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Abstract

Modern coding theory is based on the foundation of the sparse codes on
graphs, such as the low-density parity-check (LDPC) codes, and the turbo-

like codes (TCs) with component convolutional codes. The success of the LDPC
codes and the TCs lies in their ability to perform low-complexity iterative mes-
sage passing decoding procedures. The iterative message passing decoders that
exchange messages probabilities, or beliefs, within the code graph are known
as the belief propagation (BP) decoders. The BP decoders are sub-optimal,
whereas maximum-a-posteriori (MAP) decoders for these codes are computa-
tionally infeasible. These codes can be optimized for their BP decoding per-
formance, which improves their error rate performance in the waterfall region
at the cost of a performance loss in the error-floor region. On the contrary,
optimizing these codes for the MAP performance results in an improved perfor-
mance in the error-floor region at the expense of a degraded performance in the
waterfall region.

In practice, the BP decoding performance of the LDPC codes and the TCs,
in the asymptotic block length regime, is determined by computing their BP
decoding thresholds from the density evolution (DE), or the extrinsic informa-
tion transfer (EXIT) chart techniques. The MAP decoding thresholds can be
obtained with an application of the area theorem to the BP decoder perfor-
mance. The graphs of the LDPC codes and the TCs are optimized for the BP,
and the MAP decoding performance by using their decoding thresholds. For
very large block lengths, spatially coupled (SC) versions of LDPC codes, and
the TCs—which are optimized for MAP decoding performance—were shown
to achieve excellent BP decoding performance in both the waterfall and the
error-floor region, thanks to the threshold saturation. However, the BP decod-
ing performance of these spatially coupled codes suffer from a high error-floor
at a moderate to short code block length.

BP and MAP decoding thresholds of TCs on a binary erasure channel (BEC)
have previously been investigated via the DE analysis. The capacity achieving
SC-TCs were determined, where the underlying TCs were optimized for the BP
and MAP performance. The TCs ensembles—parallel concatenated codes, seri-
ally concatenated codes, braided convolutional codes, and hybrid concatenated
codes—with varying component convolutional codes strengths were considered
in these investigations.

This thesis focuses on investigating the BP decoding performance of SC-
TCs—which were earlier investigated for the BEC—on an additive white Gaus-
sian noise (AWGN) channel. Furthermore, the problem of high error-floor of
SC-TCs for short to moderate block lengths is investigated and addressed with
a design of an optimized convlutional permutor in constructing the SC-TCs. Fi-

v



vi Abstract

nally, the connection of the TCs and the LDPC codes is explored by introducing
a family of convolutional codes (CC) based generalized LDPC codes (GLDPCs).
These research areas are summarized under the following three topics.

In the first topic, we have computed the iterative decoding thresholds of
SC-TCs on the AWGN channel via the Monte Carlo density evolution (MC-
DE) methods. The MC-DE methods are time consuming, which has motivated
us to introduce an efficient alternative that predicts the AWGN thresholds of
SC-TCs with the knowledge of their BEC thresholds. The results show that the
estimated thresholds via the MC-DE method and the predicted thresholds are
very close for the capacity achieving randomly punctured SC-TCs. For the high
rate uncoupled TCs, which are obtained by randomly puncturing their mother
code, the predicted thresholds are improved by incorporating the estimated
AWGN threshold of the mother code ensemble into the threshold prediction
method.

In the second topic, we have introduced the design of a single block-wise
periodic time-varying convolutional permutor to construct the SC-TCs. The
convolutional permutor is designed by applying the unwrapping procedure to an
optimized block permutor, which optimize the bit error rate (BER) performance
of a TC in an error-floor region. We showed that a convolutional permutor
obtained via the unwrapping procedure inherits the properties of its parent
permutor. Due to this reason, the BER performance of block-wise periodically
time-varying convolutional permutor based SC-SCCs does not suffer from a high
error-floor problem at short block lengths, which was demonstrated through the
simulation results.

In the third topic, we have introduced the families of regular and irregular
CC-GLDPCs. The CC-GLDPCs enabled us to connect TCs and LDPC codes in
terms of their graph structures. The BEC thresholds and the minimum distance
properties of the regular CC-GLDPCs were compared to the regular LDPC
codes. Furthermore, we performed an exhaustive grid search using the BEC
thresholds of the class of CC-GLDCPs, and determined the design configurations
of optimized CC-GLDPCs. The results suggest that, for regular graphs, it is
possible to find a sparser CC-GLDPCs than the LDPC codes at the expense of
a slightly negligible loss in the performance. Furthermore, the BP optimized
CC-GLDPC is observed to have a better BP and MAP thresholds than the
turbo codes on the BEC.



Popular Science Summary

We are living in an information age where digital information is readily
available to anyone with a mobile phone or computer with an internet

connection. This has enabled us to video call each other, watch a favorite TV-
show, play a video game online with friends, shop online, etc, at any time we
want to. Slowly all functions of the society are moving to the digital network.
For example, mobiles, smart homes, offices, cars, etc, are becoming part of the
networked society.

The information in the digital network is kept somewhere on storage systems
for an on-demand access later. Due to technological advancements, the storage
capacity is increasing yearly, and so does the speed at which information can be
transmitted from one place to another. In the network, such advancements lead
to an increased amount of information processing, and consequently an increased
amount of information transmissions. The network uses radio waves, wires,
optical fibres or hard-disks to transmit information from one end to another. All
of these different physical media introduce errors to the transmitted information.
Such erroneous transmissions compromise the integrity of the digital network,
and therefore it is critical for it to reliably transmit information between two
ends at all situations.

To achieve reliable communication, every digital communication device in
the network uses a channel code to correct the errors that happen during the
information transmission. The fundamental limit of reliable communication,
theoretically achievable through channel coding, was defined by Shannon in his
landmark paper in 1948. Since 1950, many classes of channel codes have been
introduced. Among these are the turbo and LDPC codes that perform close
to the fundamental limits with moderate operational complexity. These codes
have become part of satellite, Wi-Fi, LTE and 5G communication networks.

The strength of turbo and LDPC codes stems in their ability to perform
low-complexity iterative message passing decoding, that corrects the errors in
the received data in an iterative fashion. Iterative message-passing decoders are
sub-optimal, but they have the potential to perform very close to the optimal
decoders, which are infeasible due to their high operational complexity. The
gains of long codes with sub-optimal decoding, however, come with some side-
effects.

A generalized class of turbo codes, known as the turbo-like codes (TCs), has
the potential to compensate for these side-effects leading to a degraded sub-
optimal decoding performance. On a simple erasure channel, it has been shown
that spatially coupled (SC)-TCs, that are constructed by combining several
TCs in a structured way, are capable of achieving an optimal performance with
no side-effects using sub-optimal decoders. But what about SC-TCs on more
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complicated channels such as the Gaussian channel? The research focus of this
thesis can be summarized as performance analysis of SC-TCs on a Gaussian
channel, and a unified view of TCs and LDPC codes.

Both TCs and LDPC codes belong to the class of sparse codes with graph
structures. The code graph of LDPC codes consists of a large number of weak
local decoders, whereas the code graph of TCs consists of a few more powerful
local decoders. These local decoders engage with each other in an iterative
manner to correct the errors. Except the local decoders, both TCs and LDPCs
share a common structure. However, due to the way they were represented,
both of these codes were viewed as different classes of codes. A unified view
of TCs and LDPCs based on graphical models enables us to perform one-one
comparison of both classes of codes, and develop the same techniques in their
design and analysis.
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Chapter 1

Introduction

Channel coding [1], which is also known as error control coding, is an essen-
tial block in the design of digital communication networks. A communica-

tion network consists of transmitters, receivers and channels that connect these
transmitters and receivers. A channel may introduce errors during message
transmissions, which affects the reliability of the received messages. Channel
codes are used by the networks to detect and correct the errors that occur during
message transmissions.

Error control coding adds redundancy to the information bit sequence. Due
to this redundancy, the errors that occur in the transmissions can be detected
and possibly corrected. The task of the channel code designer is to suggest
a rule that maps a set of information sequences to the codeword sequences,
which contain redundancy. In addition to the definition of a rule—or a code—a
suitable method, which recovers the information sequence from the received
codeword sequence with a highest probability, is required as well. A channel
encoder implements the rule to map the information and codeword sequences,
which are transmitted by a communication system over a channel. The errors
in the noisy received message are corrected at the receiver with the help of a
suitable decoding algorithm, which is implemented by a decoder. A repetition
code is an example of a simple channel code, which creates multiple copies of
the data. For instance, if a letter ‘A’ is to be transmitted, then the encoder of
a repetition code of length four generates the codeword ‘AAAA’, which is then
sent to the receiver. Suppose the noisy message at the receiver appears to be
‘AxAy’. Then a decoder with a simple decoding algorithm at the receiver could
decide that the message ‘A’ was transmitted based on the observation that ‘A’
has occurred twice in the received message, whereas the letters ‘x’ and ‘y’ have
occurred only once.

Shannon, in his landmark paper [2] on 1948, defined the fundamental lim-
its on the minimum amount of redundancy required for reliable communication
achievable through codes with large block lengths. However, the design of codes
that could perform close to these limits with low to moderate decoding complex-
ity was left open. Since 1950s, many strong channel codes have been introduced
to the field, which are classified into the families of block, or convolutional
codes [3]. The strength of a code is determined by its error correction and de-
tection capability, which is associated with the minimum distance of a code.
Among these strong codes are turbo codes [4], and LDPC codes [5], [6] that

3
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have modernized the field.
Turbo and LDPC codes belong to the class of codes defined by graphs [7].

These graphs consist of variable nodes (VNs), associated with the code symbols,
and constraint nodes (CNs), which generate redundancy. The VNs and CNs in a
graph are connected via a set of edges. The degrees of CNs and VNs are defined
by the number of edges these nodes are connected to. In a regular graph, each
node type has the same number of degrees, whereas in an irregular graph, the
degrees of each node type may differ. Such a graphical representation facilitates
the implementation of low-complexity iterative massage passing decoding pro-
cedures. The belief propagation (BP) decoding algorithm is commonly used to
perform an iterative message passing decoding procedure, in which the beliefs,
or the probabilities, of the code symbols are exchanged between the VNs and
CNs of a code graph in an iterative fashion. Iterative BP decoders are sub-
optimal due to the presence of cycles in the graph. For a large enough cycle
lengths, these BP decoders may perform very close to the optimal decoders,
which are infeasible due to their high operational complexity.

In the design phase of codes on graphs, an adequate code performance is of
interest in the following regions: the water-fall region, defined by a low signal-
to-noise ratio (SNR), and the error-floor region, defined by a high SNR. For a
BP decoding procedure under an asymptotic code block length, the strength of
these codes in the water-fall region is determined by computing their thresholds
via density evolution (DE) or extrinsic information chart (EXIT) [8] techniques.
A code threshold partitions the channel space into two regions: in one region,
reliable communication is possible, whereas in the other region, reliable com-
munication is not be possible. The strength of these codes in the error-floor
region is determined through their weight enumerator functions (WEF), which
provides insights into minimum distance properties of these codes with varying
block lengths. Minimum gap between the code thresholds and the fundamental
Shannon limits, as well as increasing minimum distance with an increasing block
length, are often the desirable features during the code design phase.

Both LDPC codes and turbo codes perform close to the fundamental limits
for very large block lengths. However, on medium to short block lengths, the
decoding performance of their BP decoders deteriorates. Even the maximum-a-
posterior (MAP) decoders of both families of codes exhibit error-floor at short
block lengths, in which the bit error rate (BER) performance of these codes im-
prove slowly with increasing signal-to-noise ratio (SNR). Optimizing the code
performance in one region may lead to worst performance in the other. For
example, regular LDPCs of low VNs degree have strong BP thresholds, but
relatively weaker MAP thresholds and weaker minimum distance properties.
Increasing the VNs degree degrades the BP decoding performance, but it im-
proves the MAP decoding performance and improves the minimum distance
properties. This situation leads a code designer to navigate a complicated space
of design trade-offs.

Turbo codes are parallel concatenated codes (PCC) with two component
convolutional codes (CCs), where the component CCs are separated by a per-
mutor. The design of a permutor with large enough spread is essential in having
strong minimum distance properties. A generalized class of turbo codes, known
as the turbo-like codes (TCs), were investigated by Moloudi et al. [9,10]. Com-
pared to PCCs, TCs ensembles, including serially concatenated codes (SCCs),
braided convolutional codes (BCCs) and hybrid concatenated codes (HCCs),
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were observed to have stronger MAP performance, stronger minimum distance
properties, and poor BP decoding performance. The TCs with strong MAP
performance, and strong minimum distance properties are attractive for the
spatial coupling technique, which is one of the powerful capacity-achieving code
construction technique.

Spatially coupled TCs (SC-TCs) were constructed by combining a sequence
of TCs in a structured way through several independent block permutors [9].
On a binary erasure channel (BEC), it was proven analytically and observed
numerically that the sub-optimal BP decoding performance of a SC-TC ensem-
ble achieves the MAP decoding performance of its underlying TC for very large
block lengths. In literature, this remarkable observation is known as the thresh-
old saturation [11]. It was further proved in [12] that under certain conditions on
the permutors, SC-TCs either preserve or improve on the minimum distances
of their underlying TCs. For these reasons, spatially coupled ensembles hold
a significant potential as these can be optimized for performance in both the
water-fall and the error-floor regions simultaneously.

The objective of this thesis is to investigate the thresholds of TCs (SC-TCs)
on the AWGN channel, to introduce a single convolutional permutor based de-
sign of SC-TCs instead of several independent block permutors, and to under-
stand the connection of TCs to LDPC codes. This thesis includes five papers.
In Paper I and Paper II, the time-consuming Monte-Carlo DE (MC-DE) meth-
ods are used to compute the AWGN thresholds of randomly punctured TCs,
and SC-TCs, with iterative BP decoders. An efficient alternative to predict
the AWGN thresholds of these TCs is introduced, and the predicted thresholds
are compared with the MC-DE thresholds. In Paper III, a block-wise periodic
time-varying convolutional permutor based design of SC-SCCs is introduced to
alleviate the error-floor problem of independent permutors based SC-SCCs at
short block lengths. In Paper IV and Paper V, a class of generalized LDPC
codes with convolutional code constraints, abbreviated as CC-GLDPCs, is in-
troduced. The performance of regular CC-GLDPCs in the water-fall and the
error-floor regions is investigated, and it is compared with the performance of
the corresponding LDPC code graphs. The thresholds of CC-GLDPCs are op-
timized by introducing irregularities in their graphs. BER performance of the
optimized CC-GLDPCs is compared with their iterative decoding thresholds.

1.1 Thesis Outline
This thesis is written in paper collection format and consists of two parts. The
first part provides an overview of the coding theory field in relation to the re-
search contributions of this thesis, and the second part provides the selection
of research papers as research contributions. The first part of the thesis con-
tains eight chapters. Chapter 2 explains fundamental coding concepts, and an
overview of block and convolutional codes, as well as their optimal decoding
schemes. Chapter 3 explores the idea of codes on graphs, and their iterative
decoding principles. Chapter 4 details the techniques to determine the decoding
performance of codes on graphs in the water-fall region. Chapter 5 covers the
techniques to determine the performance of codes on graphs in the error-floor
region. Chatper 6 gives a brief overview of the construction and the perfor-
mance analysis of TCs. Chapter 7 explains the concepts of spatial coupling
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with an example of SC-LDPCs, and SC-BCCs. Chapter 8 summarizes the in-
cluded papers, as well as the main conclusion of the thesis, and suggests some
future research areas.



Chapter 2

Preliminaries

In this chapter, an information theoretic view of channel coding is presented.
Furthermore, encoding and optimal decoding of linear block codes and convo-
lutional codes are discussed.

2.1 Binary Input Memoryless Channel
Model of a typical communication system is shown in Figure 2.1. Consider
a binary information source U ∈ {0, 1}. Information bits in sequence U are
encoded via the channel encoder to a binary codeword sequence C, which is
then mapped to a sequence X, X ∈ X = {+1,−1}. The mapped sequence is
next transmitted over a channel.

A channel with binary input has an input alphabet with two symbols, X ∈
{+1,−1}. The channel produces a noisy sequence Y at its output according
to some channel transition probability distribution PY |X(Y = y|X = x). The
channel output Y has an alphabet Y, which could be a finite set or a continuous
range of values. After receiving the noisy sequence Y , the channel decoder
generates the hard decision Û for the information bits.

2.1.1 Binary Erasure Channel
A binary erasure channel (BEC) is the simplest among the channels used to
study the communication system model. The BEC channel either erase the
symbol at its input with a probability of erasure ε, or let it through perfectly
with a probability 1 − ε. The channel has input alphabets X = {+1,−1},

Data
Source

Channel
Encoder Channel Channel

Decoder
Data
Sink

Figure 2.1: Communication System Model.
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Figure 2.2: Binary erasure channel with erasure probability ε.

output alphabets Y = {+1, e,−1} and probability mass functions (pmf), which
are labeled along the edges from the input to the output in Figure 2.2.

Investigations of coded systems using the BEC have their merits in terms
of mathematical simplicity and broader understanding but these are not well
suited for many real world scenarios of communication systems.

2.1.2 Binary Memoryless Symmetric Channel
Consider a discrete time channel model

Yt = Xt +Nt, (2.1)

where t is a discrete time index, Xt ∈ X , and Nt is sampled from Gaussian
distribution N (0, σ2). For this model,

P (Yt|Xt) =
1√
2πσ2

exp

(
− (Yt −Xt)

2

2σ2

)
(2.2)

is the probability density of the binary-input additive white Gaussian noise (BI-
AWGN) channel. For length N sequences X = (X1, ...XN ) and Y = (Y1, ...YN ),
the AWGN channel is memoryless when

P (Y |X) =

N∏
t=1

P (Yt|Xt), (2.3)

and symmetric when

P (Yt = y|Xt = +1) = P (Yt = −y|Xt = −1). (2.4)

In this thesis, the BI-AWGN channel is parametrized with the unit energy
per information bit, on average, versus the noise power spectral density (Eb/N0)
for the studies of considered codes.

2.2 Entropy, Mutual Information and Channel
Capacity

Channel capacity plays a fundamental role in the assessment and comparison
of the strength of various coding schemes. Channel capacity is linked to the
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entropy and mutual information. These concepts are described in the following
subsections.

2.2.1 Entropy
Entropy is the number of average bits required to describe a random variable.
It is also used as a measure to quantify the average uncertainty of a random
variable. Entropy of a discrete random variable (RV), X ∈ X , with a probability
mass function (pmf) P (x) is obtained from

H(X) = −
∑
x∈X

P (x)log(P (x)).

Entropy of a continuous RV X with a probability density function f(x) is ob-
tained from

h(X) = −
∫
S
f(x)log(f(x))dx,

here S is the support set of the RV X. Let Y be another discrete RV, then the
conditional entropy of X given Y , H(X|Y ), is defined as

H(X|Y ) = −
∑
x∈X

P (x)
∑
y∈Y

P (y|x)log(P (y|x)),

and it describes the uncertainty of X given the knowledge of Y . Similarly,
H(X,Y )—the joint entropy of X and Y —can be defined. The chain rule of
entropy is useful in the analysis of joint entropy, which is

H(X,Y ) = H(X) +H(Y |X) = H(Y ) +H(X|Y ).

2.2.2 Mutual Information
Consider two discrete RVs X and Y , the reduction in uncertainty of X given the
knowledge of Y is defined as the mutual information. The mutual information
I(X,Y ) is computed by using

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

Conditional mutual information of two RVs X and Y , given the knowledge of a
RV Z, is computed by using

I(X;Y |Z) = H(X|Z)−H(X|Y,Z).

Mutual information of continuous RVs can be computed in a similar manner as
described above.

2.2.3 Channel Capacity
Channel capacity governs the constraint under which a reliable transmission
over a noisy channel is possible. For a discrete memoryless channel (DMC) with
input and output alphabets X and Y, and a set of channel crossover probabilities
P (y|x), the channel capacity C is defined as [2, 13]

C = max
P (x)

I(X;Y ), (2.5)
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where I(X;Y ) is maximized over all the possible input probability distributions
P (x). Shannon further describes the concept of channel coding in his paper [2].
For Shannon’s channel coding theorem, basic definition of (M,N) code for the
channel (X,P (y|x), Y ) [13] is:

1. A message W is drawn from the index set {1, 2, · · · ,M}.

2. An encoding function maps the message W to a bit vector x(W ) of length
N , call the mapping as f : {1, 2, · · · ,M} → XN . The set of M codewords
{x(1),x(2), · · · ,x(M)} constructs the codebook.

3. A decoding function g : YN → {1, 2, · · · ,M} assigns an estimate of the
index to each received noisy sequence.

The code rate R for (M,N) code is defined as

R =
log2M
N

.

Shannon’s channel coding theorem defines the constraint under which reliable
communication is possible. It states that for a DMC, all rates below the capacity
C are achievable. Shannon showed the existence of capacity approaching codes
with vanishing error probability as N · R → ∞. The channel capacity for the
BEC is

CBEC = 1− ε,

and for the AWGN channel is defined as

CAWGN = −
∫ +∞

−∞
p(y) log2(p(y)dy − 0.5 log2(2πeσ

2).

2.3 Block Codes
Block codes are defined by mapping a block of information bits denoted as
u = (u1, u2, ..., uK) to a block of codeword bits denoted as v = (v1, u2, ..., uN ).
The length of the information block is K, and of the codeword is N , where
N > K. The code dimension K indicates that there are 2K distinct information
and codeword blocks. The set of all codeword blocks forms an (N,K) block code.
N−K number of redundant bits are used for the error correction and detection.
The ratio R = K/N is known as the code rate. The redundant or parity bits
are generated by using an encoder. In practice, linear block codes—which is a
sub-class of block codes—are used due to their efficient encoders realization. A
block code of length N is called a linear block code C(N,K) if and only if its set
of 2K number of codewords forms a K-dimensional subspace of the vector space
V of all N -tuples over FN

2 . The encoding of linear block codes can be described
by using the matrix multiplication as

v = uG, (2.6)

where G ∈ FK×N
2 is the generator matrix of size K×N . The matrix G contains

K linearly independent codewords which form the basis of C(N,K) subspace.
Its null (or dual) space, denoted by Cd, is obtained by

Cd = {h ∈ V : ⟨h,v⟩ = 0 for all v ∈ C} . (2.7)
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The dual space Cd can be treated as the binary (N,N − K) linear block code
and it is called the dual code of C. The generator matrix H of the dual code
Cd(N,N − K) contains N − K linearly independent basis vectors that span
the subspace Cd. H is called the parity check matrix of C, and it satisfies the
following relationship

GHT = O, (2.8)

where O is a K×(N−K) zero matrix, and the equation is known as the syndrom
condition.

Example 2.3.1. A single parity-check (SPC) code is an example of a linear
block code. An encoder of the SPC code compute one parity bit v by performing
binary addition of the bits of u. This resultant bit after the binary addition is
then appended at the end of information block to form a codeword of CSPC(K +
1,K). An example of G and H for CSPC(3, 2) is

G =

[
1 0 1
0 1 1

]
, H =

[
1 1 1

]
.

The dual space of CSPC defines a (3, 1) repetition code.

The Hamming weight wH(v) of a binary codeword v is equal to the number
of non-zero elements. The Hamming distance of two binary sequences v and
w, denoted as dH(v,w), is equal to the number of positions in which these
sequences are different. The minimum distance dmin of a linear block code C is
the smallest Hamming weight of any non-zero codeword.

Optimal maximum likelihood (ML) decoding of the received noisy sequence
r is performed by maximizing the likelihood function p(r|v) as

v̂ = argmax
v∈C

p(r|v).

An ML decoder estimates an input sequence û.

2.4 Convolutional Codes
A convolutional encoder is a finite state machine, which takes in the message bits
for encoding as a continuous stream. Let us denote by u and v the sequences
of message and codeword as

u = (u0,u1, · · · ,ut, · · · ) ,

v = (v0,v1, · · · ,vt, · · · ) ,

subscript t above denotes the time index, ut = (u
(1)
t , u

(2)
t , · · · , u(k)

t ) and vt =

(v
(1)
t , u

(2)
t , · · · , v(n)t ). For a linear block code, the blockwise encoding of message

block at time t is performed as vt = utG. A CC, on the other hand, generates a
code block vt as a linear function of several input blocks. This idea is described
as

vt = f(ut,ut−1, · · · ,ut−m).
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The value m is called the encoder memory and defines how many past messages
are considered to generate a code block at time t. The linear mapping f for a
general feed forward convolutional encoder is defined as

vt = utG0 + ut−1G1 + · · ·+ ut−mGm, (2.9)

where Gl ∈ FK×N
2 is the generator matrix for the message block ut−l for l =

0, · · · ,m. The encoding can be described in terms of matrix multiplication as

v = uG (2.10)

with

G =

G0 G1 · · · Gm

G0 G1 · · · Gm

. . . . . . . . .


