
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Fixed Point Iterations for Finite Sum Monotone Inclusions

Morin, Martin

2022

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Morin, M. (2022). Fixed Point Iterations for Finite Sum Monotone Inclusions. [Doctoral Thesis (compilation),
Department of Automatic Control]. Department of Automatic Control, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/5557c471-ff64-4cdc-9cfb-68afdc6e85eb

Fixed Point Iterations for Finite Sum
Monotone Inclusions

Martin Morin

Department of Automatic Control

PhD Thesis TFRT-1138
ISBN 978-91-8039-409-3 (print)
ISBN 978-91-8039-410-9 (web)
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2022 by Martin Morin. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2022

Abstract

This thesis studies two families of methods for finding zeros of finite sums of mono-
tone operators, the first being variance-reduced stochastic gradient (VRSG) meth-
ods. This is a large family of algorithms that use random sampling to improve the
convergence rate compared to more traditional approaches. We examine the opti-
mal sampling distributions and their interaction with the epoch length. Specifically,
we show that in methods like SAGA, where the epoch length is directly tied to the
random sampling, the optimal sampling becomes more complex compared to for
instance L-SVRG, where the epoch length can be chosen independently. We also
show that biased VRSG estimates in the style of SAG are sensitive to the prob-
lem setting. More precisely, a significantly larger step-size can be used when the
monotone operators are cocoercive gradients compared to when they just are coco-
ercive. This is noteworthy since the standard gradient descent is not affected by this
change and the fact that the sensitivity to the problem assumption vanishes when
the estimates are unbiased.

The second set of methods we examine are deterministic operator splitting meth-
ods and we focus on frameworks for constructing and analyzing such splitting meth-
ods. One such framework is based on what we call nonlinear resolvents and we
present a novel way of ensuring convergence of iterations of nonlinear resolvents
by the means of a momentum term. This approach leads in many cases to cheaper
per-iteration cost compared to a previously established projection approach. The
framework covers many existing methods and we provide a new primal-dual method
that uses an extra resolvent step as well as a general approach for adding momentum
to any special case of our nonlinear resolvent method. We use a similar concept to
the nonlinear resolvent to derive a representation of the entire class of frugal split-
ting operators, which are splitting operators that use exactly one direct or resolvent
evaluation of each operator of the monotone inclusion problem. The representation
reveals several new results regarding lifting numbers, existence of solution maps,
and parallelizability of the forward/backward evaluations. We show that the mini-
mal lifting is n− 1− f where n is the number of monotone operators and f is the
number of direct evaluations in the splitting. A new convergent and parallelizable
frugal splitting operator with minimal lifting is also presented.

3

Acknowledgements

Thanks should of course go out to my supervisors: Pontus Giselsson, Sebastian
Banert, and Bo Bernhardsson. Without you, these last five years would have been
very different and this doctoral thesis would not have existed. To the rest of the
people that make the department go round, thanks. Without the administrative staff,
things would not run half as smooth and I know I always can count on you to help
with what is in your power. The rest of my colleagues, both new and old, have
all provided good company, stimulating talks, and enjoyable coffee breaks. Special
thanks should go to my family and friends for supporting me and sharing both good
and bad times during the entirety of my life.

Perhaps to the dismay of my office mates, I would like to thank the band and
artists that have provided the soundtrack for the last five years. Most of those bands
and artists I found via the writers at angrymetalguy.com, all of which deserve
thanks for broadening and stimulating my musical interest. Further thanks (and per-
haps some guilt) are given to the team behind typeracer.com. I’ll never become
a fast enough typist to regain the time I’ve spent on your site.

5

angrymetalguy.com
typeracer.com

Contents

1. Introduction 9
1.1 Outline . 10

2. Background 11
2.1 Notation and Preliminaries . 11
2.2 Monotone Inclusion Problems 13
2.3 Convex Optimization as Monotone Inclusion 15
2.4 Fixed Point Iterations . 17
2.5 Operator Splitting Methods . 17
2.6 Variance-Reduced Stochastic Gradient Methods 20

3. Contributions 23
Bibliography 26
Paper I. Sampling and Update Frequencies in Proximal

Variance-Reduced Stochastic Gradient Methods 31
1 Introduction . 32
2 Preliminaries . 33
3 Problem and Algorithm . 34
4 Convergence Analysis . 36
5 Special Cases . 39
6 Sampling Design . 40
7 Numerical Experiments . 42
8 Conclusion . 45
A Proofs of Proposition and Lemmas 45
B Proofs of Theorems . 48
C Proof of Corollaries . 50
References . 52

Paper II. Cocoercivity, Smoothness and Bias in Variance-Reduced
Stochastic Gradient Methods 55

1 Introduction . 56
2 Preliminaries and Notation . 60

7

Contents

3 Convergence . 62
4 Numerical Experiments . 73
5 Conclusion . 76
References . 77

Paper III. Nonlinear Forward-Backward Splitting with Momentum
Correction 83

1 Introduction . 84
2 Problem and Algorithm . 87
3 Convergence . 89
4 Additional Momentum . 92
5 Forward-Half-Reflected-Backward Splitting 94
6 Primal-Dual Methods . 97
7 Conclusion . 108
References . 108

Paper IV. Frugal Splitting Operators: Representation, Minimal Lifting
and Convergence 113

1 Introduction . 114
2 Preliminaries . 116
3 Frugal Splitting Operators . 120
4 Generalized Primal-Dual Resolvents 121
5 Representation of Frugal Splitting Operators 128
6 Minimal Lifting . 134
7 Convergence . 138
8 A New Frugal Splitting Operator With Minimal Lifting 145
9 Conclusion . 149
References . 150
Supplementary Material . 153

Popular Science Summary (in Swedish) 179

8

1
Introduction

Understanding the methods we use to solve problems is crucial. The methods’
strengths and weaknesses, their applicability and limitations, and their complex-
ity and ease of use are all important to know so the right method for a particular
situation can be chosen. Having a thorough understanding is also vital, both for
the improvement of existing methods and for the development of new ones. These
things hold not only for the methods we use to solve mathematical problems but for
the tools and approaches we use to design those mathematical methods.

This thesis will cover the design and analysis of several methods for solving
a class of problems known as monotone inclusion problems. Monotone inclusion
problems cover a range of commonly occurring problems in engineering and vari-
ous scientific fields, one of the prime examples being convex optimization. While
solving monotone inclusion problems fast and efficiently is the main motivation be-
hind the work in this thesis, concrete problem instances will not be the focus. Some
of the included works will provide illustrative or exploratory examples—mainly
within the field of optimization—but the focus will first and foremost be on the
solution methods themselves.

The methods covered will be from one of two families: variance-reduced
stochastic gradient (VRSG) methods and operator splitting methods. We leave a
more thorough presentation of these two method families to the next chapter and
the individual papers but note that the distinction between them is not necessarily
sharp. For our purposes, the main difference is that splitting methods are determin-
istic, but, if one were to allow for randomness in operator splitting methods, one
could easily argue that VRSG methods are a subset of operator splitting methods.
However, we will not comment more on this connection and the two groups will be
treated separately.

VRSG methods, see for instance [1, 4, 7, 11, 13, 14, 17, 18, 19, 20, 21, 22, 24,
33, 34, 36, 37, 40], were first derived to solve optimization problems formed from
very large datasets. Due to the size of the dataset, the limiting factor for these kinds
of problems is processing the data so the basic idea behind VRSG methods is to
avoid processing the entire dataset at once. Instead, smaller subsets of the data are
sampled at random and used in such a way that the expected value of the sampling

9

Chapter 1. Introduction

is the same as it would be if the entire dataset was used. If this is done carefully, not
only can the problem be solved with probability one but the expected computational
time can actually be faster than for conventional deterministic methods [24, 36]. Our
work on VRSG methods consists of us trying to better understand and improve the
speed of VRSG methods but we also expand them to the more general monotone
inclusion setting. In particular, we look at the effect of the random sampling of
data on the computational cost and derive optimal sampling distributions for a sub-
class of VRSG methods. In the monotone inclusion setting, we examine the effects
of different problem assumptions, uncovering important results to consider when
designing VRSG methods.

The term “operator splitting method” usually refers to a type of divide and con-
quer approach for solving monotone inclusion problems. In theory, monotone inclu-
sion problems are actually quite simple to solve with the evaluation of a map known
as a resolvent. However, computing the resolvent is in many cases computationally
infeasible. Because of this, several splitting approaches have been developed that
split up the monotone inclusion problem into smaller pieces, each of which consists
of a computationally feasible resolvent or some other cheaply computed mapping,
see for instance [2, 5, 6, 8, 9, 10, 12, 15, 16, 23, 25, 26, 27, 32, 35, 38, 39]. Our con-
tributions have mainly been in providing compact representations and convergence
criteria for large sub-classes of splitting methods. Finding new ways of representing
several different methods opens up new avenues for comparing and understanding
their behavior. It also makes it easier to create and explore new methods, enabling
the discovery of performance improvements. Furthermore, a more expressive rep-
resentation can be very beneficial in the modern era of computer and data-driven
design where the exploration of large design spaces can be automated.

1.1 Outline

This thesis is structured as follows. Chapter 2 introduces the basic notation and
concepts covered in the thesis such as monotone inclusions, fixed point iterations,
operator splitting methods, and variance-reduced stochastic gradient methods. In
Chapter 3, the papers that make up this thesis are introduced together with a dec-
laration of each author’s contribution. The remainder of the thesis contains said
papers.

10

2
Background

The following chapter will cover the basic mathematical concepts covered by the
papers. It is intended as an overview for the uninitiated reader and will focus on
presenting the main mathematical objects and their relation to the questions of the
papers that make up the thesis. No attempts will be made to exhaustively cover all
fundamental results our papers build on; the papers are complete and self-contained
with all relevant preliminary results either presented or referenced. A good ref-
erence textbook on the subjects covered in this chapter, except for the variance-
reduced stochastic gradient methods, is [3]. For more information on variance-
reduced stochastic gradient methods we will refer to the different papers that in-
troduced the concepts, for instance [13, 20, 24, 36, 40].

2.1 Notation and Preliminaries

The set of real numbers will be denoted by R, the natural numbers by N = {0,1, . . . }
and the positive natural numbers by N+ = {1,2, . . . }. Let H be a real Hilbert space
with inner product and norm denoted by 〈·, ·〉 and ‖·‖ respectively. The notation 2H
denotes the power set ofH , i.e., the set of all subsets ofH . The fundamental object
of this thesis is the operator.

DEFINITION 2.1—OPERATOR

An operator A onH is a map fromH to any subset ofH , i.e., A : H → 2H .

Instead of mapping a point in H to a just single point in H , an operator allows us
to map a point in H to several points in H , making operators set-valued or multi-
valued. We denote the set of points x ∈ H maps to as Ax ∈ 2H . Since Ax can be any
subset of H , it is possible to map a point x to no points by mapping to the empty
set, i.e., Ax = ∅. The domain of an operator is defined as the set of points that maps
to non-empty sets, i.e., dom A = {x ∈ H | Ax , ∅}. It is also worth stressing that Ax
is a subset of H and hence, if we wish to state that x ∈ H is mapped to y ∈ H , we
write y ∈ Ax and not y = Ax. However, for single-valued operators we will abuse
this notation slightly.

11

Chapter 2. Background

Not monotone Monotone but not maximal Monotone and maximal

Figure 2.1 Examples of graphs of operators R→ 2R and their properties.

A single-valued operator refers to either an ordinary map B : H → H or an
operator C : H → 2H where Cx is a singleton for all x ∈ H . For any such B and
C we can always find B′ : H → 2H and C ′ : H →H such that {Bx} = B′x and
{C ′x} = Cx for all x ∈ H . Because of these equivalences between B and B′, and C
and C ′ we will not make any distinction between them and let Bx and Cx denote
both sets and points depending on context.

Since operators are multi-valued, we can always define the inverse A−1 : H →
2H of an operator A : H → 2H without requiring some form of injectivity. The
inverse is simply defined as x ∈ A−1u if and only if u ∈ Ax for x,u ∈ H . The graph
of an operator A : H → 2H is gra A= {(x,u) ∈ H ×H | u ∈ Ax}, allowing the inverse
to be characterized as (u,x) ∈ gra A−1 if and only if (x,u) ∈ gra A.

For most results, we cannot allow for the full generality of arbitrary operators
so the following properties will be assumed in a majority of cases.

DEFINITION 2.2—MONOTONICITY

An operator A : H → 2H is monotone if

〈u− v,x− y〉 ≥ 0

for all x,y ∈ H and all u ∈ Ax and v ∈ Ay.

DEFINITION 2.3—MAXIMALITY

A monotone operator A : H → 2H is maximal if there exists no other monotone
operator A′ : H → 2H such that gra A ⊆ gra A′.

In the one-dimensional case, i.e., R→ 2R, monotonicity is equivalent to the
operator being non-decreasing, i.e., the slope of the graph is never negative. Max-
imality is a continuity-like assumption and states that the graph has no “holes”.
A few examples in the one-dimensional case are provided in Fig. 2.1. Both mono-
tonicity and maximality are fundamental for the work in this paper but the following
stronger properties will be useful in certain cases.

12

2.2 Monotone Inclusion Problems

DEFINITION 2.4—STRONG MONOTONICITY

An operator A : H → 2H is µ-strongly monotone for µ > 0 if

〈u− v,x− y〉 ≥ µ‖x− y‖2

for all x,y ∈ H and all u ∈ Ax and v ∈ Ay.

DEFINITION 2.5—LIPSCHITZ CONTINUOUS
A single valued operator A : H →H is `-Lipschitz continuous for ` > 0 if

`‖x− y‖ ≥ ‖Ax− Ay‖

for all x,y ∈ H . A 1-Lipschitz continuous operator is said to be non-expansive.

DEFINITION 2.6—COCOERCIVITY
A single valued operator A : H →H is β-cocoercive for β > 0 if

〈Ax− Ay,x− y〉 ≥ β‖Ax− Ay‖2

for all x,y ∈ H .

In the one-dimensional case, µ-strong monotonicity states that the slope of the graph
is always greater than µ, `-Lipschitz continuity states that the slope is between −`
and `, and β-cocoercivity states that the slope is between 0 and β−1. Therefore, β-
cocoercivity is equivalent to monotonicity and β−1-Lipschitz continuity in the one-
dimensional case. In higher dimensions, this equivalence does no longer hold but β-
cocoercivity still implies β−1-Lipschitz continuity and monotonicity. Cocoercivity
is equivalent to Lipschitz continuity and monotonicity only when the operators are
so-called subdifferentials[3, Corollary 18.17]. Subdifferentials will be defined and
explained further when discussing optimization problems in a following section.

2.2 Monotone Inclusion Problems

A monotone inclusion problem is

find x ∈ H such that 0 ∈ Ax (2.1)

where A : H → 2H is a maximally monotone operator. The notation zer A = {x ∈
H | 0 ∈ Ax} will be used for denoting the solutions to this problem. It should be
noted that this problem does not necessarily have a solution, i.e., it is possible that
zer A = ∅. However, establishing sufficient conditions for when zer A , ∅ is beyond
the scope and needs of the papers in this thesis and we simply assume that zer A
is non-empty. This pragmatic approach is motivated by the fact that it does not
makes any sense to solve a problem without a solution and, since this thesis focus

13

Chapter 2. Background

on solutions methods for (2.1), The counterargument to this is that it is useful if a
solution method can detect and report that no solution exists since it might be hard
to know beforehand. Although we agree with this, we see the question of certifying
a lack of solution as orthogonal to the questions examined in this thesis.

Problem (2.1) is comparable to the classic matrix inversion problem of finding
x ∈ Rn such that b = M x where b ∈ Rn and M ∈ Rn×n. Solving this kind of linear
equations is the backbone of numerical linear algebra and a key component of many
engineering and scientific fields. By defining the operator x 7→ M x − b, the matrix
inversion can equivalently be formulated as finding a zero of this operator, just as
in problem (2.1). It is therefore possible to view monotone inclusion problems as
analogue to these kinds of very useful inversion problems but with linearity/affinity
replaced by maximal monotonicity. If M +MT is positive semi-definite, the map
x 7→ M x − b is maximally monotone and the matrix inversion problem is then an
instance of the monotone inclusion problem [3, Corollary 20.28]. Although spe-
cific instances of monotone inclusion are not the focus of this thesis, we will in
Section 2.3 give an example of how a convex optimization problem can be reformu-
lated into a monotone inclusion problem.

In certain aspects, maximal monotonicity is a lot weaker than affinity but it
still provides useful and convenient properties. For instance, the solutions to (2.1)
form closed convex sets. This follows from two simple facts, see [3, Proposition
20.22 and 20.36] for detailed proofs. First, Ax is always closed and convex for all
maximally monotone A : H → 2H and x ∈ H . Second, if A : H → 2H is maxi-
mally monotone, then A−1 is also maximally monotone. Noticing that zer A = A−10
then yields the result. Maximal monotonicity also has useful implications when de-
signing algorithms for solving inclusion problems; we explore these aspects further
when discussing operator splitting methods in Section 2.5.

The papers included in the thesis actually consider the slightly more general
scenario of finite sum monotone inclusions, i.e.,

find x ∈ H such that 0 ∈
∑n

i=1
Ai x (2.2)

where Ai : H → 2H is maximally monotone for all i ∈ {1, . . . ,n}. Perhaps the most
important thing to note regarding sums of operators is that the sum of maximally
monotone operators is not necessarily a maximally monotone operator. Sufficient
conditions for when the sum is maximally monotone exist [3, Theorem 25.3] but
attempting to list these is again beyond the scope or needs of this thesis.

In most cases, (2.2) will be complemented by some further assumptions on one
or several of the terms, e.g., cocoercivity, Lipschitz continuity, or strong monotonic-
ity. Sometimes these assumptions carry further implications regarding the problem
itself. For instance, the sum of a maximally monotone operator and cocoercive
operator is guaranteed to be maximally monotone [3, Corollary 25.5] and a solu-
tion exists and is unique if in addition one of the operators is strongly monotone
[3, Corollary 23.37]. However, although such problem properties will be used and

14

2.3 Convex Optimization as Monotone Inclusion

commented on in the included papers, the main purpose of these assumptions is to
facilitate the design of convergent algorithms for solving (2.2).

2.3 Convex Optimization as Monotone Inclusion

A constrained convex optimization problem takes the form

minimize
x∈D

f (x)

subject to x ∈ C
(2.3)

where f : D→ R is convex, D ⊆ H and C ⊆ H are convex set. We will assume
that the problem is feasible, i.e., C∩D , ∅, that C and D are closed, and f is lower
semi-continuous.

Our first goal is to write (2.3) as an unconstrained convex problem and for that
two things need to be dealt with, the constraint set C and the fact that the objective
function f is not necessarily defined everywhere, i.e., it is possible that D ,H . Both
of these problems can be dealt with by introducing what is known as the extended
real lineR∪{−∞,∞} where plus and minus infinity are defined as larger and smaller
than any real number, respectively, −∞ < x <∞ for all x ∈ R. A complete arithmetic
is defined as∞+ x =∞, x+ ·∞ =∞, x− ·∞ = −∞, x

±∞
= 0 for all x ∈ R, x+ > 0 and

x− < 0 with the following being undefined: 0 ·∞,∞+ (−∞) and ∞
∞

.
We extend f by defining f̂ : H → R∪ {∞} to be equal to f on D and other-

wise f̂ (x) =∞. The constraint set C we encode by defining the indicator function
ιC : H →R∪{∞} such that ιC(x)= 0 if x ∈C and ιC(x)=∞ if x <C. An equivalent
unconstrained optimization problem can then be written as

minimize
x∈H

f̂ (x)+ ιC(x). (2.4)

It is equivalent to (2.3) since f̂ (x)+ ιC(x)= f (x) ∈ R on all feasible points x ∈C∩D
and otherwise the objective is equal to ∞, which is larger than all real numbers.
It is also straightforward to verify that f̂ , ιC and their sum are convex and lower
semi-continuous [3, Lemma 1.27]. Although both terms of the objective of (2.4) are
defined for all x ∈ H , the convention for extended-real-valued functions is to define
the domain of a function g : H → R∪ {∞} as domg = {x ∈ H | g(x) < ∞} which
yields dom f̂ + ιC = dom f̂ ∩dom ιC = D∩C. Hence, the domain of the objective of
the unconstrained problem is the same as the set of feasible points of the constrained
problem. Feasibility of (2.3) is therefore equivalent to f̂ + ιC being proper, a proper
function g : H → R∪ {∞} satisfies domg , ∅.

It is well known that finding the unconstrained minimum of a differentiable con-
vex function g : H → R is equivalent to finding a zero of the gradient, 0 = ∇g(x).
This is known as Fermat’s rule. However, the objective of our unconstrained opti-
mization problem is not necessarily differentiable but it is still possible to state an
analogue statement using subdifferentials.

15

Chapter 2. Background

x1 x2 x3

g(x)

g(x1)+ 〈∇g(x1), x− x1 〉

g(x2)+ 〈∇g(x2), x− x2 〉

g(x3)+ 〈s4, x− x3 〉

g(x3)+ 〈s3, x− x3 〉

g(x3)+ 〈s2, x− x3 〉

g(x3)+ 〈s1, x− x3 〉

Figure 2.2 Illustration of subdifferentials. The function g : R→R is differentiable
at x1 and x2 and hence are {∇g(x1)} = ∂g(x1) and {∇g(x2)} = ∂g(x2). At x3 is g not
differentiable and hence is ∂g(x3) not single-valued and s1,s2,s3,s4 ∈ ∂g(x3).

DEFINITION 2.7—SUBDIFFERENTIAL
Let g : H → R∪ {∞} be a proper function. The subdifferential of g is the operator
∂g : H → 2H such that

∂g(x) = {s ∈ H | g(y) ≥ g(x)+ 〈s,y− x〉,∀y ∈ H}

for all x ∈ H . Elements in ∂g(x) are known as subgradients of g at x ∈ H .

The subdifferential of any proper function g : H → R∪{∞} is monotone and ∂g is
maximally monotone if g is convex and lower semi-continuous [3, Example 20.3,
Theorem 20.25]. Although the subdifferential is not defined via limits as ordinary
derivatives are, the two notions are closely related for convex functions. Let g be
convex, if g is differentiable at x, then {∇g(x)} = ∂g(x). Similarly, if ∂g(y) = {s}
and g is continuous at y ∈ H , then g is differentiable at y and s = ∇g(y) [3, Propo-
sition 17.31]. For a visual example of the subdifferential, see Fig. 2.2.

Fermat’s rule for subdifferentials is then that x ∈ H is a minimum of a proper
function g : H →R∪{∞} if and only if 0 ∈ ∂g(x) [3, Proposition 27.1]. The uncon-
strained problem (2.4) can then equivalently be written as the monotone inclusion
problem

find x ∈ H such that 0 ∈ ∂(f̂ + ιC)(x). (2.5)

Different from the gradient, the subdifferential is not additive, i.e., ∂(g+ h) , ∂g+
∂h for some proper convex lower semi-continuous functions g : H → R∪ {∞} and
h : H → R∪ {∞}. However, it always holds that ∂(g+ h)(x) ⊇ ∂g(x)+ ∂h(x) and,
hence, if we find a solution to the following problem, we find a solution to (2.5),

find x ∈ H such that 0 ∈ ∂ f̂ (x)+ ∂ιC(x). (2.6)

Since both f̂ and ιC are proper, convex, and lower semi-continuous, both ∂ f̂ and
∂ιC are maximally monotone operators. Problem (2.6) is therefore a finite sum

16

2.4 Fixed Point Iterations

monotone inclusion problem of the form (2.2) that this thesis covers. The two prob-
lems, (2.5) and (2.6), are equivalent when ∂(f + ιC) = ∂ f̂ + ∂ιC which holds if, for
instance, dom f̂ =H or dom f̂ ∩ intC , ∅ [3, Corollary 16.48]. Even weaker forms
of this kind of constraint qualification exist and it should be noted that the equiv-
alence between (2.5) and (2.6) is in practice not considered a problem for convex
optimization problems.

2.4 Fixed Point Iterations

A problem that is very useful when solving monotone inclusion problems is the
fixed point problem,

find x ∈ H such that x = T x (2.7)

where T : H →H . The set of all such fixed points will be denoted fixT = {x ∈ H |
x = T x}. The reason for its appeal is that there exists a natural method for solving
it, namely fixed point iterations. In a fixed point iteration, starting at some x0 ∈ H ,
one iteratively performs

xk+1 = T xk (2.8)

for k ∈ N. If the operator T is sufficiently “nice”, the sequence {xk}k∈N will
converge—weakly or strongly depending on the setting—to a fixed point of T .
There is no one set of conditions that constitutes sufficiently “nice” and fixed point
iterations can converge under a varied set of assumptions on T .

One such classic assumption is `-Lipschitz continuity of T with ` < 1, such op-
erators are also known as contractions. Not only are contractions guaranteed to have
a single fixed point, but the distance to this fixed point is decreased by a constant
factor each iteration of the fixed point iteration,

‖xk − x‖ = ‖T xk−1−T x‖ ≤ `‖xk−1− x‖.

where {x} = fixT . Repeatedly using this inequality yields ‖xk − x‖ ≤ `k ‖x0− x‖
and, since ` < 1 and hence `k→ 0, we see that ‖xk − x‖ → 0 and xk→ x as k→∞.
However, requiring T to be a contraction is in many cases too strong of an assump-
tion. One of the key components of all papers in this thesis is therefore establishing
and analyzing the convergence of fixed point iterations under varying sets of as-
sumptions on T .

2.5 Operator Splitting Methods

Consider the finite sum monotone inclusion problem in (2.2). An equivalent fixed
point problem can be stated as

find x ∈ H such that x ∈ x−γ
∑n

i=1
Ai x = (Id−γ

∑n

i=1
Ai)x (2.9)

17

Chapter 2. Background

where γ > 0 and Id : H →H is the identity operator, i.e., Id : x 7→ x. The equiva-
lence between (2.9) and (2.2) comes from

x ∈ x−γ
∑n

i=1
Ai x ⇐⇒ 0 ∈ −γ

∑n

i=1
Ai x ⇐⇒ 0 ∈

∑n

i=1
Ai x.

As outlined in Section 2.4, this fixed point problem provides a potential solution
method for the monotone inclusion method. However, in order for this fixed point
problem to be well-posed,

∑n
i=1 Ai must be single valued at the very least. Even

further assumptions are needed to guarantee the convergence of the associated fixed
point iteration. For instance, if

∑n
i=1 Ai is cocoercive and strongly monotone and γ

is chosen small enough, Id−γ
∑n

i=1 Ai is a contraction and the fixed point iteration
converges strongly [3, Proposition 26.16]. If

∑n
i=1 Ai is only cocoercive, it is pos-

sible to show that the fixed point iteration converges weakly if γ is small enough
[3, Definition 4.10 and Theorem 5.14]. However, this method is difficult to use in
practice since it is enough for one term to not be cocoercive or single-valued for the
sum

∑n
i=1 Ai to not be cocoercive or single-valued, respectively.

Another fixed point problem equivalent to (2.2) is

find x ∈ H such that x ∈ (Id+γ
∑n

i=1
Ai)
−1x = Jγ∑n

i=1 Ai
x (2.10)

where γ > 0 and JB = (Id+B)−1 is known as the resolvent of the operator B : H →
2H . The equivalence between (2.10) and (2.2) comes from

x ∈ (Id+γ
∑n

i=1
Ai)
−1x ⇐⇒ (Id+γ

∑n

i=1
Ai)x 3 x ⇐⇒ 0 ∈

∑n

i=1
Ai x.

The are several benefits of this formulation compared to (2.9). First of all, the re-
solvent Jγ∑n

i=1 Ai
is single valued even if

∑n
i=1 Ai only is maximally monotone. Sec-

ondly, fixed point iterations of the resolvent of
∑n

i=1 Ai are guaranteed to converge if∑n
i=1 Ai is maximally monotone, regardless of the choice of γ [3, Example 23.40].

This makes fixed point iterations of resolvents attractive but they can still be prob-
lematic. As noted in Section 2.2,

∑n
i=1 Ai is not necessary maximally monotone

even if all terms are maximally monotone. Similarly, the evaluation of Jγ∑n
i=1 Ai

is
not necessarily tractable even if JγAi is easily computable for all i ∈ {1, . . . ,n}.

Operator splitting is a way of getting around the problems of both of the pre-
viously presented approaches. Although there is no real formal definition, the term
usually refers to methods that solve finite sum monotone inclusion problems (2.2)
via some equivalent fixed point problem. What makes them “splitting” methods is
that they split up the sum

∑n
i=1 Ai and use each term separately, either in the form

of the resolvent JγAi or the direct evaluation of Ai . This way, the most can be made
from the available information; if some of the terms are single-valued and cocoer-
cive, direct evaluations of them can be performed and resolvent evaluations can be
left to the terms that require it, i.e., are set-valued.

A classic example of an operator splitting method is the forward-backward
method [16, 25]. It considers the two term monotone inclusion case, i.e., n = 2 in

18

2.5 Operator Splitting Methods

(2.2), and assumes that the first operator A1 is maximally monotone and the second
A2 is β-cocoercive. The reformulation of the inclusion problem to an equivalent
fixed point problem is

find x ∈ H such that x = JγA1 (Id−γA2)x (2.11)

where γ > 0. This problem can be seen as a combination of (2.9) and (2.10), taking
a so called forward step on A2 as in (2.9) and a backward step on A1 as in (2.10).
Fixed point iterations of JγA1 ◦(Id−γA2) converge to a solution of (2.11) as long as
γ < 2β [3, Theorem 26.14].

Another foundational operator splitting method is the Douglas–Rachford
method [26]. It also considers the two-term monotone inclusion problem but only
assumes that A1 and A2 are maximally monotone and solves the fixed point problem

find x ∈ H such that x = 1
2 x+ 1

2 (2JγA1 − Id)(2JγA2 − Id)x (2.12)

where γ > 0. The fixed point iteration associated with this problem is guaranteed
to converge to a fixed point, regardless of the choice of γ [3, Theorem 26.11].
However, the Douglas–Rachford method differs from the previous examples in
that a solution x to (2.12) does not directly solve the inclusion problem, i.e.,
x < zer A1+A2. Instead, a solution to the inclusion problem can be recovered from x
as JγA2 x ∈ zer A1+ A2. In practice, this makes little difference since JγA2 is already
evaluated each iteration of a fixed point iteration and the recovery of a solution does
not amount to any significant additional cost.

If one looks at the forward-backward fixed point problem (2.11), it might be
tempting to try a backward-backward or forward-forward method, i.e., finding fixed
points of either JγA1 ◦JγA2 or (Id−γA1) ◦ (Id−γA2). However, without stricter as-
sumptions on A1 and A2, the fixed points of these operators are not solutions to
their associated monotone inclusion problems, nor can they easily be mapped to
solutions as in the Douglas–Rachford method. This exemplifies the care needed to
construct operator splitting methods. Many more examples will be given in the in-
cluded papers that, for instance, relax the cocoercivity assumption on the forward
step or allow for an arbitrary number of terms in the finite sum monotone inclusion
problem. There will also be several methods that include auxiliary variables in the
fixed point problem, e.g.,

find (x,y) ∈ H2 such that
(
x
y

)
=

(
JγA1 (x−γA2x+ θ(x− y))

x

)
. (2.13)

These auxiliary variables, y in the example above, are superfluous if one just con-
siders the fixed point problem. However, they can be useful to improve the conver-
gence speed of the algorithm. In example (2.13), the extra term θ(x− y) introduce a
type of inertia or momentum to the forward step which can improve convergence. It
should also be noted that even though we have discussed operator splitting methods

19

Chapter 2. Background

in terms of fixed point problems, they are not always solved with a pure fixed point
iteration. The algorithm parameters can often be iteration dependent, especially for
methods with a momentum term. For example, with x0,y0 ∈ H perform

xk+1 = Jγk A1 (xk −γk A2xk + θk(xk − yk))

yk+1 = xk
(2.14)

for all k ∈ N where γk,θk > 0 for all k ∈ N. If A1 is maximally monotone and A2
is β-cocoercive, then the sequences generated by (2.13) satisfy xk ⇀ x and yk ⇀ x
where x ∈ zer A1 + A2 if there exists ε > 0 such that ε ≤ γk ≤ 2β− ε for all k ∈ N,
there exists θ ∈ [0,1) such that 0 ≤ θk ≤ θ for all k ∈ N, and θk is chosen such that∑

k∈N θk ‖xk − yk ‖ <∞, see [32]

2.6 Variance-Reduced Stochastic Gradient Methods

Traditionally, a variance-reduced stochastic gradient (VRSG) method is a type of
algorithm for solving finite sum optimization problems of the form

minimize
x∈H

∑n

i=1
fi(x) (2.15)

where f1 : H → R∪ {∞} is lower semi-continuous and convex and fi : H → R is
convex and differentiable with Lipschitz continuous gradient for all i ∈ {2, . . . ,n}.
However, these VRSG methods actually solve the equivalent finite sum monotone
inclusion problem (2.2) with A1 = ∂ f1 and Ai = ∇ fi for i ∈ {2, . . . ,n}. This makes
VRSG methods straightforward to generalize to more general monotone inclusion
problems and in this thesis the term will refer to algorithms for solving (2.2) under
the assumptions that A1 is maximally monotone and Ai is βi-cocoercive for all
i ∈ {2, . . . ,n}. This setting covers the above mentioned optimization problem but is
more general.

Consider (2.2) under these cocoercivity assumptions. Since the sum of cocoer-
cive operators is cocoercive, it is possible to solve this problem with the ordinary
forward-backward method,

xk+1 = JγA1 (xk −γ
∑n

i=2
Ai xk) (2.16)

for k ∈ N where x0 ∈ H and γ > 0. This iteration will converge as xk ⇀ x ∈
zer

∑n
i=1 Ai if γ is sufficiently small. However, for the modern machine learning

and model fitting problems VRSG methods first were develop for, the number of
terms n might be huge and the evaluations of all n − 1 operators in the forward
step can be very expensive. The idea behind VRSG methods is to replace the for-
ward step with an approximation that only evaluates one operator each iteration,
making the per iteration cost significantly lower. For our purposes, the approximate

20

2.6 Variance-Reduced Stochastic Gradient Methods

forward-backward step used in VRSG methods is of the form

xk+1 = JγA1

(
xk −γ[θik (Aik xk − yik ,k)+

∑n

j=2
yj ,k]

)
(2.17)

where θi ∈ R for all i ∈ {2, . . . ,n} and ik is selected randomly each iteration. Except
if it is initialized otherwise, the variable yi,k ∈ H with i ∈ {2, . . . ,n} and k ∈ N
contains the result of an evaluation of Ai at some point, i.e., for each k ∈ N and
i ∈ {2, . . . ,n} there exists x ∈ H such that yi,k = Ai x. Exactly how yi,k is updated
and ik is randomly selected each iteration differs between the different algorithms
within the class of VRSG methods.

Although the (2.17) update is cheaper, the sequence {xk}k∈N might suffer from
extremely slow convergence or might not even converge at all if the approximation
is poor. Any gain from the cheaper per iteration cost can therefore still be negated
by a need for more iterations. The success behind VRSG methods stems from the
discovery of weight choices θi , random selections of ik , and updates of yi,k that
guarantee faster convergence to a solution than forward-backward when comparing
the total number of operator evaluations 1. For example, the first variance-reduced
method that was proposed is SAG [24, 36]: let x0,y2,0, . . . ,yn,0 ∈ H and perform

Sample ik uniformly from {2, . . . ,n}

xk+1 = JγA1

(
xk −γ[Aik xk − yik ,k +

∑n

j=2
yj ,k]

)
yi,k+1 =

{
Ai xk if i = ik
yi,k otherwise

, ∀i ∈ {2, . . . ,n}

(2.18)

for all k ∈ N. For SAG, only yik ,k out of the variables y2,k, . . . ,yn,k is updated at
iteration k. Furthermore, the update of yik ,k requires no additional operator evalua-
tions since Aik ,k is reused, which is one of the main benefits of this update. Another
example is the SVRG method [20, 40] where x0,y2,0, . . . ,yn,0 ∈ H and

Sample ik uniformly from {2, . . . ,n}

xk+1 = JγA1

(
xk −γ[n(Aik xk − yik ,k)+

∑n

j=2
yj ,k]

)
yi,k+1 =

{
Ai xk if k mod m = 0
yi,k otherwise

, ∀i ∈ {2, . . . ,n}.

(2.19)

for all k ∈ N where m ∈ N. Here, all of y2,k, . . . ,yn,k are updated every m iterations
and hence n− 2 additional operator evaluations must be performed every m itera-
tions. The update interval m is therefore typically chosen around the same size as
n, thereby keeping the average number of operator evaluations per iteration around
two.

1 Due to the random nature of VRSG methods, the convergence is almost sure and the convergence
rate is measured with the expected distance to a solution.

21

Chapter 2. Background

The reason for the name variance-reduced becomes clear when looking at the
approximation of the forward evaluation that is made in (2.17),∑n

i=2
Ai xk ≈ Ãik ,k B θik (Aik xk − yik ,k)+

∑n

j=2
yj ,k . (2.20)

Let the probability P(ik = i) = pi , the variance w.r.t. the random index ik of this
approximation is then

Eik ‖ Ãik ,k −Eik Aik ,k ‖
2

=
∑n

i=2
piθ2

i ‖Ai xk − yi,k ‖2− ‖
∑n

i=2
piθi(Ai xk − yi,k)‖2

≤
∑n

i=2
piθ2

i ‖Ai xk − yi,k ‖2
(2.21)

and, hence, the better yi,k approximates Ai xk , the smaller the variance of the ap-
proximation gets. It would of course be best to set yi,k = Ai xk for all i and all k
which recovers the ordinary forward-backward method (2.16) but, as previously
mentioned, this might become expensive. VRSG methods therefore need to bal-
ance the computational cost of the update of yi,k with the difference Ai xk − yi,k .
Similarly, we see that the variance becomes smaller with smaller θi with it being
zero if θi = 0 for all i ∈ {2, . . . ,n}. However, looking at the expected value of the
approximation,

Eik Ãik ,k =
∑n

i=2
piθi Ai xk +

∑n

i=2
(1− piθi)yi,k, (2.22)

we see that this choice introduces a bias to the expected value. The approximation
is unbiased, i.e., Eik Ãik ,k =

∑n
i=2 Ai xk , only when θi = p−1

i for all i ∈ {2, . . . ,n}. For
all other parameter choices, the variables yi,k for i ∈ {2, . . . ,n} will not only affect
the variance of the approximation, but also the expected value. This is one other
aspect where SAG (2.18) and SVRG (2.19) differ; SVRG is unbiased while SAG is
biased.

22

3
Contributions

We here briefly introduce each of the four papers included in the thesis and outline
the contribution of each author. The notation and setting presented in the previous
section are representative of the notation and setting used in all papers, although mi-
nor differences exist. The first two papers concern themselves with the convergence
properties and conditions of variance-reduced stochastic methods while the last two
aims to model larger sets of splitting methods for the design and analysis of new
and existing methods.

Paper I
M. Morin and P. Giselsson. “Sampling and Update Frequencies in Proxi-
mal Variance Reduced Stochastic Gradient Methods” (2020). arXiv: 2002.
05545v2 [cs, math]. URL: http://arxiv.org/abs/2002.05545v2

This first paper considers the convex optimization setting, i.e., all operators are
subgradients of convex functions. It considers a class of variance-reduced stochastic
proximal-gradient methods and the main result regards the sampling distribution of
the gradients in each iteration. Theoretically optimal distributions are derived and
the tightness of these theoretical results is supported by numerical experiments.
How different algorithms and problem parameters affect the optimal distribution
and convergence rate is examined and simpler to use approximations of the optimal
distribution are presented for different settings.

The theoretical results and numerical experiments were derived, designed
and performed by Martin Morin under the supervision of Pontus Giselsson. The
manuscript was written by Martin Morin and was proofread and revised by Pontus
Giselsson.

23

https://arxiv.org/abs/2002.05545v2
https://arxiv.org/abs/2002.05545v2
http://arxiv.org/abs/2002.05545v2

Chapter 3. Contributions

Paper II
M. Morin and P. Giselsson. “Cocoercivity, Smoothness and Bias in Variance-
Reduced Stochastic Gradient Methods”. Numerical Algorithms 91:2 (2022),
pp. 749–772. DOI: 10.1007/s11075-022-01280-4

This paper concerns the effect of different operator assumptions on the analysis
and use of a class of variance-reduced stochastic forward methods. It compares the
setting where all operators are gradients of smooth convex functions with the set-
ting where all operators are cocoercive, the former being a special case of the latter.
It is in many cases convenient to use the more general assumption and it does not
necessarily yield more conservative convergence results. However, this paper shows
that this is not the case when considering variance-reduced stochastic methods with
the bias of the stochastic estimate having a large effect on the difference between
the two settings. We show that unbiasedness is very advantageous in the cocoer-
cive operator case while in the smooth gradient cases similar convergence rates and
conditions can be achieved with both biased and unbiased estimates.

The theoretical results and numerical experiments were derived, designed
and performed by Martin Morin under the supervision of Pontus Giselsson. The
manuscript was written by Martin Morin and was proofread and revised by Pontus
Giselsson.

Paper III
M. Morin, S. Banert, and P. Giselsson. “Nonlinear Forward-Backward Split-
ting with Momentum Correction” (2022). arXiv: 2112.00481v2 [math].
URL: http://arxiv.org/abs/2112.00481v2

On the surface, this paper does not cover the general finite sum monotone in-
clusion problem outlined in Section 2.2. Instead, it presents a forward-backward
method for solving two-operator problems that use a nonlinear resolvent and pro-
vides sufficient conditions for the well-posedness and convergence of the algorithm.
However, the nonlinear resolvent has a large amount of design freedom which al-
lows the presented algorithm to capture many new or already existing algorithms
as special cases, including algorithms for sums of an arbitrary number of operators.
This is done by reformulating this finite sum problem to a two-operator problem,
either by regrouping the terms or using some product-space or primal-dual formu-
lation.

The original idea behind the main convergence proof came from Sebastian
Banert and Pontus Giselsson. The convergence result was finalized and refined by
Martin Morin along with with all other results and special cases of the paper. The
manuscript was written by Martin Morin and was proofread and revised by Pontus
Giselsson and Sebastian Banert.

24

https://doi.org/10.1007/s11075-022-01280-4
https://arxiv.org/abs/2112.00481v2
http://arxiv.org/abs/2112.00481v2

Chapter 3. Contributions

Paper IV
M. Morin, S. Banert, and P. Giselsson. “Frugal Splitting Operators: Repre-
sentation, Minimal Lifting and Convergence” (2022). arXiv: 2206.11177v1
[cs, math]. URL: http://arxiv.org/abs/2206.11177v1

In this paper, the modeling ideas of Paper III are expanded such that all frugal
splitting operators can be modeled. Informally, frugal splitting operators are split-
ting operators that evaluate each term of the finite sum monotone inclusion problem
exactly once, either directly or via a resolvent. The main result is an equivalence
between the class of frugal splitting operators and a class of operators closely re-
lated to the fixed point operator used in the non-linear forward-backward method in
Paper III. This equivalence leads to new results regarding the memory requirement
of the fixed point iteration of any frugal splitting operator and allows us to formulate
sufficient conditions for the convergence of said fixed point iteration.

Martin Morin derived all results and wrote the manuscript. Pontus Giselsson
and Sebastian Banert proofread and revised the manuscript.

25

https://arxiv.org/abs/2206.11177v1
https://arxiv.org/abs/2206.11177v1
http://arxiv.org/abs/2206.11177v1

Bibliography

[1] Z. Allen-Zhu. “Katyusha: The First Direct Acceleration of Stochastic Gra-
dient Methods”. In: Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing. STOC 2017. ACM, New York, NY, USA,
2017, pp. 1200–1205. ISBN: 978-1-4503-4528-6. DOI: 10.1145/3055399.
3055448.

[2] F. Alvarez and H. Attouch. “An Inertial Proximal Method for Maximal
Monotone Operators via Discretization of a Nonlinear Oscillator with Damp-
ing”. Set-Valued Analysis 9:1 (2001), pp. 3–11. DOI: 10 . 1023 / A :
1011253113155.

[3] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Opera-
tor Theory in Hilbert Spaces. Second. CMS Books in Mathematics. Springer
International Publishing, 2017. ISBN: 978-3-319-48310-8.

[4] A. Bibi, A. Sailanbayev, B. Ghanem, R. M. Gower, and P. Richtárik. Im-
proving SAGA via a Probabilistic Interpolation with Gradient Descent. 2018.
arXiv: 1806.05633 [math]. URL: http://arxiv.org/abs/1806.05633
(visited on 2018-08-27).

[5] L. M. Briceño-Arias and D. Davis. “Forward-Backward-Half Forward Al-
gorithm for Solving Monotone Inclusions”. SIAM Journal on Optimization
28:4 (2018), pp. 2839–2871. DOI: 10.1137/17M1120099.

[6] A. Chambolle and T. Pock. “A First-Order Primal-Dual Algorithm for Con-
vex Problems with Applications to Imaging”. Journal of Mathematical Imag-
ing and Vision 40:1 (2011), pp. 120–145. DOI: 10.1007/s10851- 010-
0251-1.

[7] T. Chavdarova, G. Gidel, F. Fleuret, and S. Lacoste-Julien. “Reducing
Noise in GAN Training with Variance Reduced Extragradient”. Advances
in Neural Information Processing Systems 32 (2019), pp. 393–403. URL:
https : / / proceedings . neurips . cc / paper / 2019 / hash /
58a2fc6ed39fd083f55d4182bf88826d - Abstract . html (visited on
2020-12-17).

26

https://doi.org/10.1145/3055399.3055448
https://doi.org/10.1145/3055399.3055448
https://doi.org/10.1023/A:1011253113155
https://doi.org/10.1023/A:1011253113155
https://arxiv.org/abs/1806.05633
http://arxiv.org/abs/1806.05633
https://doi.org/10.1137/17M1120099
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10851-010-0251-1
https://proceedings.neurips.cc/paper/2019/hash/58a2fc6ed39fd083f55d4182bf88826d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/58a2fc6ed39fd083f55d4182bf88826d-Abstract.html

Bibliography

[8] P. L. Combettes. “Systems of Structured Monotone Inclusions: Duality, Al-
gorithms, and Applications”. SIAM Journal on Optimization 23:4 (2013),
pp. 2420–2447. DOI: 10.1137/130904160.

[9] P. L. Combettes and J.-C. Pesquet. “Primal-Dual Splitting Algorithm for
Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-
Sum Type Monotone Operators”. Set-Valued and Variational Analysis 20:2
(2012), pp. 307–330. DOI: 10.1007/s11228-011-0191-y.

[10] L. Condat. “A Primal–Dual Splitting Method for Convex Optimization In-
volving Lipschitzian, Proximable and Linear Composite Terms”. Journal
of Optimization Theory and Applications 158:2 (2013), pp. 460–479. DOI:
10.1007/s10957-012-0245-9.

[11] D. Davis. SMART: The Stochastic Monotone Aggregated Root-Finding Algo-
rithm. 2016. arXiv: 1601.00698 [math]. URL: http://arxiv.org/abs/
1601.00698 (visited on 2018-08-27).

[12] D. Davis and W. Yin. “A Three-Operator Splitting Scheme and its Opti-
mization Applications”. Set-Valued and Variational Analysis 25:4 (2017),
pp. 829–858. DOI: 10.1007/s11228-017-0421-z.

[13] A. Defazio, F. Bach, and S. Lacoste-Julien. “SAGA: A Fast Incremental
Gradient Method With Support for Non-Strongly Convex Composite Objec-
tives”. In: Advances in Neural Information Processing Systems 27. Curran
Associates, Inc., 2014, pp. 1646–1654. URL: http://papers.nips.cc/
paper/5258-saga-a-fast-incremental-gradient-method-with-
support-for-non-strongly-convex-composite-objectives.pdf
(visited on 2018-08-27).

[14] A. Defazio, J. Domke, and Caetano. “Finito: A Faster, Permutable Incremen-
tal Gradient Method for Big Data Problems”. In: International Conference
on Machine Learning. 2014, pp. 1125–1133. URL: http://proceedings.
mlr.press/v32/defazio14.html (visited on 2018-08-27).

[15] P. Giselsson. “Nonlinear Forward-Backward Splitting with Projection Cor-
rection”. SIAM Journal on Optimization (2021), pp. 2199–2226. DOI: 10.
1137/20M1345062.

[16] A. A. Goldstein. “Convex Programming in Hilbert Space”. Bulletin of the
American Mathematical Society 70:5 (1964), pp. 709–711. DOI: 10.1090/
S0002-9904-1964-11178-2.

[17] R. M. Gower, P. Richtárik, and F. Bach. “Stochastic Quasi-Gradient Meth-
ods: Variance Reduction via Jacobian Sketching”. Mathematical Program-
ming 188:1 (2021), pp. 135–192. DOI: 10.1007/s10107-020-01506-0.

[18] F. Hanzely, K. Mishchenko, and P. Richtárik. “SEGA: Variance Reduction
via Gradient Sketching”. In: Advances in Neural Information Processing
Systems 31. Curran Associates, Inc., 2018, pp. 2082–2093. URL: http://

27

https://doi.org/10.1137/130904160
https://doi.org/10.1007/s11228-011-0191-y
https://doi.org/10.1007/s10957-012-0245-9
https://arxiv.org/abs/1601.00698
http://arxiv.org/abs/1601.00698
http://arxiv.org/abs/1601.00698
https://doi.org/10.1007/s11228-017-0421-z
http://papers.nips.cc/paper/5258-saga-a-fast-incremental-gradient-method-with-support-for-non-strongly-convex-composite-objectives.pdf
http://papers.nips.cc/paper/5258-saga-a-fast-incremental-gradient-method-with-support-for-non-strongly-convex-composite-objectives.pdf
http://papers.nips.cc/paper/5258-saga-a-fast-incremental-gradient-method-with-support-for-non-strongly-convex-composite-objectives.pdf
http://proceedings.mlr.press/v32/defazio14.html
http://proceedings.mlr.press/v32/defazio14.html
https://doi.org/10.1137/20M1345062
https://doi.org/10.1137/20M1345062
https://doi.org/10.1090/S0002-9904-1964-11178-2
https://doi.org/10.1090/S0002-9904-1964-11178-2
https://doi.org/10.1007/s10107-020-01506-0
http://papers.nips.cc/paper/7478-sega-variance-reduction-via-gradient-sketching.pdf
http://papers.nips.cc/paper/7478-sega-variance-reduction-via-gradient-sketching.pdf

Bibliography

papers.nips.cc/paper/7478- sega- variance- reduction- via-
gradient-sketching.pdf (visited on 2020-04-30).

[19] T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams. “Variance
Reduced Stochastic Gradient Descent with Neighbors”. In: Advances in
Neural Information Processing Systems 28. Curran Associates, Inc., 2015,
pp. 2305–2313. URL: http : / / papers . nips . cc / paper / 5919 -
variance - reduced - stochastic - gradient - descent - with -
neighbors.pdf (visited on 2018-08-27).

[20] R. Johnson and T. Zhang. “Accelerating Stochastic Gradient Descent using
Predictive Variance Reduction”. In: Advances in Neural Information Pro-
cessing Systems 26. Curran Associates, Inc., 2013, pp. 315–323. URL: http:
/ / papers . nips . cc / paper / 4937 - accelerating - stochastic -
gradient-descent-using-predictive-variance-reduction.pdf
(visited on 2018-08-27).

[21] J. Konečný and P. Richtárik. “Semi-Stochastic Gradient Descent Methods”.
Frontiers in Applied Mathematics and Statistics 3 (2017). DOI: 10.3389/
fams.2017.00009.

[22] D. Kovalev, S. Horváth, and P. Richtárik. “Don’t Jump Through Hoops
and Remove Those Loops: SVRG and Katyusha are Better Without the
Outer Loop”. In: Proceedings of the 31st International Conference on Al-
gorithmic Learning Theory. PMLR, 2020, pp. 451–467. URL: https://
proceedings.mlr.press/v117/kovalev20a.html (visited on 2021-09-
27).

[23] P. Latafat and P. Patrinos. “Asymmetric Forward–Backward–Adjoint Split-
ting for Solving Monotone Inclusions Involving Three Operators”. Compu-
tational Optimization and Applications 68:1 (2017), pp. 57–93. DOI: 10.
1007/s10589-017-9909-6.

[24] N. Le Roux, M. Schmidt, and F. Bach. “A Stochastic Gradient Method
with an Exponential Convergence Rate for Finite Training Sets”. In: Ad-
vances in Neural Information Processing Systems 25. Curran Associates,
Inc., 2012, pp. 2663–2671. URL: http : / / papers . nips . cc / paper /
4633- a- stochastic- gradient- method- with- an- exponential-
convergence- _rate- for- finite- training- sets.pdf (visited on
2018-12-14).

[25] E. S. Levitin and B. T. Polyak. “Constrained Minimization Methods”. USSR
Computational mathematics and mathematical physics 6:5 (1966), pp. 1–50.

[26] P. L. Lions and B. Mercier. “Splitting Algorithms for the Sum of Two Nonlin-
ear Operators”. SIAM Journal on Numerical Analysis 16:6 (1979), pp. 964–
979. DOI: 10.1137/0716071.

