. If the offsets 𝑜𝑗 are assumed to be known, we have the corresponding
TOA node calibration problem. When building systems to solve such problems ro-
bustly, often a number of key system components need to be developed. Some of these
are standard components, but some need to be specifically designed if we have special
setups of the geometry. In this paper, we address such a specific case, namely when we
know that there is a dominant reflective plane present in the scene. This gives a number
of system benefits, but also puts a number of constraints on the system. In this case, we
assume that we measure both a direct distance𝐷∧ and a reflected distance𝐷∨ (or 𝛧∧ and
𝛧∨ for the TDOA case). We can model the reflections using the true receivers 𝑹∧, and
mirrored receivers 𝑹∨ (see Fig. 1), so that

𝐷∧𝑖𝑗 =𝛧∧𝑖𝑗 − 𝑜𝑗 = ‖𝑹∧𝑖 − 𝑺𝑗‖, (2)

𝐷∨𝑖𝑗 =𝛧∨𝑖𝑗 − 𝑜𝑗 = ‖𝑹∨𝑖 − 𝑺𝑗‖, (3)

defines our sensor node calibration problem.

In Algorithm 1, an overview of our proposed stratified approach for solving this node
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calibration problem is shown. The specific components that we have developed, and
that also make up the main contribution of our paper, are shown in bold face.

Algorithm 1 Proposed System (main contributions in bold)
Require: TOA or TDOA meaurements between senders and receivers with unknown

positions in 3D
1: Using the assumption of an (unknown) reflective plane, separate the problem into
a rank-1 problem and a planar estimation problem (Section 3)

2: If we have a TDOA problem, use the rank-1 constraint to solve for the unknown
time-offsets (Section 4)

3: Solve the rank-1 problem in a robust way (allowing for outliers and missing data).
We use a RANSAC [20] approach, giving the unknown heights of senders and re-
ceivers up to a global unknown parameter. (Section 5)

4: Solve for the unknown global parameter and the unknown planar positions of the
receivers and senders in a robust way using novel minimal solvers. (Section 6)

5: Use non-linear refinement of all unknowns, e.g., by using gradient descent or
Levenberg-Marquardt.

3 Mirror Geometry

The first thing we must consider is that we have a Euclidean ambiguity in our solution.
This means that for a given solution, i.e., the position of the dominant reflective plane,
senders and receivers, all Euclidean transformations of the solution is also a valid solution
to the problem. In order remove this ambiguity, we fix the six degrees of freedoms by
specifying our coordinate system. We do this by choosing the reflective plane as the
𝑧-plane, placing the first receiver on the 𝑧-axis and the second receiver in the 𝑦𝑧-plane
with positive 𝑥-coordinate.

Denoting the z-coordinates (heights) of the receivers 𝑔𝑖 and senders ℎ𝑗, and denoting the
horizontal distance between 𝑹𝑖 and 𝑺𝑗 as 𝑑𝑖𝑗 (see Fig. 1), we get

𝐷2
∧𝑖𝑗 = 𝑑2𝑖𝑗 + (𝑔𝑖 − ℎ𝑗)2 = 𝑑2𝑖𝑗 + 𝑔2𝑖 + ℎ2𝑗 − 2𝑔𝑖ℎ𝑗, (4)

𝐷2
∨𝑖𝑗 = 𝑑2𝑖𝑗 + (𝑔𝑖 + ℎ𝑗)2 = 𝑑2𝑖𝑗 + 𝑔2𝑖 + ℎ2𝑗 + 2𝑔𝑖ℎ𝑗. (5)
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From these equations we can derive

𝐷Δ𝑖𝑗 ≡
𝐷2

∨𝑖𝑗 − 𝐷2
∧𝑖𝑗

4 = 𝑔𝑖ℎ𝑗, (6)

𝐷Σ𝑖𝑗 ≡
𝐷2

∨𝑖𝑗 + 𝐷2
∧𝑖𝑗

2 = 𝑑2𝑖𝑗 + 𝑔2𝑖 + ℎ2𝑗 . (7)

The first type of equation, (6), only involves the heights, 𝑔𝑖 and ℎ𝑗, and not the horizontal
distance 𝑑𝑖𝑗. Grouping together measurements from several sender-receiver pairs we get

𝐷Δ = (
𝑔1ℎ1 … 𝑔1ℎ𝑛
⋮ ⋱ ⋮

𝑔𝑚ℎ1 … 𝑔𝑚ℎ𝑛
) = (

𝑔1
⋮
𝑔𝑚
) (ℎ1 ⋯ ℎ𝑛) . (8)

Estimating the heights 𝑔𝑖 and ℎ𝑗 has now turned into a rank-1 matrix factorization prob-
lem. We will discuss solution strategies for this problem in Section 5.

The second type of equation (7) can be used to calculate the horisontal distances 𝑑𝑖𝑗
between the projections on the mirror plane of the receivers and senders,

𝑑2𝑖𝑗 = 𝐷Σ𝑖𝑗 − 𝑔2𝑖 − ℎ2𝑗 . (9)

This almost leads to an ordinary TOA-problem in one dimension less, i.e., for the un-
known projected receiver and senders positions 𝒓𝑖 and 𝒔𝑗 in the plane (see Fig. 1), we
have

𝑑2𝑖𝑗 = ‖𝒓𝑖 − 𝒔𝑗‖2, (10)

where 𝑑2𝑖𝑗 depends on the estimates of the heights. This dependance leads to a slightly
modified TOA-problem, which is discussed in Section 6.

The following sections are concentrated on finding robust initial solutions to the cali-
bration problem. This is typically followed by nonlinear optimization over all inlier data
and parameters in a least-squares sense, i.e., we minimize a cost such as

∑
𝑖𝑗
𝐿(𝐷∧𝑖𝑗 − ||𝑹∧𝑖 − 𝑺𝑗||2) + 𝐿(𝐷∨𝑖𝑗 − ||𝑹∨𝑖 − 𝑺𝑗||2), (11)

for a robust loss function 𝐿, using some gradient descent method, e.g., Levenberg–
Marquardt.
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4 Offset Estimation

In this section, we will show how the rank constraint on 𝐷Δ can be used to solve for the
offsets 𝑜𝑗 present when considering the TDOA-problem. As a reminder, the measure-
ments are given by 𝛧∧𝑖𝑗 and 𝛧∨𝑖𝑗 and relate to the distances according to

𝐷∧𝑖𝑗 = 𝛧∧𝑖𝑗 − 𝑜𝑗, 𝐷∨𝑖𝑗 = 𝛧∨𝑖𝑗 − 𝑜𝑗. (12)

By insertion in (6), we observe that 𝐷Δ is linear in 𝑜𝑗.

𝐷Δ𝑖𝑗 =
𝛧2
∨𝑖𝑗 − 𝛧2

∧𝑖𝑗
4 −

𝛧∨𝑖𝑗 − 𝛧∧𝑖𝑗
2 𝑜𝑗 (13)

The rank-1 constraint on 𝐷Δ implies that all 2 × 2-minors vanish. Each minor will be a
quadratic polynomial containing the monomials {𝑜𝑗1𝑜𝑗2 , 𝑜𝑗1 , 𝑜𝑗2 , 1} for some indices 𝑗1 ≠
𝑗2, 𝑗1, 𝑗2 ∈ {1, … , 𝑛}. The polynomial system formed in this way can be written 𝛢𝒗 = 𝒃,
where 𝛢 and 𝒃 only depend on the data (𝛧∧𝑖𝑗, 𝛧∨𝑖𝑗) and 𝒗 collects all non-constant
monomials of the minors. Provided 𝑚 ≥ 3 and 𝑛 ≥ 2, the linear system is well-defined
and 𝒗 can be solved for. The offsets 𝑜𝑗 are then easily extracted as the linear monomials in
𝒗. Note that this method only utilizes the rank constraint on 𝐷Δ, works independently
of the dimension of the space and turns the TDOA problem into a TOA problem. How
to solve the TOA problem is the topic of the next two sections.

5 Height Estimation

In Section 3, we saw that the full TOA self-calibration problem, with a mirror plane, de-
composes into two separate problems. The problem of estimating the unknown heights
turns into a low rank matrix factorization problem (8). Given a solution to this prob-
lem, it is clear that the rank-1 factorization of our data will only be determined up to an
unknown parameter 𝜆 ≠ 0, i.e., 𝐷Δ = 𝒈̂𝒉̂𝛵, where 𝒈 = 𝜆𝒈̂ and 𝒉 = 1

𝜆 𝒉̂.

If we have no missing data and no noise in our measurement, it is easy to find a solution
to the factorization problem, simply by choosing 𝒈̂ as the first column of 𝐷Δ and 𝒉̂ as
the first row of 𝐷Δ divided by 𝑔̂1. Consequently, with 𝑚 receivers and 𝑛 senders we only
use 𝑚+ 𝑛 − 1 of the 𝑚𝑛 available equations. There are hence (𝑚 − 1)(𝑛 − 1) constraints
(invariants) that the noiseless realization should fulfill. In general, we will have noise,
gross outliers and missing data in our measurement matrix. It is well known that the
least-squares estimate is given by truncating the singular value decomposition of 𝐷Δ to
rank one [21]. However, if we have gross outliers this is not the best estimate, and if we
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have missing data we cannot even compute the singular value decomposition. There has
been much previous work on low-rank matrix factorization [22–25].

In this case, we can solve the factorization in an easier way since 𝐷Δ only has rank one
and for most of these problems 𝑛 ≫ 𝑚. We find the solution by fixing 𝑔̂1 = 1 and
then solve for 𝑔̂𝑖 using a RANSAC-voting scheme with vote 𝑗 computed as 𝐷Δ𝑖𝑗/𝐷Δ1𝑗.
We then solve for each ℎ̂𝑗 by using a RANSAC-voting scheme, where vote 𝑖 is given by
𝐷Δ𝑖𝑗/𝑔̂𝑖. We then decide which entries in 𝐷Δ are inliers by checking which entries in
|𝒈̂𝒉̂𝛵 − 𝐷Δ| are less than some chosen tolerance.

6 Planar Position Estimation

We will now turn our attention to the problem of estimating projected planar positions
of the receivers and senders in the mirror plane, given that we have estimates of the
heights. In the previous section, we saw that there were (𝑚 − 1)(𝑛 − 1) invariants in the
data, that are always fulfilled for noiseless data. This means that the number of excess
constraints ℰ is

ℰ = 2𝑚𝑛 − (3𝑚 + 3𝑛 − 3) − (𝑚 − 1)(𝑛 − 1) (14)
= 𝑚𝑛 − 2𝑛 − 2𝑚 + 2. (15)

Setting ℰ = 0 gives the two minimal cases (𝑚, 𝑛) = (3, 4) and (𝑚, 𝑛) = (4, 3), which
are the minimal amount of data that is required to solve the full TOA-problem. Note
that, in these cases, the heights are slightly overdetermined when there is noise in the
measurements. From (9) and (10) we get

‖𝒓𝑖 − 𝒔𝑗‖2 = 𝐷Σ𝑖𝑗 − 𝜆2𝑔̂2𝑖 −
1
𝜆2 ℎ̂

2
𝑗 , (16)

where 𝒓𝑖, 𝒔𝑗 and 𝜆 are the unknown parameters. The scale 𝜆 is what makes (16) differ-
ent from a standard planar TOA self-calibration problem, for which the minimal case
is (𝑚, 𝑛) = (3, 3)) [6, 7]. Using algebraic tools, it could be possible to eliminate the
receiver and sender positions from (16), resulting in equations in only 𝜆. This would
enable a complete separation of the height estimation in the previous section and the
planar position estimation treated here. However, we have found this elimination to be
intractable2. Instead, we will eliminate only the senders and produce a solver for the
receivers in conjunction with 𝜆.

2The approach is nevertheless possible for the 2D equivalent of the 3D mirroring problem considered
here. Then (𝑚, 𝑛) = (2, 2) and the constraint becomes a single quartic polynomial in 𝜆2.
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Our approach for solving the planar TOA-problem together with 𝜆 is to formulate the
problem as a polynomial equation system and then use an existing automatic solver
generator [26]. The generated solver consists of a linear system (the so-called elimination
template), and an eigendecomposition of the same size as the number of solutions to the
problem.