Example 2.4.1. An example of a rate-1/2, m = 2 feed forward encoder is
shown in Figure 2.3. Its constituent generator matrices Gl are defined as G0 =
[11], G1 = [10] and G2 = [11].

Alternatively, these generator matrices can be viewed as a generator vector
g
(j)
i =

(
g
(j)
i,0 , g

(j)
i,1 , · · · , g

(j)
i,m

)
whose entries define the generator coefficients of the

input i and output j for i = 1, · · · ,K and j = 1, · · · , N . Following this, the
convolutional encoding can be expressed as

v(j) = u(1) ⊛ g
(j)
1 + u(2) ⊛ g

(j)
2 + · · ·+ u(K) ⊛ g

(j)
K =

K∑
i=1

u(i) ⊛ g
(j)
i (2.11)

where ⊛ is a convolution operator.
Since convolution in time-domain is multiplication in the transform domain,

it is convenient to transform the time sequence (2.11) by means of the delay
operator D(D-transform) as

v(D) = u(D)G(D). (2.12)

Input and output sequences of the convolutional encoder are

u(D) = u0 + u1(D) + u2(D
2) + · · · ,

v(D) = v0 + v1(D) + v2(D
2) + · · · ,

Figure 2.3: A rate-1/2 feed forward encoder of convolutional code.
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and the generator matrix in terms of transformed generator matrix is

G(D) = G0 +G1(D) +G2(D
2) + · · ·+Gm(Dm),

which in terms of the generator polynomials g
(j)
i (D), is described as

G(D) =


g
(1)
1 (D) · · · g

(N)
1 (D)

g
(1)
2 (D) · · · g

(N)
2 (D)

...
...

g
(1)
K (D) · · · g

(N)
K (D)

 .

In practice, each generator polynomial g(j)
i (D) is represented in octal notation.

Example 2.4.2. For the rate-1/2 encoder described in Example 2.4.1, the gen-
erator vectors can be expressed as

g
(1)
1 = (1, 1, 1), g

(2)
1 = (1, 0, 1).

In terms of delay domain, these are written as

g
(1)
1 (D) = 1 +D +D2, g

(2)
1 (D) = 1 +D2.

The generator vectors of the considered example are expressed as (7, 5) in octal
notation.

The free distance dfree of a convolutional code C is defined as

dfree = min
v,v′∈C:v ̸=v′

dH(v,v′) = min
v,v′∈C:v ̸=0

wH(v).

Similar to the dmin of block codes, dfree is the smallest of the Hamming weights
of all non-zero codewords of the convolutional code.

CCs are typically described by a state transition diagram. When this state
transition diagram is unrolled along the time t, then the trellis representation
of the convolutional code is obtained. A trellis section at each time level has 2m
number of state nodes, where each node is connected via 2K number of edges to
the nodes of next time level. In practice, terminated CCs are used by starting
and terminating the CC encoder in a zero state. At an expense of a rate loss, the
terminated CCs offer an extra protection for the last m message bits at the tail
of the trellis. The rate loss can be avoided by either puncutring some code bits
or by employing tail biting CCs. The puncturing requires careful consideration
in order to avoid a catastrophic encoder. A catastrophic encoder produces an
finite weight output for a infinite weight input. This can be avoided by using a
systematic encoder with a feedback. A systematic encoder maps message bits
directly to the code bits. For the CC considered in the example, the recursive
systematic code (RSC) encoder is obtained as

G(D) =

(
1,

1 +D2

1 +D +D2

)
which is only realizable for rational functions.
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(a) (b)

Figure 2.4: (a)Factor graph representation of Convolutional Codes (b)
Compact graph representation of Convolutional codes

2.4.1 Graph Representation of Convolutional Codes
Consider a length-N trellis of a rate k/n systematic convolutional encoder i.e.,
each trellis section contain k number of information bits and n − k number of
parity bits. The factor graph of a convolutional code is shown in Figure 2.4(a),
where each black shaded circle denote variable node corresponding to code bits,
and black shaded squares represent the code constraints. Double circles repre-
sents the hidden state variable nodes. A black colored square with its connected
state variable nodes corresponds to a code constraint of one trellis section.

A compact graph representation [9] of the factor graph of a systematic con-
volutional code is shown in Figure 2.4(b). In a compact graph, the black circle
represents a length-N sequence of information or parity bits, ui for i = 1, · · · , k
and vi for i = 1, · · · , n, respectively, for the corresponding variable node type-i.
The code constraint is represented by a black empty square, which is called a
factor node. The factor node is labeled by the length N of the trellis. We will
see in later chapters that the compact graph notation is useful in simplifying the
construction, and asymptotic analysis of codes structures that are constructed
by combining several convolutional codes.

2.5 Optimal Decoding Methods
Linear block codes and convolutional codes can be decoded in a blockwise or
bitwise fashion by employing maximum a posteriori (MAP) decoders. Suppose
a codeword sequence v of length N is perturbed by a noisy sequence e, then the
resulting received sequence r at the decoder is r = v + e. A blockwise MAP
decoder delivers at its output the estimated message sequence û according to
the rule

û = argmax
u

P (u|r) = argmax
u

p(r|u)P (u),

where P (u) are the a priori probabilities of the message sequence. Blockwise
MAP rule for CCs is implemented with the Viterbi algorithm [14]. This MAP
rule minimizes the block error probability (BLER).

A bit-wise MAP decoder delivers at its output the hard decision of the
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transmitted bit ui according to the rule

ûi = argmax
ui∈{0,1}

P (ui|r). (2.13)

This hard-decision rule minimizes the bit-error probability (BER). P (ui|r) is
the a posteriori probability (APP) of the information bit ui conditioned on
received noisy sequence r. A decoder that delivers APP at its output for all
input symbols ui ∈ u is called an APP Decoder, and it is implemented with
the rule

p(ui = x|r) =
∑

u:ui=x

p(u|r) =
∑

u:ui=x

p(r|u)p(u)
p(r)

, x ∈ {0, 1}.

In practice, the APP rule is implemented in log-domain to avoid numerical
instabilities. The log-APP decoder yields soft outputs L(ui) of the information
bits ui instead of the hard decision where,

L(ui) = log
P (ui = 0)|r
P (ui = 1)|r = log

∑
u:ui=0 p(r|u)P (u)∑
u:ui=1 p(r|u)P (u)

.

The sign of L(ul) corresponds to the hard decision, and |L(ul)| corresponds to
the reliability of the decision, where

L(ul) = log
[
P (ul = +1|r)
P (ul = −1|r)

]
. (2.14)

L(ui) is known as the log-likelihood ratios of the bit ui. The APP decoder is
implemented by the BCJR algorithm [15]. Channel LLRs of received bit over
an AWGN channel is computed by using

Lch(r) =
2

σ2
r.

An APP decoder can be converted into soft-input/soft-output (SISO) decoder
with slight changes, which is discussed in the next section.

2.6 SISO Decoders with the BCJR Algorithm
SISO decoders play a fundamental role in the performance analysis of coding
schemes studied in this thesis. In this section, we first review the basic princi-
ples of the trellis based APP decoder implementation via the BCJR algorithm.
Next, we describe the modification in the BCJR algorithm based APP decoder
resulting in a SISO decoder.

The BCJR algorithm is implemented using the code trellis. Consider a
branch connecting a state node σ′ at time t − 1, denoted by σt−1 = σ′, and a
state node σ at time t, denoted by σt = σ, in a trellis section of the code trellis.
The joint probability of a branch leaving the the state node at σt−1 = σ′ to the
node σt = σ, and a received noisy sequence r can be factorized as

p(σ′, σ, r) = p(σ′, r<t) · p(σ′, rt|σ′) · p(r>t|σ)
:= αt−1(σ

′) · γt(σ′, σ) · βt(σ),
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The BCJR algorithm uses the channel observations of the code bits, and
a priori probabilities of the information bits to compute the branch metric
γt(σ

′, σ) as

γt(σ
′, σ) = p(rt|(σ′, σ)) · P (σ|σ′) = p(rt|vt) · P (ut).

The algorithm next computes αt(σ) recursively in the forward direction for
t = 1, · · · , N − 1 via

αt(σ) =
∑
σ′

γt(σ
′, σ) · αt−1(σ

′),

and βt(σ
′) recursively in the backward direction for t = N, · · · , 2 via

βt−1(σ
′) =

∑
σ

γt(σ
′, σ) · βt(σ).

The boundary conditions used in the recursive computations assumes that the
CC encoder starts and ends in zero state. The log-APP or soft output of the
information bits is then obtained by using

L(u
(i)
t ) = log

∑
(σ′,σ):u(i)

t =0
αt−1(σ

′) · γt(σ′, σ) · βt(σ)∑
(σ′,σ):u(i)

t =1
αt−1(σ′) · γt(σ′, σ) · βt(σ)

.

A SISO decoder delivers the extrinsic information about a code bit v(i)t as its
output. In essence, the extrinsic information about a bit conveys the information
that is available solely from the structure of the code itself. A SISO decoder is
obtained by modifying the BCJR based APP decoder [16].

To get the extrinsic LLR of a code bit v(i)t , the observations, and the a priori
probabilities corresponding to the v

(i)
t are excluded during the branch metric

computations of BCJR based APP implementation method. Denote by γe
t (σ

′, σ)

the modified branch metric, then the extrinsic LLR Le(v
(i)
t ) of the code bit v(i)t

is obtained by

Le(v
(i)
t ) = log

∑
(σ′,σ):v(i)

t =0
αt−1(σ

′) · γe
t (σ

′, σ) · βt(σ)∑
(σ′,σ):v(i)

t =1
αt−1(σ′) · γe

t (σ
′, σ) · βt(σ)

.

SISO decoders are of interest as they are used as component decoders of
coding schemes constructed by combining multiple component codes.

2.7 Transfer Functions of the SISO Decoders
A decoder transfer function maps the probabilities of the messages at the input
and output of the decoder. The derivation of the transfer functions of SISO
decoders rely on the Markov chain properties of the code, and the method of
derivation is discussed extensively in [9, 17–19]. These transfer functions play
a key role in the performance analysis of codes investigated in this thesis. We
summarize the technique to derive the transfer functions of the SISO module of
the component convolutional code on the BEC as discussed in [9].
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Let pext
l be the extrinsic erasure probability of l-th code bit at the output

of the SISO decoder. The pext
l depends on the channel and a-priori erasure

probabilities of the code bits at the input of the SISO decoder, and denoted in
terms of transfer function fl as

pextl = fl(p1, p2, · · · , pn),

where the argument of fl takes both channel and a-priori erasure probabilities.
Derivation of fl for the information and code bits is performed in two steps. In
the first step, set of unique metric vectors that forward and backward recursions
of the BCJR decoder can take are identified and their steady state distributions
are determined. In the second step, the extrinsic erasure probabilities of code
bits are computed by using the steady state distributions obtained in the first
step.

The forward and backward metric vectors are defined in terms of 2m number
of trellis states (s1, s2, · · · , s2m) in a trellis section at time t as

αt = (αt(s1), · · · , αt(s2m)) ,

and
βt = (βt(s1), · · · , βt(s2m)) ,

respectively. For an all-zero transmitted codeword, the sets of vectors that αt

and βt can take are denoted as

Mα = {m(1)
α , · · · ,m(|Mα|)

α },

and
Mβ = {m(1)

β , · · · ,m(|Mβ |)
β },

respectively. The cardinalities |Mα| and |Mβ | are finite. Sequences of forward
vectors (· · · ,αt−1,αt,αt+1, · · · ), and backward vectors (· · · ,βt−1,βt,βt+1, · · · )
form Markov chains. The probability of state transitions in Markov chains is
described by the probability transition matrices Mα and Mβ . The (i, j)-th
element of these matrices corresponds to the probability of state transition
from m

(i)
α(β) to m

(j)
α(β). From these state transition matrices, the steady state

distribution vectors πα(β) of the Markov chain are obtained by solving

πα = Mα · πα, and πβ = Mβ · πβ .

Finally, the erasure probability of the extrinsic information of l-th code bit,
which corresponds to p(Ll

e,t = 1) is determined as

pext
l = fl(p1, p2, · · · , pn) = p(Ll

e,t = 1)

=

|Mα|∑
i=1

|Mβ |∑
j=1

p
(
Ll
e,t = 1|αt = m(i)

α ,βt+1 = m
(j)
β

)
· p(αt = m(i)

α )·

p(βt+1 = m
(j)
β )

= p(αt = m(i)
α ) · Tl · p(βt+1 = m

(j)
β )

where (i, j)-th element of the matrix Tl is computed from

Tl(i, j) = p
(
Ll
e,t = 1|αt = m(i)

α ,βt+1 = m
(j)
β

)
.
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SISO

(a) (b)

Figure 2.5: SISO decoder (a) input/output block diagram (b) Compact graph
representation

Example 2.7.1. Consider the rate-2/3 CC with generator matrix

G =

[
1 0 2/3
0 1 1/3

]
The input/output block diagram of SISO decoder for the trellis of this CC is
shown in Figure 2.5(a), and its compact graph representation is shown in Fig-
ure 2.5(b). The code trellis is labeled as T in the compact graph. Incoming
erasure probabilities to the SISO decoder are denoted as qk for k = 1, 2, 3, and
output erasure probabilities of the extrinsic messages are denoted as pk. The
transfer functions for the SISO decoder for each output are derived in [9]. For
an averaged erasure probability q of incoming messages, the transfer functions
of SISO decoder with inputs q1 = q2 = q3 ≜ q are represented as

pk = fk(q1, q2, q3),

where

f1 = f2 =
q(q5 − 4q4 + 6q3 − 5q2 + 2q + 1)

q6 − 4q5 + 6q4 − 6q3 + 5q2 − 2q + 1
,

and

f3 =
q2(q2 − 4q + 4)

q6 − 4q5 + 6q4 − 6q3 + 5q2 − 2q + 1
.



Chapter 3

Codes on Graphs and
Iterative Decoders

Tanner presented the idea of "codes on graphs" in [7]. He showed how capacity-
approaching codes—concatenated and LDPCs—could be viewed in a common
graphical framework consisting of variable and constraint nodes. The framework
facilitates an easy construction, and allow for generic decoding techniques of
codes on graphs.

In this chapter, the construction of codes defined by graph structures, as well
as the iterative message passing schemes for decoding them are discussed briefly.
In next chapter, the techniques to estimate the iterative decoding performance of
such codes under the asymptotic code block lengths are discussed. Improvement
in the performance analysis techniques of such codes on graphs is the focus area
of some of the contributions of this thesis.

3.1 Concatenated Codes
Concatenated codes [20] are combinations of several smaller component codes.
Concatenated codes are useful when better error correction is required as these
codes feature large block lengths. A simple concatenated code is constructed by
combining two codes CA(nA, kA) and CB(nB , kB) as follows:

1. The data sequence is first placed in a kA × kB array.

2. Rows of the array are encoded by CB , and the resulting nB − kB parity
columns are appended to the array.

3. Lastly, the columns of the array are encoded by CA to form an nA × nB

array of final codewords of the resulting concatenated code.

The resulting concatenated code above is an example of product codes, where
CA and CB are its component codes. An important characteristic of the class
of concatenated codes is that these are usually defined by the bi-partite graph
structures. The code bits and the component codes of the graph are represented
by the varible and the constraint nodes respectively. Serially concatenated codes
(SCC) [20] and parallel concatenated codes (PCC) are examples of concatenated
codes that are adopted in standards for space and cellular communication.

19



20 Overview of Research Field

3.1.1 Iterative Decoding of Concatenated Codes
For large message lengths, ML decoding of concatenated codes become compu-
tationally infeasible. Due to this reason, a sub-optimal iterative message pass-
ing decoding is used to decode the concatenated codes. In an iterative message
passing decoding scheme, a collection of low-complexity decoders—at constraint
nodes of the code graph—work in a distributed fashion on the received noisy
sequence. After the first round of decoding, the local decoders exchange the
output extrinsic messages with each other according to the code graph struc-
ture. The received extrinsic messages at the input of local constraint nodes are
permuted. The permuted extrinsic sequences are used as the a prior sequences
by the local decoders for the next round of decoding. The iterative decoding
process continues in this fashion until some stopping criteria is reached.

An important message passing procedure that works iteratively is the belief
propagation(BP) algorithm. SISO decoders are typically employed by the BP
decoding algorithm at the local constraint nodes of the graph. Iterative decoding
of concatenated codes under BP decoding is efficient than optimal ML decoding
in terms of computational complexity. However, iterative BP decoding is sub-
optimal due to the presence of cycles in the code graph. In general, ’the larger
the cycle length or girth’, the better the decoding performance before a certain
number of decoding iterations are completed.

3.2 Low-Density Parity-Check Codes
R.G. Gallager invented Low-Density Parity-Check Codes (LDPC) [5] in his PhD
thesis in 1960. Due to implementation difficulties, LDPC codes were neglected
until they were revived by Mackay [6] in 1999. LDPC codes are block codes
with a sparse parity check matrix H. Sparsity implies that H contains a very
low fraction of non-zero elements.

An H matrix with elements in a binary field defines a codeword constraint
in matrix form. Each row of H is a single parity check (SPC) equation, and
each column of H denotes a codeword bit. If the i-th codeword bit is connected
to the j-th parity equation then the (j, i)-th entry of H is 1, otherwise it is zero.
An LDPC code over a binary field with N − K parity check equations and a
codeword length of N is defined by means of a N −K ×N -sized matrix H. A
codeword vector v = {v1, . . . , vN} is a valid codeword if it satisfies the syndrom
condition vHT = 0.

The matrix H is represented graphically by means of a Tanner graph [7].
This Tanner graph is analogous to the trellis of a convolutional code as it pro-
vides a complete description of the code and helps in defining the decoding
algorithms. A Tanner graph is a bipartite graph with two types of nodes named
variable nodes and check nodes (or constraint nodes), abbreviated as VNs and
CNs respectively. VNs are associated to the codeword bits, and CNs are asso-
ciated to the constraints. VNs and CNs are connected via edges according to
the set of SPC equations in H.

A (dv, dc) regular LDPC code corresponds to an LDPC code where all SPC
equations in H include dc number of VNs, and every VN is included in dv
number of SPC equations. A parity-check matrix of a regular-LDPC code thus
contain exactly dv number of ones in each column and dc number of ones in
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each row. The parameters dv and dc of a regular LDPC code are identified
as variable node degree and check node degree respectively. The behavior of
LDPC codes can be improved by allowing CNs and VNs of different degrees in
the Tanner graph, and LDPC codes with such varying node degrees are known
as irregular LDPCs.

For an efficient description of LDPC codes, a characterization of degree
distribution of the Tanner graph from an edge perspective is defined in [21]. The
fraction of edges that connect to variable(check) nodes of degree i is equal to
λi(ρi). This fraction is treated as the probability that an edge chosen uniformly
at random from the graph is connected to a VN(CN) of degree i. The degree
distribution polynomials λ(x) and ρ(x) are defined as [21]:

λ(x) =
∑
i

λix
i−1,

and
ρ(x) =

∑
i

ρix
i−1.

As an example, degree distribution polynomials of a (2, 3)-regular code are
λ(x) = x and ρ(x) = x2. An LDPC code ensemble LDPC(n, λ(x), ρ(x)), charac-
terized by the code length n and the degree distribution polynomials, is defined
by randomly connecting the edges between the VNs and CNs of the Tanner
graph.

To obtain the design rate of LDPC(n, λ(x), ρ(x)), first the average variable
and check node degrees , denoted as lavg and ravg ,respectively, are computed [21]
from

lavg =
1∫ 1

0
λ(x)dx

,

and
ravg =

1∫ 1

0
ρ(x)dx

.

The design rate r(λ, ρ) of LDPC(n, λ(x), ρ(x)) with linearly independent
rows in H is

r(λ, ρ) = 1− lavg

ravg
= 1−

∫ 1

0
ρ(x)dx∫ 1

0
λ(x)dx

.

If H is not a full rank matrix then the actual rate of the code will be larger
than the design rate. Iterative decoding of LDPC exploits the Tanner graph
structure, and it is performed using the BP decoding algorithm.

3.2.1 Protograph LDPC Codes
The randomly constructed LDPC codes are unstructured, which leads to high
complexity in the decoding operations. To facilitate low complexity encoding
and decoding, protograph LDPC codes, a class of structured LDPC codes, were
introduced [22]. A protograph is a relatively small bi-partite graph from which
a larger Tanner graph of an LDPC code is derived by following a copy and
permute procedure. In the procedure, first the protograph is copied M times,
and then the copies of each edge in the protograph are permuted among its M
copies. The copy and permute operation is also known as lifting with a lift
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factor M . The resulting Tanner graph after the lifting operation is called the
derived graph.

Example 3.2.1. Consider the protograph as shown below. The three VNs in
this protograph are denoted by "type 1,2,3" and the two check nodes by "type
A,B". The protograph can be recognized as the Tanner graph of an LDPC code.

type 1 type 2 type 3

type A type B

Lifting above protograph with a lift factor M = 3 is obtained by first copying the
protograph 3 times, which results in

type 1 type 2 type 3

and then permuting the copies of each edge in the protograph as

type 1 type 2 type 3

In example above, the connection of a (2, 3) protograph is described in terms
of the adjacency base matrix is

B =

[
1 1 1
1 1 1

]
,

where "1" represent an edge connection between the corresponding VN and CN,
and "0" goes in for the case when there is no connection between certain VN
and CN of the protograph. The rows of B represent the CNs, and the columns
represent the VNs. The parity check matrix H of the derived graph for the
example is obtained by replacing each connection with a permutation matrix of
size M ×M as

H =


· 1 · · · 1 · 1 ·
· · 1 1 · · · · 1
1 · · · 1 · 1 · ·
· · 1 · 1 · · · 1
1 · · · · 1 · 1 ·
· 1 · 1 · · 1 · ·

 .
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Zeros in the H matrix of the derived graph have been replaced with dots for
the ease of visibility. Observe that the row and column weights of H are same
as the base graph. The selection of permutation matrices is vital in having a
derived graph with a large enough girth. In practice, the selection of optimized
permutation matrices —with an objective of maximizing the girth—is typically
performed through the Progressive Edge Growth [23] or Approximated Cycle
Extrinsic Message Degree [24] algorithms.

3.3 Generalized LDPC Codes
Generalized LDPC (GLDPC) codes are the generalization of LDPC codes. In
the Tanner graph of GLDPCs, the CNs can accommodate an arbitrary block
code, and the VNs may represent more complex codes. For simplicity, we restrict
to the generalization of CNs only and define the role of the VNs of GLDPCs in
same way as the VNs of the Tanner graph of LDPC codes. The construction
method of a GLDPC code, given a length N (dv, dc) regular LDPC code, and a
Hamming code CHam(µ, κ), is described in the following example.

Example 3.3.1. Consider a length N = 21 regular (2, 7) LDPC code, whose
parity-check matrix HL is

HL =


0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 1
1 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0
0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 1 0 0 1
0 1 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0
1 0 1 0 0 0 1 0 0 0 0 1 0 1 0 1 0 0 1 0 0

 .

We want to construct a GLDPC code with a (7, 4) Hamming code as the com-
ponent code of the (2, 7) Tanner graph of HL. The parity-check matrix HHam

of the (7, 4) Hamming code is

HHam =

1 0 1 0 0 1 1
0 1 0 1 0 1 1
0 1 1 0 1 1 0

 .

Observe that the dc of the given HL and the length of the Hamming code has to
be the same.

To get a GLDPC code, the Hamming expansion of the first row of HL is
performed by replacing dc = 7 1s in it with the columns of HHam taken in any
order. During the Hamming expansion, the zeros in the first row of HL are
replaced by an all-zero column vector of length λ = µ− κ = 3. The procedure is
repeated until the Hamming expansion of all the rows of HL is performed. An
example of one of the possible parity check matrix of the GLDPC code HG with
the Hamming code as the component code is:
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

0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0
...

...
...


.

The Hamming expansion of only the first two rows of HL is shown above. The
expansion of the remaining rows is done in a similar fashion.

The component code expansion of an irregular LDPC code can be performed
in a similar fashion. However, the component code expansion of a row in a parity
check matrix of an LDPC code can only be performed if the number of ’1’s in
the row matches the length of the desired component code. The said restriction
limits the degree of freedom in designing the GLDPCs , and therefore hinders
the exploitation of the full potential of this class of codes. The reason is that
this restriction leads to less desirable graph structures and code design rates.
For instance, in Example 3.3.1 above, we start with a regular LDPC code with a
design rate of rL = 1− 2/7 = 5/7. After the Hamming expansion, the resultant
G-LDPC code becomes irregular with a design rate of [25]

rG = 1− dv(µ− κ)

µ
=

1

7
.

3.4 Turbo Codes
Turbo codes were introduced by Berrou, Glavieux, and Thitimajshima in
1993 [4]. Turbo codes consist of the parallel concatenation of two identical
binary rate-1/2 recursive systematic convolutional (RSC) codes separated by a
permutor.