28

http://papers.nips.cc/paper/7478-sega-variance-reduction-via-gradient-sketching.pdf
http://papers.nips.cc/paper/7478-sega-variance-reduction-via-gradient-sketching.pdf
http://papers.nips.cc/paper/7478-sega-variance-reduction-via-gradient-sketching.pdf
http://papers.nips.cc/paper/5919-variance-reduced-stochastic-gradient-descent-with-neighbors.pdf
http://papers.nips.cc/paper/5919-variance-reduced-stochastic-gradient-descent-with-neighbors.pdf
http://papers.nips.cc/paper/5919-variance-reduced-stochastic-gradient-descent-with-neighbors.pdf
http://papers.nips.cc/paper/4937-accelerating-stochastic-gradient-descent-using-predictive-variance-reduction.pdf
http://papers.nips.cc/paper/4937-accelerating-stochastic-gradient-descent-using-predictive-variance-reduction.pdf
http://papers.nips.cc/paper/4937-accelerating-stochastic-gradient-descent-using-predictive-variance-reduction.pdf
https://doi.org/10.3389/fams.2017.00009
https://doi.org/10.3389/fams.2017.00009
https://proceedings.mlr.press/v117/kovalev20a.html
https://proceedings.mlr.press/v117/kovalev20a.html
https://doi.org/10.1007/s10589-017-9909-6
https://doi.org/10.1007/s10589-017-9909-6
http://papers.nips.cc/paper/4633-a-stochastic-gradient-method-with-an-exponential-convergence-_rate-for-finite-training-sets.pdf
http://papers.nips.cc/paper/4633-a-stochastic-gradient-method-with-an-exponential-convergence-_rate-for-finite-training-sets.pdf
http://papers.nips.cc/paper/4633-a-stochastic-gradient-method-with-an-exponential-convergence-_rate-for-finite-training-sets.pdf
https://doi.org/10.1137/0716071

Bibliography

[27] Y. Malitsky and M. K. Tam. “A Forward-Backward Splitting Method for
Monotone Inclusions Without Cocoercivity”. SIAM Journal on Optimization
30:2 (2020), pp. 1451–1472. DOI: 10.1137/18M1207260.

[28] M. Morin, S. Banert, and P. Giselsson. “Frugal Splitting Operators: Repre-
sentation, Minimal Lifting and Convergence” (2022). arXiv: 2206.11177v1
[cs, math]. URL: http://arxiv.org/abs/2206.11177v1.

[29] M. Morin, S. Banert, and P. Giselsson. “Nonlinear Forward-Backward Split-
ting with Momentum Correction” (2022). arXiv: 2112.00481v2 [math].
URL: http://arxiv.org/abs/2112.00481v2.

[30] M. Morin and P. Giselsson. “Cocoercivity, Smoothness and Bias in Variance-
Reduced Stochastic Gradient Methods”. Numerical Algorithms 91:2 (2022),
pp. 749–772. DOI: 10.1007/s11075-022-01280-4.

[31] M. Morin and P. Giselsson. “Sampling and Update Frequencies in Proxi-
mal Variance Reduced Stochastic Gradient Methods” (2020). arXiv: 2002.
05545v2 [cs, math]. URL: http://arxiv.org/abs/2002.05545v2.

[32] A. Moudafi and M. Oliny. “Convergence of a Splitting Inertial Proximal
Method for Monotone Operators”. Journal of Computational and Applied
Mathematics 155:2 (2003), pp. 447–454. DOI: 10.1016/S0377-0427(02)
00906-8.

[33] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. “SARAH: A Novel
Method for Machine Learning Problems Using Stochastic Recursive Gra-
dient”. In: Proceedings of the 34th International Conference on Machine
Learning - Volume 70. ICML’17. JMLR.org, Sydney, NSW, Australia, 2017,
pp. 2613–2621. URL: http : / / proceedings . mlr . press / v70 /
nguyen17b.html (visited on 2020-04-30).

[34] X. Qian, Z. Qu, and P. Richtárik. “SAGA with Arbitrary Sampling”. In: Pro-
ceedings of the 36th International Conference on Machine Learning. PMLR,
2019, pp. 5190–5199. URL: https://proceedings.mlr.press/v97/
qian19a.html (visited on 2021-09-27).

[35] E. K. Ryu and B. C. Vũ. “Finding the Forward-Douglas–Rachford-Forward
Method”. Journal of Optimization Theory and Applications 184:3 (2020),
pp. 858–876. DOI: 10.1007/s10957-019-01601-z.

[36] M. Schmidt, N. Le Roux, and F. Bach. “Minimizing Finite Sums with the
Stochastic Average Gradient”. Mathematical Programming 162:1 (2017),
pp. 83–112. DOI: 10.1007/s10107-016-1030-6.

[37] Z. Shi, X. Zhang, and Y. Yu. “Bregman Divergence for Stochastic Variance
Reduction: Saddle-Point and Adversarial Prediction”. In: Proceedings of the
31st International Conference on Neural Information Processing Systems.
NIPS’17. Curran Associates Inc., Red Hook, NY, USA, 2017, pp. 6033–
6043. ISBN: 978-1-5108-6096-4.

29

https://doi.org/10.1137/18M1207260
https://arxiv.org/abs/2206.11177v1
https://arxiv.org/abs/2206.11177v1
http://arxiv.org/abs/2206.11177v1
https://arxiv.org/abs/2112.00481v2
http://arxiv.org/abs/2112.00481v2
https://doi.org/10.1007/s11075-022-01280-4
https://arxiv.org/abs/2002.05545v2
https://arxiv.org/abs/2002.05545v2
http://arxiv.org/abs/2002.05545v2
https://doi.org/10.1016/S0377-0427(02)00906-8
https://doi.org/10.1016/S0377-0427(02)00906-8
http://proceedings.mlr.press/v70/nguyen17b.html
http://proceedings.mlr.press/v70/nguyen17b.html
https://proceedings.mlr.press/v97/qian19a.html
https://proceedings.mlr.press/v97/qian19a.html
https://doi.org/10.1007/s10957-019-01601-z
https://doi.org/10.1007/s10107-016-1030-6

Bibliography

[38] P. Tseng. “A Modified Forward-Backward Splitting Method for Maximal
Monotone Mappings”. SIAM Journal on Control and Optimization 38:2
(2000), pp. 431–446. DOI: 10.1137/S0363012998338806.

[39] B. C. Vũ. “A Splitting Algorithm for Dual Monotone Inclusions Involv-
ing Cocoercive Operators”. Advances in Computational Mathematics 38:3
(2013), pp. 667–681. DOI: 10.1007/s10444-011-9254-8.

[40] L. Xiao and T. Zhang. “A Proximal Stochastic Gradient Method with Pro-
gressive Variance Reduction”. SIAM Journal on Optimization 24:4 (2014),
pp. 2057–2075. DOI: 10.1137/140961791.

30

https://doi.org/10.1137/S0363012998338806
https://doi.org/10.1007/s10444-011-9254-8
https://doi.org/10.1137/140961791

Paper I

Sampling and Update Frequencies in
Proximal Variance-Reduced Stochastic

Gradient Methods

Martin Morin Pontus Giselsson

Abstract

Variance-reduced stochastic gradient methods have gained popularity in recent
times. Several variants exist with different strategies for the storing and sam-
pling of gradients and this work concerns the interactions between these two
aspects. We present a general proximal variance-reduced gradient method and
analyze it under strong convexity assumptions. Special cases of the algorithm
include SAGA, L-SVRG and their proximal variants. Our analysis sheds light
on epoch-length selection and the need to balance the convergence of the iter-
ates with how often gradients are stored. The analysis improves on other con-
vergence rates found in the literature and produces a new and faster converging
sampling strategy for SAGA. Problem instances for which the predicted rates
are the same as the practical rates are presented together with problems based
on real world data.

Submitted and under review.

31

Paper I. Sampling And Update Frequences in PVRSG Methods

1. Introduction

The problem of finding a minimum of a finite sum of functions is common in clas-
sification, regression, and general empirical risk minimization. Each term of the
objective is in these cases associated with some error or loss corresponding to a par-
ticular data point. In contemporary problems, the datasets are typically very large
and hence the number of terms in the objective function is large. Traditional iterative
minimization algorithms that evaluate the full objective or its gradient each itera-
tion can then become computationally expensive. Stochastic gradient (SG) methods
[22] have therefore become the methods of choice in this setting [4], since in each
iteration they only evaluate the gradients of a random subset of the terms.

A family of SG methods that have gathered much attention due to their improved
convergence properties over ordinary the ordinary SG method are variance-reduced
SG methods, see [7, 10, 11, 12, 13, 16, 24, 28]. All variance-reduced methods have a
memory over previously evaluated gradients and use them to improve the stochastic
estimate of the full gradient. Although other differences exists, the main separating
property between different variance-reduced stochastic gradient method is how the
gradient memory is updated. This work will focus on the effects of how often the
memory is updated and of how the stochastic gradient is sampled.

The majority of research into sampling strategies for randomized gradient meth-
ods has been on coordinate gradient methods. Instead of randomly selecting one
function from a finite sum, coordinate gradient methods select a random set of coor-
dinates of the gradient and update only those. One of the first proposed distributions
on how these coordinates should be sampled is to sample proportional to a power
of the coordinate-wise gradient Lipschitz constant [15]. An arbitrary distribution
is allowed in [20] and [30] argue that the optimal distribution should be propor-
tional the norm of the coordinate-wise gradient at the current iterate. Beyond that,
[6, 18, 19, 21, 27] present approaches that allow for a combination of randomized
mini-batching and arbitrary sampling.

For stochastic gradient and its variance-reduced variants, importance sampling
is not as developed. Variants of importance sampling for the Kaczmarz algorithm
and ordinary stochastic gradient are treated in [14, 26]. For variance-reduced meth-
ods, [28] allows for importance sampling in the SVRG setting, while [23] analyzes
SAGA under importance sampling. The results for SAGA are further improved and
generalized in [8, 17] to include arbitrary randomized mini-batching with impor-
tance sampling. In this paper, we introduce a general variance-reduced algorithm
and prove its linear convergence in the smooth strongly convex regime. The al-
gorithm allows for importance sampling and have, among others, SAGA [7] and
L-SVRG [12] as special cases.

The analysis reveals a trade-off between the convergence of the primal iterate
(approximate solution) and the dual iterates (stored gradients). For SAGA, where
primal and dual updates are coupled, it is crucial to consider this trade-off when
designing samplings and we provide a new sampling strategy that improves on the

32

2 Preliminaries

known convergence rates for SAGA. For algorithms like L-SVRG, where the mem-
ory update is independent of the sampling, it is always beneficial in terms of con-
vergence rate to update more often. However, this incurs a higher computational
cost so we present an update strategy that balances the computational cost against
the convergence rate. Our new rates and computational complexity improve on the
previously known results for L-SVRG.

The algorithm in this paper has similarities to the algorithms analyzed in [9]
and [29]. Compared to the memorization algorithm in [9], our algorithm allows for
a proximal term and has a less restrictive gradient memory update. Our algorithm
also allows for importance sampling in SAGA, something that is not supported by
the analysis in [29]. Furthermore, the algorithm of [29] is applied to a larger class of
monotone inclusion problems, potentially making the analysis more conservative.

2. Preliminaries

Let R be the set of real numbers. We will work in finite dimensional real spaces
RN . Let 〈·, ·〉 denote the standard Euclidean inner product and let ‖·‖ be the norm
induced by the inner product. The expected value conditioned on the filtration F is
E[·|F]. The probability of a discrete random variable taking value i is P(· = i). We
define 1X = 1 if the predicate X is true, otherwise 1X = 0.

A convex function f : Rd→ R is L-smooth with L > 0 if it is differentiable and
its gradient is 1

L -cocoercive, i.e.,

〈∇ f (x)−∇ f (y),x− y〉 ≥ 1
L ‖∇ f (x)−∇ f (y)‖2, ∀x,y ∈ Rd .

Note that the definition of smoothness implies L-Lipschitz continuity of the gradient
∇ f . In fact, for convex f , Lipschitz continuity and cocoercivity of ∇ f are equivalent
[2, Corollary 18.17]. A proper function f :Rd→R∪{∞} is µ-strongly convex with
µ > 0 if f − µ

2 ‖·‖
2 is convex.

The subdifferential of a µ-strongly convex function is µ-strongly monotone [2,
Example 22.4], i.e.,

〈u− v,x− y〉 ≥ µ‖x− y‖2

holds ∀x,y ∈ dom∂ f and ∀u ∈ ∂ f (x),∀v ∈ ∂ f (y). A closed, proper and strongly
convex function has a unique minimum [2, Corollary 11.17].

The proximal operator of a closed, convex and proper function g : Rd → R∪
{∞} is defined as

proxg(z) = argmin
x

g(x)+ 1
2 ‖x− z‖2.

Due to strong convexity of g+ 1
2 ‖· − z‖2, the minimum exist and is unique. Further-

more, the operator proxg is non-expansive, i.e., Lipschitz continuous with constant
1 [2, Proposition 12.28].

33

Paper I. Sampling And Update Frequences in PVRSG Methods

A Lipschitz distribution or Lipschitz sampling is a probability distribution on
i ∈ {1, . . . ,n} proportional to the Lipschitz constants Li of ∇ fi in (1).

3. Problem and Algorithm

We consider the regularized finite sum problem

min
x∈RN

g(x)+F(x), (1)

where g : RN → R∪ {∞} and F is of finite sum form F(x) = 1
n

∑n
i=1 fi(x) with

fi : RN → R for all i ∈ {1, . . . ,n}. We will further make the following assumption on
(1).

ASSUMPTION 3.1—PROBLEM PROPERTIES
The function g : RN → R∪ {∞} is closed, convex and proper. For all i ∈ {1, . . . ,n},
the function fi : RN → R is convex, differentiable and Li-smooth. The function F :
RN → R is µ-strongly convex, differentiable and L-smooth with L ≤ 1

n

∑n
i=1 Li .

As a consequence of Assumption 3.1, g+F is closed, proper and µ-strongly convex
and hence there exists a unique solution to (1), which we denote x?. We propose
the following proximal variance-reduced stochastic gradient (PVRSG) method for
solving (1).

Algorithm 3.1 PVRSG - Proximal Variance-Reduced Stochastic Gradient
Given the function g, the functions f1, . . . , fn, initial primal and dual points, x0 and
y0

1, . . . y
0
n, iteratively perform the following for k ∈ {0,1, . . . }.

Sampling: Randomly sample (Ik,Uk
1 , . . . ,U

k
n) from {1, . . . ,n} × {0,1}n.

Primal Update:
zk+1 = xk − λ

n

(1
p
I k
(∇ fI k (x

k)− yk
I k
)+

∑n
i=1y

k
i

)
,

xk+1 = proxλg(z
k+1).

Dual Update: yk+1
i = yki +Uk

i (∇ fi(xk)− yki), ∀i ∈ {1, . . . ,n}.

The sampling distributions of (Ik,Uk
1 , . . . ,U

k
n) for all k ∈ {0,1, . . . } are the same and

independent. Furthermore, the distribution is such that P(Ik = i) = pi > 0 and the
expected update frequency ηi > 0, see Definition 3.2, for all i ∈ {1, . . . ,n}. The step-
size satisfies λ > 0.

In Algorithm 3.1, the primal variable xk is updated with a stochastic approxima-
tion of the standard proximal gradient (PG) step. This approximation becomes better
the closer the dual variables yk1 , . . . ,y

k
n are to the true gradients ∇ f1(xk), . . . ,∇ fn(xk).

34

3 Problem and Algorithm

The purpose of the dual update is to bring these dual variables closer to the true
gradients by updating a selection of them with the corresponding gradients at the
current iteration. The more often a dual variable is updated, the closer it will be to
the true gradient on average. We quantify the frequency of the dual updates with the
expected update frequency, or in short update frequency.

DEFINITION 3.2—EXPECTED UPDATE FREQUENCY

Let Uk
1 , . . . ,U

k
n be given by the sampling in Algorithm 3.1. The expected update

frequency of the ith dual variable is

ηi = E[Uk
i |F

k],

where F k = ∪k
i=1X

i and Xk = {xk,yk, Ik−1,Uk−1
1 , . . . ,Uk−1

n }.

Note, the expected update frequency does not depend on the iteration number k
since (Ik,Uk

1 , . . . ,U
k
n) is independently sampled and its distribution does not depend

on k.
By the nature of the dual update, the dual variables yk1 , . . . ,y

k
n does not neces-

sarily contain gradients evaluated at the same point, i.e., there might not exists x̂
such that 1

n

∑n
i=1 y

k
i = ∇F(x̂). However, it turns out that if, for all k ∈ {0,1, . . . },

there exists such x̂, an improved analysis can be made. This leads to the following
assumption.

ASSUMPTION 3.3—COHERENT DUAL UPDATE

For all i ∈ {1, . . . ,n}, the initial dual variables satisfy y0
i = ∇ fi(x̂) for some x̂ and it

holds that

Uk
1 =Uk

2 = · · · =Uk
n

for all k ∈ {0,1, . . . }.

Algorithm 3.1 contains many special cases with different samplings leading to
different algorithms. The two main algorithms of relevance are SAGA [7] and L-
SVRG [12].

SAGA: SAGA [7] only evaluates one gradient each iteration and always save it,
i.e., the sampling is defined such that Uk

i = 1i=I k for all i ∈ {1, . . . ,n} which gives
the update frequency ηi = pi .

L-SVRG: L-SVRG [12] is inspired by SVRG [10], but, instead of a determin-
istic update of the dual variables, the dual update is based on a weighted coin toss,
i.e., Uk

i = 1Qk<q where 0 < q ≤ 1 and Qk is independently and uniformly sampled
from [0,1]. The expected update frequency is ηi = q. Assumption 3.3 is satisfied if
the dual variables are initialized in the same point, i.e., there exists x̂ s.t. y0

i = ∇ fi(x̂)
for all i ∈ {1, . . . ,n}.

We introduce two more special cases to examine the effects of Assumption 3.3
and the expected update frequency ηi .

35

Paper I. Sampling And Update Frequences in PVRSG Methods

IL-SVRG (Incoherent Loopless-SVRG): IL-SVRG purposefully break the co-
herent dual assumption, Assumption 3.3, in L-SVRG. Each dual variable is indepen-
dently updated, Uk

i = 1Qk
i <q

where 0 < q ≤ 1 and Qk
i is independently and uniformly

sampled from [0,1]. The update frequency is the same as for L-SVRG, ηi = q.
q-SAGA: In q-SAGA [9], for each iteration, q ≤ n indices are sampled uni-

formly and independently from {1, . . . ,n} and the corresponding dual variables are
updated. Hence, the sampling is Uk

i = 1i∈Jq where Jq is the set of sampled indices
and the update frequency becomes ηi = q/n.

4. Convergence Analysis

We here analyze Algorithm 3.1 under Assumption 3.1 and prove its linear conver-
gence, both with and without the coherent dual update assumption, Assumption 3.3.
The main results of this analysis can be found in Theorems 4.7 and 4.8 and all proofs
will be deferred to Sections A and B. Before moving forward with the analysis, we
introduce the following necessary quantities that will be used in our Lyapunov anal-
ysis.

DEFINITION 4.1
Let x? be the solution to (1) and y?i = ∇ fi(x?) for all i ∈ {1, . . . ,n}. With y =

(y1, . . . ,yn), where yi ∈ R
n for i ∈ {1, . . . ,n}, we define

P(x) = ‖x− x?‖2−2λ〈∇F(x)−∇F(x?),x− x?〉+λ2V(x)

and

D(y) =
∑n

i=1
(1−ηi + 1

γi
)γ̂i ‖yi − y

?
i ‖

2−(1+ δ−1)λ2‖ 1
n

∑n

i=1
yi − y

?
i ‖

2,

where

V(x) =
∑n

i=1
(1+δ)
n2pi
(
ηiγi
δ +1)‖∇ fi(x)−∇ fi(x?)‖2− δ‖∇F(x)−∇F(x?)‖2

with γi ≥ 0, δ > 0 and γ̂i = γi
(1+δ−1)λ2

n2pi
. If γi = 0 we define γi

γi
:= 1.

The variables γi and δ are meta-parameters and which will be specified in each
proof of the main convergence theorems. The base of our convergence analysis will
be the following proposition.

PROPOSITION 4.2
Let the filtration F k =∪k

i=1X
i be given by the stateXk = {xk,yk, Ik−1,Uk−1

1 , . . . ,Uk−1
n }.

If Assumption 3.1 holds, the iterates of Algorithm 3.1 satisfy

E
[
‖xk+1− x?‖2+

∑n

i=1
γ̂i ‖y

k+1
i − y?i ‖

2��F k
]
≤ P(xk)+D(yk), (2)

36

4 Convergence Analysis

where x? is the unique solution of (1) and y?i = ∇ fi(x?). See Definition 4.1 for P,
D, andV.

If the primal updates satisfy

P(xk) ≤ (1− ρP)‖xk − x?‖2 (3)

and the dual updates satisfy

D(yk) ≤ (1− ρD)
∑n

i=1
γ̂i ‖y

k
i − y

?
i ‖

2 (4)

with ρP, ρD ∈ (0,1] then Algorithm 3.1 converges linearly according to

E
[
‖xk − x?‖2+

∑n

i=1
γ̂i ‖y

k
i − y

?
i ‖

2] ∈ O((1−min(ρP, ρD))k).

Proof. See Section A. �

If we can find algorithm parameters and meta-parameters such that Algorithm 3.1
satisfy the primal and dual contractions, (3) and (4) respectively, this proposition
proves that Algorithm 3.1 convergence to a solution. The following lemma provides
these necessary contraction results.

LEMMA 4.3—PRIMAL CONTRACTION
Let Assumption 3.1 hold, the primal iterates of Algorithm 3.1 satisfy the primal
contraction (3) with

ρP = µλ(2− νλ)

where ν =maxi (1+ δ−1)
Liηiγi
npi
+ (1+ δ) Li

npi
− δµ.

Proof. See Section A. �

LEMMA 4.4—DUAL CONTRACTION
Let Assumption 3.1 and γi > 0 hold for all i ∈ {1, . . . ,n}, the dual iterates of Algo-
rithm 3.1 satisfy the dual contraction (4) with

ρD =min
i
ηi −

1
γi
.

Proof. See Section A. �

LEMMA 4.5—DUAL CONTRACTION - COHERENT UPDATES
Let Assumption 3.1 and 3.3 hold and, for all i ∈ {1, . . . ,n}, let γi be such that γi ≥ 0
and Li

npi
≤ µ if γi = 0. The dual iterates of Algorithm 3.1 satisfy the dual contraction

(4) with

ρD =min
i

{
η−(1− npi

Li
µ) 1
γi

if γi > 0
1 if γi = 0

.

37

Paper I. Sampling And Update Frequences in PVRSG Methods

Proof. See Section A. �

The proofs of our main convergence results, Theorems 4.7 and 4.8, consist of estab-
lishing meta-parameters δ and γi for all i ∈ {1, . . . ,n} such that these contractions are
sufficiently large, i.e., min(ρP, ρD) > 0. However, in order to establish these meta-
parameters, the following lemma regarding the relationship between the smoothness
constants L1, . . . ,Ln and strong convexity constant µ is needed.

LEMMA 4.6
Let Li and µ be from Assumption 3.1 and pi from Algorithm 3.1, then maxi Li

npi
≥ µ.

Furthermore, if maxi Li

npi
= µ then Li

npi
= µ for all i ∈ {1, . . . ,n}.

Proof. See Section A. �

The main convergence theorems can now be stated.

THEOREM 4.7—PVRSG CONVERGENCE

Given maxi Li

npi
> µ and Assumption 3.1, if there exists ρ ∈ (0,mini ηi) such that

ρ = µλ(2− νλ)

ν =min
δ>0

max
i
(1+ δ−1) Li

npi

ηi
ηi−ρ
+ (1+ δ) Li

npi
− δµ,

then the iterates of Algorithm 3.1 converge according to

E
[
‖xk − x?‖2+

∑n

i=1
γ̂i ‖y

k
i − y

?
i ‖

2
]
∈ O((1− ρ)k)

where γ̂1, . . . , γ̂n are given by γ̂i = λ2

n2pi
1

ηi−ρ
(1+ 1

δ?) and δ? is the unique minimizer
of the minimization problem defining ν.

If instead maxi Li

npi
= µ then ν = µ+ µmaxi ηi

ηi−ρ
and the convergence is such

that

E
[
‖xk − x?‖2+

∑n

i=1
λ2

n2pi
1

ηi−ρ̃
‖yki − y

?
i ‖

2
]
∈ O((1− ρ̃)k)

holds for all ρ̃ ∈ (0, ρ).

Proof. See Section B. �

THEOREM 4.8—PVRSG CONVERGENCE - COHERENT DUAL UPDATES

Given Assumption 3.1 and 3.3 and maxi Li

npi
> µ, if there exists ρ ∈ (0,η) such that

ρ = µλ(2− νλ)

ν = µ+
(
max
i

Li

npi
− µ

) (
1+

√
η
η−ρ

)2
,

38

5 Special Cases

then the iterates of Algorithm 3.1 converge according to

E
[
‖xk − x?‖2+

∑n

i=1
γ̂i ‖y

k
i − y

?
i ‖

2
]
∈ O((1− ρ)k)

where γ̂1, . . . , γ̂n are given by γ̂i = λ2

n2pi
1

η−ρ max(0,1− npiµ
Li
)

(
1+

√
η−ρ
η

)
.

If instead maxi Li

npi
= µ then ν = µ and γ̂i = 0 for all i ∈ {1, . . . ,n}. Furthermore,

the rate is not restricted to ρ ∈ (0,η), but to ρ ∈ (0,1].

Proof. See Section B. �

Note that the theorems do not provide explicit expressions for the convergence
rates, but instead implicitly define them. Because of this, when we reference the
rates of these theorems, we will refer to a numerically computed value. This com-
putation is done with a combination of convex optimization—for computing ν—and
bisection—for finding ρ such that 0 = ρ− µλ(2− νλ).

Apart from the coherent dual assumption, our convergence results depend only
on the update frequency ηi and not on the specifics of the dual sampling that gen-
erated it. Comparing the two theorems, we see that coherent dual updates have
greatest effect when the problem is well-conditioned, i.e., when Li

µ is small for
all i ∈ {1, . . . ,n}. This stems from the fact that the contraction factor for coherent
updates in Lemma 4.5 goes towards the contraction factor without coherent updates
in Lemma 4.4 when Li

µ increases for all i ∈ {1, . . . ,n}.
In the extremely well-conditioned case when maxi Li

npi
= µ, we see that γ̂i = 0

for all i ∈ {1, . . . ,n} and the dual term of the Lyapunov function vanishes completely
in Theorem 4.8. This is possible due the fact that, in this case, the primal update
actually is equal to the true proximal gradient step, regardless of the dual variables.
Also notice that we, as expected, recover the rate for ordinary proximal-gradient.

5. Special Cases

In order to provide easily compared rates for SAGA and L-SVRG, we present sim-
plified corollaries of Theorems 4.7 and 4.8 that provide explicit rates. These rates
are by construction conservative compared to the theorems but still improve on pre-
viously known best rates. The corollaries also provide explicit upper bounds on the
step-sizes. Unlike the rates, the bounds are not conservative and match the implicit
bounds in Theorems 4.7 and 4.8. The proofs of the corollaries are found in Sec-
tion C.

COROLLARY 5.1—SAGA - CONSERVATIVE BOUNDS
Given Assumption 3.1, the maximal and recommended step-sizes, λmax and λ?, for

39

Paper I. Sampling And Update Frequences in PVRSG Methods

SAGA are:

If pi =
1
n
, λmax =

2
CU Lmax

, λ? = 2
CU Lmax+nµ+

√
(CU Lmax)2+(nµ)2

.

If pi ∝ Li, λmax =
2

CL L̄
, λ? = 2

CL L̄+p
−1
minµ+
√
(CL L̄)2+(p

−1
minµ)

2
.

where L̄ = 1
n

∑n
i=1 Li , CU = 2+2

√
1− µ

Lmax
, and CL = 2+2

√
1− µ

L̄
. The iterates con-

verge with a rate of E ‖xk − x?‖2 ∈ O
(
(1− µλ?)k

)
when then step-size λ? is used.

Proof. See Section C. �

COROLLARY 5.2—L-SVRG - CONSERVATIVE BOUNDS
Given Assumption 3.1, the maximal and recommended step-sizes, λmax and λ?, for
L-SVRG are:

If pi =
1
n
, λmax =

2
DU Lmax

, λ? = 2
DU Lmax+η−1µ+

√
(DU Lmax)2+(η−1µ)2

.

If pi ∝ Li, λmax =
2

DL L̄
, λ? = 2

DL L̄+η−1µ+
√
(DL L̄)2+(η−1µ)2

.

where L̄ = 1
n

∑n
i=1 Li , DU = 4−3 µ

Lmax
and DL = 4−3 µ

L̄
. Note that 4 > DU ≥ DL ≥ 1.

The iterates converge with a rate of E ‖xk − x?‖2 ∈ O
(
(1− µλ?)k

)
when then step-

size λ? is used.

Proof. See Section C. �

The recommended step-sizes λ? are the step-sizes we found that yield the best ex-
plicit rates. However, they are not necessarily optimal w.r.t. the implicit rates in
Theorems 4.7 and 4.8.

6. Sampling Design

Before we present our suggested sampling distributions for SAGA and L-SVRG,
we make a few remarks on the parameter selection in Algorithm 3.1.

A higher update frequency always yields faster convergence. However, more
frequent dual updates incur a higher computational cost since this require more
gradient evaluations. The update frequencies therefore needs to be based on the
total computational complexity of reaching an ε-accurate solution in expectation,
i.e., E ‖xk − x?‖2 ≤ ε .

The choice of distribution of p1, . . . ,pn does not change the iteration cost so it
can be optimized by only considering the convergence rate, not the computational

40

6 Sampling Design

complexity. If the update frequencies are uniform, ηi = ηj,∀i, j ∈ {1, . . . ,n}, the meta-
parameters γ1, . . . ,γn in Theorems 4.7 and 4.8 also are uniform. In this case, it can be
seen that Lipschitz sampling maximizes the convergence rate, i.e., pi ∼ Li . However,
this is not necessarily true in cases with non-uniform update frequencies.

For SAGA, the expected update frequencies depend on p1, . . . ,pn and we can
therefore not use the optimal choice of uniform update frequencies and Lipschitz
sampling of Ik . Instead, we present choice of p1, . . . ,pn that considers the depen-
dency between the primal and dual update and blends Lipschitz and uniform sam-
pling. The proposed distribution improves on all other samplings in terms of con-
vergence rate and computational complexity, see Corollary 6.1.

COROLLARY 6.1—SAGA - IMPROVED SAMPLING
Let the sampling distribution and step-size be

pi ∝ 4Li +nµ+
√
(4Li)

2+ (nµ)2, λ = 2
S

where S = 1
n

∑n
i=1(4Li + nµ +

√
(4Li)

2+ (nµ)2). SAGA converges with a rate of
E ‖xk − x?‖2 ∈ O

(
(1− µλ)k

)
and achieves an ε-accurate solution in expectation

within

O
(1

2
(1
n

∑n
i=1

4Li

µ +n+
√
(

4Li

µ)
2+n2) log 1

ε

)
iterations.

Proof. See Section C. �

Unlike in SAGA, η1, . . . ,ηn are always uniform in L-SVRG and can be tuned
independently of the primal update. As remarked on earlier, Lipschitz sampling is
then the optimal primal sampling and is therefore used in the following complexity
results. We assume one gradient evaluation is needed in the primal update 1 and
that, in expectation, nη are needed in the dual update.

COROLLARY 6.2—L-SVRG - COMPUTATIONAL COMPLEXITY
Let Lipschitz sampling—pi ∼ Li for all i ∈ {1, . . . ,n}—and the step-size from Corol-
lary 5.2 be used. L-SVRG achieves an ε-accurate solution within

O

(
(1+nη)

(
DL

L̄
µ +

1
η

)
log 1

ε

)
iterations where L̄ = 1

n

∑n
i=1 Li and DL is given by Corollary 5.2. The expected

update frequency that minimizes the complexity, and the corresponding complexity,

1 This assumes all dual variables yk1 , . . . , y
k
n are stored. One benefit of PVRSG instances that satisfy

Assumption 3.3 is that they can be implemented without storing all dual variables at the cost of one
extra gradient evaluation. We use the higher memory cost variant in order to compare to SAGA under
equal memory requirements.

41

Paper I. Sampling And Update Frequences in PVRSG Methods

are

η? =
√

µ

nDL L̄
and O

((√
n+

√
DL

L̄
µ

)2
log 1

ε

)
.

Proof. See Section C. �

The complexity of L-SVRG in Corollary 6.2 is worse than that of SAGA in Corol-
lary 6.1 when n > 2. The cheaper iteration cost of SAGA clearly outweighs loss of
the coherent dual update, Assumption 3.3. With the choice of update frequency for

L-SVRG in Corollary 6.2, the expected time between dual updates is 1
η? ∝

√
n L̄
µ .

This is in contrast to most results for SVRG and L-SVRG that have epoch lengths
proportional to either n or L

µ [1, 10, 12, 25, 28].

7. Numerical Experiments

All algorithms have been implemented in Julia [3] and can be found at https:
//github.com/mvmorin/VarianceReducedSG.jl.

Simple Least Squares The analysis predicts performance accurately for a one-
dimensional least squares problem,

min
x

1
n

∑n

i=1
(ai x− bi)2.

A comparison of theoretical and practical rates for this problem is found in Figure 1.
The data ai and bi have been independently drawn from a unit normal distribution
and the number of functions is n = 100.

For L-SVRG, Figure 1 shows fast convergence and very narrow 5-95
percentile—it is not even visible. This is due to the maxi Li

npi
= µ condition be-

ing satisfied and then the gradient estimate is exact. Since the condition number of
the problem is equal to 1, it is possible to solve the problem in one iteration.

For SAGA, we see in Figure 1 that both the maximal and optimal step-sizes are
predicted well. However, note that the sampling distribution p1, . . . ,pn are not the
same for the two cases.

Comparing q-SAGA and IL-SVRG in Figure 1, we see similar performance.
This was predicted by Theorem 4.7 since, despite the dual updates being different,
the algorithms have the same expected update frequency. Comparing to L-SVRG
in Figure 1 we see the huge impact of the coherent dual assumption in this very
well-conditioned case.

Lasso Problem Here we consider a Lasso regression problem of the form

min ‖Ax− b‖22 + ξ‖x‖1,

42

https://github.com/mvmorin/VarianceReducedSG.jl
https://github.com/mvmorin/VarianceReducedSG.jl

7 Numerical Experiments

0 5 10 15 20

10−15

10−10

10−5

100

Normalized Iterations [k/n]

E
[L
(x

k
,y

k
)]
/L

(x
0
,y

0
)

pi = p?i , λ = λ?

pi ∝ Li, λ = λmax

(a) SAGA

0.0 2.5 5.0 7.5 10.0

10−15

10−10

10−5

100

Normalized Iterations [k/n]

E
[L
(x

k
,y

k
)]
/L

(x
0
,y

0
)

pi ∝ Li, λ = λ?

pi ∝ Li, λ = 0.99λmax

pi ∝ Li, λ = λmax

(b) L-SVRG

0 5 10 15 20

10−15

10−10

10−5

100

Normalized Iterations [k/n]

E
[L
(x

k
,y

k
)]
/L

(x
0
,y

0
)

pi ∝ Li, λ = λ?

pi ∝ Li, λ = 0.8λmax

pi ∝ Li, λ = λmax

(c) q-SAGA

0 5 10 15 20

10−15

10−10

10−5

100

Normalized Iterations [k/n]

E
[L
(x

k
,y

k
)]
/L

(x
0
,y

0
)

pi ∝ Li, λ = λ?

pi ∝ Li, λ = 0.8λmax

pi ∝ Li, λ = λmax

(d) IL-SVRG

Figure 1. One-dimensional least squares. The expected value EL(xk,yk) is es-
timated with the average of 10000 runs where L(x,y) is taken from Theorems 4.7
and 4.8. The shaded areas represent the 5-95 percentile of the runs. The dashed lines
are the predicted rates. The step-sizes λ? and λmax are the optimal and maximal step-
sizes according to Theorems 4.7 and 4.8. The expected update frequency is η = 1

n
for all algorithms except SAGA where it depends on the sampling pi . The sampling
p?
i

is from Corollary 6.1.

where the matrix A and vector b consist of the features and classes from different
datasets from the LibSVM database [5]. The regularization parameter ξ is tuned for
each problem such that the solution have roughly 15-20% sparsity. SAGA and L-
SVRG with different sampling and update frequencies are compared in Figure 2(a)-
(b). L-SVRG was tested with η ∈ {0.2η?,η?,5η?} and either Lipschitz or uniform
sampling and the three best perform configuration are shown in Figure 2. Fur-
ther comparisons between SAGA and L-SVRG with larger step-size choices can
be found in Figure 2(c)-(d). In these experiments the regularization parameter was
set to ξ = 0.

We see that it is sometime possible achieve better convergence rate by deviating
from the optimal parameter choices in Corollaries 5.1, 5.2, 6.1 and 6.2. However,
these are single realizations of random processes and there will be variance between

43

Paper I. Sampling And Update Frequences in PVRSG Methods

0 5 10 15 20

10−15

10−10

10−5

100

Expected Number of Full-Gradient Evaluations

||x
k
−

x
?
||2
/|
|x

0
−

x
?
||2

SAGA: pi = p?i
SAGA: pi = 1/n

SAGA: pi ∝ Li

L-SVRG: pi ∝ Li, η = η?

L-SVRG: pi ∝ Li, η = 5η?

L-SVRG: pi ∝ Li, η = 0.2η?

(a) Lasso: ijcnn1, ξ = 0.001,
n = 49990, L̄

µ ≈ 165

0 20 40 60 80

10−6

10−4

10−2

100

Expected Number of Full-Gradient Evaluations

||x
k
−
x
?
||2
/|
|x

0
−
x
?
||2

SAGA: pi = p?i
SAGA: pi = 1/n

SAGA: pi ∝ Li

L-SVRG: pi ∝ Li, η = η?

L-SVRG: pi ∝ Li, η = 5η?

L-SVRG: pi = 1/n, η = 5η?

(b) Lasso: protein∗, ξ = 0.0001,
n = 17766, L̄

µ ≈ 3 ·106

0 10 20 30 40 50

10−15

10−10

10−5

100

Expected Number of Full-Gradient Evaluations

||x
k
−
x
?
||2
/|
|x

0
−
x
?
||2

SAGA: pi = p?i , λ = λ?

SAGA: pi = p?i , λ = λmax

SAGA: pi = 1/n, λ = λmax

L-SVRG: pi ∝ Li, η = η?, λ = λ?

L-SVRG: pi ∝ Li, η = η?, λ = λmax

L-SVRG: pi = 1/n, η = η?, λ = λmax

(c) Least Squares: splice, ξ = 0,
n = 1000, L̄

µ ≈ 806

0 5 10 15 20

10−15

10−10

10−5

100

Expected Number of Full-Gradient Evaluations

||x
k
−
x
?
||2
/|
|x

0
−
x
?
||2

SAGA: pi = p?i , λ = λ?

SAGA: pi = p?i , λ = λmax

SAGA: pi = 1/n, λ = λmax

L-SVRG: pi ∝ Li, η = η?, λ = λ?

L-SVRG: pi ∝ Li, η = η?, λ = λmax

L-SVRG: pi = 1/n, η = η?, λ = λmax

(d) Least Squares: acoustic, ξ = 0,
n = 78823, L̄

µ ≈ 1480

Figure 2. The Expected Number of Full-Gradient Evaluations is the number of
full gradient evaluations the algorithms is expected to perform in k iterations, 1

n k
for SAGA and (1n + η)k for L-SVRG. The step-sizes, λ? or λmax are taken from
the corresponding result in Corollary 5.1-5.2, λ? is used if no step-size is given. The
sampling p?

i
is from Corollary 6.1 and η? is the update frequency from Corollary 6.2.

The average condition number L̄ = 1
n

∑n
i=1 Li . The protein dataset has a feature

consisting of only zeros. protein∗ has this feature removed in order to preserve
strong convexity.

runs, especially for the larger step-sizes. The consistency of our suggested param-
eter choices should be noted though. Especially SAGA with the sampling from
Corollary 6.1 are always among the better alternatives.

Note the slow step-like convergence of L-SVRG with η = η? in the protein∗

example. The faster convergence of η = 5η? suggest that η? does not properly bal-
ance the primal and dual updates. Since we perform a worst case analysis, there are
many reasons for why this might be the case. Our analysis also only focus on asymp-
totic linear rates and does not capture transient behavior. The last point is especially
important when considering very ill-conditioned or maybe even non-strongly con-

44

8 Conclusion

vex problems. In these cases, the transient phase is the most important part since the
achievable linear rates are very small or zero.

8. Conclusion

A general stochastic variance-reduced gradient method has been analyzed and prob-
lems have been presented where the predicted rates are close to real world rates. We
have demonstrated the need to balance the updates of the primal and dual variables.
For L-SVRG, we presented a new condition number dependent update probability
for the dual variables. For SAGA, and other methods where the dual update depends
on the primal update, the primal sampling needs to consider both updates. Lipschitz
sampling, which appears to be optimal for methods with independent dual updates,
can for SAGA lead to slow convergence. We have presented a new sampling for
SAGA that balances the primal and dual update and consistently performs well.

A. Proofs of Proposition and Lemmas

Proof of Proposition 4.2. Let x? be the unique solution to (1). With g being proper,
closed and convex, the primal updates satisfy

E[‖xk+1− x?‖2 |F k]

= E[‖proxλg(z
k+1)−proxλg(x

?−λ∇F(x?))‖2 |F k]

≤ E[‖xk − λ
n

(1
p
I k
(∇ fI k (x

k)− yk
I k
)+

∑n
i=1 y

k
i

)
− x?+λ∇F(x?)‖2 |F k]

= ‖(xk −λ∇F(xk))− (x?−λ∇F(x?))‖2

+λ2E
[

(1

np
I k
∇ fI k (x

k)−∇F(xk)
)
−

(1
np

I k
yk
I k
− 1

n

∑n
i=1y

k
i

)

2
|F k

]
= ‖xk − x?‖2−2λ〈∇F(xk)−∇F(x?),xk − x?〉+λ2‖∇F(xk)−∇F(x?)‖2

+λ2E
[

(1

np
I k
∇ fI k (x

k)−∇F(xk)
)
−

(1
np

I k
yk
I k
− 1

n

∑n
i=1y

k
i

)

2
|F k

]
.

(5)

The first equality is given by the solution being a fixed point to the proximal-
gradient update x? = proxλg(x?−λ∇F(x?)) [2, Corollary 28.9]. The first inequality
is due to the non-expansiveness of proxλg. The second to last equality is given by
E ‖X ‖2 = ‖EX ‖2+E ‖X −EX ‖2 where X is a random variable.

45

Paper I. Sampling And Update Frequences in PVRSG Methods

The last term in (5) satisfies the following upper bound for all δ > 0:

E[‖(1
np

I k
∇ fI k (x

k)−∇F(xk))− (1
np

I k
yk
I k
− 1

n

∑n
i=1y

k
i)‖

2 |F k]

= E[‖ 1
np

I k
(∇ fI k (x

k)−∇ fI k (x
?))− (∇F(xk)−∇F(x?))

− 1
np

I k
(yk

I k
− y?

I k
)+ 1

n

∑n
i=1(y

k
i − y

?
i)‖

2 |F k]

≤ (1+ δ)E[‖ 1
np

I k
(∇ fI k (x

k)−∇ fI k (x
?))− (∇F(xk)−∇F(x?))‖2 |F k]

+ (1+ δ−1)E[‖ 1
np

I k
(yk

I k
− y?

I k
)− 1

n

∑n
i=1(y

k
i − y

?
i)‖

2 |F k]

= (1+ δ)
(
E[‖ 1

np
I k
(∇ fI k (x

k)−∇ fI k (x
?))‖2 |F k]− ‖∇F(xk)−∇F(x?)‖2

)
+ (1+ δ−1)

(
E[‖ 1

np
I k
(yk

I k
− y?

I k
)‖2 |F k]− ‖ 1

n

∑n
i=1(y

k
i − y

?
i)‖

2)
= (1+ δ)

∑ 1
n2pi
‖∇ fi(xk)−∇ fi(x?)‖2−(1+ δ)‖∇F(xk)−∇F(x?)‖2

+ (1+ δ−1)
∑ 1

n2pi
‖yki − y

?
i ‖

2−(1+ δ−1)‖ 1
n

∑n
i=1(y

k
i − y

?
i)‖

2.

(6)

The inequality is given by Young’s inequality, the second to last equality is given
by E ‖X −EX ‖2 = E ‖X ‖2− ‖EX ‖2 where X is a random variable.

The dual updates satisfy

‖yk+1
i − y?i ‖

2 = ‖yki +Uk
i (∇ fi(xk)− yki)− y

?
i ‖

2

= (1−Uk
i)‖y

k
i − y

?
i ‖

2+Uk
i ‖∇ fi(xk)−∇ fi(x?)‖2

since Uk
i ∈ {0,1}. Summing over all terms, taking expected value and using linearity

of the expected value give

E[
∑n

i=1γ̂i ‖y
k+1
i − y?i ‖

2 |F k] =
∑n

i=1(1−ηi)γ̂i ‖y
k − y?‖2

+
∑n

i=1ηi γ̂i ‖∇ fi(xk)−∇ fi(x?)‖2.
(7)

Adding (7) to (5) and substituting in (6) and using the definition γi
γi
= 1 when γi = 0

then yield (2). Applying (3) and (4), using the law of total expectation and telescop-
ing the inequalities give the stated rate. �

Proof of Lemma 4.3. First note that µ-strong monotonicity and the Cauchy–
Schwarz inequality imply

‖∇F(xk)−∇F(x?)‖ ≥ µ‖xk − x?‖. (8)

Consider the terms ofV(xk). Using (8) and Cauchy–Schwarz in the last term yield

‖∇F(xk)−∇F(x?)‖2 ≥ µ‖∇F(xk)−∇F(x?)‖‖xk − x?‖

≥ µ〈∇F(xk)−∇F(x?),xk − x?〉.

46

A Proofs of Proposition and Lemmas

Using 1
Li

-cocoercivity of ∇ fi in the first term ofV(xk) yields∑n

i=1
(
ηiγi
δ +1) 1

n2pi
‖∇ fi(xk)−∇ fi(x?)‖2

≤
∑n

i=1
(
ηiγi
δ +1) Li

n2pi
〈∇ fi(xk)−∇ fi(x?),xk − x?〉

≤ max
i
((
ηiγi
δ +1) Li

npi
)〈∇F(xk)−∇F(x?),xk − x?〉.

Adding the terms back together yields

V(xk) ≤ λ2ν〈∇F(xk)−∇F(x?),xk − x?〉

where ν =maxi((1+ δ−1)
Liηiγi
npi
+ (1+ δ) Li

npi
− δµ). This can now be summarized as

P(xk) ≤ ‖xk − x?‖2−λ
(
2− νλ

)
〈∇F(xk)−∇F(x?),xk − x?〉

≤ ‖xk − x?‖2− µλ
(
2− νλ

)
‖xk − x?‖2

= (1− ρP)‖xk − x?‖2,

where ρP = µλ(2− νλ) and the last inequality is given by the strong monotonicity
of ∇F. �

Proof of Lemma 4.4. Since norms are non-negative, we have

D(yk) ≤
∑n

i=1
(1−ηi + 1

γi
)γ̂i ‖y

k
i − y

?
i ‖

2 ≤ (1− ρD)
∑n

i=1
γ̂i ‖y

k
i − y

?
i ‖

2,

where ρD =mini(ηi − 1
γi
). �

Proof of Lemma 4.5. From Assumption 3.3, we know that there exists φk such that
yki = ∇ fi(φk),∀i ∈ {1, . . . ,n}. Using this and y?i = ∇ fi(x?) yield

‖ 1
n

∑n

i=1

[
yki − y

?
i

]
‖2 = ‖∇F(φk)−∇F(x?)‖2 ≥ µ‖∇F(φk)−∇F(x?)‖‖φk − x?‖

≥ µ〈∇F(φk)−∇F(x?),φk − x?〉 = µ
1
n

∑n

i=1
〈∇ fi(φk)−∇ fi(x?),φk − x?〉

≥ µ
1
n

∑n

i=1

1
Li
‖∇ fi(φk)−∇ fi(x?)‖2 =

∑n

1=1

µ

nLi
‖yki − y

?
i ‖

2,

where the inequalities are given by µ-strong monotonicity of ∇F, Cauchy–Schwarz,
and 1

Li
-cocoercivity of ∇ fi . Inserting this into D(yk) and using that ŷi

yi
=
(1+δ−1)λ2

n2pi

for all i ∈ {1, . . . ,n}—note that we defined γi
γi
= 1 if γi = 0— give

D(yk) ≤
∑n

i=1
(1−η+ (1−npi

µ
Li
) 1
γi
)γ̂i ‖y

k
i − y

?
i ‖

2.

47

Paper I. Sampling And Update Frequences in PVRSG Methods

For each term we see that if γi > 0 then

(1−η+ (1−npi
µ
Li
) 1
γi
)γ̂i ‖y

k
i − y

?
i ‖

2 ≤ (1− ρ+i)γ̂i ‖y
k
i − y

?
i ‖

2

with ρ+i = η−(1−npi
µ
Li
) 1
γi

. If γi = 0, then Li

npi
≤ µ and

(1−η+ (1−npi
µ
Li
) 1
γi
)γ̂i ‖y

k
i − y

?
i ‖

2

= (1−npi
µ
Li
)
(1+δ−1)λ2

n2pi
‖yki − y

?
i ‖

2 ≤ 0 ≤ (1−1)γ̂i ‖yki − y
?
i ‖

2.

This gives D(yk) ≤ (1− ρD)
∑n

i=1 γ̂i ‖y
k
i − y

?
i ‖

2 where

ρD =

{
η−(1− npi

Li
µ) 1
γi

if γi > 0
1 if γi = 0

. �

Proof of Lemma 4.6. An L-smooth and µ-strongly convex function must satisfy
L ≥ µ. Assuming maxi(Li

npi
) < µ yields the following contradiction

µ > max
i

Li

npi
=

∑n

j=1
pj max

i

Li

npi
≥

∑n

j=1
pj

L j

np j
=

∑n

i=1
Li

n ≥ L.

If maxi(Li

npi
) = µ, equality must hold everywhere and we have

0 =
∑n

j=1
pj max

i

Li

npi
−

∑n

j=1
pj

L j

np j
=

∑n

j=1
pj(max

i

Li

npi
−

L j

np j
).

Since pj > 0 and maxi Li

npi
−

L j

np j
≥ 0, we have maxi Li

npi
=

L j

np j
for all j ∈ {1, . . . ,n}.�

B. Proofs of Theorems

Proof of Theorem 4.7. Application of Lemma 4.3 and 4.4 in Proposition 4.2 yields
the convergence rate

E
[
‖xk − x?‖2+

∑n

i=1
γ̂i ‖y

k
i − y

?
i ‖

2
]
∈ O((1−min(ρP, ρD))k)

with

ρP = µλ(2− νλ)
ρD =min

i
ηi −

1
γi

ν =max
i
(1+ δ−1)

Liηiγi
npi
+ (1+ δ) Li

npi
− δµ,

48

B Proofs of Theorems

which hold for all choices of δ > 0 and γi > 0 for all i ∈ {1, . . . ,n}. If there exists
δ and γ1, . . . ,γn such that min(ρP, ρD) ∈ (0,1] we have convergence. We restrict
ourselves to only search for δ and γ1, . . . ,γn such that ρP = ρD = ρ for some ρ ∈
(0,1]. For all i ∈ {1, . . . ,n}, select γi = 1

ηi−ρ
, which is positive when ρ < ηi , and

convergence is then proved if there exists ρ ∈ (0,mini ηi) and δ > 0 such that

ρ = µλ(2− νλ)

ν =max
i
(1+ δ−1) Li

npi

ηi
ηi−ρ
+ (1+ δ) Li

npi
− δµ.

The variable ν can be minimized w.r.t. δ if maxi Li

npi
> µ. The minimum then exists

and is unique since ν as a function of δ is continuous, strictly convex, and ν→∞
both when δ→ 0+ and δ→∞. Calling the minimum point δ?, noting that δ? > 0,
and inserting it and the choice of γi in the expression for γ̂i from Definition 4.1
yield the first statement of the theorem.

When maxi Li

npi
≯ µ, Lemma 4.6 gives Li

npi
= µ for all i ∈ {1, . . . ,n} and

ν = µ+ µ(1+ δ−1)max
i

ηi
ηi−ρ

.

This can not be minimized w.r.t. δ since the inf is not attained. However, any δ > 0
will yield a valid ρ and γ̂i , giving the rate

E
[
‖xk − x?‖2+

∑n

i=1
λ2

n2pi
1

ηi−ρ
‖yki − y

?
i ‖

2
]

≤ E
[
‖xk − x?‖2+

∑n

i=1
γ̂i ‖y

k
i − y

?
i ‖

2
]
∈ O((1− ρ)k).

Taking the limit as δ→∞ results in the stated interval. �

Proof of Theorem 4.8. The proof is analogous to the proof of Theorem 4.7 but with
Lemma 4.5 instead of Lemma 4.4, yielding

ρP = µλ(2− νλ)

ρD =min
i

{
η−(1− npi

Li
µ) 1
γi

if γi > 0
1 if γi = 0

ν =max
i
(1+ δ−1)

Liηγi
npi
+ (1+ δ) Li

npi
− δµ.

where δ > 0, γi ≥ 0 and γi = 0 implies Li

npi
≤ µ for all i ∈ {1, . . . ,n}. Let γi =

1
η−ρD

max(0,1− npiµ
Li
) and δ =

√
η

η−ρD
. Both choices are valid if ρD < η since then

δ > 0, γi ≥ 0 and γi = 0 only if Li

npi
≤ µ.