To start, let (𝑚, 𝑛) = (3, 4), and fix the coordinate system as described in Section 3, i.e.,
let 𝒓1 = 𝟎. We can then construct the linear systems 𝛢𝒔𝑗 = 𝒃𝑗, where

𝛢 = [−2𝒓
𝛵
2

−2𝒓𝛵3
] and 𝒃𝑗 = [𝑑

2
2𝑗 − 𝑑21𝑗 − 𝒓𝛵2 𝒓2
𝑑23𝑗 − 𝑑21𝑗 − 𝒓𝛵3 𝒓3

] . (17)

Since 𝑑21𝑗 = 𝒔𝛵𝑗 𝒔𝑗, we can eliminate the senders and form the equation system

𝑑21𝑗 = 𝒃𝛵𝑗 (𝛢𝛢𝛵)−1𝒃𝑗 for 𝑗 = 1, … , 4, (18)

provided that 𝛢 is invertible. Here, we will perform a change of variables, and instead
of parameterizing the receivers in the coordinates 𝒓𝑖, we use the squared inter-receiver
distances 𝑐212, 𝑐213 and 𝑐223, where 𝑐𝑖𝑘 = ‖𝒓𝑖 − 𝒓𝑘‖, as we have observed this to produce more
stable solvers.

For (18) to become polynomial it has to be multiplied with 𝜆2 det(𝛢𝛢𝛵), resulting in

det(𝛢𝛢𝛵)(𝜆2𝐷Σ1𝑗 − 𝜆4𝑔̂21 − ℎ̂2𝑗 ) = 𝜆2𝒃𝛵𝑗 adj(𝛢𝛢𝛵)𝒃𝑗 (19)

for 𝑗 = 1, … , 4, where

𝛢𝛢𝛵 = 2 [ 2𝑐212 𝑐212 + 𝑐213 − 𝑐223
𝑐212 + 𝑐213 − 𝑐223 2𝑐213

] , (20)

𝒃𝑗 = [𝐷Σ2𝑗 − 𝜆2𝑔̂22 − 𝐷Σ1𝑗 + 𝜆2𝑔̂21 − 𝑐212
𝐷Σ3𝑗 − 𝜆2𝑔̂23 − 𝐷Σ1𝑗 + 𝜆2𝑔̂21 − 𝑐213

] . (21)

However, this introduces spurious solutions causing the ideal generated by the polyno-
mial system to not be zero-dimensional. For example, if 𝜆 = 0 the system reduces to
the single equation det(𝛢𝛢𝛵) = 0 which has infinitely many solutions. These spurious
solutions can be removed by saturating with the unknowns {𝑐212, 𝑐213, 𝑐223, 𝜆2} when gen-
erating the solver [9]. The produced solver has 14 solutions and an elimination template
(see [26]) of size 192×206. The template can be reduced to 88×102 by saturating with
{𝑐212, 𝑐213, 𝑐223} algebraically before generating the solver. From the solutions, 𝒓𝑖 and 𝑑𝑖𝑗 are
easily found, after which 𝒔𝑗 can be found by solving the linear systems in (17).
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Figure 2: Distribution of distance errors frommultiple trials when providing solvers with noiseless
data.

Observe that by relaxing the mirroring constraints on 𝑹∧ and 𝑹∨, we get the minimal
TOA problem (𝑚, 𝑛) = (6, 4) for which solvers already exist [7]. However, those solvers
are slower and unnecessarily big in the sense that they have 38 solutions and a template
size of 493×531 [27]. Furthermore, together with the offset estimation in Section 4, we
have constructed minimal solvers also for the TDOA case. Without the presence of a
reflective plane, these problems are significantly more difficult [28].

7 Experiments

To evaluate the stability of our solvers, we generated synthetic TOA data consisting of
receiver and sender coordinates drawn from 𝒩(0, 1). 𝐷∧ and 𝐷∨ were calculated ac-
cordingly without added noise, and the heights were estimated as in Section 5 up to
the scaling factor 𝜆. Figure 2 shows the norm of the distance errors resulting from the
estimated node positions. As can be seen, the proposed (3, 4) solvers produce smaller
errors than the existing (6, 4) TOA solver. They are also significantly faster with exe-
cution times of 1.6 ms (192×206) and 0.7 ms (88×102), compared to the 18 ms of the
(6, 4) TOA solver.

In order to test our methods in a real setting, we constructed a controlled TOA-experiment.
We used a number of synchronized microphones and a moving loudspeaker playing a
musical piece. The experiment was done in an environment which also featured an in-
dependent motion capture system, in order to evaluate the results. Distance estimates
were found using GCC-PHAT [29] between the microphones, and in order to have a
controlled experiment we used the ground truth to estimate the time offset between the
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Figure 3: Distance measurements for the real sound experiment, with different colors for differ-
ent microphones. Both the estimated direct path and the estimated mirror path are
shown. Note that there is a very large amount of missing data.

speaker and the microphones. The resulting measurements for 11 microphones and 349
speaker positions are shown in Fig. 3. The dataset contains very little outliers, but very
large amounts of missing data and noise in the measurements. We then proceeded to
estimate both sender and receiver positions, using our stratified approach. The heights
were found as described in Section 5, after which the minimal solver (192×206) described
in Section 6 was used to estimate initial solutions for 𝒓𝑖, 𝒔𝑗 and 𝜆. We used the solver
in a RANSAC-voting scheme by letting the solutions vote for the correct height scaling
factor. This gives an initial solution for the planar positions for three receiver and four
sender positions, as well as an estimate of the global height scale. This solution was then
extended using trilateration, with subsequent non-linear refinement. The results for the
heights and the planar reconstruction are shown in Fig. 4, where also the ground truth
is shown. The resulting mean errors in 3D-positions were in this case 8.7 cm for the
receivers and 13 cm for the senders. Note that for a majority sender positions we have
only three distance measurements.

8 Conclusion

In this paper, we have described how dominant reflective planes can be used to give
powerful constraints on TOA and TDOA node calibration problems. We have devel-
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Figure 4: Results on the real sound experiment. Top and center show the estimated heights
(in blue) for the receivers and senders, respectively, compared to the ground truth (in
yellow). At the bottom, the estimated planar positions (in blue) for the receivers and
senders are shown. The reconstruction has been rigidly registered to the ground truth
(in yellow).
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oped tractable methods, that in a stratified way, solves for time offsets, node heights and
planar positions of nodes, using minimal solvers that can be efficiently applied in boot-
strapping algorithms. We have further applied these methods to both synthetic and real
data, with promising result.
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1 Introduction

Sound localization has been a topic of interest in a wide range of applications for cen-
turies, and is well known to be a difficult problem, especially in a reverberating room
environment (see e.g. [1–8], and the references therein). Measuring the time it takes for
the signal to reach each sensor, the position of the source can be estimated. In the liter-
ature, this is referred to as either time of arrival (TOA) estimation, if the time of signal
emission is known, or otherwise time difference of arrival (TDOA) estimation, where
only the relative time delays are used. Common techniques for delay estimation include
different variations on cross-correlation or canonical correlation analysis (CCA), which
then allows the sources to be located in a second step using tri- and multi-lateration (see
e.g. [9, 10]). Other examples of sensor from which we can get distance measurements
include Ultra-Wideband, WiFi signal strength and Narrowband Radio Signals [11–14].

1.1 Trilateration and Related Work

To formalize our problem, we want to recover the position of an unknown receiver x ∈
ℝ𝑛, given the positions of 𝛮 anchors s𝑗 and distance measurements 𝑑𝑗 to these anchors.
Typically if the Euclidean distances are measured we aim at having ‖x − s𝑗‖ ≈ 𝑑𝑗 for
𝑗 = 1, 2, … ,𝛮. For Gaussian noise the Maximum Likelihood (ML) estimate is given by
the following optimization problem,

Problem 1 x⋆ = argminx∈ℝ𝑛 ∑𝛮
𝑗=1 (‖x − s𝑗‖ − 𝑑𝑗)

2
.

This is a non-linear and non-convex optimization problem which can have several local
minima.

Previously several methods have been proposed for solving Problem 1. In [15] the authors
used an SDP relaxation approach. The authors solve a convex relaxation of the problem,
and there is no guarantee that the solution will be optimal in the original cost. Recently
[16] presented a fixed point iteration for solving Problem 1.

A standard way to derive a linear solver is to consider the equations ‖x − s𝑗‖2 = 𝑑2𝑗 .
Forming differences between pairs of these equations the quadratic terms in x cancel,
leaving only linear equations in x,

2 (s𝑖 − s𝑗)
𝛵
x = 𝑑2𝑗 − 𝑑2𝑖 + s𝛵𝑗 s𝑗 − s𝛵𝑖 s𝑖 (1)

which can be solved in a least squares sense. However, this does not minimize any
meaningful cost (see Figure 1). Variants of this method can be constructed by e.g. by
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Figure 1: Comparison of cost functions for a synthetic instance with two local minima. Left to
right: Difference of squares as in (1), Weighted approximation (6), True likelihood.

taking the difference of all points to one reference point or by taking the difference with
the mean of all points, see [17].

In [15] the authors also present a globally optimal method for minimizing the following
surrogate function,

ℎ(𝒙) = ∑𝑗 (‖𝒙 − s𝑗‖2 − 𝑑2𝑗 )
2
. (2)

They consider the equivalent problem of minimizing

ℎ(𝒙, 𝛼) = ∑𝑗 (𝛼 − 2𝒙𝛵s𝑗 + s𝛵𝑗 s𝑗 − 𝑑2𝑗 )
2
, (3)

under the quadratic constraint 𝛼 = 𝒙𝛵𝒙. They then set up the Lagrangian and after some
manipulation end up with a single equation that only depends on the multiplier. In [15]
this equation is then solved using bisection.

In [18] Zhou presented another method for the minimizing the squared distances loss.
To solve the problem [18] introduce the artificial constraint∑𝑗‖x− s𝑗‖2 = ∑𝑗𝑑2𝑗 , which
is not satisfied in general, resulting in sub-optimal solutions.

In [19] the authors propose to minimize the maximum likelihood cost in Problem 1 by
solving a sequence of weighted versions of (2), in an IRLS-like fashion [20].

1.2 Non-Gaussian Error Models

When estimating the distances using the signal strength (see e.g. [21]) the noise often
becomes Gaussian when considering the measured power

𝛲𝑗 = 𝑏 + 𝑘 log‖x − s𝑗‖ + 𝜖, 𝜖 ∈ 𝒩(0, 𝜎) (4)
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or equivalently log‖x− s𝑗‖2 = 2𝛲𝑗−𝑏𝑘 + 𝜖′ where 𝜖′ ∈ 𝒩(0, 2𝜎/𝑘). Here 𝑏 and 𝑘 are model
parameters that we assume to be known. This leads to the following ML estimator (where
𝑚𝑗 = 2𝛲𝑗−𝑏𝑘 ),

Problem 2 x⋆ = argminx∈ℝ𝑛 ∑𝑗 (log‖x − s𝑗‖2 − 𝑚𝑗)
2
.

1.3 Multilateration

In the multilateration setting we have measurements to a number of known sender po-
sitions. These measurements contain a common unknown offset which also has to be
estimated. In this case the ML estimate (under the assumption of Gaussian noise) is
given as the solution to

Problem 3 x⋆ = argminx∈ℝ𝑛 ∑𝛮
𝑗=1 (‖x − s𝑗‖ − (𝑑𝑗 + 𝑜))

2
.

1.4 Paper Contributions

The cost functions in Problem 1 and 2 are both on the form

ℎ(x) = ∑𝑗 (Ψ(‖x − s𝑗‖2) − 𝑚𝑗)
2

(5)

with Ψ(𝑥) = √𝑥 and Ψ(𝑥) = log 𝑥 respectively. We can get an approximation by replac-
ingΨ with its first order Taylor expansion. The linearization point is chosen as the point
𝑥𝑗 which satisfies Ψ(𝑥𝑗) = 𝑚𝑗. Note that this does not depend on the receiver position.
By differentiatingΨ(𝑥) and inserting the linearization points, the approximations of the
cost functions in Problem 1 and 2 become

ℎ1(𝒙) = ∑𝑗
1
4𝑑2𝑗

(‖x − s𝑗‖2 − 𝑑2𝑗 )
2
, (6)

ℎ2(𝒙) = ∑𝑗𝑒
−2𝑚𝑗 (‖x − s𝑗‖2 − 𝑒𝑚𝑗)

2
, (7)

and for the multilateration cost function in Problem 3 we get

ℎ3(𝒙) = ∑𝑗
1

4(𝑑𝑗 + 𝑜)2
(‖x − s𝑗‖2 − (𝑑𝑗 + 𝑜)2)

2
. (8)

Note that these approximate functions have very similar structure.
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In this paper we present fast closed form solutions to the two non-convex optimization
problems

min
x
∑𝑗𝑤𝑗 (‖x − s𝑗‖2 − 𝑑2𝑗 )

2
, (w-TOA)

min
x, 𝑜 ∑𝑗𝑤𝑗 (‖x − s𝑗‖2 − (𝑑𝑗 + 𝑜)2)

2
, (w-TDOA)

by deriving equivalent eigenvalue problems. In contrast to previous approaches we can
enumerate all stationary points and guarantee global optimality. Our method works
for arbitrary dimension. Since we enumerate all stationary points we are also able to
identify situations where there are multiple good competing hypotheses. Additionally
we further explore the IRLS-like scheme used in [19] to minimize different cost func-
tions corresponding to ML estimates for different noise distributions, for example as in
Problem 2.