A block diagram of a standard parallel concatenated convolutional code
(PCCC) encoder is shown in Figure 3.1. A length-K message bit sequence
u and its permuted version u′, using a permutor Π, is encoded by the upper CU

and lower CL convolutional encoders with generator polynomials g2(D)/g1(D)
each. The encoding results in two parity sequences vU and vL at the encoders
outputs. The code bits are denoted by v = (u,vU ,uL).

With non-terminated encoders, the PCCC maps K message bits to 3K
code bits, resulting in a code rate of 1/3. A family of rate-compatible PC-
CCs is obtained by puncturing the parity bit sequences vU and vL. A family of
turbo codes that are adopted in LTE standards has the generator polynomails
(g2(D), g1(D)) = (15, 13), and a set of optimized permutors and puncturers as
specified in [26].

3.4.1 Compact Graph Representation of PCCC Codes
The block diagram of a PCCC encoder, Figure 3.1(a), is represented in terms
of the factor graph in Figure 3.2(b). A factor graph of a PCCC is obtained
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Figure 3.1: Encoder block diagram of PCCC.

by combining the factor graphs of its component convolutional codes through a
permutor Π, which is shown in Figure 3.2(b).

A procedure for obtaining a compact graph from the factor graph of a con-
volutional code is discussed in Section 2.4.1. By using this procedure, a factor
graph of a PCCC is described in terms of a compact graph as in Figure 3.2(c).
The compact graph has three variable nodes which represent the sequences u,
vU , and vL, and two factor or constraint nodes which represent the trellises TU

and TL. The trellises TU and TL correspond to the upper and lower encoders,
CU and CL, of PCCC respectively. The node u is connected to TL via permutor
Π, which is shown as a slanted little line. In this manner, the compact graph
notation can be obtained for codes obtained by concatenating convolutional
codes.

3.4.2 Iterative Decoding of PCCC
The block diagram of the BP decoder of a PCCC is shown in Figure 3.3(a). The
BP decoder of a PCCC consists of an upper SISO decoder, which corresponds to
CU, and a lower SISO decoder corresponding to CL. At the start of the decoding,

(a) (b) (c)

Figure 3.2: PCCC (a) Encoder Block diagram (b) Factor Graph representation
(c) Compact Graph Representation
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upper SISO decoder receives channel LLRs Lch(u), Lch(v
U ), corresponding to

the sequences u and vU , and the a prior LLRs La(u) ,corresponding to the
sequence u. After decoding, the upper decoder produces the extrinsic LLRs
Le(u), which are permuted via permutor Π. The permuted sequence La(u

′)
becomes the a prior sequence for the lower SISO decoder.

The lower SISO decoder receives the channel LLRs Lch(u
′), Lch(v

L), the
a prior LLRs La(u

′), and produces the sequence Le(u
′) after the decoding.

This completes one round of the iterative decoding. For the next iteration, the
sequence Le(u

′) through Π−1 to becomes the a prior sequence La(u) for the
upper decoder. The iterative decoding process continue in this manner until a
certain number of iterations are performed. Note that a prior sequences are
initialized to 0 before the start of the decoding.

Next, we translate the decoding process in the block diagram of the PCCC
to the compact graph of the PCCC. Let us consider that the variable nodes of
the compact graph of the PCCC receive the channel LLRs Lch(u), Lch(v

U ) and
Lch(v

L). In the first iteration, the SISO decoder at TU receives the incoming
messages Lch(u)+0 and Lch(v

U ) and produces the extrinsic LLRs Le(u) along
its edge towards the variable node u as shown in Figure 3.3(b). Similarly, the
decoding of TL is performed, after which the SISO decoder at TL produces the
extrinsic LLRs Le(u

′). At the end of desired number of iterations, the turbo
decoder outputs the APP LLRs corresponding to the message bits u by

LAPP(u) = Lch(u) + La(u) + Le(u).

The compact graph notation especially aids in simplifying the construction
and decoding of the complex combinations of convolutional coding schemes. Fur-
thermore, the compact graph unifies the concept of iterative message passing
decoding of concatenated convolutional codes and LDPCs. The topic of devel-
oping a unified perspective for LDPCs and concatenated convolutional codes is
one of the areas explored in this Ph.D. work.

SISO
Decoder

SISO
Decoder

(a) (b)

Figure 3.3: (a) BP Decoding Block diagram of a Turbo Code (b) BP Decoding
of TU in Compact Graph
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Iterative Decoding Thresholds

Iterative decoding schemes use decoding algorithms, which proceed in an iter-
ative manner on a code graph. A sub-class of iterative decoding algorithms is
a message-passing algorithm. In message-passing algorithms, nodes of the code
graph exchange messages along its edges in an iterative fashion. The message-
passing algorithms that exchange probabilities of messages along the edges of a
code graph are known as belief propagation (BP) decoding algorithms.

BP decoding of long codes exhibit a threshold effect which partitions the
channel space into two regions. In one region, the reliable communication is
possible, whereas in the other region, the reliable communication is not possi-
ble. In literature, two major techniques are used to determine the thresholds of
codes defined by the graph structures. These are known as the density evolu-
tion (DE) analysis and the extrinsic information transfer characteristics (EXIT)
chart analysis techniques respectively. This chapter reviews these threshold
analysis techniques, and their applications in determining the thresholds of
LDPC codes and concatenated convolutional codes.

4.1 Threshold Analysis Techniques
In this section, a general overview of the threshold analysis techniques of itera-
tive decoding is presented. The conditions under which these analysis techniques
operate are also stated.

4.1.1 Density Evolution
The DE analysis technique is used to determine the iterative decoding perfor-
mance of a code ensemble in the water-fall, low SNR, region. Mathematically,
the DE analysis technique is expressed by a set of DE equations derived under
the constraints of certain code ensemble properties. During the iterative BP
decoding procedure, the DE analysis tracks the evolution of messages probabili-
ties along the edges of the code graph via these DE equations. The DE analysis
yields an ensemble average performance, as it is carried out over an entire code
ensemble in the asymptotic code length.

The development of DE equations relies on following properties of code en-
sembles [21]:

27
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1. During the iterative decoding process, the extrinsic LLRs at the output
of the constituent decoders are symmetric for a symmetric channel. This
property makes the decoders independent of the transmitted codeword,
and simplifies the DE analysis by analyzing the performance of an all-zero
transmitted codeword sequence.

2. Investigation of ensemble average performance is meaningful due to the
concentration property [21, 27]. This property shows that the iterative
decoding performance of a randomly chosen code from an ensemble is
close to the ensemble average performance with a high probability.

3. An average performance a code ensemble, which uses the iterative BP
decoding procedure, becomes optimal in the asymptotic limit of a code
length. The sub-optimal performance of the iterative message passing
decoders happens due to presence of cycles in the code graph. Selection
of large enough code length during the DE results a cycle free graph for
a certain number of decoding iterations. A cycle-free graph ensures that
incoming messages to each node of the graph are statistically uncorrelated.

These properties are proven in [21] for turbo and LDPC codes. The stated
properties of a code ensemble enables us to simplify the DE analysis by studying
an all-zero transmitted codeword with a BPSK mapping. A channel introduces
errors in the transmitted sequence according to some channel crossover proba-
bility. The outcome of the DE analysis is a threshold that partition the channel
parameter space.

For the BEC, the channel parameter is the erasure probability (ε), for the
BSC, it is the cross-over probability (δ), and for the AWGN channel it is the
noise variance (σ2) of the zero mean Gaussian probability density. For the BEC,
the threshold is the maximum channel erasure probability ε, and for the AWGN
channel, the threshold is the maximum σ2, or alternatively the minimum Eb/N0,
for which the reliable communication is possible.

4.1.2 EXIT Chart Analysis
An extrinsic information transfer (EXIT) chart technique was pioneered by Ten
Brink [8]. EXIT chart technique is a single-parameter approximation of the DE
analysis technique, and it depicts the iterative BP decoding performance of the
code—in the asymptotic code block length—on a chart. The EXIT technique
tracks the evolution of mutual information of an averaged extrinsic message,
w.r.t the transmitted sequence, in an unstructured graph. An EXIT chart
shows the evolution of mutual information of each component decoder. The
EXIT function of a component decoder can be modeled as

Ie = f(Ia),

where Ia and Ie are the mutual information of the a prior and extrinsic LLRs
w.r.t. the transmitted sequence, and f(·) is the component decoder transfer
function. The curve associated with the decoder transfer function on an EXIT
chart is known as the transfer characteristics curve. Alternatively, entropy can
be displayed instead of the mutual information on an EXIT chart.

EXIT analysis is an efficient technique to study the convergence behavior of
a code ensemble. However, the EXIT technique may not suitable for estimating



Chapter 4. Iterative Decoding Thresholds 29

the thresholds with high accuracy for multi-edge type structured code ensem-
bles. This is where the DE analysis becomes advantageous over the EXIT chart
technique, and it is argued in Paper I of this thesis.

4.1.3 MAP Thresholds
The MAP thresholds εMAP of a rate-R code can be obtained by applying the
area theorem [21] on the converged erasure probability (p̄extr) of an averaged
extrinsic message during the iterative decoding. The area theorem yields MAP
thresholds by relating the p̄extr, and the code rate R as∫ 1

εMAP
p̄extr(ε)dε = R.

4.2 Decoding Thresholds of LDPCs
Let us briefly review the techniques to compute the iterative BP decoding
thresholds of LDPC codes on the BEC. The threshold analysis method for the
BEC can then be extended to the AWGN channel. The details of threshold
computation of LDPC codes on the AWGN channel in this thesis are omitted,
and can be found in [28].

4.2.1 Density Evolution of LDPCs on the BEC
Consider a (dv, dc) regular LDPC code ensemble. Denote by ej,k the edge con-
necting a VN j to the CN k, where j = 1, . . . , dv and k = 1, . . . , dc. During
the i-th iteration, let p(i)(ej,k) denote the erasure probability of the message
from CN to VN along the edge ej,k, and q(i)(ej,k) the erasure probability of the
message from VN to CN along the edge ej,k. At the start of the iterative DE
procedure, the erasure probabilities of messages along the edges in the graph
are initialized to q(0)(ej,k) = ε, and p(0)(ej,k) = 0. DE update at the k-th CN
ck is shown in Figure 4.1(a), and it is expressed as

p(i)(ej,k) = 1−
∏
j′\j

(
1− q(i−1)(ej′,k)

)
,

= 1−
(
1− q(i−1)

)dc−1

,

(4.1)

where the second step follows from the symmetry of the regular code. The
k-th CN update equation (4.1) states that the outgoing message on ej,k is erased
with probability p(i)(ej,k), if an incoming message to the k-th CN along the edge
ej′,k, where j′ ̸= j, is erased. Next, at the variable node the DE update is shown
in Figure 4.1(b), and it is expressed as

q(i)(ej,k) = ε ·
∏
j′\j

p(i)(ej′,k) = ε ·
(
p(i)
)dv−1

. (4.2)

The VN update (4.2) states that the outgoing message from the j-th VN at
the edge ej,k will only be erased, with probability q(i)(ej,k), if all incoming
messages to the j-th VN through edges ej,k′ , where k′ ̸= k, are erased. For an
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(a) (b)

Figure 4.1: DE updates of (a) Check node (b) Variable node

unstructured or single-edge type(SE-type) regular LDPC code the check node
outputs are uniformly distributed over all code symbols of the variable node.
In this case p(i)(ej,k) and q(i−1)(ej,k) are equal along all edges of the graph in
above DE equations.

By substituting (4.1) into (4.2), a one-dimensional DE recursion for a single-
edge type regular LDPC code ensemble is obtained, which is

q(i) = ε ·
(
1−

(
1− q(i−1)

)dc−1
)dv−1

. (4.3)

For a SE-type LDPC code with an arbitrary regular or irregular degree distri-
bution pair of (λ, ρ), the following DE recursion is used [21]

q(i) = ελ(1− ρ(1− q(i−1))). (4.4)

The threshold εBP is determined from the DE equations by observing the maxi-
mum ε for which the BP decoder correct all the erasures. For channel parameter
ε ≤ εBP , reliable communication is possible to achieve with a sufficiently large
number of iterations, whereas for ε > εBP reliable communication is not possi-
ble, no matter the number of iterations.

For an analysis purpose, a more formal expression of the threshold is in-
troduced in [21], which uses the fixed point characterization of the threshold
obtained from the DE recursion (4.4). A fixed point of a function f is a point
in the function domain that is mapped to itself under the mapping f . Mathe-
matically, the condition of fixed point x of f is expressed as f(x) = x. Let us
denote the DE recursion (4.4) as a function

f(ε, x) = ελ(1− ρ(1− x)). (4.5)

If (4.5) has any fixed point x in (0, ε) then the erasure probability of the extrinsic
message emitted by the VNs does not converge to zero asymptotically with the
number of iterations. On the other hand, if (4.5) has no fixed point in interval
(0, ε) then the erasure probability of the extrinsic message emitted by VNs
converges to zero. Based on this, εBP is characterized as

εBP(λ, ρ) = sup{ε ∈ [0, 1] : No fixed point of f(ε, x) for x ∈ (0, ε)}
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Figure 4.2: EXIT chart of regular (3, 6) LDPC ensemble

4.2.2 EXIT Chart Analysis of LDPC codes
For unstructured LDPCs on the BEC, the EXIT chart analysis of LDPC codes
becomes equivalent to the DE analysis. To obtain EXIT chart of an LDPC code
ensemble with degree distribution pair (λ, ρ), it is helpful to represent (4.5) as
the composition of two functions. These functions are: vε(x) that shows the
action of VNs, and c(x) that shows the actions of CNs, defined as [21]:

vε(x) = ελ(x),

and
c(x) = 1− ρ(1− x).

c(x) corresponds to the transfer characteristics curve of the CNs and v(x) to
the VNs. The function f(ε, x) in (4.5) is expressed in composition form as

f(ε, x) = vε(c(x)).

The BP decoder converges when f(ε, x) < x [21]. This condition translates to

c(x) < v−1
ε (x), x ∈ (0, 1).

This has a nice visual representation of convergence of an iterative decoder at
ε = εBP in the EXIT chart, where v−1

ε (x) just touches the c(x).

Example 4.2.1. EXIT chart of a regular (3, 6) LDPC ensemble over the BEC
is shown in Figure 4.2. The transfer curve (TC) of a CN is represented by
c(x), and the TC of a VN, represented by v−1(x), are shown for the channel
parameters ε = (0.3, 0.4294, 0.6). In the displayed chart, the curve v−1(x) in-
tersect with c(x) at ε = 0.6, meaning the iterative decoder doesn’t converge for
this channel condition. At ε = 0.4294, the v−1(x) and c(x) just touches each
other, and therefore ε∗ = 0.4294 defines the iterative decoding threshold of reg-
ular (3, 6) LDPC ensemble. For channel parameters ε <= 0.4294, the iterative
decoder converges.
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Both c(x), and vε(x) are shown to have interpretation in terms of entropy.
The entropy of an averaged extrinsic message is equal to its erasure probability.

4.2.3 MAP threshold computations
Consider the received channel observations Y through a BEC(ε), parameterized
by the erasure probability ε, for a transmitted codeword X that is selected with
probability p(x) from a length N code C. The EXIT function associated with
the j-th bit of C is

hj(ε) = H(Xj |Y\j),

If Xj is chosen with a uniform probability from {0, 1}, then H(Xj |Yj) =
εH(Xj |Yj =?) = ε. The EXIT function characterizes how entropy is trans-
ferred from input to the output. The average EXIT function is defined as

h(ε) =
1

N

N∑
j=1

hj(ε).

The EXIT function is also characterized as the erasure probability of an
extrinsic MAP decoder. Let x̂MAP

j (Y\j) denote the MAP decoder function of
the j-th bit given the channel observation Y\j , then the characterization

hj(ε) = Pr(x̂MAP
j (Y\j) =?)

is useful during the computations.
EXIT functions are connected to the code rate via the Area Theorem, which

states that

H(X|Y (δ)) = N

∫ δ

0

h(ε)dε, (4.6)

where the channel observation Y (δ) is parameterized with the channel param-
eter ε. Assuming a uniform prior on the set of codewords, and integrating the
above expression from 0 to 1,the expression in (4.6) yields the code rate.

EXIT functions connect the code performance under the BP decoder to
its performance under the MAP decoder. That enables us to compute the
MAP thresholds from the extrinsic erasure probability of the BP decoder. Let
x̂BP,l
j (Y\j) be the extrinsic estimate of j-th bit delivered by the BP decoder

during the l-th iteration. Then the BP EXIT function is defined as

hBP
j (ε) = Pr(x̂BP,l

j (Y\j) =?).

Let us consider an LDPC code ensemble with degree distribution pair (λ, ρ). For
the received channel observations Y at the BP decoder, the BP EXIT function
in parameterized form is expressed as

hBP(ε) =

{
(ε, 0) ε ∈ [0, εBP)
(ε(x), L(1− ρ(1− x)) ε ∈ (εBP, 1] ↔ x ∈ (xBP, 1],

where
ε(x) =

x

λ(1− ρ(1− x))
,
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and

L(x) =

∫ x

0
λ(z)dz∫ 1

0
λ(z)dz

. (4.7)

The area below the curve of the BP EXIT function is called the trial entropy,
and it is defined as

P (x) =

∫ x

0

L(1− ρ(1− z))ε′(z)dz.

Let xMAP be the unique positive solution of P (x) = 0, and define εMAP =
ε(xMAP), then εMAP is the MAP threshold of the given ensemble. The EXIT
function is defined as

h(ε) =

{
0 ε ∈ [0, εMAP),
hBP(ε) ε ∈ (εMAP, 1].

In this way, the design rate and the EXIT functions are related as

R(λ, ρ) =

∫ 1

εMAP

p̄extr(ε)dε =

∫ 1

εMAP

hBP(ε)dε =

∫ 1

0

h(ε)dε.

4.3 Decoding Thresholds of Turbo Codes
In this section, the techniques to compute the iterative decoding thresholds of
turbo codes on both the BEC, and the AWGN channel are discussed.

4.3.1 DE Analysis of Turbo Codes on the BEC
A compact graph representation of a turbo code allows us to perform its DE
analysis on the BEC in a similar manner as for the LDPC codes on the BEC.
A CN update of a turbo code requires the transfer functions of the component
SISO decoder. A method of deriving input/output transfer functions of the SISO
decoder of a rate-k/n convolutional code on the BEC is described in [9,19]. By
using the transfer functions of the convolutional codes, the DE equations for
the concatenated convolutional codes on the BEC were also derived in [9]. We
summarize the derivation of the DE equations presented in [9] with an example
of turbo code threshold computation for the BEC.

Consider the compact graph representation of turbo code in Figure 3.3(b).
Let p

(i)
U,s and p

(i)
U,p denote the average erasure probability of extrinsic message

from trellis TU to VNs u and vU, respectively. Similarly, p(i)L,s and p
(i)
L,p denote

the average erasure probability of extrinsic message from trellis TL to VNs u
and vL, respectively. These erasure probabilities are initialized to one before
the start of iterative decoding procedure.

During the i-th iteration, the updates at VNs u and vU along the edges
connected to TU are performed by using

q
(i)
L,s = ε · p(i−1)

L,s

q
(i)
U,p = ε.
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Similarly, the updates at VNs u and vL along the edges connected to TL are
performed by using

q
(i)
U,s = ε · p(i−1)

U,s

q
(i)
L,p = ε.

Next, update for TU within the i-th iteration is performed with

p
(i)
U,s = fU,s(q

(i)
L,s, q

(i)
U,p)

p
(i)
U,p = fU,p(q

(i)
L,s, q

(i)
U,p),

where fU,s and fU,p are the transfer functions of the SISO decoder at TU for
the systematic and parity bits, respectively. Similarly, the DE update for TL is
performed by using

p
(i)
L,s = fL,s(q

(i)
U,s, q

(i)
L,p)

p
(i)
L,p = fL,p(q

(i)
U,s, q

(i)
L,p),

where fL,s and fL,p are the transfer functions of the SISO decoder at TL for the
systematic and parity bits, respectively.

4.3.2 DE Analysis of Turbo Codes on the AWGN Channel
Monte-Carlo (MC) method is used to perform the DE analysis of turbo codes
on the AWGN channel. In the MC-DE analysis, the component SISO decoders
are simulated, and probability densities of extrinsic LLRs message sequences are
approximated. A histogram approximation method is often used to approximate
the probability densities of the simulated LLRs.

We consider Figure 3.3(b) to describe the MC-DE analysis of the turbo code
for the upper trellis, TU, during an iteration of the iterative decoding. The
MC-DE method comprises the three important steps described as follows:

1. Variable node update: Channel LLR sequence at the VN u and incoming
LLR sequence to the VN u from the lower trellis TL are combined and
transmitted to the upper decoder TU . These LLRs are sampled from their
corresponding probability distributions before combining.

2. Constraint node update: The trellis at TU receives LLRs sequences from
VNs u and vU. After decoding the received message, the SISO decoder
at TU produces extrinsic LLRs at its outputs.

3. Density estimation and sampling: The probability density of the extrinsic
message f(Le(u)) from TU is estimated. An a prior LLR sequence La is
then sampled from f(Le(u)), and shared with the variable node u. The
sequence La is used in the update of lower CN TL.

The processing of the lower trellis TL is performed in a similar manner as TU.
The decoding process continues in this manner until the turbo-decoder con-
verges.
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4.3.3 EXIT Chart Analysis of Turbo-Codes on the AWGN
Channel

The EXIT analysis of a turbo code is carried out in a similar manner as its
MC-DE analysis on the AWGN channel. The main difference is that the EXIT
analysis tracks the mutual information (MI) between the extrinsic messages and
the transmitted symbols, whereas the MC-DE tracks the probability density of
extrinsic messages during the iterative decoding. In addition to the transfer
characteristics curves, the EXIT analysis can also be used to produce a decod-
ing trajectory of an overall iterative decoder. A decoding trajectory traces a
path between the transfer characteristics curves of the individual component
decoders.

Let us review the method of computing the MI of a sequence of LLRs w.r.t
the transmitted symbols. Consider a sequence of extrinsic LLRs Le obtained
by simulating the SISO decoder during the EXIT analysis. In EXIT analysis,
the extrinsic messages (or a prior messages La = Le(Π)) are assumed to be
Gaussian with distribution N (σ2

a/2, σ
2
a) [8]. Mean and variance of this Gaussian

distribution are related due to the consistency property of LLRs. By using the
variance σ2

a, the mutual information is computed numerically by solving

I(La;X) = J(σa)

= 1−
∫

1√
2πσa

exp− (l − σ2
a/2)

2

2σ2
a

log2(1 + e−l)dl.

From the mutual information, σa is computing numerically from

σa = J−1(I(La;X)).

The transfer characteristic curve of a component decoder is obtained by
simulating the decoder for I(La;X) ∈ [0, 1], and obtained with the following
steps:

1. First σa is determined from the given I(La;X).

2. A sequence of a prior La is sampled from distribution N (σ2
a/2, σ

2
a).

3. The component decoder is simulated using the sampled La that produces
an extrinsic message sequence Le at its output.

4. MI I(Le;X) is determined by using the variance of the Le.

By viewing I(Le;X) as a function of I(La;X), we define

I(Le;X) = T (I(La;X)) (4.8)

where T (·) represents the decoding function. When component decoder is con-
nected to the channel, then I(Le;X) is viewed as a function of both I(La;X)
and Eb/N0 both, and expressed as

I(Le;X) = T (I(La;X), Eb/N0). (4.9)

In the context of turbo-codes, the transfer curves of both upper and lower
decoders are obtained by using (4.9). If these transfer curves intersect on an
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(a) Eb/N0 = 0.55dB
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(b) Eb/N0 = 0.6dB

Figure 4.3: Transfer Curves and decoding trajectories of memory 3 component
convolutional codes of rate-1/2 Turbo codes on the AWGN Channel
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Figure 4.4: Transfer curves of memory {1, 2, 3} component convolutional codes
of rate-1/2 turbo codes on the AWGN Channel

EXIT chart, then the decoding trajectory of the iterative decoder get stuck at
an intersection point. This intersection point also characterizes the fixed point
of the decoder. For an iterative decoder to converge, the transfer curves of the
component decoders must not intersect.

Example 4.3.1. Consider a rate-1/2 turbo code consisting of two identical
memory 3 component convolutional codes with generator polynomials (1, 15/13).
Rate-1/2 is achieved by puncturing the odd parity bits of sequences vU and vL.
The EXIT charts for the code on the AWGN channel are shown in Figure 4.3
for two different Eb/N0. It can be seen that at Eb/N0 = 0.55dB, the transfer
curves of both component codes intersect, shown in Figure 4.3(a), which can be
observed in the decoding trajectory as well. At Eb/N0 = 0.6dB, the iterative
decoder converges as the TCs of both component codes just touches each other
as shown in Figure 4.3(b), which is visible in the decoding trajectory as well.