49

Paper I. Sampling And Update Frequences in PVRSG Methods

Assuming maxi Li

npi
> µ yields

ν =max
i
(1+ δ−1) Li

npi

η
η−ρD

max(0,1− npiµ
Li
)+ (1+ δ) Li

npi
− δµ

=max
i
(1+ δ−1)

η
η−ρD

max(0, Li

npi
− µ)+ (1+ δ) Li

npi
− δµ

= (1+ δ−1)
η

η−ρD
(maxi Li

npi
− µ)+ (1+ δ)(maxi Li

npi
)− δµ

= µ+
(
max
i

Li

npi
− µ

) (
1+

√
η

η−ρD

)2
.

Restricting the problem to ρ = ρD = ρP and only considering the convergent rates
ρ ∈ (0,1] yield the problem in the theorem. The first statement of the theorem comes
from Proposition 4.2 with γi and δ inserted in the expression for γ̂i from Defini-
tion 4.1.

When maxi Li

npi
= µ, Lemma 4.6 gives Li

npi
= µ for all i ∈ {1, . . . ,n}, meaning

γi = 0 is a valid choice for all i ∈ {1, . . . ,n}. With this choice, ν = µ regardless of δ,
and ρD is no longer limited by η with ρD = 1. The statement of the theorem then
follows. �

C. Proof of Corollaries

Proof of Corollary 5.1. The expected update frequency is ηi = pi . Assuming
maxi Li

npi
> µ and using Theorem 4.7 the convergence rate for SAGA is given

by the ρ ∈ (0,pmin) that satisfies

ρ = µλ(2− νλ)

ν = µmin
δ>0

max
i
(1+ δ−1) Li

npiµ
pi

pi−ρ
+ (1+ δ) Li

npiµ
− δ.

(9)

If we write ν as a function of ρ, this can equivalently be written as finding ρ ∈
(0,pmin) such that ρ+ λ2µν(ρ) = 2µλ. Since ν(ρ) is continuous and ν(ρ) → ∞ as
ρ→ pmin from below, if we find a ρ̃ ∈ (0,pmin) such that ρ̃+ λ2µν(ρ̃) ≤ 2µλ, it
exists ρ ∈ [ρ̃,pmin) such that (9) hold. Hence, if we replace ν in (9) with an upper
bound, we can find a lower bound on the contraction ρ.

Let κmax =maxi Li

npiµ
and pmin =mini pi and upper bound ν as

ν ≤ µmin
δ>0
(1+ δ−1)κmax

pmin
pmin−ρD

+ (1+ δ)κmax− δ

= µ+ µ
[√
κmax

pmin
pmin−ρ

+
√
κmax−1

]2

= µκmax
2pmin−ρ
pmin−ρ

+2µ
√
κ2

max− κmax

√
pmin

pmin−ρ

≤ µκmax
2pmin−ρ
pmin−ρ

+ µ
√
κ2

max− κmax
2pmin−ρ
pmin−ρ

= µκmax(1+
√

1− κ−1
max)

2pmin−ρ
pmin−ρ

.

50

C Proof of Corollaries

The last inequality is given by 2
√

a ≤ 1+ a for all a ≥ 0. It can be verified that this
upper bound also is valid when maxi Li

npi
= µ. Replace ν in (9) with this upper bound

gives a set of equations that define a lower bound on the contraction ρ.
Inserting the two samplings and solving for λ when the lower bound on ρ is

zero gives the λmax. Maximizing the lower bound on ρ w.r.t. λ yield the optimal
λ? and ρ?. For both uniform and Lipschitz sampling, the upper bound on ν is tight
for ρ = 0 so it can be used to accurately determine maximal step-size according to
Theorem 4.7. �

Proof of Corollary 6.1. The proof is similar to the proof of Corollary 5.1 but in-
stead the following upper bound is used:

ν ≤ µmax
i

2 Li

npiµ
pi

pi−ρ
+2 Li

npiµ
− δ ≤ µmax

i
2 Li

npiµ
pi

pi−ρ
+2 Li

npiµ

= 2µmax
i

Li

nµ

[1
pi
+ 1

pi−ρ

]
.

Replacing ν in Theorem 4.7 with this upper bound and inserting the presented pi , λ
and ρ verifies the first claim.

The rate from Theorem 4.7 is of the form E ‖xk − x?‖2 ∈ O((1− λ?µ)k). The
iteration complexity to achieve an ε-accurate solution in expectation is then k ∈
O(1

λ?µ log 1
ε). One gradient evaluation is done per iteration so O(1

λ?µ log 1
ε) is also

the computational complexity. Inserting λ? gives the result. �

Proof of Corollary 5.2. The proof is analogous to Corollary 5.1 but Theorem 4.8 is
used instead of Theorem 4.7 and ν is upper bounded by

ν ≤ µ+2µ(κmax−1)
[
η
η−ρ +1

]
≤
µ

2

[
η
η−ρ +1

]
+2µ(κmax−1)

[
η
η−ρ +1

]
≤ µ(2κmax−

3
2)

2η−ρ
η−ρ

where κmax =maxi Li

npiµ
. �

Proof of Corollary 6.2. From Corollary 5.2 we get the iteration complexity k ∈
O(1

λ?µ log 1
ε). One gradient evaluation is needed for the primal update and nη

evaluations are needed in expectation for the dual update, this gives the computa-
tional complexity O((1+ nη) 1

λ?µ log 1
ε). Inserting λ? from Corollary 5.2 and using

1
2 (a+ b+

√
a2+ b2) ≤ a+ b gives the result. �

51

Paper I. Sampling And Update Frequences in PVRSG Methods

References

[1] R. Babanezhad Harikandeh, M. O. Ahmed, A. Virani, M. Schmidt, J.
Konečný, and S. Sallinen. “Stop Wasting My Gradients: Practical SVRG”.
In: Advances in Neural Information Processing Systems 28. Curran Asso-
ciates, Inc., 2015, pp. 2251–2259. URL: http://papers.nips.cc/paper/
5711-stopwasting-my-gradients-practical-svrg.pdf (visited on
2020-05-24).

[2] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Opera-
tor Theory in Hilbert Spaces. Second. CMS Books in Mathematics. Springer
International Publishing, 2017. ISBN: 978-3-319-48310-8. URL: / / www .
springer.com/gp/book/9783319483108 (visited on 2019-01-15).

[3] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A Fresh Ap-
proach to Numerical Computing”. SIAM Review 59:1 (2017), pp. 65–98. DOI:
10.1137/141000671.

[4] L. Bottou and O. Bousquet. “The Tradeoffs of Large Scale Learning”. In:
Advances in Neural Information Processing Systems 20. Curran Associates,
Inc., 2008, pp. 161–168. (Visited on 2019-01-03).

[5] C.-C. Chang and C.-J. Lin. “LIBSVM: A Library for Support Vector Ma-
chines”. ACM Transactions on Intelligent Systems and Technology (TIST) 2:3
(2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm, 27:1–27:27. DOI: 10.1145/1961189.1961199.

[6] D. Csiba and P. Richtárik. “Importance Sampling for Minibatches”. Journal
of Machine Learning Research 19:27 (2018), pp. 1–21. URL: http://jmlr.
org/papers/v19/16-241.html (visited on 2022-08-18).

[7] A. Defazio, F. Bach, and S. Lacoste-Julien. “SAGA: A Fast Incremental
Gradient Method With Support for Non-Strongly Convex Composite Objec-
tives”. In: Advances in Neural Information Processing Systems 27. Curran
Associates, Inc., 2014, pp. 1646–1654. (Visited on 2018-08-27).

[8] R. M. Gower, P. Richtárik, and F. Bach. “Stochastic Quasi-Gradient Meth-
ods: Variance Reduction via Jacobian Sketching”. Mathematical Program-
ming 188:1 (2021), pp. 135–192. DOI: 10.1007/s10107-020-01506-0.

[9] T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams. “Variance
Reduced Stochastic Gradient Descent with Neighbors”. In: Advances in
Neural Information Processing Systems 28. Curran Associates, Inc., 2015,
pp. 2305–2313. (Visited on 2018-08-27).

[10] R. Johnson and T. Zhang. “Accelerating Stochastic Gradient Descent using
Predictive Variance Reduction”. In: Advances in Neural Information Pro-
cessing Systems 26. Curran Associates, Inc., 2013, pp. 315–323. (Visited on
2018-08-27).

52

http://papers.nips.cc/paper/5711-stopwasting-my-gradients-practical-svrg.pdf
http://papers.nips.cc/paper/5711-stopwasting-my-gradients-practical-svrg.pdf
//www.springer.com/gp/book/9783319483108
//www.springer.com/gp/book/9783319483108
https://doi.org/10.1137/141000671
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1145/1961189.1961199
http://jmlr.org/papers/v19/16-241.html
http://jmlr.org/papers/v19/16-241.html
https://doi.org/10.1007/s10107-020-01506-0

References

[11] J. Konečný and P. Richtárik. “Semi-Stochastic Gradient Descent Methods”.
Frontiers in Applied Mathematics and Statistics 3 (2017). DOI: 10.3389/
fams.2017.00009.

[12] D. Kovalev, S. Horváth, and P. Richtárik. “Don’t Jump Through Hoops and
Remove Those Loops: SVRG and Katyusha are Better Without the Outer
Loop”. In: Proceedings of the 31st International Conference on Algorithmic
Learning Theory. PMLR, 2020, pp. 451–467.

[13] N. Le Roux, M. Schmidt, and F. Bach. “A Stochastic Gradient Method with
an Exponential Convergence Rate for Finite Training Sets”. In: Advances in
Neural Information Processing Systems 25. Curran Associates, Inc., 2012,
pp. 2663–2671. (Visited on 2018-12-14).

[14] D. Needell, R. Ward, and N. Srebro. “Stochastic Gradient Descent, Weighted
Sampling, and the Randomized Kaczmarz algorithm”. In: Advances in
Neural Information Processing Systems 27. Curran Associates, Inc., 2014,
pp. 1017–1025. (Visited on 2018-08-27).

[15] Y. Nesterov. “Efficiency of Coordinate Descent Methods on Huge-Scale Op-
timization Problems”. SIAM Journal on Optimization 22:2 (2012), pp. 341–
362. DOI: 10.1137/100802001.

[16] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. “SARAH: A Novel
Method for Machine Learning Problems Using Stochastic Recursive Gra-
dient”. In: Proceedings of the 34th International Conference on Machine
Learning - Volume 70. ICML’17. JMLR.org, Sydney, NSW, Australia, 2017,
pp. 2613–2621. URL: http : / / proceedings . mlr . press / v70 /
nguyen17b.html (visited on 2020-04-30).

[17] X. Qian, Z. Qu, and P. Richtárik. “SAGA with Arbitrary Sampling”. In: Pro-
ceedings of the 36th International Conference on Machine Learning. PMLR,
2019, pp. 5190–5199. URL: https://proceedings.mlr.press/v97/
qian19a.html (visited on 2021-09-27).

[18] Z. Qu and P. Richtárik. “Coordinate Descent with Arbitrary Sampling I: Al-
gorithms and Complexity”. Optimization Methods and Software 31:5 (2016),
pp. 829–857. DOI: 10.1080/10556788.2016.1190360.

[19] Z. Qu, P. Richtárik, and T. Zhang. “Quartz: Randomized Dual Coordinate
Ascent with Arbitrary Sampling”. In: Advances in Neural Information Pro-
cessing Systems 28. Curran Associates, Inc., 2015, pp. 865–873. (Visited on
2018-08-27).

[20] P. Richtárik and M. Takáč. “Iteration Complexity of Randomized Block-
Coordinate Descent Methods for Minimizing a Composite Function”. Math-
ematical Programming 144:1 (2014), pp. 1–38. DOI: 10.1007/s10107-
012-0614-z.

53

https://doi.org/10.3389/fams.2017.00009
https://doi.org/10.3389/fams.2017.00009
https://doi.org/10.1137/100802001
http://proceedings.mlr.press/v70/nguyen17b.html
http://proceedings.mlr.press/v70/nguyen17b.html
https://proceedings.mlr.press/v97/qian19a.html
https://proceedings.mlr.press/v97/qian19a.html
https://doi.org/10.1080/10556788.2016.1190360
https://doi.org/10.1007/s10107-012-0614-z
https://doi.org/10.1007/s10107-012-0614-z

Paper I. Sampling And Update Frequences in PVRSG Methods

[21] P. Richtárik and M. Takáč. “Parallel Coordinate Descent Methods for Big
Data Optimization”. Mathematical Programming 156:1 (2016), pp. 433–484.
DOI: 10.1007/s10107-015-0901-6.

[22] H. Robbins and S. Monro. “A Stochastic Approximation Method”. The An-
nals of Mathematical Statistics 22:3 (1951), pp. 400–407. URL: https://
www.jstor.org/stable/2236626 (visited on 2019-07-30).

[23] M. Schmidt, R. Babanezhad, M. Ahmed, A. Defazio, A. Clifton, and A.
Sarkar. “Non-Uniform Stochastic Average Gradient Method for Training
Conditional Random Fields”. In: Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Statistics. Vol. 38. Proceedings of
Machine Learning Research. PMLR, 2015, pp. 819–828. URL: http://
proceedings.mlr.press/v38/schmidt15.html (visited on 2020-02-
21).

[24] M. Schmidt, N. Le Roux, and F. Bach. “Minimizing Finite Sums with the
Stochastic Average Gradient”. Mathematical Programming 162:1 (2017),
pp. 83–112. DOI: 10.1007/s10107-016-1030-6.

[25] O. Sebbouh, N. Gazagnadou, S. Jelassi, F. Bach, and R. Gower. “Towards
Closing the Gap between the Theory and Practice of SVRG”. In: Advances
in Neural Information Processing Systems 32. Curran Associates, Inc., 2019,
pp. 648–658. URL: http://papers.nips.cc/paper/8354-towards-
closing-the-gap-between-the-theory-and-practice-of-svrg.
pdf (visited on 2020-05-24).

[26] T. Strohmer and R. Vershynin. “A Randomized Kaczmarz Algorithm with
Exponential Convergence”. Journal of Fourier Analysis and Applications
15:2 (2008), p. 262. DOI: 10.1007/s00041-008-9030-4.

[27] M. Takáč, P. Richtárik, and N. Srebro. Distributed Mini-Batch SDCA. 2015.
arXiv: 1507.08322. URL: http://arxiv.org/abs/1507.08322 (visited
on 2018-08-27).

[28] L. Xiao and T. Zhang. “A Proximal Stochastic Gradient Method with Pro-
gressive Variance Reduction”. SIAM Journal on Optimization 24:4 (2014),
pp. 2057–2075. DOI: 10.1137/140961791.

[29] X. Zhang, W. B. Haskell, and Z. Ye. “A Unifying Framework for Variance-
Reduced Algorithms for Findings Zeroes of Monotone operators”. Journal of
Machine Learning Research 23:60 (2022), pp. 1–44. URL: http://jmlr.
org/papers/v23/19-513.html (visited on 2022-08-18).

[30] P. Zhao and T. Zhang. “Stochastic Optimization with Importance Sampling
for Regularized Loss Minimization”. In: Proceedings of the 32nd Interna-
tional Conference on Machine Learning. Vol. 37. Proceedings of Machine
Learning Research. PMLR, 2015, pp. 1–9. URL: http://proceedings.
mlr.press/v37/zhaoa15.html (visited on 2018-08-27).

54

https://doi.org/10.1007/s10107-015-0901-6
https://www.jstor.org/stable/2236626
https://www.jstor.org/stable/2236626
http://proceedings.mlr.press/v38/schmidt15.html
http://proceedings.mlr.press/v38/schmidt15.html
https://doi.org/10.1007/s10107-016-1030-6
http://papers.nips.cc/paper/8354-towards-closing-the-gap-between-the-theory-and-practice-of-svrg.pdf
http://papers.nips.cc/paper/8354-towards-closing-the-gap-between-the-theory-and-practice-of-svrg.pdf
http://papers.nips.cc/paper/8354-towards-closing-the-gap-between-the-theory-and-practice-of-svrg.pdf
https://doi.org/10.1007/s00041-008-9030-4
https://arxiv.org/abs/1507.08322
http://arxiv.org/abs/1507.08322
https://doi.org/10.1137/140961791
http://jmlr.org/papers/v23/19-513.html
http://jmlr.org/papers/v23/19-513.html
http://proceedings.mlr.press/v37/zhaoa15.html
http://proceedings.mlr.press/v37/zhaoa15.html

Paper II

Cocoercivity, Smoothness and Bias in
Variance-Reduced Stochastic Gradient

Methods

Martin Morin Pontus Giselsson

Abstract

With the purpose of examining biased updates in variance-reduced stochastic
gradient methods, we introduce SVAG, a SAG/SAGA-like method with ad-
justable bias. SVAG is analyzed in a cocoercive root-finding setting, a setting
which yields the same results as in the usual smooth convex optimization set-
ting for the ordinary proximal-gradient method. We show that the same is not
true for SVAG when biased updates are used. The step-size requirements for
when the operators are gradients are significantly less restrictive compared to
when they are not. This highlights the need to not rely solely on cocoercivity
when analyzing variance-reduced methods meant for optimization. Our anal-
ysis either match or improve on previously known convergence conditions for
SAG and SAGA. However, in the biased cases they still do not correspond well
with practical experiences and we therefore examine the effect of bias numer-
ically on a set of classification problems. The choice of bias seem to primarily
affect the early stages of convergence and in most cases the differences vanish
in the later stages of convergence. However, the effect of the bias choice is still
significant in a couple of cases.

Originally published in Numerical Algorithms. Reprinted with permission (Creative
Commons Attribution 4.0 International License). Minor corrections of typos in the
published version have been made to this version.

55

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

1. Introduction

Variance-reduced stochastic gradient (VR-SG) methods is a family of iterative op-
timization algorithms that combine the low per-iteration computational cost of the
ordinary stochastic gradient descent and the attractive convergence properties of
gradient descent. Just as ordinary stochastic gradient descent, VR-SG methods solve
smooth optimization problems on finite sum form,

min
x∈RN

1
n

∑n

i=1
fi(x) (1)

where, for all i ∈ {1, . . . ,n}, fi : RN → R is a convex function that is L-smooth, i.e.,
fi is differentiable with L-Lipschitz continuous gradient. These types of problems
are common in model fitting, supervised learning, and empirical risk minimization
which, together with the nice convergence properties of VR-SG methods, has lead
to a great amount of research on VR-SG methods and the development of several
different variants, e.g., [1, 15, 16, 21, 22, 23, 24, 25, 27, 30, 33, 40, 41, 43, 45].

Broadly speaking, VR-SG methods form a stochastic estimate of the objective
gradient by combining one or a few newly evaluated terms of the gradient with
previously evaluated terms. Classic examples of this can be seen in the SAG [27,
40] and SAGA [15] algorithms. Given some initial iterates x0,y0

1, . . . ,y
0
n ∈ R

N and
step-size λ > 0, SAGA samples ik uniformly from {1, . . . ,n} and then updates the
iterates as

xk+1 = xk −λ
(
∇ fik (x

k)− yk
ik
+ 1

n

∑n

j=1
ykj

)
,

yk+1
ik
= ∇ fik (x

k),

yk+1
j = ykj for all j , ik,

for k ∈ {0,1, . . . }. The update of xk+1 is said to be unbiased since the expected value
of xk+1 at iteration k is equal to an ordinary gradient descent update. This is in
contrast to the biased SAG, which is identical to SAGA except that the update of
xk+1 is

xk+1 = xk −λ
(

1
n

(
∇ fik (x

k)− yk
ik

)
+ 1

n

∑n

j=1
ykj

)
and the expected value of xk+1 now includes a term containing the old gradients
1
n

∑n
i=1 y

k
i . Although SAG shows that unbiasedness is not essential for the conver-

gence of VR-SG methods, the effects of this bias are unclear. The majority of VR-
SG methods are unbiased but existing works have not established any clear advan-
tage of either the biased SAG or the unbiased SAGA. This paper will examine the
effect of bias and its interplay with different problem assumptions for SAG/SAGA-
like methods.

56

1 Introduction

1.1 Problem and Algorithm
Instead of solving (1) directly, we consider a closely related but more general root-
finding problem. Throughout the paper, we consider the Euclidean space RN and
the problem of finding x ∈ RN such that

0 = Rx B 1
n

∑n

i=1
Ri x (2)

where Ri : RN → RN is 1
L -cocoercive—see Section 2—for all i ∈ {1, . . . ,n}. Since

L-smoothness of a convex function is equivalent to 1
L -cocoercivity of the gradient

[2, Corollary 18.17], the smooth optimization problem in (1) can be recovered by
setting Ri = ∇ fi for all i ∈ {1, . . . ,n} in (2). Problem (2) is also interesting in its own
right with it and the closely related fixed point problem of finding x ∈ RN such that
x = (Id−αR)x where α ∈ (0,2L−1) both having applications in for instance feasi-
bility and non-linear signal recovery problems, see [8, 10, 13] and the references
therein. To solve this problem, we present the Stochastic Variance Adjusted Gradi-
ent (SVAG) algorithm.

Algorithm 1.1 SVAG
input operators Ri :RN→RN , initial state x0 ∈RN and y0

1, . . . ,y
0
n ∈R

N , step-size
λ > 0, innovation weight θ ∈ R
for k = 0,1, . . . do

Sample ik uniformly from {1, . . . ,n}
xk+1 = xk −λ

(
θ
n

(
Rik xk − yk

ik

)
+ 1

n

∑n
j=1 y

k
j

)
yk+1
ik
= Rik xk

yk+1
j = ykj for all j , ik

end for

SVAG is heavily inspired by SAG and SAGA with both being special cases,
θ = 1 and θ = n respectively. Just like SAG and SAGA, in each iteration, SVAG
evaluates one operator Rik and stores the results in yk+1

ik
. An estimate of the full

operator is then formed as

Rxk ≈ R̃k = θ
n (Rik xk − yk

ik
)+ 1

n

∑n

j=1
ykj .

The scalar θ determine how much weight should be put on the new information
gained from evaluating Rik xk . If the innovation, Rik xk − yk

ik
, is highly correlated

with the total innovation, Rxk − 1
n

∑n
j=1 y

k
j , a large innovation weight θ can be cho-

sen and vice versa. The innovation weight θ also determines the bias of SVAG.
Taking the expected value R̃k given the information at iteration k gives

E[R̃k |xk,yk1 , . . . ,y
k
n] =

θ
n Rxk + (1− θ

n)
1
n

∑n

j=1
ykj

57

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

which reveals that R̃k is an unbiased estimate of Rxk if θ = n, i.e., in the SAGA case.
Any other choice, for instance SAG where θ = 1, yields a bias towards 1

n

∑n
j=1 y

k
j .

1.2 Contribution
The theory behind finding roots of monotone operators in general, and cocoercive
operators in particular, has been put to good use when analyzing first order opti-
mization methods, examples include [2, 4, 14, 26, 38, 44]. For instance can both
the proximal-gradient and ADMM methods be seen as instances of classic root-
finding fixed-point iterations and analyzed as such, namely forward-backward and
Douglas–Rachford respectively. The resulting analyses can often be simple and in-
tuitive and even though the root-finding formulation is more general—not all coco-
ercive operators are gradients of convex functions—the analyses are not necessarily
more conservative. For example, analyzing proximal-gradient as forward-backward
splitting yields the same rates and step-size conditions as analyzing it as a minimiza-
tion method in the smooth/cocoercive setting, see for instance [32, Theorem 2.1.14]
and [2, Example 5.18 and Proposition 4.39]. However, the main contribution of this
paper is to show that the same is not true for VR-SG methods, in particular it is not
true for SVAG when it is biased.

The results consist of two main convergence theorems for SVAG: one in the
cocoercive operator case and one in the cocoercive gradient case, the later being
equivalent to the minimization of a smooth and convex finite sum. Both of these
theorems match or improve upon previously known results for the SAG and SAGA
special cases. Comparing the two settings reveal that SVAG can use significantly
larger step-sizes, with faster convergence as a result, in the cocoercive gradient case
compared to the general cocoercive operator case. In the operator case, an upper
bound on the step-size that scales as O(n−1) is found where n is the number of
terms in (2). However, the restrictions on the step-size loosen with reduced bias
and the unfavorable O(n−1) scaling disappears completely when SVAG is unbiased.
In the gradient case, this bad scaling never occurs, regardless of bias. We provide
examples in which SVAG diverges with step-sizes larger than the theoretical upper
bounds in the operator case. Since the gradient case is proven to converge with much
larger step-sizes, this verifies the difference between the convergence behavior of
cocoercive operators and gradients.

These results indicate that it is inadvisable to only rely on the more general
monotone operator theory and not explicitly use the gradient property when analyz-
ing VR-SG methods meant for optimization. However, the large impact of bias in
the cocoercive operator setting also raises the question regarding its importance in
other non-gradient settings as well. One such setting of interest, where the operators
are not gradients of convex functions, is the case of saddle-point problems. These
problems are of importance in optimization due to their use in primal-dual methods
but recently they have also gained a lot of attention due to their applications in the
training of GANs in machine learning. Because of this, and due to the attractive

58

1 Introduction

properties of VR-SG methods in the convex optimization setting, efforts have gone
into applying VR-SG methods to saddle-point problems as well [5, 7, 34, 42, 46].
Most of these efforts have been unbiased, something our analysis suggests is wise.
With that said, it is important to note that our analysis is often not directly applicable
due the fact that saddle-point problems rarely are cocoercive.

The main reason for the recent rise in popularity of variance-reduced stochastic
methods is their use in the optimization setting, but, although bias plays a big role in
the cocoercive operator case, our results are not as clear in this setting. For instance,
the theoretical results for the SAG and SAGA special cases yield identical rates and
step-size conditions with no clear advantage to either special case. Further experi-
ments are therefore performed where several different choices of bias in SVAG are
examined on a set of logistic regression and SVM optimization problems. However,
the results of these experiments are in line with existing works with no significant
advantage of any particular bias choice in SVAG. Although the performance dif-
ference is significant in some cases, no single choice of bias performs best for all
problems and all bias choices eventually converge with the same rate in the ma-
jority of the cases. Furthermore, the theoretical maximal step-size can routinely be
exceeded in these experiments, indicating that there is room for further theoretical
improvements.

1.3 Related Work
There is a large array of options for solving (2). For n ∈ {1,2,3,4}, several operator
splitting methods exist with varying assumptions on the operator properties, see for
instance [4, 18, 19, 28, 29, 44] and the references therein. However, while these
methods also can be applied for larger n by simply regrouping the terms, they do
not utilize the finite sum structure of the problem. Algorithms have therefore been
designed to utilize this structure for arbitrary large n with the hopes of reducing the
total computational costs, e.g., [9, 10, 11, 36]. In particular the problem and method
in [10] is closely related to the root-finding problem and algorithm considered in
this paper.

Using the notation of [10], when T0 = Id, the fixed point problem of [10] can be
mapped to (2) via Ri =ωi(Id−Ti) and vice verse. 1 Many applications considered in
[10] can therefore, at least in part, be tackled with our algorithm as well. In partic-
ular, the problem of finding common fixed points of firmly nonexpansive operators
can directly be solved by our algorithm. However, [10] is more general in that it
allows for T0 , Id and works in general real Hilbert spaces. Looking at the algo-
rithm of [10] we see that, just as our algorithm is a generalization of SAG/SAGA,
it can be seen as a generalization of Finito [16], another classic VR-SG method.
It generalize Finito in several way, for instance it allows for an additional proxi-
mal/backward step and it replaces the stochastic selection with a different selection
criteria. However, in the optimization setting it still suffers from the same drawback

1 If Ti is αi -averaged, as assumed in [10], Ri is (2αiωi)
−1-cocoercive.

59

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

as Finito when compared to SAG/SAGA-like algorithms. It still needs to store a full
copy of the iterate for each term in objective. Since SAG, SAGA, and SVAG only
need to store the gradient of each term, they can utilize any potential structure of the
gradients to reduce the storage requirements [27]. Although the differences above
are interesting in their own right, the notion of bias we examine in this paper is not
applicable to Finito-like algorithms.

SAG and SAGA were compared in [15] but with no direct focus on the effects of
bias. Other examples of research on SAG and SAGA include acceleration, sampling
strategy selection, and ways to reduce the memory requirement [20, 22, 31, 35, 39,
47]. However, none of these works, including [31] that was written by the authors,
analyze the biased case we consider in this paper. Even the works considering non-
uniform sampling of gradients [20, 31, 35, 39] perform some sort of bias correction
in order to remain unbiased. Furthermore, in order to keep the focus on the effects
of the bias we have refrained from bringing in such generalizations into this work,
making it distinct from the above research. To the authors’ knowledge, the only
theoretical convergence result for biased VR-SG methods are the ones for SAG [27,
40]. But, since they only consider SAG, they fail to capture the breadth of SVAG
and our proof is the first to simultaneously capture SAG, SAGA, and more.

Since the release of the first preprint of this paper, [17] has also provided a
proof covering the gradient case of both SAG and SAGA, and some choices of
bias in SVAG. All though [17] does not consider cocoercive operators, it is some
sense more general with them considering a general biased stochastic estimator of
the gradient. This generality comes at the cost of a more conservative analysis with
their step-size scaling with O(n−1) in all cases.

2. Preliminaries and Notation

Let R denote the real numbers and let the natural numbers be denoted N =
{0,1,2, . . . }. Let 〈·, ·〉 denote the standard Euclidean inner product and ‖·‖ =

√
〈·, ·〉

the standard 2-norm. The scaled inner product and norm we denote as 〈·, ·〉Σ =
〈Σ(·), ·〉 and ‖·‖Σ =

√
〈·, ·〉Σ where Σ is a positive definite matrix. If Σ is not positive

definite, ‖·‖Σ is not a norm but we keep the notation for convenience.
Let n be the number of operators in (2). The vector 1 is the vector of all ones in

Rn and ei is the vector in Rn of all zeros except the i:th element which contains a 1.
The matrix I is an identity matrix with the size derived from context and Ei = eieTi .

The symbol ⊗ denotes the Kronecker product of two matrices. The Kronecker
product is linear in both arguments and the following properties hold

(A⊗ B)T = AT ⊗ BT , (A⊗ B)(C ⊗D) = (AC) ⊗ (BD).

In the last property it is assumed that the dimensions are such that the matrix multi-
plications are well defined. The eigenvalues of A⊗ B are given by

τiµj for all i ∈ {1, . . . ,m}, j ∈ {1, . . . ,l} (3)

60

2 Preliminaries and Notation

where τi and µj are the eigenvalues of A and B respectively.
The Cartesian product of two sets C1 and C2 is defined as

C1×C2 = {(c1,c2) | c1 ∈ C1,c2 ∈ C2}.

From this definition we see that if C1 and C2 are closed and convex, so is C1×C2.
Let X? be the set of all solutions of (2),

X? = {x | 0 = 1
n

∑n
i=1Ri x}

and define Z? as the set of primal-dual solutions

Z? = {(x,R1x, . . . ,Rnx) | 0 = 1
n

∑n
i=1Ri x}.

Assuming they exists, x? denotes a solution to (2) and z? denotes a primal-dual
solution, i.e., x? ∈ X? and z? ∈ Z?.

A single valued operator R : RN → RN is 1
L -cocoercive if

〈Rx−Ry,x− y〉 ≥ 1
L ‖Rx−Ry‖2 (4)

holds for all x,y ∈ RN . An operator that is 1
L -cocoercive is L-Lipschitz continuous.

The set of zeros of a cocoercive operator R is closed and convex.
A differentiable convex function f : RN → R is called L-smooth if the gradient

is 1
L -cocoercive. Equivalently, a differentiable convex function is L-smooth if

f (y) ≤ f (x)+ 〈∇ f (x),y− x〉+ L
2 ‖y− x‖2 (5)

holds for all x,y ∈ RN .
If fi : RN → R is a differentiable convex function for each i ∈ {1, . . . ,n}, the

minimization of
∑n

i=1 fi(x) is equivalent to (2) with Ri = ∇ fi .
For more details regarding monotone operators and convex functions see [2, 32].
To establish almost sure sequence convergence of the stochastic algorithm, the

following propositions will be used. The first is from [37] and establishes conver-
gence of non-negative almost super-martingales. The second is based on [12] and
provides the tool to show almost sure sequence convergence.

PROPOSITION 2.1
Let (Ω,F ,P) be a probability space and F0 ⊂ F1 ⊂ . . . be a sequence of sub-σ-
algebras of F . For all k ∈ N, let zk , βk , ξk and ζk be non-negative Fk-measurable
random variables. If

∑∞
i=0 β

i <∞,
∑∞

i=0 ξ
i <∞ and

E[zk+1 |Fk] ≤ (1+ βk)zk + ξk − ζk

hold almost surely for all k ∈ N, then zk converges a.s. to a finite valued random
variable and

∑∞
i=0 ζ

i <∞ almost surely.

61

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

Proof. See [37, Theorem 1]. �

PROPOSITION 2.2
Let Z be a non-empty closed subset of a finite dimensional Hilbert space H, let φ :
[0,∞)→ [0,∞) be a strictly increasing function such that φ(t) →∞ as t→∞, and
let (xk)k∈N be a sequence of H-valued random variables. If φ(‖xk − z‖) converges
a.s. to a finite valued non-negative random variable for all z ∈ Z, then the following
hold:

(i) (xk)k∈N is bounded almost surely.

(ii) Suppose the cluster points of (xk)k∈N are a.s. in Z, then (xk)k∈N converge a.s.
to a Z-valued random variable.

Proof. In finite dimensional Hilbert spaces, these two statements are the same as
statements (ii) and (iv) of [12, Proposition 2.3]. Hence, consider the proof of [12,
Proposition 2.3] restricted to finite dimensional Hilbert spaces. The proof of (ii) in
[12, Proposition 2.3] only relies on the a.s. convergence of φ(‖xk − z‖) and hence
is implied by the assumptions of this proposition. This proves our first statement.
The proof of (iv) in [12, Proposition 2.3] only relies on (iii) of [12, Proposition 2.3]
which in turn is implied by (ii) of [12, Proposition 2.3], i.e., our first statement. This
proves our second statement. �

3. Convergence

Throughout the analysis we will use the following two assumptions on the operators
in (2).

ASSUMPTION 3.1
For each i ∈ {1, . . . ,n}, let Ri be 1

L -cocoercive and X? , ∅, i.e., (2) has at least one
solution.

ASSUMPTION 3.2
For each i ∈ {1, . . . ,n}, let Ri = ∇ fi for some differentiable function fi and define
F = 1

n

∑n
i=1 fi . Furthermore, let Assumption 3.1 hold, i.e., fi is L-smooth and convex

and argmin F(x) exists.

3.1 Reformulation
We begin by formalizing and reformulating Algorithm 1.1 into a more conve-
nient form. Let (Ω,F ,P) be the underlying probability space of Algorithm 1.1.
The index selected at iteration k is then a uniformly distributed random variable
ik : Ω→ {1, . . . ,n}. For each k ∈ N, define the random variable zk : Ω→ RN (n+1)

as zk = (xk,yk1 , . . . ,y
k
n) where xk and yki for i ∈ {1, . . . ,n} are the iterates of Algo-

rithm 1.1. Let F0 ⊂ F1 ⊂ . . . be a sequence of sub-σ-algebras of F such that zk are
Fk-measurable and ik is independent of Fk . With the operator B : RN (n+1)→ R2Nn

62

3 Convergence

defined as B(x,y1, . . . ,yn) = (R1x, . . . ,Rnx,y1, . . . ,yn), one iteration of Algorithm 1.1
can be written as

zk+1 = zk −(Uik ⊗ I)Bzk (6)

where z0 ∈ RN (n+1) is given and

Ui =

[
λ
n θeTi −λn θeTi +

λ
n1T

−Ei Ei

]
for all i ∈ {1, . . . ,n}. The vector ei and the matrix Ei are defined in Section 2.

The following lemma characterizes the zeros of (Ui ⊗ I)B and hence the fixed
points of (6) and Algorithm 1.1.

LEMMA 3.3
Let Assumption 3.1 hold, each z? in Z? is then a zero of (Ui ⊗ I)B for all i ∈
{1, . . . ,n}, i.e.

∀z? ∈ Z?,∀i ∈ {1, . . . ,n} : 0 = (Ui ⊗ I)Bz?.

Furthermore, the set Z? is closed and convex and Ri x? = Ri x̄? for all x?, x̄? ∈ X?

and for all i ∈ {1, . . . ,n}.

Proof of Lemma 3.3. The zero statement, 0 = (Ui ⊗ I)Bz?, follows from definition
of z?. For closedness and convexity of Z?, we first prove that Ri x? is unique for
each i ∈ {1, . . . ,n}. Taking x,y ∈ X?, which implies

∑n
i=1Ri x =

∑n
i=1Riy = 0, and

using cocoercivity (4) of each Ri gives

0 = 〈
∑n

i=1Ri x−
∑n

i=1Riy,x− y〉 =
∑n

i=1〈Ri x−Riy,x− y〉

≥
∑n

i=1
1
L ‖Ri x−Riy‖

2 ≥ 0,

hence must Ri x = Riy for all i ∈ {1, . . . ,n}. The set Z? is a Cartesian product of
X? and the points ri = Ri x? for i ∈ {1, . . . ,n} for any x? ∈ X?. A set consisting of
only one point is closed and convex and X? is closed and convex since 1

n

∑n
i=1 Ri is

cocoercive [2, Proposition 23.39], hence is Z? closed and convex. �

The operator B in the reformulated algorithm can be used to enforce the follow-
ing property on the sequence (zk)k∈N.

LEMMA 3.4
Let (Ω,F ,P) be a probability space and (zk)k∈N be a sequence of random variables
zk : Ω → RN (n+1). If Bzk → Bz? a.s. where z? ∈ Z?, then any cluster point of
(zk)k∈N will almost surely be in Z?.

63

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

Proof of Lemma 3.4. Let z be a cluster point of (zk)k∈N. Take an ω ∈ Ω such that
Bzk(ω) → Bz?. For this ω and for all k ∈ N, we define the realizations of z and zk

as

z(ω) = (x̄, ȳ1, . . . , ȳn), zk(ω) = (x̄k, ȳk1 , . . . , ȳ
k
n)

where x̄, ȳ1, . . . , ȳn ∈ R
N and x̄k, ȳk1 , . . . , ȳ

k
n ∈ R

N for all k ∈ N.
Since Bz̄k → Bz? we directly have ȳki → Ri x? for x? ∈ X? and hence must

ȳi = Ri x? for all i ∈ {1, . . . ,n}. Note, Ri x? is independent of which x? ∈ X? was
chosen, see Lemma 3.3. Furthermore, Bz̄k → Bz̄? implies that Ri x̄k → Ri x? for all
i ∈ {1, . . . ,n}. Let (x̄k(l))l∈N be a subsequence converging to x̄, then

‖ 1
n

∑n
i=1 Ri x̄‖ ≤ ‖ 1

n

∑n
i=1 Ri x̄k(l)− 1

n

∑n
i=1 Ri x̄‖+ ‖ 1

n

∑n
i=1 Ri x̄k(l)‖

≤ L‖ x̄k(l)− x̄‖+ ‖ 1
n

∑n
i=1 Ri x̄k(l)‖ → ‖ 1

n

∑n
i=1 Ri x?‖ = 0

as l→∞ where L-Lipschitz continuity of 1
n

∑n
i=1 Ri was used. This concludes that

x̄ ∈ X? and since ȳi = Ri x? = Ri x̄ for all i ∈ {1, . . . ,n} by Lemma 3.3, we have that
z(ω) ∈ Z?. Since this hold for any ω such that Bzk(ω) → Bz? and the set in F of
all such ω have probability one due to the almost sure convergence of Bzk → Bz?,
we have z ∈ Z? almost surely. �

The reformulation (6) further allows us to concisely formulate two Lyapunov
inequalities.

LEMMA 3.5
Let Assumption 3.1 hold, the update (6) then satisfies

E[‖zk+1− z?‖2H⊗I |Fk]

≤ ‖zk − z?‖2H⊗I − ‖Bzk −Bz?‖2
(2M−E[UT

ik
HU

ik
]−ξ I)⊗I

− ξnL〈Rxk,xk − x?〉

for all k ∈ N and ξ ∈ [0, 2λ
nL], where the matrices H and M are given by

H =

[
1 −λn (n− θ)1

T

−λn (n− θ)1
λ
L I + λ2

n2 (n− θ)211T

]
and

M =
[

2 −1
−1 2

]
⊗

1
2n

λ

L
I −

[
0 1
1 0

]
⊗
λ2

2n2 (n− θ)11T .

64

3 Convergence

LEMMA 3.6
Let Assumption 3.2 hold, the update (6) then satisfies

E[F((K ⊗ I)zk+1)|Fk] ≤ F((K ⊗ I)zk)− ‖Bzk −Bz?‖21
2 S⊗I

for all k ∈ N, where K =
[
1 λ

n1T
]

and

S =
[

2 −1
−1 0

]
⊗ (θ −1)

λ

n3 11T −
[

1 −1
−1 1

]
⊗ (θ −1)2

Lλ2

n3 I

+

[
0 1
1 0

]
⊗
λ

n2 11T .

Proof of Lemma 3.5. Take k ∈ N, note that since Uik is independent of Fk and zk
is Fk-measurable we have

E[〈(Uik ⊗ I)(Bzk −Bz?),zk − z?〉H⊗I |Fk]

= 〈(HE[Uik] ⊗ I)(Bzk −Bz?),zk − z?〉.

The matrix HE[Uik] is given by

HE[Uik] =

[
λ
n1T 0

−λ
2

n2 (n− θ)11T − λ
nL I λ

nL I

]
,

see the supplementary material for verification of this and other matrix identities.
We also note that

〈Rxk −Rx?,xk − x?〉 = 〈(
[1
n1T 0
0 0

]
⊗ I)(Bzk −Bz?),zk − z?〉.

Taking ξ ∈ [0, 2λ
nL] and putting these two expression together yield

E[〈(Uik ⊗ I)(Bzk −Bz?),zk − z?〉H⊗I |Fk]−
ξnL

2 〈Rxk −Rx?,xk − x?〉

= 〈(

[
(λn −

ξL
2)1

T 0
−λ

2

n2 (n− θ)11T − λ
nL I λ

nL I

]
⊗ I)(Bzk −Bz?),zk − z?〉.

Using 1
L -cocoercivity of Ri for each i ∈ {1, . . . ,n} gives

E[〈(Uik ⊗ I)(Bzk −Bz?),zk − z?〉H⊗I |Fk]−
ξnL

2 〈Rxk −Rx?,xk − x?〉

≥ 〈(

[
(λnL −

ξ
2)I 0

−λ
2

n2 (n− θ)11T − λ
nL I λ

nL I

]
⊗ I)(Bzk −Bz?),Bzk −Bz?〉

65

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

Setting

M̄ =

[
λ
nL I 0

−λ
2

n2 (n− θ)11T − λ
nL I λ

nL I

]
gives

E[〈(Uik ⊗ I)(Bzk −Bz?),zk − z?〉H⊗I |Fk]−
ξnL

2 〈Rxk −Rx?,xk − x?〉

≥ 〈(M̄ ⊗ I)(Bzk −Bz?),Bzk −Bz?〉

− 〈(

[ξ
2 I 0
0 0

]
⊗ I)(Bzk −Bz?),Bzk −Bz?〉

≥ ‖Bzk −Bz?‖21
2 (M̄+M̄

T)⊗I
−
ξ
2 ‖Bzk −Bz?‖2

= ‖Bzk −Bz?‖2
(M−

ξ
2 I)⊗I

where M = 1
2 (M̄ + M̄T) is the matrix in the statement of the lemma. Finally, using

this inequality and 0 = (Uik ⊗ I)Bz? from Lemma 3.3 gives

E[‖zk+1− z?‖2H⊗I |Fk]

= E[‖
(
zk −(Uik ⊗ I)Bzk

)
−

(
z?−(Uik ⊗ I)Bz?

)
‖2H⊗I |Fk]

= ‖zk − z?‖2H⊗I +E[‖(Uik ⊗ I)(Bzk −Bz?)‖2H⊗I |Fk]

−2E[〈(Uik ⊗ I)(Bzk −Bz?),zk − z?〉H⊗I |Fk]

≤ ‖zk − z?‖2H⊗I + ‖Bzk −Bz?‖2
E[UT

ik
HU

ik
]⊗I

− ‖Bzk −Bz?‖2
(2M−ξ I)⊗I − ξnL〈Rxk −Rx?,xk − x?〉

= ‖zk − z?‖2H⊗I − ‖Bzk −Bz?‖2
(2M−E[UT

ik
HU

ik
]−ξ I)⊗I

− ξnL〈Rxk,xk − x?〉. �

Proof of Lemma 3.6. Take k ∈ N and note that

(K ⊗ I)zk+1 = (K ⊗ I)(zk −(Uik ⊗ I)Bzk) = xk −(Qik ⊗ I)Bzk

where Qik =
λ
n

[
(θ −1)eT

ik
−(θ −1)eT

ik

]
. Furthermore, with G = 1

n

[
1T 0

]
, we

have ∇F(xk) = (G ⊗ I)Bzk . From the definition of z? we have 0 = (G ⊗ I)Bz? =

66

3 Convergence

(Qik ⊗ I)Bz?. Using L-smoothness, (5), of F yields

E[F((K ⊗ I)zk+1)|Fk]

= E[F(xk −(Qik ⊗ I)Bzk)|Fk]

≤ F(xk)− 〈∇F(xk),(E[Qik] ⊗ I)Bzk〉+ L
2 E[‖(Qik ⊗ I)Bzk ‖2 |Fk]

= F(xk)− 〈(G ⊗ I)Bzk,(E[Qik] ⊗ I)Bzk〉+ ‖Bzk ‖2L
2 E[Q

T

ik
Q

ik
]⊗I

= F(xk)− ‖Bzk ‖21
2 E[Q

T

ik
G+GTQ

ik
]⊗I
+ ‖Bzk ‖2L

2 E[Q
T

ik
Q

ik
]⊗I

= F(xk)− ‖Bzk −Bz?‖21
2 SL ⊗I

where SL = E[QT
ik

G+GTQik − LQT
ik

Qik].
With D =

[
0 1T

]
we have (K ⊗ I)zk = xk + λ

n (D⊗ I)Bzk . Using the first order
convexity condition on F and 0 = (D⊗ I)Bz? = (G ⊗ I)Bz? yields

F((K ⊗ I)zk) = F(xk + λ
n (D⊗ I)Bzk)

≥ F(xk)+ 〈∇F(xk), λn (D⊗ I)Bzk〉

= F(xk)+ 〈(G ⊗ I)Bzk, λn (D⊗ I)Bzk〉

= F(xk)+ ‖Bzk ‖21
2
λ
n (D

TG+GTD)⊗I

= F(xk)+ ‖Bzk −Bz?‖21
2 SC ⊗I

(7)

where SC = λ
n (D

TG+GT D). Combining these two inequalities gives

E[F((K ⊗ I)zk+1)|Fk] ≤ F((K ⊗ I)zk)− ‖Bzk −Bz?‖21
2 S⊗I

where S = SL + SC . �

3.2 Convergence Theorems
We are now ready to state the main convergence theorems for SVAG. They are
stated with the notation from Algorithm 1.1 but are proved at the end of this section
with the help of the reformulation in (6) and the lemmas above.

THEOREM 3.7
For all i ∈ {1, . . . ,n}, let (xk)k∈N and (yki)k∈N be the sequences generated by Algo-
rithm 1.1. If Assumption 3.1 hold and the step-size, λ > 0, and innovation weight,
θ ∈ R, satisfy

1
L(2+ |n− θ |)

> λ,

67

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

then xk → x? and yki → Ri x? almost surely for all i ∈ {1, . . . ,n}, where x? is a
solution to (2). For all i ∈ {1, . . . ,n}, the residuals converge a.s. as

min
k∈{0,...,t }

E[‖Ri xk −Ri x?‖2] ≤ n
λ(L−1−λc)

1
t+1CR,

min
k∈{0,...,t }

E[‖yki −Ri x?‖2] ≤ n
λ(L−1−λc)

1
t+1CR

where c = 2+ |n− θ | and

CR = min
x∈X?

‖x0− x‖2+ λ
L

∑n
i=1‖y

0
i −Ri x?‖2+λ2(n− θ)2‖ 1

n

∑n
i=1y

0
i ‖

2

−2λ(n− θ)〈x0− x, 1
n

∑n
i=1y

0
i 〉

for any x? ∈ X?.

THEOREM 3.8
For all i ∈ {1, . . . ,n}, let (xk)k∈N and (yki)k∈N be the sequences generated by Algo-
rithm 1.1. If Assumption 3.2 hold and the step-size, λ > 0, and innovation weight,
θ ∈ [0,n], satisfy

1
L

1
2+ (n− θ) θ−1

n

(
θ−1
n −1+ θ−1

|θ−1 |
√

2
) > λ,

then xk → x? and yki → ∇ fi(x?) almost surely, where x? is a solution to (2). For
all i ∈ {1, . . . ,n}, the residuals converge a.s. as

min
k∈{0,...,t }

E[‖∇ fi(xk)−∇ fi(x?)‖2] ≤ n
λ(L−1−λc)

1
t+1 (CR +CF),

min
k∈{0,...,t }

E[‖yki −∇ fi(x?)‖2] ≤ n
λ(L−1−λc)

1
t+1 (CR +CF),

min
k∈{0,...,t }

E[F(xk)−F(x?)] ≤ 1
λ(1−Lλc)

1
t+1 (CR +CF)

where

c = 2+ (n− θ) θ−1
n

(
θ−1
n −1+ θ−1

|θ−1 |

√
2
)
,

CR = min
x∈X?

‖x0− x‖2+ λ
L

∑n
i=1‖y

0
i −Ri x?‖2+λ2(n− θ)2‖ 1

n

∑n
i=1y

0
i ‖

2

−2λ(n− θ)〈x0− x, 1
n

∑n
i=1y

0
i 〉,

CF = 2λ(n− θ)
(
F(x0+ λ

n

∑n
i=1y

0
i)−F(x?)

)
for any x? ∈ X?.

Both Theorem 3.7 and 3.8 give the step-size condition λ ∈ (0, 1
2L) for the SAGA

special case, i.e., θ = n. This is the same as the largest upper bound found in the

68

3 Convergence

literature [15] and appears to be tight [31]. Theorem 3.8 also give this step-size
condition when θ = 1, i.e., SAG in the optimization case. This bound improves on
upper bound of 1

16L ≤ λ presented in [40].
In the cocoercive operator setting with θ , n, Theorem 3.7 gives a step-size con-

dition that scales with n−1. This step-size scaling is significantly worse compared to
the gradient case in Theorem 3.8 in which the step-size’s dependence on n is O(1)
for all θ. This difference is indeed real and not an artifact of the analysis since we
in Section 4 present a problem for which the cocoercivity result appears to be tight.
A consequence of this unfavorable step-size scaling in the operator setting is slow
convergence. There is therefore little reason to use anything else than θ = n in SVAG
when Ri is not a gradient of a smooth function for all i ∈ {1, . . . ,n}.

The rates of Theorem 3.7 and 3.8 are of O(1
t+1) type with two sets of multiplica-

tive factors. One factor which only depend on the algorithm parameters, n
λ(L−1−λc)

,
and one set which depend on how the algorithm initialization relates to the solu-
tion set, CR and CR +CF . The initialization dependent factors also depend on the
algorithm parameters, but, since knowing the exact dependency requires knowing
the solution set, we will not attempt to tune the parameters to decrease this factor.
Only considering the first factor, the rate becomes better if c is decreased and, since
c is independent of λ, the best choice of step-size is λ = (2Lc)−1. This means that
λ = (4L)−1 and θ = n are the best parameter choices in the cocoercive operator set-
ting. In the optimization case the best step-size is also λ = (4L)−1 but the innovation
weight can be selected as either θ = n or θ = 1.

However, in the optimization case we do not believe that these theoretical rates
reflects real world performance and parameter choices based on them might there-
fore not perform particularly well. We base this belief on our experience with nu-
merical experiments. For θ , n and θ , 1, we have not found any optimization prob-
lem where the step-size condition in Theorem 3.8 appears to be tight. Also, using
λ = (2Lc)−1 as suggested by Theorem 3.8 can in some cases lead to impractically
small step-sizes. For instance, if λ = (2Lc)−1 was used in the experiments in Sec-
tion 4, a couple of the experiments would have step-sizes over 1000 times smaller
than the ones used now. One can of course not prove that a worst case analysis can
be improved with experiments but we still feel they indicate a conservative analysis,
even though the analysis improves on the previous best results.

Proof of Theorem 3.7. Apply Lemma 3.5 with ξ = 0, the iterates given by (6) then
satisfy the following for all z? ∈ Z?,

E[‖zk+1− z?‖2H⊗I |Fk]

≤ ‖zk − z?‖2H⊗I − ‖Bzk −Bz?‖2
(2M−E[UT

ik
HU

ik
])⊗I

.
(8)

Assuming H � 0 and 2M −E[UT
ik

HUik] � 0, Proposition 2.1 can be applied. We
will later prove that this assumption indeed does hold. Proposition 2.1 gives a.s.
summability of ‖Bzk −Bz?‖2

(2M−E[UT

ik
HU

ik
])⊗I

and hence will Bzk → Bz? almost

69

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

surely. Lemma 3.4 then gives that all cluster points of (zk)k∈N are in Z? almost
surely. Finally, since Proposition 2.1 ensures the a.s. convergence of ‖zk − z?‖2H⊗I
and since RN (n+1) with the inner product 〈(H ⊗ I)·, ·〉 is a finite dimensional Hilbert
space, Proposition 2.2 gives the almost sure convergence of zk → z? ∈ Z?.