2 Optimal Trilateration

In this section we will show that the problem (w-TOA) is equivalent to an eigenvalue
problem. The cost function in (w-TOA) can be written as

ℎ(𝒙) = ∑𝑗𝑤𝑗 (𝒙𝛵𝒙 − 2𝒙𝛵𝒔𝑗 + 𝒔𝛵𝑗 𝒔𝑗 − 𝑑2𝑗 )
2
. (9)

Since the cost is differentiable everywhere, the globally optimal solution must lie at a
stationary point of ℎ(𝒙). The first order optimality conditions are ∇ℎ(𝒙) =

4∑𝑗𝑤𝑗 (𝒙𝛵𝒙 − 2𝒙𝛵𝒔𝑗 + 𝒔𝛵𝑗 𝒔𝑗 − 𝑑2𝑗 ) (𝒙 − 𝒔𝑗) = 0. (10)

This gives us 𝑛 polynomial equation system of degree 3 in 𝑛 unknowns. Naive application
of the Bezout bound [22] for this system yields that there are at most 3𝑛 solutions (where
𝑛 is dimension of the ambient space). However, we will show that due to the specific
structure of the equations, there are in general only 2𝑛 + 1 stationary points.
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2.1 Simplifying the Equations

Collecting the terms in (10) by degree we get

1
4∇ℎ(𝒙) = (∑𝑗𝑤𝑗)(𝒙𝛵𝒙)𝒙 (11)

− (𝒙𝛵𝒙𝛪 + 2𝒙𝒙𝛵) (∑𝑤𝑗𝒔𝑗) (12)

+ (∑
𝑗
𝑤𝑗 ((𝒔𝛵𝑗 𝒔𝑗 − 𝑑2𝑗 )𝛪 + 2𝒔𝑗𝒔𝛵𝑗 )) 𝒙 (13)

+∑𝑗𝑤𝑗 (𝑑2𝑗 − 𝒔𝛵𝑗 𝒔𝑗) 𝒔𝑗 = 0. (14)

Since the global coordinate system is arbitrary we can choose this to simplify the equa-
tions. Similarly to the approach in [18] we start by translating the senders 𝒔𝑗 with

𝒕 = −(∑𝑗𝑤𝑗𝒔𝑗)/(∑𝑗𝑤𝑗). (15)

This ensures that ∑𝑗 𝑤𝑗𝒔𝑗 = 0 which cancels all the quadratic terms in (12). Simi-
larly, since the cost function is homogeneous in the weights, we can w.l.o.g. assume that
∑𝑗 𝑤𝑗 = 1, which make the coefficients for all third degree terms one. The equations
are now of the form

(𝒙𝛵𝒙)𝒙 + 𝛢𝒙 + 𝒃 = 0. (16)

The matrix 𝛢 is symmetric, and thus we can perform an orthogonal eigenvalue decom-
position 𝛢 = 𝑈𝐷𝑈𝛵. Performing the change of variables 𝒙 → 𝑈𝒙 and 𝒃 → 𝑈𝒃, the
equations separate and we get (since 𝒙𝛵𝒙 = (𝑈𝒙)𝛵𝑈𝒙)

(𝒙𝛵𝒙)𝑥𝑖 + 𝐷𝑖𝑖𝑥𝑖 + 𝑏𝑖 = 0, 𝑖 = 1, 2, … , 𝑛. (17)

2.2 Deriving the Eigenvalue Problem

Multiplying each equation in (17) with 𝑥𝑖 we get

(𝒙𝛵𝒙)𝑥2𝑖 + 𝐷𝑖𝑖𝑥2𝑖 + 𝑏𝑖𝑥𝑖 = 0, 𝑖 = 1, 2, … , 𝑛. (18)

With some abuse of notation we use 𝒙2 to denote the vector of pure squares, i.e. 𝒙2 =
(𝑥21 , 𝑥22 , … , 𝑥2𝑛)𝛵. The equations in (17) and (18) can then be written as

(𝒙𝛵𝒙) (
𝒙2
𝒙
1
) = [

−𝐷 −diag(𝒃) 𝟎
𝟎 −𝐷 −𝒃
1𝛵 𝟎𝛵 0

]
⏟⏟⏟⏟⏟⏟⏟

=∶𝛭

(
𝒙2
𝒙
1
) . (19)
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where the last row is the trivial equation (𝒙𝛵𝒙) = 1𝛵𝒙2. Note that the matrix in (19)
is a constant square matrix and does not depend on the unknowns 𝒙. Additionally the
matrix 𝛭 can easily be computed for a given problem instance.

Any solution to the original problem (10) must also satisfy (19) (after appropriate change
of variables). This means that for any solution 𝒙 we have that the vector (𝒙2, 𝒙, 1)𝛵 is
an eigenvector to 𝛭 with eigenvalue 𝒙𝛵𝒙. So to enumerate all solutions to the original
system we do the following:

1. Compute matrix 𝛭 as described above.

2. Compute all eigenvectors.

3. Normalize eigenvectors such that the last element is one and extract 𝒙 from the
corresponding elements.

4. Evaluate original cost at each stationary point candidate and choose the one with
smallest cost.

While it is possible that there are eigenvectors which do not correspond to a stationary
point, all stationary points are among the eigenvectors, so by enumerating all of them
we are guaranteed to find the global optimum.

2.3 Stationary Points and Degenerate Configurations

From the results in the previous section, it follows that there are at most 2𝑛+1 stationary
points with different values for 𝒙𝛵𝒙. In general each eigenvector will corresponds to a
solution of the original system. However, it is possible to have eigenvalues with higher
multiplicity. This happens for example in degenerate situations (e.g. all senders lie on a
line). Note that in this case (19) still holds, and we still recover the correct eigenvalues
(i.e. values of 𝒙𝛵𝒙). However, since the eigenspaces are not necessarily one-dimensional
extra care must be taken to recover the solutions.

2.4 Optimal Multilateration

In this section we consider the multilateration case where we also need to estimate an un-
known offset between the senders and the receiver. Similarly to the trilateration problem
the cost function can be expanded as ℎ(𝒙, 𝑜) =

∑𝑗𝑤𝑗 (𝒙𝛵𝒙 − 2𝒙𝛵𝒔𝑗 + 𝒔𝛵𝑗 𝒔𝑗 − 𝑑2𝑗 − 2𝑑𝑗𝑜 − 𝑜2)
2
. (20)
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The first order optimality conditions are1 0 = 1
4∇ℎ(𝒙, 𝑜) =

∑
𝑗
𝑤𝑗 (𝒙𝛵𝒙 − 𝑜2 − 2 (𝒙𝛵, 𝑜) (

𝒔𝑗
𝑑𝑗
) + 𝒔𝛵𝑗 𝒔𝑗 − 𝑑2𝑗 ) (

𝒙 − 𝒔𝑗
𝑜 + 𝑑𝑗

) .

Again, shifting the coordinate systems (this time also in 𝑜) we can cancel the quadratic
terms, and the equations become

(𝒙𝛵𝒙 − 𝑜2) (𝒙, 𝑜)𝛵 + 𝛢 (𝒙, 𝑜)𝛵 + 𝒃 = 0. (21)

Now the goal is to transform these equations into an eigenvalue problem. Unfortunately
it is not possible to use the diagonalization trick here. The last 𝑛 + 1 rows are already
given by (21) and we only need to determine the top 𝑛 rows, i.e.

(𝒙𝛵𝒙 − 𝑜2) (

𝒙2
𝑜2
𝒙
𝑜
1

) = [
? ? ?
𝟎𝛵 −𝛢 −𝑏

(1𝛵, −1) 𝟎𝛵 0
] (

𝒙2
𝑜2
𝒙
𝑜
1

) , (22)

Let 𝜆 = 𝒙𝛵𝒙 − 𝑜2. Multiplying (21) with diag(𝒙, 𝑜) we get

𝜆 (𝒙2, 𝑜2)𝛵 = −diag(𝒙, 𝑜) (𝛢 (𝒙, 𝑜)𝛵 + 𝒃) . (23)

This almost yields the missing rows, except for a few quadratic mixed terms (e.g. 𝑥1𝑥2)
appearing in the RHS. To eliminate the mixed quadratic terms, the goal is to the express
them in monomials appearing in the eigenvector, i.e. (𝒙2, 𝑜2, 𝒙, 𝑜, 1).

Multiplying the first equation in (21) with 𝑥2 and subtracting the second equation mul-
tiplied with 𝑥1, any terms containing 𝜆 cancel, and we are left with an equation contain-
ing only mixed quadratic terms and monomials which appear in the eigenvector in (22).
Doing this for all pairs of equations in (21) yields a set of (𝑛+12 ) equations, on the form

𝐶0𝒎 + 𝐶1 (𝒙2, 𝑜2, 𝒙, 𝑜, 1)
𝛵 = 0 (24)

where 𝒎 is the vector of monomials containing the mixed quadratic terms. Inserting
𝒎 = −𝐶−1

0 𝐶1 (𝒙2, 𝑜2, 𝒙, 𝑜, 1)
𝛵

into (23) we can eliminate all mixed terms and recover the
missing rows in the eigenvalue problem (22).

1To simplify calculations the last equation has changed sign.
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Figure 2: Top left: Distribution of errors for synthetic noise-less instances. Top right: Runtime (in
ms) for different number of senders. Bottom: RMS error in receiver position for various
amounts of noise.

3 Experiments and Applications

3.1 Numerical Stability and Computational Cost

We evaluated our method on synthetically generated data. Figure 2 shows the equation
residuals (left) and the runtime plotted against the number of senders (right).

3.2 Maximum Likelihood Estimation using IRLS

Since we can solve the weighted problem (w-TOA) optimally, we can use this to iter-
atively minimize the true ML cost functions. We iterate the following two steps until
convergence:

1. 𝒙𝑡 = arg minx∑𝑗𝑤𝑡
𝑗 (‖x − s𝑗‖2 − 𝑑2𝑗 )

2

2. 𝑤𝑡+1
𝑗 = (2‖x𝑡 − s𝑗‖ (‖x𝑡 − s𝑗‖ + 𝑑𝑗))−1.
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These weights are chosen such that the gradients of the ML and the weighted cost align
in each iteration, i.e.

∇x 𝑤𝑗 (‖x − s𝑗‖2 − 𝑑2𝑗 )
2
= ∇x (‖x − s𝑗‖ − 𝑑𝑗)

2
(25)

This ensures that any limit point is a stationary point of the original cost. Note that this
weighting is different from the weighting used in [19].

Similarly, to solve Problem 2 we update the weights as

𝑤𝑡
𝑗 =

log(‖x𝑡 − s𝑗‖2) − 𝑚𝑗
log(‖x𝑡 − s𝑗‖2)(‖x𝑡 − s𝑗‖2 − 𝑒𝑚𝑗) . (26)

Figure 2 shows the RMS error in receiver positions for different amounts of noise in
a setup of six senders and one receiver, all sampled uniformly from a unit cube. We
compare the proposed method and its IRLS application as just presented with Luke [16],
the R-LS solver from [15] and the SWLS solver from [19]. All methods perform similarly
except for Luke which occasionally convergences to the wrong stationary point.