Next, we investigate the effect of the component codes trellises strengths on
the convergence of the iterative decoder by changing the trellises strengths in
the rate-1/2 turbo code. Transfer characteristics of the component code trellises
of memory (1, 2, 3)—with generator polynomials (1, 1/3), (1, 5/7), (1, 15/13),
respectively—at Eb/N0 = 0.6dB are shown in Figure 4.4. Since identical com-
ponent codes are used in the overall code, it suffice to analyze the performance
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of just one component code. In this case, the convergence behavior of the iter-
ative decoder can be remarked by checking if the transfer characteristics of the
component decoder intersect with the diagonal or not. From this, we can see
that rate-1/2 turbo codes with memories (1, 2) component CCs don’t converge,
as their TCs intersect the diagonal. However, the transfer curve of the mem-
ory 3 CC barely touches the diagonal indicating the convergence of the iterative
decoder, which is consistent with the observation in Figure 4.3(b).

DE analysis may offer more advantages than the EXIT chart technique when
it comes to punctured high rate codes, and multi-edge type codes. This is argued
in Paper I of this thesis contribution.
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Chapter 5

Weight Enumerator Analysis
for Performance Bounds

Weight enumerator (WEM) analysis of a linear block code C(N,K) is the com-
putation of its weight enumerator function (WEF) that can be used to upper
bound the maximum likelihood (ML) decoding performance of C(N,K). A WEF
enumerates the number of codewords in C(N,K) according to their Hamming
weights w in a polynomial form A(W ) =

∑N
w=1 AwW

w, where Aw denotes the
number of codewords in C(N,K) with weight w.

For a ML decoder, the performance of a code depends only on its codewords
weight distribution. For the performance analysis on the AWGN channel, code
linearity and the symmetry of channel makes the error probability calculation
independent of the transmitted codeword c. This allows us to simplify the
performance analysis by studying only the all-zero transmitted codeword. Pair-
wise probability of a codeword error Pcw under the ML decoding is computed
from the union bound as

Pcw =
∑
c

P(error|c)P(c),

= P(error|0),
= P(∪ĉ̸=0 decision ĉ|0),
≤
∑
ĉ ̸=0

P(decision ĉ|0).

(5.1)

Since error probability of each codeword with weight w is the same, (5.1) can
be expressed as a function of weight-w by

Pcw ≤
N∑

w=dmin

AwPw. (5.2)

Pw denotes the probability that the ML decoder selects a codeword sequence of
weight w instead of the all-zero codeword sequence. Aw can be easily obtained
from the input-output WEF (IO-WEF) polynomial A(I,W ) of the encoder for

39
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input Hamming weight i and output Hamming weight w as

A(I,W ) =

N∑
w=1

K∑
i=1

Ai,wI
iWw. (5.3)

For the AWGN channel, Pw is obtained from

Pw = Q

(√
2wR

Eb

N0

)
(5.4)

The WEF of the (7, 4) Hamming code is provided in [1], which is

A(W ) = 7W 3 + 7W 4 +W 7. (5.5)

(5.5) shows that there are seven codewords with weight 3, another seven
codewords with weight 4, and one codeword with weight 7. Furthermore,
dmin—which is the lowest degree of the A(W ) polynomial—is 3. The IO-WEF
of (7, 4) code is

A(I,W ) = I(3W 3 +W 4) + I2(3W 3 + 3W 4) + I3(W 3 + 3W 4) + I4W 7.

It can be observed that A(W ) = A(I,W )|I=1.
WEM analysis is useful in designing codes that employ sub-optimal iterative

decoders. If a component code performs poorly in ML-decoding sense, then we
can expect it to perform poorly in iterative decoding as well. In the following,
we will briefly review the WEM analysis of convolutional, turbo and LDPC
codes.

5.1 WEM Analysis of Convolutional Codes
Consider a rate-k/n convolution code that encodes a message block of length K
and produces N = K ·n/k code bits. k and n denote the number of information
and parity bits per trellis section. Similar to block codes, the WEM analysis of
convolutional codes requires computation of Aw. In the context of convolutional
codes, Aw represents the path, with weight w, that diverges/reemerges from/to
the all-zero paths in L = K trellis sections. We refer to all such paths as the
error events. IO-WEF can be determined via some algorithm that goes through
L trellis sections, and updates Ai,w table as it go through each possible path in a
trellis section. For a systematic code, input-parity WEF (IP-WEF) is computed.
The IP-WEF is defined as

A(I, P ) =

K∑
i=1

N−K∑
p=0

Ai,pI
iP p, (5.6)

for a weight-i encoder input bits and weight-p parity bits.
In this thesis, transfer matrix method discussed in [9,21] is used to compute

the Ai,p numerically. A transfer matrix M encodes the effect of state transition
at each step. For a trellis with s number of states, M is of size s× s, and each
element of the matrix represents a monomial IiP p. The rows of M represent
the present state in the trellis, and the columns represent the state after the
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transition. For a transition from the i-th state to the j-th state in a length one
trellis, the element Mi,j of M encodes the associated weight of the input and
output. For a length-K path, The weights of all possible length-K paths, start
from the i-th state to the j-th state in the length-K trellis, are obtained from
the Mi,j-th element of the matrix MK .

It is possible to determine the WEF analytically without using the computer
algorithm. Analytical method uses the signal flow-graph technique [1] on the
state diagram of the code and produces an entire distance spectrum. However,
due to cumbersome calculations for codes with larger memories or larger block
lengths, the signal flow-graph techniques is well suited for convolutional codes
with small memories and block lengths.

5.2 Ensemble Enumerators for PCC
The ensemble of PCC is obtained by fixing its component codes and then using
K! different possible length K permutors. Both convolutional codes or block
codes can be used as sub-codes for the analysis. To explain the derivation of
ensemble enumerator we give an example of ensemble enumerator derivation for
the PCC with the (7, 4) Hamming code as its component codes.

5.2.1 PCC with Hamming code
For an averaged WEM analysis of concatenated codes, the conditional parity-
weight enumerator (C-PWE), given the information weight, is useful and it is
obtained from (5.6) as

Ai(P ) =

N−K∑
p=0

Ai,pP
p. (5.7)

C-PWE for the (7, 4) Hamming code [1] for four input weights are

A1(P ) = 3P 2 + P 3

A2(P ) = 3P + 3P 2

A3(P ) = 1 + 3P

A4(P ) = P 3

Consider a weight one input message to both TU and TL of a PCC. For the
four possible weight-1 inputs, either of the encoders produces three weight-2
parity outputs, and one weight-3 parity output, which can be checked from the
A1(P ) of the Hamming code. The parity bits at the of output of the TU and
TL of a PCC are paired to form the parity bits of the PCC for a given input
message and a Π. For a short message length, it is possible to enumerate all
the possible pair of parity bits along with their message bits. But this task
becomes increasingly difficult with an increasing message length. Therefore, an
ensemble averaged WEM analysis is recommended. In an averaged analysis,
the TL receives the permuted input message via permutor Π, which is picked
randomly with a uniform distribution from a set of all K! possible interleavers.
All of these interleavers permutes a weight-i input to

(
K
i

)
possible permutations

with the same probability. In this manner, the C-PWE APCC
1 (P ) of PCC,
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with the Hamming codes as its component codes, is computed by pairing given
terms in ATU

1 and ATL

1 with probability 1/
(
4
1

)
. For a PCC with an arbitrary

component codes, the C-PWE APCC
i (P ) is obtained as

APCC
i (P ) =

ATU

i ATL

i(
K
i

) . (5.8)

Using (5.8), the averaged bit-wise and codeword enumerators, denoted as
APCC(I, P ) and APCC(W ) respectively, are obtained from

APCC(I, P ) =

K∑
i=1

IiAPCC
i (P ),

and
APCC(W ) = APCC(I, P )|I=P=W .

5.2.2 Simplified computation of APCC(I, P )

Computation of polynomial APCC(I, P ) can be further simplified. To do this,
(5.8) and (5.6) are used in APCC(I, P ), which results in

APCC(I, P ) =

∑K
i=1 I

i
(∑N−K

p1=0 ATU

i,p1
P p1

∑N−K
p2=0 ATL

i,p2
P p2

)
(
K
i

) ,

which can be expressed in the form

APCC(I, P ) =

K∑
i=1

2(N−K)∑
p=0

ĀPCC
i,p IiP p.

Let p = p1+p2, where p = 0, 1, · · · , 2(N−K) denotes the weight of concatenated
parity bits of PCC. The coefficients ĀPCC

i,p of APCC(I, P ) are then obtained by
using the scaled convolution operation

ĀPCC
i,p =

1(
K
i

) 2(N−K)∑
p1=0

ATU

i,p1
ATL

i,p−p1
. (5.9)

5.3 Ensemble Enumerators for Finite Length
LDPC Codes

For an ensemble of random linear codes of length N and dimension K, the
averaged output WEF is expressed as

A(W ) =

N∑
w=1

K∑
i=1

ĀwW
w,

where
Āw =

(
N

w

)
2−N(1−R).
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For a regular (dv, dc) Gallager ensemble of LDPC codes [5], a parity check matrix
H consists of dv sub-matrices Hi, i = 1, · · · , dv. The first sub-matrix of Gallager
ensemble is structured, whereas the remaining sub-matrices are obtained by
randomly permuting the columns of the structured sub-matrix. The WEF of a
SPC code is defined as

ASPC(W ) =
∑

w even

(
dc
w

)
Ww,

which is used in deriving AG(W ) of the WEF of Hi in the Gallager ensemble as

AG(W ) =
(
ASPC(W )

)M
=

N∑
w=0

AG
wW

w, (5.10)

where AG
w represents the number of weight-w binary sequences x that satisfies

the syndrom condition xHT
i = 0. Note that (5.10) is same for all sub-matrices.

The probability p(w) that a weight-w random codeword sequence of length
N satisfies the syndrom condition for a given Hi is AG

w/
(
N
w

)
. By observing

the structure of Gallager ensemble, the coefficients ĀG
w of averaged WEF of a

Gallager’s ensamble is obtained by

ĀG
w =

(
N

w

)
(p(w))

dv =
(AG

w)
dv(

N
w

)dv−1
. (5.11)
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Chapter 6

Turbo-like Codes

The class of turbo codes in a broader picture can be considered as any con-
catenated arrangements of the component CCs. By following this, the PCCCs,
SCCCs and the hybrid of PCCCs and SCCCs etc can be considered as examples
of codes belonging to the class of turbo codes. Loosely speaking, there are two
important characteristics that separate the class of turbo codes from the rest
of the classes of codes: The first one is the usage of random/pseudo random
permutors in the code construction, and the second one is the implementation
of iterative decoding by following the turbo decoding principle. This princi-
ple follows the decoding method described for the iterative decoding of turbo
codes. The turbo decoding principle facilitates low complexity decoding by en-
gaging the local component decoders of the code graph independently, and then
exchanging their probabilistic beliefs of the code symbols in an iterative fashion.

Turbo-like codes (TCs) are the generalization of the class of turbo codes
in the sense that the component codes can take an arbitrary block code while
retaining the key characteristics of their parent class. In this chapter, we briefly
review the design of some examples of TCs that were considered by Moludi et
al. in [9]. We describe these TCs by means of their compact graph structures.
For details on the conventional encoder/decoder block diagrams of the examples
TCs and their connection with compact graphs, we refer the interested reader
to [9, 10].

6.1 Serially Concatenated Codes
A serial concatenation of two rate-1/2 recursive systematic convolutional (RSC)
codes, referred to as the outer and inner codes, results in SCCCs [29]. Its com-
pact graph representation is shown in Figure 6.1(a), where the outer and inner
codes are respresented by the CNs TO and T I respectively. The small rectangle
that connects TO and T I in the graph represents a multiplexer/demultiplexer.
A length-N information sequence u is first encoded by the outer encoder that
produces the parity sequence vO. The combined sequence (u,vO) from the
multiplexer is reordered via the permutor Π, which results in an intermediate
sequence ṽO of length 2N . At the last stage of encoding, the inner encoder
encodes ṽO and produces the length-2N parity sequence vI. The transmitted
length-4N codeword sequence is v = (u,vO,vI). The code rate of this concate-
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(a) (b) (c)

Figure 6.1: Compact graph representation of (a) SCCs (b) BCCs (c) HCCs

nated scheme is 1/4.

6.2 Braided Convolutional Codes
Similar to PCCCs and SCCCs, the braided convolutioanl codes (BCCs) employ
two identical RSC codes of rate-2/3 as their component codes. The major
difference is that the parity sequence of one component encoder is used as the
input of the other component encoder. By following this construction, a tail-
biting version of the BCCs is obtained. The compact graph representation of
BCCs is shown in Figure 6.1(b). Two component codes are represented by the
upper and lower CNs denoted as TU and TL, respectively. The length-N parity
sequences of the upper and lower encoders are represented by the vU and vL

respectively. The upper encoder receives a length N information sequence u
and reordered copy of parity sequence vL via permutor ΠU and produces a
parity sequence vU. Similarly, the lower encoder produces a parity sequence vL

after receiving a reordered copy of information sequence u via the permutor Π,
and a reordered copy of parity sequence vU via permutor ΠL. Similar to the
PCCCs, the transmitted codeword is v = (u,vU,vL), and the overall code rate
is 1/3. Note that the tail-biting version of the BCCs may not be well suited
for practical implementations due to the parity sequences feedback within the
same compact graph, but the code is well defined, and DE analysis can be easily
performed.

6.3 Hybrid Concatenated Codes
A Hybrid Concatenated Convolutional Code (HCCC) is obtained by serially con-
catenating a PCCC with an RSC code. The PCCC in this structure represents
the outer code, and the RSC code represents the inner code. The compact graph
representation of the HCCC is shown in Figure 6.1(c). The component codes
of the PCCCs are two identical rate-1/2 RSC codes, and the inner code is a
rate-1/2 RSC code which needs not necessarily be the same as the component
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(b)(a)

Figure 6.2: Repeat-accumulate codes (a) Encoder block diagram (b) Compact
graph representation

codes of the PCCC. The component codes trellises of the PCCC are denoted by
TU and TL, and of the inner code trellis is represented by TL in the compact
graph. The information sequence u after encoding through the PCCC results
in the parity sequences vU and vL. These parity sequences from the PCCC
are multiplexed and reordered. The resulting sequence is then encoded by the
inner encoder which results in a parity sequence vI. The transmitted length-5N
codeword sequence is v = (u,vU,vL,vI), and the code rate of this concatenated
scheme is 1/5.

6.4 Repeat-Accmulate Codes
Repeat-accumulate (RA) codes, introduced by Divsalar et al. [30], are perhaps
the simplest among the class of TCs. An interesting aspect of RA codes is that
they can be viewed as a sub-class of either LDPCs or TCs. The RA based LDPC
codes, therefore, have an advantage of easy encoding. Furthermore, these can
be seen as a step towards bridging the gap in unifying the classes of LDPCs and
TCs.

The RA code is a serial concatenation of a rate-1/q repetition code R with
an accumulator of transfer function 1/(1 +D) through a permutor Π as shown
in the block diagram in Figure 6.2(a). The compact graph representation of RA
code is shown in Figure 6.2(b), where the outer code represents the repetition
code and the inner code represents the accumulator that is implemented by a
memory one trellis. The accumulator is implemented through a simple memory
one CC with generator polynomial (1, 1/(1 + D). In the compact graph, a
length-N message sequence u is encoded by an outer repetition code encoder
that generates q-copies of each symbol in the message sequence u. The q-copies
are next combined through a multiplexer, which results in a combined codeword
sequence of length-qN . The combined sequence is reordered via the permutor
Π, and encoded by the accumulator T I, which results in a length-qN parity
sequence v. The transmitted codeword sequence is (u,v), and the overall code
rate is 1/(q + 1).



48 Overview of Research Field

6.5 Thresholds of TCs
Exact DE equations for TCs over the BEC were derived in [9] and used to
compute their BP thresholds εBP. The DE equation of PCCCs are summarized
in Section 4.3.1. The General principle of the derivation of DE equations for
SCCCs, BCCs, and HCCCs is same as for the PCCCs. The derivations of the
DE equations for the examples of TCs are provided in [9,10]. In this section, we
discuss the threshold computation of BCCs on the BEC with channel erasure
probability ε.

6.5.1 Thresholds of BCCs on the BEC
Consider the compact graph of tail-biting BCC in Figure 6.1(b). Let p

(i)
U,k and

p
(i)
L,k denote the erasure probabilities of extrinsic messages from CNs TU and TL

along their k-th connected edges, where k = 1, 2, 3 color coded edge labels are
shown in Figure 6.1(b). Each CN in the BCC compact graph implements an
identical rate-2/3 RSC CC with a generator polynomial of

G =

[
1 0 1/7
0 1 5/7

]
We first derive the DE equations of CN TU. The node TU receives following

erasure probabilities (VN updates) along its edges during the i-th iteration

q
(i)
L,1 = ε · p(i−1)

L,1 ,

q
(i)
L,2 = ε · p(i−1)

L,3 ,

q
(i)
L,3 = ε · p(i−1)

L,2 .

(6.1)

The exact DE equation as a function of the received erasure probabilities is
expressed as

p
(i)
U,k = fU,k

(
q
(i)
L,1, q

(i)
L,2, q

(i)
L,3

)
for k = 1, 2, 3, (6.2)

where fU,k denotes the transfer function of the k-th edge of SISO decoder of
rate-2/3 trellis at TU.

The DE equations of TL can be obtained by swapping the indices U and L
in (6.1) and (6.2). Both CNs TU and TL are updated in parallel during the
same iteration. After the first iteration, the updated erasure probabilities p

(i)
U,1

and p
(i)
L,1 towards the information node are received, and a-posteriori erasure

probability of u during the i-th iteration is obtained as

p(i)a = ε · p(i)U,1 · p
(i)
L,1.

6.6 Performance and Minimum Distance Bounds
of TCs

The BER performance of the TCs with component convolutional codes under
the ML decoding is upper bounded in [12] by

Pb =

N∑
i=1

N(1/R−1)∑
p=1

i

N
Ā(i,p)Q

(√
2(i+ p)R

Eb

N0

)
,
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where the averaged WEM Ā(i,p) of the corresponding TCs in terms of input i
and parity weights p are given by

ĀSCC
(i,p) =

∑
p1

ATO

(i,p1)
·ATI

(i,p−p1)(
2N
i+p1

) ,

ĀBCC
(i,p) =

∑
p1

ATU

(i,p1,p−p1)
·ATL

(i,p−p1,p1)(
N
i

)(
N
p1

)(
N

p−p1

) ,

ĀHCC
(i,p) =

∑
p1

∑
p2

ATU

(i,p1)
·ATL

(i,p2)
·ATL

(i,p1+p2,p−p1−p2)(
N
i

)(
2N

p1+p2

) .

Since TCs can be seen as a class of protograph based GLDPCs, their IP-WEF
can be equivalently computed by the method described in [31,32].

Bounds on the minimum distance of ensembles of the TCs were also given
in [12]. The derivation of the minimum distance bound in [12] assumes an
equiprobable code selection among Ω number of codes in an ensemble. The
number of codewords with weight w in an ensemble is computed as ΩĀw, where
Āw is an averaged WEM of the TC ensemble. From this, the total number of
codewords in an ensemble with weight w < d̃ for some integer d̃ is computed as

Ωw<d̃ = Ω

d̃−1∑
w=1

Āw.

An upper bound on the number of codes with minimum distance dmin ≥ d̃ in
an ensemble is computed by

Ωw≥d̃ < Ω− Ω

d̃−1∑
w=1

Āw.

Let α denote the fraction of codes with dmin ≥ d̃, then this fraction is upper
bounded by

α < 1−
d̃−1∑
w=1

Āw.

For a given α and Āw, a bound on the minimum distance of an ensemble is
obtained by solving for largest d̃ that satisfies the above equation. For a smaller
α, the resultant d̃ may result in a larger number. This corresponds to the idea
of expurgation, in which some codes with poor minimum distance properties in
an ensemble are eliminated to increase the minimum distance of the resulting
expurgated ensemble.

The ideas behind the bounds on performance and minimum distances of
TCs are extended to one of the contributions in Paper IV, where we generalize
the regular BCC graph structure to the class of GLDPC codes with connvolu-
tional code constraints, and investigate its minimum distance growth with the
increasing block length.
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Chapter 7

Spatially Coupled Codes

The spatial coupling technique [33] interconnects a sequence of codes on graphs.
Spatially coupled ensembles has attracted a lot of attention due to their excel-
lent performance under the iterative decoding. The concept of spatial coupling
goes back to the idea of LDPC convolutional codes (LDPC-CC) by Felström
and Zigangirov in 1999 [34]. In terms of spatial coupling, the LDPC-CCs can
be seen as a collection of standard LDPC code ensembles, which are connected
to each other along the spatial dimension. Lentmaier et al. in 2005 reported
a significantly improved performance of terminated LDPC-CCs [35] when com-
pared to their underlying LDPC codes. The iterative BP decoding performance
of regular LDPC-CCs was observed to perform close to its MAP decoding per-
formance in 2005 by Lentmaier et al. in [36]. Kudekar and Urbanke later
showed that this observation is due to a vary general phenomenon called the
threshold saturation via spatial coupling, which they proved in [11].

When SC-LDPC codes were gaining attention of the research community, it
was identified that the braided codes—introduced by Truhachev, Lentmaier and
Zigangirov in 2002 [37]—were also part of the class of spatially-coupled codes.
Unlike the tail-biting BCCs presented in the previous chapter, the originally
proposed braided codes are inherently spatially coupled. Braided codes are
classified into two major categories depending on their component codes. The
first one is braided block codes (BBCs) with block component codes, and second
one is braided convolutional codes (BCCs) with convolutional component codes.
BBCs with Bose-Chaudhuri-Hocqenghem (BCH) component codes are used in
high speed optical communications due to their excellent performance under the
iterative hard decision decoding [38,39].

In [40], BCCs were characterized by a regular compact graph structure, and
their performance on the BEC was investigated by means of the DE equations.
Furthermore, the existence of threshold saturation of BCCs on the BEC was
proven analytically by Moloudi, Lentmaier, and Amat in [9]. The concept of
spatial coupling of regular BCCs was generalized to irregular TCs as well in the
same work. However, the analysis of coupled and uncoupled versions of the TCs
on the AWGN channel remained, which is one of the focus area of this thesis.
In this chapter, a brief summary of the construction and analysis techniques of
related spatially coupled ensembles is presented.
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7.1 SC-LDPC Codes
We explain the construction of SC-LDPC codes with an example. Consider a
protograph of a regular (3, 6) LDPC code. The SC-LDPC code ensemble with
an underlying (3, 6) protograph LDPC code is constructed as follows:

1. We first place L copies of (3, 6) protograph in a sequence of a coupled chain,
where L denotes the coupling length, see Figure 7.1(a). Each individual
protograph in the sequence is time indexed as t = 1, · · · , L.

2. A SC-LDPC code ensemble of coupling memory m is obtained by inter-
connecting the edges of a protograph at time t in the coupled chain to its
m+ 1 protographs at indices (t, t+ 1, · · · , t+m).

The interconnection is performed by randomly selecting an edge emanating
from the VN of the protograph at time t and connecting it to the CN of any
of the m + 1 of the neighboring graphs with a uniform probability. This is
shown in Figure 7.1(b), this sort of interconnection procedure is known as edge
spreading. After assignment of edges in this fashion, CNs of the first and the
last m number of protographs at the boundaries of a coupled chain become
irregular. VNs of the graphs with irregular CNs at the boundaries are initialized
with known message bits during the encoding, and this structured irregularity is
the reason of the remarkable threshold saturation phenomenon in the spatially
coupled codes.

To determine the parity check matrix of the SC-LDPC with underlying (3, 6)
regular LDPC block code, consider the base matrix of the (3, 6) protograph

B = [3, 3].

It shows that a CN of the protograph is connected to two VNs, each via three
edges. The edge spreading of photographs in a coupled chain become equivalent
to splitting a block base matrix B of each protograph into m + 1 component
sub-matrices (B0, · · · ,Bm), such that B = B0+ · · ·+Bm. For a coupled chain
with m = 2, when edge spreading is performed in a way that the degree of all
VNs in a coupled chain is preserved, then the component sub-matrices can be
written as

B0 = B1 = B2 = [1, 1]

(a) (b)

Figure 7.1: Construction of SC-LDPC ensemble from (3, 6) protograph
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The base matrix of the corresponding SC-LDPC ensemble Bsc is expressed as

Bsc =



B0

B1 B0

... B1
. . .

Bm

...
. . . B0

Bm
. . . B1

. . .
...