There always exists a λ such that 2M −E[UT
ik

HUik] and H are positive definite.
First we show that H � 0 always holds for λ > 0. Taking the Schur complement of
1 in H gives

λ

L
I +

λ2

n2 (n− θ)
211T −

λ2

n2 (n− θ)
211T =

λ

L
I � 0.

Hence is H � 0 since the Schur complement is positive definite.
We now show 2M −E[UT

ik
HUik] � 0. Straightforward algebra, see the supple-

mentary material, yields

2M −E[UT
ik

HUik] =

[
1 0
0 1

]
⊗
λ

nL
I −

[
1 0
0 1

]
⊗
λ2

n
I +

[
0 1
1 0

]
⊗
λ2

n
(I −

1
n

11T)

−

[
0 1
1 0

]
⊗ (n− θ)

λ2

n2 11T +
[
0 0
0 1

]
⊗
λ2

n2 11T .

Positive definiteness of this matrix is established by ensuring positivity of the small-
est eigenvalue σmin. The smallest eigenvalue σmin is greater than the sum of the
smallest eigenvalue of each term. For the eigenvalues of the Kronecker products,
see (3). This gives that

σmin ≥
λ

nL
−
λ2

n
−
λ2

n
−
λ2

n
|n− θ |+0 =

λ

n
(
L−1−λ(2+ |n− θ |)

)
.

Since λ > 0 by assumption, if

1
L(2+ |n− θ |)

> λ.

we have σmin > 0 and 2M −E[UT
ik

HUik] is positiv definite.
Rates are gotten by taking the total expectation of (8) and adding together the

inequalities from k = 0 to k = t, yielding

‖z0− z?‖2H⊗I =E[‖z
0− z?‖2H⊗I]−E[‖z

t+1− z?‖2H⊗I]

≥
∑t

k=0E
[
‖Bzk −Bz?‖2

(2M−E[UT

ik
HU

ik
])⊗I

]
≥

∑t
k=0σminE[‖Bzk −Bz?‖2]

≥ σmin(t +1) min
k∈{0,...,t }

E[‖Bzk −Bz?‖2].

Putting in the lower bound on σmin and rearranging yield

min
k∈{0,...,t }

E[‖Bzk −Bz?‖2] ≤ n
λ(L−1−λ(2+ |n−θ |))(t+1) ‖z

0− z?‖2H⊗I .

70

3 Convergence

From the definition of H in Lemma 3.5 we have

‖z0− z?‖2H⊗I = ‖x
0− x?‖2+ λ

L

∑n
i=1‖y

0
i −Ri x?‖2+λ2(n− θ)2‖ 1

n

∑n
i=1y

0
i ‖

2

−2λ(n− θ)〈x0− x?, 1
n

∑n
i=1y

0
i 〉

where z? = (x?,R1x?, . . . ,Rnx?). Since this hold for any z? ∈ Z? and hence any
x? ∈ X?, the results of theorems follows by minimizing the RHS over x? ∈ X?.
Note, since Ri x? constant for all x? ∈ X?, the objective is convex and, since X? is
closed and convex, the minimum is then attained. �

Proof of Theorem 3.8. Combining Lemma 3.5 and 3.6 yield

E[‖zk+1− z?‖2H⊗I +2λ(n− θ)(F((K ⊗ I)zk+1)−F(x?))|Fk]

≤ ‖zk − z?‖2H⊗I +2λ(n− θ)(F((K ⊗ I)zk)−F(x?))

− ‖Bzk −Bz?‖2
(2M−E[UT

ik
HU

ik
]+λ(n−θ)S−ξ I)⊗I

− ξnL〈∇F(xk),xk − x?〉

which holds for all k ∈ N, ξ ∈ [0, 2λ
nL], and z? ∈ Z?. Since H � 0 for λ > 0, see the

proof of Theorem 3.7, the first term is non-negative while the second term is non-
negative if θ ≤ n. From cocoercivity of ∇F, the last term is non-positive and we
assume, for now, that there exists λ > 0 and 2λ

nL ≥ ξ > 0 such that 2M−E[UT
ik

HUik]+

λ(n− θ)S− ξ I � 0, making the third term non-positive.
Applying Proposition 2.1 gives the a.s. summability of

‖Bzk −Bz?‖2
(2M−E[UT

ik
HU

ik
]+λ(n−θ)S−ξ I)⊗I

+ ξnL〈∇F(xk)−∇F(x?),xk − x?〉.

Since both terms are non-negative, both terms are a.s. summable. From the first
term we have the a.s. convergence of Bzk→ Bz? and Lemma 3.4 then gives that all
cluster points of (zk)k∈N are almost surely in Z?. For the second term we note that
by convexity we have

〈∇F(xk)−∇F(x?),xk − x?〉 ≥ F(xk)−F(x?) ≥ 0

and F(xk)−F(x?) then is summable a.s. since ξnL > 0. Using smoothness of F, (5)
and the notation from (7) gives

F(x?) ≤ F((K ⊗ I)zk)

= F(xk + λ
n (D⊗ I)Bzk)

≤ F(xk)+ 〈(G ⊗ I)Bzk, λn (D⊗ I)Bzk〉+ L
2 ‖

λ
n (D⊗ I)Bzk ‖2

≤ F(xk)+ ‖(G ⊗ I)Bzk ‖‖ λn (D⊗ I)Bzk ‖+ L
2 ‖

λ
n (D⊗ I)Bzk ‖2

→ F(x?) a.s.

71

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

since (G⊗ I)Bzk→(G⊗ I)Bz? = 0 and (D⊗ I)Bzk→(D⊗ I)Bz? = 0 almost surely.
Therefore we have the a.s. convergence of F((K ⊗ I)zk)−F(x?) → 0.

From Proposition 2.1 we can also conclude that ‖zk − z?‖2H⊗I + 2λ(n −
θ)(F((K ⊗ I)zk) − F(x?)) a.s. converge to a non-negative random variable. Since
F((K ⊗ I)zk) − F(x?) → 0 a.s. we have that ‖zk − z?‖2H⊗I also must a.s. converge
to a non-negative random variable. Proposition 2.2 then give the almost sure con-
vergence of (zk)k∈N to Z?.

We now show that there exists λ > 0 and ξ > 0 such that

2M −E[UT
ik

HUik]+λ(n− θ)S− ξ I

=

[
1 0
0 1

]
⊗
λ

nL
I −

[
1 0
0 1

]
⊗
λ2

n
I +

[
0 1
1 0

]
⊗
λ2

n
(I −

1
n

11T)+
[
0 0
0 1

]
⊗
λ2

n2 11T

+

[
2 −1
−1 0

]
⊗ (n− θ)(θ −1)

λ2

n3 11T −
[

1 −1
−1 1

]
⊗ (n− θ)(θ −1)2

Lλ3

n3 I

−

[
1 0
0 1

]
⊗ ξ I � 0.

We show positive definiteness by ensuring that the smallest eigenvalue is positive.
The smallest eigenvalue σmin is greater than the sum of the smallest eigenvalues of
each term,

σmin ≥
λ

nL
−
λ2

n
−
λ2

n
+0+ (1− θ−1

|θ−1 |

√
2)(n− θ)(θ −1)

λ2

n2

−2(n− θ)(θ −1)2
Lλ3

n3 − ξ.

Assuming λ ≤ 1
2L yields the following lower bound on the smallest eigenvalue

σmin ≥
λ

nL
−

2λ2

n
+ (1− θ−1

|θ−1 |

√
2)(n− θ)(θ −1)

λ2

n2 −(n− θ)(θ −1)2
λ2

n3 − ξ

=
λ

n
(
L−1−λ

(
2+ (n− θ) θ−1

n

(
θ−1
n −1+ θ−1

|θ−1 |

√
2
)))
− ξ.

Selecting

ξ =
λ

2n
(
L−1−λ

(
2+ (n− θ) θ−1

n

(
θ−1
n −1+ θ−1

|θ−1 |

√
2
)))
,

which satisfy the assumption 2λ
nL ≥ ξ > 0, yields σmin ≥ ξ. Since λ > 0 by assump-

tion, if

1
L

1
2+ (n− θ) θ−1

n (
θ−1
n −1+ θ−1

|θ−1 |
√

2)
> λ

72

4 Numerical Experiments

0.0 0.5 1.0 1.5 2.0

10−2.0

10−1.0

100.0

θ/n

λ
L

λL = (2 + |n− θ|)−1
−10

−5

0

5

10

lo
g
1
0 (‖

x
1
0
0
n−

x
?‖/‖x

0−
x
?‖)

(a) n = 100

0.0 0.5 1.0 1.5 2.0

10−4.0

10−3.0

10−2.0

10−1.0

100.0

θ/n

λ
L

λL = (2 + |n− θ|)−1
−10

−5

0

5

10

lo
g
1
0 (‖

x
1
0
0
n−

x
?‖/‖x

0−
x
?‖)

(b) n = 10000
Figure 1. Root-finding of Averaged Rotations: Relative distance to the solution af-
ter 100n iterations of SVAG together the step-size upper bound, λL < (2+ |n− θ |)−1.
Note how well the 0th level, i.e., the boundary between convergence and divergence,
follow the upper bound on the step-size for θ ≤ n.

we have that σmin ≥ ξ > 0 and hence that the examined matrix is positive definite.
Furthermore, if λ satisfies the above inequality it also satisfies the assumption λ ≤

1
2L .

Rates are gotten in the same way as for Theorem 3.7, the total expectation is
taken of the Lyapunov inequality at the beginning of the proof and the inequalities
are summed from k = 0 to k = t.

‖z0− z?‖2H⊗I +2λ(n− θ)(F((K ⊗ I)z0)−F(x?))

≥
∑t

k=0
(
σminE[‖Bzk −Bz?‖2]+E[σminnL〈∇F(xk),xk − x?〉]

)
≥ σmin(t +1) min

k∈{1,...,t }

(
E[‖Bzk −Bz?‖2]+E[nL〈∇F(xk),xk − x?〉]

)
≥ σmin(t +1) min

k∈{1,...,t }

(
E[‖Bzk −Bz?‖2]+nLE[F(xk)−F(x?)]

)
.

Inserting the lower bound on σmin, rearranging and minimizing over x? ∈ X? yield
the results of the theorem. �

4. Numerical Experiments

A number of experiments, outlined below, were performed to verify the tightness
of the theory in the cocoercive operator case and examine the effect of bias in the
cocoercive gradient case. The experiments were implemented in Julia [3] and,
together with several other VR-SG methods, can be found at https://github.
com/mvmorin/VarianceReducedSG.jl.

4.1 Cocoercive Operators Case
In order for the difference between cocoercive operators and cocoercive gradients
to not be an artifact of our analysis, the results in the operator case can not be overly

73

https://github.com/mvmorin/VarianceReducedSG.jl
https://github.com/mvmorin/VarianceReducedSG.jl

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

conservative. We therefore construct a cocoercive operator problem for which the
results appear to be tight, thereby verifying the difference. Consider problem (2)
where the operator Ri : R2→ R2 is an averaged rotation

Ri =
1
2

[
1 0
0 1

]
+

1
2

[
cosτ −sinτ
sinτ cosτ

]
for all i ∈ {1, . . . ,n} and some τ ∈ [0,2π). The operators are 1-cocoercive and the zero
vector is the only solution to (2) if τ , π. The step-size condition from Theorem 3.7
appears to be tight for θ ∈ [0,n] when the angle of rotation τ approaches π. We
therefore let τ = 179

180π and solve the problem with different configurations of step-
size λ and innovation weight θ.

Figure 1 displays the relative distance to the solution after 100n iterations of
SVAG together with the upper bound on the step-size. When θ ∈ [0,n] and λ exceeds
the upper bound, the distance to the solution increases for both n = 100 and n =
10000, i.e., the method does not converge. Hence, for θ ∈ [0,n], the step-size bound
in Theorem 3.7 appears to be tight. However, it is noteworthy that for this particular
problem it seems beneficial to exceed the step-size bound when θ > n.

4.2 Cocoercive Gradients Case
Since, as we stated in Section 3.2, we do not believe that the theoretical rates are
particularly tight in the optimization case, we examine the effects of the bias numer-
ically. These experiments can of course not be exhaustive and we choose to focus
on only the bias parameter θ and therefore perform all experiments with the same
step-size. This also demonstrate why we believe the analysis to be conservative
since the chosen step-size is in some cases a 1000 times larger than the upper bound
from Theorem 3.8. Convergence with this large of a step-size have also been seen
elsewhere with both [40] and [17] disregarding their own the theoretical step-size
conditions.

The experiments are done by performing a rough parameter sweep over the
innovation weight θ on two different binary classification problems and we will
look for patterns in how the convergence is affected. The first problem is logistic
regression,

min
x∈RN

1
n

∑n

i=1
log(1+ e−yia

T
i x).

The second is SVM with a square hinge loss,

min
x∈RN

1
n

∑n

i=1

(
max(0,1− yiaTi x)2+ γ2 ‖x‖

2)
where γ > 0 is a regularization parameter. In both problems are yi ∈ {−1,1} the label
and ai ∈ RN the features of the ith training data point. Note, although not initially
obvious, max(0, ·)2 is convex and differentiable with Lipschitz continuous derivative

74

4 Numerical Experiments

0 10 20 30 40 50 60
10−4

10−3

10−2

10−1

100

k/n

E
||∇

F
(x

k
)||
/
||∇

F
(x

0
)|| θ = SAG

θ = 0.01n
θ = 0.1n
θ = SAGA

(a) protein

0 10 20 30
10−3

10−2

10−1

100

k/n

E
||∇

F
(x

k
)||
/
||∇

F
(x

0
)|| θ = SAG

θ = 0.01n
θ = 0.1n
θ = SAGA

(b) breast-cancer_scale

0 20 40 60 80

10−5

10−4

10−3

10−2

10−1

100

k/n

E
||∇

F
(x

k
)||
/
||∇

F
(x

0
)|| θ = SAG

θ = 0.01n
θ = 0.1n
θ = SAGA

(c) a9a

0 10 20 30

10−2.0

10−1.5

10−1.0

10−0.5

100.0

k/n

E
||∇

F
(x

k
)||
/
||∇

F
(x

0
)|| θ = SAG

θ = 0.01n
θ = 0.1n
θ = SAGA

(d) gisette_scale

0 1 2 3 4

10−15

10−10

10−5

100

k/n

E
||∇

F
(x

k
)||
/
||∇

F
(x

0
)|| θ = SAG

θ = 0.01n
θ = 0.1n
θ = SAGA

(e) mushrooms

0 1 2 3 4 5

10−15

10−10

10−5

100

k/n

E
||∇

F
(x

k
)||
/
||∇

F
(x

0
)|| θ = SAG

θ = 0.01n
θ = 0.1n
θ = SAGA

(f) mnist.scale

Figure 2. Logistic Regression: Expected gradient norm for each iteration. The
expected value is estimated with the sample average of 100 runs. A step-size of
λ = 1

2L was used in all cases.

and the second problem is therefore indeed smooth. The logistic regression prob-
lem does not necessarily have a unique solution and the distance to the solution
set is therefore hard to estimate. For this reason, we examine the convergence of
‖∇F(xk)‖ → 0 instead of the distance to the solution set.

The datasets for both these classification problems are taken from the LibSVM[6]
collection of datasets. The number of examples in the datasets varies between
n = 683 and n = 60,000 while the number of features is between N = 10 and
N = 5,000. Two of the datasets, mnist.scale and protein, consist of more than
2 classes. These are converted to binary classification problems by grouping the dif-
ferent classes into two groups. For the digit classification dataset mnist.scale, the
digits are divided into the groups 0-4 and 5-9. For the protein dataset, the classes
are grouped as 0 and 1-2. The results of solving the classification problems above
can be found in Figures 2 and 3.

From Figures 2 and 3 it appears like the biggest difference between the inno-
vation weights are in the early stages of the convergence. Most innovation weight
choices appear to eventually converge with the same rate. In the cases where this
does not happen, the fastest converging choice of innovation weight actually reaches
machine precision. It is therefore not possible to say whether these cases would
eventually reach the same rate as well. Since none of the choices of θ appears to
consistently be at a significant disadvantage, even though the step-size used ex-
ceeds the upper bound in Theorem 3.8 when θ = 0.1n and θ = 0.01n, we conjecture
that the asymptotic rates for a given step-size is independent of θ.

The initial phase can clearly have a large impact on the convergence and it can

75

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

0 25 50 75 100

10−12

10−9

10−6

10−3

100

k/n

E
||∇

F
(x

k
)||
/
||∇

F
(x

0
)|| θ = SAG

θ = 0.01n
θ = 0.1n
θ = SAGA

(a) protein, γ = 10−3

0 20 40 60 80

10−4

10−3

10−2

10−1

100

k/n

E
||∇

F
(x

k
)||
/
||∇

F
(x

0
)|| θ = SAG

θ = 0.01n
θ = 0.1n
θ = SAGA

(b) breast-cancer_scale,
γ = 10−3

0 25 50 75 100

10−6

10−4

10−2

100

k/n

E
||∇

F
(x

k
)||
/
||∇

F
(x

0
)|| θ = SAG

θ = 0.01n
θ = 0.1n
θ = SAGA

(c) a9a, γ = 10−4

0 10 20 30

10−3

10−2

10−1

100

k/n

E
||∇

F
(x

k
)||
/
||∇

F
(x

0
)|| θ = SAG

θ = 0.01n
θ = 0.1n
θ = SAGA

(d) gisette_scale,
γ = 10−1

0 10 20 30

10−4

10−3

10−2

10−1

100

k/n

E
||∇

F
(x

k
)||
/
||∇

F
(x

0
)|| θ = SAG

θ = 0.01n
θ = 0.1n
θ = SAGA

(e) mushrooms, γ = 10−3

0 5 10 15

10−6

10−5

10−4

10−3

10−2

10−1

100

k/n

E
||∇

F
(x

k
)||
/
||∇

F
(x

0
)|| θ = SAG

θ = 0.01n
θ = 0.1n
θ = SAGA

(f) mnist.scale, γ = 10−1

Figure 3. Square Hinge Loss SVM: Expected gradient norm for each iteration.
The expected value is estimated with the sample average of 100 runs. A step-size of
λ = 1

2L was used in all cases.

therefore still be beneficial to tuning the bias. However, comparing the different
choices of innovation weight yields no clear conclusion since no single choice of
innovation weight consistently outperforms another. In most cases do the lower bias
choices—θ = n (SAGA) or θ = 0.1n—seem perform best but, when they do not,
the high bias choices—θ = 1 (SAG) and θ = 0.01n—perform significantly better.
Another observation is that lowering θ increases any oscillations. We speculate that
it is due to the increased inertia and we also believe that this inertia is what allows
the lower innovation weights to sometimes perform better.

5. Conclusion

We presented SVAG, a variance-reduced stochastic gradient method with adjustable
bias and with SAG and SAGA as special cases. It was analyzed in two scenarios,
one being the minimization of a finite sum of functions with cocoercive gradients
and the other being finding a root of a finite sum of cocoercive operators. The anal-
ysis improves on the previously best known analyses in both settings and, more
significantly, the two different scenarios gave different convergence conditions for
the step-size. In the cocoercive operator setting a much more restrictive condition
was found and it was verified numerically. This difference is not present in ordi-
nary gradient descent and can therefore easily be overlooked, however, these results
suggest that is inadvisable in the variance-reduced stochastic gradient setting.

76

References

The theoretical results in the minimization case was further examined with nu-
merical experiments. Several choices of bias were examined but we did not find
the same dependence on the bias that the theory suggests. In fact, the asymptotic
convergence behavior was similar for the different choices of bias, indicating that
further improvements of the theory is still needed. The bias mainly impacted the
early stages of the convergence and in a couple of cases this impact was significant.
There might therefore still be benefits to tuning the bias to the particular problem
but further work is needed to efficiently do so.

References

[1] Z. Allen-Zhu. “Katyusha: The First Direct Acceleration of Stochastic Gra-
dient Methods”. In: Proceedings of the 49th Annual ACM SIGACT Sympo-
sium on Theory of Computing. STOC 2017. ACM, New York, NY, USA,
2017, pp. 1200–1205. ISBN: 978-1-4503-4528-6. DOI: 10.1145/3055399.
3055448.

[2] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Opera-
tor Theory in Hilbert Spaces. Second. CMS Books in Mathematics. Springer
International Publishing, 2017. ISBN: 978-3-319-48310-8. URL: / / www .
springer.com/gp/book/9783319483108 (visited on 2019-01-15).

[3] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A Fresh Ap-
proach to Numerical Computing”. SIAM Review 59:1 (2017), pp. 65–98. DOI:
10.1137/141000671.

[4] L. M. Briceño-Arias and D. Davis. “Forward-Backward-Half Forward Al-
gorithm for Solving Monotone Inclusions”. SIAM Journal on Optimization
28:4 (2018), pp. 2839–2871. DOI: 10.1137/17M1120099.

[5] Y. Carmon, Y. Jin, A. Sidford, and K. Tian. “Variance Reduction for Ma-
trix Games”. Advances in Neural Information Processing Systems 32 (2019),
pp. 11381–11392. URL: https://proceedings.neurips.cc/paper/
2019/hash/6c442e0e996fa84f344a14927703a8c1- Abstract.html
(visited on 2020-12-17).

[6] C.-C. Chang and C.-J. Lin. “LIBSVM: A Library for Support Vector Ma-
chines”. ACM Transactions on Intelligent Systems and Technology (TIST) 2:3
(2011). Software available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm, 27:1–27:27. DOI: 10.1145/1961189.1961199.

[7] T. Chavdarova, G. Gidel, F. Fleuret, and S. Lacoste-Julien. “Reducing
Noise in GAN Training with Variance Reduced Extragradient”. Advances
in Neural Information Processing Systems 32 (2019), pp. 393–403. URL:
https : / / proceedings . neurips . cc / paper / 2019 / hash /
58a2fc6ed39fd083f55d4182bf88826d - Abstract . html (visited on
2020-12-17).

77

https://doi.org/10.1145/3055399.3055448
https://doi.org/10.1145/3055399.3055448
//www.springer.com/gp/book/9783319483108
//www.springer.com/gp/book/9783319483108
https://doi.org/10.1137/141000671
https://doi.org/10.1137/17M1120099
https://proceedings.neurips.cc/paper/2019/hash/6c442e0e996fa84f344a14927703a8c1-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/6c442e0e996fa84f344a14927703a8c1-Abstract.html
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://doi.org/10.1145/1961189.1961199
https://proceedings.neurips.cc/paper/2019/hash/58a2fc6ed39fd083f55d4182bf88826d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/58a2fc6ed39fd083f55d4182bf88826d-Abstract.html

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

[8] P. L. Combettes. “Solving Monotone Inclusions via Compositions of Non-
expansive Averaged Operators”. Optimization 53:5-6 (2004), pp. 475–504.
DOI: 10.1080/02331930412331327157.

[9] P. L. Combettes and J. Eckstein. “Asynchronous Block-Iterative Primal-Dual
Decomposition Methods for Monotone Inclusions”. Mathematical Program-
ming 168:1 (2018), pp. 645–672. DOI: 10.1007/s10107-016-1044-0.

[10] P. L. Combettes and L. E. Glaudin. “Solving Composite Fixed Point Prob-
lems with Block Updates”. Advances in Nonlinear Analysis 10:1 (2021),
pp. 1154–1177. DOI: 10.1515/anona-2020-0173.

[11] P. L. Combettes and J.-C. Pesquet. “Primal-Dual Splitting Algorithm for
Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-
Sum Type Monotone Operators”. Set-Valued and Variational Analysis 20:2
(2012), pp. 307–330. DOI: 10.1007/s11228-011-0191-y.

[12] P. L. Combettes and J.-C. Pesquet. “Stochastic Quasi-Fejér Block-Coordinate
Fixed Point Iterations with Random Sweeping”. SIAM Journal on Optimiza-
tion 25:2 (2015), pp. 1221–1248. DOI: 10.1137/140971233.

[13] P. L. Combettes and Z. C. Woodstock. “A Fixed Point Framework for Re-
covering Signals from Nonlinear Transformations”. In: 2020 28th European
Signal Processing Conference (EUSIPCO). 2021, pp. 2120–2124. DOI: 10.
23919/Eusipco47968.2020.9287736.

[14] D. Davis and W. Yin. “A Three-Operator Splitting Scheme and its Opti-
mization Applications”. Set-Valued and Variational Analysis 25:4 (2017),
pp. 829–858. DOI: 10.1007/s11228-017-0421-z.

[15] A. Defazio, F. Bach, and S. Lacoste-Julien. “SAGA: A Fast Incremental
Gradient Method With Support for Non-Strongly Convex Composite Objec-
tives”. In: Advances in Neural Information Processing Systems 27. Curran
Associates, Inc., 2014, pp. 1646–1654. (Visited on 2018-08-27).

[16] A. Defazio, J. Domke, and Caetano. “Finito: A Faster, Permutable Incremen-
tal Gradient Method for Big Data Problems”. In: International Conference
on Machine Learning. 2014, pp. 1125–1133. URL: http://proceedings.
mlr.press/v32/defazio14.html (visited on 2018-08-27).

[17] D. Driggs, J. Liang, and C.-B. Schönlieb. On Biased Stochastic Gradient
Estimation. 2020. arXiv: 1906.01133v2 [math]. URL: http://arxiv.
org/abs/1906.01133v2 (visited on 2020-03-28).

[18] P. Giselsson. “Nonlinear Forward-Backward Splitting with Projection Cor-
rection”. SIAM Journal on Optimization (2021), pp. 2199–2226. DOI: 10.
1137/20M1345062.

[19] A. A. Goldstein. “Convex Programming in Hilbert Space”. Bulletin of the
American Mathematical Society 70:5 (1964), pp. 709–711. DOI: 10.1090/
S0002-9904-1964-11178-2.

78

https://doi.org/10.1080/02331930412331327157
https://doi.org/10.1007/s10107-016-1044-0
https://doi.org/10.1515/anona-2020-0173
https://doi.org/10.1007/s11228-011-0191-y
https://doi.org/10.1137/140971233
https://doi.org/10.23919/Eusipco47968.2020.9287736
https://doi.org/10.23919/Eusipco47968.2020.9287736
https://doi.org/10.1007/s11228-017-0421-z
http://proceedings.mlr.press/v32/defazio14.html
http://proceedings.mlr.press/v32/defazio14.html
https://arxiv.org/abs/1906.01133v2
http://arxiv.org/abs/1906.01133v2
http://arxiv.org/abs/1906.01133v2
https://doi.org/10.1137/20M1345062
https://doi.org/10.1137/20M1345062
https://doi.org/10.1090/S0002-9904-1964-11178-2
https://doi.org/10.1090/S0002-9904-1964-11178-2

References

[20] R. M. Gower, P. Richtárik, and F. Bach. “Stochastic Quasi-Gradient Meth-
ods: Variance Reduction via Jacobian Sketching”. Mathematical Program-
ming 188:1 (2021), pp. 135–192. DOI: 10.1007/s10107-020-01506-0.

[21] F. Hanzely, K. Mishchenko, and P. Richtárik. “SEGA: Variance Reduction
via Gradient Sketching”. In: Advances in Neural Information Processing
Systems 31. Curran Associates, Inc., 2018, pp. 2082–2093. URL: http://
papers.nips.cc/paper/7478- sega- variance- reduction- via-
gradient-sketching.pdf (visited on 2020-04-30).

[22] T. Hofmann, A. Lucchi, S. Lacoste-Julien, and B. McWilliams. “Variance
Reduced Stochastic Gradient Descent with Neighbors”. In: Advances in
Neural Information Processing Systems 28. Curran Associates, Inc., 2015,
pp. 2305–2313. (Visited on 2018-08-27).

[23] R. Johnson and T. Zhang. “Accelerating Stochastic Gradient Descent using
Predictive Variance Reduction”. In: Advances in Neural Information Pro-
cessing Systems 26. Curran Associates, Inc., 2013, pp. 315–323. (Visited on
2018-08-27).

[24] J. Konečný and P. Richtárik. “Semi-Stochastic Gradient Descent Methods”.
Frontiers in Applied Mathematics and Statistics 3 (2017). DOI: 10.3389/
fams.2017.00009.

[25] D. Kovalev, S. Horváth, and P. Richtárik. “Don’t Jump Through Hoops
and Remove Those Loops: SVRG and Katyusha are Better Without the
Outer Loop”. In: Proceedings of the 31st International Conference on Al-
gorithmic Learning Theory. PMLR, 2020, pp. 451–467. URL: https://
proceedings.mlr.press/v117/kovalev20a.html (visited on 2021-09-
27).

[26] P. Latafat and P. Patrinos. “Primal-Dual Proximal Algorithms for Structured
Convex Optimization: a Unifying Framework”. In: Large-Scale and Dis-
tributed Optimization. Lecture Notes in Mathematics. Springer International
Publishing, 2018, pp. 97–120. ISBN: 978-3-319-97478-1. DOI: 10.1007/
978-3-319-97478-1_5.

[27] N. Le Roux, M. Schmidt, and F. Bach. “A Stochastic Gradient Method with
an Exponential Convergence Rate for Finite Training Sets”. In: Advances in
Neural Information Processing Systems 25. Curran Associates, Inc., 2012,
pp. 2663–2671.

[28] E. S. Levitin and B. T. Polyak. “Constrained Minimization Methods”. USSR
Computational mathematics and mathematical physics 6:5 (1966), pp. 1–50.

[29] P. L. Lions and B. Mercier. “Splitting Algorithms for the Sum of Two Nonlin-
ear Operators”. SIAM Journal on Numerical Analysis 16:6 (1979), pp. 964–
979. DOI: 10.1137/0716071.

79

https://doi.org/10.1007/s10107-020-01506-0
http://papers.nips.cc/paper/7478-sega-variance-reduction-via-gradient-sketching.pdf
http://papers.nips.cc/paper/7478-sega-variance-reduction-via-gradient-sketching.pdf
http://papers.nips.cc/paper/7478-sega-variance-reduction-via-gradient-sketching.pdf
https://doi.org/10.3389/fams.2017.00009
https://doi.org/10.3389/fams.2017.00009
https://proceedings.mlr.press/v117/kovalev20a.html
https://proceedings.mlr.press/v117/kovalev20a.html
https://doi.org/10.1007/978-3-319-97478-1_5
https://doi.org/10.1007/978-3-319-97478-1_5
https://doi.org/10.1137/0716071

Paper II. Cocoercivity, Smoothness and Bias in VR-SG Methods

[30] J. Mairal. “Optimization with First-order Surrogate Functions”. In: Proceed-
ings of the 30th International Conference on International Conference on
Machine Learning - Volume 28. ICML’13. JMLR.org, Atlanta, GA, USA,
2013, pp. III-783–III-791.

[31] M. Morin and P. Giselsson. “Sampling and Update Frequencies in Proxi-
mal Variance Reduced Stochastic Gradient Methods” (2020). arXiv: 2002.
05545v2 [cs, math]. URL: http://arxiv.org/abs/2002.05545v2.

[32] Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Applied Optimization. Springer US, 2004. ISBN: 978-1-4020-7553-7. URL:
//www.springer.com/us/book/9781402075537 (visited on 2019-01-
15).

[33] L. M. Nguyen, J. Liu, K. Scheinberg, and M. Takáč. “SARAH: A Novel
Method for Machine Learning Problems Using Stochastic Recursive Gra-
dient”. In: Proceedings of the 34th International Conference on Machine
Learning - Volume 70. ICML’17. JMLR.org, Sydney, NSW, Australia, 2017,
pp. 2613–2621. URL: http : / / proceedings . mlr . press / v70 /
nguyen17b.html (visited on 2020-04-30).

[34] B. Palaniappan and F. Bach. “Stochastic Variance Reduction Methods for
Saddle-Point Problems”. In: Advances in Neural Information Processing Sys-
tems 29. Curran Associates, Inc., 2016, pp. 1416–1424.

[35] X. Qian, Z. Qu, and P. Richtárik. “SAGA with Arbitrary Sampling”. In: Pro-
ceedings of the 36th International Conference on Machine Learning. PMLR,
2019, pp. 5190–5199. URL: https://proceedings.mlr.press/v97/
qian19a.html (visited on 2021-09-27).

[36] H. Raguet, J. Fadili, and G. Peyré. “A Generalized Forward-Backward Split-
ting”. SIAM Journal on Imaging Sciences 6:3 (2013), pp. 1199–1226. DOI:
10.1137/120872802.

[37] H. Robbins and D. Siegmund. “A Convergence Theorem for Non Negative
Almost Supermartingales and Some Applications”. In: Optimizing Methods
in Statistics. Academic Press, 1971, pp. 233–257. URL: https://doi.org/
10.1016/B978-0-12-604550-5.50015-8.

[38] R. T. Rockafellar. “Monotone Operators and the Proximal Point Algorithm”.
SIAM Journal on Control and Optimization 14:5 (1976), pp. 877–898. DOI:
10.1137/0314056.

[39] M. Schmidt, R. Babanezhad, M. Ahmed, A. Defazio, A. Clifton, and A.
Sarkar. “Non-Uniform Stochastic Average Gradient Method for Training
Conditional Random Fields”. In: Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Statistics. Vol. 38. Proceedings of
Machine Learning Research. PMLR, 2015, pp. 819–828. URL: http://
proceedings.mlr.press/v38/schmidt15.html (visited on 2020-02-
21).

80

https://arxiv.org/abs/2002.05545v2
https://arxiv.org/abs/2002.05545v2
http://arxiv.org/abs/2002.05545v2
//www.springer.com/us/book/9781402075537
http://proceedings.mlr.press/v70/nguyen17b.html
http://proceedings.mlr.press/v70/nguyen17b.html
https://proceedings.mlr.press/v97/qian19a.html
https://proceedings.mlr.press/v97/qian19a.html
https://doi.org/10.1137/120872802
https://doi.org/10.1016/B978-0-12-604550-5.50015-8
https://doi.org/10.1016/B978-0-12-604550-5.50015-8
https://doi.org/10.1137/0314056
http://proceedings.mlr.press/v38/schmidt15.html
http://proceedings.mlr.press/v38/schmidt15.html

References

[40] M. Schmidt, N. Le Roux, and F. Bach. “Minimizing Finite Sums with the
Stochastic Average Gradient”. Mathematical Programming 162:1 (2017),
pp. 83–112. DOI: 10.1007/s10107-016-1030-6.

[41] S. Shalev-Shwartz and T. Zhang. “Stochastic Dual Coordinate Ascent Meth-
ods for Regularized Loss Minimization”. Journal of Machine Learning Re-
search 14:Feb (2013), pp. 567–599. URL: http : / / www . jmlr . org /
papers/v14/shalev-shwartz13a.html (visited on 2018-08-27).

[42] Z. Shi, X. Zhang, and Y. Yu. “Bregman Divergence for Stochastic Variance
Reduction: Saddle-Point and Adversarial Prediction”. In: Proceedings of the
31st International Conference on Neural Information Processing Systems.
NIPS’17. Curran Associates Inc., Red Hook, NY, USA, 2017, pp. 6033–
6043. ISBN: 978-1-5108-6096-4.

[43] M. Tang, L. Qiao, Z. Huang, X. Liu, Y. Peng, and X. Liu. “Accelerating
SGD Using Flexible Variance Reduction on Large-Scale Datasets”. Neural
Computing and Applications (2019). DOI: 10.1007/s00521-019-04315-
5.

[44] P. Tseng. “A Modified Forward-Backward Splitting Method for Maximal
Monotone Mappings”. SIAM Journal on Control and Optimization 38:2
(2000), pp. 431–446. DOI: 10.1137/S0363012998338806.

[45] L. Xiao and T. Zhang. “A Proximal Stochastic Gradient Method with Pro-
gressive Variance Reduction”. SIAM Journal on Optimization 24:4 (2014),
pp. 2057–2075. DOI: 10.1137/140961791.

[46] X. Zhang, W. B. Haskell, and Z. Ye. “A Unifying Framework for Variance-
Reduced Algorithms for Findings Zeroes of Monotone operators”. Journal of
Machine Learning Research 23:60 (2022), pp. 1–44. URL: http://jmlr.
org/papers/v23/19-513.html (visited on 2022-08-18).

[47] K. Zhou, Q. Ding, F. Shang, J. Cheng, D. Li, and Z.-Q. Luo. “Direct Accel-
eration of SAGA using Sampled Negative Momentum”. In: The 22nd Inter-
national Conference on Artificial Intelligence and Statistics. 2019, pp. 1602–
1610.

81

https://doi.org/10.1007/s10107-016-1030-6
http://www.jmlr.org/papers/v14/shalev-shwartz13a.html
http://www.jmlr.org/papers/v14/shalev-shwartz13a.html
https://doi.org/10.1007/s00521-019-04315-5
https://doi.org/10.1007/s00521-019-04315-5
https://doi.org/10.1137/S0363012998338806
https://doi.org/10.1137/140961791
http://jmlr.org/papers/v23/19-513.html
http://jmlr.org/papers/v23/19-513.html

Paper III

Nonlinear Forward-Backward Splitting with
Momentum Correction

Martin Morin Sebastian Banert Pontus Giselsson

Abstract

The nonlinear, or warped, resolvent recently explored by Giselsson and Bùi-
-Combettes has been used to model a large set of existing and new monotone
inclusion algorithms. To establish convergent algorithms based on these re-
solvents, corrective projection steps are utilized in both works. We present a
different way of ensuring convergence by means of a nonlinear momentum
term, which in many cases leads to cheaper per-iteration cost. The expressive-
ness of our method is demonstrated by deriving a wide range of special cases.
These cases cover and expand on the forward-reflected-backward method
of Malitsky-Tam, the primal-dual methods of Vũ-Condat and Chambolle-
Pock, and the forward-reflected-Douglas-Rachford method of Ryu-Vũ. A new
primal-dual method that uses an extra resolvent step is also presented as well as
a general approach for adding momentum to any special case of our nonlinear
forward-backward method, in particular all the algorithms listed above.

Submitted and under review.

83

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

1. Introduction

Given a real Hilbert space H , we consider the problem of finding a zero x ∈ H of
the sum of a maximally monotone operator A : H → 2H and a cocoercive operator
C : H →H , i.e.,

0 ∈ Ax+Cx. (1)

If the resolvent (Id+A)−1 of A is easily computable, this problem can be solved with
the forward-backward splitting method [28, 33]. Since this might not be the case,
great effort has been devoted to constructing other splitting methods that can exploit
any additional structure of A, sometimes further assuming C = 0 [10, 18, 19, 20, 22,
34, 40]. This work presents an alternative approach for analyzing and constructing
such splitting methods by formulating them as different instances of a forward-
backward method with a nonlinear resolvent (M + A)−1 ◦M where M : H →H is
a (potentially) nonlinear kernel.

Nonlinear resolvents–or warped resolvents in the terminology of [15]–were re-
cently explored in [15, 26] with precursors available in [30, 31]. These works are
preceded by, or developed in parallel with, several other generalizations to the con-
cept of a resolvent. Using a resolvent with a strongly positive self-adjoint bounded
linear kernel P in the standard forward-backward method has long been known
to converge. In fact, it is simply forward-backward splitting applied to the scaled
problem 0 ∈ P−1 Ax+P−1Cx, which is a monotone inclusion problem in the Hilbert
space given by the inner product 〈P(·), ·〉. The conditions on the kernel have been
further relaxed in [32], which allows for non-self-adjoint linear kernels. In the mul-
tiple works on Bregman-distance based resolvents, for instance [3, 5, 6, 11, 14, 16,
23], the linearity condition is dropped altogether by allowing the kernel to be the
gradient of some differentiable convex function. These relaxations allow the resol-
vent to be adapted to a particular problem, either to improve the speed of conver-
gence or to make an otherwise intractable resolvent evaluation tractable. However,
this extra freedom may come at a cost. The algorithms of [15, 26, 31, 32] all need an
extra corrective projection step to ensure that any nonlinearities and asymmetries of
the kernel do not prevent convergence. The primary contribution of this paper is a
different approach for correcting the update, removing the need to perform a poten-
tially expensive projection. Convergence is instead ensured with a corrective mo-
mentum term that reuses information from previous iterations, making it possible
to achieve lower per-iteration costs.

The strength of nonlinear resolvents lies in their substantial modeling power
which allows for a unified view of a large set of algorithms. Both [15, 26] present
numerous algorithms that can be interpreted as forward-backward methods with
nonlinear resolvents. Our new nonlinear forward-backward method further expands
on these modeling capabilities and the second half of this paper is dedicated to
deriving both new and existing algorithms as special cases.

Among already existing methods, we show that the forward-(half)-reflected-

84

1 Introduction

backward method in [36] is a special case of our method and highlight its connec-
tion to the similar forward-backward-(half)-forward method [12, 42] via the non-
linear resolvent. We present two new four-operator primal-dual splitting methods,
the first of which has, among others, Vũ-Condat [21, 43] and Chambolle-Pock [17]
as special cases. Vũ-Condat and Chambolle-Pock have been shown to be ordinary
forward-backward methods [29] and to have Douglas-Rachford splitting [34] as
a special case.1 Our first primal-dual method is an expansion of this to the non-
linear resolvent setting, giving us the forward-reflected-Douglas-Rachford method
of [41] and the novel forward-half-reflected-Douglas-Rachford method as special
cases. Our second primal-dual method solves the same problem as the first one but
utilizes three resolvent steps, two of which are of the same operator. This method
is, as far as we know, completely novel.

Different kinds of momentum have long been used to accelerate the conver-
gence of first-order methods [1, 2, 7, 8, 9, 35, 37, 39] and, due to the use of a
momentum-like correction term, our nonlinear forward-backward method naturally
lend itself to modeling momentum methods. Momentum can be incorporated di-
rectly into the design of a special case of our main algorithm but we also present
an approach to add momentum to any special case, regardless of whether it initially
was designed with momentum or not. The approach is demonstrated on the forward-
half-reflected-backward method of [36], which gives a novel momentum algorithm
that extends the relaxed momentum algorithm in [36] to include a cocoercive term.
Our convergence conditions compare favorably to previous work with a larger range
of possible choices of the momentum parameter, even in the more restrictive special
case of ordinary forward-backward splitting with momentum.

1.1 Outline
We start by presenting basic notation, preliminary results, and define some opera-
tor properties. The proposed nonlinear forward-backward algorithm, along with all
necessary assumptions on both the problem (1) and the different design parameters,
is presented in Section 2. Section 3 contains the main convergence proof.

In the remainder of the paper, we present and discuss new or already existing
special cases of our nonlinear forward-backward method. Section 4 presents a way
of adding momentum to any special case of our main algorithm. Section 5 derives
the forward-half-reflected-backward method of [36] as a special case and uses the
previously presented approach to add momentum to it. Two new primal-dual meth-
ods are derived in Section 6. Section 6.1 contains an algorithm that expands on
the methods of Vũ-Condat and Chambolle-Pock as well as the forward-reflected-
Douglas-Rachford of [41]. In Section 6.2 a, to the authors’ knowledge, completely

1 In order to formulate the standard Douglas-Rachford as a forward-backward method, singular resol-
vent kernels needs to be allowed. The analysis of this paper will not allow for this but can be modified
to do so.

85

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

new primal-dual method that uses one additional resolvent evaluation per iteration
is derived. We end the paper with a brief conclusion.

1.2 Notation and Preliminaries
Let R be the set of real numbers, N = {0,1, . . . } be the set of natural numbers, N+ =
{1,2, . . . } be the set of non-zero natural numbers, and letH be a real Hilbert space.
The set P(H) is the set of bounded linear operators S : H →H that are self-adjoint
and strongly positive, i.e., there exists m > 0 such that

〈Sx,x〉 ≥ m‖x‖2, ∀x ∈ H .

If S ∈ P(H), then S is invertible and S−1 ∈ P(H).
For the remainder of this section, we let S ∈ P(H). The scaled inner product

is defined as 〈·, ·〉S = 〈S(·), ·〉 and the scaled norm as ‖·‖S =
√
〈·, ·〉S . The unscaled

and scaled norms are equivalent, i.e., there exist M,m > 0 such that M ‖x‖ ≥ ‖x‖S ≥
m‖x‖ for all x ∈ H . For all a,b,c,d ∈ H , we have the identity

2〈a− b,d− c〉S = ‖a− c‖2S − ‖b− c‖2S − ‖a− d‖2S + ‖b− d‖2S . (2)

A set-valued operator A : H → 2H is monotone if

〈u− v,x− y〉 ≥ 0, ∀(x,u),(y,v) ∈ gra A

where gra A= {(x,u) | u ∈ Ax} is the graph of A. An operator A is maximally mono-
tone if it is monotone and its graph is not a proper subset of the graph of another
monotone operator.

For µ > 0, a maximally monotone operator A : H → 2H is µ-strongly monotone
w.r.t. S if

〈u− v,x− y〉 ≥ µ‖x− y‖2S, ∀u ∈ Ax,∀v ∈ Ay,∀x,y ∈ H .

This definition is equivalent to ordinary µ-strong monotonicity of S−1 ◦ A in the
Hilbert space given by the scaled inner product 〈·, ·〉S . The analogous equivalences
hold for the two following definitions as well. For L ≥ 0, an operator B : H →H is
L-Lipschitz continuous w.r.t. S if

‖Bx−By‖S−1 ≤ L‖x− y‖S, ∀x,y ∈ H .

For ` > 0, an operator C : H →H is `−1-cocoercive w.r.t. S if

〈Cx−Cy,x− y〉 ≥ `−1‖Cx−Cy‖2
S−1, ∀x,y ∈ H .

An `−1-cocoercive operator w.r.t. S is `-Lipschitz continuous w.r.t. S. For all opera-
tor properties, if no scaling S is explicitly stated, we mean S = Id.

86

2 Problem and Algorithm

Let C be an `−1-cocoercive operator w.r.t. S. Then the following three-point
inequality holds:

〈Cx−Cy,z− y〉 ≥ − `4 ‖z− x‖2S, ∀x,y,z ∈ H . (3)

This is shown by inserting x− x in the inner product on the left-hand side and using
cocoercivity and Young’s inequality,

〈Cx−Cy,z− y〉 = 〈Cx−Cy,z− x〉+ 〈Cx−Cy,x− y〉

≥ 〈Cx−Cy,z− x〉+ `−1‖Cx−Cy‖2
S−1

= 〈S−
1
2 (Cx−Cy),S

1
2 (z− x)〉+ `−1‖Cx−Cy‖2

S−1

≥ − ε2 ‖Cx−Cy‖2
S−1 −

1
2ε ‖z− x‖2S + `

−1‖Cx−Cy‖2
S−1

where ε > 0. Selecting ε = 2`−1 yields the desired inequality (3).

2. Problem and Algorithm

Apart form the general problem structure of (1), we further assume that the opera-
tors satisfy the following standard assumptions.

ASSUMPTION 2.1
The operators of (1) satisfy:

(i) A : H → 2H is maximally monotone.

(ii) C : H →H is `−1-cocoercive w.r.t. S, where S ∈ P(H).

(iii) zer(A+C) , ∅.

If C = 0, we set ` = `−1 = 0.

Since domC =H , the sum A+C is maximally monotone and the problem could be
reformulated as finding a zero of the single maximally monotone operator A+C.
However, as in ordinary forward-backward splitting, separating the problem into a
maximally monotone and a cocoercive term and utilizing this structure will prove
beneficial. The fact that we assume cocoercivity w.r.t. S entails no real restriction on
the problem since the scaled norm ‖·‖S is equivalent to ‖·‖. A cocoercive operator
w.r.t. S is therefore also cocoercive w.r.t. all other Ŝ ∈ P(H) and vice versa, but with
different cocoercivity constants.

The cocoercivity scaling S is utilized directly in our algorithm. In the simplest
setting, S acts as a form of preconditioning used to better adapt the algorithm to the
specific geometry of the problem. It can also be used as a more general design pa-
rameter with different choices of S yielding different instances of our algorithm, see
the primal-dual methods in Section 6 for examples of this. Along with the scaling S,

87

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

the algorithm has two additional iteration-dependent design parameters, a nonlinear
kernel Mk : H →H and a positive momentum parameter γk > 0:

Algorithm 2.1 Nonlinear Forward-Backward with Momentum Correction
Consider problem (1) and let S be such that Assumption 2.1 is satisfied. With x0,u0 ∈
H , for all k ∈ N iteratively perform

xk+1 = (Mk + A)−1(Mk xk −Cxk +γ−1
k uk),

uk+1 = (γkMk − S)xk+1−(γkMk − S)xk,

where Mk : H →H and γk > 0.

Compared to [15, 26], the elements of the sequence (xk)k∈N are given directly
by a nonlinear forward-backward step and do not need an extra projection step.
Convergence is instead ensured by the addition of the corrective term uk to the
forward step. The main benefit of this approach is in how the corrective term uk
is computed. Both Algorithm 2.1 and the corresponding algorithm with projection
correction [26, Algorithm 3.1] will in general need to evaluate Mk at two points.
For Algorithm 2.1, the two points are xk and xk+1 but this means that Mk and Mk+1
are evaluated at the same point, i.e., xk+1. The cost of one of these evaluations can
then be reduced if Mk and Mk+1 are similar, for instance if Mk+1xk+1 is a scalar
multiplication of Mk xk+1. In order for [26, Algorithm 3.1] to also evaluate Mk at xk
and xk+1, it is required that all Mk = α

−1
k

S with S ∈ P(H) and αk > 0 for all k ∈ N.
The only instance of [26, Algorithm 3.1] that satisfies this condition is ordinary
forward-backward splitting in the scaled metric given by ‖·‖S . This is in contrast
to our work where all but one–Algorithm 6.3–of the special cases we cover have
kernels that allow this reduction in computational cost.

The more similar Mk and γ−1
k

S are in Algorithm 2.1, the more similar the nonlin-
ear resolvent is to an ordinary scaled resolvent (γ−1

k
S+ A)−1 ◦ γ−1

k
S and the smaller

the corrective term uk+1 will be. No correction, i.e., uk+1 = 0, is applied when
Mk = γ

−1
k

S and Algorithm 2.1 then reduces to ordinary forward-backward split-
ting. We quantify the difference between Mk and γ−1

k
S in the following assumption

on the design parameters of Algorithm 2.1.

ASSUMPTION 2.2
Assume that:

(i) The sequence (γk)k∈N is positively lower bounded, i.e., γk ≥ γ for some γ > 0
for all k ∈ N.

(ii) The nonlinear kernel Mk : H → H is such that γkMk − S is Lk-Lipschitz
continuous w.r.t. S for all k ∈ N.

These assumptions will form the basis of our convergence analysis. First, we
will use them to infer a few useful properties of the nonlinear kernel Mk .

88

3 Convergence

PROPOSITION 2.3
Let Assumption 2.2 hold with Lk < 1 for all k ∈ N. Then Mk is 2γ−1-Lipschitz con-
tinuous w.r.t. S, maximally monotone, and strongly monotone w.r.t. S for all k ∈ N.

Proof. The kernel Mk satisfies Mk = γ
−1
k
(γkMk − S) + γ−1

k
S and therefore is it

γ−1
k
(1+ Lk)-Lipschitz continuous w.r.t. S. Since Lk < 1 and γk ≥ γ, the Lipschitz

continuity claim is proven. Lk-Lipschitz continuity of γkMk − S gives

L2
k ‖x− y‖

2
S ≥ ‖(γkMk − S)x−(γkMk − S)y‖2

S−1

= ‖γkMk x−γkMk y‖
2
S−1 + ‖S(x− y)‖2S−1

−2γk 〈Mk x−Mk y,x− y〉

≥ ‖x− y‖2S −2γk 〈Mk x−Mk y,x− y〉.

Since Lk < 1, rearranging this expression yields the
1−L2

k

2γk -strong monotonicity w.r.t.
S of Mk . Maximality of Mk follows from its continuity and monotonicity [4, Corol-
lary 20.28]. �

3. Convergence

The convergence of Algorithm 2.1 will be established by the convergence of a quan-
tity Vk , defined in Lemma 3.2. The quantity Vk consists of the distance from the
corrected iterate xk + S−1uk to an arbitrary solution (measured in the scaled norm
‖·‖S) and a residual term. Theorem 3.3 will then establish the main convergence
result. Before that, we show that the algorithm generates a well-defined infinite se-
quence.

PROPOSITION 3.1
Let Assumptions 2.1 and 2.2 hold with Lk < 1 for all k ∈ N. Then Algorithm 2.1
generates infinite sequences (xk)k∈N and (uk)k∈N uniquely determined by x0 and
u0.

Proof. Since S, C, and Mk are single-valued, it suffices to show that (Mk + A)−1 is
also single-valued and has full domain. By Proposition 2.3, the kernel Mk is max-
imally monotone and strongly monotone w.r.t. S, which implies maximal mono-
tonicity and strong monotonicity w.r.t. Id as well. The kernel has full domain,
dom Mk =H , so the sum Mk + A is maximally monotone and strongly monotone
with ran(Mk + A) =H and hence dom(Mk + A)−1 =H [4, Corollary 25.28]. Since
Mk + A is strongly monotone, (Mk + A)−1 is cocoercive and hence Lipschitz contin-
uous and single-valued [4, Example 22.7]. �

LEMMA 3.2
Let z ∈ zer(A+C) and let Assumptions 2.1 and 2.2 hold with Lk < 1 for all k ∈ N.
Then Algorithm 2.1 satisfies

(1− Lk−1− Lk −
γk`

2)‖xk+1− xk ‖2S ≤ Vk −Vk+1 (4)

89

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

for all k ∈ N+ where

Vk = ‖xk + S−1uk − z‖2S + (1− Lk−1)Lk−1‖xk − xk−1‖
2
S .

Proof. By Proposition 3.1 we have that sequences (xk)k∈N and (uk)k∈N are well-
defined, which implies that all quantities of the lemma are well-defined. Let k ∈ N+
be arbitrary. From Algorithm 2.1 we know that

xk+1 = (Mk + A)−1(Mk xk −Cxk +γ−1
k uk).