3.3 Real Data Experiment

We evaluate our method using TOA datasets gathered with an ultra-wideband (UWB)
setup. Six senders were kept stationary as a single receiver was moved through the setup.
Ground truth for sender and receiver positions was determined using an optical motion
capture system. We compare the proposed method with Zhou [18], Luke [16], the SR-LS
solver from [15] and the R-LS solver from [15] (see Table 1). For reference we include the
ML estimate found by solving Problem 1 using standard iterative optimization methods
initialized at the ground truth positions. All algorithms were implemented in MATLAB.
In many cases the proposed solver without IRLS performs best. This is likely due to that
the errors are not completely Gaussian.

4 Conclusion

In this paper we have introduced two eigenvalue solvers that give closed-form-solutions
to two different non-linear weighted least squares problems. We have also shown how
these solvers can be used to do optimal trilateration and multilateration.
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Table 1: RMS errors (meters) and total execution time (seconds) when running eight real UWB
datasets.

Data- Zhou Luke SR-LS R-LS ML Prop. Prop.
set [18] [16] [15] [15] IRLS

1 0.66 0.34 0.40 0.34 0.34 0.32 0.34
2 0.65 0.52 0.54 0.52 0.52 0.52 0.52
3 11.05 0.64 1.18 0.64 0.64 0.42 0.64
4 0.54 0.31 0.44 0.32 0.31 0.30 0.31
5 0.64 0.34 0.41 0.34 0.34 0.33 0.34
6 0.47 0.31 0.37 0.31 0.31 0.28 0.31
7 0.53 0.32 0.35 0.32 0.32 0.31 0.32
8 0.74 0.39 0.48 0.39 0.39 0.36 0.39

Time 0.43 6.49 3.63 93.00 33.41 0.50 2.13
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1 Introduction

Where am I? This is a question that is fundamental to most living organisms in the world.
Both the methods and sensor inputs used for answering this question vary wildly. In this
paper, we will specifically look into how one can combine a local motion model with
distance measurements to a global coordinate system in order to do positioning.

Many animals—from desert ants [1] to mammals [2]—use dead reckoning or path inte-
gration based on locomotion estimates to navigate, and such techniques have also been
used by humans throughout history for navigating both at sea and land. Typically one
gets quite accurate results from dead reckoning based on, e.g., estimated headings and
speed, but these results invariably suffer from drift.

Using (direct or indirect) distance measurements has also been used for a long time,
e.g., using sound waves from as early as the eighteenth century [3]. Given a small set of
distance measurements (in the plane at least two and in space at least three) to known
locations, one can estimate the position using trilateration. These distances are often
acquired using approaches based on Time Of Arrival (TOA), Received Signal Strength
(RSS), or Time Difference Of Arrival (TDOA). In such cases a signal, e.g, radio, sound,
or light, is typically emitted from the senders and received at the sought position, or
vice versa. For TOA and TDOA the speed of the signal in the medium is most often
assumed to be known, which then directly gives distance measurements. For RSS, a
signal propagation model can be used to translate power measurements to distances.
One problem with trilateration techniques is that one often has gross outliers in the
data, arising from errors when correlating signals, from the geometry of the problem, or
multipath effects.

Our contribution in this paper is a way of robustly handling outliers, and making use
of distance measurements, at the same time as we use any available motion model or
odometry data to locally constrain the motion, and by this way aggregating distance
measurements. Specifically, we will formulate our trilateration problem as registering a
local receiver coordinate system to a global sender coordinate system, so that the distance
measurements are realized. We propose to do this robustly in a RANSAC framework
[4–6], so that we can handle outliers in the distance measurements. We will focus on
the most tractable case, when the receivers are in a plane, i.e., the two-dimensional case.
In order to do this, we need to develop a number of minimal trilateration registration
solvers, that are used as components in bootstrapping the solutions. In Section 2 we
describe the geometry of our setup. Then in Section 3 we describe the proposed solvers,
and how they were developed. We also test our approach using the proposed solvers,
both on synthetic and real data, in Section 4.
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The Matlab-Mex implementations are publicly available1.

1.1 Related Work

The problem considered presently can be described as the simultaneous trilateration and
registration of points. Regarding trilateration, also known as single source localization,
there has been a large body of previous work. The minimal problem, where the number
of distance measurements equals the spatial dimension, has a closed-form solution [7–9].
However, when the problem is over-determined, some form of maximum likelihood
(ML) estimator must be constructed. Finding the ML estimate given Gaussian noise in
the measurements is a nonlinear, non-smooth and non-convex problem, and unlike the
minimal case, it lacks a closed-form solution. Multiple iterative methods, with various
convergence guaranties, have nevertheless been proposed [10–13]. There has also been
several contributions where the ML problem is relaxed, and the error in the squared
distance measurements are minimized [14–17]. Various forms of linear solvers have also
been proposed, see [18] and references therein. Common for the works listed above is
that they do not treat the scenario when gross outliers are present. These outliers can
result from non-line-of-sight (NLOS) measurements, in which case they are necessarily
longer than the line-of-sight (LOS) distance. These measurements can either be identi-
fied and removed [19, 20] or incorporated into the model [21].

The positioning resulting from trilateration can be improved by incorporating a motion
model. The most common approach here is using filtering, to fuse the data from differ-
ent sources, e.g., using a Kalman filter [22–24] or hidden Markov models [25]. This can
give significantly better result, especially in the case of noisy RSS distance measurements.
However, by the real-time nature of these filters, outlier detection might not be trivial,
and such approaches also rely on a reasonable initialization. The most similar approach,
to our proposed framework, is perhaps within robotics and autonomous vehicles, using
angle measurements combined with odometry [26]. Although, the underlying govern-
ing measurement equations are completely different.

When it comes to registration of corresponding point sets, it has been long known that
the globally optimal solution is found by singular value decomposition (SVD) [27–29].
Robust methods that allows for missing data and outliers have since then been proposed,
see [30–32] and references therein. However, the problem considered here is slightly
different, in that the corresponding points are required to be a specific distance from
each other rather than being coincident. This fundamentally changes the problem and

1The code for all presented solvers is publicly available at https://github.com/hamburgerlady/motion-model-
trilateration
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requires a more involved approach. Closer similarities can be found within the study
of forward kinematics of parallel manipulators. In particular, forward kinematics of the
well known Stewart platform [33,34] and the planar 3-RPR manipulator [35] is identical
to the minimal rigid registration problem considered here, in 3D and 2D, respectively.
However, to the best of our knowledge, this type of problem has never before been
applied in the context of robust trilateration with motion priors. Furthermore, when
the scale of the registration transform is unknown, the problem becomes different from
the forward kinematics one.

2 Problem Formulation

We will now describe our approach in more detail and give motivation and use cases
where it is suitable. We assume that we have measured the distances 𝑑𝑖𝑗 from a number
of receivers r𝑖 ∈ ℝ𝛮 and senders s𝑗 ∈ ℝ𝛮,

𝑑2𝑖𝑗 = |𝛵(r𝑖) − s𝑗|2, (1)

where the receivers are given in a local coordinate system and 𝛵 is a transformation from
the receiver coordinate system to the global sender coordinate system. We will now
consider the problem when r𝑖 and s𝑗 are known but the transformation 𝛵 is unknown.
Note that the problem is agnostic in what we label as receivers and senders. We will
henceforth, for notation purposes, assume that the receivers are in the local coordinate
system. Furthermore we can w.l.o.g. assume that we enumerate our senders and receivers
so that 𝑖 = 𝑗, (with the possible need of duplicating receiver or sender positions), so that

𝑑2𝑖 = |𝛵(r𝑖) − s𝑖|2. (2)

Depending on the degrees of freedom of 𝛵, we would need differently many distance
measurements 𝑑𝑖 in order to minimally estimate 𝛵. We will now give a number of
examples when the above formulation is an appropriate model for localizing a number
of unknown receivers.

We will in this paper assume that the receivers are in the plane, i.e., 𝛮 = 2. One can
do the same analysis in 3D, but the specific problems become much harder. In many
cases, we have quite accurate information on the local motion of a moving receiver. This
could for instance be measurements from odometry systems or Inertial Measurement
Unit (IMU) measurements, but it could also be a constrained motion model. Consider
the following hierarchy of knowledge about the motion of a receiver, where we assume
that motion is:
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1. in a straight line with constant speed.

2. in a straight line and with known relative speed.

3. in a straight line and with known absolute speed.

4. with known direction and with constant speed.

5. with known direction and with known relative speed.

6. with known direction and with known absolute speed.

Relative speeds could be realized using, e.g., a step counter with unknown step length,
absolute speeds with a calibrated step counter or odometry, and directions using an
IMU. All these cases can be parameterized using a local coordinate systems for the re-
ceiver positions, and can be registered to the sender coordinate using either a similarity
transform (Cases 1, 2, 4 and 5) or a Euclidean transformation (Cases 3 and 6). Since
a similarity transformation in the plane has four degrees of freedom, we would need at
least four distance measurements to solve (2). For the rigid Euclidean transformation,
we would need at least three measurements.

3 Solvers

In this section, we will describe our proposed minimal solvers for the 2D cases. Since
these solvers typically are used in a RANSAC framework [4–6], the most important as-
pect of them is that they are fast. We will use an approach based on the action matrix
method [36] and use an automatic solver generator [37, 38]. The process is based on
formulating problem instances—the system of multivariate polynomial equations that
we want to solve—with random coefficient from a finite field, where the analysis can be
done in exact arithmetic using a computer algebra system such as Macaulay2 [39]. From
these calculations the solver can be constructed. The resulting solver contains two major
steps, a linear system—the so-called elimination template—to construct the action ma-
trix, and then the solution is extracted using an eigenvalue solver of the action matrix.
Please see [37] for details on the process. Even though the solver generation is automatic,
the properties of the resulting solver (in terms of speed, accuracy and robustness) will
heavily rely on the parametrization used.
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3.1 Minimal Euclidean Three-Point Solver

We assume that we have three receivers, r𝑖 ∈ ℝ2 in a local coordinate system, that we
want to register to the corresponding senders, s𝑗 ∈ ℝ2, in the global coordinate system,
so that,

𝑑2𝑖 = |𝑅r𝑖 + t − s𝑖|2, 𝑖 = 1, 2, 3, (3)

where 𝑅 is the unknown two-dimensional rotation and t ∈ ℝ2 is the unknown transla-
tion. Since 𝑅𝛵𝑅 = 𝛪 we can simplify (3) to

𝑑2𝑖 = r𝛵𝑖 r𝑖 + 2r𝛵𝑖 𝑅𝛵(t − s𝑖) + t𝛵t − 2s𝛵𝑖 t + s𝛵𝑖 s𝑖, (4)

for 𝑖 = 1, 2, 3. We can see that these equations are linear in 𝑅, but there is a cross-term
between 𝑅 and t and also a quadratic term in t. We will parameterize the rotation using
two parameters (𝑎, 𝑏), so that

𝑅 = [𝑎 −𝑏
𝑏 𝑎 ] , 𝑎2 + 𝑏2 = 1. (5)

With the non-linear constraint on (𝑎, 𝑏) and (4) we have four equations in four un-
knowns. If we use this system and construct a solver using the automatic solver from
[37], we get in general six (possibly complex) solutions, and an elimination template of
size 45 × 51. However, we can get a faster solver by reducing the problem to a single
univariate sextic polynomial. This was done in [35] using Cayley-Menger determinants,
but our approach is as follows. If we take differences between two equations in (4), the
quadratic terms t𝛵t cancel out. This means that from two such differences, we get linear
expressions in t from which we can solve directly for the translation (as a function of the
rotation 𝑅). Inserting this expression for t in (4) gives an equation in only (𝑎, 𝑏), with
terms up to total degree five in (𝑎, 𝑏). We simplify this expression further, by substitut-
ing all powers of 𝑏2 and higher using 𝑏2 = 1 − 𝑎2. This gives us a new equation in 𝑎 and
𝑏,

𝑐1𝑎3 + 𝑐2𝑎2𝑏 + 𝑐3𝑎2 + 𝑐4𝑎𝑏 + 𝑐5𝑎 + 𝑐6𝑏 + 𝑐7 = 0, (6)

where 𝑐𝑘, 𝑘 = 1, … , 7, are coefficients only depending on the measured input data. Note
that it is now linear in 𝑏. Multiplying this equation with 𝑏 and again substituting all
powers of 𝑏2 using 𝑏2 = 1 − 𝑎2 gives another equation that is linear in 𝑏. We now have
two equations on the form

[𝑓11(𝑎) 𝑓12(𝑎)
𝑓21(𝑎) 𝑓22(𝑎)

]
⏟⏟⏟⏟⏟

𝛭

[𝑏1] = [00] , (7)
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where 𝑓𝑘𝑙(𝑎) are polynomials in 𝑎 with coefficients that only depend on the input data.
Since (7) should have a non-trivial solution, we get our final equation in 𝑎 by

det𝛭 = 𝑒6𝑎6 + 𝑒5𝑎5 + 𝑒4𝑎4 + 𝑒3𝑎3 + 𝑒2𝑎2 + 𝑒1𝑎 + 𝑒0 = 0. (8)

This equation can be solved very fast and efficiently using the companion matrix or by
Sturm sequences [40, 41].