Bm


,

which also serves as the parity check matrix Hsc of the corresponding terminated
SC-LDPC ensemble. Note that the edge spreading procedure described above
is equivalent to the unwrapping procedure used to obtain LDPC-CCs in [34].
By noting this connection between edge spreading and unwrapping, we have
proposed a new novel construction of SC-TCs in Paper III, which alleviates
some of the shortcomings of the blockwise design methods of SC-TCs at smaller
block lengths as observed in [41].

7.2 Spatially Coupled Turbo-Like Codes
Spatially coupled versions of turbo-like codes—BCC, SCC, PCC, and HCC—were
introduced in [9]. The general principle behind the construction of SC-TCs is
same as the SC-LDPCs. The construction techniques and DE equations of
these SC-TCs for the BEC were comprehensively covered in [9,10], therefore we
briefly revisit the construction principles of spatially coupled TCs, and give an
example of threshold computation of SC-BCC on the BEC in a computationally
efficient way. The efficient threshold computation principle is applicable for
SC-TCs on the AWGN channel as well. The threshold computation of SC-TCs
on the AWGN channel is part of this thesis work, and it is extensively covered
in Paper II of this thesis.

7.2.1 Braided Convolutional Codes
Compact graph representation of original BCCs—a memory m = 1 coupled
chain—is shown in Figure 7.2(a), along with its underlying uncoupled BCC
in Figure 7.2(b). Each individual compact graph in a BCC chain contains an
information node ut, an upper parity node vU

t , and a lower parity node vL
t ,

with upper and lower trellises denoted by TU and TL respectively. The parity
sequences vU

t−1, vL
t−1 are used by the lower and upper encoders TL and TU

of the compact graph at time t. Furthermore, these encoders also receive the
corresponding message sequences from the node ut. Together with the message
and parity sequences according to the compact graph of BCC in Figure 7.2(a),
the encoders at time t produces a code sequence vt = (ut,v

U
t ,v

L
t ). The encoding

process continues in a blockwise fashion until all the message sequences in a
coupled chain are encoded. The structured irregularity at the boundaries of the
BCC chain is introduced in a similar manner as for the SC-LDPCs.

A memory m SC-BCC can be obtained by splitting each parity sequence at
time t into m equally sized sub-sequences, and spreading these sub-sequences
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Figure 7.2: Compact graph representation of (a) m = 1 SC-BCC (b)
Uncoupled BCC

.

to compact graphs at time t + 1, · · · , t + m. The spreading is performed by
following the uniform edge spreading rule.

7.3 Threshold Computation of SC-BCCs on the
BEC

DE analysis of a SC-BCC in its core implements the same DE equations on a
BCC compact graph at time t in a chain as the tail biting or uncoupled BCC,
which are described in Section 6.5.1. A DE iteration updates the CNs TU

t and
TL

t after receiving the incoming erasure probabilities from VNs, and produces
the erasure probabilities along the edges towards the VNs. The computation
of incoming erasure probabilities to the CNs in case of SC-BCC, however, are
slightly more involved than the simple BCCs. This is due to the interconnection
of edges across the spatial positions in a chain, which the edge spreading rule
poses. Let us see how these interconnections affect the DE equations of TU

t

of a SC-BCC. The incoming erasure probabilities to the TU
t (VN updates) are

obtained from

q
(i,t)
L,1 = ε · p(i−1)

L,1

q
(i,t)
L,2 =

ε

m

m∑
j=1

p
(i−1,t−j)
L,3

q
(i,t)
L,3 =

ε

m

m∑
j=1

p
(i−1,t−j)
L,2 .

(7.1)

From the above equation, we can observe that compared to the BCC, the in-
coming erasure probabilities along each parity edge to the CN TU

t in a coupled
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chain are averaged from their corresponding de-multiplexers in the code struc-
ture. These averaged probabilities are then used during the DE update of TU

t

to obtain the output erasure probabilities as

p
(i,t)
U,k = fU,k

(
q
(i,t)
L,1 , q

(i)
L,2, q

(i,t)
L,3

)
for k = 1, 2, 3. (7.2)

DE update of TL
t is analogous to TU

t , and both CNs are processed in parallel.
After the first iteration, the updated erasure probabilities p(i,t)U,1 and p

(i,t)
L,1 towards

the information node are received, and a-posteriori erasure probility on ut at
time t and iteration i is obtained as

p(i,t)a = ε · p(i,t)U,1 · p(i,t)L,1 .
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Chapter 8

Summary and Contributions

In this chapter, main contributions and results of the included papers are sum-
marized. Furthermore, an overall conclusion of the papers, and future research
options are also discussed.

8.1 Research Contributions
In this section, we briefly present the research topics that were investigated in
this thesis, list research papers belonging to the research topics, and discuss the
contributions of each paper in relation to the topic.

8.1.1 Part 1: Thresholds of SC-TCs on the AWGN chan-
nel

In this first research topic, we have performed the performance analysis of the
TCs on the AWGN channel. To do this, we first review the techniques for
computing iterative decoding thresholds of codes on the AWGN channel via
the Monte-Carlo methods, and extend these to TCs. An efficient approach to
predict the thresholds of TCs is proposed and benchmarked against the state-
of-art threshold computation techniques and simulation results. The following
papers are published under this research topic.

Paper I: Thresholds of Braided Convolutional Codes on the AWGN
Channel

Turbo-like codes (TCs), which can be viewed as the class of GLDPCs with
the component convolutional codes, were introduced earlier by our research
group. It was concluded that the TCs optimized for MAP decoding performance
are much more attractive than the turbo codes that are optimized for the BP
performance. The conclusions, however, were primarily drawn by studying the
thresholds of the considered codes on the binary erasure channel (BEC).

The AWGN thresholds computations of TCs and their spatially coupled ver-
sions is a formidable task compare to their BEC thresholds computations. The
BEC thresholds can be determined by means of simple DE equations. The
AWGN thresholds computation relies on the MC method which requires a sig-
nificant computational effort. Furthermore, the reliability of the uncoupled and
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spatially coupled TCs thresholds estimated via the commonly used thresholds
analysis techniques is a question that requires investigation as well.

In this paper, we propose a computationally efficient approach of predicting
the AWGN thresholds of the rate-compatible randomly punctured family of
considered TCs. The prediction method is based on a simple transformation that
uses the BEC threshold of a code, and return the predicted AWGN threshold.
Accuracy of the prediction methods is determined by comparing the predicted
thresholds with the MC-DE thresholds. Different versions of MC-DE techniques
are benchmarked with each other to answer the question of reliability as well.
These versions of MC-DE differs in the types of graphs of a considered ensemble,
and the metric that is tracked during the iterative DE.

The results show that the MC-DE method that tracks individual messages
probability densities within the graph is more reliable compared to the one that
tracks the density or mutual information of an averaged message. The esti-
mated thresholds were computed by collecting the statistics until the error rate
of the extrinsic message became stabilized These statistics were used to ap-
proximate the probability density of the messages during the iterative MC-DE.
The predicted thresholds are observed to be very accurate in case of randomly
punctured spatially coupled BCCs. For high rate uncoupled BCCs obtained by
randomly puncturing the mother code, the predicted thresholds are improved
by incorporating the estimated AWGN threshold of the mother code ensemble
into the threshold prediction method.

Paper II: Threshold Computation for Spatially Coupled Turbo-Like
Codes on the AWGN Channel

The investigations in our first paper were restricted to randomly punctured
uncoupled, and memory one spatially coupled BCCs. The prediction methods
produce a fairly correct prediction of the thresholds of uncoupled BCCs, and a
close to accurate prediction of SC-BCCs. In this article paper, we answer the
question of reliability of the prediction methods for a broader range of TCs by
observing the AWGN thresholds of coupled and uncoupled SCCs, PCCs, BCCs,
and HCCs. The thresholds of the considered ensembles are obtained through
the prediction methods introduced in the first paper, and the MC-DE method
with histogram approximation of the probability density. Furthermore, we have
introduced a base matrix characterization of the compact graph representation
of the TCs. This characterization is useful in describing the structure of the
spatially coupled TCs by means of a matrix.

The results show that the predicted thresholds are close to the MC-DE
thresholds for strong spatially coupled TCs. By strong SC-TCs, we mean that
the underlying uncoupled ensembles possess a strong MAP threshold. The anal-
ysis in this paper leads to a conjecture that the similarity between the predic-
tions and the MC-DE thresholds is linked to the strength of an ensemble, and its
threshold saturation capability. Performance simulations of some spatially cou-
pled ensembles are also included. In this article, we have devoted a significant
effort in computing the thresholds of the considered ensembles, to observe the
threshold saturation phenomena, and the validation of the threshold prediction
method.
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8.1.2 Part 2: Periodic Convolutional Permutor Design for
SC-SCCs

An effect of coupling memory, block length, window size, and a number of
iterations on the performance, complexity, and latency of TCs was investigated
in [41]. SC-SCCs codes were picked to perform these investigations due to
their superior overall performance among other TCs. During the investigations,
a high error floor was observed in the BER performance of SC-SCCs at short
block lengths. This part is devoted on finding the solution to the high error-floor
problem of SC-SCCs at short block lengths. Following paper is published under
this research topic.

Paper III: Spatially-Coupled Serially Concatenated Codes with Peri-
odic Convolutional Permutors

In this paper, we have investigated the problem of high error floor at shorter
block lengths, and large coupling memories under a fixed decoding latency for
the SC-SCCs. Classical construction methods for SC-TCs focus on block-wise
design, and specifies independent permutors at each spatial position in a coupled
chain. Sizes of these independent component permutors at each spatial position
in a coupled chain is related to the message block length. Short messages length
leads to a short component permutors which may entails an overall code with a
poor minimimum distance properties. This situation can be avoided by a joint
design of the permutors, which is a formidble task.

As an alternate to a joint design, we address the stated problem by proposing
a family of blockwise periodically time-varying convolutional permutors. The
proposed convolutional permutor for an entire coupled chain is constructed by
applying an unwrapping technique to an optimized permutor of size equal to the
desired code constraint. It is shown that the convolutional permutor obtained
via unwrapping inherits the properties of its constituent permutor. In this way,
the family of block-wise spatially coupled codes of varying block lengths con-
structed via convolutional permutors share the same permutor properties. We
have used both pseudo-random and quadratic permutation polynomials permu-
tors in the derivation of convolutional permutors for the SC-SCCs. We then
bencmarked the performance of convolutional permutor based SC-SCCs with
the classical SC-SCCs via simulations. Our results show that with convolutional
permutor based SC-SCCs, it is possible to vary the component code block length
and coupling memory at a fixed decoding latency and complexity without any
noticeable performance loss.

The idea of convolutional permutor based spatially coupled ensemble con-
struction can be further extended to the remaining TCs e.g., BCCs, PCCs, and
HCCs. Furthermore, convolutional permutor based spatially coupled ensemble
construction allows the message block length to go down to a bit level. This
bit-wise spatially coupled ensemble may admits a a very large coupling mem-
ory. The investigation the bit-wise spatially coupled ensemble in the limits of
coupling memory is an open task.
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8.1.3 Part 3: Connection of TCs and LDPC codes
In the third research project, we generalize the BCCs, defined by a regular
graph to a protograph of GLDPC codes with convolutional code constraints
(CC-GLDPCs). We have first investigated thresholds and minimum distances
of regular CC-GLDPCs and compared them to the thresholds and minimum
distances of regular LDPC codes. Later, we have introduced irregularities in
the CC-GLDPCs ensembles, and determined the design parameters of BP and
MAP optimized irregular CC-GLDPCs by an exhaustive grid search using the
BEC thresholds of the family of CC-GLDPCs. Following papers are published
under this research topic.

Paper IV: Generalized LDPC Codes with Convolutional Code Con-
straints

This paper focuses on connecting the TCs with the LDPC codes. This con-
nection requires a unified code construction framework. The LDPC codes are
represented via the Tanner graphs, whereas the TCs are represented via the
compact graphs. Both Tanner and compact graphs belongs to the class of gen-
eralized LDPC (GLDPC) codes. A GLDPC code is represented via bi-partite
graph, that consists of generalized constraint nodes (CNs), and variable nodes
(VNs). An LDPC codes are obtained by using component SPC codes at the
CNs of a GLDPC graph. Similarly, TCs is obtained by using a component CCs
at the CNs of GLDPCs graph. The GLDPCs offer a unified framework to view
both TCs and LDPC codes from the same perspective.

The BCC compact graph is similar to the regular (2, 3) Tanner graph. By
generalizing the BCC compact graph, we introduce a family of regular GLDPC
bi-partite graphs. Such regular bi-partite graphs offer a unified view for both
CC-GLDPCs and LDPC codes, and allows a one-one comparison of both classes
of codes.

The design of CC-GLDPCs is convenient than the conventional block codes
based GLDPCs. In conventional GLDPCs, finding a component block code of
rate matching with the code rate of the local constraints may pose challenges.
This limitation often leads to altered graph structure, and a changed graph
rate. A rate-compatible family of component convolutional codes can be easily
matched to rates of the CNs of the GLDPC graph, thereby preserving the graph
structure. Additionally, the CC-GLDPCs have the advantage of altering the
component code strength without changing the graph rate.

In this paper, we have focused on the rate-1/3, and rate-1/2 regular CC-
GLDPCs with component code trellises of memories of (1, 2, 3). We have com-
puted the thresholds and minimum distances of the considered CC-GLDPCs,
and compared them to those of the corresponding LDPC codes. Following two
objectives were sought from this investigation: first one was to compare the per-
formance of CC-GLDPCs with a memory-1 component code trellis to that of
the corresponding LDPCs, and the second one was to identify the performance
trade-off in having a CC-GLDPC with a strong component code and smaller
variable node degree to the one with a weak component code and larger variable
node degree.

Results show that the considered CC-GLDPC graphs with a degree two vari-
able node, and a memory one component code trellis outperform their counter-
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part LDPCs in the BP decoding performance. Increasing the trellis memory
of CC-GLDPCs resulted in a strong code with an improved minimum distance
and MAP performance compared to their counterpart LDPCs, but with the de-
graded BP performance. The loss in BP performance is compensated by using
spatial coupling to these strong ensembles. These spatially coupled ensembles
were then observed to exhibit the threshold saturation phenomenon from the
numerical results. We further observed that CC-GLDPCs of degree-2 VNs and
stronger trellises excelled in terms of BP decoding and minimum distance per-
formance compared to the LDPCs with larger variable node degrees.

Paper V: Improving the Thresholds of Generalized LDPC Codes with
Convolutional Code Constraints

In the previous paper, we have investigated the regular CC-GLDPCs. General-
ization to the irregular CC-GLDPCs and their thresholds analysis remained an
open task. We expected further improvement in the performance by introducing
irregularity to the CC-GLDPCs.

In this paper, we propose a generalized framework for the design of convo-
lutional code (CC) based GLDPCs. A novel construction method of class of
CC-GLDPCs is proposed. We leverage the BP EXIT function technique from
the LDPC codes, and compute the BP and MAP thresholds of the family of CC-
GLDPCs. By using these thresholds, design configurations of CC-GLDPCs with
competitive thresholds are determined through an exhaustive grid search in the
code space. The AWGN channel thresholds computations, and the BER sim-
ulations of the BP and MAP optimized CC-GLDPCs ensembles are performed
as well.

8.2 General Conclusions
In this thesis, we have investigated the performance of TCs, and their spa-
tially coupled versions on the AWGN channel through time consuming MC-DE
methods. An efficient method to predict the AWGN thresholds of randomly
punctured TCs and their spatially coupled versions is introduced. The predic-
tion method connect the BP decoding performance of code ensembles on the
BEC channel with their BP decoding performance on the AWGN channel. For
capacity achieving SC-TCs, the predicted thresholds are observed to be very
accurate compared to their MC-DE thresholds. It was demonstrated through
simulations that the BP decoding performance of the SC-TCs on the AWGN
channel achieves capacity, when their underlying TCs are optimized for MAP
decoding performance, and these TCs possess strong minimum distance prop-
erties. The high error-floor problem at the short block lengths of the SC-TCs is
solved by introducing a periodic block-wise time-varying convolutional permu-
tor in this thesis. Lastly, a class of CC-GLDPCs is introduced, which connect
the TCs with the LDPC codes, and offer a flexible code design framework than
the conventional block codes based GLDPCs.

8.3 Future Research
Some interesting topics of future research on the SC-TCs are:
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• Asymptotic analysis of bit-wise convolutional permutor based SC-TCs

• Performance, and complexity comparison of optimized CC-GLDPCs and
optimized LDPC codes

• Performance analysis of CC-GLDPCs with optimized puncturing patterns,
and optimized graphs girth

• Performance analysis of tail-biting CCs based GLDPCs
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Thresholds of Braided Convolutional
Codes on the AWGN Channel

In this paper, we perform a threshold analysis of braided convolutional
codes on the additive white Gaussian noise (AWGN) channel. The decod-
ing thresholds are estimated by Monte-Carlo density evolution techniques
and compared with approximate thresholds from an erasure channel predic-
tion. The results show that, with spatial coupling, the predicted thresholds
are very accurate and quickly approach capacity if the coupling memory is
increased. For uncoupled ensembles with random puncturing, the predic-
tion can be improved with help of the AWGN threshold of the unpunctured
ensemble.
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M. U. Farooq, S. Moloudi and M. Lentmaier,
"Thresholds of Braided Convolutional Codes on the AWGN Channel", 2018 IEEE
International Symposium on Information Theory (ISIT), Vail, CO, USA, 2018.
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1 Introduction
Braided convolutional codes (BCCs) [1–3] are a class of spatially-coupled (SC)
turbo-like codes with regular graph structure. On the binary erasure channel
(BEC), explicit density evolution (DE) equations have been derived for BCCs
in [4], which can be used to efficiently compute exact decoding thresholds for
that channel. The results show that BCCs have superior maximum-a-posteriori
(MAP) decoding thresholds compared to parallel or serially concatenated codes
on the BEC [5]. Furthermore it has been proven analytically in [5] that threshold
saturation occurs, i.e., with spatial coupling a belief propagation (BP) decoder
can achieve the same threshold as an optimal MAP decoder.

The aim of this paper is to compute the BP thresholds of BCCs on the
additive white Gaussian noise (AWGN) channel. For this channel, exact DE
equations are not available for turbo-like codes, and Monte Carlo (MC) methods
are usually applied to estimate decoding thresholds. One of the difficulties of
such an approach is that the graphs of spatially coupled systems contain a large
number of edge types whose message densities have to be considered individually
during DE. This requires significantly larger computational efforts than classical
methods, like the single edge-type extrinsic information transfer characteristics
(EXIT) chart analysis [6].

We use Monte-Carlo density evolution (MC-DE) to estimate the thresholds
of uncoupled and coupled BCCs with and without puncturing. As an efficient
alternative, we then consider the erasure channel approximation by Chung [7] for
predicting the AWGN channel thresholds from those of the BEC and compare
the results. Finally, we demonstrate that for randomly punctured ensembles,
analogously to LDPC codes [8], the thresholds of BCCs of all higher rates can
immediately be predicted from the unpunctured thresholds of the BEC and/or
the AWGN channel. Some simulation results are also given.

2 Braided Convolutional Codes
BCCs were originally introduced in [1]. Their characteristics is that the parity
symbols of one component encoder are used as information symbols of the other
and vice versa. Due to this, both information and parity symbols are protected
by both component codes in a symmetric way. In this paper we consider an
example of BCCs of rate R = 1/3, which are defined by using two systematic
component convolutional encoders of rate Rcc = 2/3 and three permutors of
length N . The component code and the encoding method is same as used in [5].
In particular, we are using the blockwise BCCs, for which an encoder diagram
is shown in Fig. 1. The parity symbols created by one encoder at time t pass
a delay of one block, DN and a permutor before entering the other encoder at
time t+ 1 [2].

To compare BCCs with parallel or serially concatenated codes, it sometimes
can be useful to define an uncoupled equivalent of BCCs. This can be achieved
by removing the delay in the encoder depicted in Fig. 1. Since the feedback
now occurs without the delay, a straightforward encoding by means of the trellis
is not possible. But the code is still well defined by the trellis constraints that
the code symbols have to satisfy.

Turbo-like codes, like LDPC codes, can be described by factor graphs [9,10].
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Figure 1: Blockwise BCCs: turbo-like codes with parity feedback (R = 1/3).

This way of expressing a code is useful in describing the exchange of messages
in an iterative BP decoder, as well as for the corresponding DE analysis. In-
stead of a conventional factor graph, we use a compact graph representation as
introduced in [5]. The compact graph of a BCC and its uncoupled equivalent
is shown in Fig. 2. Each block of symbols is represented by a variable node
and each trellis by a factor node. A permutor is indicated by a short line that
crosses an edge in the graph.

Similar to SC-LDPC codes, a BCC code can be obtained by repeating the
graph of an uncoupled code and spreading some edges across m+1 neighboring
blocks, where m denotes the coupling memory. The original BCCs shown in
Fig. 2(a) have coupling memory m = 1.
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3 Monte Carlo Density Evolution
In order to describe the MC-DE process, let us consider the upper decoder of
the uncoupled (UC) BCC shown in Fig. 2(b). The exchange of messages with
the upper decoder is depicted in Fig. 3. Due to symmetry, the processing at
the lower decoder follows analogously. In each iteration of MC-DE, assuming
a flooding schedule, the decoding at the upper and lower decoder is performed
independently in parallel and the densities of updated output messages are
exchanged. Iterative exchange of densities continues in this fashion until the
decoding error probability converges. The key points of the MC-DE process
can be summarized in the following three major steps:

1. Variable node update: Each variable node k = 0, 1, 2 in Fig. 3(a) takes
the sequence L

(k)
ch of channel LLRs and the sequence L

(j)
ext,in of incoming

extrinsic LLRs received from output j of the connected lower trellis node
and combines them to the updated message sequence L(i)

in = L
(k)
ch +L

(j)
ext,in,

which forms the input i of the upper trellis node. All sequences are of equal
length N .

2. Trellis node update: The trellis node receives the three input sequences
from the different variable nodes corresponding to symbol blocks u, vU

and vL. The node performs decoding and produces the updated sequences
L

(i)
ext,out of extrinsic LLRs at each output i = 0, 1, 2 of the trellis node in

Fig. 3(b). Finally, these output message sequences are used to estimate
the message densities f(L

(i)
ext,out).

3. Drawing samples from message densities: In this step independent LLR
sequences L

(k)
ch , k = 0, 1, 2 and L

(j)
ext,in, j = 0, 1, 2 are created from the

channel density and the densities f(L(j)
ext,out) received from the lower trellis

node. These sequences are used in the next MC-DE iteration.

In the literature, the message densities f(L
(i)
ext,out) are often approximated

by Gaussian densities as well in MC-DE. In this case, it is not necessary to
estimate the exact f(L(i)

ext,out) in step 2. Instead, some parameter like the mean,
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Thresholds Pattern Rate
Eb/N0 (dB) 1/3 1/2 2/3

MC P1 1.003 2.408 -
GA P1 1.023 2.399 -
GA SE P1 1.050 2.708 -

MC P2 1.003 2.121 4.151
GA P2 1.018 2.128 4.062
GA SE P2 1.048 2.161 4.131

Table 1: Uncoupled BCC Thresholds

the variance or the mutual information corresponding to the LLR sequences is
computed to characterize the Gaussian density.

Table 1 shows the uncoupled BCC thresholds obtained via MC-DE with two
different puncturing methods. P2 puncturing refers to when uniform random
puncturing is applied on both information and parity bits, whereas in P1 random
puncturing is applied only on parity bits. MC refers to the threshold obtained
via the MC-DE algorithm and GA refers to the threshold when f(L

(i)
ext,out) is

approximated by a Gaussian density and L
(i)
in are drawn from it.

In determining MC and GA thresholds, the statistics along the incoming
edges to the trellis nodes are different. It means that for a code with multi
edge-types (ME), such as BCCs, the f(L

(i)
in ) densities are different along each

incoming edge. In the literature, these densities f(L
(i)
in ) are often averaged to

obtain a single density f(Lin), which then is used along all incoming edges to the
trellis nodes. This reduces the complexity of DE analysis, but the corresponding
single edge-type (SE) ensemble can have a different threshold.

In Table 1 it can be observed that the MC thresholds are closer to the GA
thresholds for low rates. Whereas, the difference in these thresholds becomes
high as the fraction of puncturing increases. With punctured bits, f(L(i)

in ) will
be a mixture of the Gaussian and erasure densities. The erasure density will be
dominant in this mixture at higher rate. Therefore we expect that the Gaussian
approximation of the densities at higher rate results in inaccuracies. Further-
more, the difference from GA SE thresholds to other thresholds is relatively
larger. The GA SE case is equivalent to the classical EXIT chart technique. In
case of ME ensembles, the MC-DE process with GA of densities f(L(i)

in ) is a gen-
eralization of the protograph LDPC EXIT analysis technique [11] to component
codes with trellis constraints.