Using the definition of (Mk + A)−1, multiplying with γk and rearranging yields

Sxk − Sxk+1+uk −uk+1−γkCxk ∈ γk Axk+1.

Since z ∈ zer(A+C), we have −Cz ∈ Az. Using monotonicity of γk A and multiply-
ing by 2 gives

0 ≤ 2〈γk Axk+1−γk Az,xk+1− z〉

≤ 2〈Sxk − Sxk+1+uk −uk+1−γkCxk +γkCz,xk+1− z〉

= 2〈Sxk +uk −(Sxk+1+uk+1),xk+1− z〉 −2γk 〈Cxk −Cz,xk+1− z〉.

Assuming C , 0 and applying (3) on the last term gives

0 ≤ 2〈ξk − ξk+1,xk+1− z〉S +
γk`

2 ‖xk+1− xk ‖2S

where we have set ξk B xk +S−1uk . It is clear that this also holds when C = 0, since
then ` = 0 by definition. Applying (2) to the inner product with a = ξk , b = ξk+1,
c = z, d = xk+1 yields

0 ≤ ‖ξk − z‖2S − ‖ξk+1− z‖2S +
γk`

2 ‖xk+1− xk ‖2S
− ‖ξk − xk+1‖

2
S + ‖ξk+1− xk+1‖

2
S

= ‖ξk − z‖2S − ‖ξk+1− z‖2S +
γk`

2 ‖xk+1− xk ‖2S
− ‖S−1uk −(xk+1− xk)‖2S + ‖uk+1‖

2
S−1 .

(5)

We can expand the second to last norm, assume Lk−1 > 0 and use Young’s inequality
to get

‖S−1uk −(xk+1− xk)‖2S = ‖uk ‖
2
S−1 −2〈uk,xk+1− xk〉+ ‖xk+1− xk ‖2S

≥ −(L−1
k−1−1)‖uk ‖2S−1 + (1− Lk−1)‖xk+1− xk ‖2S .

By definition we have uk = (γk−1Mk−1− S)xk −(γk−1Mk−1− S)xk−1 which yields

‖S−1uk + (xk − xk+1)‖
2
S

≥ −(1− Lk−1)Lk−1‖xk − xk−1‖
2
S + (1− Lk−1)‖xk+1− xk ‖2S

90

3 Convergence

since γk−1Mk−1 − S is Lk−1-Lipschitz continuous w.r.t. S with Lk−1 < 1. We also
note that this inequality holds when Lk−1 = 0 since uk = 0 in that case.

Inserting this back into (5) and using Lipschitz continuity of γkMk − S on the
last term yield

0 ≤ ‖ξk − z‖2S − ‖ξk+1− z‖2S +
γk`

2 ‖xk+1− xk ‖2S
+ (1− Lk−1)Lk−1‖xk − xk−1‖

2
S −(1− Lk−1)‖xk+1− xk ‖2S

+ L2
k ‖xk+1− xk ‖2S

= ‖ξk − z‖2S + (1− Lk−1)Lk−1‖xk − xk−1‖
2
S

− ‖ξk+1− z‖2S −(1− Lk)Lk ‖xk+1− xk ‖2S
−(1− Lk−1− Lk −

γk`
2)‖xk+1− xk ‖2S .

Rearranging this expression gives the inequality of the lemma. �

THEOREM 3.3
Let Assumptions 2.1 and 2.2 hold. If there exists an ε > 0 such that

1− Lk−1− Lk −
γk`

2 ≥ ε (6)

for all k ∈ N+, then Algorithm 2.1 satisfies the following as k→∞:

(i) xk+1− xk → 0,

(ii) uk → 0,

(iii) (A+C)xk+1 3 Mk xk −Mk xk+1+γ
−1
k

uk +Cxk+1−Cxk → 0,

(iv) xk ⇀ x? for some x? ∈ zer(A+C).

Proof. Let z ∈ zer(A+C). Applying Lemma 3.2 and adding the inequality (4) for
k = 1, . . . ,n yields∑n

k=1
(1− Lk−1− Lk −

γk`
2)‖xk+1− xk ‖2S ≤ V1−Vn+1 <V1 <∞.

The second to last inequality holds since 0 ≤ Lk < 1 for all k ∈N by the assumptions
and the condition (6) of the theorem and therefore is Vn+1 nonnegative. Item (i)
follows from letting n→∞ since (1− Lk−1− Lk −

γk`
2) ≥ ε > 0 for all k ∈ N+ by the

condition of the theorem. Item (ii) follows from (i), the definition of uk , and from
the Lk-Lipschitz continuity of γkMk − S where Lk < 1 for all k ∈ N.

Let k ∈ N. For (iii), we first note from the nonlinear forward-backward step in
Algorithm 2.1 that

Axk+1 3 Mk xk −Mk xk+1+γ
−1
k uk −Cxk,

which, by adding Cxk+1 to both sides, gives

(A+C)xk+1 3 Mk xk −Mk xk+1+γ
−1
k uk +Cxk+1−Cxk .

91

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

The result then follows from (i) and (ii) since for all k ∈ N, γk > γ and Mk and C
are Lipschitz continuous w.r.t. S with constants 2γ−1 and ` respectively, see Propo-
sition 2.3 and Assumption 2.1.

Since A+C is maximally monotone, (iii) implies that all weak sequential cluster
points of (xk)k∈N belong to zer(A+C) due to weak-strong sequential closedness of
graphs of maximal monotone operators [4, Proposition 20.38]. To show the weak
convergence result in (iv), in view of [4, Lemma 2.47], it is enough to show that
(‖xk − z‖S)k∈N converges for all z ∈ zer(A+C). The proof of [4, Lemma 2.47] ac-
tually only covers the case when (‖xk − z‖)k∈N converges but the generalization is
straightforward.

For any z ∈ zer(A+C), Lemma 3.2 and the condition (1− Lk−1 − Lk −
γk`

2) ≥
ε > 0 give that (Vk)k∈N+ is a nonincreasing nonnegative sequence which therefore
converges, say,Vk → ν. This convergence implies

‖xk + S−1uk − z‖2S =Vk −(1− Lk−1)Lk−1‖xk − xk−1‖
2
S→ ν

due to (i) and 0 ≤ Lk−1 < 1. The sequence {xk + S−1uk − z}k∈N is then bounded,
which, together with (ii), yields

‖xk − z‖2S = ‖(xk + S−1uk − z)− S−1uk ‖2S
= ‖xk + S−1uk − z‖2S + ‖uk ‖

2
S−1 −2〈uk,xk + S−1uk − z〉 → ν

which concludes the proof of (iv). �

4. Additional Momentum

Consider the following variant of Algorithm 2.1 that adds an additional scaled mo-
mentum term γ−1

k
θS(xk − xk−1).

Algorithm 4.1 Nonlinear Forward-Backward with Momentum Correction and Ad-
ditional Momentum
Consider problem (1) and let S be such that Assumption 2.1 is satisfied. With
x0,x−1,u0 ∈ H , for all k ∈ N iteratively perform

xk+1 = (Mk + A)−1(Mk xk −Cxk +γ−1
k uk +γ−1

k θS(xk − xk−1)),

uk+1 = (γkMk − S)xk+1−(γkMk − S)xk,

where Mk : H →H , γk > 0 and θ < 1.

We will show in Corollary 4.1 that there always exists a θ , 0–possibly negative-
–such that if Algorithm 2.1 converges, so does Algorithm 4.1. This shows that it is
always possible to add momentum to an instance of Algorithm 2.1. We will use

92

4 Additional Momentum

this in the next section to develop a new momentum variant of the Forward-Half-
Reflected-Backward method. Although it might seem like Algorithm 4.1 has more
degrees of freedom than Algorithm 2.1, this is not the case. In fact, Algorithm 4.1
is equivalent to Algorithm 2.1–we show and use this in the proofs below. Algo-
rithm 4.1 is therefore first and foremost a tool for adding momentum to an already
known instance of Algorithm 2.1 and the usefulness comes via the following corol-
lary that gives an explicit convergence condition.

COROLLARY 4.1
Let Assumptions 2.1 and 2.2 hold and let θ < 1. If there exists an ε > 0 such that

1− θ −2|θ | − Lk−1− Lk −γk
`
2 ≥ ε (7)

for all k ∈ N+, then Algorithm 4.1 satisfies the following as k→∞:

(i) xk+1− xk → 0,

(ii) uk → 0,

(iii) (A+C)xk+1 3 Mk xk −Mk xk+1+γ
−1
k

uk +γ−1
k
θS(xk − xk−1)+Cxk+1−Cxk→ 0,

(iv) xk ⇀ x? for some x? ∈ zer(A+C).

Proof. By defining γ̂k =
γk

1−θ , the update of Algorithm 4.1 can equivalently be writ-
ten as

xk+1 = (Mk + A)−1(Mk xk −Cxk + γ̂−1
k ûk),

ûk+1 = (γ̂kMk − S)xk+1−(γ̂kMk − S)xk
(8)

which is the same as the update of Algorithm 2.1 but with γ̂k and ûk instead of γk
and uk respectively. Algorithm 4.1 is therefore equivalent to Algorithm 2.1. Since,
by Assumption 2.2, γkMk − S is Lk-Lipschitz w.r.t. S and

γ̂kMk − S = 1
1−θ (γkMk − S)+ θ

1−θ S

we conclude that γ̂kMk − S is Lk+ |θ |
1−θ -Lipschitz continuous w.r.t. S. We further have

that γ̂k =
γk

1−θ ≥
γ

1−θ > 0 and Assumption 2.2 is therefore satisfied for (8). The con-
vergence condition (6) from Theorem 3.3 for the algorithm update (8) is then that
there exists an ε > 0 such that

1− Lk−1+ |θ |
1−θ −

Lk+ |θ |
1−θ −

γk
1−θ

`
2 ≥ ε .

Multiplication of both sides by 1− θ and noting that θ < 1 gives the equivalent
condition that there exists an ε > 0 such that

1− θ −2|θ | − Lk−1− Lk −γk
`
2 ≥ ε.

The convergence results for Algorithm 4.1 follow directly from Theorem 3.3 and
ûk+1 =

1
1−θ uk+1+

θ
1−θ S(xk+1− xk). �

93

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

COROLLARY 4.2
If the conditions of Theorem 3.3 hold–implying that Algorithm 2.1 converges to a
solution of (1)–there exists a θ , 0 with θ < 1 such that the conditions of Corol-
lary 4.1 also hold and the additional momentum method in Algorithm 4.1 converges
to a solution of (1).

Proof. The assumptions on A, C, S, Mk , and γk of Theorem 3.3 and Corollary 4.1
are identical so it is enough to conclude that there exists a θ , 0 and θ < 1 such that
convergence condition (7) of Corollary 4.1 is implied by the conditions of Theo-
rem 3.3. Since Theorem 3.3 holds, we know that

1− Lk−1− Lk −γk
`
2 ≥ ε > 0.

Since ε > 0 there exist a θ such that − 1
2 ε < θ <

1
6 ε , θ , 0, and θ < 1. Selecting such

a θ yields 1
2 ε > θ +2|θ | > 0 and

1− Lk−1− Lk −γk
`
2 ≥ ε >

1
2 ε + θ +2|θ | > 0.

Subtracting θ +2|θ | and defining ε = 1
2 ε yield

1− θ −2|θ | − Lk−1− Lk −γk
`
2 ≥ ε > 0

which is the convergence condition (7) for Algorithm 4.1. �

REMARK 4.3
From Corollary 4.2, we know that we can always add momentum to an instance of
Algorithm 2.1 and still get a convergent algorithm. In most cases, the per iteration
computational cost of the momentum variant is similar to that of the basic method.
However, it is possible for the momentum variant not to be tractable. More precisely,
it might not be possible to cheaply evaluate (Mk + A)−1 at Mk xk −Cxk + γ−1

k
uk +

γ−1
k
θS(xk − xk−1) even though it can be cheaply evaluated at Mk xk −Cxk + γ−1

k
uk .

We will show an example of this in Algorithm 6.3. For Algorithm 6.3, this problem
can be handled by introducing a θ-dependent term in the nonlinear kernel.

5. Forward-Half-Reflected-Backward Splitting

Two examples of existing algorithms that can be interpreted as instances of Algo-
rithm 2.1 are the forward-half-reflected-backward (FHRB) method and its special
case, the forward-reflected-backward (FRB) method2 [36]. FHRB is a method for
finding x ∈ H such that

0 ∈ Bx+Dx+Cx (9)

for which the following assumption holds; FRB solves the same problem but with
C = 0.

2 FHRB was referred to as a three-operator splitting variant of FRB in the original work.

94

5 Forward-Half-Reflected-Backward Splitting

ASSUMPTION 5.1
The operators of (9) satisfy:

(i) B : H → 2H is maximally monotone.

(ii) D : H →H is δ-Lipschitz continuous.

(iii) B+D is maximally monotone.

(iv) C : H →H is β−1-cocoercive.

(v) zer(B+D+C) , ∅.

If C = 0, we set β = β−1 = 0.

It should be noted that in [36] was Assumption 5.1(ii) replaced with a monotonicity
assumption on D. This assumption implies Assumption 5.1(ii) since the sum B+D
is maximally monotone if D is maximally monotone with full domain which is
the case if D is monotone and Lipschitz continuous. However, our assumptions are
slightly more general since we can allow for non-monotone D as long as B can
compensate for it.

By letting A = B+D, problem (9) can be seen as an instance of our standard
problem formulation (1). If we in addition let S = Id, Assumption 5.1 implies that
Assumption 2.1 holds with ` = β. With these choices, FHRB is obtained from Al-
gorithm 2.1 by choosing Mk = α

−1
k

Id−D and γk = αk for some step-size αk > 0.
The backward step of the algorithm becomes

(Mk + A)−1 = (α−1
k Id−D+B+D)−1 = (Id+αkB)−1 ◦αk Id .

Note, the backward step is independent of D and the algorithm will, as we will show
next, only depend on D through the forward step. The operator γkMk − S used in
the correction term becomes

γkMk − S = αk(α−1
k Id−D)− Id = −αkD,

and the complete forward step with momentum correction is

Mk xk −Cxk +γ−1
k uk

= α−1
k xk −Dxk −Cxk −α−1

k (αk−1Dxk −αk−1Dxk−1).

Combining the backward and forward steps yields the full FHRB algorithm, see
Algorithm 5.1. In this special case, we do not need to evaluate both Mk−1xk and
Mk xk from scratch since we can reuse the potentially expensive computation of
Dxk .

95

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

Algorithm 5.1 Forward-Half-Reflected-Backward [36]
Consider problem (9). With x0,x−1 ∈H and α−1 > 0, for all k ∈N iteratively perform

xk+1 = (Id+αkB)−1(xk −αkCxk −(αk +αk−1)Dxk +αk−1Dxk−1)

where αk > 0.

COROLLARY 5.2
Let Assumption 5.1 hold and consider problem (9) and Algorithm 5.1. If there exists
ε > 0 such that

ε ≤ αk, αkδ+αk+1(δ+
β
2) ≤ 1− ε

for all k ∈ N, then xk ⇀ x? where x? is a solution to (9).

Proof. After Assumption 5.1, we concluded that Assumption 2.1 holds for the
reformulation of (9) into (1) via A = B + D. Assumption 2.2 also holds since
γk = αk ≥ ε > 0 and γkMk − S = −αkD is αkδ-Lipschitz continuous. Inserting γk ,
β, and δ into (6) of Theorem 3.3 then directly gives the step-size condition and the
results follow from the theorem. �

These step-size conditions are slightly relaxed compared to the ones in the original
work [36]. Our conditions match these when a constant step-size αk = α is chosen.
However, the original work only provides convergence conditions for non-constant
step-sizes in the FRB case, i.e., C = 0. In that case, [36] proved convergence if
ε ≤ 2αk ≤ δ−1 − ε for some ε > 0 and all k ∈ N which is slightly more restrictive
than our condition.

REMARK 5.3
The same nonlinear kernel that in this case generates FHRB and FRB yields the
forward-backward-half-forward [12] and forward-backward-forward [42] methods
when used in the nonlinear forward-backward scheme with projection correction
[26]. The two sets of algorithms can therefore be seen to have the same nonlinear
forward-backward step but with different correction methods to guarantee conver-
gence. Due to the momentum correction’s reuse of old information, FHRB and FRB
have cheaper per-iteration costs compared to the projection correction counter-
parts.

5.1 Forward-Half-Reflected-Backward with Momentum
Consider again problem (9) and the operator choices that generated FHRB; A= B+
D, Mk = α

−1
k

Id−D, S = Id, and γk = αk . Using these parameters in Algorithm 4.1
gives the following momentum variant of FHRB.

96

6 Primal-Dual Methods

Algorithm 5.2 Forward-Half-Reflected-Backward with Momentum
Consider problem (9). With x0,x−1 ∈H and α−1 > 0, for all k ∈N iteratively perform

x̄k = xk + θ(xk − xk−1),

xk+1 = (Id+αkB)−1(x̄k −αkCxk −(αk +αk−1)Dxk +αk−1Dxk−1)

where αk > 0 and θ < 1.

COROLLARY 5.4
Let Assumption 5.1 hold and consider problem (9) and Algorithm 5.2. If there exists
ε > 0 such that

ε ≤ αk, αkδ+αk+1(δ+
β
2) ≤ (1− θ −2|θ |) − ε

for all k ∈ N, then xk ⇀ x? where x? is a solution to (9).

Proof. The results follow from Corollary 4.1 analogously to how the results of
Corollary 5.2 follow from Theorem 3.3. �

When C = 0 this is the same method as [36, Equation 4.1] without relaxation and
when D = 0 it is forward-backward splitting with momentum. Both of these special
cases have been shown to converge under certain conditions but our results expand
these conditions in both settings. In the FRB with momentum case, Corollary 5.4
allows for step-sizes that depend on the iteration index k while [36, Theorem 4.3]
only allows for constant step-size, αk = α for all k ∈ N. In the forward-backward
with momentum case, Corollary 5.4 makes it possible to find a convergent step-size
αk for all θ ∈ (−1, 1

3), which is the only result we know of that allows for negative
momentum. This is especially interesting considering that the magnitude of nega-
tive momentum is allowed to be larger than the magnitude of positive momentum.
Our upper bound on the momentum matches other results in the literature for weak
sequence convergence–[36] when C = 0, [1] when C = D = 0, and [37] when C , 0
and D = 0.3 In the gradient-descent case, larger upper bounds on θ and αk have
been shown to work [25]. These results guarantee ergodic convergence of function
values and are not applicable to general monotone inclusion problems.

6. Primal-Dual Methods

Let K, and G be real Hilbert spaces. We will present two new primal-dual methods
for solving the problem of finding y ∈ K such that

0 ∈ By+ (V∗ ◦D ◦V)y+E y+Fy (10)
3 The work in [37] does not present an explicit convergence condition for a fixed choice of θ. Instead,

they present a criterion for selecting an iteration dependent θk adaptively. However, in a remark they
mention results from [1] which, when combined with their results, yield a convergence criteria for a
fixed choice of θ.

97

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

where the following assumptions hold.

ASSUMPTION 6.1
The operators of (10) satisfy:

(i) B : K → 2K and D : G → 2G are maximally monotone.

(ii) E : K →K is monotone and δ-Lipschitz continuous.

(iii) F : K →K is β−1-cocoercive.

(iv) V : K → G is linear and bounded.

(v) zer(B+ (V∗ ◦D ◦V)+E +F) , ∅.

If F = 0, we set β = β−1 = 0.

By a primal-dual method, we mean a method that, instead of solving (10) directly,
solves the equivalent primal-dual problem of finding y ∈ K and z ∈ G such that

0 ∈

{
By+V∗z+E y+Fy

D−1z−V y.
(11)

The two primal-dual methods are derived by reformulating this primal-dual problem
into our standard form (1) and then applying Algorithm 2.1 with different sets of
design parameters. There is no unique way of reformulating (11) into (1) but we
setH =K×G and define, with some abuse of block matrix notation, A : K×G →
2K×G and C : K×G →K×G as

A =
[
B 0
0 D−1

]
︸ ︷︷ ︸

Â

+

[
E 0
0 0

]
︸ ︷︷ ︸

Ê

+

[
0 V∗

−V 0

]
︸ ︷︷ ︸

V̂

and C =
[
F 0
0 0

]
. (12)

Assuming A+C has at least one zero, these operators satisfy Assumption 2.1 since
A = Â+ Ê + V̂ is the sum of a maximally monotone operator Â and two maximally
monotone operators Ê and V̂ with full domains. The properties of Â, Ê , and V̂
are results of the following: maximal monotonicity of B and D; monotonicity and
Lipschitz continuity of E; and the skew-adjointness and linearity of V̂ . The first
assumption of Assumption 2.1 is then satisfied and the second assumption regarding
the cocoercivity of C is easily verified in the standard metric of K ×G. However,
the algorithms in Sections 6.1 and 6.2 will use different scaling operators S and
we will therefore defer the derivation of more precise cocoercivity constants to the
respective sections since the constants depend on S.

98

6 Primal-Dual Methods

6.1 Block-Triangular Resolvent
To derive our first primal-dual algorithm, we decompose the iterates of Algo-
rithm 2.1 as xk = (yk,zk) with yk ∈ K and zk ∈ G for all k ∈ N. The algorithm
is given by the following design parameters

S =
[

Id −τV∗

−τV τσ−1 Id

]
, Mk =

[
τ−1 Id 0
−λkV σ−1 Id

]
︸ ︷︷ ︸

M̂k

−Ê − V̂ and γk = τ (13)

where τ,σ > 0 such that τσ‖V ‖2 < 1 and λk ∈ R for all k ∈ N. The assumption on τ
and σ guarantees that S ∈ P(K ×G). The forward step operator and the correction
operator are

Mk −C =
[
τ−1 Id−E −F −V∗

(1−λk)V σ−1 Id

]
, γkMk − S = τ

[
−E 0

(2−λk)V 0

]
.

Inserting these operators into the complete forward step with correction,

(ŷk, ẑk)B Mk(yk,zk)−C(yk,zk)+γ−1
k (γk−1Mk−1− S)(yk,zk)

−γ−1
k (γk−1Mk−1− S)(yk−1,zk−1),

where (ŷk, ẑk) ∈ K ×G, yields

ŷk = τ
−1yk −V∗zk −(2E yk −E yk−1)−Fyk,

ẑk = σ−1zk + (1−λk)V yk + (2−λk−1)V(yk − yk−1).

What remains to compute is the backward step. The kernel Mk is designed to cancel
out the Ê and V̂ terms, making only the forward step depend on these operators,

(Mk + A)−1 = (M̂k − Ê − V̂ + Â+ Ê + V̂)−1 = (M̂k + Â)−1.

This is the inverse of a lower block triangular operator and it can therefore be com-
puted with back substitution according to

(yk+1,zk+1) = (M̂k + Â)−1(ŷk, ẑk)

⇐⇒ (ŷk, ẑk) ∈ (M̂k + Â)(yk+1,zk+1)

⇐⇒

{
ŷk ∈ (τ

−1 Id+B)yk+1

ẑk ∈ −λkV yk+1+ (σ
−1 Id+D−1)zk+1

⇐⇒

{
yk+1 = (Id+τB)−1(τ ŷk)

zk+1 = (Id+σD−1)−1(σ ẑk +σλkV yk+1).

Inserting the expressions for ŷk and ẑk results in the following algorithm.

99

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

yk−1 yk

yk+1

yk + vk+1, (λk = λk−1 = 0)

yk + vk+1, (λk = λk−1 = 2)

yk + vk+1, (λk = λk−1 = 1.2)

Figure 1. Update of the corrected primal iterate yk + vk+1 in Algorithm 6.1.

Algorithm 6.1 Primal-Dual Method with Block Triangular Resolvent
Consider problem (10). With y0,y−1 ∈K, z0 ∈ G and λ−1 ∈R, for all k ∈N iteratively
perform

yk+1 = (Id+τB)−1(yk − τV∗zk − τ(2E yk −E yk−1)− τFyk),

vk+1 = λk(yk+1− yk)+ (2−λk−1)(yk − yk−1),

zk+1 = (Id+σD−1)−1(zk +σV(yk + vk+1)),

where τ,σ > 0 and λk ∈ R.

Due to the lower block-triangular structure of the operator in the backward step,
the primal update of yk+1 is independent of the dual update of zk+1 but the oppo-
site statement does not hold in general. This dependency is controlled by λk and
manifests itself as a correction vk+1 added to the primal iterate used in the dual
update. When λk = λk−1, the correction vk+1 is an affine combination of an extrap-
olation step based either on the current or previous primal update, see Fig. 1. When
λk , λk−1, the correction can be an arbitrary linear combination of the two different
extrapolations. However, the choice of the sequence (λk)k∈N will affect the range of
allowed step-sizes. The more λk differs from 2, the smaller the upper bound on the
step-sizes is in the following convergence result.

COROLLARY 6.2
Let Assumption 6.1 hold and consider problem (10) and Algorithm 6.1. If there
exists ε > 0 such that

τσ‖V ‖2+ (|2−λk |+ |2−λk+1 |)
√
τσ‖V ‖+ τ(2δ+ 1

2 β) < 1− ε

for all k ∈ N, then yk ⇀ y? and zk ⇀ z? where y? is a solution to (10) and (y?,z?)
is a solution to (11).

Before proceeding to the proof of Corollary 6.2, we present the following lemma
on which the proof relies.

100

6 Primal-Dual Methods

LEMMA 6.3
Let S ∈ P(K ×G) be from (13). The inverse of S satisfies

S−1 =

[
(Id−τσV∗V)−1 0

0 (Id−τσVV∗)−1

] [
Id σV∗

σV τ−1σ Id

]
.

The following inequalities hold for all y ∈ K and z ∈ G:

‖(y,0)‖2
S−1 ≤

1
1−τσ ‖V ‖2 ‖y‖

2, ‖(0,z)‖2
S−1 ≤

τ−1σ
1−τσ ‖V ‖2 ‖z‖

2

and ‖y‖2 ≤ 1
1−τσ ‖V ‖2 ‖(y,z)‖

2
S .

Proof. The inverse is easily verified and we note that, since τσ‖V ‖2 < 1 by assump-
tion, Id−τσV∗V ∈ P(K) and Id−τσVV∗ ∈ P(G) and hence they are invertible. Let
y ∈ K, then

‖(y,0)‖2
S−1 = 〈(Id−τσV∗V)−1y,y〉

≤ ‖(Id−τσV∗V)−1‖‖y‖2

≤ 1
1−τσ ‖V ‖2 ‖y‖

2

which proves the first inequality of the lemma. The last step holds since 1 >
τσ‖V ‖2. Let z ∈ G, then

‖(0,z)‖2
S−1 = τ

−1σ〈(Id−τσVV∗)−1z,z〉

≤ τ−1σ‖(Id−τσVV∗)−1‖‖z‖2

≤ τ−1σ
1−τσ ‖V ‖2 ‖z‖

2

which proves the second inequality of the lemma. Again, the last step holds since
1 > τσ‖V ‖2. Let y ∈ K and z ∈ G, then

‖(y,z)‖2S = ‖y‖
2+ τσ−1‖z‖2−2τ〈V y,z〉

≥ ‖y‖2+ τσ−1‖z‖2− τ(σ‖V ‖2‖y‖2+σ−1‖z‖2)

= (1− τσ‖V ‖2)‖y‖2

which proves the third inequality of the lemma. �

Proof of Corollary 6.2. As previously stated, the choice of A and C in (12) satisfies
Assumption 2.1 since we assume that a solution exists. What remains to verify of
Assumption 2.1 is to derive a cocoercivity constant of C. The first inequality of
Lemma 6.3 directly gives

‖C(y,z)−C(y′,z′)‖2
S−1 ≤

1
1−τσ ‖V ‖2 ‖Fy−Fy′‖2

≤
β

1−τσ ‖V ‖2 〈Fy−Fy′,y− y′〉

=
β

1−τσ ‖V ‖2 〈C(y,z)−C(y′,z′),(y,z)− (y′,z′)〉

101

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

for all (y,z),(y′,z′) ∈ K ×G. Hence, C is `−1-cocoercive w.r.t. S with ` = β

1−τσ ‖V ‖2 .
Note that we can set ` = 0 if F = 0.

The assumptions placed on the design parameters, Assumption 2.2, also need to
hold. For item (i) of Assumption 2.2, we directly see that γk = τ > 0. We prove (ii)
of Assumption 2.2, the Lipschitz continuity of

γkMk − S = τ(M̂k − V̂)− S− τÊ,

by showing Lipschitz continuity of τÊ and of τ(M̂k − V̂) − S separately. The Lip-
schitz continuity of γkMk − S then follows from the Lipschitz continuity of a sum
of Lipschitz continuous operators. Starting with τÊ and using the first and third
inequalities from Lemma 6.3 and the Lipschitz continuity of E gives

‖Ê(y,z)− Ê(y′,z′)‖2
S−1 ≤

1
1−τσ ‖V ‖2 ‖E y−E y′‖2

≤ δ2

1−τσ ‖V ‖2 ‖y− y
′‖2

≤ δ2

(1−τσ ‖V ‖2)2 ‖(y,z)− (y
′,z′)‖2S

for all (y,z),(y′,z′) ∈ K ×G. The term τÊ is therefore τδ
1−τσ ‖V ‖2 -Lipschitz continu-

ous w.r.t. S. For τ(M̂k − V̂)− S, we first note that

τ(M̂k − V̂)− S =
[

0 0
τ(2−λk)V 0

]
and we can use the second inequality of Lemma 6.3:

‖(τ(M̂k − V̂)− S)(y,z)‖2
S−1 ≤

τ−1σ
1−τσ ‖V ‖2 ‖τ(2−λk)V y‖2

≤ (2−λk)2 τσ ‖V ‖2

1−τσ ‖V ‖2 ‖y‖
2

≤ (2−λk)2τσ‖V ‖2 1
(1−τσ ‖V ‖2)2 ‖(y,z)‖

2
S

for all (y,z) ∈ K × G. The operator τ(M̂k − V̂) − S is therefore Lipschitz continu-
ous w.r.t. S with constant |2− λk |

√
τσ‖V ‖ 1

1−τσ ‖V ‖2 . Adding these two Lipschitz
constants yields that γkMk − S is Lk-Lipschitz continuous w.r.t. S where

Lk =
1

1−τσ ‖V ‖2 (|2−λk |
√
τσ‖V ‖+ τδ),

and Assumption 2.2 is satisfied. The result of the corollary now follows from The-
orem 3.3 after inserting the expressions for ` and Lk into the convergence criterion
0 < ε ≤ 1− Lk − Lk−1− τ

`
2 . �

Related Algorithms From Algorithm 6.1, when E = 0 and λk = 2 for all k ∈
{−1,0, . . . }, we obtain an instance of the Vũ-Condat algorithm [21, 43]. If F = 0 as

102

6 Primal-Dual Methods

well, we get the method of Chambolle-Pock [17]. This is not surprising since both
of these methods are special cases of ordinary forward-backward splitting and the
kernel Mk , see (13), is linear, self-adjoint, and can be made strongly positive when
E = 0 and λk = 2. Furthermore, we have that γkMk − S = 0, which implies that the
momentum-correction term is zero and that Algorithm 2.1 has reduced to the ordi-
nary forward-backward method. Both when F , 0 and when F = 0, Corollary 6.2
regains the convergence criteria of Vũ-Condat and Chambolle-Pock respectively.

When E = 0, Algorithm 6.1 shares similarities with the asymmetric-kernel
primal-dual method of Latafat and Patrinos [32, Algorithm 3]. They use the same
resolvent kernel, but [26] showed that the Latafat-Patrinos algorithm is a special
case of nonlinear forward-backward splitting with projection correction instead of
momentum correction. As discussed in Section 2 when comparing momentum and
projection corrections, the main benefit of Algorithm 6.1 is that the momentum cor-
rection generally yields cheaper iterations. In Algorithm 6.1, the linear composition
term V and its adjoint V∗ only need to be evaluated once each, while they need to
be evaluated twice each for the Latafat-Patrinos method.

We can also relate Algorithm 6.1 to projective splitting methods [18, 24]. It has
been shown in [13, 27] that these methods are nonlinear forward-backward method
with projection correction. In fact, the synchronous projective splitting considered
in [27] is using the same kernel as in Algorithm 6.1 with E = 0 and λk = 0. We can
therefore think of Algorithm 6.1 with E = F = 0 and λk = 0 for all k ∈ {−1,0, . . . } as
a projective splitting method with momentum correction instead of a projection cor-
rection. The benefit of projective splitting methods compared to Chambolle-Pock-
like primal-dual methods is that the primal and dual updates do not depend on each
other and can therefore be performed in parallel. The same holds for Algorithm 6.1
since the correction vk+1 does not depend on yk+1 when λk = 0. The reason for this
becomes evident when examining the backward step (Mk + A)−1 = (M̂k + Â)−1 since
both M̂k and Â are block-diagonal when λk = 0, see (12) and (13).

Forward-Half-Reflected-Douglas–Rachford There is a connection between
primal/dual methods and Douglas-Rachford splitting [17, 38], and this connec-
tion also exists for our first primal-dual method, Algorithm 6.1. Whenever V = Id
and F = 0, choosing λk = 2 for all k ∈ {−1,0, . . . }, σ = ς−1 for some ς > 0 and
using Moreau’s identity in the dual update of Algorithm 6.1, the forward-reflected-
Douglas-Rachford (FRDR) method in [41] is obtained. Since we can allow for
F , 0, we can analogously construct a forward-half-reflected-Douglas-Rachford
method for solving (10).

103

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

Algorithm 6.2 Forward-Half-Reflected-Douglas–Rachford
Consider problem (10) with V = Id. With y0,y−1 ∈ K and z0 ∈ G, for all k ∈ N
iteratively perform

yk+1 = (Id+τB)−1(yk − τzk − τ(2E yk −E yk−1)− τFyk),

ŷk+1 = (Id+ςD)−1(ςzk +2yk+1− yk),

zk+1 = zk + ς−1(2yk+1− yk − ŷk+1),

where τ,σ > 0.

The convergence conditions match those of [41] when F = 0:

COROLLARY 6.4
Let V = Id and let Assumption 5.1 hold. Consider problem (10) and Algorithm 6.2.
If the step-sizes satisfy

τ(ς−1+2δ+ 1
2 β) < 1,

then yk ⇀ y? and zk ⇀ z? where y? is a solution to (10) and (y?,z?) is a solution
to (11).

Proof. Follows directly from Corollary 6.2 with V = Id and λk−1 = 2 for all k ∈N.�

When E = F = 0, the standard Douglas-Rachford is retrieved from Algo-
rithm 6.2 if the step-sizes τ = ς are chosen and the variable change zk = yk − τzk is
made. However, this step-size choice makes the step-size condition of Corollary 6.4
impossible to satisfy. The reason for this is that the scaling S of the underlying non-
linear forward-backward method becomes singular, which violates Assumption 2.1.
Dealing with this singularity is possible if it is explicitly assumed that E = F = 0,
but this is beyond the scope of this article, where the positive definiteness of S is
assumed.

6.2 Resolvent-Compensated Kernel
Our second method for solving (10) through the primal-dual problem (11) will make
further use of the nonlinearity of the kernel by including resolvent evaluations in the
kernel itself. As in the previous case, we reformulate the primal-dual problem to our
standard problem (1) by defining H , A, C, Â, Ê , and V̂ as in (12). The iterates of
Algorithm 2.1 are decomposed as xk = (yk,zk) with yk ∈ K and zk ∈ G for all k ∈N.
The second primal-dual algorithm is then given by Algorithm 2.1 with the following

104

6 Primal-Dual Methods

design parameters:

Mk =

[
τ−1 Id−V∗ ◦ (Id+σD−1)−1 ◦T−zk ◦σV 0

0 σ−1 Id

]
︸ ︷︷ ︸

M̂k

−Ê,

S =
[
Id 0
0 τσ−1 Id

]
and γk = τ

(14)

where τ,σ > 0 and Ta : G→ G : z 7→ z−a is the translation by a ∈ G. Note that the
current iterate zk is used in the construction of Mk and that S ∈ P(K ×G) for all
τ,σ > 0.

With these design parameters, the correction operator becomes

γkMk − S = τ
[
−E −V∗ ◦ (Id+σD−1)−1 ◦T−zk ◦σV 0

0 0

]
. (15)

Inserting this and the other operators into the forward step,

(ŷk, ẑk)B Mk(yk,zk)−C(yk,zk)+γ−1
k (γk−1Mk−1− S)(yk,zk)

−γ−1
k (γk−1Mk−1− S)(yk−1,zk−1),

where (ŷk, ẑk) ∈ K ×G, yields

ŷk = τ
−1yk −(2E yk +E yk−1)−Fyk

−V∗(Id+σD−1)−1(zk +σV yk)

−V∗(Id+σD−1)−1(zk−1+σV yk)

+V∗(Id+σD−1)−1(zk−1+σV yk−1),

ẑk = σ−1zk .

To see that the backward step

(Mk + A)−1 = (M̂k − Ê + Â+ Ê + V̂)−1 = (M̂k + Â+ V̂)−1,

can be evaluated efficiently requires some extra attention. The operator M̂k + Â+ V̂
does not have the lower block-triangular structure as in the algorithm in Section 6.1.
We can therefore not evaluate its inverse using the same back substitution approach
as before and computing it at a general point seems intractable. However, (M̂k + Â+
V̂)−1 is only evaluated at (ŷk, ẑk) and the kernel has been specifically designed such
that the backward step can be efficiently evaluated in this point. First use

(yk+1,zk+1) = (M̂k + Â+ V̂)−1(ŷk, ẑk)

⇐⇒ (ŷk, ẑk) ∈ (M̂k + Â+ V̂)(yk+1,zk+1).

105

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

Writing out the inclusion problem explicitly yields{
ŷk ∈ (τ

−1 Id+B)yk+1−V∗(Id+σD−1)−1(zk +σV yk+1)+V∗zk+1,

ẑk ∈ −V yk+1+ (σ
−1 Id+D−1)zk+1.

Using that zk = σ ẑk in the first row and solving for zk+1 in the second row results in{
ŷk ∈ (τ

−1 Id+B)yk+1−V∗(Id+σD−1)−1(σ ẑk +σV yk+1)+V∗zk+1,

zk+1 = (Id+σD−1)−1(σ ẑk +σV yk+1).

Inserting the second row into the first and solving for yk+1 gives{
yk+1 = (Id+τB)−1(τ ŷk),

zk+1 = (Id+σD−1)−1(σ ẑk +σV yk+1).

Finally, inserting the expressions for ŷk and ẑk gives us the following algorithm.

Algorithm 6.3 Primal-Dual Method with Resolvent Corrected Kernel
Consider problem (10). With y0,y−1 ∈ K and z0,ν0 ∈ G, for all k ∈ N iteratively
perform

νk+1 = (Id+σD−1)−1(zk +σV yk)

yk+1 = (Id+τB)−1(yk − τV∗(zk + νk+1− νk)− τ(2E yk −E yk−1)− τFyk)

zk+1 = (Id+σD−1)−1(zk +σV yk+1)

where τ,σ > 0.

We see that, compared to our other primal-dual method Algorithm 6.1, we re-
quire one extra evaluation of the resolvent of D−1 each iteration. Apart from that,
Algorithm 6.3, also only requires one evaluation of (Id+τB)−1, V and V∗, given
that V yk+1 is stored for the next iteration. Still, the resulting per-iteration computa-
tional cost is higher compared to Algorithm 6.1 and most other primal-dual meth-
ods. Exactly how much more expensive this method is will depend on the problem
being solved and in some cases it is negligible. The main reason for presenting Al-
gorithm 6.3, apart from its novelty, is to further demonstrate the flexibility of the
nonlinear kernel framework.
COROLLARY 6.5
Let Assumption 6.1 hold and consider problem (10) and Algorithm 6.3. If the step-
sizes satisfy

2τσ‖V ‖2+ τ(2δ+ β
2) < 1,

then yk ⇀ y? and zk ⇀ z? where y? is a solution to (10) and (y?,z?) is a solution
to (11).

106

6 Primal-Dual Methods

Proof. Due to the structures of S and C we can conclude that C is β−1-cocoercive
w.r.t. S since

‖C(y,z)−C(y′,z′)‖2
S−1 = ‖Fy−Fy′‖2

≤ β〈Fy−Fy′,y− y′〉

= β〈C(y,z)−C(y′,z′),(y,z)− (y′,z′)〉

for all (y,z) ∈ K ×G. We have previously established that A is maximally monotone
and, since we assume a solution exists, Assumption 2.1 holds.

For Assumption 2.2, we first note that γk = τ > 0 and, hence, that the first as-
sumption is satisfied. For the Lipschitz continuity of γkMk − S we recall the defini-
tion of the operator in (15). The operator E is, by assumption, δ-Lipschitz continu-
ous, and (Id+σD−1)−1 ◦T−zk is 1-Lipschitz since both the resolvent and translation
are 1-Lipschitz continuous. The operator −τ(E +V∗ ◦ (Id+σD−1)−1 ◦T−zk ◦σV) is
therefore (τδ+ τσ‖V ‖2)-Lipschitz continuous for all k ∈ N. Since

‖(γkMk − S)(y,z)− (γkMk − S)(y′,z′)‖2
S−1

= ‖τ(E +V∗(Id+σD−1)−1(zk +σV))y

− τ(E +V∗(Id+σD−1)−1(zk +σV))y′‖2

≤ (τδ+ τσ‖V ‖2)2‖y− y′‖2

≤ (τδ+ τσ‖V ‖2)2‖(y,z)− (y′,z′)‖2S

for all (y,z) ∈ K ×G, γkMk − S is (τδ+ τσ‖V ‖2)-Lipschitz continuous w.r.t. S for
all k ∈ N. The result now follows from Theorem 3.3. �

REMARK 6.6
As stated in Remark 4.3, the approach for adding momentum presented in Sec-
tion 4 and Algorithm 4.1 does not yield a tractable algorithm when applied to
Algorithm 6.3. The kernel of Algorithm 6.3 was designed in such a way that the
backward step is only cheaply computed at the point given by the forward step and
it is therefore not straightforward to apply the latter to the forward step with mo-
mentum. However, this is easily fixed. We regain computability of the backward step
if we add θ(zk − zk−1) according to

Mk =

[
τ−1 Id−V∗ ◦ (Id+σD−1)−1 ◦T−zk−θ(zk−zk−1) ◦σV 0

0 σ−1 Id

]
− Ê

and use this kernel in Algorithm 4.1 instead. Since this operator only differs from
the one in (14) by a translation, it does not modify any Lipschitz constants, and the
convergence can be proved using the same approach as in Corollary 4.1.

107

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

7. Conclusion

We have presented a forward-backward method with a nonlinear resolvent and a
novel momentum correction. The design freedom of the nonlinear resolvent allows
us to interpret numerous methods as special cases of this forward-backward method.
Existing special cases include the forward-(half)-reflected-backward method, the
forward-reflected-Douglas-Rachford method and the primal-dual methods of Vũ-
-Condat and Chambolle-Pock. New algorithms include momentum versions of the
previously mentioned algorithms and two new four-operator primal-dual splitting
methods. Our convergence conditions either regain or improve on the already known
conditions for the existing methods, establishing parity of our more general analysis
with the more specialized approaches. We believe that this parity of analysis and the
great amount of freedom in the parameter choices of our algorithm can prove useful
for the understanding of existing algorithms and the development of new ones.

References

[1] F. Alvarez and H. Attouch. “An Inertial Proximal Method for Maximal
Monotone Operators via Discretization of a Nonlinear Oscillator with Damp-
ing”. Set-Valued Analysis 9:1 (2001), pp. 3–11. DOI: 10 . 1023 / A :
1011253113155.

[2] H. Attouch and A. Cabot. “Convergence Rates of Inertial Forward-Backward
Algorithms”. SIAM Journal on Optimization 28:1 (2018), pp. 849–874. DOI:
10.1137/17M1114739.

[3] H. H. Bauschke, J. M. Borwein, and P. L. Combettes. “Bregman Monotone
Optimization Algorithms”. SIAM Journal on Control and Optimization 42:2
(2003), pp. 596–636. DOI: 10.1137/S0363012902407120.

[4] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Opera-
tor Theory in Hilbert Spaces. Second. CMS Books in Mathematics. Springer
International Publishing, 2017. ISBN: 978-3-319-48310-8.

[5] H. H. Bauschke, M. N. Dao, and S. B. Lindstrom. “Regularizing with
Bregman–Moreau Envelopes”. SIAM Journal on Optimization 28:4 (2018),
pp. 3208–3228. DOI: 10.1137/17M1130745.

[6] H. H. Bauschke, P. L. Combettes, and D. Noll. “Joint Minimization with
Alternating Bregman Proximity Operators”. Pacific journal of optimization
(2006). URL: https://hal.archives-ouvertes.fr/hal-01868791
(visited on 2021-08-30).

[7] A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding Algo-
rithm for Linear Inverse Problems”. SIAM Journal on Imaging Sciences 2:1
(2009), pp. 183–202. DOI: 10.1137/080716542.

108

https://doi.org/10.1023/A:1011253113155
https://doi.org/10.1023/A:1011253113155
https://doi.org/10.1137/17M1114739
https://doi.org/10.1137/S0363012902407120
https://doi.org/10.1137/17M1130745
https://hal.archives-ouvertes.fr/hal-01868791
https://doi.org/10.1137/080716542

References

[8] R. I. Boţ and E. R. Csetnek. “An Inertial Forward-Backward-Forward Primal-
Dual Splitting Algorithm for Solving Monotone Inclusion Problems”. Nu-
merical Algorithms 71:3 (2016), pp. 519–540. DOI: 10 . 1007 / s11075 -
015-0007-5.

[9] R. I. Boţ, E. R. Csetnek, and C. Hendrich. “Inertial Douglas–Rachford Split-
ting for Monotone Inclusion Problems”. Applied Mathematics and Compu-
tation 256 (2015), pp. 472–487. DOI: 10.1016/j.amc.2015.01.017.

[10] R. I. Boţ, E. R. Csetnek, and E. Nagy. “Solving Systems of Monotone Inclu-
sions via Primal-Dual Splitting Techniques”. Taiwanese Journal of Mathe-
matics 17:6 (2013), pp. 1983–2009. DOI: 10.11650/tjm.17.2013.3087.

[11] L. M. Bregman. “The Relaxation Method of Finding the Common Point of
Convex Sets and Its Application to the Solution of Problems in Convex Pro-
gramming”. USSR Computational Mathematics and Mathematical Physics
7:3 (1967), pp. 200–217. DOI: 10.1016/0041-5553(67)90040-7.

[12] L. M. Briceño-Arias and D. Davis. “Forward-Backward-Half Forward Al-
gorithm for Solving Monotone Inclusions”. SIAM Journal on Optimization
28:4 (2018), pp. 2839–2871. DOI: 10.1137/17M1120099.

[13] M. N. Bùi. The Warped Resolvent of a Set-Valued Operator: Theory and
Applications. PhD thesis. North Carolia State University, 2021. URL: https:
//repository.lib.ncsu.edu/bitstream/handle/1840.20/39099/
etd.pdf (visited on 2021-10-10).

[14] M. N. Bùi and P. L. Combettes. “Bregman Forward-Backward Operator
Splitting”. Set-Valued and Variational Analysis 29:3 (2021), pp. 583–603.
DOI: 10.1007/s11228-020-00563-z.

[15] M. N. Bùi and P. L. Combettes. “Warped Proximal Iterations for Mono-
tone Inclusions”. Journal of Mathematical Analysis and Applications 491:1
(2020), p. 124315. DOI: 10.1016/j.jmaa.2020.124315.

[16] R. Burachik and J. Dutta. “Inexact Proximal Point Methods for Variational
Inequality Problems”. SIAM Journal on Optimization 20:5 (2010), pp. 2653–
2678. DOI: 10.1137/080733437.

[17] A. Chambolle and T. Pock. “A First-Order Primal-Dual Algorithm for Con-
vex Problems with Applications to Imaging”. Journal of Mathematical Imag-
ing and Vision 40:1 (2011), pp. 120–145. DOI: 10.1007/s10851- 010-
0251-1.

[18] P. L. Combettes and J. Eckstein. “Asynchronous Block-Iterative Primal-Dual
Decomposition Methods for Monotone Inclusions”. Mathematical Program-
ming 168:1 (2018), pp. 645–672. DOI: 10.1007/s10107-016-1044-0.

[19] P. L. Combettes and L. E. Glaudin. “Solving Composite Fixed Point Prob-
lems with Block Updates”. Advances in Nonlinear Analysis 10:1 (2021),
pp. 1154–1177. DOI: 10.1515/anona-2020-0173.

109

https://doi.org/10.1007/s11075-015-0007-5
https://doi.org/10.1007/s11075-015-0007-5
https://doi.org/10.1016/j.amc.2015.01.017
https://doi.org/10.11650/tjm.17.2013.3087
https://doi.org/10.1016/0041-5553(67)90040-7
https://doi.org/10.1137/17M1120099
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/39099/etd.pdf
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/39099/etd.pdf
https://repository.lib.ncsu.edu/bitstream/handle/1840.20/39099/etd.pdf
https://doi.org/10.1007/s11228-020-00563-z
https://doi.org/10.1016/j.jmaa.2020.124315
https://doi.org/10.1137/080733437
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10107-016-1044-0
https://doi.org/10.1515/anona-2020-0173

Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction

[20] P. L. Combettes and J.-C. Pesquet. “Primal-Dual Splitting Algorithm for
Solving Inclusions with Mixtures of Composite, Lipschitzian, and Parallel-
Sum Type Monotone Operators”. Set-Valued and Variational Analysis 20:2
(2012), pp. 307–330. DOI: 10.1007/s11228-011-0191-y.

[21] L. Condat. “A Primal–Dual Splitting Method for Convex Optimization In-
volving Lipschitzian, Proximable and Linear Composite Terms”. Journal
of Optimization Theory and Applications 158:2 (2013), pp. 460–479. DOI:
10.1007/s10957-012-0245-9.

[22] D. Davis and W. Yin. “A Three-Operator Splitting Scheme and its Opti-
mization Applications”. Set-Valued and Variational Analysis 25:4 (2017),
pp. 829–858. DOI: 10.1007/s11228-017-0421-z.

[23] J. Eckstein. “Nonlinear Proximal Point Algorithms Using Bregman Func-
tions, with Applications to Convex Programming”. Mathematics of Opera-
tions Research 18:1 (1993), pp. 202–226. URL: http://www.jstor.org/
stable/3690161 (visited on 2021-08-30).

[24] J. Eckstein and B. F. Svaiter. “General Projective Splitting Methods for Sums
of Maximal Monotone Operators”. SIAM Journal on Control and Optimiza-
tion 48:2 (2009), pp. 787–811. DOI: 10.1137/070698816.

[25] E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson. “Global Convergence
of the Heavy-Ball Method for Convex Optimization”. In: 2015 European
Control Conference (ECC). 2015, pp. 310–315. DOI: 10.1109/ECC.2015.
7330562.

[26] P. Giselsson. “Nonlinear Forward-Backward Splitting with Projection Cor-
rection”. SIAM Journal on Optimization (2021), pp. 2199–2226. DOI: 10.
1137/20M1345062.

[27] P. Giselsson. Nonlinear Forward-Backward Splitting with Projection Correc-
tion. 2021. arXiv: 1908.07449v3. URL: http://arxiv.org/abs/1908.
07449v3.

[28] A. A. Goldstein. “Convex Programming in Hilbert Space”. Bulletin of the
American Mathematical Society 70:5 (1964), pp. 709–711. DOI: 10.1090/
S0002-9904-1964-11178-2.

[29] B. He, Y. You, and X. Yuan. “On the Convergence of Primal-Dual Hy-
brid Gradient Algorithm”. SIAM Journal on Imaging Sciences 7:4 (2014),
pp. 2526–2537. DOI: 10.1137/140963467.

[30] G. Kassay. “The Proximal Points Algorithm for Reflexive Banach Spaces”.
Stud. Univ. Babes-Bolyai Math 30 (1985), pp. 9–17.

[31] I. V. Konnov. “Combined Relaxation Methods for Generalized Monotone
Variational Inequalities”. In: Generalized Convexity and Related Topics. Lec-
ture Notes in Economics and Mathematical Systems. Springer, Berlin, Hei-
delberg, 2006, pp. 3–31. ISBN: 978-3-540-37007-9. DOI: 10.1007/978-3-
540-37007-9_1.

110

https://doi.org/10.1007/s11228-011-0191-y
https://doi.org/10.1007/s10957-012-0245-9
https://doi.org/10.1007/s11228-017-0421-z
http://www.jstor.org/stable/3690161
http://www.jstor.org/stable/3690161
https://doi.org/10.1137/070698816
https://doi.org/10.1109/ECC.2015.7330562
https://doi.org/10.1109/ECC.2015.7330562
https://doi.org/10.1137/20M1345062
https://doi.org/10.1137/20M1345062
https://arxiv.org/abs/1908.07449v3
http://arxiv.org/abs/1908.07449v3
http://arxiv.org/abs/1908.07449v3
https://doi.org/10.1090/S0002-9904-1964-11178-2
https://doi.org/10.1090/S0002-9904-1964-11178-2
https://doi.org/10.1137/140963467
https://doi.org/10.1007/978-3-540-37007-9_1
https://doi.org/10.1007/978-3-540-37007-9_1

References

[32] P. Latafat and P. Patrinos. “Asymmetric Forward–Backward–Adjoint Split-
ting for Solving Monotone Inclusions Involving Three Operators”. Compu-
tational Optimization and Applications 68:1 (2017), pp. 57–93. DOI: 10.
1007/s10589-017-9909-6.