3.2 Minimal Similarity Four-Point Solver

For the similarity transformation case we get the same type of equations as for the Eu-
clidean case. The difference is that we use four equations on the form,

𝑑2𝑖 = |𝑆r𝑖 + t − s𝑖|2, 𝑖 = 1, … , 4, (9)

where 𝑆 is a scaled rotation matrix. We can parametrize the problem in more or less the
same way as for the Euclidean case, using four parameters, but now without the scale
constraint on (𝑎, 𝑏), so that

𝑆 = [𝑎 −𝑏
𝑏 𝑎 ] . (10)

We could solve for the translation also in this case, using the same approach as for the
Euclidean case. However, this will for the similarity case introduce spurious solutions
(arising from the denominator of the solution in t). One could use saturation to auto-
matically eliminate the spurious solutions using the technique describe in [42], but this
will in this case lead to a much slower solver. Instead, we keep the initial formulation
(9) and use this as input to the automatic solver generator. The system of equations has
in general up to six solutions, and the generated solver has an elimination template of
size 53 × 59.

4 Experiments

In this section, we will evaluate our solvers and test them as system components for ro-
bust trilateration. We will do a number of systematic tests on synthetic data, and show
a proof-of-concept evaluation on a dataset with real Round-Trip Time (RTT) measure-
ments. We have implemented our two minimal solvers in MATLAB. A number of the
time-consuming steps were implemented as compiled Mex-C++ subroutines. On a stan-
dard laptop (Macbook pro 2.5 GHz Dual-Core Intel Core i7 running MATLAB 2020b),
the average execution times are 25 μs for the Euclidean solver and 57 μs for the similarity
solver.
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Figure 1: Distribution of the norm of equations residuals for 10 000 instances of running our
minimal solvers. Note that the errors are on a logarithmic scale.

4.1 Solver Tests on Synthetic Data

In order to test the numerical stability of our solvers, without noise, we generated syn-
thetic minimal problem instances (three sender-receiver-distance measurements for the
Euclidean solver and four sender-receiver-distance measurements for the similarity solver).
We then ran our minimal solvers and evaluated the equation residuals. We repeated this
10 000 times in order to generate error statistics. In Figure 1 the error distributions for
the two minimal solvers are shown. One can see that we get small errors in general. The
errors for the similarity solver are slightly larger than for the Euclidean solver. This is to
be expected since the elimination template is larger. In order to test our solvers in the
presence of noise we ran our solvers in a RANSAC framework. We randomly placed
ten receivers and ten senders in an area of size 50 × 50. We then calculated the distances
between the receivers and senders. In order to simulate a local coordinate system, we
randomly chose a transformation (Euclidean respectively similarity) and applied this to
the receiver positions. Finally, we added Gaussian noise to all positions, with a standard
deviation of 𝜎.

The unknown transformation between the local receiver coordinate system and the global
sender coordinate system was then estimated using RANSAC and our minimal respective
solvers. The estimated transformation was compared to the ground truth transformation
in terms of rotation angle difference and relative distance between translations. For the
similarity case we also compared the scale. In the left of Figure 2, the resulting errors are
shown as functions of 𝜎 for the added noise (on a logarithmic scale). One can see that
the errors degrade gracefully. This first test was done without outliers in the data. For
a second test we repeated the experiment, but we also corrupted a certain percentage of
the data grossly, in order to test the sensitivity to outliers. The right of Figure 2 shows
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Figure 2: Results on synthetic data for varying degrees of noise and outliers (on a log-log scale).
Top left shows comparison to ground truth after RANSAC using the proposed three-
point Euclidean solver, as a function of the added noise. Here there are no outliers in
the data. Top right shows the same plot for 20% outliers in the input data. Bottom
row shows the result after RANSAC using the proposed four-point similarity solver.
Bottom left is without outliers and bottom right with 20% outliers. One can see that
the errors degrade gracefully for all cases.
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Table 1: The error characteristics used in the synthetic system experiment

Standard Outlier
deviation ratio

Step Counter 0.5 steps -
Heading measurement 0.005 rad -
Distance measurement 0.1 m 10 %

the errors in this case, with 20 % outliers. Here we get more or less the same error
characteristic as without outliers. Since we only have ten measurements in this case, and
we need three or four for an estimate, more than around 30 % outliers will lead to a large
degradation of the results.

4.2 System Tests on Synthetic Data

In order to test our proposed approach in a more realistic scenario, we simulated an
indoor positioning scenario, with a person walking with a step counter, heading estima-
tion and distance measurements to a set of known sender positions. There are of course a
large number of parameters that one can set in such a scenario, but we have tried to make
a simple test, with typical error characteristics, based on, e.g., sound measurements. We
generated 20 random positioned senders in a 50 m × 50 m area. We then simulated a
path with 50 receiver positions. At each position we measure the distance to three ran-
domly chosen senders. We also assume that we have measured the number of steps and
heading between each receiver position. We add Gaussian noise to all measurements,
and also corrupt a certain ratio of the distance measurements in order to simulate, e.g.,
NLOS measurements. The used error statistics for the experiment are summarized in
Table 1. In order to test our method, we divided the set of 50 receiver positions into
ten segments of five positions in each segment. In each segment we parameterized a
local coordinate system using the measured number of steps and the measured heading.
For the Euclidean case, we also assume that the step length is known (0.75 m), but for
the similarity case this parameter is estimated. For each segment we have 15 distance
measurements, since we have three distance measurements for each receiver position.
For each segment we estimate the transformation to the global coordinate system using
RANSAC with our minimal solvers. We repeated the experiment 100 times. For a simple
comparison, we also report the results using optimal trilateration [14] for the individual
receiver positions (based on three measurements, without the use of odometry data) and
dead reckoning based on the odometry data without the use of distance measurements.
The results are shown in Table 2. One example reconstruction is shown in Figure 3. One
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Table 2: Comparison to ground truth positions on synthetic system

Method Optimal Dead Proposed Proposed
trilateration [14] reckoning∗ (Euclidean) (similarity)

RMS (m) 16.2 2.00 0.179 0.498
∗Assumes ground truth initialization of first position.

can see that the receiver positions are generally reconstructed well. Also shown are the
reconstructions using dead reckoning and optimal trilateration. These reconstructions
suffer from drift and outliers respectively.

4.3 System Test on Semi-Synthetic Data

We have done some preliminary tests also based on semi-synthetic data. Using a phone,
we have recorded real RTT measurements in an office environment. A person walked
around the office while collecting measurements to Wi-Fi hotspots. At a number of
positions the user marked the location manually on a map of the office. This corresponds
to the selective ground truth for the experiment. In addition, we also know the location
of all beacons. Here, we do not have access to any reliable motion estimates, so we
have used synthetic motion data (heading and step counter) based on the ground truth
positions and assuming a linear motion between the ground truth positions. We added
Gaussian noise to the motion data with standard deviations of 0.5 steps and 0.01 rad for
the step counter and heading, respectively. Using the real distance measurements (with
standard deviation on the order of meters) we ran our system and compared the result
with the sparse ground truth. In this case we got an average RMS of 2.6 m compared
to 3.9 m using optimal trilateration on the individual ground truth receivers. One of
the reconstructions is shown in Figure 4. This experiment should be seen as a proof-
of-concept, since the results are based on synthetically generated motion measurements,
and also depend on a number of parameter settings in the system. However, it shows
promising results of being able to aggregate distance measurements over several receiver
positions and eliminate outliers, to get more robust and accurate results.

5 Conclusion

In this paper, we have presented a framework for performing robust trilateration using
motion measurements or a constrained motion model. We have shown that a number of
different motion priors can be formulated as registration of the local motion coordinate
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Figure 3: Reconstruction and comparison with ground truth for the synthetic system experiment.
Left shows the complete reconstruction. The proposed solution is very close to the
ground truth positions in this case. On the right, a magnification of one segment is
shown. The solution based on only odometry data (in purple) suffers from drift. The
solution based on optimal trilateration (in green) is very accurate for many receiver
positions, but breaks down for cases where there are outliers in the distance measure-
ments.
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Figure 4: Reconstruction and comparison with ground truth for the semi-synthetic system ex-
periment. Real Wi-Fi RTT distance measurements were used together with synthetic
motion data in the proposed approach.
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system to a global coordinate system, so that the estimated distance measurements are
realized. Depending on the motion model, we use either a similarity transform or a rigid
Euclidean transform. We have presented fast minimal solvers for the two-dimensional
versions of these problem, that can be used to bootstrap efficient and robust RANSAC-
type hypothesize and test methods. We have tested the solvers on synthetic data, and also
shown preliminary tests, based on real RTT measurements, with promising results. Fu-
ture work includes developing the systems, so that they are robust to different scenarios.
We would also like to tackle the more challenging three-dimensional case.
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Single Source Localization As an Eigenvalue
Problem
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Abstract: In this paper, a novel method for solving the single source localization prob-
lem is presented, enabling efficient positioning of a source using time-of-arrival mea-
surements. The proposed method formulates the problem as an eigenvalue problem,
enabling the usage of existing eigensolvers, and thus producing a fast, numerically sta-
ble and easy to implement solver. Unlike previous works, degenerate cases are treated,
where multiple and possibly infinitely many solutions exist. Furthermore, by the intro-
duction of suitable weightings in the cost function, multiple noise distributions in the
measurements can be accommodated. The proposed method is validated against a range
of state-of-the-art methods using synthetic and real data, where it is shown to be among
the fastest and most numerically stable, while also being able to handle degenerate cases.
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Figure 1: Three senders 𝒔1, 𝒔2, 𝒔3 and the maximum likelihood solution 𝒙 to the trilateration prob-
lem.

1 Introduction

The single source localization problem has received a considerable amount of attention
due to its broad application within areas such as GNSS positioning, wireless networks,
speaker diarization, robotics, and indoor positioning. The problem consists of finding an
unknown receiver position using some form of distance measurements to known sender
locations. These distances are often acquired using approaches based on Time Of Arrival
(TOA), Received Signal Strength (RSS), or Time Difference Of Arrival (TDOA). In all
cases some signal, e.g, radio, sound, or light, is emitted from the senders and received at
the sought position, or vice versa.

In the case of TOA, the one-way propagation time of the signal is measured, and know-
ing the propagation speed in the medium, the distance traveled can be calculated. RSS
instead utilizes the fact that signals get attenuated in the medium, and by modeling this
attenuation, a distance measurement can be derived from the received signal strength.
Solving the single source localization problem for the cases of TOA and RSS is called tri-
lateration. TDOA is similar to TOA, but the former features an additional unknown off-
set in the distance measurement that needs to be estimated. This fundamentally changes
the single source localization problem which is then referred to as multilateration.

The problem of trilateration can be formalized as having𝑚 senders 𝒔𝑗 ∈ ℝ𝑛, 𝑗 = 1, … ,𝑚,
of known position with distance measurements 𝑑𝑗 ∈ ℝ to an unknown receiver position
𝒙 ∈ ℝ𝑛. This can be modeled as

𝑑𝑗 = ‖𝒙 − 𝒔𝑗‖ + 𝜖𝑗, (1)
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where 𝜖𝑗 represents additive noise in the measurements. Provided i.i.d. Gaussian noise
the Maximum Likelihood (ML) estimator for 𝒙 is given by

minimize𝒙

𝑚
∑
𝑗=1

(‖𝒙 − 𝒔𝑗‖ − 𝑑𝑗)2. (2)

This is a nonlinear, nonsmooth and nonconvex optimization problem which can have
multiple local minima. As a result, proposed approaches have so far been limited to
iterative methods [1–5] or have relied on some form of relaxation of the problem. Com-
mon for the iterative methods is that, while they under some circumstances guarantee
convergence to a stationary point of (2), they do not guarantee convergence to a global
minimum and are thus dependent on a reasonable initialization. A non-iterative ap-
proach was proposed in [6], where a convex relaxation of the problem was solved using
Semidefinite Programming (SDP). However, due to the relaxation, there is no guarantee
that the solution is optimal in the original cost function.