In order to get a high accurancy of estimated thresholds via MC-DE, a
large number of trellis node output messages are collected before computing the
densities within each iteration. In our experiments, the statistics are considered
stabilized when the bit error rate (BER) as a function of the number of simulated
blocks within an iteration reaches a steady state with a difference of .0001. This
requirement of accuracy control makes MC-DE take days to compute UC-BCCs
thresholds and it takes even much longer for the SC-BCCs. The accuracy of the
MC-DE thresholds can be increased by running MC-DE for a longer time.

Life can be much easier if we can predict the thresholds on the Gaussian
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Erasure UC BCC SC BCC
Rate Pattern ϵ1SC ϵUC ECP MC ECP MC

1/3 P1 0.6609 0.5541 1.21 1.00 -0.39 -0.39
1/2 P1 0.4932 0.3013 2.71 2.40 0.27 0.25
2/3 P1 0.3257 - - - 1.15 1.12
3/4 P1 0.2411 - - - 1.74 1.70
4/5 P1 0.1915 - - - 2.16 2.12

1/3 P2 0.6609 0.5541 1.21 1.00 -0.40 -0.39
1/2 P2 0.4914 0.3312 2.33 2.12 0.30 0.29
2/3 P2 0.3219 0.1083 4.33 4.15 1.20 1.18
3/4 P2 0.2371 - - - 1.80 1.77
4/5 P2 0.1862 - - - 2.24 2.21

Table 2: Predicted vs Estimated Thresholds (Eb/N0) of BCC

channel reliably and much faster than the MC-DE does. One way would be to
use the exact DE equations as is used in [5] for BCCs over the BEC. However, the
DE equations for the BCCs on the AWGN channel are not available. Therefore,
we have to look for an alternative solution to find the thresholds of BCCs much
faster than MC-DE does.

4 Erasure Channel Prediction of AWGN Chan-
nel Thresholds

It has been observed in [7] that the thresholds of LDPC codes on the AWGN
channel can be approximated by the corresponding thresholds on the BEC. Such
an erasure channel prediction (ECP) is computationally attractive for turbo-like
code ensembles, since BEC thresholds can be computed exactly with relatively
small efforts. In this section we will apply this approach to uncoupled and cou-
pled BCC ensembles and compare the resulting thresholds with those obtained
from MC-DE.

Let CE(ε) = 1 − ε denote the capacity of a BEC with erasure probability
ε and CG(σ) denote the capacity of a binary-input AWGN channel with noise
variance σ2. Let ε∗ and σ∗ denote the DE thresholds computed on the two types
of channels for a given code ensemble. The ECP is based on the observation
that CE(ε

∗) ≈ CG(σ
∗), which suggests the approximation

σ∗ ≈ C−1
G (CE(ε

∗)) = C−1
G (1− ε∗) . (1)

Using (1), the AWGN threshold of a given ensemble can now be predicted
from the corresponding BEC threshold ε∗. Table 2 shows the resulting predicted
thresholds for UC-BCCs and SC-BCCs along with the corresponding MC-DE
thresholds. The original BEC thresholds are also given, where the values of
puncturing pattern P1 are identical to Table II of [5]. We can see from Table 2
that the ECP thresholds of SC-BCCs are quite close to the MC thresholds.
However, the difference is larger on higher rates than it is on lower rates as
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we have observed in the UC-BCCs thresholds. The ECP and MC thresholds
of the UC-BCCs have bigger difference than the SC-BCCs. Furthermore, the
ECP and the MC thresholds are much closer to each other on P2 puncturing
compared to P1 puncturing.

5 Thresholds of Randomly Punctured Ensem-
bles

Can we predict the thresholds such that the difference of the predicted and the
estimated threshold does not increase as the amount of puncturing increases?
In [8], it has been shown that for the P2 punctured LDPC codes, it is possible to
closely predict the thresholds on the AWGN channel, given just the threshold of
the unpunctured code ensemble and the design rate R. In the following, we will
apply the methods discussed in [8] to the randomly punctured BCC ensembles
and discuss the results obtained by it.

5.1 θE Predictions
Consider random puncturing with a fraction α = p/n, where p denotes the
number of punctured bits and n the total number of bits before puncturing.
For the BEC, the threshold ϵ∗(α) of the punctured ensemble is equal to

ϵ∗(α) = 1− θER(α) , (2)

where
R(α) =

R

1− α
(3)

denotes the desired rate after puncturing and

θE =
1− ϵ∗

R
(4)

and is a parameter that follows from the threshold ϵ∗ and rate R of the unpunc-
tured ensemble.

The elegance of this method is that it will provide the exact BEC thresholds
for all rates R(α), R ≤ R(α) ≤ 1/θE , based on a single parameter θE and hence
it is not required to perform DE on all different rates. However, this method is
limited to the puncturing pattern P2 only.

Once we know the BEC thresholds, we can apply the ECP method discussed
in Section 4. Equivalently, we can write

hG(σ
∗(α)) ≈ hE(ε

∗(α)) = ϵ∗(α) = 1− θER(α) , (5)

where hG(σ) = 1 − CG(σ) and hE(ε) = 1 − CE(ε) = ε denote the conditional
entropy of the AWGN channel and the BEC, respectively. From (5) we can
compute the AWGN thresholds in terms of standard deviation σ or signal-to-
noise ratio Eb/N0. The results obtained via this method for UC-BCCs are given
in Table 3.
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Thresholds Pattern Rate
Eb/N0 (dB) 1/3 1/2 2/3

MC-DE P2 1.00 2.12 4.15
θE Predicted P2 1.21 2.33 4.33
θG Predicted P2 1.00 2.05 3.79
MP (θE and θG) P2 1.00 2.19 4.19

Erasure Probability P2 0.5541 0.3312 0.1083

Table 3: Uncoupled BCC Thresholds

5.2 θG Predictions
While the θE prediction works especially well for high code rates, it can be fur-
ther improved for low rates if the unpunctured AWGN threshold σ∗ is available.
Then

hG(σ
∗(α)) ≈ 1− θGR(α) , (6)

where
θG =

1− hG(σ
∗)

R
. (7)

It can be seen in Table 3 that for the lower code rates, the MC thresholds and
the θG predictions are quite close. However, for a higher fraction of punctured
bits, the MC thresholds are closer to the θE predictions.

5.3 Mixed Predictions
To account for the higher puncturing fraction in the prediction of thresholds on
the AWGN channel, a mixed prediction (MP) method is suggested in [8], where
both θE and hG(σ

∗) are used.
The important idea behind the mixed prediction method is that all the

punctured code ensemble thresholds on the BEC, when viewed in the entropy
domain, lie on a straight line. The slope of this line is characterized by θE . It is
further demonstrated in [8] that for P2 punctured LDPC codes on the AWGN
channel the estimated entropies, corresponding to the Eb/N0 thresholds, are
observed to follow a straight line.

From the observation that at lower rate the estimated thresholds are closer
to the θG predictions and at higher rates are closer to the θE predictions, we
obtain the following mixed prediction

hG(σBP (α)) ≈
(R(α)−R) · (1− θE − hG(σ

∗))
1−R

+hG(σ
∗),

(8)

where R ≤ R(α) ≤ Rmax. Rmax is an intercept that can be obtained by set-
ting hG(σBP (α)) = 0 in (8). This straight line prediction passes through the
unpunctured rate R(0) and the associated threshold (entropy) on the AWGN
channel and R(α) = 1 and its associated threshold (entropy) on the BEC. The
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Figure 4: Entropy vs rate of UC-BCCs.

Thresholds Rate
Eb/N0 (dB) 1/3 1/2 2/3 3/4 4/5

Shannon Capacity -0.50 0.18 1.06 1.63 2.05
θE prediction -0.4585 0.2307 1.1151 1.6924 2.1166

Erasure Probability 0.6644 0.4967 0.3289 0.2450 0.1947

Table 4: BCC coupled - m = 3

results of the mixed predictions are shown in Fig. 4 for the P2 punctured UC-
BCCs ensembles. The estimated MC-DE thresholds almost follow the mixed
prediction line in this figure. However, the estimated thresholds do not strictly
lie on a straight line as was the case in [8]. The related Eb/N0 thresholds of
UC-BCCs are also given in Table 3.

It can be seen in Table 2 that for SC-BCCs, the MC-DE and predicted
thresholds are almost identical. As a result of threshold saturation, the SC-
BCCs performance is much better compared to the performance of UC-BCCs
and the gap to capacity is much smaller for SC-BCCs, which can be seen in
Fig. 5. θE and θG predictions for the punctured UC-BCCs have been made by
using θE = 1.337 and θG = 1.293 respectively. Similarly, θE predictions for the
punctured m = 1 SC-BCCs have been made by using θE = 1.017. Since the θE
predictions are very close to the MC-DE thresholds, θG and mixed predictions
are hard to distinguish from them.

Consider now a larger coupling memory m = 3. The predicted thresholds
are given in Table 4, where it can be seen that m = 3 SC-BCCs outperform
m = 1 SC-BCCs and operate very close to the Shannon limit. Again, the θE
predictions and MC-DE thresholds are very close to each other and we have
only provided the θE predictions in this table.
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Figure 5: Eb/N0 vs rate of SC and UC-BCCs.

5.4 Simulation Results
The simulated BER performance of P2 punctured m = 1 SC-BCCs on the
AWGN channel is shown in Fig. 6. The simulations are obtained with a slid-
ing window decoder [3] with window size w = 5, and 20 iterations at each
window position. We can see from Fig. 6 that for all the considered rates
R = 1/3, 1/2, 2/3 the BER curves are in accordance with their corresponding
thresholds.

6 Conclusions
In this paper, have presented MC-DE as a technique to compute the AWGN
channel thresholds of spatially-coupled turbo-like codes. Furthermore, we have
applied the threshold prediction methods presented for LDPC codes in [8] for
predicting BCC thresholds. The θE and θG predictions of the UC and SC-
BCC ensembles have been compared with the estimated thresholds obtained by
MC-DE. The results show that, with spatial coupling, the predicted thresholds
are very accurate and quickly approach capacity if the coupling memory is
increased. For uncoupled ensembles with random puncturing, the prediction can
be improved with help of the AWGN threshold of the unpunctured ensemble.
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Threshold Computation for Spatially
Coupled Turbo-Like Codes on the AWGN

Channel

In this paper, we perform a belief propagation (BP) decoding threshold
analysis of spatially coupled (SC) turbo-like codes (TCs) (SC-TCs) on the
additive white Gaussian noise (AWGN) channel. We review Monte-Carlo
density evolution (MC-DE) and efficient prediction methods, which deter-
mine the BP thresholds of SC-TCs over the AWGN channel. We demon-
strate that instead of performing time-consuming MC-DE computations,
the BP threshold of SC-TCs over the AWGN channel can be predicted
very efficiently from their binary erasure channel (BEC) thresholds. From
threshold results, we conjecture that the similarity of MC-DE and pre-
dicted thresholds is related to the threshold saturation capability as well
as capacity-approaching maximum a posteriori (MAP) performance of an
SC-TC ensemble.
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"Threshold Computation for Spatially Coupled Turbo-Like Codes on the AWGN
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1 Introduction
Turbo-like codes (TCs) [1]—such as parallel concatenated codes (PCCs) and se-
rially concatenated codes (SCCs)—and low-density parity-check (LDPC) codes
[2] are widely used in communication systems due to their excellent performance
and low-complexity decoding. In most cases, the design of these codes is based
on the optimization of the iterative belief propagation (BP) decoding threshold,
which can be performed via density evolution (DE).

The exact BP thresholds of LDPC codes over the binary erasure channel
(BEC) can be easily obtained recursively from a set of DE equations using a
scalar representation of the message densities, whereas for the AWGN channel
they can be obtained via quantized DE [3]. Alternatively, the BP threshold may
be estimated by means of extrinsic information transfer (EXIT) function anal-
ysis [4, 5], where the densities of the messages are approximated by a Gaussian
distribution. For the AWGN channel and binary transmission, the Gaussian
approximation yields thresholds close to those obtained via DE, while simplify-
ing the computation. The BP thresholds of the major TC ensembles—PCCs,
SCCs, braided convolutional codes (BCCs), and hybrid concatenated codes
(HCCs)—over the BEC were computed by Moloudi et al. in [6, 7] by using
the decoder transfer functions of the component codes that map the input and
output erasure probabilities of the message sequences. Unfortunately, the de-
coder transfer functions are not available for the AWGN channel, which hinders
the derivation of the exact DE equations. In [8], a Monte Carlo (MC)-based
DE (MC-DE) was proposed for the threshold analysis of BCCs over the AWGN
channel. The MC-DE, however, is computationally demanding compared to the
simple DE for TCs over the BEC. Moreover, MC-DE for TCs, which entails
running BCJR decoding of the component codes, is significantly harder than
the quantized DE or the EXIT chart technique for LDPC codes.

Spatial coupling [9] allows us to construct particularly powerful codes.
Thanks to the threshold saturation phenomenon, the BP decoding threshold of
a spatially coupled ensemble can achieve the maximum a posteriori (MAP) de-
coding threshold of the underlying uncoupled ensemble. Remarkably, spatially
coupled LDPC codes universally achieve capacity over the class of binary-input
memoryless symmetric channels [10]. The concept of spatial coupling was
extended to turbo-like codes in [6].

Quantized DE for SC-LDPC codes is time consuming, due to the large num-
ber of edge types in the corresponding graph. The complexity of MC-DE of
spatially coupled (SC) TCs (SC-TCs) is even higher, and hence the compu-
tation of the thresholds becomes challenging. Efficient methods that allow to
accurately predict the BP thresholds are therefore of practical interest. In [11],
the BP thresholds of randomly-punctured LDPC codes over the AWGN chan-
nel were efficiently predicted by using their corresponding BEC thresholds. The
same idea was later used in [8] to predict the thresholds of BCCs over the AWGN
channel using the BEC thresholds of BCCs [6]. The resulting thresholds for SC-
BCCs, which have a regular graph representation, are close to those obtained
using MC-DE, which can be attributed to the universality of this ensemble.

In this paper, we perform a comprehensive threshold analysis of several
classes of uncoupled and coupled TCs—PCCs, SCCs, BCCs, and HCCs—over
the AWGN channel, by discussing several efficient methods for threshold com-
putation. More concretely, we review MC-DE with Gaussian approximation
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and MC-DE where the true densities are estimated using histograms. We also
discuss the prediction of the BP thresholds using the thresholds of the corre-
sponding ensembles over the BEC. Further, we discuss the efficient computation
of the BP thresholds of punctured TCs from those of the corresponding mother
code. We show that for spatially coupled TC ensembles with strong underlying
uncoupled code, a very accurate prediction of the BP threshold over the AWGN
channel can be efficiently obtained for a large range of coding rates from the
BP threshold of the corresponding mother code ensembles over the BEC. We
conjecture that the accurate predictions can be attributed to the universality of
these code ensembles due to threshold saturation.

The rest of the paper is structured as follows. In Section 2, the construction
of uncoupled and coupled TC ensembles is described using uncoupled and cou-
pled SCCs as an example. A base matrix representation is introduced, which
is then used to define the remaining ensembles. In Section 3, MC-DE for the
computation of the BP thresholds of TCs is described in detail. In Section 4, we
discuss threshold prediction methods for randomly punctured TCs. In Section
5, we compare and discuss the thresholds computed via the different methods
for several classes of uncoupled and coupled TCs. Finally, Section 6 concludes
this work.

2 Preliminaries
We consider the TC ensembles in [6, 7] with and without coupling. In this
section, we describe these ensembles by discussing SCCs and SC-SCCs of cou-
pling memory m = 1 and refer the reader to [6] and [7] for detailed description
of other TCs. In order to efficiently describe the coupling for each of the en-
sembles, we introduce a new base matrix representation corresponding to the
compact graph representation of the ensembles in [6]. Lastly, we briefly describe
the sliding window decoder, which is used in this work to carry out the threshold
analysis.

2.1 Code Ensembles
The block diagram of a rate-1/4 SCC encoder is shown in Figure 1a. The encoder
is constructed from two recursive systematic convolutional encoders, referred to
as outer and inner encoders. The information sequence u is first encoded by
the outer encoder CO, resulting in the encoded sequence vO. The sequence
(u,vO) is reordered by a permuter Π and then encoded by the inner encoder
CI, producing the parity sequence vI. The codeword sequence v =

(
u,vO,vI

)
is

obtained at the output of the SCC encoder after following these encoding steps.
The compact graph of the SCC ensemble is shown in Figure 1b. The se-

quences u, vO and vI are represented by the black circles in the compact graph,
which are referred to as variable nodes, and the trellises corresponding to CO

and CI are represented by squares, referred to as constraint nodes. Each con-
straint node is labeled with the corresponding trellis length. The sequences u
and vO are connected to the outer constraint node TO. Similarly, the sequence
(u,vO), permuted through a permuter Π, and the sequence vI are connected
to the inner constraint node T I. The sequence (u,vO) in the compact graph is
obtained by a multiplexer, which is indicated by the rectangle. The permuter
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Π is shown as a line that crosses the edge connecting the inner constraint node
with the multiplexer.

Figure 1c shows the compact graph of the spatially coupled SCC (SC-SCC)
ensemble with coupling memory m = 1 at time t. Consider a collection of SCC
compact graphs at times t = 1, . . . , L, where L denotes the coupling length. De-
note by st the sequence (ut,v

O
t ) and by s̃t the reordered sequence, reordered by

permutation Π1. The SC-SCC ensemble is constructed by dividing the sequence
s̃t into two sub-sequences, denoted as s̃t,k for k = 0, 1, and spreading them over
times t and t+ 1. The sequence (s̃t,0, s̃t−1,1) at the input of T I

t is permuted by
permuter Π2 before producing the parity sequence vI

t . The information bits at
time t ≤ 0 are initialized to zero.
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Figure 1: (a) Encoder block diagram of SCC, (b) Compact graph
representation of SCC Encoder, (c) SC-SCC.

2.2 Representation of Spatially Coupled Turbo-Like Codes
We introduce a base-matrix representation corresponding to the compact graphs
of TC ensembles, similar to that of protograph LDPC codes. Starting with the
SCC ensemble in Figure 1, we define for each ensemble a connection matrix P ,
which is the bi-adjacency matrix of the lifted compact graph. From P , the base
matrices of the coupled and uncoupled ensembles can be identified.

The outer constraint node TO of the SCC in Figure 1b is connected to vO

and u, both representing N bits, as indicated by the label of the constraint
node. These connections are represented in the first row of a connection matrix
PSCC by the two N×N identity matrices IN . The edges from vO and u are first
merged and then connected to the inner constraint node T I, after permutation
by Π. This is represented by the matrix P2N = Π of size 2N × 2N in the
second row of PSCC. Similarly, the connections along the edge of variable node
vI—representing 2N bits—to T I is captured by the identity matrix I2N .

PSCC =

[node u vO vI

TO IN IN 0
T I P2N I2N

]
. (1)

The connection matrix representation allows to describe the ensemble in
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terms of a base matrix, analogous to the base matrix of a protograph-based
LDPC code. In the base matrix, the individual permutation matrices in the
connection matrix are replaced by a 1 and the zero matrices by a 0, resulting in

B =

[
1 ◦ 1 0
◦ 1 ◦ 1

]
.

The base matrix represents an ensemble of codes, defined by the set of possible
permutation matrices that can be used in the lifting procedure. In order to lift
the base matrix B to a particular connection matrix PSCC, each 1 is replaced by
a permutation matrix and each 0 by an all-zero matrix. Note that the matrices
have different sizes, which can be identified from the connection matrix (1). The
entries denoted by ◦ are placeholders that are required because of the merging of
two edges of width N into one edge of width 2N in the compact graph. To make
our notation consistent, in the lifting procedure we replace each ◦ in the base
matrix by an empty matrix with column dimension zero. There is a one-to-one
correspondence between the base matrix and the compact graph representation
provided that the lengths of the component encoder trellises are known.

A coupled ensemble can be obtained by partitioning B into submatrices Bi

such that B =
∑m

i=0 Bi [12]. For the ensemble in Figure 1c, we get

B0 =

[
1 ◦ 1 0
◦ 1

m+1 ◦ 1

]
, Bi>0 =

[
0 ◦ 0 0
◦ 1

m+1 ◦ 0

]
.

The fraction 1
m+1 in Bi indicates that 1

m+1 · 2N bits out of the 2N bits repre-
sented by the variable nodes of the SC-SCC graph at time t are connected with
the trellises at time t+ i in a randomized way.

Following the same procedure, the connection matrix of uncoupled BCCs
and the base matrices of SC-BCCs are obtained as

The fraction in is taken to represent that
(
1− 1

m+1

)
·2N number of variable

nodes of an SC-SCC graph at time t are connected with the trellises of the
neighboring graphs in a SC chain in a randomized way. Likewise, the connection
matrix of uncoupled BCC and sub-matrices of SC-BCC are described as

The compact graph representation and encoding method of the considered
TCs are provided in [6] and [7]. For these ensembles we provide the base matrices
as follows

PBCC =

[node u vU vL

TU IN IN P U
N

TL PN P L
N IN

]
,

B0 =

[
1 1 0
1 0 1

]
, Bi>0 =

[
0 0 1

m
0 1

m 0

]
.

and for PCCs as

PPCC =

[node u vU vL

TU IN IN 0
TL PN 0 IN

]
,

B0 =

[
1
m 1 0
1
m 0 1

]
, Bi>0 =

[
1
m 0 0
1
m 0 0

]
.

The connection matrix of the uncoupled HCC ensemble is

PHCC =


node u vU vL vI

TU IN IN 0 0
TL PN 0 IN 0
T I 0 P I

2N I2N

.
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In [7], two spatially coupled ensembles of HCCs, referred to as Type-I SC-
HCCs and Type-II SC-HCCs, were introduced. For Type-I, the base matrices
are

B0 =

1 1 ◦ 0 0
1 0 ◦ 1 0
0 ◦ 1

m+1 ◦ 1

 , Bi>0 =

0 0 ◦ 0 0
0 0 ◦ 0 0
0 ◦ 1

m+1 ◦ 0

 ,

whereas for Type-II are obtained as

B0 =

 1
m+1 1 ◦ 0 0
1

m+1 0 ◦ 1 0

0 ◦ 1
m+1 ◦ 1

 , Bi>0 =

 1
m+1 0 ◦ 0 0
1

m+1 0 ◦ 0 0

0 ◦ 1
m+1 ◦ 0

 .

Throughout this paper we consider convolutional encoders with four-state
trellises in all threshold computations and finite length simulations. In particu-
lar, rate-2/3 encoders with generator matrix

G =

[
1 0 1/7
0 1 5/7

]
are used for BCCs and rate-1/2 encoders with generator matrix G = [1 5/7] are
used for all other ensembles.

2.3 Sliding Window Decoding
In this work, for the threshold analysis we assume SC-TCs of coupling length
L = ∞ and coupling memory m = 1 under sliding window decoding with on-
demand symbol node updating schedule [9] of window size W . In this schedule,
the constraint nodes within the window are updated sequentially by receiving
the most recent updated messages from the neighboring nodes. Note that a
larger window size is required for the computation of the thresholds of coupled
ensembles with larger m, as the window size needs to be large enough so that
the decoding wave is formed. All our threshold computations are carried out by
considering W = 20, which is observed to be enough for a reliable estimate of the
decoding thresholds for the considered ensembles with m = {1, 3}, yet allowing
an efficient computation. In our finite length simulations we use W = 8.

3 Threshold Computation via Monte Carlo Den-
sity Evolution

The BP thresholds can be computed by performing DE. For codes for which
the transfer functions of the component codes are not available, MC-DE can
be used. In this section, we describe two MC-DE methods and discuss their
advantages and shortcomings. The described MC-DE methods are computa-
tionally demanding. We hence also discuss an efficient method that provides
an approximation of the BP threshold, and compare the thresholds obtained
applying the three approaches for uncoupled SCCs.
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3.1 Monte-Carlo Density Evolution
MC-DE comprises three key steps [8], which are performed a number of itera-
tions:

1. Variable node update: A variable node generates a sequence of ex-
trinsic log-likelihood ratios (LLRs) by properly combining the sequence
of Gaussian-distributed channel LLRs and the sequences of extrinsic
LLRs—generated according an appropriate distribution—received from
the neighboring constraint nodes. In particular, the output LLRs are
obtained as the sum of the channel LLR and the LLRs from neighboring
constraint nodes.

2. Constraint node update: A constraint node performs BCJR decoding on
the sequences of extrinsic LLRs—used as a-priori information—received
from the neighboring variable nodes. The BCJR decoder generates se-
quences of extrinsic LLRs that are passed to the corresponding neighbor-
ing variable nodes.

3. Density estimation and re-sampling: A sequence of channel LLRs, Lch,
and the sequences of extrinsic LLRs, Lext (one for each code sequence), are
created from the corresponding probability densities f(Lch) and f(Lext).
These sequences are used in the next MC-DE iteration.

MC-DE tracks the evolution of f(Lext) through the iterative decoding pro-
cess.