[33] E. S. Levitin and B. T. Polyak. “Constrained Minimization Methods”. USSR
Computational mathematics and mathematical physics 6:5 (1966), pp. 1–50.

[34] P. L. Lions and B. Mercier. “Splitting Algorithms for the Sum of Two Nonlin-
ear Operators”. SIAM Journal on Numerical Analysis 16:6 (1979), pp. 964–
979. DOI: 10.1137/0716071.

[35] D. A. Lorenz and T. Pock. “An Inertial Forward-Backward Algorithm for
Monotone Inclusions”. Journal of Mathematical Imaging and Vision 51:2
(2015), pp. 311–325. DOI: 10.1007/s10851-014-0523-2.

[36] Y. Malitsky and M. K. Tam. “A Forward-Backward Splitting Method for
Monotone Inclusions Without Cocoercivity”. SIAM Journal on Optimization
30:2 (2020), pp. 1451–1472. DOI: 10.1137/18M1207260.

[37] A. Moudafi and M. Oliny. “Convergence of a Splitting Inertial Proximal
Method for Monotone Operators”. Journal of Computational and Applied
Mathematics 155:2 (2003), pp. 447–454. DOI: 10.1016/S0377-0427(02)
00906-8.

[38] D. O’Connor and L. Vandenberghe. “On the Equivalence of the Primal-Dual
Hybrid Gradient Method and Douglas–Rachford Splitting”. Mathematical
Programming 179:1 (2020), pp. 85–108. DOI: 10.1007/s10107- 018-
1321-1.

[39] B. T. Polyak. “Some Methods of Speeding up the Convergence of Iteration
Methods”. USSR Computational Mathematics and Mathematical Physics 4:5
(1964), pp. 1–17. DOI: 10.1016/0041-5553(64)90137-5.

[40] H. Raguet, J. Fadili, and G. Peyré. “A Generalized Forward-Backward Split-
ting”. SIAM Journal on Imaging Sciences 6:3 (2013), pp. 1199–1226. DOI:
10.1137/120872802.

[41] E. K. Ryu and B. C. Vũ. “Finding the Forward-Douglas–Rachford-Forward
Method”. Journal of Optimization Theory and Applications 184:3 (2020),
pp. 858–876. DOI: 10.1007/s10957-019-01601-z.

[42] P. Tseng. “A Modified Forward-Backward Splitting Method for Maximal
Monotone Mappings”. SIAM Journal on Control and Optimization 38:2
(2000), pp. 431–446. DOI: 10.1137/S0363012998338806.

[43] B. C. Vũ. “A Splitting Algorithm for Dual Monotone Inclusions Involv-
ing Cocoercive Operators”. Advances in Computational Mathematics 38:3
(2013), pp. 667–681. DOI: 10.1007/s10444-011-9254-8.

111

https://doi.org/10.1007/s10589-017-9909-6
https://doi.org/10.1007/s10589-017-9909-6
https://doi.org/10.1137/0716071
https://doi.org/10.1007/s10851-014-0523-2
https://doi.org/10.1137/18M1207260
https://doi.org/10.1016/S0377-0427(02)00906-8
https://doi.org/10.1016/S0377-0427(02)00906-8
https://doi.org/10.1007/s10107-018-1321-1
https://doi.org/10.1007/s10107-018-1321-1
https://doi.org/10.1016/0041-5553(64)90137-5
https://doi.org/10.1137/120872802
https://doi.org/10.1007/s10957-019-01601-z
https://doi.org/10.1137/S0363012998338806
https://doi.org/10.1007/s10444-011-9254-8

Paper IV

Frugal Splitting Operators: Representation,
Minimal Lifting and Convergence

Martin Morin Sebastian Banert Pontus Giselsson

Abstract

We consider frugal splitting operators for finite sum monotone inclusion prob-
lems, i.e., splitting operators that use exactly one direct or resolvent evaluation
of each operator of the sum. A novel representation of these operators in terms
of what we call a generalized primal-dual resolvent is presented. This repre-
sentation reveals a number of new results regarding lifting numbers, existence
of solution maps, and parallelizability of the forward and backward evalua-
tions. We show that the minimal lifting is n− 1− f where n is the number of
monotone operators and f is the number of direct evaluations in the splitting.
Furthermore, we show that this lifting number is only achievable as long as the
first and last evaluations are resolvent evaluations. In the case of frugal resol-
vent splitting operators, these results are the same as the results of Ryu and
Malitsky–Tam. The representation also enables a unified convergence analysis
and we present a generally applicable theorem for the convergence and Fejér
monotonicity of fixed point iterations of frugal splitting operators with coco-
ercive direct evaluations. We conclude by constructing a new convergent and
parallelizable frugal splitting operator with minimal lifting.

Submitted and under review.

113

Paper IV. Frugal Splitting Operators

1. Introduction

It is well known that a zero of a maximally monotone operator can be found by
performing a fixed point iteration of the resolvent of the operator [28]. However, the
resolvent of an operator is not always easily computable, even in the case when the
operator is a finite sum of maximally monotone operators for which each resolvent
is easily computable. This has led to the development of splitting methods that use
each term separately to form convergent fixed point iterations that find a zero of
the sum of the operators. In this work, we will consider a general class of splitting
operators for finite sums of maximally monotone operators which we call frugal
splitting operators. Informally, the class contains all operators whose fixed points
encode the zeros of the sum of the monotone operators and can be computed with
exactly one evaluation of each operator, either directly or via a resolvent. Apart from
the operator evaluations, only predetermined linear combinations of the input and
operator evaluations are allowed. The class covers the classic Douglas–Rachford
[21] and forward-backward [17, 20] operators along with many others, for instance
[1, 5, 8, 10, 12, 22, 23, 25, 27, 29, 31, 35].

We provide an equivalence between frugal splitting operators and a class of
operators we call generalized primal-dual resolvents. This class is inspired by the
works of [6, 15, 18, 24] that made similar generalizations of the resolvent. These
works provide powerful modeling tools that are able to capture many different algo-
rithms but our resolvent generalization is the first to provably fully cover the class
of frugal splitting operators. This novel representation is a key difference to the re-
lated works of [23, 29] which examined frugal resolvent splitting operators, i.e.,
frugal splitting operators that only use resolvents and no direct evaluations. These
works focused on the lifting number of frugal splitting operators and, while we also
provide minimal lifting results, our representation allows us to easily design new
splitting operators and analyze the convergence of their fixed point iterations in a
general setting. It also allows us to relax one assumption of [23, 29] regarding the
existence of a solution map since the existence of such a solution map for any frugal
splitting operator is evident directly from our new representation. The representa-
tion also directly reveals information regarding the resolvent/direct evaluations, for
instance, the resolvent step-sizes and which of the individual evaluations that can
be performed in parallel.

The general idea behind lifting is to trade computational complexity for stor-
age complexity by creating an easier to solve problem in some higher dimensional
space. In the context of frugal splitting operators, this means that, while the mono-
tone inclusion problem lies in some real Hilbert space H , the splitting operator
maps to and fromH d for some non-zero natural number d which we call the lifting
number. For example, the Douglas–Rachford and forward-backward splitting oper-
ators have lifting number one while the splitting operator of the primal-dual method

114

1 Introduction

of Chambolle–Pock [8] has lifting number two1.
In the three operator case, Ryu [29] showed that the smallest possible lifting

number for a frugal resolvent splitting operator is two. Malitsky and Tam [23] later
expanded this result to sums of n maximally monotone operators and found that
the minimal lifting is n− 1. In this paper, we show that this lifting number can be
reduced to n−1− f where f is the number of operators that are evaluated directly
and not via resolvents. This is done via a simple rank constraint on a real matrix
from the generalized primal-dual resolvent. We also show that the minimal lifting
number is dependent on the order of the direct and resolvent evaluations. In partic-
ular, if the first or last operator is evaluated directly, the minimal lifting under these
assumptions is n− f instead of n− 1− f . An example of this can be found in the
three operator splitting of Davis and Yin [12], which places its only direct evalua-
tion second and hence can achieve a lifting number of one. This is to be compared
to the primal-dual method of Vũ and Condat [10, 35], which performs a direct eval-
uation first and hence requires a higher lifting number of two in the three operator
case.

We provide sufficient conditions for the convergence of a fixed point iteration of
a frugal splitting operator with cocoercive direct evaluations and show that the gen-
erated sequence is Fejér monotone w.r.t. to the fixed points of the splitting. There are
a number of different general or unified approaches for analyzing algorithm classes
[6, 13, 15, 18, 19, 24, 30, 32, 33]. Many of these approaches can be applied to a fru-
gal resolvent splitting as well but our analysis has the advantage that it is performed
directly on the generalized primal-dual resolvent representation. Both the condi-
tions for convergence and the conditions for a generalized primal-dual resolvent
to be a frugal resolvent splitting are then constraints on the same set of matrices,
which simplifies the design of new frugal resolvent splittings. As an example, we
construct a new frugal splitting operator with resolvent and direct evaluations that
is convergent and parallelizable and briefly discuss its relation to existing splitting
operators with minimal lifting. Note, although Malitsky–Tam [23] were the first to
explicitly present a splitting operator with minimal lifting, their work—and now
also this paper—retroactively proves that a number of already established splittings
have minimal lifting, for instance [2, 7, 11].

Some of the proofs require the underlying real Hilbert space H of the mono-
tone inclusion problem to have dimension greater than one and we will therefore
make that a blanket assumption. We do not consider this a significant restriction,
partly because the dimH ≤ 1 cases are of the limited practical interest and partly
because many of our results still hold in these cases. For instance, although the
proof for the necessary conditions of our representation theorem no longer holds
when dimH ≤ 1, the proof for the sufficient conditions still holds. Hence, if we

1 The Chambolle–Pock method considers monotone inclusion problems that allow for compositions
with linear operators. We will implicitly assume that the linear operators are the identity operator
when discussing Chambolle–Pock or other similar methods for monotone inclusions with composi-
tions.

115

Paper IV. Frugal Splitting Operators

find a representation that yields a frugal splitting operator when dimH ≥ 2, then it
also yields a frugal splitting operator when dimH ≤ 1. All frugal splitting operators
presented in this paper are therefore also applicable to the dimH ≤ 1 case. It should
also be noted that we have been able to reestablish the necessary conditions by re-
laxing other assumptions placed on the inclusion problem. However, this comes at
the cost of some additional technicalities which we wish to avoid in this paper.

1.1 Outline
In Section 2, we introduce some preliminary notation and results together with the
main monotone inclusion problem. We define and discuss our definition of a frugal
splitting operator in Section 3. Section 4 contains the definition of a generalized
primal-dual resolvent which we will use to represent frugal splitting operators. The
lemmas that prove our representation results can be found in Section 4.1 and they
are summarized in our main convergence theorem in Section 5 which also contains
some general remarks on the representation. For instance, the relationship between
fixed points of the splitting and solutions to the monotone inclusion is proven and
how the parallelizable resolvent/direct evaluations can be identified is demonstrated.
We also show how a representation can be derived via an example. The minimal
lifting results in terms of a rank bound on a structured matrix can be found in Sec-
tion 6. This result covers the setting of Malitsky and Tam [23] and shows that the
minimal lifting number depends on whether the first or last operator evaluation is
a forward or backward evaluation. Convergence under cocoercive forward evalua-
tions is proven in Section 7. In Section 7.1 we apply the convergence theorem and
reestablish the convergence criterion of the three operator splitting of Davis and
Yin [12] as well as provide conditions for the convergence of a fixed point iteration
of forward-backward splitting with Nesterov-like momentum. The last part of the
paper, Section 8, contains the construction of a new frugal splitting operator with
minimal lifting and parallelizable forward/backward evaluations. The paper ends
with a short conclusion in Section 9. In the accompanying supplement many more
examples of representations of frugal splitting operators and application of our con-
vergence theorem can be found.

2. Preliminaries

Let N = {0,1, . . . } be the set of natural numbers and N+ = {1,2, . . . } be the set of
non-zero natural numbers. The cardinality of a set A is denoted by |A|. A subset B
of A is denoted by B ⊆ A while a strict subset is denoted by B ⊂ A.

Let R be the set of real numbers. We refer to the range and kernel of a matrix
A ∈ Rn×m as ran A and ker A respectively. These are linear subspaces of Rn and
Rm respectively and their orthogonal complement with respect to the standard Eu-
clidean inner product are denoted by (ran A)⊥ and (ker A)⊥ respectively, which also
are linear subspaces.

116

2 Preliminaries

With H being a real Hilbert space, the set of all subsets of H is denoted 2H .
The inner product and norm on H are denoted by 〈·, ·〉 and ‖·‖ respectively. Let
H : H →H be a bounded linear operator, we define 〈·, ·〉H = 〈H(·), ·〉 and ‖·‖2H =
〈H(·), ·〉. If H is self-adjoint and strongly positive then 〈·, ·〉H is an inner product and
‖·‖H is a norm.

Let U, V and W be sets and define the operator A : U×W→V . With the notation
Awu = v we mean A(u,w) = v and we define Aw = A(·,w). Since Aw is an operator
from U to V , instead of writing A : U ×W → V we will say that A(·) : U → V is
parameterized by W .

Let A : H → 2H be a set-valued operator onH , i.e., A is an operator that maps
any point inH to a subset ofH . The graph of A is gra A= {(x,u) ∈ H ×H | u ∈ Ax}.
The range of A is ran A = {u ∈ H | ∃x ∈ H s.t. (x,u) ∈ gra A}. The domain of A is
dom A= {x ∈H | Ax , ∅}. The operator A is said to have full domain if dom A=H .
If Ax is a singleton for all x ∈ H then it is said to be single-valued. A single-valued
operator has full domain and we will make no distinction between single-valued
operators A : H → 2H and mappings A : H →H .

An operator A : H → 2H is monotone if

〈u− v,x− y〉 ≥ 0

for all (x,u) ∈ gra A and all (y,v) ∈ gra A. A monotone operator is maximal if its
graph is not contained in the graph of any other monotone operator. The resolvent
of a maximally monotone operator A is JA = (Id+A)−1. An operator A : H → 2H is
µ-strongly monotone where µ > 0 if

〈u− v,x− y〉 ≥ µ‖x− y‖2

for all (x,u) ∈ gra A and all (y,v) ∈ gra A. An operator A : H → 2H is β-cocoercive
if it is single-valued and

〈Ax− Ay,x− y〉 ≥ β‖Ax− Ay‖2

for all x,y ∈ H . The inverse of a β-cocoercive operator is β-strongly monotone.

LEMMA 2.1
Let A ∈ Rn×m and B ∈ Rn×d . If ran A ⊆ ran B, there exists a unique S ∈ Rd×m

such that A = BS and ran S ⊆ (ker B)⊥. If ran A = ran B, such an S satisfies ran S =
(ker B)⊥.

Proof. Since ran A ⊆ ran B, the columns of A lie in the span of the columns of B.
This means that there exists a matrix S′ ∈ Rd×m such that A = BS′. Let Π⊥ be the
orthogonal projection onto (ker B)⊥ in the standard Euclidean inner product and
define S = Π⊥ S′. It is clear that ran S ⊆ (ker B)⊥ and, since B = B Π⊥, it also holds
that A = BS′ = B Π⊥ S′ = BS.

117

Paper IV. Frugal Splitting Operators

To show uniqueness, let S and S′ be such that A= BS = BS′ and ran S ⊆ (ker B)⊥

and ran S′ ⊆ (ker B)⊥ and let x ∈ Rm be such that Sx , S′x. Since Sx − S′x , 0 and
Sx− S′x ∈ (ker B)⊥ must Sx− S′x < ker B and we have

0 , B(Sx− S′x) = BSx−BS′x = Ax− Ax = 0

which is a contradiction and Sx and S′x must then be equal for all x ∈ Rm which
implies S = S′.

To show the last statement, assume ran A = ran B and let S be the unique
matrix that satisfies A = BS and ran S ⊆ (ker B)⊥. Assume ran S ⊂ (ker B)⊥, then
rank S < dim(ker B)⊥ = rank B and rank A ≤ min(rank B,rank S) < rank B. However,
this contradicts ran A = ran B and hence ran S = (ker B)⊥. �

LEMMA 2.2
Let A ∈ Rm×n and B ∈ Rd×n. If ker A ⊇ ker B, there exists a unique S ∈ Rm×d such
that A= SB and ker S ⊇ (ran B)⊥. If ker A= ker B such an S satisfies ker S = (ran B)⊥.

Proof. This is the dual to Lemma 2.1. If ker A ⊇ ker B then ran AT ⊆ ran BT and
Lemma 2.1 then implies the existence of a unique ST ∈ Rd×m with ran ST ⊆
(ker BT)⊥ such that AT = BT ST or equivalently A = SB. Since ran ST = (ker S)⊥

and (ker BT)⊥ = ran B we have (ker S)⊥ ⊆ ran B or equivalently ker S ⊇ (ran B)⊥. If
ker A = ker B then ran AT = ran BT and Lemma 2.1 then yields ker S = (ran B)⊥. �

2.1 Problem and Notation
For the remainder of this paper, let H be a real Hilbert space with dimH ≥ 2. The
main concern will be finding a zero of a finite sum of operators,

find x ∈ H such that 0 ∈
∑n

i=1
Ai x (1)

where Ai : H → 2H is maximally monotone for all i ∈ {1, . . . ,n} and Ai is single-
valued for i ∈ F for some F ⊆ {1, . . . ,n}. However, instead of solving (1) directly, we
will work with a family of primal-dual problems. Let p ∈ {1, . . . ,n}, a primal-dual
problem associated with (1) is then

find (y1, . . . ,yn) ∈ H
n such that

{
0 ∈ A−1

i yi − yp for all i ∈ {1, . . . ,n} \ {p},
0 ∈ Apyp +

∑
j∈{1,...,n}\{p} yj .

(2)

We call p the primal index since the corresponding variable, yp , solves the primal
problem (1). The equivalence between (2) and (1) is straightforward to show and
holds in the sense that if yp ∈ H is a solution to (1) then there exists yi ∈ H for all
i ∈ {1, . . . ,n} \ {p} such that (y1, . . . ,yn) solves (2). Conversely, if (y1, . . . ,yn) ∈ H

n

is a solution to (2) then yp solves (1).
The aim of this paper is to examine a class of iterative methods for solving

problems (1) and (2). We will give the exact definition of the considered class of
solution methods in Section 3 and in the remainder of this section we introduce
some notation in order to simplify its description.

118

2 Preliminaries

DEFINITION 2.3—OPERATOR TUPLES
With F ⊆ {1, . . . ,n}, AF

n is the set of operator tuples where A = (A1, . . . ,An) ∈ A
F
n

if and only if
(i) Ai : H → 2H is maximally monotone for all i ∈ {1, . . . ,n},

(ii) Ai is single-valued for all i ∈ F.
We further define An =A

∅
n and note that AF

n ⊆ An for all F ⊆ {1, . . . ,n}.

This allows us to associate a tuple A= (A1, . . . ,An) ∈ A
F
n with each monotone inclu-

sion problem of the form (1), or (2), and vice versa. To simplify the notation further
we will also make heavy use of the following abuse of notation.

DEFINITION 2.4—MATRIX AS OPERATOR

Let B ∈ Rn×m and z = (z1, . . . ,zm) ∈ Hm. We define Bz as2

Bz =


B11z1+ · · ·+B1mzm

...
Bn1z1+ · · ·+Bnmzm

 .
A primal-dual operator ΦA,p : Hn→ 2Hn

with A ∈ AF
n and p ∈ {1, . . . ,n} can be

identified that allows us to write a primal-dual problem (2) associated with A as

find y ∈ Hn such that 0 ∈ΦA,py = ∆A,py+Γpy (3)

where the operator ∆A,p : Hn → 2Hn
and the skew-symmetric matrix Γp ∈ R

n×n

are defined as

∆A,p(y1, . . . ,yn) = Â1y1× · · · × Ânyn and Γp = Rp −RT
p

where Âp = Ap , Âi = A−1
i for all i ∈ {1, . . . ,n} \ {p}, and Rp ∈ R

n×n is the matrix
with ones on the pth row and zeros in all other positions. For illustration, in the case
when p = n, the operator ∆A,n and the matrix Γn have the following structures

∆A,n(y1, . . . ,yn) =


A−1

1 y1
...

A−1
n−1yn−1
Anyn


and Γn =


0 · · · 0 −1
...

. . .
...

...
0 · · · 0 −1
1 · · · 1 0


.

All of these operators are maximally monotone: Γp as an operator on Hn →

Hn is bounded linear and skew-adjoint, ∆A,p is separable w.r.t. the components
with each component operator being maximally monotone, andΦA,p is the sum of
two maximally monotone operators with one having full domain. The primal-dual
operatorΦA,p will feature extensively in the rest of the paper. In fact, we will show
that the considered class of operators always can be written as taking a resolvent-
like step of the primal-dual operator.

2 This operator could more accurately be represented by B ⊗ Id where ⊗ is the tensor product. How-
ever, this notation will quickly become tedious.

119

Paper IV. Frugal Splitting Operators

3. Frugal Splitting Operators

A common way of solving (1) associated with some A ∈ AF
n is with a fixed point

iteration. These are methods that, given some initial iterate z0 ∈ H
d and operator

TA : H d→H d , iteratively perform

zk+1 = TAzk (4)

for k ∈ N. The operator TA is such that the sequence {zk}k∈N converges to a fixed
point from which a solution to (1) can be recovered. In this paper, this means that
T(·) is a frugal splitting operator and the main focus will be on examining the rep-
resentation and properties of such an operator.

DEFINITION 3.1—FRUGAL SPLITTING OPERATOR

Let d ∈N+ and T(·) : H d→H d be parameterized byAF
n . We say that T(·) is a frugal

splitting operator overAF
n if there, for all k ∈ {1, . . . ,n}, exists τk ,(·) : H dk →H dk+1

parameterized by AF
n such that, for all A = (A1, . . . ,An) ∈ A

F
n ,

(i) fixTA , ∅ ⇐⇒ zer
∑n

i=1 Ai , ∅,
(ii) TA = τn,A ◦ τn−1,A ◦ · · · ◦ τ1,A.

Furthermore, for each k ∈ {1, . . . ,n} there exist ai j,bi,cj ∈ R and γ > 0 for i ∈
{1, . . . ,dk+1} and j ∈ {1, . . . ,dk} such that

τk ,B(z1, . . . ,zdk
) =

(∑dk

j=1
ai j zj + bi

{
JγBk
(
∑dk

j=1 cj zj) if k < F

Bk(
∑dk

j=1 cj zj) if k ∈ F

)
i∈{1,...,dk+1 }

for all B = (B1, . . . ,Bn) ∈ A
F
n and all (z1, . . . ,zdk

) ∈ H dk . Note, τk ,A only uses Ak

and d1 = dn+1 = d.
We call a frugal splitting operator over An a resolvent splitting operator.

In line with [29], we call the class frugal since the computational requirement Defi-
nition 3.1(ii) states that each operator in A is evaluated exactly once, either directly
or via a resolvent. We will also refer to a direct evaluation as a forward evaluation
while a resolvent evaluation will be referred to as a backward step or backward
evaluation. Apart from forward and backward evaluations, only predetermined vec-
tor additions and scalar multiplications of the inputs and results of the operator
evaluations are allowed. This ensures that the evaluation cost of a frugal splitting
operator is a known quantity that is mainly determined by the cost of the opera-
tor and resolvent evaluations. We also see that (ii) specifies evaluation order, i.e., it
specifies that the operators Ai in the tuple A must be used in the order they appear
in A when evaluating TA. However, since the operators of the original monotone
inclusion problem can be arbitrary rearranged, this entails no loss of generality.

This definition is functionally the same as the definitions of Ryu and Malitsky–
Tam [23, 29] but with the addition of forward evaluations being allowed. However,
both Ryu [29] and Malitsky–Tam [23] assume the existence of a computationally

120

4 Generalized Primal-Dual Resolvents

tractable solution map SA : H d→H that maps fixed points of TA to solutions of (1).
One of our results, Proposition 5.3, shows that this is unnecessary since (i) and (ii)
together imply the existence of such a solution map.

Definition 3.1 covers many classic operators like the operators used in the
forward-backward method [17, 20] and Douglas–Rachford method [21], but also
operators of more recent methods such that the three operator splitting of Davis and
Yin [12] and primal-dual methods in the style of Chambolle and Pock [8] among
many others. However, it does not allow for multiple evaluations of an operator and
can therefore not cover the forward-backward-forward method of Tseng [34] al-
though it does cover the forward-reflected-backward method of Malitsky and Tam
[22]. Since it also does not allow for second order information or online search
criteria it does not cover Newton’s method, backtracking gradient descent or other
similar methods.

Note that Definition 3.1 only considers the solution encoding and the computa-
tional requirements of a splitting and does not make any assumptions regarding the
convergence of its fixed point iteration. For instance, consider a fixed point iteration
of the forward-backward splitting operator T(A1 ,A2) = JγA2 ◦(Id−γA1) where γ > 0.
This is a frugal splitting operator over A {1}2 but it is well known that its fixed point
iteration can fail to converge without further assumptions on A1 and/or A2. The
standard assumption is cocoercivity of A1 but even then the fixed point iteration
can fail to converge if the step-size γ is too large. Further examples exist with both
[23, 29] providing resolvent splitting operators whose fixed point iterations fail to
converge in general. Since we consider the question of convergence as separate to
the definition of a frugal splitting operator, we will treat convergence separately in
Section 7 where we provide sufficient convergence conditions that are applicable to
any fixed point iteration of a frugal splitting operator.

4. Generalized Primal-Dual Resolvents

Although Definition 3.1 fully defines all operators we aim to consider, we do not
find it conducive for analysis. In this section, we will therefore develop an equiva-
lent representation of the class of frugal splitting operators that will be used in the
subsequent analysis.

The representation will be in the form of what we call a generalized primal-dual
resolvent.

DEFINITION 4.1—GENERALIZED PRIMAL-DUAL RESOLVENT

Let d ∈ N+ and T(·) : H d → H d be parameterized by AF
n . We say that T(·) is a

generalized primal-dual resolvent if there exist p ∈ {1, . . . ,n}, M ∈ Rn×n, N ∈ Rn×d ,
U ∈ Rd×d and V ∈ Rd×n such that, for all A ∈ AF

n and all z ∈ H d , (M+ΦA,p)
−1 ◦N

121

Paper IV. Frugal Splitting Operators

is single-valued at z and

y = (M +ΦA,p)
−1Nz,

TAz = z−Uz+V y,
(5)

where y ∈ Hn andΦA,p is defined in (3).
We call the tuple (p,M,N,U,V) a representation of T(·).

When M = N = γ−1I and U =V = θI, where θ ∈ (0,2], γ > 0 and I ∈ Rn×n is the
identity matrix, the generalized primal-dual resolvent becomes an ordinary relaxed
resolvent operator of the primal-dual operatorΦA,p ,

(1− θ) Id+θ(γ−1 Id+ΦA,p)
−1 ◦γ−1 Id = (1− θ) Id+θ JγΦA,p .

While the ordinary relaxed resolvent operator is always single-valued, the operator
(M +ΦA,p)

−1 ◦ N used in (5) is not necessarily single-valued or computationally
tractable for an arbitrary choice of M ∈ Rn×n, N ∈ Rn×d and A ∈ AF

n . However, for
the purposes of this paper, it is not necessary to find general conditions for when
(M+ΦA,p)

−1 ◦N is single-valued or easy to compute. The objective is to parameter-
ize frugal splitting operators which are computationally tractable if the evaluations
of the forward and backward steps are tractable. Furthermore, as it turns out, the ker-
nel M in a representation of a frugal splitting operator is highly structured, making
the single-valuedness of (M +ΦA,p)

−1 ◦N easy to establish.

DEFINITION 4.2—p-KERNEL OVER AF
n

We call a matrix M ∈ Rn×n a p-kernel over AF
n if p < F and M + Γp is lower

triangular with Mi,i ≥ 0 for i ∈ {1, . . . ,n} and Mi,i = 0 if and only if i ∈ F where Mi,i

denotes the ith element on the diagonal of M. The matrix Γp is defined in (3).

The well-posedness of a generalized primal-dual resolvent with this kernel structure
then follows from the following result.

PROPOSITION 4.3
Let M ∈ Rn×n be a p-kernel over AF

n , then

(M +ΦA,p)
−1 : Hn→ 2H

n

is single-valued—and hence has full domain—for all A ∈ AF
n .

Proof. Let A ∈ AF
n , z = (z1, . . . ,zn) ∈ Hn, y = (y1, . . . ,yn) ∈ H

n, and L = M +Γp .
By definition we have that y ∈ (M +ΦA,p)

−1x is equivalent to

x ∈ (M +ΦA,p)y = (L+ ∆A,p)y.

122

4 Generalized Primal-Dual Resolvents

Since L is lower triangular, see Definition 4.2, this can be written as

x1 ∈ L1,1y1+ Â1y1

x2 ∈ L2,1y1+ L2,2y2+ Â2y2

...

xn ∈ Ln,1y1+ Ln,2y2+ · · ·+ Ln,nyn + Ânyn

where Li, j is the i, jth element of L and Âi = A−1
i for all i ∈ {1, . . . ,n} \ {p} and

Âp = Ap . Note, Âi is maximally monotone for all i ∈ {1, . . . ,n} since A ∈ AF
n . We

get
y1 ∈ (L1,1 Id+Â1)

−1x1

y2 ∈ (L2,2 Id+Â2)
−1(x2− L2,1y1)

y3 ∈ (L3,3 Id+Â3)
−1(x3− L3,1y1− L3,2y2)

...

yn ∈ (Ln,n Id+Ân)
−1(xn −

∑n−1

j=1
Ln, j yj).

(6)

For all i ∈ F, Li,i = 0 and i , p by Definition 4.2 and hence

(Li,i Id+Âi)
−1 = (A−1

i)
−1 = Ai,

which is single-valued since A ∈ AF
n . For all i ∈ {1, . . . ,n} \F, Li,i > 0 and

(Li,i Id+Âi)
−1 = J

L−1
i ,i Âi
◦(L−1

i,i Id)

which also is single-valued since Â is maximally monotone. Therefore, regardless
of x1,y1, ...,xn,yn ∈ H , the right hand sides of all lines in (6) are always single-
tons and the inclusions can be replaced by equalities. Furthermore, in (6) we see
that x1 uniquely determines y1 which in turn implies that x1 and x2 uniquely deter-
mine y2, and so forth. Hence, for all x = (x1, . . . ,xn) ∈ Hn there exists a unique y =

(y1, . . . ,yn) ∈ H
n such that (6) holds. Since (6) is equivalent to y ∈ (M +ΦA,p)

−1x
we can conclude that (M +ΦA,p)

−1 is single-valued. �

4.1 Representation Lemmas
The remainder of this section will be devoted to the equivalence between frugal
splitting operators and generalized primal-dual resolvents whose representations
satisfy certain conditions. These results will be summarized in the next section in
our main representation theorem, Theorem 5.1. We will start by showing that any
frugal splitting operator is a generalized primal-dual resolvent with a particular ker-
nel.

123

Paper IV. Frugal Splitting Operators

LEMMA 4.4
Let T(·) : H d →H d be a frugal splitting operator over AF

n where F ⊂ {1, . . . ,n},
then T(·) is a generalized primal-dual resolvent. For each p ∈ {1, . . . ,n} \ F, there
exists a representation (p,M,N,U,V) of T(·) where M is a p-kernel over AF

n .

Proof. Let p ∈ {1, . . . ,n} \F, and let A= (A1, . . . ,An) ∈ A
F
n and z ∈ H d be arbitrary

and consider the evaluation of TAz.
From Definition 3.1(ii) we know that TA = τn,A ◦ · · · ◦ τ1,A where τi,A : H di →

H di+1 and d1 = dn+1 = d. If we introduce variables for the intermediate results, i.e.,
z1 = z and zi+1 = τi,Azi for all i ∈ {1, . . . ,n}, we can write TAz = zn+1. Note, the zi
variables of this proof should not be confused with the variables of a fixed point
iteration (4) of TA. Furthermore, from the definition of τi,A in Definition 3.1(ii) we
can conclude that for all i ∈ {1, . . . ,n} there exist matrices Bi ∈ R

di+1×di , Ci ∈ R
di+1×1

and Di ∈ R
1×di such that

zi+1 = τi,Azi =

{
Bizi +Ci Jγi Ai Dizi if i < F,
Bizi +Ci AiDizi if i ∈ F .

Now, for all i ∈ {1, . . . ,n} \ (F ∪ {p}), we apply the Moreau identity, Jγi Ai =

Id−γi Jγ−1
i A−1

i
◦γ−1

i Id, and rewrite zi+1 = τi,Azi as

zi+1 = Bizi +Ci Jγi Ai Dizi

= (Bi +CiDi)zi −(γiCi)Jγ−1
i A−1

i
(γ−1

i Di)zi

= B̂izi + Ĉi(li,i Id+Âi)
−1D̂izi

where B̂i = Bi +CiDi , Ĉi = −γiCi , D̂i = Di , li,i = γi and Âi = A−1
i . We can write

τi,Azi in a similar form for all i ∈ F as well,

zi+1 = Bizi +Ci AiDizi

= B̂izi + Ĉi(li,i Id+Âi)
−1D̂izi

where B̂i = Bi , Ĉi = Ci , D̂i = Di , li,i = 0 and Âi = A−1
i . Finally, since p < F we can

write τp,Azp as

zp+1 = Bpzp +Cp Jγp Ap Dpzp

= Bpzp +Cp(γ
−1
p Id+Ap)

−1(γ−1
p Dp)zp

= B̂pzp + Ĉp(lp,p Id+Âp)
−1D̂pzp

where B̂p = Bp , Ĉp = Cp , D̂p = γ
−1
p Dp , lp,p = γ−1

p and Âp = Ap . With these nota-
tions in place, we define yi ∈ H as

yi = (li,i Id+Âi)
−1D̂izi, ∀i ∈ {1, . . . ,n} (7)

124

4 Generalized Primal-Dual Resolvents

which gives
zi+1 = B̂izi + Ĉiyi, ∀i ∈ {1, . . . ,n}

and for clarity we note that B̂i ∈ R
di+1×di , Ĉi ∈ R

di+1×1 and D̂i ∈ R
1×di for all i ∈

{1, . . . ,n}. Unrolling this iteration gives

zi = B̂(i−1)...1z+
∑i−1

j=1
B̂(i−1)...(j+1)Ĉj yj, ∀i ∈ {1, . . . ,n+1}

where B̂a...b = B̂a B̂a−1 . . . B̂b and B̂a...b = I if a < b where I ∈ Rdb×db is the identity
matrix. The expression for yi in (7) can then be rewritten as

li,iyi + Âiyi 3 D̂i B̂(i−1)...1z+
∑i−1

j=1
D̂i B̂(i−1)...(j+1)Ĉj yj, ∀i ∈ {1, . . . ,n}.

If we define Ni = D̂i B̂(i−1)...1 ∈ R
1×d , li, j = −D̂i B̂(i−1)...(j+1)Ĉj ∈ R for j < i and

rearrange this expression we get∑i

j=1
li, j yj + Âiyi 3 Niz, ∀i ∈ {1, . . . ,n}.

If we define y = (y1, . . . ,yn) ∈ H
n, the lower triangular matrix L ∈ Rn×n with ele-

ments Li, j = li, j for all j ≤ i and the matrix N ∈ Rn×d whose ith row is given by Ni ,
this can be written as Ly+ ∆A,py 3 Nz or equivalently

y = (L+ ∆A,p)
−1Nz = (M +ΦA,p)

−1Nz

where M = L−Γp . Since the diagonal elements of M are Mi,i = li,i ≥ 0 and li,i = 0 if
and only if i ∈ F we can from Definition 4.2 we conclude that M is a p-kernel over
AF

n and the single-valuedness of (M +ΦA,p) then follows from Proposition 4.3.
Finally, if we define the matrices U = I − B̂n...1 ∈ R

d×d and V ∈ Rd×n where the
jth column of V is given by B̂n...(j+1)Ĉj we can write the expression of zn+1 as

TAz = zn+1 = z−Uz+V y

which shows that (p,M,N,U,V) is a representation of T(·). �

Next we prove that a representation of a frugal splitting operator needs to satisfy
certain range and kernel constraints.

LEMMA 4.5
Let (p,M,N,U,V) be a representation of a frugal splitting operator over AF

n with
p ∈ {1, . . . ,n} \F, then

(i) ker
[
N −M

]
⊇ ker

[
U −V

]
,

(ii) ranU ⊇ ranV.

125

Paper IV. Frugal Splitting Operators

Proof. Let T(·) : H d→H d be a frugal splitting operator overAF
n with representa-

tion (p,M,N,U,V). Furthermore, let K : H →H be a bounded linear skew-adjoint
operator, and let v ∈ H be such that Kv , 0 and hence v , 0. Such an operator K
and point v exist due to the dimH ≥ 2 assumption.

We show the necessity of (i) by providing a counterexample. In particular we
will show that if Uẑ−V ŷ = 0 while Nẑ−M ŷ , 0 for some ẑ ∈ Rd and ŷ ∈ Rn, we
can always construct some operator tuple A ∈ AF

n such that the fixTA , ∅ ⇐⇒
zer

∑n
i=1 Ai , ∅ equivalence of Definition 3.1(i) leads to a contradiction.

Assume ẑ ∈ Rd and ŷ ∈ Rn are such that Uẑ−V ŷ = 0 but Nẑ−M ŷ , 0. Then
z = (ẑ1v, . . . , ẑdv) ∈ H d and y = (y1, . . . ,yn) = (ŷ1v, . . . , ŷnv) ∈ H

n are such that Uz−
V y = 0 and Nz −My , 0. Define (a1, . . . ,an) = Nz −My , 0 and note that all of
a1, . . . ,an are parallel to v. Let l ∈ {1, . . . ,n} \ {p} and define A = (A1, . . . ,An) ∈ A

F
n

where

Ai x =


K(x− yp)+ ap −

∑
j∈{1,...,n}\{p} yj if i = p,

yl −K(x− yp − al) if i = l,
yi otherwise

for all x ∈ H and all i ∈ {1, . . . ,n}. Note, both K and −K are maximally monotone
since K is skew-adjoint and hence is Ai maximally monotone for all i ∈ {1, . . . ,n}.
The primal-dual operatorΦA,p of this tuple evaluated at the y specified above satis-
fies

Nz−My = (a1, . . . ,an) ∈ΦA,py and hence y = (M +ΦA,p)
−1Nz

since (M +ΦA,p)
−1 is singe-valued by Definition 4.1. We then have TAz = z−Uz+

V y and since Uz−V y = 0 by assumption we have TAz = z and fixTA , ∅. Defini-
tion 3.1(i) then implies zer

∑n
i=1 Ai , ∅ and since∑n

i=1
Ai x = ap +Kal

for all x ∈ H must Kal = −ap . Since ap and al are parallel to v there exist λp,λl ∈
R such that ap = λpv and al = λlv. Furthermore, since K is skew-adjoint—hence
〈K x,x〉 = 0 for all x ∈ H—must

0 = 〈Kal,al〉 = 〈−ap,al〉 = 〈−λpv,λlv〉 = −λpλl ‖v‖2

and since v , 0 is at least one of λp and λl zero. In fact, both must be zero since

−λpv = −ap = Kal = λlKv

and both v , 0 and Kv , 0. This means that ap = al = 0 but, since l ∈ {1, . . . ,n} \ {p}
was arbitrary, we must have ai = 0 for all i ∈ {1, . . . ,n} and hence (a1, . . . ,an) = 0
which is a contradiction. This concludes the necessity of (i).

126

4 Generalized Primal-Dual Resolvents

For the necessity of (ii), let y = (y1, . . . ,yn) ∈ H
n be arbitrary and define B =

(B1, . . . ,Bn) ∈ A
F
n where

Bi x =

{
x− yp + yi if i , p,
x−

∑n
j=1 yj if i = p

for all x ∈ H and all i ∈ {1, . . . ,n}. These operators satisfy {yp} = zer
∑n

i=1 Bi and
{y} = zerΦB,p . Since T(·) is a frugal splitting operator we must then have ∅ , fixTB.
Let z ∈ fixTB, (5) then implies the existence of some y′ ∈H d such that Uz−V y′ = 0
and Nz−My′ ∈ΦB,py

′. But, (i) implies that 0= Nz−My′ ∈ΦB,py
′ and hence must

y′ ∈ zerΦB,p = {y}, i.e., y′ = y and Uz = V y. Since the choice of y is arbitrary this
implies that for all y ∈Hn there exists z ∈H d such that Uz =V y which then implies
the existence of ẑ ∈ Rd for each ŷ ∈ Rn such that Uẑ = V ŷ, i.e., ranU ⊇ ranV . This
concludes the proof. �

Finally we prove that any representation that satisfies the constraints of the pre-
vious two lemmas represents a frugal splitting operator.

LEMMA 4.6
Let (p,M,N,U,V) be the representation of a generalized primal-dual resolvent
where

(i) M is a p-kernel over AF
n ,

(ii) ker
[
N −M

]
⊇ ker

[
U −V

]
,

(iii) ranU ⊇ ranV,
then the generalized primal-dual resolvent is a frugal splitting operator over AF

n .

Proof. Let T(·) : H d →H d be a generalized primal-dual resolvent over AF
n with

representation (p,M,N,U,V) and let A ∈ AF
n . For each z ∈ H d there exists y ∈ Hn

such that{
y = (M +ΦA,p)

−1Nz,

TAz = z−Uz+V y
or equivalently

{
Nz−My ∈ΦA,py,

Uz−V y = z−TAz.
(8)

Consider Definition 3.1(i). If z ∈ fixTA, then Uz −V y = 0 and (ii) implies 0 =
Nz −My ∈ ΦA,py and hence y ∈ zerΦA,p , ∅. This proves the right implication
of Definition 3.1(i).

For the left implication of Definition 3.1(i), let y? ∈ zerΦA,p . Then (iii) implies
that there exists z ∈ H d such that Uz−V y? = 0 and (ii) then implies Nz−My? = 0.
Since y? ∈ zerΦA,p we then have 0 = Nz−My? ∈ΦA,py

? and z and y? then satisfy
(8) which proves that z ∈ fixTA , ∅.

To show that Definition 3.1(ii) is implied by item (i) we first introduce some
notation. Let Vi ∈ R

d×1 denote the ith column of V , Ni ∈ R
1×d denote the ith row of

N , and li, j denote the i, j-element of the matrix L = M +Γp . Define the matrices

B̂1 =
[

I︸︷︷︸
Rd×d

| I︸︷︷︸
Rd×d

| 0︸︷︷︸
Rd×d

| 0︸︷︷︸
Rd×n

]T
, B̂n =

[
I −U︸︷︷︸
Rd×d

| 0︸︷︷︸
Rd×d

| I︸︷︷︸
Rd×d

| 0︸︷︷︸
Rd×n

]
,

127

Paper IV. Frugal Splitting Operators

and B̂i = I ∈ R(3d+n)×(3d+n) for all i ∈ {2, . . . ,n− 1} where I and 0 denote identity
and zero matrices of appropriate sizes, respectively. Further define the matrices

Ĉi =
[

0︸︷︷︸
R1×d

| 0︸︷︷︸
R1×d

| VT
i | 0 . . .0︸︷︷︸

R1×(i−1)

1 0 . . .0︸︷︷︸
R1×(n−i)

]T for all i ∈ {1, . . . ,n−1},

D̂i =
[

0︸︷︷︸
1×d

| Ni | 0︸︷︷︸
R1×d

| −li,1 · · · − li,n
]

for all i ∈ {2, . . . ,n},

Ĉn = Vn and D̂1 = N1. Now, for z1 ∈ H
d define

zi+1 = B̂izi + Ĉi(li,i Id+Âi)
−1D̂izi

for i ∈ {1, . . . ,n} where Âi = A−1
i for all i ∈ {1, . . . ,n}\{p} and Âp = Ap . By following

the same procedure as in the proof of Lemma 4.4, starting at (7), it can be verified
that zn+1 = TAz1 if (i) holds. Furthermore, by reversing the arguments in the proof
of Lemma 4.4 that led to (7) we can conclude that there exist real matrices Bi , Ci ,
Di such that

zi+1 =

{
Bizi +Ci Jγi Ai Dizi if i < F,
Bizi +Ci AiDizi if i ∈ F,

for all i ∈ {1, . . . ,n}. This proves that Definition 3.1(ii) holds. �

5. Representation of Frugal Splitting Operators

The following representation theorem summarizes the results of Section 4.1.

THEOREM 5.1
Let F ⊂ {1, . . . ,n} and p ∈ {1, . . . ,n}\F. An operator T(·) : H d→H d parameterized
byAF

n is a frugal splitting operator overAF
n if and only if it is a generalized primal-

dual resolvent with representation (p,M,N,U,V) where
(i) M is a p-kernel over AF

n ,
(ii) ker

[
N −M

]
⊇ ker

[
U −V

]
,

(iii) ranU ⊇ ranV,
and M ∈ Rn×n, N ∈ Rn×d , U ∈ Rd×d , and V ∈ Rd×n.

Proof. Follows directly from Lemmas 4.4 to 4.6. �

Note that we require F to be a strict subset of {1, . . . ,n} which implies there al-
ways exists p ∈ {1, . . . ,n} \ F. It is also worth remembering that it is assumed
that dimH ≥ 2. However, this assumption is only ever required for the proof of
Lemma 4.5 and, since this lemma only concerns the “only if” part of Theorem 5.1,
the sufficient conditions are not affected. Hence, any representation (p,M,N,U,V)
that satisfies Theorem 5.1 yields a frugal splitting operator in the dimH ≤ 1 setting

128

5 Representation of Frugal Splitting Operators

as well and all examples of frugal splitting operators in this paper are frugal splitting
operators regardless of the dimension ofH . We have succeeded in finding replace-
ments for the counterexample in the proof of Lemma 4.5 that require dimH ≥ 2, but
not without relaxing some other assumption. For instance, when dimH = 1 we have
been able to construct sufficient counterexamples if we instead of single-valued op-
erators allow for at most single-valued operators in the tuples ofAF

n . However, this
relaxation complicates questions regarding the domain of our generalized primal-
dual resolvent and we believe the dimH = 1 case is of too limited practical interest
to warrant these complications. Similarly, the trivial dimH = 0 case is also not
worth handling.

The fact that the primal-dual operator appears directly in the representation and
one only needs to consider simple range and structure constraints of a handful of
matrices makes the representation easy to work with, see for instance Sections 6 to 8
where we analyze general splittings and construct a new splitting. The representa-
tion also makes the relationship between fixed points of a splitting and solutions
to (1) clearly visible, something we will illustrate in the remainder of this section.
There we will also discuss and illustrate different properties of the representation,
such as how the step-sizes and parallelizability of the forward and backward eval-
uations are encoded. We will also demonstrate an approach for deriving a repre-
sentation of a frugal splitting operator and provide an alternative factorization of a
representation (p,M,N,U,V).

5.1 Alternative Factorization
Theorem 5.1 gives conditions on all four matrices of a representation (p,M,N,U,V).
However, it turns out that these conditions make the kernel M uniquely defined
given N , U and V . This leads to the following corollary which will be useful both
in the examination of minimal lifting in Section 6 and in the convergence analysis
in Section 7.
COROLLARY 5.2
Let F ⊂ {1, . . . ,n} and p ∈ {1, . . . ,n} \ F. A generalized primal-dual resolvent with
representation (p,SUP,SU,U,UP) where U ∈ Rd×d , S ∈ Rn×d and P ∈ Rd×n is a
frugal splitting operator if

(i) SUP is a p-kernel over AF
n ,

(ii) ran P ⊆ (kerU)⊥ and ker S ⊇ (ranU)⊥.
Furthermore, for any frugal splitting operator over AF

n with representation
(p,M,N,U,V) that satisfies Theorem 5.1, there exist matrices S ∈Rn×d and P ∈Rd×n

such that M = SUP, N = SU and V =UP and the conditions (i) and (ii) are satisfied.

Proof. It is straightforward to verify that a representation (p,SUP,SU,U,UP) that
satisfies the conditions of the theorem satisfies the conditions of Theorem 5.1 and
hence is a representation of a frugal splitting operator over AF

n .
Assume T(·) : H d→H d is s frugal splitting operator overAF

n with representa-
tion (p,M,N,U,V) that satisfies Theorem 5.1. The theorem states that ranU ⊇ ranV

129

Paper IV. Frugal Splitting Operators

and Lemma 2.1 then proves the existence of a unique P ∈Rd×n with ran P ⊆ (kerU)⊥

such that
V =UP.

Theorem 5.1 also states ker
[
U −V

]
⊆ ker

[
N −M

]
and Lemma 2.2 yields the

existence of a unique S ∈ Rn×d with ker S ⊇ (ran
[
U −V

]
)⊥ such that

N = SU and M = SV = SUP.

However, since ranU ⊇ ranV we have ran
[
U −V

]
= ranU, this concludes the

proof. �

We provide a similar factorization in Proposition 6.5 that is perhaps more useful
when constructing new splittings since it does not require finding matrices S, U, and
P such that SUP is a p-kernel. However, unlike Corollary 5.2, it is not guaranteed
that all representations of frugal splitting operators have a factorization of the form
in Proposition 6.5.

5.2 Solution Map and Fixed Points
The following two propositions reveal the relationship between fixed points of the
splitting operator and solutions to the monotone inclusion problem for any frugal
splitting operator. They also clarify why there is no need to assume the existence of a
solution map in Definition 3.1 since there always exists a map that maps fixed points
of a frugal splitting operator to solutions of the monotone inclusion problem (1).
Furthermore, we see that this solution map is always evaluated within the evaluation
of a frugal splitting operator itself.

PROPOSITION 5.3
Let T(·) : H d → H d be a frugal splitting operator over AF

n with representation
(p,M,N,U,V) that satisfies Theorem 5.1. If z ∈ fixTA for A ∈ AF

n , then there exists
(y1, . . . ,yn) ∈ H

n such that

(y1, . . . ,yn) = (M +ΦA,p)
−1Nz ∈ zerΦA,p and yp ∈ zer

∑n

i=1
Ai .

Proof. Let A ∈ AF
n and z ∈ fixTA, Definition 4.1 then gives the existence of y =

(y1, . . . ,yn) ∈ H
n such that{

y = (M +ΦA,p)
−1Nz,

z = z−Uz+V y
or equivalently

{
Nz−My ∈ΦA,py,

Uz−V y = 0

Since Theorem 5.1(ii) holds, Uz −V y = 0 implies Nz −My = 0 and hence y ∈

zerΦA,p . That yp ∈ zer
∑n

i=1 Ai follows from the equivalence between the primal-
dual problem (3) and the primal problem (1). �

130

5 Representation of Frugal Splitting Operators

PROPOSITION 5.4
Let T(·) : H d →H d be a frugal splitting operator over AF

n and let (p,SUP,SU,
U,UP) be a representation of T(·) that satisfies Corollary 5.2. With A ∈ AF

n , the set
of fixed points satisfies

fixTA ⊇ P zerΦA,p

where P zerΦA,p = {Py | y ∈ zerΦA,p}. Equality in the inclusion holds if and only
if U has full rank.

Proof. Let A ∈ AF
n and y ∈ zerΦA,p . We then have 0 = SUPy − SUPy ∈ ΦA,py,

or equivalently y = (SUP+ΦA,p)
−1SUPy, since (SUP+ΦA,p)

−1 is single-valued
due to SUP being a p-kernel overAF

n , see Proposition 4.3. By letting z = Py in the
definition of the generalized primal-dual resolvent we conclude that

y = (SUP+ΦA,p)
−1SUPy,

TAPy = Py−U(Py−Py) = Py,

which implies that Py ∈ fixTA. Since y ∈ zerΦA,p was arbitrary we have fixTA ⊇

P zerΦA,p .
Assume U does not have full rank. Then, there exists z ∈ H d such that Uz = 0

and z , 0. Since ran P ⊆ (kerU)⊥ by Corollary 5.2, there exists no y′ ∈ Hn such that
z = Py′ and hence Py+ z < P zerΦA,p since y ∈ zerΦA,p . However, we have

y = (SUP+ΦA,p)
−1SUPy = (SUP+ΦA,p)

−1SU(Py+ z),

TA(Py+ z) = Py+ z−U(Py+ z−Py) = Py+ z,

and hence Py+ z ∈ fixTA. The equality fixTA = P zerΦA,p can therefore not hold if
U does not have full rank.

Assume U has full rank. Let z ∈ fixTA, then there exists y ∈ Hn such that

SUz− SUPy ∈ΦA,py,

U(z−Py) = z−TAz = 0.

However, since U has full rank, this implies that z = Py and that 0 = SU(z−Py) ∈

ΦA,py and hence that y ∈ zerΦA,p and z ∈ P zerΦA,p . Since z ∈ fixTA was arbi-
trary we have fixTA ⊆ P zerΦA,p and the opposite inclusion from before then gives
equality. �

5.3 Evaluation Order and Parallelizability
The order of the evaluations of the different operators is specified in a frugal splitting
operator, Definition 3.1. However, the definition only states that it should be pos-
sible to compute the frugal splitting operator using this order, it does not exclude
the possibility of computing the frugal splitting operator with some other evalua-
tion order or with some of the evaluations being performed in parallel. Especially

131

Paper IV. Frugal Splitting Operators

the ability of performing forward and/or backward evaluations in parallel is of par-
ticular interest since it can allow for distributed or multithreaded implementations.
Fittingly, how one operator evaluation depends on previous evaluations is directly
encoded in the kernel. It is therefore straightforward to both identify and construct
parallelizable kernels, something we will use in Section 8 where we construct a new
parallelizable frugal splitting operator with minimal lifting.