Another relaxation is given by minimizing the error in the squared distances

minimize𝒙

𝑚
∑
𝑗=1

(‖𝒙 − 𝒔𝑗‖2 − 𝑑2𝑗 )2. (3)

This formulation has the benefit of being polynomial and smooth, although, it lacks
the statistical interpretation that (2) has and gives higher influence to larger errors and
distances. A solution was provided in [6] where they considered the equivalent problem

minimize𝒙,𝛼

𝑚
∑
𝑗=1

(𝛼 − 2𝒙𝛵𝒔𝑗 + 𝒔𝛵𝑗 𝒔𝑗 − 𝑑2𝑗 )2, (4)

under the constraint 𝛼 = 𝒙𝛵𝒙. This resulted in a Generalized Trust Region Subprob-
lem (GTRS) which was reduced to a single equation in one variable and subsequently
solved using bisection. In an earlier work [7], a similar approach was used, where also
a weighting of the terms was introduced, approximating (2) for small errors. A closed-
form approximate solution to (3) was proposed in [8], where they introduced the ar-
tificial constraint ∑𝑗 ‖𝒙 − 𝒔𝑗‖2 = ∑𝑗 𝑑2𝑗 , which is not satisfied in general, resulting in
sub-optimal solutions. In the minimal case, i.e., when 𝑚 = 𝑛, an exact solution can
be found and several closed-form methods have been proposed [9–11]. Various linear
methods have also been proposed, of which several are equivalent to the unconstrained
problem in (4), see [12] and references therein.
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1.1 Contribution

In this paper we present a novel method based on eigendecomposition for solving the
optimization problem

minimize𝑥

𝑚
∑
𝑗=1

𝑤𝑗(‖𝒙 − 𝒔𝑗‖2 − 𝑑2𝑗 )2, (5)

where 𝑤𝑗 ≥ 0 is a weighting. We show how to derive suitable weightings depending on
the error distribution in the measurements, and, in particular, how to approximate (2).
We then analyze the eigendecomposition problem and show that the global minimizer
of (5) corresponds to the largest real eigenvalue. Using this fact and other observations,
we construct an efficient and numerically stable algorithm for performing trilateration.
Finally, we validate the proposed method against a range of state-of-the-art methods
on both real and synthetic data. The material presented here is partially based on the
conference paper [13].

2 The Weighted Cost Function

In the presence of noise, minimizing the cost function in (5) is not the same as minimiz-
ing the one in (2). However, with a suitable weighting, the former provides an accurate
approximation of the latter, while also accommodating other noise distributions.

To derive the weightings, we start by introducing the residual functions

𝑟𝑗(𝒙) = Ψ𝑗(‖𝒙 − 𝒔𝑗‖2) − Ψ𝑗(𝑑2𝑗 ), (6)

where Ψ𝑗(𝑧) is a normalization transformation that is differentiable at 𝑧 = 𝑑2𝑗 . These are
the residuals we wish to minimize in the least squares sense. Assuming Ψ𝑗(𝑑2𝑗 ) contains
Gaussian noise with covariance matrix𝚸−1, the ML-estimate for 𝒙 is given by minimizing

ℎ0(𝒙) = 𝒓(𝒙)𝛵𝚸𝒓(𝒙), (7)

where 𝒓(𝒙) ∈ ℝ𝑚 is the residual vector with elements 𝑟𝑗(𝒙). Note that if we choose
Ψ𝑗(𝑧) = √𝑧 and Ψ𝑗(𝑧) = 𝑧, we get the optimization problems in (2) and (3), respectively.

Depending on Ψ𝑗(𝑧), minimizing ℎ0(𝒙) can be a difficult problem. We will therefore,
in each residual 𝑟𝑗(𝒙), replace Ψ𝑗(𝑧) with its first order Taylor approximation at 𝑑2𝑗 .

Ψ𝑗(𝑧) ≈ Ψ𝑗(𝑑2𝑗 ) + Ψ′
𝑗 (𝑑2𝑗 )(𝑧 − 𝑑2𝑗 ). (8)
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Insertion into (6) yields the approximate residuals

𝑟̃𝑗(𝒙) = Ψ′
𝑗 (𝑑2𝑗 ) (‖𝒙 − 𝒔𝑗‖2 − 𝑑2𝑗 ) . (9)

Let 𝐖 be a positive definite weighting matrix with elements 𝑤𝑖𝑗 = Ψ′
𝑖 (𝑑2𝑖 )𝛲𝑖𝑗Ψ′

𝑗 (𝑑2𝑗 ).
Note that 𝐖 is constant and does not depend on 𝒙. The cost function approximating
ℎ0(𝒙) can now be written as

ℎ(𝒙) = 1
4

𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

𝑤𝑖𝑗(‖𝒙 − 𝒔𝑖‖2 − 𝑑2𝑖 )(‖𝒙 − 𝒔𝑗‖2 − 𝑑2𝑗 ), (10)

which is a general form of (5). This is the cost function for which the proposed method
finds the global minimum.

2.1 Different Noise Distributions

Accommodating different noise distributions in the measurements is achieved by finding
suitable normalization transformationsΨ𝑗(𝑧) such thatΨ𝑗(𝑑2𝑗 ) is Gaussian. For example,
when working with TOA measurements, the distances 𝑑𝑗 are often modeled as contain-
ing Gaussian additive noise. In this case, letting Ψ𝑗(𝑧) = √𝑧 will cause Ψ𝑗(𝑑2𝑗 ) to be
Gaussian assuming 𝑑𝑗 > 0. The weighting in the approximate residuals (9) are then
given by

Ψ′
𝑗 (𝑑2𝑗 ) =

1
2𝑑𝑗

. (11)

In particular, if the noise is i.i.d., then 𝚸 = 𝚰 and 𝐖 is diagonal with elements 𝑤𝑗𝑗 =
1/4𝑑2𝑗 . The same weighting was derived in [7].

A different example is when RSS measurements are used. Then the signal strength can
be modeled using the log-distance path loss model [14, Chapter 8], also known as the
one-slope model [15, Chapter 4.7],

𝐶𝑗 = (𝐶0)𝑗 − 10𝜂𝑗 log10(𝑑𝑗) + 𝜖𝑗, (12)

where (𝐶0)𝑗 and 𝜂𝑗 are known parameters and 𝜖𝑗 is Gaussian noise. Given a signal
measurement 𝐶𝑗 the corresponding distance 𝑑𝑗 can be calculated. Letting Ψ𝑗(𝑧) =
5𝜂𝑗 log10(𝑧), we get that Ψ𝑗(𝑑2𝑗 ) is Gaussian and the weighting in the approximate resid-
uals (9) are given by

Ψ′
𝑗 (𝑑2𝑗 ) =

5𝜂𝑗
𝑑2𝑗 log 10 . (13)
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Note that these weightings are undefined when 𝑑𝑗 = 0. In practice, this is not a problem
as we can simply clamp 𝑑𝑗 to some suitable small number, e.g., 𝑑𝑗 ← max(𝑑𝑗, 10−3) for
𝑗 = 1, … ,𝑚.

2.2 Trilateration With Partially Known Receiver Position

In some scenarios, the receiver position might be partially known, e.g., the receiver might
be confined to a plane while the senders are free in 3D space. It turns our that, modifying
the cost function in (10) to allow for this, simply reduces to a trilateration problem in a
lower dimension.

Assume that 𝑘 coordinates of the receiver position are known. We can then partition 𝒙
into 𝒙′ ∈ ℝ𝑛−𝑘 and 𝒙″ ∈ ℝ𝑘, representing the unknown and known coordinates of 𝒙,
respectively. Correspondingly, we partition the sender positions 𝒔𝑗 into 𝒔′𝑗 ∈ ℝ𝑛−𝑘 and
𝒔″𝑗 ∈ ℝ𝑘. Given that ‖𝒙 − 𝒔𝑗‖2 = ‖𝒙′ − 𝒔′𝑗‖2 + ‖𝒙″ − 𝒔″𝑗 ‖2, we can rewrite the approximate
residuals in (9) as

𝑟̃𝑗(𝒙) = Ψ′
𝑗 (𝑑2𝑗 ) (‖𝒙′ − 𝒔′𝑗‖2 − (𝑑′𝑗)2) . (14)

where (𝑑′𝑗)2 = 𝑑2𝑗 − ‖𝒙″ − 𝒔″𝑗 ‖2. These residuals are on the same form as (9) but over a
lower dimension and can thus be solved using the proposed method.

3 Eigenvalue Formulation

In this section we will derive a method for minimizing ℎ(𝒙) in (10) by transforming
the first order optimality conditions into an eigenvalue problem. The global minimizer
can then be extracted from the largest real eigenvalue. We will also show how to handle
degenerate cases, where there are more than one global minimizer.
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Differentiating ℎ(𝒙) and collecting the terms by degree yields

∇ℎ(𝒙) =
𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

𝑤𝑖𝑗(‖𝒙 − 𝒔𝑖‖2 − 𝑑2𝑖 )(𝒙 − 𝒔𝑗) (15)

= (
𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

𝑤𝑖𝑗) (𝒙𝛵𝒙)𝒙 (16)

− (𝒙𝛵𝒙𝛪 + 2𝒙𝒙𝛵) (∑
𝑖𝑗
𝑤𝑖𝑗𝒔𝑖) (17)

+ (
𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

𝑤𝑖𝑗 (2𝒔𝑗𝒔𝛵𝑖 + (𝒔𝛵𝑖 𝒔𝑖 − 𝑑2𝑖 )𝚰)) 𝒙 (18)

−
𝑚
∑
𝑖=1

𝑚
∑
𝑗=1

𝑤𝑖𝑗(𝒔𝛵𝑖 𝒔𝑖 − 𝑑2𝑖 )𝒔𝑗, (19)

where in (15) we exploited the symmetry of 𝐖.

To solve ∇ℎ(𝒙) = 0 we will simplify the gradient expression in three ways. First, note
that the cost function is homogeneous in 𝑤𝑖𝑗, and we can thus w.l.o.g. assume that
∑𝑖𝑗 𝑤𝑖𝑗 = 1. This removes the coefficient of the third order term. Second, similar to [16],
by applying the translation 𝑡 = ∑𝑖𝑗 𝑤𝑖𝑗𝒔𝑖 to the senders, i.e., 𝒔𝑗 ← 𝒔𝑗 − 𝒕, we ensure that
∑𝑖𝑗 𝑤𝑖𝑗𝒔𝑗 = 0, canceling the second order term. Note that this does not change the
problem as long as any solution 𝒙 is translated back accordingly. The gradient can now
be written as

∇ℎ(𝒙) = (𝒙𝛵𝒙)𝒙 − 𝚨𝒙 + 𝒈. (20)

Third, note that 𝚨 is real and symmetric and can thus be diagonalized by an orthogonal
matrix 𝐐. Letting 𝒚 = 𝐐𝛵𝒙, we construct the new cost function 𝑓(𝒚) = ℎ(𝐐𝒚). Note
that, minimizing 𝑓(𝒚) is equivalent to minimizing ℎ(𝒙) where the senders have been
rotated using 𝐐. The gradient of 𝑓(𝒚) now becomes

∇𝑓(𝒚) = (𝒚𝛵𝒚)𝒚 − 𝐃𝒚 + 𝒃, (21)

where 𝐃 = 𝐐𝛵𝚨𝐐 and 𝒃 = 𝐐𝛵𝒈. Furthermore, let the elements of 𝐃 be sorted such
that 𝐷11 ≥ 𝐷22 ≥ ⋯ ≥ 𝐷𝑛𝑛.