3.2 Monte-Carlo Density Evolution with Gaussian Ap-
proximation

In MC-DE with Gaussian approximation (MC-DE-GA), the densities f(Lext)
are approximated by a Gaussian distribution, which can be characterized by its
mean mG and standard deviation σ. Since the extrinsic LLRs are symmetric
and consistent, the Gaussian distribution is completely characterized by the
single parameter σ, which is related to the mean mG as

mG =
σ2

2
. (2)

The standard deviation σ is computed from the mutual information IE be-
tween an extrinsic LLR sequence Lext and the corresponding binary code se-
quence [4, 5],

σ = C−1
G (IE) . (3)

Here CG(σ) denotes the AWGN channel capacity for a given channel parameter
σ, which can be computed efficiently using the following series expansion [13,
Chapter 4]:

CG(σ) = 1 +
1

ln 2
·((

2

σ2
− 1

)
Q

(
1

σ

)
−
√

2

πσ2
e−

1
2σ2 +

∞∑
i=1

(−1)i

i(i+ 1)
e

2i(i+1)

σ2 Q

(
1 + 2i

σ

))
(4)
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with Q(x) = 1√
2π

∫∞
x

e−
y2

2 dy. The mutual information IE is computed from
[5]

IE ≈ 1− 1

N ′

N ′∑
n=1

log2(1 + e−Lext,n) , (5)

where Lext,n, n = 1, . . . , N ′, are the elements of Lext.
Note that MC-DE-GA is equivalent to an EXIT function analysis. While a

threshold computation via the Gaussian assumption becomes highly efficient for
LDPC codes, MC-DE-GA has only a minor computational advantage for TCs.
Furthermore, for several ensembles, in particular multi-edge type ensembles such
as BCCs, SCCs, HCCs, and SC-TCs, the true distributions of the messages may
significantly deviate from a Gaussian distribution, leading to inexact decoding
thresholds.

3.3 MC-DE with Histogram
A more accurate BP threshold can be obtained by estimating the true densities,
which can be performed by means of histograms. We refer to this method as
MC-DE-H, which we describe in detail in the following. For ease of notation,
let L be the random variable corresponding to an extrinsic LLR. From the
consistency property of the LLRs, we have that fL(l) = el · fL(−l) [5]. The
consistency and symmetry properties of L allow us to determine fL(l) from the
distribution of |L| from [13]

fL(l) = I{l≥0}
1

1 + e−l
f|L|(l) + I{l≤0}

el

1 + el
f|L|(−l) . (6)

Taking advantage of this symmetry drastically improves the speed of converge
of this method.

Without loss of generality, we consider the transmission of the all-zero code-
word and approximate the density fL(l) in (6) with a histogram of M bins and
obtain an approximated probability mass function P̂ (l) (For the threshold cal-
culations within this paper we use a fixed number of M = 2001 bins, divided
uniformly between −Lmax and +Lmax, where Lmax = maxn |Ln| denotes the
maximum magnitude among the elements Ln of the measured sequence. An
odd value of M is recommended to represent erasures accurately. The length of
the sequence is chosen adaptively to achieve a desired accuracy). The bit error
rate (BER) can be computed from P̂ (l) as

BER ≈
∑
{l<0}

P̂ (l) . (7)

We denote by f̂L(l) the approximation of fL(l). A sequence of extrinsic LLRs
distributed according to f̂L(l) can be obtained from P̂ (l) by using the probability
integral transform. The probability integral transform method states that for
a uniformly distributed random variable U ∈ [0, 1], and a strictly increasing
cumulative distribution function F̂L(l), we have U = F̂L(l) ≈ P̂ (L ≤ l). Samples
are generated from F̂L(l) by applying the inversion F̂−1

L (U).
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3.4 Erasure Channel Prediction
Since MC-DE is time consuming, we are interested in exploring some faster
alternatives to predict the BP thresholds of TCs over the AWGN channel. In [3],
the erasure channel prediction (ECP) method was proposed to efficiently predict
BP thresholds of codes over the AWGN channel from their corresponding BEC
thresholds ϵ∗. For a given code, the AWGN channel BP threshold σ∗ can be
obtained from the corresponding ϵ∗ as

σ∗ ≈ C−1
G (CE(ε

∗)) = C−1
G (1− ε∗) . (8)

where CE(ϵ
∗) = 1− ϵ∗ is the capacity of the BEC.

3.5 Discussion
In Table 1 we give the BP thresholds of the uncoupled SCCs computed via
MC-DE-GA, MC-DE-H, and ECP, for several code rates. We observe that both
MC-DE-GA and MC-DE-H yield similar thresholds. However, we remark that
the computational complexity of MC-DE-GA and MC-DE-H is similar, as it
is primarily dominated by that of the BCJR decoder. Hence, one may resort
to MC-DE-H, which does not rely on a Gaussian assumption and gives a more
accurate estimation of the threshold provided that the quantization resolution
is chosen sufficiently high. The thresholds predicted by the ECP method differ
noticeably from those predicted by the MC-DE methods.

Thresholds Rate
Eb/N0 (dB) 1/4 1/3 1/2 2/3

MC-DE-GA 0.11 0.50 1.46 2.95
MC-DE-H 0.12 0.51 1.50 3.05
ECP 0.37 0.76 1.74 3.25

Table 1: BP thresholds of uncoupled serially concatenated codes (SCCs)
obtained by Monte-Carlo density evolution with Gaussian approximation

(MC-DE-GA), Monte-Carlo density evolution with histogram (MC-DE-H),
and erasure channel prediction (ECP).

4 Efficient AWGN Channel Threshold Predic-
tions of Randomly Punctured TCs

Following the ideas in [11], efficient methods for predicting the thresholds of
randomly punctured BCCs were investigated in [8], namely the θE prediction,
the θG prediction, and the mixed prediction (MP) method. In this section, we
re-visit these methods by analyzing the MC-DE-H and predicted thresholds of
the SCC ensemble as an example.

4.1 θE-Predictions
Consider a code ensemble of rate R(α) obtained by randomly puncturing a
mother code of rate R = R/(1−α), where 0 ≤ α < 1 is the puncturing fraction,
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i.e., the fraction of bits that are punctured. For the BEC, the BP threshold of
the punctured code ensemble, ϵ∗(α), can be obtained as

ϵ∗(α) = 1− θER(α) , (9)

where
θE =

1− ϵ∗

R
, (10)

with ϵ∗ being the BP threshold of the mother code.
The BP threshold σ∗(α) of a randomly punctured ensemble over the AWGN

channel can be predicted from the BEC threshold of the corresponding mother
code by combining (9) with the ECP in (8) to

hG(σ
∗(α)) ≈ hE(ε

∗(α)) = ϵ∗(α) = 1− θER(α). (11)

Here, hG(σ) = 1 − CG(σ) and hE(ε) = 1 − CE(ε) = ε denote the conditional
entropy of the AWGN channel and the BEC, respectively. We refer to this
method as θE-prediction.

The θE-predictions and the MC-DE-H thresholds of SCCs and SC-SCCs with
m = 1 and different code rates are shown in Table 2, where ϵ and ϵSC denote
the BEC thresholds of SCCs and SC-SCCs with m = 1, respectively. It is ob-
served that with coupling, the thresholds computed using the θE-prediction are
similar to those obtained via MC-DE-H, i.e., the θE-prediction yields accurate
thresholds. For SCCs, however, the thresholds differ noticeably. We remark
that punctured bits can be equivalently seen as erasures. Hence, the behavior
of the ensembles over the AWGN channel becomes closer to their behavior over
the BEC for increasing puncturing fraction. This explains that the relative dif-
ference between the θE-prediction and MC-DE-H thresholds is larger for lower
rates. We conjecture that the accurateness of the θE-prediction for the SC-SCC
ensemble is due to the universality of this ensemble. Indeed, it was shown in [6]
that for large-enough coupling memory, SC-SCCs approach capacity.

SCC SC-SCC
Rate ϵ θE (Eb/N0) MC-DE-H ϵSC θE (Eb/N0) MC-DE-H

1/4 0.6896 0.37 0.12 0.7379 -0.54 -0.59
1/3 0.5861 0.76 0.51 0.6505 -0.22 -0.29
1/2 0.3792 1.74 1.50 0.4758 0.51 0.43
2/3 0.1723 3.25 3.05 0.3011 1.48 1.39
3/4 0.0688 4.70 - 0.2137 2.13 2.05

Table 2: Erasure-, θE predicted- and MC-DE-H thresholds of SCC ensembles.

4.2 θG-Predictions
The gap between the MC-DE-H threshold and the θE-prediction for low rates
can be reduced by using the θG-prediction [8]. This prediction method uses the
AWGN channel threshold of the mother code to determine the BP threshold
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of the punctured code. Using the θG-prediction, the AWGN channel threshold
hG(σ

∗) is obtained as
hG(σ

∗(α)) ≈ 1− θGR(α) , (12)

where
θG =

1− hG(σ
∗)

R
. (13)

The θG-predictions for SCCs are shown in Table 3. For low rates, the θG-
predictions are close to the MC-DE-H thresholds. However, the θG-prediction
fails to accurately predict the thresholds for higher rates, and a gap to the
MC-DE-H thresholds is observed.

Thresholds Rate
Eb/N0 (dB) 1/4 1/3 1/2 2/3 3/4

θE Predicted 0.37 0.76 1.74 3.25 4.70
θG Predicted 0.12 0.50 1.40 2.72 3.82

MC-DE-H 0.12 0.51 1.50 3.05 -

Table 3: Comparison of θG and θE predicted thresholds of SCCs.

4.3 Mixed Predictions
A mixed prediction (MP) method is proposed in [8] to overcome the discrepan-
cies observed in the θE and the θG predictions. The idea of the MP stems in [11],
where the AWGN channel thresholds of randomly punctured LDPC codes were
observed to lie on a straight line in the entropy perspective. The MP method
uses both θE and hG(σ

∗) in accurately predicting the thresholds of randomly
punctured LDPC codes at all rates. For randomly punctured TCs, as shown for
randomly punctured SCCs in Figure 2a, we can observe that the AWGN chan-
nel thresholds tend to follow a straight line as well. From θE and hG(σ

∗), the
predicted thresholds of the punctured TCs via the MP method [8] are obtained
by using

hG(σBP (α)) ≈ hG(σ
∗)− θMP (R(α)−R) , (14)

where θMP is

θMP =
θE + hG(σ

∗)− 1

1−R
. (15)

The MP thresholds are shown as a dashed line in Figure 2a. It is observed
that the SCC MP thresholds deviate slightly from the MC-DE-H thresholds at
medium rates, unlike the more accurate MP thresholds for the LDPC codes
in [11]. In fact, even for LDPC codes it is still an open problem to prove the
conjecture that AWGN channel thresholds follow a straight line with random
puncturing. For TC ensembles with more complicated component codes this is
even harder to prove and may be wrong. On the other hand, the deviations we
observe are small enough to use the MP thresholds as an efficient approximation.

The MC-DE-H and predicted thresholds of the uncoupled and coupled SCCs
over the AWGN channel are shown in Figure 2b, where the MP method is
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observed to be a more suitable representative of the MC-DE-H thresholds for
all the considered rates.
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Figure 2: AWGN channel thresholds of uncoupled and coupled SCCs.

5 Threshold Comparison for Different TC En-
sembles

Table 4 presents the MC-DE-H and θE predicted thresholds of the coupled TCs.
Unlike uncoupled TCs, the predictions are observed to be relatively close to the
MC-DE-H thresholds. For this reason, we do not list the θG- or MP thresholds
of SC-TCs in the table. For the uncoupled ensembles, however, the MP method
provides better predicted thresholds than the θE method. We further observe
that, in general, the θG predictions are closer to the Shannon capacity than the
θE predictions. The exception to this are PCCs, where θE predictions are closer
to the Shannon capacity than the θG predictions, and the gap increases with
coupling, as shown in Figure 3.
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Ensemble m Thresholds Rate
Eb/N0 (dB) 1/5 1/4 1/3 1/2 2/3 3/4

Shannon Capacity -0.9637 -0.7942 -0.4952 0.1872 1.0597 1.6262

SC-SCC 1 θE Predicted - -0.54 -0.22 0.51 1.48 2.13
SC-SCC 1 MC-DE-H - -0.59 -0.29 0.43 1.39 2.05

SC-SCC 3 θE Predicted - -0.75 -0.45 0.24 1.12 1.70
SC-SCC 3 MC-DE-H - -0.70 -0.41 0.27 1.15 1.73

SC-PCC 1 θE Predicted - - -0.30 0.42 1.35 1.98
SC-PCC 1 MC-DE-H - - -0.04 0.60 1.47 2.07

SC-HCC-II type-II 1 θE Predicted -0.45 - 0.08 0.87 1.97 2.75
SC-HCC-II type-II 1 MC-DE-H -0.60 - -0.08 0.72 1.82 2.62

SC-HCC-II type-II 3 θE Predicted -0.93 - -0.46 0.23 1.11 1.68
SC-HCC-II type-II 3 MC-DE-H -0.95 - -0.49 0.19 1.06 1.63

SC-BCC 1 θE Predicted - - -0.39 0.31 1.21 1.81
SC-BCC 1 MC-DE-H -0.39 0.30 1.19 1.78

SC-BCC 3 θE Predicted - - -0.45 0.24 1.12 1.70
SC-BCC 3 MC-DE-H -0.43 0.25 1.13 1.70

Table 4: θE predicted and MC-DE-H thresholds of coupled turbo-like codes (TCs).
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Figure 3: Thresholds of PCCs over the AWGN channel
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Figure 4: Thresholds of SC-SCCs and SC-HCCs over the AWGN channel

From the thresholds of different TC ensembles, we also observe that the
similarity of the MC-DE-H and the predicted thresholds depends on an ensem-
ble’s strength. For stronger TCs, the similarity between the predicted and the
MC-DE-H thresholds is clearly observed, as shown for m = {1, 3} SC-SCCs in
Figure 4a, m = {1, 3} SC-BCCs in Figure 5, and m = 3 SC-HCCs-II type-II in
Figure 4b. We further observe that the predicted and the MC-DE-H thresholds
are not alike 1) for PCCs in Figure 3, as these have BP thresholds close to the
MAP thresholds but relatively poor MAP thresholds 2) for other uncoupled TCs
in general and SC-HCCs-II type-I in Figure 4b, as these have strong MAP but
poor BP thresholds and 3) for the SC-HCCs-II type-II with m = 1 in Figure 4b,
which have a good MAP threshold but require a larger coupling memory.

SC-HCCs-II offer an interesting insight regarding the similarity of predicted
and MC-DE-H thresholds of an ensemble. HCCs-II have the strongest MAP
thresholds on the BEC among all considered TC ensembles, and we expect the
threshold predictions to show strong similarity with spatial coupling. From the
thresholds of the SC-HCCs-II in Figure 4b, however, we observe that this strong
similarity is only visible for the SC-HCC-II type-II ensemble with m = 3. The
SC-HCC-II type-I ensemble, which uses a different type of coupling than the
type-II, shows a weaker BP performance and lower similarity than the type-II,
even at a larger coupling memory m = 3. This suggests that in addition to
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Figure 5: Thresholds of BCCs over the AWGN channel

a strong MAP threshold, the capability of an ensemble to exhibit very simi-
lar predicted and MC-DE-H thresholds is also linked to its ability of achieving
threshold saturation [14]. For those SC-TCs that demonstrate threshold sat-
uration, we have additionally computed the binary symmetric channel (BSC)
thresholds and compare the entropy of the thresholds for the BSC, BEC and
AWGN channel in Table 5. A similar entropy h at the thresholds of the selected
SC-TCs over all three channels confirms our conjecture that a strong similarity
between predicted and MC-DE-H thresholds of an ensemble is associated with
its capability of achieving threshold saturation.

Ensemble Rate hBEC ϵBSC hBSC hAWGN

SC-BCC m = 3 1/3 0.6644 0.1718 0.6618 0.6630

SC-SCC m = 3 1/4 0.7483 0.2114 0.7442 0.7456
SC-SCC m = 3 1/3 0.6644 0.1708 0.6595 0.6616

SC-HCCII type-II m = 3 1/5 0.7990 0.2427 0.7995 0.7996
SC-HCCII type-II m = 3 1/3 0.6650 0.1738 0.6663 0.6664

Table 5: Entropy h of TCs over the binary erasure channel (BEC), binary
symmetric channel (BSC) and additive white Gaussian noise (AWGN) channel.

In order to provide an overview over the different ensembles, the MC-DE-
H and MP thresholds of uncoupled and coupled TCs with m = 1 are plotted
in Figure 6. For coupled TCs with m = 1, BCCs perform best among the
considered ensembles, whereas PCCs are the first among the uncoupled ensem-
bles. Interestingly, SC-PCCs approach SC-HCCs at lower rates and SC-SCCs
at larger rates. Note that the performance of SC-HCCs-II-TII can be improved
by increasing the coupling memory and it is observed that they then outperform
SC-BCCs with m = {1, 3}.
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Figure 6: Comparison of TC ensembles in terms of the AWGN channel
Thresholds

The threshold observations are further validated by performing some finite
length BER performance simulations for SC-HCC-II type-II codes with m = 3,
and SC-SCC and SC-BCC codes with m = 1 for equal rate R = 1/3 and equal
decoding latency. The SC-HCC-II type-II code with m = 3 is chosen because
the m = 1 ensemble has a poor BP performance on both the BEC and the
AWGN channel compared to SC-BCCs and SC-SCCs with m = 1. We use
sliding window decoding with a window size W = 8, coupling length L = 100,
and 20 decoding iterations at each window position. The input block length is
N = 16 384 for all ensembles, resulting in an overall structural decoding latency
of 3N W = 393 216 code symbols. The BER performance results are shown
in Figure 7. It is observed that the SC-HCC-II type-II code with m = 3 has
the best performance followed by the SC-BCC code and SC-SCC code with
m = 1 respectively. The simulations are observed to be consistent with the BP
thresholds. However, the gain of the HCC ensemble in terms of the threshold
is larger is than in terms of the simulated waterfall performance. This partially
can be prescribed to the limited window size.
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Figure 7: Finite block length performance of rate 1/3 ensembles with equal
latency.
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In Table 6, we list the BEC and the AWGN channel thresholds of the TCs
along with the parameters θE, θG and θMP. By using these values together with
the prediction methods described in Section 4, it is possible to immediately
reproduce all the continuous threshold curves in Figures 2–6. The computa-
tion of MC-DE-H thresholds, which are shown as blue dots in these figures, is
very time consuming and provided only for validation of the prediction meth-
ods. Consider the MP thresholds of rate 1/3 SCCs as an example to show
how to calculate the predicted thresholds using Table 6. First, we obtain the
noise threshold σ∗ = 1.3963 of rate R = 1/4 SCCs from its MC-DE-H thresh-
old Eb/N0(dB) = 0.1109. Next, we apply the entropy at the noise threshold
hG(1.3963) = 1 − CG(1.3963) = 0.7035, and θMP = 1.2601 from the Table 6
to (14) for R(α = 1/4) = 1/3. This gives us hG(σBP (α = 1/4)) = 0.5985.
From the AWGN channel capacity CG(σ) = 1 − 0.5985 = 0.4015, we obtain
σ = C−1

G (0.4015) = 1.1461. Lastly, by using that σ2 = 1/ (2 · Eb/N0 ·R(α)) we
obtain the MP for rate R = 1/3 SCCs in terms of Eb/N0(dB) = 0.5761.
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Ensemble Rate MC-DE-H ϵ Parameters
Eb/N0(dB) θE θG θMP

PCC 1/3 0.02 0.6428 1.0716 1.0953 1.0597
SC-PCC, m = 1 1/3 -0.04 0.6553 1.0341 1.0839 1.0092

SCC 1/4 0.12 0.6896 1.2416 1.1880 1.2595
SC-SCC, m = 1 1/4 -0.59 0.7379 1.0484 1.0398 1.0513
SC-SCC, m = 3 1/4 -0.70 0.7483 1.0068 1.0182 1.0030

HCC 1/5 0.90 0.7044 1.4780 1.4339 1.4890
SC-HCCII-TII, m = 1 1/5 -0.60 0.7790 1.1050 1.0748 1.1125
SC-HCCII-TII, m = 3 1/5 -0.95 0.7990 1.0050 1.0027 1.0056

BCC 1/3 1.01 0.5541 1.3377 1.2943 1.3594
SC-BCC, m = 1 1/3 -0.39 0.6609 1.0173 1.0190 1.0165
SC-BCC, m = 3 1/3 -0.43 0.6644 1.0068 1.0117 1.0043

Table 6: θ parameter of various prediction methods.
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The prediction methods provide a convenient way of comparing the thresh-
olds of mother code ensembles with different rates. A randomly punctured code
ensemble is characterized by the parameter θ ≥ 1, where θ = 1 corresponds to
a capacity achieving ensemble [11]. An ensemble with a smaller θE and θG will
outperform an ensemble with larger θE and θG at all achievable rates.

6 Conclusions
In this paper, we have performed a BP decoding threshold analysis of SC-TCs
on the AWGN channel and demonstrated that the prediction methods presented
in [8, 11] can be used to approximate the thresholds efficiently. The prediction
methods approximate the AWGN channel thresholds of the considered ensem-
bles in a computationally efficient manner by using their BEC thresholds. Con-
ventionally, MC-DE or EXIT function analysis are applied to analyze thresholds
of TCs over the AWGN channel. Although these methods can provide a very
accurate estimate of the BP thresholds, they are computationally expensive,
especially for spatially coupled ensembles. Our results show that the predicted
thresholds are very close to the MC-DE thresholds for strong spatially coupled
ensembles such as SC-SCCs, SC-BCCs and SC-HCCs-II. It is further conjec-
tured that the similarity between the predictions and MC-DE is associated with
the strength of an ensemble and its threshold saturation capability. For strong
coupled ensembles, universality is observed from the entropy of their thresholds
over the BEC, AWGN channel and BSC. For uncoupled ensembles with random
puncturing, the predictions are improved with help of both the AWGN channel
and BEC threshold of the mother code ensembles.
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Spatially-Coupled Serially Concatenated
Codes with Periodic Convolutional

Permutors

Spatially-coupled serially concatenated codes (SC-SCCs) are a class of
turbo-like codes constructed by interconnecting a sequence of SCCs using a
set of block permutors. At short block lengths, however, the bit-error-rate
(BER) performance of SC-SCCs constructed by independent block permu-
tors exhibits a high error floor. In this paper, we propose an alternative
method for constructing SC-SCCs to mitigate this problem. Particularly,
we use a family of periodically time-varying blockwise convolutional per-
mutors with flexible block length. We derive these convolutional permutors
from a block permutor of an optimized spread by applying an unwrapping
procedure. We prove that for any chosen block length, the unwrapping
procedure preserves the spread of the original block permutor. We fur-
ther present an efficient implementation method for the blockwise convo-
lutional permutor that derives the permutation indices directly from those
of the underlying block permutor. Considering both s-random permutors
and quadratic permutation polynomial (QPP) permutors, we perform BER
simulations for SC-SCCs with decoding latencies 4096 and 16384. Numerical
results show that SC-SCCs based on the proposed convolutional permu-
tors have no visible error floor, which is especially notable at short block
lengths.

©2021 IEEE. Reprinted, with permission, from
M. U. Farooq, A. G. i. Amat and M. Lentmaier,
"Spatially-Coupled Serially Concatenated Codes with Periodic Convolutional Permu-
tors," 2021 11th International Symposium on Topics in Coding (ISTC), Montreal,
Canada, 2021.
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1 Introduction
Spatially-coupled turbo-like codes [1] with simple 4-state and 8-state compo-
nent encoders achieve close-to-capacity thresholds thanks to the threshold satu-
ration phenomenon—the belief propagation threshold converges to the optimal
maximum-a-posteriori (MAP) threshold. Among them, spatially-coupled seri-
ally concatenated codes (SC-SCCs) are particularly enticing since they can also
achieve very low error floors due to the large minimum distance stemming from
the serial concatenation.

In [1], SC-SCCs were analyzed in the asymptotic limit of infinitely large block
length. Their performance in the error floor region was investigated in [2], where
it was shown that SC-SCCs can achieve very low error floors by performing a
weight enumerator analysis. Particularly, [2] derived conditions under which
the spatial coupling either preserves or improves the minimum distance of the
underlying code. A thorough evaluation of the performance of SC-SCCs for
varying block length of the underlying SCCs and decoding window size—which
determine the decoding latency—as well as coupling memory and number of
iterations per decoded bit, was conducted in [3]. It was shown that for short
block length and limited number of iterations per decoded bit, a relatively high
error floor appears. This error floor is due to the use of individual permutors at
each spatial position to spread the edges across spatial positions. Indeed, the
original construction in [1] specifies two permutors at each spatial position. For
short block length, i.e., short component permutors, a joint design is required
to avoid the performance in the error floor being impaired by the poor code
properties induced by the short permutors—which may entail a poor minimum
distance—, as observed in [3]. Unfortunately, a joint design of the permutors is
a formidable task.