If we define L = M +Γp for a representation (p,M,N,U,V) of a frugal splitting
operator over AF

n we can write the inverse used in the generalized primal-dual
resolvent as

(M +ΦA,p)
−1 = (L+ ∆A,p)

−1.

Since M is a p-kernel, we know from Definition 4.2 that L is a lower triangular
matrix and then (y1, . . . ,yn) = (L + ∆A,p)

−1(z1, . . . ,zn) can be computed with back-
substitution,

yi = (Li,i Id+A−1
i)
−1(zi −

∑i−1

j=1
Li, j yj) (9)

for i , p while if i = p then A−1
i is simply replaced by Ai , see the proof of Propo-

sition 4.3 for more details. It is clear that the strict lower triangular part of L, Li, j

for j < i, determines the dependency on the results of previous forward or backward
evaluations3. Hence, if for i ∈ N and some j < i the element Li, j = 0, then the ith
evaluation does not directly depend on the result of the ith. If the ith evaluation does
not depend on any other evaluation that depends on the jth evaluation, then the ith
and jth evaluation can be performed in parallel.

For example, if we take the 4-kernel over A {2}4 as

M =


1 0 0 1
1 0 0 1
0 1 1 1
−1 0 −1 1

 which yields L = M +Γ4 =


1 0 0 0
1 0 0 0
0 1 1 0
0 1 0 1


we see that, in any frugal splitting operator with this kernel, the second evaluation
directly depends on the first; the third depends directly on only the second but de-
pends indirectly on the first; the fourth is independent of the third, depends directly
on the second and depends indirectly on the first. The second must therefore be per-
formed after the first while the last two must be performed after the second but can
be performed in parallel with each other.

3 The strictly lower triangular matrix L̃ ∈ Rn×n with elements L̃i , j = 1 if Li , j , 0 and L̃i , j = 0 if
Li , j = 0 for j < i is the transpose of the adjacency matrix of the directed dependency graph of the
operator evaluations, i.e., the graph of n nodes where there is an edge from the ith to jth node if the
result of forward or backward evaluation of Ai is used in the argument of the forward or backward
evaluation of A j .

132

5 Representation of Frugal Splitting Operators

5.4 Step-Sizes
It is possible to identify the resolvent step-sizes directly from the kernel. The inverse
in (9) for i , p and Li,i > 0 can be written as

(Li,i Id+A−1
i)
−1 = L−1

i,i (Id−JLi ,i Ai).

From this we see that the diagonal elements of L act as step-sizes in the resolvents
of the frugal splitting operator and hence so do the diagonal elements of M since
L = M + Γp and Γp is skew-symmetric. Similarly we can conclude that L−1

p,p or
equivalently M−1

p,p is the step-size used in the resolvent corresponding to the primal
index. From Definition 4.2 we know that a forward evaluation is performed on the
ith operator if and only if Li,i = Mi,i = 0. Since they are zero, the diagonal elements
of the kernel corresponding to forward evaluations are therefore not step-sizes. In
fact, what would count as a step-size for a forward evaluation for a general fru-
gal splitting operator is ill-defined. The same evaluation could be used in several
different forward steps and we can therefore not point to a single scalar step-size.

5.5 Example of a Representation
The process of finding representations of frugal splitting operators is quite straight-
forward. Roughly speaking it is as follows: select a primal index; apply Moreau’s
identity to all backward steps that do not correspond to the primal index; explic-
itly define the results of the forward evaluations and backward steps; rearrange and
identify the primal-dual operator and the generalized primal-dual resolvent repre-
sentation. We demonstrate the process on the three operator splitting of Davis–Yin
[12] which encodes the zeros of A1 + A2 + A3 where A = (A1,A2,A3) ∈ A

{2}
3 as the

fixed points of the operator

TA = JγA3 ◦(2JγA1 − Id−γA2 ◦ JγA1)+ Id−JγA1 .

In order for fixed point iterations of TA to always be convergent it is further required
that A2 is cocoercive and that the step-size γ is sufficiently small. However, we leave
the convergence analysis of frugal splitting operators to Section 7.

To find a representation, we first choose the primal index p in the representation
(p,M,N,U,V). Since it is required that p < {2} we have the choice of either p = 1 or
p = 3. We choose p = 3. Applying Moreau’s identity to the resolvents of Ai for all
i , p (in this case only JγA1) and defining the result of each forward and backward
step yields

y1 = (Id+γ−1 A−1
1)
−1(γ−1z),

y2 = A2(z−γy1),

y3 = (Id+γA3)
−1(2(z−γy1)− z−γy2),

TAz = y3+ z−(z−γy1).

133

Paper IV. Frugal Splitting Operators

Rearranging the first three lines such that we only have z on the left and y1, y2 and
y3 and unscaled operators on the right yields

z ∈ A−1
1 y1+γy1,

z ∈ A−1
2 y2+γy1,

γ−1z ∈ A3y3+2y1+ y2+γ
−1y3,

TAz = γy1+ y3.

If we define y = (y1,y2,y3), we see that the first three lines can be written as
1
1
γ−1

 z ∈ ∆A,3y+


γ 0 0
γ 0 0
2 1 γ−1

 y =ΦA,3y+


γ 0 1
γ 0 1
1 0 γ−1

 y
and TA can then be written as

y =
©­«

γ 0 1
γ 0 1
1 0 γ−1

 +ΦA,3
ª®¬
−1 

1
1
γ−1

 z,

TAz = z−
[
1
]

z+
[
γ 0 1

]
y.

From this we can easily identify the matrices M , N , U and V in the representation
(3,M,N,U,V) by comparing to Definition 4.1.

6. Minimal Lifting

DEFINITION 6.1—LIFTING

The lifting number, or lifting, of a frugal splitting operator T(·) : H d →H d over
AF

n is the number d ∈ N+.

The lifting number represents how much memory, proportional to the problem vari-
able in (1), is needed to store data between iterations in a fixed point iteration of
the splitting operator. For instance, if H = RN and we are trying to find a zero as-
sociated with A ∈ AF

n with a frugal splitting operator with lifting number 3, i.e.,
T(·) : H3→H3, we need to be able to store a variable in R3N between iterations4.
For this reason, we are interested in finding lower bounds for the lifting number and
frugal splitting operators that attain these bounds.

4 It is possible for the internal operations needed to evaluate the splitting operator itself to require
additional memory. However, since this is highly problem and implementation dependent, we do not
consider this.

134

6 Minimal Lifting

DEFINITION 6.2—MINIMAL LIFTING

A frugal splitting operator T(·) : H d →H d over AF
n has minimal lifting if d ≤ d ′

for all frugal splitting operators T ′
(·)

: H d′ →H d′ over AF
n . Furthermore, we say

that d is the minimal lifting over AF
n .

The equivalent representation of a frugal splitting operator in Theorem 5.1 is useful
when it comes to examining this minimal lifting. In fact, a lower bound on the lifting
number is directly given by Corollary 5.2.

COROLLARY 6.3
Let (p,M,N,U,V) be a representation of a frugal splitting operator T(·) : H d→H d

over AF
n that satisfies Theorem 5.1, then

(i) d ≥ rankU ≥ rank N ≥ rank M,
(ii) d ≥ rankU ≥ rankV ≥ rank M.

Proof. Corollary 5.2 states that there exist matrices S ∈ Rn×d and P ∈ Rd×n such
that M = SUP, N = SU and V =UP. The results then follow directly from the fact
that U ∈ Rd×d and that a product of matrices cannot have greater rank than any of
its factors. �

Since the kernel rank bounds the lifting number, it is of great interest how small the
rank of any valid kernel can be made, which leads us to the following definition.

DEFINITION 6.4—MINIMAL KERNEL RANK
A matrix M ∈ Rn×n is a minimal p-kernel over AF

n if it is a p-kernel over AF
n and

rank M ≤ rank M ′ for all p-kernels M ′ over AF
n . The minimal p-kernel rank over

AF
n is rank M where M is a minimal p-kernel M over AF

n .

The existence of a minimal p-kernel overAF
n follows from the fact that rank M ∈ N

for all real matrices and a p-kernel over AF
n exists for all n ≥ 2, F ∈ {1, . . . ,n}, and

p ∈ {1, . . . ,n} \F. We can use the minimal p-kernel rank overAF
n and Corollary 6.3

to provide a lower bound on the minimal lifting number, but, this is not enough to
establish that that lower bound actually can be attained. For that we need to show
that it is always possible to construct a frugal splitting operator over AF

n from a
p-kernel over AF

n .

PROPOSITION 6.5
Let F ⊂ {1, . . . ,n} and p ∈ {1, . . . ,n} \F. If M is a p-kernel over AF

n with rank M =
d and matrices K ∈ Rn×d and H ∈ Rd×n satisfy ran K = (ker M)⊥ and ker H =
(ran M)⊥, then (p,M,MK,HMK,HM) is a representation of a frugal splitting oper-
ator over AF

n with lifting number d. Furthermore, such matrices K and H exist for
all p-kernels over AF

n .

Proof. We first show that (p,M,MK,HMK,HM) satisfies the conditions in Theo-
rem 5.1.

135

Paper IV. Frugal Splitting Operators

Theorem 5.1(i) is directly given by the assumption on M . Now, let x ∈ Rd and
y ∈ Rn be such that HMK x =HMy. Since ker H∩ ran M = {0}, this implies MK x =
My, which proves Theorem 5.1(ii). For Theorem 5.1(iii), let y ∈ Rn be arbitrary and
let y ‖ ∈ ker M and y⊥ ∈ (ker M)⊥ be such that y = y ‖ + y⊥. Since ran K = (ker M)⊥,
there exists x ∈ Rd such that y⊥ = K x and hence MK x = My⊥ = M(y ‖ + y⊥) = My,
multiplying both sides with H from the left finally gives Theorem 5.1(iii).

Finally, let M be an arbitrary p-kernel overAF
n . Let rank M = d, then the kernel

M has d linearly independent columns and d linearly independent rows. Define
K ∈ Rn×d such that the columns of K are d linearly independent rows of M and
define H ∈ Rd×n such that the rows of H are d linearly independent columns of M ,
then ran K = (ker M)⊥ and ker H = (ran M)⊥. This concludes the proof. �

With these results in hand, our main minimal lifting result can be stated and proved.

THEOREM 6.6
The minimal lifting number of a frugal splitting operator over AF

n is equal to the
minimal p-kernel rank over AF

n for arbitrary p ∈ {1, . . . ,n} \F.

Proof. Let T(·) : H d →H d be a frugal splitting operator over AF
n with minimal

lifting and let p ∈ {1, . . . ,n} \ F. Theorem 5.1 states that T(·) has a representation
(p,M,N,U,V) and Corollary 6.3 then directly gives that the lifting d is greater or
equal to the minimal p-kernel rank over AF

n . Proposition 6.5 proves that d is equal
to the minimal p-kernel rank over AF

n since otherwise we could construct a frugal
splitting operator with smaller lifting. Since the choice of p ∈ {1, . . . ,n} \ F was
arbitrary and d is independent of p, the minimal p-kernel rank overAF

n is the same
for all p ∈ {1, . . . ,n} \F. �

This theorem reduces the problem of finding the minimal lifting overAF
n to finding

the minimal p-kernel rank over AF
n . Furthermore, since Proposition 6.5 proves the

existence results necessary for Theorem 6.6 by construction, it provides a clear way
of constructing frugal splitting operators with lifting equal to the kernel rank. Hence,
even the construction of frugal splitting operators with minimal lifting can be seen
as a problem of finding p-kernels over AF

n with minimal rank. We will give an
example of this in Section 8 and end this section by making Theorem 6.6 concrete
by finding the minimal kernel rank over AF

n and the corresponding minimal lifting
results.
COROLLARY 6.7
Let n ≥ 2 and F ⊂ {1, . . . ,n}. The minimal lifting over AF

n is n− |F | if 1 ∈ F or
n ∈ F, otherwise it is n−1− |F |, where |F | is the cardinality of F.

Proof. Let M be a p-kernel over AF
n . It must have the structure

M =


L1 1 0
∗ lp −1
∗ ∗ L2

 ∈ R
n×n

136

6 Minimal Lifting

where L1 ∈ R
(p−1)×(p−1) and L2 ∈ R

(n−p)×(n−p) are lower triangular matrices and
lp > 0 is a real number. The symbols ∗, 1 and 0 respectively denote an arbitrary
real matrix, a matrix of all ones, and a matrix of all zeros, all of appropriate sizes
for their position. Since reordering columns and rows does not change the rank of a
matrix there exist matrices

Mc =


L1 0 1
∗ L2 ∗

∗ −1 lp

 ∈ R
n×n and Mr =


lp ∗ −1
1 L1 0
∗ ∗ L2

 ∈ R
n×n.

such that rank M = rank Mc = rank Mr .
Consider the first n− 1 columns of Mc . Since L1 and L2 are lower triangular,

we see that the number of linearly independent columns is greater or equal to the
number of non-zero diagonal elements of L1 and L2. Furthermore, since the diago-
nal elements of L1 and L2 are diagonal elements of M , Mi,i = 0 if and only if i ∈ F,
and p < F, there are at least n−1− |F | linearly independent columns among the first
n−1 columns of Mc , hence, rank Mc ≥ n−1− |F |. If 1 < F then M1,1 = (L1)1,1 , 0
and this bound can be attained by selecting the first column of Mc parallel to the
last and putting zeros in all other positions that are allowed to be zero. If 1 ∈ F then
M1,1 = (L1)1,1 = 0 and the last column of Mc is not in the span of the first n− 1
columns and hence rank Mc ≥ n− |F |. This bound is attained by putting zeros in all
positions of Mc that are allowed to be zero. By considering rows of Mr instead of
columns of Mc we can analogously conclude that rank Mr ≥ n−1− |F | and if n ∈ F
(and hence Mn,n = (L2)n−p,n−p = 0), then rank Mr ≥ n− |F |. These bounds are also
similarly attained.

Since rank M = rank Mc = rank Mr we clearly have that rank M ≥ n−1− |F | and
if 1 ∈ F or n ∈ F then rank M ≥ n− |F |. Choices of M that attain these bounds can
be constructed by reordering the rows and columns of the choices of Mc and Mr

that attain their respective bounds. The minimal kernel rank overAF
n is then clearly

n− |F | if 1 ∈ F or n ∈ F, otherwise it is n− 1− |F |. The lifting result then follows
from Theorem 6.6. �

In the case of frugal resolvent splitting operators, i.e., F = ∅, this is the same lower
bound as the one found by Malitsky and Tam [23]. When considering frugal splitting
operators with forward evaluations, i.e., F , ∅, this corollary uncovers an interesting
phenomenon where the minimal lifting depends on the evaluation order. A smaller
lifting number is possible as long as neither the first nor last evaluation is a forward
evaluation. This makes it clear why the three operator splitting of Davis and Yin, see
Section 5.5, achieves a lifting number of one while the corresponding methods of
Vũ and Condat [10, 35] require a lifting of two. Davis and Yin’s method performs
the forward evaluation between two resolvent evaluations, while the Vũ–Condat
method performs the forward evaluation first.

137

Paper IV. Frugal Splitting Operators

7. Convergence

We will now consider the convergence of fixed point iterations zk+1 = TAzk for
frugal splitting operators T(·) : H d→H d overAF

n and A ∈ AF
n . From Corollary 5.2

we know that these iterations can, for each p ∈ {1, . . . ,n} \F, be written as{
yk = (SUP+ΦA,p)

−1SUzk,

zk+1 = zk −U(zk −Pyk)
or equivalently

{
SU(zk −Pyk) ∈ΦA,pyk,

U(zk −Pyk) = zk − zk+1
(10)

for some matrices S ∈ Rn×d , P ∈ Rd×n and U ∈ Rd×d . In certain cases, this itera-
tion can be analyzed with existing theory. For instance, if S is symmetric positive
definite, P = I and U = θI for some θ ∈ (0,1], then this is an averaged fixed point
iteration of a resolvent in the metric given by the symmetric kernel SUP = θS. How-
ever, for general frugal splitting operators, SUP is only rarely symmetric, especially
when considering frugal splitting operators with minimal lifting. In fact, a minimal
p-kernel can be symmetric5 only when n = 1 or n = 2 , see the proof of Corol-
lary 6.7. For this reason we will derive sufficient convergence conditions without
any symmetry requirements on the kernel under the following assumption.

ASSUMPTION 7.1
Let A = (A1, . . . ,An) ∈ A

F
n be such that the following hold

(i) zer
∑n

i=1 Ai , ∅,
(ii) Ai is βi-cocoercive for all i ∈ F.

For this A, define two diagonal matrices B ∈ Rn×n and B† ∈ Rn×n where Bi,i = βi
and B†i,i = β

−1
i for all i ∈ F. All other elements of the matrices are zero.

Cocoercivity of the forward evaluated operators is a standard setting for proving
convergence of forward-backward like methods. However, there exist frugal split-
ting operators whose fixed point iterations converge under only Lipschitz assump-
tions on the operator used for forward evaluations. An example of this, that does not
have minimal lifting, is the forward-reflected-backward splitting [22].

Since inverses of cocoercive operators are strongly monotone, primal-dual oper-
ators for tuples that satisfy Assumption 7.1 have the following strong-monotonicity-
like property.

LEMMA 7.2
Let F ⊂ {1, . . . ,n}, p ∈ {1, . . . ,n} \F and let A ∈ AF

n satisfy Assumption 7.1, then

〈u− y,x− y〉 ≥ ‖x− y‖2B

for all x,y ∈ Hn and for all u ∈ΦA,px, v ∈ΦA,py.

5 These symmetric minimal kernels correspond to the kernels used in the proximal point method and
Douglas–Rachford splitting, respectively.

138

7 Convergence

Proof. With some slight abuse of notation for set-valued operators, we first note
that for all x,y ∈ Hn we have

〈ΦA,px−ΦA,py,x− y〉

= 〈∆A,px− ∆A,py,x− y〉+ 〈Γpx−Γpy,x− y〉

= 〈∆A,px− ∆A,py,x− y〉

= 〈Apxp − Apyp,xp − yp〉+
∑

i={1,...,n}\{p}
〈A−1

i xi − A−1
i yi,xi − yi〉

where the fact that Γp is skew-adjoint was used. For all i ∈ {1, . . . ,n}\F, the operator
Ai is monotone and so is A−1

i , while for all i ∈ F, Ai is βi-cocoercive and hence A−1
i

is βi-strongly monotone. Noting that p < F by assumption and using these properties
yields

〈ΦA,px−ΦA,py,x− y〉 ≥
∑

f ∈F
βf ‖x f − y f ‖

2 = ‖x− y‖2B . �

This property is used to derive our main convergence theorem.

THEOREM 7.3
Let F ⊂ {1, . . . ,n} and let A ∈ AF

n satisfy Assumption 7.1. Let T(·) : H d →H d be
a frugal splitting operator over AF

n and let (p,SUP,SU,U,UP) be a representa-
tion of T(·) according to Corollary 5.2. Let the sequences {zk}k∈N and {yk}k∈N be
generated by (10) for this representation and some z0 ∈ H

d .
Consider the following conditions on a symmetric matrix Q ∈ Rd×d ,

(a) (I − IF)(PTQ− S)U = 0,
(b) Q � 0 and W � 0,

where W = QU + (QU)T −UTQU − 1
2 (P

TQU − SU)T B†(PTQU − SU), I ∈ Rn×n is
the identity matrix, and IF ∈ Rn×n is the diagonal matrix with (IF)i,i = 1 if i ∈ F,
otherwise (IF)i,i = 0. If (a) holds, then

‖zk+1−Py‖2Q ≤ ‖zk −Py‖2Q − ‖zk −Pyk ‖
2
W

for all k ∈ N and all y ∈ zerΦA,p . If (b) also holds, then
(i) zk −Pyk → 0,

(ii) ΦA,pyk 3 SU(zk −Pyk) → 0,
(iii) yk ⇀ y?,
(iv) zk ⇀ Py? ∈ fixTA,

for some y? ∈ zerΦA,p as k→∞.

Proof. Let Q ∈ Rd×d be a symmetric matrix and let k ∈ N. For arbitrary y ∈

zerΦA,p , we have

‖zk+1−Py‖2Q = ‖zk −Py−U(zk −Pyk)‖
2
Q

= ‖zk −Py‖2Q + ‖zk −Pyk ‖
2
UTQU

−2〈QU(zk −Pyk),zk −Py〉.

139

Paper IV. Frugal Splitting Operators

Insert Pyk −Pyk on the right hand side of the inner product to get

‖zk+1−Py‖2Q = ‖zk −Py‖2Q + ‖zk −Pyk ‖
2
UTQU

−2〈QU(zk −Pyk),zk −Pyk〉

−2〈QU(zk −Pyk),Pyk −Py〉

= ‖zk −Py‖2Q − ‖zk −Pyk ‖
2
QU+(QU)T−UTQU

−2〈PTQU(zk −Pyk),yk − y〉.

From (10) we know that SU(zk −Pyk) ∈ΦA,pyk and Lemma 7.2 then gives that

0 ≤ 〈SU(zk −Pyk),yk − y〉 − ‖yk − y‖
2
B .

Add two times this inequality to the previous equality to get

‖zk+1−Py‖2Q ≤ ‖zk −Py‖2Q − ‖zk −Pyk ‖
2
QU+(QU)T−UTQU

−2‖yk − y‖2B
−2〈PTQU(zk −Pyk),yk − y〉+2〈SU(zk −Pyk),yk − y〉

= ‖zk −Py‖2Q − ‖zk −Pyk ‖
2
QU+(QU)T−UTQU

−2‖yk − y‖2B
−2〈(PTQU − SU)(zk −Pyk),yk − y〉.

Assume that condition (a) is satisfied, then PTQU−SU = IF (PTQU−SU) and since
IF = (2B)1/2(12 B†)1/2, we have

‖zk+1−Py‖2Q ≤ ‖zk −Py‖2Q − ‖zk −Pyk ‖
2
QU+(QU)T−UTQU

−2‖yk − y‖2B
−2〈(2−1B†)1/2(PTQU − SU)(zk −Pyk),(2B)1/2(yk − y)〉.

Using Young’s inequality then finally results in

‖zk+1−Py‖2Q ≤ ‖zk −Py‖2Q − ‖zk −Pyk ‖
2
QU+(QU)T−UTQU

+ ‖(2−1B†)1/2(PTQU − SU)(zk −Pyk)‖
2

= ‖zk −Py‖2Q − ‖zk −Pyk ‖
2
W

(11)

where W =QU+ (QU)T −UTQU− 1
2 (P

TQU−SU)T B†(PTQU−SU), which proves
the first statement.

From here on we assume that (b) also holds, which implies that both ‖·‖Q and
‖·‖W indeed are norms on H d . The k used in (11) is arbitrary and the inequality
holds for all k ∈ N. Adding the inequalities for k = 0,1, . . . implies

‖zk −Pyk ‖
2
W → 0,

which implies that (i) holds. Statement (ii) follows directly from (i) and (10). In-
equality (11) further implies

‖zk+1−Py‖2Q ≤ ‖zk −Py‖2Q

140

7 Convergence

for all k ∈ N and all y ∈ zerΦA,p which in turn implies the boundedness of {zk}k∈N
and the convergence of {‖zk −Py‖2Q}k∈N for all y ∈ zerΦA,p . These two facts along
with (i) and (ii) will be used to prove (iii). Statement (iv) then follows directly from
the weak continuity of P and (iii).

For the proof of (iii), we will first show that {yk}k∈N is bounded and hence
has weak sequential cluster points. Then we will show that these cluster points are
in zerΦA,p and lastly we will show that there is at most one cluster point. The
convergence yk ⇀ y? for some y? ∈ zerΦA,p then follows from [3, Lemma 2.46].

Since SUP is a p-kernel over AF
n , the operator (SUP +ΦA,p)

−1 ◦ SU can be
evaluated using a finite number of vector additions, scalar multiplications, resol-
vents and evaluations of the cocoercive operators Ai with i ∈ F. All of these oper-
ations are Lipschitz continuous and hence must (SUP+ΦA,p)

−1 ◦ SU be Lipschitz
continuous, let us say with constant L. Furthermore, with y ∈ zerΦA,p we have
y = (SUP+ΦA,p)

−1SUPy and

‖yk − y‖ = ‖(SUP+ΦA,p)
−1SUzk −(SUP+ΦA,p)

−1SUPy‖ ≤ L‖zk −Py‖.

As noted above, the sequence {zk}k∈N is bounded and hence {yk}k∈N is also
bounded and has convergent subsequences [3, Lemma 2.45]. From (ii), the max-
imal monotonicity ofΦA,p , see Section 2.1, and the weak-strong continuity of max-
imally monotone operators [3, Proposition 20.37] we can conclude that any weak
sequential cluster point of {yk}k∈N lies in zerΦA,p .

What remains to be shown is that {yk}k∈N possesses at most one weak sequen-
tial cluster point. Let {yki }i∈N and {yk j }j∈N be sub-sequences such that yki ⇀ a ∈
zerΦA,p and yk j ⇀ b ∈ zerΦA,p . Since P as an operator onHn is linear and hence
weakly continuous, (i) implies that

zki ⇀ Pa and zk j ⇀ Pb.

Furthermore, {‖zk −Pa‖2Q}k∈N and {‖zk −Pb‖2Q}k∈N both converge and hence

〈zk,Pa−Pb〉Q =
1
2 ‖zk −Pb‖2Q −

1
2 ‖zk −Pa‖2Q −

1
2 ‖Pb‖2Q +

1
2 ‖Pa‖2Q→ ν

for some ν ∈ R. In particular, it means that

〈zki ,Pa−Pb〉Q→ 〈Pa,Pa−Pb〉Q = ν = 〈Pb,Pa−Pb〉Q← 〈zk j ,Pa−Pb〉Q .

This implies
0 = 〈Pa−Pb,Pa−Pb〉Q = ‖Pa−Pb‖2Q

and hence Pa = Pb. Since y ∈ zerΦA,p implies y = (SUP+ΦA,p)
−1SUPy we have

a = (SUP+ΦA,p)
−1SUPa = (SUP+ΦA,p)

−1SUPb = b.

This proves that there is at most one weak sequential cluster point. Hence, {yk}k∈N
converges weakly to some y? ∈ zerΦA,p , i.e., (iii) holds. �

141

Paper IV. Frugal Splitting Operators

A few remarks on this theorem are in order. The sequence generated by a fixed
point iteration of a frugal splitting operator that satisfies Theorem 7.3 is Fejér mono-
tone, see [3, Definition 5.1] with respect to P zerΦA,p in the Hilbert space given by
〈·, ·〉Q. This is true even for methods without minimal lifting such as momentum
methods, see Section 7.1. We will in particular show that forward-backward split-
ting with Nesterov-like momentum where the momentum parameter is fixed satis-
fies Theorem 7.3 and hence is Fejér monotone. Furthermore, we see that condition
(a) becomes stricter when the set F on which we make forward evaluations becomes
smaller. This puts stronger restrictions on the structure of the frugal splitting opera-
tor. For instance, if we assume that S, U and P are square and invertible and F = ∅,
condition (a) states that Q = (PT)−1S and hence (PT)−1S must be symmetric. In
other cases, we have more freedom in choosing Q � 0 such that (b) of Theorem 7.3
is satisfied. It should also be noted that, although W � 0 is a quadratic expression in
Q, it can be transformed to an equivalent positive definite condition that is linear in
Q by using a Schur complement, i.e.,

W � 0 ⇐⇒
[
QU + (QU)T −UTQU UT (PTQ− S)T (12 B†)1/2

(12 B†)1/2(PTQ− S)U I

]
� 0

where I ∈ Rn×n is an identity matrix and (12 B†)1/2 exists since it is a diagonal matrix
with non-negative elements. This makes the search for a matrix Q that satisfies
(a) and (b) a semi-definite feasibility problem that straightforwardly can be solved
numerically.

From the W � 0 of condition (b) we conclude that U must have full rank, oth-
erwise there exists a non-zero element x ∈ Rd such that Ux = 0 which implies
xTW x = 0 which is a contradiction. This is convenient since, given a frugal splitting
operator with representation (p,M,N,U,V) where U is invertible, it is easy to find
a representation of the form used in Theorem 7.3, i.e., (p,SUP,SU,U,UP). In fact,
this factorization can be expressed only in terms of the matrices N , U and V ,

S = NU−1 and P =U−1V,

which implies that M = NU−1V must hold for such a frugal splitting operator.
There are frugal splitting operators where U is rank deficient but their con-

vergence are of no interest. This is because they are either guaranteed to not
converge in general or they can be reduced to a frugal splitting operator whose
representation has a full rank U without losing any information. To see this, let
(p,SUP,SU,U,UP) be a representation satisfying Corollary 5.2 of a frugal splitting
operator T(·) : H d→H d . Let Π ∈ Rd×d be the projection matrix onto ranUT—the
projection is here in the standard Euclidean Rd space. The projection matrix on the
kernel of U is then Π = I −Π. Consider the fixed point iteration zk+1 = TAzk for
some A ∈ AF

n and z0 ∈ H
d . If we define z ‖0 = Π z0 and z⊥0 = Πz0 this fixed point

142

7 Convergence

iteration can be written as zk = z ‖
k
+ z⊥

k
where

yk = (SUP+ΦA,p)
−1SUz ‖

k
,

z ‖
k+1 = z ‖

k
−ΠU(z ‖

k
−Pyk),

z⊥k+1 = z⊥k −ΠU(z ‖
k
−Pyk),

for all k ∈ N. Without going into details, if ranU = ranUT then z⊥
k
= z⊥0 for all k ∈ N

and only the {z ‖
k
}k∈N sequence is of interest. Furthermore, the {z ‖

k
}k∈N sequence

can be recovered from a fixed point iteration of a frugal splitting operator with
lifting equal to the rank of U. If instead ranU , ranUT , it is always possible to find
an operator tuple A ∈ AF

n and initial point z0 ∈ H
d such that z ‖

k
= z0, z⊥

k
= −kc

and zk = z0 − kc for all k ∈ N and some c ∈ H d \ {0}. Hence, {zk}k∈N will always
diverge for this choice of A and z0.

7.1 Applications of Theorem 7.3
Theorem 7.3 recovers many well-known convergence results, for instance the re-
sults for forward-backward splitting [17, 20], Douglas–Rachford splitting [21], the
Chambolle–Pock method [8], and the minimal lifting methods of Ryu [29] and
Malitsky–Tam [23]. We will not present all these results here and settle for pre-
senting the result for the three operator splitting of Davis and Yin [12]. We will also
present convergence conditions for the fixed point iteration of the forward-backward
operator with Nesterov-like momentum [4, 26]. To save space, we will not derive
any of the representations and simply state the primal index p and the matrices U, S
and P of a representation (p,SUP,SU,U,UP), see Corollary 5.2. Similarly, for the
convergence results we just state the matrices Q and W of Theorem 7.3. Detailed
derivations of all the listed examples and more can be found in the supplement.

Three Operator Splitting of Davis–Yin The three operator splitting of Davis and
Yin has already been presented in Section 5.5 but we restate it here,

xk+1 = xk − JγA1 xk + JγA3 ◦(2JγA1 − Id−γA2 ◦ JγA1)xk

where x0 ∈ H , γ > 0 and A= (A1,A2,A3) ∈ A
{2}
3 . The representation derived in that

section can be factored into a representation of the form (3,SUP,SU,U,UP) where

U =
[
1
]
, S =


1
1
γ−1

 and P =
[
γ 0 1

]
.

To prove convergence, we choose Q =
[
γ−1] in Theorem 7.3 and, assuming A sat-

isfies Assumption 7.1, this results in 0 = (I − IF)(PTQ− S)U and W =
[
γ−1− 1

2β2

]
.

143

Paper IV. Frugal Splitting Operators

If γ < 2β2, then xk ⇀ Py? for y? ∈ zerΦA,3 and

JγA3 ◦(2JγA1 − Id−γA2 ◦ JγA1)xk = JγA1 xk + xk+1− xk ⇀ x? ∈ zer A1+ A2+ A3

and hence also JγA1 xk ⇀ x?. This is the same convergence condition as the one
presented in [12].

Forward-Backward with Nesterov-like Momentum A fixed point iteration of a
forward-backward operator with Nesterov-like momentum [26] can be written as

xk+1 = JγA2 (xk + θ(xk − xk−1)−γA1(xk + θ(xk − xk−1)))

for λ > 0, θ ∈ R, x0,x−1 ∈ H and A = (A1,A2) ∈ A
{1}
2 . In the proximal-gradient

setting, this is also the same update that is used in the FISTA method [4]. Nes-
terov momentum gained popularity due to it achieving optimal convergence rates
in the smooth optimization setting. However, these faster convergence rates require
a momentum parameter θ that varies between iterations, something the fixed point
iterations considered in this paper will not allow.

We remove the dependency on previous iterations by introducing an extra iterate
as

xk+1 = JγA2 (xk + θyk −γA1(xk + θyk)),

yk+1 = xk+1− xk

where x0,y0 ∈ H . This is a fixed point iteration of the frugal splitting operator given
by the representation (2,SUP,SU,U,UP) where

U =
[
1 0
1 1

]
, S =

[
1− θ θ

γ−1(1− θ) γ−1θ

]
and P =

[
0 1
0 0

]
.

The lifting number is two, which is not minimal, even though the kernel SUP has
rank one and is minimal. In fact, the kernel is the same as for the ordinary forward-
backward splitting. Theorem 7.3 with

Q = γ−1
[
1− θ θ
θ a

]
and W = γ−1

[
1− θ − γ̂− a θ(1− γ̂)
θ(1− γ̂) a− θ2γ̂

]
where a > 0 and γ̂ = γ

2β1
> 0 yields the convergence of xk ⇀ x? ∈ zer A1 + A2 and

yk ⇀ 0 if A satisfies Assumption 7.1 and both Q � 0 and W � 0. It can be verified
that Q−W � 0 hence it is enough that W � 0 which is equivalent to

0 < a− θ2γ̂ and 0 < 1− θ − γ̂− a− θ2(1−γ̂)2
a−θ2γ̂

.

If we restrict these results to θ > 0, these conditions hold with a = θ2γ̂+ θ(1− γ̂) if

0 < 1−3θ − γ
2β1
(θ −1)2.

144

8 A New Frugal Splitting Operator With Minimal Lifting

It is easily verified that this condition also implies the existence of an a > 0 that
makes Q � 0 and W � 0 even in the case when θ = 0. In fact, it reduces to the
well known result 0 < γ < 2β1 for ordinary forward-backward splitting. As men-
tioned before, if these conditions hold then Theorem 7.3 gives Fejér monotonicity
of {(xk,yk)}k∈N w.r.t. P zerΦA,p = zer(A1+ A2)× {0} in the norm ‖·‖Q.

8. A New Frugal Splitting Operator With Minimal Lifting

We will now derive a new frugal splitting operator with minimal lifting. The ap-
proach we will take is the same as the one outlined in Proposition 6.5, i.e., we will
select a primal index p, a kernel M and matrices H and K and form a representa-
tion as (p,M,MK,HMK,HM). As long as the matrices satisfy Proposition 6.5, the
resulting generalized primal-dual resolvent is a frugal splitting operator with lifting
equal to the rank of the kernel. Therefore, if we choose a kernel with minimal rank,
the resulting frugal splitting operator will have minimal lifting.

As noted in Section 6, the minimal lifting number of a frugal splitting operator
overAF

n depends on F. In particular, from Corollary 6.7 we see that it is not only a
question regarding whether F is empty or not; the minimal lifting number depends
on the actual order of the forward and backward evaluations. For this reason, we
choose to construct a frugal splitting operator over AF

n where F is such that 1 < F
and n < F. Corollary 6.7 then guarantees that the minimal lifting in this setting is n−
1− |F | instead of potentially being n− |F |. To further simplify the setup we assume
that all the single-valued evaluations come one after another as F = {n− f , . . . ,n−1}
where f = |F | is the number of single-valued operators.

THEOREM 8.1
Let n, f ∈ N be such that n ≥ 2 and f ≤ n−2. Let A = (A1, . . . ,An) ∈ A

F
n where F =

{n− f , . . . ,n−1} if f > 0 and F = ∅ if f = 0. Let zi,0 ∈ H for all i ∈ {1, . . . ,n−1− f }
and

x1,k = JλA1 z1,k,

xi,k = Jθ−1λAi
(x1,k + θ

−1zi,k) for all i ∈ {2, . . . ,n−1− f },

xi,k = λAi x1,k for all i ∈ {n− f , . . . ,n−1},

x̄k =
∑n−1

j=n− f
xj ,k +

∑n−1− f

j=2
(zj ,k + θ(x1,k − xj ,k)),

xn,k = JλAn (2x1,k − z1,k − x̄k),

zi,k+1 = zi,k − θ(xi,k − xn,k) for all i ∈ {1, . . . ,n−1− f }

for all k ∈ N where γ > 0 and θ > 0. If A satisfies Assumption 7.1 and

λ

2

∑n−1

i=n− f
β−1
i < 2− θ(n−1− f)

then xn,k ⇀ x? ∈ zer
∑n

i=1 Ai .

145

Paper IV. Frugal Splitting Operators

Proof. Let T(·) : Hn−1− f →Hn−1− f be the generalized primal-dual resolvent with
representation (n,M,MK,HMK,HM) with the matrices

M =


1 1
1 1

θ I 1
1 1
1 1


∈ Rn×n, K =


1
2

I

1
2


∈ Rn×(n−1− f)

and H = θ

[
1

2+ f
1

2+ f 1T 1
2+ f

I

]
∈ R(n−1− f)×n

where θ > 0, I ∈ R(n−2− f)×(n−2− f) is the identity matrix, 1 are column vectors
of ones with appropriate sizes and empty blocks denote zero matrices. Note, the
third rows and columns vanish completely when f = 0 while the second rows and
columns vanish when f = n− 2. The matrix M is an n-kernel over AF

n with rank
n − 1− f , which is minimal, see Corollary 6.7. Furthermore, these matrices sat-
isfy ran K = ran MT = (ker M)⊥ and ker H = (ran HT)⊥ = (ran M)⊥ and hence T(·)
is a frugal splitting operator by Proposition 6.5. For later use we note that T(·)
also can be represented as (n,SUP,SU,U,UP) with U = HMK , S = MK(HMK)−1,
P = (HMK)−1HM .

We first consider the case when λ = 1, the general case when λ > 0 will be
proved below. In this case, with zk = (z1,k, . . . ,zn−1− f ,k), we note that the update of
zk+1 in the theorem can be written as

zk+1 = TAzk .

It can also be verified that (y1,k, . . . ,yn,k) = (M +ΦA,n)
−1MKzk satisfies

y1,k = z1,k − x1,k,

yi,k = z1,k + θ(x1,k − xi,k) for all i ∈ {2, . . . ,n−1− f },

yi,k = xi,k for all i ∈ {n− f , . . . ,n},

for all k ∈ N. Furthermore, if we choose

Q = θ−1
[

1
I

]
∈ R(n−1− f)×(n−1− f),

then IF (PTQ−S)U = (PTQ−S)U where IF is defined in Theorem 7.3 and condition
(a) of Theorem 7.3 holds. Condition (b) of Theorem 7.3 with this Q reads as

Q � 0 and W =

[
2− θ(n−1− f)− 1

2
∑n−1

i=n− f β
−1
i

1
θ I

]
� 0

146

8 A New Frugal Splitting Operator With Minimal Lifting

which holds if and only if θ > 0 and 1
2
∑n−1

i=n− f β
−1
i < 2− θ(n− 1− f). In this case,

Theorem 7.3 gives the convergence of

(y1,k, . . . ,yn,k)⇀ (y
?
1 , . . . ,y

?
n) ∈ zerΦA,n

and xn,k = yn,k ⇀ y?n ∈ zer
∑n

i=1 Ai .
Finally, consider the general case with arbitrary λ > 0. We then see that the

update of the theorem can be written as

zk+1 = TλAzk

for all k ∈ N where λA= (λA1, . . . ,λAn). Since Ai is βi-cocoercive for all i ∈ F, λAi

will be βiλ
−1-cocoercive for all i ∈ F and hence will λA satisfy Assumption 7.1.

Applying Theorem 7.3 to this fixed point iteration with the scaled operator tuple
then gives the convergence of

(y1,k, . . . ,yn,k) → (y
?
1 , . . . ,y

?
n) ∈ zerΦλA,n

and xn,k = yn,k → y?n ∈ zer
∑n

i=1 λAi if θ > 0 and λ
2
∑n−1

i=n− f β
−1
i < 2− θ(n− 1− f).

This proves the theorem. �

Note that the relaxation factor θ also occurs as a step-size scaling on some of the
resolvents, i.e., Jθ−1λAi

is evaluated for i ∈ {2, . . . ,n−1− f } while JλAi is evaluated
for i ∈ {1,n} This was necessary in order to ensure convergence. We also see that,
in order to find a step-size that ensures convergence, θ < 2

n−1− f is needed, i.e., the
relaxation parameter must decrease with the number of operators. However, this is
counteracted by the fact that the step-size of most of the resolvents are scaled with
θ−1 and hence will also increase with the number of operators.

There are no step-size restrictions when no forward evaluations are used, f = 0.
Furthermore, we see that the step-size bound only depends on the sum of the in-
verse cocoercivity constants. This is natural since all forward steps are evaluated at
the same point and the results are simply added together. The update can therefore
equivalently be seen as evaluating Â =

∑n−1
i=n− f Ai instead of each operator individu-

ally and Â is a (
∑n−1

i=n− f β
−1
i)
−1-cocoercive operator.

8.1 Relation to Other Methods With Minimal Lifting
When n = 3, f = 1 and θ = 1, this method reduces to the three operator splitting of
Davis and Yin, see Section 5.5. When n = 3 and f = 0, the method is closely related
to the three operator resolvent splitting operator of Ryu [29]. That method uses a

147

Paper IV. Frugal Splitting Operators

frugal splitting operator that is calculated as (ẑ1, ẑ2) = T(A1 ,A2 ,A3)(z1,z2) where

x1 = JλA1 (z1),

x2 = JλA2 (z2+ x1),

x3 = JλA3 (−z1− z2+ x1+ x2),

ẑ1 = z1+ θ(x3− x1),

ẑ2 = z2+ θ(x3− x2)

and we see that, if we consider the unrelaxed case θ = 1, then this update is the same
as our update in Theorem 8.1. For other choices of θ, our proposed method differs in
that the step-size in the computation of x2 is scaled with θ−1. As noted by Malitsky
and Tam [23], a straightforward extension of Ryu’s method to four operators fails
to converge for all θ > 0 in some cases and we found this step-size scaling to be the
key that allowed us to establish convergence for n > 3.

In the case when f = 0 and n > 2 is arbitrary, Malitsky and Tam [23] presented
a splitting method which they proved had minimal lifting. It uses a frugal splitting
operator where (ẑ1, . . . , ẑn−1) = T(A1 ,...,An)(z1, . . . ,zn−1) is calculated as

x1 = JγA1 (z1),

xi = JγAi (zi − zi−1+ xi−1) for all i ∈ {2, . . . ,n−1},
xn = JγAn (−zn−1+ x1+ xn−1),

ẑi = zi + θ(xi+1− xi) for all i ∈ {1, . . . ,n−1}.

This method was later expanded to include forward evaluations in [2] and the re-
sults of this paper prove that the method with forward evaluations also has minimal
lifting. One feature of our splitting operator is that it allows xi,k to be calculated in
parallel for all i ∈ {2, . . . ,n−1}, which cannot be done with the Malitsky–Tam split-
ting operator since each resolvent depends on the previous one. However, it should
be noted that fixed point iterations of the Malitsky–Tam operator can be partially
parallelized with . . . ,xi−2,k+1,xi,k,xi+2,k−1, . . . being computable in parallel. Com-
paring the step-sizes of the two methods, the Malitsky–Tam method converges for
all θ ∈ (0,1) while our method requires that θ ∈ (0, 2

n−1), i.e., our method requires a
smaller relaxation parameter for larger n. As mentioned before though, our method
actually increases the step-sizes for the resolvents of A2, . . . ,An−1 with n, which
might offset the decreasing relaxation.

Another method similar to ours in the f = 0 case is the method presented by
Campoy in [7]. It is based on Douglas–Rachford splitting applied to a product space
reformulation of the finite sum monotone inclusion problem which results in a split-

148

9 Conclusion

ting operator where (ẑ1, . . . , ẑn−1) = TA(z1, . . . ,zn−1) is such that

x1 = J γ
n−1 A1 (

1
n−1

∑n−1

j=1
zj)

xi = JγAi (2x1− zi−1) for all i ∈ {2, . . . ,n}
ẑi = zi + θ(xi+1− x1) for all i ∈ {1, . . . ,n−1}.

This operator clearly has minimal lifting and its fixed point iteration converges for
all θ ∈ (0,2), γ > 0 and A ∈ An. As with our method, it is parallelizable and uses
an uneven step-size with the first resolvent using a step-size of γ

n−1 while the others
use a step-size of γ. However, it does not appear possible to rewrite this splitting
operator as a special case of ours, or vice versa.

A similar approach to the one used by Campoy was also presented by Condat et
al. [11] but restricted to the convex optimization case. They presented essentially the
same splitting operator as the one from Campoy but with a weighted average instead
of the arithmetic average in the first row. However, Condat et al. also applied more
schemes than just Douglas–Rachford splitting to the product space reformulation,
resulting in several different parallelizable splitting operators both with and without
forward evaluations. Most notably is perhaps a Davis–Yin based splitting operator
over A {2}n that is parallelizable and has minimal lifting, [11, Equation (212)]. Al-
though many of these methods are similar to ours, we again failed to rewrite either
our or any of their methods with minimal lifting as special cases of each other.

The biggest difference between this work and the works of Campoy and Con-
dat et al. is perhaps conceptual. While their parallelizable methods are based on
applying existing splitting operators to reformulations of the problem, we directly
search over all possible frugal splitting operators. Our search is of course in no way
exhaustive but is enabled by the representation theorem since it allows us to easily
work with the entire class of frugal splitting operators and nothing else.

9. Conclusion

We have presented an explicit parameterization of all frugal splitting operators. The
parameterization is in terms of what we call generalized primal-dual resolvents, and
we have provided necessary and sufficient conditions for a generalized primal-dual
resolvent being a frugal splitting operator. This allows for a unified analysis and
both minimal lifting and convergence results that are applicable to all frugal split-
ting operators. The minimal lifting results of Ryu and Malitsky–Tam were expanded
beyond resolvent splitting operators to general frugal splitting operators with for-
ward evaluations and we showed that the lifting number depends on the order of
forward and backward evaluations. We further presented a new convergent frugal
splitting operator with minimal lifting that allows for most of the forward and/or
backward steps to be computed in parallel. In the triple-backward case the method is
the same as the minimal lifting method of Ryu if neither method uses relaxation. The

149

Paper IV. Frugal Splitting Operators

slight difference in how relaxation is introduced is crucial to extend Ryu’s method
to an arbitrary number of operators. In the double-backward-single-forward case
the method reduces to three operator splitting by Davis and Yin.

References

[1] F. Alvarez and H. Attouch. “An Inertial Proximal Method for Maximal
Monotone Operators via Discretization of a Nonlinear Oscillator with Damp-
ing”. Set-Valued Analysis 9:1 (2001), pp. 3–11. DOI: 10 . 1023 / A :
1011253113155.

[2] F. J. Aragón-Artacho, Y. Malitsky, M. K. Tam, and D. Torregrosa-Belén. Dis-
tributed Forward-Backward Methods for Ring Networks. 2022. arXiv: 2112.
00274v2 [cs, math]. URL: https://arxiv.org/abs/2112.00274v2
(visited on 2022-09-09).

[3] H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Opera-
tor Theory in Hilbert Spaces. Second. CMS Books in Mathematics. Springer
International Publishing, 2017. ISBN: 978-3-319-48310-8.

[4] A. Beck and M. Teboulle. “A Fast Iterative Shrinkage-Thresholding Algo-
rithm for Linear Inverse Problems”. SIAM Journal on Imaging Sciences 2:1
(2009), pp. 183–202. DOI: 10.1137/080716542.

[5] R. I. Boţ, E. R. Csetnek, and C. Hendrich. “Inertial Douglas–Rachford Split-
ting for Monotone Inclusion Problems”. Applied Mathematics and Compu-
tation 256 (2015), pp. 472–487. DOI: 10.1016/j.amc.2015.01.017.

[6] M. N. Bùi and P. L. Combettes. “Warped Proximal Iterations for Mono-
tone Inclusions”. Journal of Mathematical Analysis and Applications 491:1
(2020), p. 124315. DOI: 10.1016/j.jmaa.2020.124315.

[7] R. Campoy. “A product space reformulation with reduced dimension for
splitting algorithms”. Computational Optimization and Applications 83:1
(2022), pp. 319–348. DOI: 10.1007/s10589-022-00395-7. URL: https:
//doi.org/10.1007/s10589-022-00395-7 (visited on 2022-09-09).

[8] A. Chambolle and T. Pock. “A First-Order Primal-Dual Algorithm for Con-
vex Problems with Applications to Imaging”. Journal of Mathematical Imag-
ing and Vision 40:1 (2011), pp. 120–145. DOI: 10.1007/s10851- 010-
0251-1.

[9] P. L. Combettes and J. Eckstein. “Asynchronous Block-Iterative Primal-Dual
Decomposition Methods for Monotone Inclusions”. Mathematical Program-
ming 168:1 (2018), pp. 645–672. DOI: 10.1007/s10107-016-1044-0.

[10] L. Condat. “A Primal–Dual Splitting Method for Convex Optimization In-
volving Lipschitzian, Proximable and Linear Composite Terms”. Journal
of Optimization Theory and Applications 158:2 (2013), pp. 460–479. DOI:
10.1007/s10957-012-0245-9.

150

https://doi.org/10.1023/A:1011253113155
https://doi.org/10.1023/A:1011253113155
https://arxiv.org/abs/2112.00274v2
https://arxiv.org/abs/2112.00274v2
https://arxiv.org/abs/2112.00274v2
https://doi.org/10.1137/080716542
https://doi.org/10.1016/j.amc.2015.01.017
https://doi.org/10.1016/j.jmaa.2020.124315
https://doi.org/10.1007/s10589-022-00395-7
https://doi.org/10.1007/s10589-022-00395-7
https://doi.org/10.1007/s10589-022-00395-7
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10851-010-0251-1
https://doi.org/10.1007/s10107-016-1044-0
https://doi.org/10.1007/s10957-012-0245-9

References

[11] L. Condat, D. Kitahara, A. Contreras, and A. Hirabayashi. Proximal Splitting
Algorithms for Convex Optimization: A Tour of Recent Advances, with New
Twists. 2021. arXiv: 1912.00137 [math]. URL: http://arxiv.org/abs/
1912.00137v7 (visited on 2022-09-09).

[12] D. Davis and W. Yin. “A Three-Operator Splitting Scheme and its Opti-
mization Applications”. Set-Valued and Variational Analysis 25:4 (2017),
pp. 829–858. DOI: 10.1007/s11228-017-0421-z.

[13] Y. Drori and M. Teboulle. “Performance of First-Order Methods for Smooth
Convex Minimization: A Novel Approach”. Mathematical Programming
145:1 (2014), pp. 451–482. DOI: 10.1007/s10107-013-0653-0.

[14] J. Elliott. The Characteristic Roots of Certain Real Symmetric Matrices. MA
thesis. Univeristy of Tennessee, 1953. URL: https://trace.tennessee.
edu/utk_gradthes/2384.

[15] P. Giselsson. “Nonlinear Forward-Backward Splitting with Projection Cor-
rection”. SIAM Journal on Optimization (2021), pp. 2199–2226. DOI: 10.
1137/20M1345062.

[16] P. Giselsson. Nonlinear Forward-Backward Splitting with Projection Correc-
tion. 2021. arXiv: 1908.07449v3. URL: http://arxiv.org/abs/1908.
07449v3.

[17] A. A. Goldstein. “Convex Programming in Hilbert Space”. Bulletin of the
American Mathematical Society 70:5 (1964), pp. 709–711. DOI: 10.1090/
S0002-9904-1964-11178-2.

[18] P. Latafat and P. Patrinos. “Asymmetric Forward–Backward–Adjoint Split-
ting for Solving Monotone Inclusions Involving Three Operators”. Compu-
tational Optimization and Applications 68:1 (2017), pp. 57–93. DOI: 10.
1007/s10589-017-9909-6.

[19] L. Lessard, B. Recht, and A. Packard. “Analysis and Design of Optimization
Algorithms via Integral Quadratic Constraints”. SIAM Journal on Optimiza-
tion 26:1 (2016), pp. 57–95. DOI: 10.1137/15M1009597.

[20] E. S. Levitin and B. T. Polyak. “Constrained Minimization Methods”. USSR
Computational mathematics and mathematical physics 6:5 (1966), pp. 1–50.

[21] P. L. Lions and B. Mercier. “Splitting Algorithms for the Sum of Two Nonlin-
ear Operators”. SIAM Journal on Numerical Analysis 16:6 (1979), pp. 964–
979. DOI: 10.1137/0716071.

[22] Y. Malitsky and M. K. Tam. “A Forward-Backward Splitting Method for
Monotone Inclusions Without Cocoercivity”. SIAM Journal on Optimization
30:2 (2020), pp. 1451–1472. DOI: 10.1137/18M1207260.

[23] Y. Malitsky and M. K. Tam. Resolvent Splitting for Sums of Monotone Op-
erators with Minimal Lifting. 2021. arXiv: 2108.02897v1 [math]. URL:
http://arxiv.org/abs/2108.02897v1 (visited on 2022-02-07).