Solving for the stationary points is equivalent to solving the 𝑛 equations

(𝒚𝛵𝒚)𝑦𝑘 − 𝐷𝑘𝑘𝑦𝑘 + 𝑏𝑘 = 0. (22)

Multiplying the 𝑘th equation in (22) with 𝑦𝑘 we get

(𝒚𝛵𝒚)𝑦2𝑘 − 𝐷𝑘𝑘𝑦2𝑘 + 𝑏𝑘𝑦𝑘 = 0, (23)
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which, naturally, are also satisfied at a stationary point. Letting 𝒚2 = (𝑦21 , 𝑦22 , … , 𝑦2𝑛)𝛵
denote the vector of squared coordinates, we use (23), (22) and the trivial equation
𝒚𝛵𝒚 = 𝟏𝛵𝒚2 to form the eigendecomposition

(𝒚𝛵𝒚) (
𝒚2
𝒚
1
) = (

𝐃 − diag(𝒃) 𝟎
𝚶 𝐃 −𝒃
𝟏𝛵 𝟎𝛵 0

)
⏟⏟⏟⏟⏟⏟⏟

≜𝚳

(
𝒚2
𝒚
1
) . (24)

Note that the matrix 𝚳 does not depend on 𝒚, and any stationary point of 𝑓(𝒚) cor-
responds to an eigenpair of 𝚳 on the form in (24). In the following section, we will
show that, under a small assumption, the converse is also true, i.e., every eigenvalue of
𝚳 maps to a set of stationary points of 𝑓(𝒚).

3.1 Finding All Stationary Points

It is not necessarily the case that any eigenpair of 𝚳 is on the form in (24). However,
to find all stationary points it is sufficient to, for each eigenvalue, find all corresponding
eigenvectors on the form in (24). The approach for doing this can be divided into two
cases, depending on whether 𝜆𝚰 − 𝐃 is singular or not.

Proposition 3.1. If 𝜆 is an eigenvalue of𝚳 and 𝜆𝚰−𝐃 has full rank, then 𝒚 = −(𝜆𝛪−𝐃)−1𝒃
is the unique stationary point of 𝑓(𝒚) satisfying 𝜆 = 𝒚𝛵𝒚.

Proof. Let 𝒗 = (𝒗𝛵1 , 𝒗𝛵2 , 𝑣3)𝛵 be an eigenvector corresponding to 𝜆. If 𝑣3 = 0, then
(𝜆𝚰 − 𝐃)𝒗2 = 0 ⇒ 𝒗2 = 0 ⇒ 𝒗1 = 0 ⇒ 𝒗 = 0, a contradiction. Consequently, we can
w.l.o.g. assume 𝑣3 = 1. Then 𝒗2 = −(𝜆𝛪 − 𝐃)−1𝒃 and 𝒗1 = −(𝜆𝚰 − 𝐃)−1 diag(𝒃)𝒗2 = 𝒗22 .
From the last row of 𝚳 we get 𝜆 = 𝒗𝛵2 𝒗2, and the eigenpair is on the form in (24). By
the second row of 𝚳, 𝒗2 is a stationary point. It is clear that 𝒗 is the only eigenvector
associated with 𝜆 and 𝒗2 is unique.

The case when 𝜆𝚰 − 𝐃 is singular we denote as a degenerate case. As we will see, this cor-
responds to when the trilateration problem is under-defined and has multiple, possibly
infinitely many, solutions. Let 𝚨+ denote the Moore-Penrose pseudo inverse of 𝚨.

Proposition 3.2. If 𝜆 is an eigenvalue of 𝚳, 𝜆𝚰 − 𝐃 is singular, and (𝜆𝚰 − 𝐃)𝒚 = −𝒃
has a solution, then 𝒚 = 𝒚𝑝 + 𝒚ℎ is a stationary point, where 𝒚𝑝 = −(𝜆𝚰 − 𝐃)+𝒃 and
𝒚ℎ ∈ ker(𝜆𝚰 − 𝐃) such that 𝒚𝛵ℎ 𝒚ℎ = 𝜆 − 𝒚𝛵𝑝 𝒚𝑝.
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(a)

𝒔1

𝒔2

𝒔3

𝒙

(b)

Figure 2: Two degenerate sender configurations. (a) When the senders are collinear in 2D, there
are two possible solutions, 𝒙1 and 𝒙2. (b) When the senders are collinear in 3D, there
are infinitely many solutions, all located on a circle.

𝒔1

𝒔2

𝒔3

𝒔4
Figure 3: Degenerate case in the plane occurring when the senders are evenly distributed on the

unit circle and the distance measurements are 𝑑𝑖 = √5/2 for 𝑖 = 1, … , 4. The solutions
consist of the blue circle.

Proof. The proposition is an obvious observation. If there is a 𝒚 satisfying (𝜆𝚰−𝐃)𝒚 = −𝒃
and 𝜆 = 𝒚𝛵𝒚, then it clearly satisfies ∇𝑓(𝒚) = 0 and is a stationary point. Due to the
properties of the pseudo inverse, 𝒚𝛵𝑝 𝒚ℎ = 0 and 𝜆 = 𝒚𝛵𝒚 = 𝒚𝛵𝑝 𝒚𝑝 + 𝒚𝛵ℎ 𝒚ℎ.

The geometric interpretation of Proposition 3.2 is that, provided 𝜆 is real and 𝜆−𝒚𝛵𝑝 𝒚𝑝 ≥
0, the stationary points satisfying 𝜆 = 𝒚𝛵𝒚 consists of a hypersphere centered at 𝒚𝑝 with

radius √𝜆 − 𝒚𝛵𝑝 𝒚𝑝. In particular, when 𝜆𝚰−𝐃 has rank 𝑛−1 there is still a finite number
of solutions (two). Figure 2 shows two degenerate cases resulting from the senders not
spanning the space. A less intuitive example of a degenerate case is shown in Figure 3,
where the senders indeed do span the plane.
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3.2 Finding the Global Minimizer

The (real) global minimizer of 𝑓(𝒚) can be found by enumerating all stationary points
and evaluating the cost. However, this is unnecessary as the following two propositions
show that the global minimum corresponds to the largest real eigenvalue of 𝚳.

Proposition 3.3. The point 𝒚 is a global minimizer of 𝑓(𝒚) if and only if ∇𝑓(𝒚) = 0 and
𝜆 = 𝒚𝛵𝒚 ≥ 𝐷11. If 𝜆 > 𝐷11 then 𝒚 is the unique global minimizer of 𝑓(𝒚).

Proof. Minimizing 𝑓(𝒚) is equivalent to the generalized trust region subproblem

minimize
𝒚,𝜆

1
4𝜆

2 − 1
2𝒚

𝛵𝐃𝒚 + 𝒃𝛵𝒚, (25)

subject to 1
2(𝒚

𝛵𝒚 − 𝜆) = 0,

where the Laplacian is given by

ℒ(𝒚, 𝜆, 𝜈) = 1
4𝜆

2 − 1
2𝒚

𝛵𝐃𝒚 + 𝒃𝛵𝒚 + 1
2𝜈(𝒚

𝛵𝒚 − 𝜆), (26)

and 𝜈 is the Laplacian multiplier. By [17, Theorem 3.2], (𝒚, 𝜆) is a global minimizer if
and only if it for some 𝜈 satisfies

∇𝒚ℒ(𝒚, 𝜆, 𝜈) = −𝐃𝒚 + 𝒃 + 𝜈𝒚 = 0, (27)

∇𝜆ℒ(𝒚, 𝜆, 𝜈) = 1
2(𝜆 − 𝜈) = 0, (28)

∇2
𝒚,𝜆ℒ(𝒚, 𝜆, 𝜈) ⪰ 0 ⇔ 𝜈𝚰 − 𝐃 ⪰ 0, (29)

and 𝜆 = 𝒚𝛵𝒚, which is equivalent to ∇𝑓(𝒚) = 0 and 𝜆𝚰 − 𝐃 ⪰ 0. Uniqueness of the
global minimizer is given by [17, Theorem 4.1] when 𝜆𝚰 − 𝐃 ≻ 0.

Proposition 3.4. For any global minimizer 𝒚 of 𝑓(𝒚), we have 𝜆max = 𝒚𝛵𝒚, where 𝜆max is
the largest real eigenvalue of𝚳.

Proof. From the definition of ℎ(𝒙), a global minimizer must exist, and, consequently,
𝜆max ≥ 𝐷11 by Proposition 3.3.

If 𝜆max > 𝐷11, then 𝒚 = −(𝜆max𝚰 − 𝐃)−1𝒃 is a stationary point satisfying 𝜆max = 𝒚𝛵𝒚 by
Proposition 3.1 and a unique global minimizer by Proposition 3.3.

If 𝜆max = 𝐷11, then clearly any global minimizer 𝒚 satisfies 𝜆max = 𝒚𝛵𝒚, or there would
exist a real eigenvalue larger than 𝜆max.
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When solving trilateration problems we are often working in 2D or 3D space, and 𝚳
will have size 5 × 5 or 7 × 7, respectively. For such small problems it is not expensive
to simply calculate all eigenvalues, although Proposition 3.4 has shown that we are only
interested in the largest real eigenvalue. Nevertheless, there are efficient algorithms for
finding the eigenvalue with the largest real part, i.e., the rightmost eigenvalue [18, 19],
but for these to be applicable, we need to first show that the largest real eigenvalue also
is the rightmost one.

Proposition 3.5 (cf. [20][Theorem 3.4]). The rightmost eigenvalue of𝚳 is real.

Proof. Assume for contradiction that 𝜆 = 𝛼+𝛽𝑖 is the rightmost eigenvalue of𝚳, where
𝛼, 𝛽 ∈ ℝ, 𝛼 ≥ 𝐷11, 𝛽 ≠ 0 and 𝑖 is the imaginary unit. Since 𝜆 = 𝛼 − 𝛽𝑖 also is an
eigenvalue, we can assume 𝛽 > 0. Then 𝜆𝛪 − 𝐃 has full rank and by Proposition 3.1

𝜆 −
𝑛
∑
𝑘=1

𝑏2𝑘
(𝜆 − 𝐷𝑘𝑘)2

= 𝜆 − 𝒚𝛵𝒚 = 0. (30)

However, Im(𝑏2𝑘 /(𝜆 − 𝐷𝑘𝑘)2) ≤ 0 for 𝑘 = 1, … , 𝑛, implying Im(𝜆 − 𝒚𝛵𝒚) > 0. This is a
contradiction, and 𝜆 cannot be an eigenvalue of 𝚳.

3.3 Alternative Eigendecomposition

In the previous sections, we have worked with the matrix 𝐃 found by diagonalizing 𝚨.
This diagonalization step can be mitigated by instead of 𝚳 considering the eigendecom-
position of

𝚳𝛢 = (
𝚨 𝚰 𝟎
𝚶 𝚨 −𝒈
−𝒈𝛵 𝟎𝛵 0

) . (31)

This matrix is similar to 𝚳 with the change of basis matrix

𝚸 = (
− diag(𝒃)𝐐𝛵

𝐐𝛵

1
) , (32)

i.e., 𝚳𝛢 = 𝚸−1𝚳𝚸. Consequently, 𝚳 and 𝚳𝛢 have the same eigenvalues whenever
diag(𝒃) has full rank. Assuming this is the case also when diag(𝒃) is singular, the propo-
sitions from the previous sections naturally transfer to this new formulation. In partic-
ular, if 𝜆max is the largest real eigenvalue of 𝚳𝛢 and 𝜆max𝚰 − 𝚨 has full rank, the global
minimizer of ℎ(𝒙) is given by 𝒙 = −(𝜆max𝚰 − 𝚨)−1𝒈.
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Algorithm 1 Simple Trilateration
Input: Sender positions 𝒔𝑗, distances 𝑑𝑗, weights 𝑤𝑖𝑗
Output: Receiver position 𝒙

1: Normalize weights: 𝑤𝑖𝑗 ← 𝑤𝑖𝑗/∑𝑖𝑗 𝑤𝑖𝑗.
2: Translate senders: 𝒔𝑗 ← 𝒔𝑗 − 𝒕, where 𝒕 = ∑𝑖𝑗 𝑤𝑖𝑗𝒔𝑖.
3: Find the largest real eigenvalue 𝜆max of 𝚳𝛢 (31).
4: Find receiver position as 𝒙 = −(𝜆max𝚰 − 𝚨)−1𝒈.
5: Undo translation: 𝒙 ← 𝒙 + 𝒕.

It is worth noting that 𝚳𝛢 closely resembles the matrix constructed in [20] for solving
the Trust-Region Subproblem (TRS). However, the problem considered here does not
belong to that class of problems, and as such, their method is not directly applicable. In
a later work [21], the method proposed in [20] was extended to the GTRS. However,
applying their method would require the introduction of an additional unknown corre-
sponding to 𝛼 in (4) (cnf. the SR-LS approach in [22]) and result in a 2𝑛 + 3 × 2𝑛 + 3
generalized eigenvalue problem, as appose to the here proposed 2𝑛+ 1 × 2𝑛+ 1 ordinary
eigenvalue problem.