151

https://arxiv.org/abs/1912.00137
http://arxiv.org/abs/1912.00137v7
http://arxiv.org/abs/1912.00137v7
https://doi.org/10.1007/s11228-017-0421-z
https://doi.org/10.1007/s10107-013-0653-0
https://trace.tennessee.edu/utk_gradthes/2384
https://trace.tennessee.edu/utk_gradthes/2384
https://doi.org/10.1137/20M1345062
https://doi.org/10.1137/20M1345062
https://arxiv.org/abs/1908.07449v3
http://arxiv.org/abs/1908.07449v3
http://arxiv.org/abs/1908.07449v3
https://doi.org/10.1090/S0002-9904-1964-11178-2
https://doi.org/10.1090/S0002-9904-1964-11178-2
https://doi.org/10.1007/s10589-017-9909-6
https://doi.org/10.1007/s10589-017-9909-6
https://doi.org/10.1137/15M1009597
https://doi.org/10.1137/0716071
https://doi.org/10.1137/18M1207260
https://arxiv.org/abs/2108.02897v1
http://arxiv.org/abs/2108.02897v1

Paper IV. Frugal Splitting Operators

[24] M. Morin, S. Banert, and P. Giselsson. “Nonlinear Forward-Backward Split-
ting with Momentum Correction” (2022). arXiv: 2112.00481v2 [math].
URL: http://arxiv.org/abs/2112.00481v2.

[25] A. Moudafi and M. Oliny. “Convergence of a Splitting Inertial Proximal
Method for Monotone Operators”. Journal of Computational and Applied
Mathematics 155:2 (2003), pp. 447–454. DOI: 10.1016/S0377-0427(02)
00906-8.

[26] Y. Nesterov. “A Method For Solving A Convex Programming Problem With
Rate of Convergence O(1/k2)”. Soviet Math. Doklady v.269:No.3 (1983),
pp. 543–547.

[27] H. Raguet, J. Fadili, and G. Peyré. “A Generalized Forward-Backward Split-
ting”. SIAM Journal on Imaging Sciences 6:3 (2013), pp. 1199–1226. DOI:
10.1137/120872802.

[28] R. T. Rockafellar. “Monotone Operators and the Proximal Point Algorithm”.
SIAM Journal on Control and Optimization 14:5 (1976), pp. 877–898. DOI:
10.1137/0314056.

[29] E. K. Ryu. “Uniqueness of DRS as the 2 Operator Resolvent-Splitting and
Impossibility of 3 Operator Resolvent-Splitting”. Mathematical Program-
ming 182:1 (2020), pp. 233–273. DOI: 10.1007/s10107- 019- 01403-
1.

[30] E. K. Ryu, A. B. Taylor, C. Bergeling, and P. Giselsson. “Operator Splitting
Performance Estimation: Tight Contraction Factors and Optimal Parameter
Selection”. SIAM Journal on Optimization 30:3 (2020), pp. 2251–2271. DOI:
10.1137/19M1304854.

[31] E. K. Ryu and B. C. Vũ. “Finding the Forward-Douglas–Rachford-Forward
Method”. Journal of Optimization Theory and Applications 184:3 (2020),
pp. 858–876. DOI: 10.1007/s10957-019-01601-z.

[32] A. B. Taylor, J. M. Hendrickx, and F. Glineur. “Exact Worst-Case Perfor-
mance of First-Order Methods for Composite Convex Optimization”. SIAM
Journal on Optimization 27:3 (2017), pp. 1283–1313. DOI: 10 . 1137 /
16M108104X.

[33] A. B. Taylor, J. M. Hendrickx, and F. Glineur. “Smooth Strongly Convex
Interpolation and Exact Worst-Case Performance of First-Order Methods”.
Mathematical Programming 161:1 (2017), pp. 307–345. DOI: 10.1007/
s10107-016-1009-3.

[34] P. Tseng. “A Modified Forward-Backward Splitting Method for Maximal
Monotone Mappings”. SIAM Journal on Control and Optimization 38:2
(2000), pp. 431–446. DOI: 10.1137/S0363012998338806.

[35] B. C. Vũ. “A Splitting Algorithm for Dual Monotone Inclusions Involv-
ing Cocoercive Operators”. Advances in Computational Mathematics 38:3
(2013), pp. 667–681. DOI: 10.1007/s10444-011-9254-8.

152

https://arxiv.org/abs/2112.00481v2
http://arxiv.org/abs/2112.00481v2
https://doi.org/10.1016/S0377-0427(02)00906-8
https://doi.org/10.1016/S0377-0427(02)00906-8
https://doi.org/10.1137/120872802
https://doi.org/10.1137/0314056
https://doi.org/10.1007/s10107-019-01403-1
https://doi.org/10.1007/s10107-019-01403-1
https://doi.org/10.1137/19M1304854
https://doi.org/10.1007/s10957-019-01601-z
https://doi.org/10.1137/16M108104X
https://doi.org/10.1137/16M108104X
https://doi.org/10.1007/s10107-016-1009-3
https://doi.org/10.1007/s10107-016-1009-3
https://doi.org/10.1137/S0363012998338806
https://doi.org/10.1007/s10444-011-9254-8

Supplementary Material

Supplementary Material: Derivation of Representations
and Convergence Conditions

In this section we will verify the representations and convergence conditions for the
frugal splitting operators stated in the paper. For posterity we will also derive rep-
resentations and convergence conditions for a number of frugal splitting operators
not previously mentioned.

We will keep a consistent notation in each of the examples presented. For a
representation of a frugal splitting operator T(·) : H d→H d overAF

n , the goal is to
find matrices M , N , U, V such that

y = (M +Φ(·),p)−1Nz,

T(·)z = z−Uz−V y

for some p ∈ {1, . . . ,n} and that Theorem 5.1 is satisfied. Such a representation
(p,M,N,U,V) can always be factorized in terms of matrices S and P such that

M = SUP, N = SU and V =UP,

and where ran P ⊆ (kerU)⊥ and ker S ⊇ (ranU)⊥, see Corollary 5.2. The conver-
gence conditions of Theorem 7.3 for a fixed point iterations of TA for some A ∈ AF

n

that satisfies Assumption 7.1 is stated in terms of this factorization and can be writ-
ten as

Q � 0,
(I − IF)(PTQ− S)U = 0,

W =QU + (QU)T −UTQU − 1
2UT (PTQ− S)T B†(PTQ− S)U � 0

where Q is a symmetric matrix that needs to be found for each frugal splitting oper-
ator. When constructing new frugal splitting operators, we find it more convenient
to work with a factorization of the representation (p,M,N,U,V) in terms of matrices
H and K such that

N = MK, V = HM and U = HMK,

where ran K = (ker M)⊥ and ker H = (ran M)⊥, see Proposition 6.5. This allows us
to first design a kernel and then easily find N , U and V that results in a first or-
der splitting. Furthermore, some of the frugal splitting operators will be presented
without step-size. A variable step-size can be added to these methods simply by
scaling the operator tuple in the same way as for our new frugal splitting operator
in Theorem 8.1.

Forward-Backward
The forward-backward operator [17, 20] is

T(A1 ,A2) = JγA2 ◦(Id−γA1)

153

Paper IV. Frugal Splitting Operators

where γ > 0 and A = (A1,A2) ∈ A
{1}
2 . To derive a representation we choose primal

index p = 2. The next step would be to apply the Moreau identity to all backward
steps with index i , p but since there are no such backward steps we can directly
define the results of each forward and backward evaluation

y1 = A1z,

y2 = (Id+γA2)
−1(z−γy1),

TAz = y2.

We rewrite the first two lines such that the input is on the left and the result of all
forward and backward steps are on the right

z ∈ A−1
1 y1,

γ−1z ∈ A2y2+ y1+γ
−1y2,

TAz = y2.

If we define y = (y1,y2) ∈ H
2 the first two lines can be written as[

1
γ−1

]
z ∈

[
A−1

1 0
0 A2

]
︸ ︷︷ ︸

∆A,2

y+

[
0 0
1 γ−1

]
y =

[
A−1

1 −1
1 A2

]
︸ ︷︷ ︸

ΦA,2

y+

[
0 1
0 γ−1

]
y

which yields

y =

([
0 1
0 γ−1

]
+ΦA,2

)−1 [
1
γ−1

]
z,

TAz = z−
[
1
]

z+
[
0 1

]
y,

and the matrices M , N , U, V in the representation (2,M,N,U,V) are then easily
identified by comparing to Definition 4.1 which yields

M =
[
0 1
0 γ−1

]
, N =

[
1
γ−1

]
, V =

[
0 1

]
and U =

[
1
]
.

It is seen directly that

S =
[

1
γ−1

]
and P =

[
0 1

]
provides a factorization of this representation as (2,SUP,SU,U,UP). For the con-
vergence conditions, choosing Q =

[
γ−1] where I is the 2× 2 identity matrix it is

154

Supplementary Material

obvious that Q � 0 and we further have

(I − IF)(PTQ− S)U = (I − IF)
(
γ−1

[
0
1

]
−

[
1
γ−1

])
= (I − IF)

[
−1
0

]
= 0

and

W =QU + (QU)T −UTQU − 1
2UT (PTQ− S)T B†(PTQ− S)U

=
[
γ−1] + [

γ−1] − [
γ−1] − 1

2
[
−1 0

] [
β−1

1 0
0 0

] [
−1
0

]
=

[
γ−1− 1

2β1

]
.

The final condition for convergence is then W � 0 which yields the well known
result γ < 2β1.

Douglas–Rachford
The Douglas–Rachford splitting operator [21] is

T(A1 ,A2) =
1
2 Id+ 1

2 (2JγA2 − Id) ◦ (2JγA1 − Id)

where A = (A1,A2) ∈ A2 and γ > 0. Consider the evaluation ẑ = T(A1 ,A2)z for some
z ∈ H . This can be written as

x1 = JγA1 z,

y2 = JγA2 (2x1− z),

ẑ = 1
2 z+ 1

2 (2y2−(2x1− z)).

We choose the primal index to p = 2 and apply the Moreau identity to the first
resolvent,

y1 = Jγ−1A−1
1
(γ−1z),

x1 = z−γy1,

y2 = JγA2 (2x1− z),

ẑ = 1
2 z+ 1

2 (2y2−(2x1− z)).

Eliminating x1 gives

y1 = Jγ−1A−1
1
(γ−1z),

y2 = JγA2 (z−2γy1),

ẑ = γy1+ y2.

155

Paper IV. Frugal Splitting Operators

Using the definition of the resolvent yields

z ∈ γy1+ A−1
1 y1,

γ−1z ∈ 2y1+γ
−1y2+ A2y2,

ẑ = z− z+γy1+ y2.

Regrouping such thatΦ(A1 ,A2),2 can be identified finally gives

z ∈ [γy1+ y2]+ [A−1
1 y1− y2],

γ−1z ∈ [y1+γ
−1y2]+ [A2y2+ y1],

ẑ = z−[z]+ [γy1+ y2]

and we can identify

M =
[
γ 1
1 γ−1

]
, N =

[
1
γ−1

]
, V =

[
γ 1

]
and U =

[
1
]
.

The representation can be factored as (2,SUP,SU,U,UP) where

S =
[

1
γ−1

]
and P =

[
γ 1

]
.

For the convergence conditions, choosing Q =
[
γ−1] yield Q � 0 and

(I − IF)(PTQ− S) = (PTQ− S) = γ−1
[
γ
1

]
−

[
1
γ−1

]
= 0

and

W =QU + (QU)T −UTQU − 1
2UT (PTQ− S)T B†(PTQ− S)U

=Q+Q−Q =Q

and hence is W � 0, i.e., fixed point iterations of the Douglas–Rachford splitting
operator always converge.

Davis–Yin Three Operator Splitting
To find a representation of three operator splitting of Davis–Yin [12],

T(A1 ,A2 ,A3) = JγA3 ◦(2JγA1 − Id−γA2 ◦ JγA1)+ Id−JγA1 .

where γ > 0 and A= (A1,A2,A3) ∈ A
{2}
3 we choose p = 3. Applying Moreau’s iden-

tity to the resolvents of Ai for all i , p (in this case only JγA1) and defining the result

156

Supplementary Material

of each forward and backward-step yields

y1 = (Id+γ−1 A−1
1)
−1(γ−1z),

y2 = A2(z−γy1),

y3 = (Id+γA3)
−1(2(z−γy1)− z−γy2),

TAz = y3+ z−(z−γy1)

for all z ∈ H . Rearranging the first three lines such that we only have z on the left
and y1, y2 and y3 and unscaled operators on the right yields

z ∈ A−1
1 y1+γy1,

z ∈ A−1
2 y2+γy1,

γ−1z ∈ A3y3+2y1+ y2+γ
−1y3,

TAz = γy1+ y3.

If we define y = (y1,y2,y3) ∈ H
3 we see that the first three lines can be written as


1
1
γ−1

 z ∈ ∆A,3y+


γ 0 0
γ 0 0
2 1 γ−1

 y =ΦA,3y+


γ 0 1
γ 0 1
1 0 γ−1

 y
and TA can then be written as

y =
©­«

γ 0 1
γ 0 1
1 0 γ−1

 +ΦA,3
ª®¬
−1 

1
1
γ−1

 z,

TAz = z−
[
1
]

z+
[
γ 0 1

]
y.

From this we can easily identify the matrices M , N , U and V in the representation
(3,M,N,U,V) by comparing to Definition 4.1.

M =

γ 0 1
γ 0 1
1 0 γ−1

 , N =


1
1
γ−1

 , V =
[
γ 0 1

]
and U =

[
1
]
.

This can be factored as (3,SUP,SU,U,UP) where

S =


1
1
γ−1

 and P =
[
γ 0 1

]
.

157

Paper IV. Frugal Splitting Operators

The convergence conditions are satified by Q =
[
γ−1] . We see that Q � 0 and

(I − IF)(PTQ− S)U = (I − IF)(PTQ− S)

= (I − IF)
©­«γ−1


γ
0
1

 −


1
1
γ−1

ª®¬
= 0

and

W =QU + (QU)T −UTQU − 1
2UT (PTQ− S)T B†(PTQ− S)U

=Q− 1
2 (P

TQ− S)T B†(PTQ− S)

=
[
γ−1] − 1

2
[
0 −1 0

]
B†


0
−1
0


=

[
γ−1− 1

2β2

]
and W � 0 if γ < 2β2.

Forward-Backward with Momentum on the Forward Step
Forward-Backward with momentum on the forward step [25] can be written as a
fixed point iteration of the frugal splitting operator

T(A1 ,A2)(z1,z2) =

(
ẑ1
ẑ2

)
=

(
JγA2 (z1−γA1z1+ θz2)

ẑ1− z1

)
where γ > 0, θ ∈ R and A= (A1,A2) ∈ A

{1}
2 . Note, there are other frugal splitting op-

erators whose fixed point iteration are equivalent to this forward-backward method
with momentum. We claim that (2,SUP,SU,U,UP) where

U =
[
1 0
1 1

]
, S =

[
1 0

γ−1(1− θ) γ−1θ

]
and P =

[
0 1
0 0

]
is a representation of this frugal splitting operator. To show this we first note that

V =UP =
[
0 1
0 1

]
, M = SUP =

[
0 1
0 γ−1

]
and

N = SU =
[

1 0
γ−1(1− θ) γ−1θ

] [
1 0
1 1

]
=

[
1 0
γ−1 γ−1θ

]
and

Nz−My ∈ΦA,2y,

ẑ = z−Uz+V y

158

Supplementary Material

can then be written as

z1− y2 ∈ A−1
1 y1− y2,

γ−1(z1+ θz2)−γ
−1y2 ∈ A2y2+ y1,

ẑ1 = z1− z1+ y2,

ẑ2 = z2− z1− z2+ y2

which after some rearranging gives

y1 ∈ A1z1,

z1−γy1+ θz2 ∈ (Id+γA2)y2,

ẑ1 = y2,

ẑ2 = y2− z1.

Rewriting the second line as a resolvent and combining the first and second gives

y2 = JγA2 (z1−γA1z1+ θz2),

ẑ1 = y2,

ẑ2 = y2− z1

which is exactly the frugal splitting operator above. For the convergence, if we
choose

Q = γ−1
[
1− θ θ
θ |θ |+ ε

]
where ε > 0 then

(I − IF)(PTQ− S)U = (I − IF)γ−1
([

0 0
1 0

] [
1− θ θ
θ (|θ |+ ε)

]
−

[
γ 0

1− θ θ

])
U

= (I − IF)γ−1
([

0 0
1− θ θ

]
−

[
γ 0
(1− θ) θ

])
U

= (I − IF)
[
−1 0
0 0

] [
1 0
1 1

]
=

[
0 0
0 1

] [
−1 0
0 0

]
= 0.

159

Paper IV. Frugal Splitting Operators

Furthermore, we have

QU + (QU)T −UTQU = γ−1
[
1− θ θ
θ |θ |+ ε

] [
1 0
1 1

]
+ (QU)T −UTQU

= γ−1
[

1 θ
θ + |θ |+ ε |θ |+ ε

]
+ (QU)T −UTQU

= γ−1
[

2 2θ + |θ |+ ε
2θ + |θ |+ ε 2(|θ |+ ε)

]
−γ−1

[
1 1
0 1

] [
1 θ

θ + |θ |+ ε |θ |+ ε

]
= γ−1

[
2 2θ + |θ |+ ε

2θ + |θ |+ ε 2(|θ |+ ε)

]
−γ−1

[
1+ θ + |θ |+ ε θ + |θ |+ ε
θ + |θ |+ ε |θ |+ ε

]
= γ−1

[
1− θ − |θ | − ε θ

θ |θ |+ ε

]
and

1
2UT (PTQ− S)T B†(PTQ− S)U = 1

2

[
−1 0
0 0

] [
β−1

1 0
0 0

] [
−1 0
0 0

]
= γ−1

[γ
2β1

0
0 0

]
which gives

W =QU + (QU)T −UTQU − 1
2UT (PTQ− S)T B†(PTQ− S)U

= γ−1
[
1− θ − |θ | − ε θ

θ |θ |+ ε

]
−γ−1

[γ
2β1

0
0 0

]
= γ−1

[
1− θ − |θ | − ε − γ

2β1
θ

θ |θ |+ ε

]
.

The final condition for convergence is then Q � 0 and W � 0 which hold if

0 < 1− θ − θ2

|θ |+ε and 0 < 1− θ − θ2

|θ |+ε − |θ | − ε −
γ

2β1
.

The first condition is clearly implied by the second since ε > 0, γ > 0 and β1 > 0.
There exists ε > 0 such that the second condition hold if

0 < 1− θ −2|θ | − γ
2β1

.

This is the same conditions as was derived in [24].

160

Supplementary Material

Forward-Backward with Nesterov-like Momentum
The update of forward-backward with Nesterov-like momentum [4, 26] can be seen
as the application of the following frugal splitting operator

T(A1 ,A2)(z1,z2) =

(
ẑ1
ẑ2

)
=

(
JγA2 (z1+ θz2−γA1(z1+ θz2))

ẑ1− z1

)
where γ > 0, θ > 0 and A = (A1,A2) ∈ A

{1}
2 . As with forward-backward with mo-

mentum on the forward step presented earlier, there are other frugal splitting opera-
tors that also would yield a Nesterov-like momentum update. To derive a represen-
tation, we choose the primal index p = 2 and note that the frugal splitting operator
can be written as

y1 = A1(z1+ θz2),

y2 = (Id+γA2)
−1(z1+ θz2−γy1),

ẑ1 = y2,

ẑ2 = y2− z1.

Inverting A1 and Id+γA2 yield

z1+ θz2 ∈ A−1
1 y1,

γ−1z1+γ
−1θz2− y1 ∈ A2y2+γ

−1y2,

ẑ1 = z1− z1+ y2,

ẑ2 = z2− z1− z2+ y2.

Rearranging so thatΦ(A1 ,A2),2 can be identified gives

z1+ θz2 ∈ [y2]+ [A−1
1 y1− y2],

γ−1z1+γ
−1θz2 ∈ [γ

−1y2]+ [A2y2+ y1],

ẑ1 = z1−[z1]+ [y2],

ẑ2 = z2−[z1+ z2]+ [y2]

and we can identify

M =
[
0 1
0 γ−1

]
, N =

[
1 θ
γ−1 γ−1θ

]
, V =

[
0 1
0 1

]
and U =

[
1 0
1 1

]
This representation can be factored as(2,SUP,SU,U,UP) where

S =
[

1− θ θ
γ−1(1− θ) γ−1θ

]
and P =

[
0 1
0 0

]
.

161

Paper IV. Frugal Splitting Operators

For the convergence conditions we choose

Q = γ−1
[
1− θ θ
θ a

]
where a > 0. This yields

0 = (I − IF)(PTQ− S)U

= (I − IF)
(
γ−1

[
0 0
1 0

] [
1− θ θ
θ a

]
−

[
1− θ θ

γ−1(1− θ) γ−1θ

])
U

= (I − IF)
(
γ−1

[
0 0

1− θ θ

]
−

[
1− θ θ

γ−1(1− θ) γ−1θ

])
U

= (I − IF)
[
−1+ θ −θ

0 0

]
U

= (I − IF)
[
−1+ θ −θ

0 0

] [
1 0
1 1

]
= (I − IF)

[
−1 −θ
0 0

]
= 0

and

QU + (QU)T −UTQU = γ−1
[
1− θ θ
θ a

] [
1 0
1 1

]
+ (QU)T −UTQU

= γ−1
[

1 θ
θ + a a

]
+ (QU)T −UTQU

= γ−1
[

2 2θ + a
2θ + a 2a

]
−γ−1

[
1 1
0 1

] [
1 θ

θ + a a

]
= γ−1

[
2 2θ + a

2θ + a 2a

]
−γ−1

[
1+ θ + a θ + a
θ + a a

]
= γ−1

[
1− θ − a θ

θ a

]
and

1
2UT (PTQ− S)T B†(PTQ− S)U = 1

2

[
−1 0
−θ 0

] [
β−1

1 0
0 0

] [
−1 −θ
0 0

]
= 1

2β1

[
−1 0
−θ 0

] [
−1 −θ
0 0

]
= 1

2β1

[
1 θ
θ θ2

]
.

162

Supplementary Material

Hence we have

W =QU + (QU)T −UTQU − 1
2UT (PTQ− S)B†(PTQ− S)U

= γ−1
[
1− θ − a θ

θ a

]
− 1

2β1

[
1 θ
θ θ2

]
= γ−1

[
1− θ − γ̂− a θ(1− γ̂)
θ(1− γ̂) a− θ2γ̂

]
where γ̂ =

γ
2β1

. It can be verified that Q −W � 0 and the final condition for
convergence—Q � 0 and W � 0—then holds if W � 0 which is equivalent to

0 < a− θ2γ̂ and 0 < 1− θ − γ̂− a− θ2(1−γ̂)2
a−θ2γ̂

.

A New Frugal Splitting Operator with Minimal Lifting
We will here derive a frugal splitting operator with minimal lifting that serves as
the base of the algorithm in Theorem 8.1. This was also done in the proof of Theo-
rem 8.1 but we will here be more detailed and verify the matrix calculations more
carefully.

The frugal splitting operator will be over AF
n where F = {n− f , . . . ,n− 1} and

f = |F | and for notational convenience we let R = {2, . . . ,n− f − 1} with r = |R|.
The representation of the new splitting is then (n,M,MK,HMK,HM) where

M =


1 1
1 1

θ I 1
1 1
1 1


∈ Rn×n, K =


1
2

I

1
2


∈ Rn×(1+r) and

H = θ

[
1

2+ f
1

2+ f 1T 1
2+ f

I

]
∈ R(1+r)×n

where θ > 0, I is the identity matrix in Rr×r , 1 are column vectors of ones with
appropriate sizes and empty block denotes zero matrices. Since Proposition 6.5 is
satisfied by these matrices, the operator corresponding to this representation is a
frugal splitting operator. Let T(·) : H (1+r)→H (1+r) be this frugal splitting operator
and consider the evaluation of ẑ = TAz where A = (A1, . . . ,An) ∈ A

F
n . This can be

written as

y = (M +ΦA,n)
−1MKz

ẑ = z−HMKz+HMy.

Using the definition of the inverse of M +ΦA,n and writing out the matrices explic-

163

Paper IV. Frugal Splitting Operators

itly gives


1
1 1

θ I
1
1


z ∈


1
1 1

θ I
1
2 1 1 1


y+


A−1

1
. . .

A−1
n−1

An


y

ẑ = z−
[
θ

θ1 I

]
z+ θ

[
1 1
1 1

θ I 1

]
y

Setting z = (z1, . . . ,z1+r), ẑ = (ẑ1, . . . , ẑ1+r), y = (y1, . . . ,yn) and writing out the corre-
sponding equations for these matrix/operator expressions gives

z1 ∈ (Id+A−1
1)y1,

z1+
1
θ zi ∈ y1+ (

1
θ Id+A−1

i)yi for all i ∈ R,

z1 ∈ y1+ A−1
i yi for all i ∈ F,

z1 ∈ y1+
∑n−1

j=1
yj + (Id+An)yn,

ẑ1 = (1− θ)z1+ θ(y1+ yn),

ẑi = −θz1+ θ(y1+ yn +
1
θ yi) for all i ∈ R.

Rearranging each line yields

y1 = (Id+A−1
1)
−1z1,

yi = (Id+θA−1
i)
−1(θ[z1− y1]+ zi) for all i ∈ R,

yi = Ai(z1− y1) for all i ∈ F,

yn = (Id+An)
−1([z1− y1]−

∑n−1

j=1
yj),

ẑ1 = z1− θ[z1− y1]+ θyn,

ẑi = yi − θ[z1− y1]+ θyn for all i ∈ R.

Applying the Moreau identity to the first two lines and introducing variables xi for

164

Supplementary Material

all x ∈ {1, . . . ,n} that contains the results of all primal evaluations yields

x1 = (Id+A1)
−1z1,

xi = (Id+θ−1 Ai)
−1([z1− y1]+ θ

−1zi) for all i ∈ R,

xi = Ai(z1− y1) for all i ∈ F,

xn = (Id+An)
−1([z1− y1]−

∑n−1

j=1
yj),

y1 = z1− x1,

yi = θ[z1− y1]+ zi − θxi = zi + θ(x1− xi) for all i ∈ R,

yi = xi for all i ∈ F,

yn = xn,

ẑ1 = z1− θ[z1− y1]+ θyn,

ẑi = yi − θ[z1− y1]+ θyn for all i ∈ R.

Eliminate the yi variables gives

x1 = (Id+A1)
−1z1,

xi = (Id+θ−1 Ai)
−1(x1+ θ

−1zi) for all i ∈ R,

xi = Ai x1 for all i ∈ F,

x̄ =
∑

j∈F
xj +

∑
j∈R
(zj + θ(x1− xj)),

xn = (Id+An)
−1(2x1− z1− x̄),

ẑ1 = z1− θ(x1− xn),

ẑi = zi − θ(xi − xn) for all i ∈ R.

This concludes the derivations of the frugal splitting operator. To derive conditions
for convergence we need a representation of the form (n,SUP,SU,U,UP) and since
U = HMK is invertible this is easily calculated as

U = HMK =
[
θ

θ1 I

]
∈ R(1+r)×(1+r), U−1 =

[
θ−1

−1 I

]
∈ R(1+r)×(1+r),

P =U−1HM =
[

1 1
I

]
∈ R(1+r)×n, S = MKU−1 = θ−1


1

I
1
1


∈ Rn×(1+r)

Choosing

Q = θ−1
[

1
I

]
∈ R(1+r)×(1+r)

165

Paper IV. Frugal Splitting Operators

then results in

(I − IF)(PTQ− S)U = (I − IF)
©­­­­«
θ−1


1

I

1


− θ−1


1

I
1
1


ª®®®®¬

U

= (I − IF)θ−1

 −1


[
θ

θ1 I

]

= (I − IF)

 −1


= 0.

We further have

QU + (QU)T −UTQU

= θ−1(U +UT −UTU)

= θ−1
([

θ

θ1 I

]
+

[
θ θ1T

I

]
−

[
θ θ1T

I

] [
θ

θ1 I

])
= θ−1

([
2θ θ1T

θ1 2I

]
−

[
θ2(n−1− f) θ1T

θ1 I

])
=

[
2 1T

1 2θ−1I

]
−

[
θ(1+ r) 1T

1 θ−1I

]
=

[
2− θ(1+ r)

θ−1I

]
and

1
2UT (PTQ− S)B†(PTQ− S)U = 1

2

[
−1T

]
B†

 −1


= 1

2

[∑
i∈F β

−1
i

]
166

Supplementary Material

which, since 1+ r = n−1− f , results in

W =QU + (QU)T −UTQU − 1
2UT (PTQ− S)B†(PTQ− S)U

=

[
2− θ(1+ r)

1
θ I

]
− 1

2

[∑
i∈F β

−1
i

]
=

[
2− θ(n−1− f)− 1

2
∑

i∈F β
−1
i

1
θ I

]
.

We have Q � 0 and W � 0 if θ > 0 and

0 < 2− θ(n−1− f)− 1
2

∑
i∈F

β−1
i .

Minimal Lifting Method of Malitsky–Tam
Malitsky and Tam [23] presented a frugal splitting operator over An with minimal
lifting, (ẑ1, . . . , ẑn−1) = TA(z1, . . . ,zn−1) where

x1 = JγA1 (z1),

xi = JγAi (zi − zi−1+ xi−1) for all i ∈ {2, . . . ,n−1},
xn = JγAn (−zn−1+ x1+ xn−1),

ẑi = zi + θ(xi+1− xi) for all i ∈ {1, . . . ,n−1}.

Similarly to the derivation of our new method with minimal lifting, we derive
a representation of this frugal splitting operator without any step-sizes, i.e., we set
γ = 1 in the expressions above. As was done in Theorem 8.1, it is straightforward
to modify the resulting convergence conditions to include step-sizes. In fact, since
this frugal splitting operator has no forward evaluations, the convergence conditions
for fixed point iteration will not depend on the step-size. To start, we select primal
index p = n and apply the Moreau identity to the n−1 first resolvents which gives

y1 = JA−1
1

z1,

yi = JA−1
i
(zi − zi−1+ xi−1) for all i ∈ {2, . . . ,n−1},

yn = JAn (−zn−1+ x1+ xn−1),

x1 = z1− y1,

xi = zi − zi−1+ xi−1− yi for all i ∈ {2, . . . ,n−1},
xn = yn,

ẑi = zi + θ(xi+1− xi) for all i ∈ {1, . . . ,n−1}.

167

Paper IV. Frugal Splitting Operators

Looking at the expression of xi for i ∈ {2, . . . ,n−1} we see

x2 = z2− z1+ x1− y2 = z2− y1− y2

x3 = z3− z2+ x2− y3 = z3− y1− y2− y3

...

xi = zi − zi−1+ xi−1− yi = zi −
∑i

j=1
yj

which gives

ẑi = zi + θ((zi+1−
∑i+1

j=1
yj)− (zi −

∑i

j=1
yj)) = zi + θ(zi+1− zi − yi+1)

for all i ∈ {1, . . . ,n−2} and

ẑn−1 = zn−1+ θ(yn −(zn−1−
∑n−1

j=1
yj)) = zn−1+ θ(−zn−1+

∑n

j=1
yj).

Inserting these expressions back in gives

y1 = JA−1
1
(z1),

yi = JA−1
i
(zi −

∑i−1

j=1
yj) for all i ∈ {2, . . . ,n−1},

yn = JAn (z1− y1−
∑n−1

j=1
yj),

ẑi = zi − θ(zi − zi+1)+ θ(−yi+1) for all i ∈ {1, . . . ,n−2},

ẑn−1 = zn−1− θzn−1+ θ
∑n

j=1
yj .

From this we can identify the representation (n,M,N,U,V) as

M =



1 1
1 1 1
...

. . .
. . .

...
1 · · · 1 1 1
1 0 · · · 0 1


, N =



1
0 1
...

. . .
. . .

0 · · · 0 1
1 0 · · · 0


and

U = θ



1 −1
1 −1

. . .
. . .

1 −1
1


, V = θ



0 −1
0 −1

. . .
. . .

0 −1
1 1 · · · 1 1 1


168

Supplementary Material

where M ∈ Rn×n, N ∈ Rn×(n−1), U ∈ R(n−1)×(n−1) and V ∈ R(n−1)×n.
Since U is invertible a factorization of the form (n,SUP,SU,U,UP)must satisfy

S = NU−1 and P =U−1V

which gives

S = θ−1



1 1 · · · 1

1
. . . 1
. . .

...
1

1 1 · · · 1


∈ Rn×(n−1) and P =


1 1
1 1 1
...

. . .
. . .

...
1 · · · 1 1 1


∈ R(n−1)×n.

The convergence conditions are then satisfied by Q = θ−1I since

(I − IF)(PTQ− S)U = (S− S)U = 0

and

W =QU + (QU)T −UTQU − 1
2UT (PTQ− S)B†(PTQ− S)U

=QU + (QU)T −UTQU

= θ−1(U +UT −UTU)

=



2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


− θ


1
−1 1

. . .
. . .

−1 1



1 −1

1
. . .

. . . −1
1


=



2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


− θ



1 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


= (1− θ)



2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2


+ θ


1

0
. . .

0


.

The tridiagonal matrix is Toeplitz and has eigenvalues 2 + 2cos(kπn) for k ∈
{1, . . . ,n−1}, see for instance [14], and hence Q � 0 and W � 0 for all 0 < θ < 1.

169

Paper IV. Frugal Splitting Operators

Minimal Lifting Method of Ryu
Ryu [29] presented a frugal splitting operator overA3 with minimal lifting, i.e., the
lifting number is two. Let T(·) : H2 →H2 be this frugal splitting operator and let
A = (A1,A2,A3) ∈ A3. The evaluation (ẑ1, ẑ2) = TA(z1,z2) is defined as

x1 = JA1 (z1),

x2 = JA2 (z2+ x1),

x3 = JA3 (−z1− z2+ x1+ x2),

ẑ1 = z1+ θ(x3− x1),

ẑ2 = z2+ θ(x3− x2).

To derive a representation of this we select the primal index p = 3 and apply the
Moreau identity to the first two resolvents,

y1 = JA−1
1
(z1),

y2 = JA−1
2
(z1+ z2− y1),

y3 = JA3 (z1−2y1− y2),

ẑ1 = z1− θz1+ θ(y1+ y3),

ẑ2 = z2− θ(z1+ z2)+ θ(y1+ y2+ y3).

From this we can identify

M =

1 0 1
1 1 1
1 0 1

 , N =

1 0
1 1
1 0

 , U = θ
[
1 0
1 1

]
and V = θ

[
1 0 1
1 1 1

]
and (3,M,N,U,V) is then a representation of T(·). A factorization of the form
(3,SUP,SU,U,UP) needed for the convergence analysis is easily found since U
is invertible and is given by

S = θ−1

1 0
0 1
1 0

 and P =
[
1 0 1
0 1 0

]
.

Choosing Q = θ−1I yields

(I − IF)(PTQ− S)U = (PTQ− S)U = (S− S)U = 0

170

Supplementary Material

and

W =QU + (QU)T −UTQU − 1
2UT (PTQ− S)T B†(PTQ− S)U

= θ−1(U +UT −UTU)

=

[
2 1
1 2

]
− θ

[
1 1
0 1

] [
1 0
1 1

]
= (1− θ)

[
2 1
1 2

]
+ θ

[
0 0
0 1

]
and it is clear that the final conditions for convergence, Q � 0 and W � 0, hold if
0 < θ < 1.

Minimal Lifting Method of Condat et al. and Campoy
Condat et al. presented a product space technique for reformulating finite sum con-
vex optimization problems as convex problems that can be handled with traditional
splitting techniques [11, Parallel versions of the algorithms. Technique 1]. Cam-
poy presented in [7] an similar product space approach but for finite sum monotone
inclusion problems over An. Applying the Douglas–Rachford splitting operator to
these reformulations yields a frugal resolvent splitting operator for the original finite
sum problems and, since the product space reformulations have a lifting of n− 1,
so does the splitting operator and hence it has minimal lifting. The frugal splitting
operator T(·) : Hn−1 → Hn−1 over AF

n resulting from Campoy’s approach is for
A = (A1, . . . ,An) ∈ An defined as (ẑ1, . . . , ẑn−1) = TA(z1, . . . ,zn−1) such that

x1 = J γ
n−1 A1 (

1
n−1

∑n−1

j=1
zj)

xi = JγAi (2x1− zi−1) for all i ∈ {2, . . . ,n}
ẑi = zi + θ(xi+1− x1) for all i ∈ {1, . . . ,n−1}.

The splitting operator of Condat et al. is essentially the same but with a weighted
average instead of the arithmetic average being used in the first row. Below we
derive a representation and convergence conditions for Campoy’s splitting operator
but a similar representation for the splitting of Condat et al. can be analogously
derived.

We choose the primal index as p = n and apply Moreau’s identity to all other

171

Paper IV. Frugal Splitting Operators

resolvents

y1 = J n−1
γ A−1

1
(n−1
γ

1
n−1

∑n−1

j=1
zj)

yi = Jγ−1A−1
i
(γ−1(2x1− zi−1)) for all i ∈ {2, . . . ,n−1}

yn = JγAn (2x1− zn−1)

x1 =
1

n−1

∑n−1

j=1
zj −

γ
n−1 y1

xi = 2x1− zi−1−γyi for all i ∈ {2, . . . ,n−1}
xn = yn

ẑi = zi + θ(xi+1− x1) for all i ∈ {1, . . . ,n−1}.

Eliminating the xi variables and rewriting the resolvents yields

y1 = (
γ

n−1 Id+A−1
1)
−1(1

n−1

∑n−1

j=1
zj)

yi = (γ Id+A−1
i)
−1(2

n−1

∑n−1

j=1
zj − zi−1−

2γ
n−1 y1) for all i ∈ {2, . . . ,n−1}

yn = (γ
−1 Id+An)

−1(
2γ−1

n−1

∑n−1

j=1
zj −γ−1zn−1−

2
n−1 y1)

ẑi = zi − θ(zi − 1
n−1

∑n−1

j=1
zj)+ θ(−

γ
n−1 y1−γyi+1) for all i ∈ {1, . . . ,n−2}

ẑn−1 = zi − θ(1
n−1

∑n−1

j=1
zj)+ θ(

γ
n−1 y1+ yn).

From this the matrices in the representation (n,M,N,U,V) can be identified as

M =



γ
n−1 1
2γ
n−1 γ 1
...

. . .
...

2γ
n−1 γ 1
3−n
n−1 −1 · · · −1 γ−1


,

N =
1

n−1



1 · · · 1 1 1
3−n 2 · · · 2 2

2 3−n 2 · · · 2
...

. . .
. . .

. . .
...

2 · · · 2 3−n 2
2
γ

2
γ · · · 2

γ
3−n
γ


,

172

Supplementary Material

U =
θ

n−1



n−2 −1 . . . −1 −1
−1 n−2 −1 . . . −1
...

. . .
. . .

. . .
...

−1 . . . −1 n−2 −1
1 1 . . . 1 1


and

V =
θγ

n−1



−1 1−n
−1 1−n
...

. . .

−1 1−n
1 n−1

γ


where M ∈ Rn×n, N ∈ Rn×(n−1), U ∈ R(n−1)×(n−1) and V ∈ R(n−1)×n. Notice that we
have

U−1 =
1
θ


1 1

. . .
...

1 1
−1 · · · −1 1


which makes it possible to factor the representation (n,M,N,U,V) as (n,SUP,SU,
U,UP) where

S = NU−1 =
1
θ



0 1
−1 0 1

−1
. . .

...
. . . 0 1

−1 1
γ−1 γ−1 · · · γ−1 γ−1


∈ Rn×(n−1)

and

P =U−1V = γ



0 −1 γ−1

0 −1 γ−1

. . .
. . .

...
0 −1 γ−1

1 1 · · · 1 1 γ−1


∈ R(n−1)×n.

Notice that P = γST .

173

Paper IV. Frugal Splitting Operators

For the convergence theorem we choose Q = γI where I ∈ R(n−1)×(n−1) is the
identity matrix. We then have PTQ = S and Q � 0 for all γ > 0, hence, it is enough
to show that W � 0.

W =UQ+ (UQ)T −UTQU

= γ−1(U +UT −UTU)

= γ−1((
2θ

n−1



n−2 −1 . . . −1 0
−1 n−2 −1 . . . 0
...

. . .
. . .

. . .
...

−1 . . . −1 n−2
0 0 . . . 0 1


−UTU)

= γ−1(
2θ

n−1



n−2 −1 . . . −1 0
−1 n−2 −1 . . . 0
...

. . .
. . .

. . .
...

−1 . . . −1 n−2
0 0 . . . 0 1


−

θ2

n−1



n−2 −1 . . . −1 0
−1 n−2 −1 . . . 0
...

. . .
. . .

. . .
...

−1 . . . −1 n−2 0
0 0 . . . 0 1


)

=
θ(2− θ)
γ(n−1)



n−2 −1 . . . −1 0
−1 n−2 −1 . . . 0
...

. . .
. . .

. . .
...

−1 . . . −1 n−2
0 0 . . . 0 1


and we see that W � 0 for all θ ∈ (0,2) and all γ > 0.

Primal-Dual method of Chambolle–Pock
The primal-dual method made popular by Chambolle–Pock [8] can be seen as a
fixed point iteration of the following frugal splitting operator over A2,

T(A1 ,A2)(z1,z2) =

(
ẑ1
ẑ2

)
=

(
JτA1 (z1− τz2)

JσA−1
2
(z2+σ(2ẑ1− x1))

)
.

Traditionally, this primal-dual method allows for composition with a linear operator
in the monotone inclusion problem but here we assume the linear operator is the
identity operator. Since our generalized primal-dual resolvent also makes use of a
primal-dual formulation, deriving a representation of this frugal splitting operator

174

Supplementary Material

is particularly easy. First we choose the primal index to p = 1 since we already
have the first resolvent in primal form and the second in dual form. Introduce some
intermediate variables

y1 = JτA1 (z1− τz2),

y2 = JσA−1
2
(z2−σz1+2σy1),

ẑ1 = y1,

ẑ2 = y2.

Use the definition of a resolvent,

z1− τz2 ∈ y1+ τA1y1,

z2−σz1+2σy1 ∈ y2+σA−1
2 y2,

ẑ1 = y1,

ẑ2 = y2,

and rearrange to identifyΦA,1

τ−1z1− z2 ∈ [τ
−1y1− y2]+ [A1y1+ y2],

σ−1z2− z1 ∈ [−y1+σ
−1y2]+ [A−1

2 y2− y1],

ẑ1 = z1−[z1]+ [y1],

ẑ2 = z2−[z2]+ [y2].

From this we can identify

M =
[
τ−1 −1
−1 σ−1

]
, N =

[
τ−1 −1
−1 σ−1

]
, V =

[
1 0
0 1

]
and U =

[
1 0
0 1

]
.

This representation can be factorized as (1,SUP,SU,U,UP) where

S =
[
τ−1 −1
−1 σ−1

]
and P =

[
1 0
0 1

]
.

If we choose Q = S we see that Q � 0 if στ < 1 and

(I − IF)(PTQ− S)U = PTQ− S =Q− S = 0

and

W =QU + (QU)T −UTQU − 1
2UT (PTQ− S)T B†(PTQ− S)U

=Q+Q−Q

= S.

The convergence conditions with this choice of Q is then Q � 0 and W � 0 which
hold as long as S � 0, i.e., as long as στ < 1.

175

Paper IV. Frugal Splitting Operators

Projective Splitting
In [16] it was noted that the update of a synchronous version of projective splitting
[9] can be seen as a generalized primal-dual resolvent over An with representation
(n,M,M,θM,θM) where θ > 0 and

M =
[
T 1
−1T τ−1

n

]
∈ Rn×n,

1 ∈Rn−1 is the vector of all ones, T ∈R(n−1)×(n−1) is a diagonal matrix with diagonal
elements Ti,i = τi for all i ∈ {1, . . . ,n− 1} and τi > 0 for all i ∈ {1, . . . ,n}. In the
projective splitting method the actual value of θ in each iteration is calculated based
on the results of all resolvent evaluations but it is quite clear that the operator given
by (n,M,M,θM,θM) is a frugal splitting operator and we will show that fixed point
iterations with a fixed θ converge for sufficiently small θ. With T(·) : Hn → Hn

being this frugal splitting operator, the evaluation of ẑ = TAz for some z ∈ Hn and
A ∈ An can be written as

Mz ∈ My+ΦA,ny = (M +Γn)y+ ∆A,ny

ẑ = z− θM(z− y) = (I − θM)z+ θMy

which explicitly becomes

[
T 1
−1T τ−1

n

]
z ∈

©­­­­­«
[
T

τ−1
n

]
+


A−1

1
. . .

A−1
n−1

An


ª®®®®®¬
y

ẑ = z− θ
[
T 1
−1T τ−1

n

]
z+ θ

[
T 1
−1T τ−1

n

]
y.

Setting z = (z1, . . . ,zn), ẑ = (z1, . . . ,zn), y = (y1, . . . ,yn) and writing out each line gives

τizi + zn ∈ (τi Id+A−1
i)yi for all i ∈ {1, . . . ,n−1},

τ−1
n zn −

∑n−1

j=1
zj ∈ (τ−1

n Id+An)yn,

ẑi = zi − θ(τizi + zn)+ θ(τiyi + yn) for all i ∈ {1, . . . ,n−1},

ẑn = zn − θ(τ−1
n zn −

∑n−1

j=1
zj)+ θ(τ−1

n yn −
∑n−1

j=1
yj).

176

Supplementary Material

Rewriting these equations using resolvents gives

yi = Jτ−1
i A−1

i
(zi + τ−1

i zn) for all i ∈ {1, . . . ,n−1},

yn = JτnAn (zn − τn
∑n−1

j=1
zj),

ẑi = zi − θ(τizi + zn)+ θ(τiyi + yn) for all i ∈ {1, . . . ,n−1},

ẑn = zn − θ(τ−1
n zn −

∑n−1

j=1
zj)+ θ(τ−1

n yn −
∑n−1

j=1
yj).

Applying the Moreau identity and introducing variables for the primal evaluation
yields

xi = Jτi Ai (τizi + zn) for all i ∈ {1, . . . ,n−1},

xn = JτnAn (zn − τn
∑n−1

j=1
zj),

yi = zi + τ−1
i zn − τ−1

i xi for all i ∈ {1, . . . ,n−1},
yn = xn,

ẑi = zi − θ(τizi + zn)+ θ(τiyi + yn) for all i ∈ {1, . . . ,n−1},

ẑn = zn − θ(τ−1
n zn −

∑n−1

j=1
zj)+ θ(τ−1

n yn −
∑n−1

j=1
yj).

Eliminating yi for all i ∈ {1, . . . ,n} yields

xi = Jτi Ai (τizi + zn) for all i ∈ {1, . . . ,n−1},

xn = JτnAn (zn − τn
∑n−1

j=1
zj),

ẑi = zi − θ(xi − xn) for all i ∈ {1, . . . ,n−1},

ẑn = zn − θ(τ−1
n −

∑n−1

j=1
τ−1
i)zn + θ(τ

−1
n xn +

∑n−1

j=1
τ−1
i xj).

To get convergence conditions we select Q = θ−1I and factor the representations as
(n,SUP,SU,U,UP) where

U = θM, S = θ−1I and P = I

where I ∈ Rn×n is the identity matrix. This results in

(I − IF)(PTQ− S)U = (PTQ− S)U = (θ−1I − θ−1I)U = 0

177

Paper IV. Frugal Splitting Operators

and hence

W =QU + (QU)T −UTQU − 1
2UT (PTQ− S)B†(PTQ− S)U

= θ−1(U +UT −UTU)

= M +MT − θMT M

= 2
[
T

τ−1
n

]
− θ

[
T −1
1T τ−1

n

] [
T 1
−1T τ−1

n

]
= 2

[
T

τ−1
n

]
− θ

[
T 2+11T T1− τ−1

n 1
1TT − τ−1

n 1T τ−2
n +n−1

]
= θ

[
2θ−1T

2θ−1τ−1
n

]
+ θ

[
−T 2−11T −T1+ τ−1

n 1
−1TT + τ−1

n 1T −τ−2
n −n+1

]
= θ

[
2θ−1T −T 2−11T −T1+ τ−1

n 1
−1TT + τ−1

n 1T 2θ−1τ−1
n − τ

−2
n −n+1

]
.

For convergence it is required that Q � 0 and W � 0. As long as θ > 0 then Q � 0
and it is clear that W � 0 for sufficiently small θ. If τi = τ−1

n for all i ∈ {1, . . . ,n−1},
then W simplifies to

W = θτ−1
n

[
(2θ−1− τ−1

n)I −11T

2θ−1− τ−1
n −n+1

]
.

and W � 0 if
θ <

2
n−1+ τ−1

n

.

Note, although τi appear as step-sizes in the resolvents it could be argued that they
are in fact not proper step-sizes since they appear outside the resolvents as well.
If we introduce γ > 0 and apply this fixed point iteration to γA = (γA1, . . . ,γAn)

instead we get the following fixed point iteration

xi = JτiγAi (τizi + zn) for all i ∈ {1, . . . ,n−1},

xn = JτnγAn (zn − τn
∑n−1

j=1
zj),

ẑi = zi − θ(xi − xn) for all i ∈ {1, . . . ,n−1},

ẑn = zn − θ(τ−1
n −

∑n−1

j=1
τ−1
i)zn + θ(τ

−1
n xn +

∑n−1

j=1
τ−1
i xj)

which converges for all γ > 0, as long as the choice of τi and θ are such that the Q
and W above are positive definite. Hence, even if we might have to choose τi and θ
small, the step-sizes in the resolvents can always be made arbitrarily large.

178

Fixpunktsiterationer för
monotona inklusionsproblem
Martin Morin
Institutionen för Reglerteknik

Populärvetenskaplig sammanfattning av doktorsavhandlingen Fixed Point It-
erations for Finite Sum Monotone Inclusions, november 2022. Avhandlingen
kan laddas ner från: http://www.control.lth.se/publications

Matematik är språket som används för att modellera världen. I vardagen använder
vi modeller för att till exempel beräkna restider utifrån kända hastighetsbegrän-
sningar eller planera budgetar utifrån utgifter och inkomster. Matematiska modeller
är också en av de främsta grundstenarna inom många ingenjörs-, och forskningsfält.
Med dem kan vi bland annat simulera deformationen av en bil under en krasch och
därmed bygga säkrare bilar och analysera störningar på elnätet för att göra det mer
robust. Matematiska modeller är verktyget som tillåter oss förstå hur olika kvan-
titeter interagerar.

Med tiden har många modeller blivit allt mer komplexa och detaljerade, så
komplexa att de inte längre går att analysera för hand. Dagens ingenjörer och
forskare förlitar sig därför på datorer för att utföra sina beräkningar och utveck-
lingen av beräkningsmetoder anpassade för implementation på en dator har därför
blivit av största vikt. Denna avhandling fokuserar på beräkningsmetoder för att lösa
en typ av problem som kallas monotona inklusionsproblem. Dessa problem är van-
ligt förekommande inom en rad olika fält såsom statistisk analys, bild- och signal-
behandling, modern maskininlärning och design av optimala lösningar, t.ex. hitta
snabbaste GPS rutten eller eller bästa positionen av en Wi-Fi sändare.

Även i denna avhandling är modellering en grundsten som används för att anal-
ysera och utforska dessa beräkningsmetoder. Med hjälp av modeller i form av fix-
punktsiterationer kan vi undersöka hur olika delar av en metod eller ett problem
påverkar hur snabbt en lösning kan beräknas. Detta kan låta oss lösa problem snab-
bare och effektivare men gör också det möjligt att designa nya beräkningsmetoder
i hopp om att lösa större och mer komplexa problem. Modellerna kan dock säga
mer än bara vad som är möjligt, de kan också säga vad som inte är möjligt med en
viss teknik eller typ av beräkningsmetod. Denna vetskap kan hjälpa ingenjörer att
inte slösa tid på att försöka göra det omöjliga och styra forskare till de områden där
nya tekniker behövs. Genom att bidra till förståelsen för de beräkningsmetoder som
används av dagens ingenjörer och forskare hjälper avhandlingen till med att öppna
upp för morgondagens tekniska applikationer och vetenskapliga upptäckter.

179

http://www.control.lth.se/publications

	Title Page
	Contents
	Introduction
	Outline

	Background
	Notation and Preliminaries
	Monotone Inclusion Problems
	Convex Optimization as Monotone Inclusion
	Fixed Point Iterations
	Operator Splitting Methods
	Variance-Reduced Stochastic Gradient Methods

	Contributions
	Bibliography
	Paper I. Sampling and Update Frequencies in Proximal Variance-Reduced Stochastic Gradient Methods
	Introduction
	Preliminaries
	Problem and Algorithm
	Convergence Analysis
	Special Cases
	Sampling Design
	Numerical Experiments
	Conclusion
	Proofs of Proposition and Lemmas
	Proofs of Theorems
	Proof of Corollaries
	References

	Paper II. Cocoercivity, Smoothness and Bias in Variance-Reduced Stochastic Gradient Methods
	Introduction
	Preliminaries and Notation
	Convergence
	Numerical Experiments
	Conclusion
	References

	Paper III. Nonlinear Forward-Backward Splitting with Momentum Correction
	Introduction
	Problem and Algorithm
	Convergence
	Additional Momentum
	Forward-Half-Reflected-Backward Splitting
	Primal-Dual Methods
	Conclusion
	References

	Paper IV. Frugal Splitting Operators: Representation, Minimal Lifting and Convergence
	Introduction
	Preliminaries
	Frugal Splitting Operators
	Generalized Primal-Dual Resolvents
	Representation of Frugal Splitting Operators
	Minimal Lifting
	Convergence
	A New Frugal Splitting Operator With Minimal Lifting
	Conclusion
	References
	Supplementary Material

	Popular Science Summary (in Swedish)