3.4 The Proposed Algorithm

The results from the previous sections now admit an algorithm for finding the global
minimizer of ℎ(𝒙). The simplest version of the proposed method is shown in Algo-
rithm 1, but we will offer a few improvements resulting in the proposed method in
Algorithm 2.

While the formulation using 𝚳𝛢 in Section 3.3 avoids the eigendecomposition of 𝚨,
explicitly calculating 𝐃 simplifies calculations related to the degenerate cases, e.g., it is
trivial to find the rank, kernel and Moore-Penrose pseudo inverse of 𝜆𝚰−𝐃. Furthermore,
in our implementation, we found that the eigendecomposition of 𝚳 actually is faster to
calculate than that of 𝚳𝛢, resulting in an overall faster solver.

Another issue with Algorithm 1 is that it does not handle the degenerate cases. When
rank(𝜆𝚰 − 𝐃) < 𝑛 − 1, there are an infinite number of solutions, and the problem is
ill-defined. However, when rank(𝜆𝚰 − 𝐃) = 𝑛 − 1, there are two solutions given by (see
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Algorithm 2 Trilateration
Input: Sender positions 𝒔𝑗, distances 𝑑𝑗, weights 𝑤𝑖𝑗
Output: Receiver position 𝒙

1: Normalize weights: 𝑤𝑖𝑗 ← 𝑤𝑖𝑗/∑𝑖𝑗 𝑤𝑖𝑗.
2: Translate senders: 𝒔𝑗 ← 𝒔𝑗 − 𝒕, where 𝒕 = ∑𝑖𝑗 𝑤𝑖𝑗𝒔𝑖.
3: Diagonalize 𝚨 = 𝐐𝐃𝐐𝛵 in (20).
4: Find the largest real eigenvalue 𝜆max of 𝚳 (24).
5: if rank(𝜆max𝚰 − 𝐃) = 𝑛 then
6: Solve for 𝒚 using (33)-(34) and choose the sign in (34) such that sgn(𝑦1) =

− sgn(𝑏1).
7: else if rank(𝜆max𝚰 − 𝐃) = 𝑛 − 1 then
8: Solve for the two solutions 𝒚1 and 𝒚2 using (33)-(34).
9: else

10: The problem is ill-defined. Return nothing.
11: end if
12: Undo rotation: 𝒙 = 𝐐𝒚.
13: Undo translation: 𝒙 ← 𝒙 + 𝒕.

Proposition 3.2)

𝑦𝑘 = − 𝑏𝑘
𝜆 − 𝐷𝑘𝑘

for 𝑘 = 2, … , 𝑛, (33)

𝑦1 = ±√𝜆 −
𝑛
∑
𝑘=2

𝑦2𝑘 . (34)

If 𝜆𝚰 − 𝐃 has full rank, a single solution is given by Proposition 3.1. However, when
approaching a degenerate case the numerical stability of 𝒚 = −(𝜆𝚰−𝐃)−1𝒃 gets worse. To
avoid this, we always treat the problem as if the rank is 𝑛−1 and use (33)-(34) also in the
nondegenerate case. There is still only one correct solution though, so we choose the sign
in (34) such that sgn(𝑦1) = − sgn(𝑏1). This approach yields better numerical stability
when transitioning to and from degenerate cases. The improved proposed method is
summarized in Algorithm 2. Note that the rank check on 𝜆𝚰−𝐃 is only used to determine
whether one or two solutions should be returned.
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Table 1: Execution speed of a number of trilateration methods from the literature.

Method Execution time
𝑚 = 4 𝑚 = 10 𝑚 = 100

Zhou [8] 11 μs 11 μs 13 μs
Linear 1.3 μs 1.4 μs 4.7 μs
Beck SDR [6] 4.8 ms 14 ms 46 s
Adachi [21] 45 μs 45 μs 47 μs
Beck SFP [2] 490 μs 300 μs 2000 μs
Luke [1] 480 μs 250 μs 610 μs
Beck SR-LS [6] 31 μs 36 μs 43 μs
Proposed (Alg. 1) 26 μs 27 μs 30 μs
Proposed (Alg. 2) 18 μs 18 μs 21 μs

4 Experiments with Synthetic Data

In this section, we compare the proposed methods in Algorithms 1 and 2 with a number
of other methods from the literature [1, 8, 22]. In addition to these, we include a linear
method which is the unconstrained version of (4), and one method solving (4) using the
generalized eigenvalue decomposition presented in [21]. To solve the SDP in [22] we
used Hypatia [23]. All methods have been implemented in Julia [24]. It should be noted
that some of these methods minimize the ML cost (2) and some minimize ℎ(𝒙) with the
weights 𝑤𝑖𝑖 = 1/4𝑑2𝑖 , 𝑤𝑖𝑗 = 0 for 𝑖 ≠ 𝑗, as proposed in Section 2.1. However, Zhou [8]
does not (trivially) allow for a similar weighting and is consequently minimizing (3).

4.1 Execution Speed

First, we compare the execution time of the different methods. This is not trivial as
several of the methods are iterative with various termination criteria. Nevertheless, we
attempted to match these where possible. Synthetic data was generated using random
receiver and sender positions in 3D space; 𝒙 ∼ 𝒩(𝟎, 𝚰) and 𝒔𝑖 ∼ 𝒩(𝟎, 𝚰) for 𝑖 = 1, … ,𝑚.
The distance measurements were calculated without any added noise. A benchmark was
setup where each solver was run 10 000 times or for a total maximum of 10 seconds,
each time with different synthetic data. The benchmark was run on a AMD Ryzen
Threadripper 3990X, and the resulting median run times are shown in Table 1 for 𝑚 =
4, 10, 100.

As can be seen, the proposed method is competitive with regards to execution time. Note
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also that, as mentioned before, Algorithm 1 is not faster than Algorithm 2 even though it
avoids the eigendecomposition of 𝚨. Luke [1] and Beck SFP [2] are slower when 𝑚 = 4
compared to 𝑚 = 10. A possible explanation is that these iterative methods converge
slower for near-degenerate cases, which are more likely to occur when 𝑚 = 4. They
also become slower when 𝑚 = 100, which is expected as they use all sender positions
in their inner iterations. In contrast to this, the proposed method quickly reduces the
data to 𝚨 ∈ ℝ𝑛×𝑛 and 𝒈 ∈ ℝ𝑛, where the sizes only depend on the spatial dimension
𝑛 and not the number of senders 𝑚. Consequently, the proposed method and some of
the others maintain an almost constant execution time over the number of senders. The
slowest method is Beck SDR [6] by several orders of magnitude. This solver consists of
a semidefinite relaxation where the number of unknowns scales quadratically with the
number of senders.

4.2 Gaussian Noise

To evaluate the proposed method over various amounts of noise, a large set of synthetic
datasets was constructed. The positions for 𝑚 = 10 senders and a single receiver in 3D
space were sampled from the standard normal distribution𝒩(𝟎, 𝚰), after which distances
measurements were calculated and subsequently perturbed by Gaussian noise with stan-
dard deviation 𝜎. A total of 1000 datasets were constructed.

Figure 4 shows the relative errors in the estimated receiver positions for a range of trilater-
ation methods. The maximum likelihood (ML) estimate, found using local optimization
of (2) initialized at the ground truth receiver position, is included for reference. As can be
seen, most of the methods performed fairly similarly. However, Zhou [8] and the linear
method perform worse. Two possible reasons for Zhou performing worse is: (i) it does
not use the weighting proposed in Section 2.1, and (ii) it assumes ∑𝑗 ‖𝒙− 𝒔𝑗‖2 = ∑𝑗 𝑑2𝑗
which is generally not true in the presence of noise.

4.3 Degenerate Configurations

Some of the methods in the literature do not handle degenerate cases and become nu-
merically unstable as we approach such a scenario. Furthermore, in situations similar to
that in Figure 2a, there are two possible solutions to the trilateration problem. Both Al-
gorithm 2 and Zhou [8] return two solutions in this case, while the remaining methods,
if successful, only return one solution.

To investigate the numerical stability of the methods close to a degenerate case, we gen-
erate 𝑚 = 6 senders 𝒔𝑗 ∈ ℝ𝑛 for 𝑗 = 1, … , 6 and a single receiver 𝒙 ∈ ℝ𝑛 with coor-
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Figure 4: Relative errors in estimated receiver position for a selection of trilateration methods
over various amounts of noise. The whiskers in the boxplot indicate the 1.5 IQR value
and outliers are not shown.

dinates sampled from 𝒩(0, 1). The distance measurements are then calculated without
any added noise. Finally, the x-coordinate of each sender position is multiplied with a
scaling factor. As this scaling factor approaches zero the senders become coplanar and a
degenerate case occurs.

Figure 5 shows the median error the in estimated receiver position over 1000 trials and a
range of scaling factors. If a method returns two solutions, the solution with the smallest
error is used. As can be seen, Algorithm 2 yields errors close to machine precision over the
whole range of scaling factors. Due to the use of (33) and (34) also in the nondegenerate
case, there is no obvious transition where the rank of 𝜆max𝚰 − 𝐃 changes.

All of the other methods perform notably worse than Algorithm 2. In particular, this
experiment highlights a flaw in Zhou [8]. In general, the method would actually perform
similarly to Algorithm 2 for this type of scenario. Unfortunately, it is sensitive specifically
to the scaling in the x-coodinates done here.

5 Experiments with Real Data

The aim of this section is to evaluate the proposed method using real data gathered from
an Ultra-Wideband (UWB) setup. Six senders were kept stationary in a 2 m × 2 m × 1 m
volume, while a single receiver was moved through the setup. TOA distance measure-
ments were recorded using UWB, while ground-truth positions for the senders and re-
ceiver were recorded using an optical motion capture system. In total, eight datasets were
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Figure 5: Median error in estimated receiver position over 1000 trails and a range of scaling
factors. The scaling factor is multiplied with the x-coordinate of each sender causing
them to become coplanar as the factor approaches zero. The linear method overlaps
with Adachi and Beck SR-LS.

gathered, each containing between 358 and 934 receiver positions which were estimated
using the proposed Algorithm 2, Zhou [16], Luke [25], the SR-LS solver from [22], and
the SDR solver from [22]. For comparison, the ML estimate was found by performing
local optimization on (2), initialized at the ground truth.

Table 2 shows RMS errors in the estimated receiver positions for the eight datasets and
the compared trilateration methods, where the minimum error for each dataset is marked
in boldface. As can be seen, the proposed method achieves the minimum error for all
datasets. The fact that the ML estimate does not produce the lowest errors indicates that
the assumption of Gaussian noise in the measurements is not completely justified for the
data used here. As it happens, the approximated cost function in the proposed method
provides a better model for the noise distribution and yields lower RMS errors.

6 Conclusion

In this paper, we have presented a novel method for performing trilateration by for-
mulating the problem as an eigendecomposition problem. This enables the usage of
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Table 2: RMS errors (meters) in receiver position for eight datasets based on real UWB data.

Data- Zhou Luke SR-LS SDR ML Proposed
set [16] [25] [22] [22] Alg. 2

1 0.66 0.34 0.40 0.34 0.34 0.32
2 0.65 0.52 0.54 0.52 0.52 0.52
3 11.05 0.64 1.18 0.64 0.64 0.42
4 0.54 0.31 0.44 0.32 0.31 0.30
5 0.64 0.34 0.41 0.34 0.34 0.33
6 0.47 0.31 0.37 0.31 0.31 0.28
7 0.53 0.32 0.35 0.32 0.32 0.31
8 0.74 0.39 0.48 0.39 0.39 0.36

existing well-developed eigensolvers, resulting in algorithms that are both fast and easy
to implement. We have also made theoretical contributions by showing that the global
minimum of the cost function corresponds to the largest real eigenvalue. Furthermore,
unlike previous works, we have treated the degenerate and near-degenerate cases, result-
ing in a more robust solution. This can be especially useful when the number of senders
are few or measurements are sparse.

Through experiments on synthetic data, we have verified that the weighted cost function
used closely approximates the ML estimator in (2). We have also demonstrated that
the proposed approach remains numerically stable when approaching degenerate cases.
Finally, the practical application of the proposed method has been demonstrated using
real data from UWB.

In summary, the proposed method improves on existing ones in speed, robustness and
ease of implementation, making it a competitive approach for performing trilateration.
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