In this paper, we address this shortcoming by proposing a different con-
struction of the permutors which allows to realize low error floors even for short
block length and moderate decoding latency. The key idea is to construct a pe-
riodic blockwise convolutional permutor that spans several spatial positions by
unwrapping [4] a block permutor of size equal to the desired decoding latency.
In other words, rather than jointly designing short permutors to realize a strong
longer permutor, we directly design the longer permutor. More specifically,
we design convolutional permutors from s-random and quadratic permutation
polynomial (QPP) block permutors. Due to the unwrapping technique, the
obtained permutors inherit the properties of the block permutor, resulting in a
better weight enumerator of the SC-SCC compared to the case where component
permutors are designed independently. We show via Monte-Carlo simulations
that the proposed construction yields SC-SCCs with low error floor even when
the underlying SCCs have an information block length as short as 64 bits.

2 Spatially-Coupled Serially Concatenated Codes

2.1 Coupling at the compact graph level
We briefly describe the SC-SCCs introduced in [1]. The compact graph of an
SC-SCC of chain length L is constructed by placing L copies of a serially con-
catenated code (SCC) in L spatial positions in the set L = {1, . . . , L} and inter-
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Figure 1: (a) Compact graph representation of the SC-SCC ensemble in [1] (b)
a convolutional permutor perspective of SC-SCCs.

connecting them appropriately. Let ut = (ut,1, ..., ut,K) be the information se-
quence of length K at spatial position (time instance) t, and vO

t = (vO
t,1, ..., v

O
t,K)

and vI
t = (vI

t,1, ..., v
I
t,2K) the parity sequence at the output of the outer and inner

encoder, respectively, at spatial position t. The compact graph of an SC-SCC
of coupling memory m = 1 with underlying SCC of information block length
K and rate 1/2 is depicted in Fig. 1(a) for two spatial positions. In the figure,
the variable nodes, represented by circles, correspond to the bit sequences ut,
vO
t , and vI

t, and the constraint nodes, represented by squares, correspond to
trellises. Specifically, the constraint nodes TO

t and T I
t represent the trellis of the

outer and inner encoder of the underlying SCC, respectively. Each constraint
node is labeled by the length of the corresponding trellis, i.e., K and 2K for
the upper and lower trellis, respectively. The sequence (ut,v

O
t ) is reordered

by a permutor Π
(1)
t (a permutor is indicated in the figure by a line crossing

an edge) into the sequence ṽO
t , which is divided into m + 1 sequences of equal

length, denoted by ṽO
t,j , j = 0, . . . ,m. At spatial position t, the input to the

inner encoder is (ṽO
t−j,0, ṽ

O
t−1,1, . . . , ṽ

O
t−m,m), properly reordered by a permutor

Π
(2)
t . The input constraint length is given by c = K(m + 1), which is equal

to the number of information bits that contribute to the encoding of the parity
bits at a given position t. Note that the construction in Fig. 1(a) [1], uses two
individual permutors at each spatial position, which should be jointly optimized
to yield an SC-SCC code with good distance properties.

2.2 A convolutional permutor perspective of coupling
The ensemble defined above can equivalently be described by the compact graph
in Fig. 1(b), in which the variable nodes represent the combined sequences
u = (u1, . . . ,uL), vO = (vO

1 , . . . ,v
O
L ), and vI = (vI

1, . . . ,v
I
L) and the constraint

nodes represent the combined trellises. The individual permutors in Fig. 1(a)
can then be combined to a blockwise convolutional permutor Πc, as illustrated
in Fig. 1(b). The properties of Πc depend on the collection of permutors Π

(1)
t

and Π
(2)
t , t = 1, . . . , L. If the same permutors Π(1)

t = Π(1) and Π
(2)
t = Π(2) are

used at each position t, then Πc is time-invariant. Unfortunately, such a design



PAPER III 115

may lead to poor distance properties.

2.3 Sliding-window decoding
To avoid a large decoding latency, SC-SCCs are decoded using sliding window
decoding [5]. Following [3], the forward and backward recursions of the BCJR
decoder span over all blocks within the window and the iteration number per
window position is adapted to achieve a constant complexity for all considered
block lengths. For a window size W , the decoding latency, denoted by Λ, is
Λ = WK information bits.

3 Deriving Periodic Blockwise Convolutional Per-
mutors from a Block Permutor

In this paper, we propose a family of periodically time-varying convolutional
permutors Πc with flexible block length as an alternative to a joint design of
the individual permutors {Π(1)

t } and {Π(2)
t }. In order to design an SC-SCC

code with information block length K and coupling memory m, we start from
a block permutor of size M ′ = M(m+1), where M = 2K denotes the length of
the individual permutors in Fig. 1(a). As shown in [6–8], a bitwise convolutional
permutor can be derived from a block permutor by an unwrapping procedure,
similarly to the construction of LDPC convolutional codes [4]. We generalize
this procedure to blockwise convolutional permutors of any even block length
M , such that M divides M ′, resulting in a family of SC-SCC codes with fixed
input constraint length c = M ′/2 and varying block length K = M/2 and
memory m = M ′/M − 1.

We illustrate the construction of a convolutional permutor Πc with an ex-
ample. Consider a block permutor Π of length M ′ = 16, as given in Fig. 2(a),
and choose M = 4 and m = 3. First, the permutor Π is divided into square ma-
trices of size M . Along these submatrices, we then divide the permutor below
the blockwise main diagonal, as highlighted with a bold line in the figure. The
lower-left part below the diagonal is then unwrapped to the right, as shown in
Fig. 2(b), and the resulting matrix is replicated diagonally, as shown in Fig. 2(c).
As a result, we obtain a periodically time-varying convolutional permutor Πc
with a period of m+1 blocks, i.e., M ′ bits. A single period of Πc is highlighted
by a bold line in Fig. 2(c). As indicated by the different colors, it can be divided
into rectangular submatrices Π(i)

c , i = 0, . . . ,m, of size M ′ ×M , containing one
1 in each column. Furthermore, it follows from the construction that, after m
initial blocks, the convolutional permutor Πc has one 1 in each row and one 1
in each column.

Note that the same block permutor Π of length M ′ = 16 could also be used
to derive convolutional permutors Πc with parameters M = 2 and m = 7 or
M = 8 and m = 1. We will show below that for all possible unwrappings, the
spread S of the original permutor Π is preserved.

Theorem 1. Consider a convolutional permutor Πc derived from a block per-
mutor Π of length M ′ = M(m + 1) using the unwrapping procedure described
above. Assume that Πc has diagonal spread S (Πc) and Π has circular diagonal
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Figure 2: Construction of a convolutional permutor with block length M = 4
and memory m = 3 (a) block permutor Π of length M ′ = 16 (b) unwrapped

block permutor (c) periodic convolutional permutor Πc.

spread SL (Π) (based on the Lee metric). Then

S (Πc) ≥ SL (Π)

for any valid parameters M and m+ 1.

The proof of this theorem, together with the definitions of S (·) and SL (·),
can be found in the appendix.

Remark: In [2], it was shown for the ensemble in Fig. 1(a) that the minimum
distance of an uncoupled code can be preserved if the individual permutors in
Fig. 1(a) fulfill some special conditions with respect to the permutor of the
uncoupled code. This result, however, was limited to time-invariant codes and
derived from a block code with permutor length M . Hence it could not capture
the gains expected with time-varying permutors and larger coupling memories
m > 1. In this paper, we derive a convolutional permutor from a block permutor
of length M ′ = M(m+ 1) and show that the spread of this large permutor can
be preserved.
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4 Efficient Implementation of a Convolutional
Permutor

4.1 A blockwise matrix representation of Πc

Let ũI and uI denote the sequences at the input and the output of the convolu-
tional permutor Πc, respectively. The mapping between these sequences can be
performed blockwise by means of the M ′ ×M submatrices Π

(i)
c . In particular,

with ũI
t = (ut,1, v

O
t,1, . . . , ut,K , vO

t,K) the input of the inner encoder at position t
can be expressed as

uI
t = (ũI

t−m, . . . , ũI
t) ·Π(i)

c , i = (t− 1) mod (m+ 1) . (1)

While (1) assumes that Πc is time-varying with period m + 1, as constructed
in Section 3, this can easily be adapted to general blockwise convolutional per-
mutors. In particular, the encoding of the original SC-SCC ensemble described
in Section 2 can equivalently be performed according to (1) for a corresponding
set of submatrices Π

(i)
c , i = 0, . . . , L− 1.

4.2 Efficient indexing based on the block permutor Π

Let us now present a method to implement the complete family of convolutional
permutors Πc as introduced in Section 3 directly, using the block permutor Π
they are derived from. The block length M can be chosen flexibly and no extra
storage of the matrices Π

(i)
c is required.

A general convolutional permutor Πc can be interpreted as a time-varying
delay, which stores each symbol at the input for a specific amount of time units
before releasing it to the output. All delays are measured with respect to the
main diagonal. Let δ ≥ 0 and ∆ < M ′ denote the minimal and maximal delay,
respectively [8]. The number of delays required to represent a permutation is
equal to its period in bits. We denote these M ′ delays by di,k, where i = 0, . . . ,m

and k = 1, . . . ,M . For a given i and k, let j denote the row in the matrix Π
(i)
c

that is connected to column k by a 1, i.e., {Π(i)
c }j,k = 1. Then di,k = M ′− j. A

block permutor Π corresponds to the special case of m = 0 and M ′ = M , and
it can be represented by the delays dk, k = 1, . . . ,M ′.

Assume now that Πc, defined by the delays di,k, is derived from Π, defined
by the delays dk, by the unwrapping procedure for a given set of parameters m
and M . Then the delays of Πc can be obtained as

di,k = dk+iM + (i+ 1)M modM ′ , (2)

where i = 0, . . . ,m and k = 1, . . . ,M .

Example 4.1. Consider the permutor illustrated in Fig. 2(a). The first eight
values dk can be identified as 11, 7, 0, 13, 3, 14, 15, and 5 (yellow and green
blocks). According to (2), for M = 4 and M ′ = 16, these delays will be mapped to
a convolutional permutor with delays d0,k = 15, 11, 4, 1 and d1,k = 11, 6, 7, 12.
These values can be verified in Fig. 2(c).

The delays di,k of the convolutional permutor can now be used as alternative
to the matrix representation in (1). More precisely, the k-th element of the input
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Λ = 4096 bits Λ = 16384 bits
L K m L K m

100 1024 1 100 4096 1
200 512 3 200 2048 3
400 256 7 400 1024 7
1600 64 31 1600 256 31

Table 1: SC-SCCs Configurations

sequence uI
t of the inner encoder can be identified as the j-th element of the

sequence (ũI
t−m, . . . , ũI

t) at the input of the permutor submatrix Πc, where
j = M ′ − di,k.

The storage requirements can be reduced further if the underlying permutor
can be expressed explicitly by means of an equation. For example, for the QPP
permutors used in the 3GPP LTE standard [9], the output index k for an input
index j can be expressed as

k = (f1j + f2j
2) modM ′ (3)

for some suitable pair of parameters f1 and f2 that have to be chosen for a given
length M ′. In Section 5, we consider a QPP permutor of length M ′ = 4096 with
f1 = 31 and f2 = 64 and compare its performance with that of an s-random
permutor. Note that (3) cannot directly be combined with (2) for an on-the-fly
implementation since the delays di,k are expressed by the inverse permutation.
However, if an explicit equation is not available for the inverse of Π, then the
storage of M ′ delays dk can be avoided if the inverse permutation of Πc is
implemented in the encoder instead.

5 Numerical Results
We investigate the performance of SC-SCCs with the proposed periodic block-
wise convolutional permutors for fixed decoding latency and varying block length
K and coupling memory m for transmission over the additive white Gaussian
noise channel. In particular, we consider rate-1/3 SC-SCCs with constraint
length 2048 and 8192 built from the concatenation of two rate-1/2, 4-state com-
ponent encoders with generator matrix

(
1, 1+D2

1+D+D2

)
. To achieve rate 1/3, we

puncture every other parity bit of the inner code as in [3]. The considered chain
lengths L, block length K, and coupling memory m are listed in Table 1.

For the simulation results, we use sliding window decoding with window size
2(m+1), corresponding to a decoding latency Λ = 2(m+1)K information bits.
Further, we assume 80 decoding iterations per decoded bit and consider both s-
random permutors with optimized circular diagonal spread and QPP permutors
to obtain the convolutional permutors. As shown in Table 2, the spread values
are equal for all m.

In Fig. 3, we show the bit error rate (BER), and block error rate (BLER)
performance for SC-SCCs with periodic blockwise convolutional permutors ob-
tained from a block s-random permutor for Λ = 4096 bits (solid curves) and
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Size Type Spread SL(Π) Spread S(Πc)

4096 s-random 21 m = 1 21
s-random m = 31 21

QPP 32 m = 1 32
QPP m = 31 32

16384 s-random 60 m = 1 60
s-random m = 255 60

Table 2: Spread of the considered permutors
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Figure 3: BER performance of SC-SCCs with periodic blockwise convolutinal
permutors obtained from s-random permutors for Λ = 4096 (solid curves),

Λ = 16384 (dashed curves).

Λ = 16834 bits (dashed curves) and varying K and m. For comparison, we
also show the BER of an LDPC code from the DVB-S2 standard (short), taken
from [10]. Interestingly, for a fixed decoding latency, the performance is almost
identical by varying the block length K, even for K as small as 64 bits. Note
that if K is halved, to achieve the same decoding latency, the coupling memory
needs to be increased to 2m + 1. In other words, the impact of a weaker un-
derlying SCC is perfectly compensated by a larger coupling memory. A similar
phenomenon is observed in Fig. 4 for blockwise convolutional permutors ob-
tained from a QPP permutor. Further, the performance is almost identical to
that of SC-SCCs with underlying s-random permutor, underscoring the fact that
SC-SCCs with permutors that can be expressed by means of an equation—and
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Figure 4: BER performance of SC-SCCs with periodic blockwise convolutinal
permutors obtained from a QPP permutor for Λ = 4096.

hence are implementation-friendly—yield good performance.
In Fig. 5, we compare the performance of SC-SCCs with the proposed

convolutional-based permutors (blue curves with circle markers) with that of
SC-SCCs with independently-optimized individual permutors [1] (red curves
with square markers) for Λ = 4096, and varying K (and accordingly m). The
curves for the SC-SCCs with individual permutors are borrowed from [3]. No-
tably, the SC-SCCs with the proposed periodic blockwise permutors yield lower
error floors than those using independently-designed individual permutors. This
is especially noticeable for the shortest block length, K = 64, for which the code
with individual permutors shows a very high error floor, as already noticed in [3],
while no visible error floor is visible for the proposed scheme below 10−6. A
similar behavior is observed in Fig. 6 for Λ = 16384.

6 Conclusion
We introduced a family of blockwise periodically time-varying convolutional
permutors for designing SC-SCCs with flexible block length and coupling mem-
ory. The permutors can easily be derived from a given block permutor with a
procedure that preserves the spread. We demonstrated via simulations that the
proposed convolutional permutors make it possible to vary the component code
block length at a fixed decoding latency and complexity without any noticeable
performance loss, yielding almost identical BER performance.
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Figure 5: BER comparison of SC-SCCs with convolutional permutors vs
SC-SCCs with independent permutors for a decoding latency of Λ = 4096.

Appendix: Proof of Theorem 1
For a given permutor Π, let j1, j2 be a pair of distinct positions in the input
sequence. The corresponding positions in the output sequence, k1, k2, are then
defined by the condition (Π)j1,k1

= 1 and (Π)j2,k2
= 1. Following the notation

in [11], the sequence j1, k1, j2, k2, j1 forms a cycle of length 2 in the permutor.
The diagonal spread of a permutor cycle is defined as S(j1, j2) = |j1 − j2| +
|k1 − k2| [12]. For a block permutor of length M ′, we can also define the
circular diagonal spread of a cycle as SL(j1, j2) = |j1 − j2|L + |k1 − k2|L, where
the distances are now defined according to the Lee metric, i.e., |a − b|L =
min(|a− b|,M ′ − |a− b|). The spread of a permutor can now be defined as the
minimum spread over all possible cycles, i.e.,

S(Π) = min
j1,j2

S(j1, j2) and SL(Π) = min
j1,j2

SL(j1, j2) . (4)

Assume now that Πc is a convolutional permutor derived from Π by the
unwrapping procedure. Consider a minimal cycle j1, k1, j2, k2, j1 in Πc such
that S(j1, j2) = S(Πc). From the construction it follows that this cycle in Πc

implies the existence of a cycle j′1, k
′
1, j

′
2, k

′
2, j

′
1 in Π with

j′x = (jx − 1) mod (M ′) + 1 , k′x = (kx − 1) mod (M ′) + 1 ,

where x = 1, 2 and j′x, k
′
x ∈ {1, . . . .M ′}. With this, it can be verified that

|j′1 − j′2|L ≤ |j1 − j2| and |k′1 − k′2|L ≤ |k1 − k2|. Hence, SL(j
′
1, j

′
2) ≤ S(j1, j2)
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Figure 6: BER comparison of SC-SCCs with convolutional permutors vs
SC-SCCs with independent permutors for a decoding latency of Λ = 16384.

and it follows that SL(Π) cannot be larger than S(Πc), which completes the
proof.
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Generalized LDPC Codes
with Convolutional Code Constraints

Braided convolutional codes (BCCs) are a class of spatially coupled
turbo-like codes that can be described by a (2, 3)-regular compact graph.
In this paper, we introduce a family of (dv, dc)-regular GLDPC codes with
convolutional code constraints (CC-GLDPC codes), which form an exten-
sion of classical BCCs to arbitrary regular graphs. In order to characterize
the performance in the waterfall and error floor regions, we perform an
analysis of the density evolution thresholds as well as the finite-length en-
semble weight enumerators and minimum distances of the ensembles. In
particular, we consider various ensembles of overall rate R = 1/3 and R = 1/2
and study the trade-off between variable node degree and strength of the
component codes. We also compare the results to corresponding classi-
cal LDPC codes with equal degrees and rates. It is observed that for the
considered LDPC codes with variable node degree dv > 2, we can find a
CC-GLDPC code with smaller dv that offers similar or better performance
in terms of BP and MAP thresholds at the expense of a negligible loss in
the minimum distance.

©2020 IEEE. Reprinted, with permission, from
M. U. Farooq, S. Moloudi and M. Lentmaier,
“Generalized LDPC Codes with Convolutional Code Constraints", 2020 IEEE Inter-
national Symposium on Information Theory (ISIT), LA, USA, 2020.
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1 Introduction
Turbo codes and low-density parity-check (LDPC) codes are widely used forward
error correction techniques in many communication applications. For LDPC
convolutional codes [1, 2], also known as spatially coupled LDPC (SC-LDPC)
codes, it has been proved that the threshold of efficient belief propagation (BP)
decoding saturates to the threshold of an optimal maximum a-posteriori proba-
bility (MAP) decoder [3,4]. Spatially coupled turbo-like codes were introduced
in [5], where it was proved that threshold saturation also occurs for this class
of codes. It was observed that turbo-like codes with good BP thresholds tend
to have weaker MAP thresholds and minimum distance [5,6]. Braided convolu-
tional codes (BCCs) [7], which are characterized by (2, 3)-regular graphs, have
better MAP thresholds and distances than parallel concatenated convolutional
codes that suffer from degree-one variable nodes. In combination with spatial
coupling, ensembles with good MAP thresholds and low error floors are able to
simultaneously approach capacity and achieve very low error floor thanks to the
threshold saturation phenomenon [6].

In principle, it is possible to improve the threshold and minimum distance of
an SC-LDPC ensemble by increasing the variable node degree. For finite block
lengths, however, ensembles with stronger component codes can have advantages
[8], since larger variable node degrees increase the number of short cycles in
the factor graph, which negatively impacts the performance of a BP decoder.
Furthermore, it has been observed in [6] that, due to the stronger component
codes at the constraint nodes, spatially coupled turbo-like ensembles can achieve
excellent decoding thresholds and minimum distances with low variable node
degrees.

In this work, our aim is to gain a better understanding of the general trade-
off between increasing the variable node degree or the strength of the component
codes. For this purpose, we introduce a family of (dv, dc)-regular generalized
LDPC codes with convolutional code constraints (CC-GLDPC codes), which
form an extension of classical BCCs to arbitrary regular graphs and allow for
a one-to-one comparison with the corresponding (dv, dc)-regular LDPC code
ensembles. As examples we consider (2, 3), (4, 6) and (6, 9) graphs of rate R =
1/3 as well as (2, 4), (3, 6) and (4, 8) graphs of rate R = 1/2, based on component
code trellises with 2, 4 and 8 states. For these ensembles we determine the BP
thresholds (with and without spatial coupling), MAP thresholds and minimum
distances and compare them with the corresponding LDPC code ensembles.

2 Code Ensembles

2.1 An Ensemble of (dv, dc)-regular GLDPC Codes with
Convolutional Code Constraints

Braided convolutional codes can be viewed as a class of turbo-like codes with
parity-feedback between the component encoders, as illustrated in Fig. 1(a).
Since the parity symbols enter the other encoder after a delay of one block of
N symbols, BCCs are inherently spatially coupled. An uncoupled version of
BCCs can be obtained by removing this delay. Fig. 1(b) shows a compact graph
representation of the uncoupled BCCs, in which the variable nodes represent the
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Figure 1: Classical BCCs as (2,3)-regular ensemble: (a) BCC encoder
(b) compact graph (uncoupled).

different blocks of code symbols and the constraint nodes represent the length
N component encoder trellises of rate 2/3. The permutations occur along the
edges of the compact graph.

Observe that the compact graph of the original BCCs is a fully connected
(2, 3)-regular graph, analogous to the protograph of a (2, 3)-regular LDPC code.
In order to generalize BCCs to larger variable node degrees, we can increase the
number of component encoders as well as their number of inputs, resulting in
(3, 4)-regular graphs with overall rate R = 1/4, (4, 5)-regular graphs with rate
R = 1/5, and so on. These ensembles, however, are hard to compare due
to their different rates. Alternatively, we can add edges to the (2, 3)-regular
graph, obtaining (4, 6) or (6, 9)-regular graphs without changing the original
rate R = 1/3. In general, using dv component encoders of rate (dc − 1)/dc
we can construct arbitrary (dv, dc)-regular CC-GLDPC codes. Moreover, these
codes can be directly compared to the corresponding (dv, dc)-regular LDPC
codes, which have the same overall design rate R = 1 − dv/dc and the same
length if their lifting factor is set equal to the number of sections in the trellises.

2.2 Punctured Trellises for Degree dc Constraint Nodes
Consider a degree dc constraint node in the compact graph. Each edge represents
a length N sequence of code symbols that are represented by the connected
variable node. One of these sequences will correspond to the parity sequence
vp = (vp,1, . . . , vp,N ) of the component convolutional code and the other dc − 1

to the information sequences u(i) = (u
(i)
1 , . . . , u

(i)
N ), i = 1, . . . , dc − 1.

In order to construct a component code of rate (dc − 1)/dc, for any dc ≥ 2
we can use a rate-1/2 mother code with a trellis of (dc − 1)N sections. A
factor graph of such a trellis is shown in Fig. 2. The desired code rate is
achieved by puncturing dc − 2 of the parity bits in each segment of dc − 1
trellis sections, as shown by white circles in the factor graph. For example,
the degree dc = 3 constraint node of the classical BCC graph in Fig. 1(b)
can be implemented by a trellis of length 2N in which every second parity
bit is punctured to achieve a rate-2/3 component encoder. In general, the
puncturing patterns in different segments of the trellis can be time-varying, and
finding patterns that optimize the thresholds or the distance spectrum of the
resulting codes is an open problem. In our threshold analysis, we will assume



PAPER IV 131

v
(1)
p,1

u
(1)
1

v
(1)
p,2

u
(1)
2

v
(1)
p,(dc−1)N

u
(1)
(dc−1)N

N

u(1) u(dc−1) vp

(a) Rate 1/2 trellis (left) in a constraint node (right).

vp,t

u
(1)
t u

(2)
t u

(dc−1)
t

(b) Trellis section at time t after puncturing to
rate (dc − 1)/dc.

Figure 2: Factor graph representation of a constraint node trellis.

uniform random puncturing within each segment, such that a parity bit remains
unpunctured with probability 1/(dc − 1).

The strength of the constraint nodes can be flexibly changed without altering
their degree by simply increasing the number of states in the component code
trellis. In this work, we consider recursive systematic convolutional encoders
with generator polynomials (1, 1/3), (1, 5/7) and (1, 13/15) in octal notation,
with 2, 4 and 8 trellis states, respectively.

2.3 Single-Edge Type Ensembles

N N N

(a) Structured

6N

N N N

(b) Single-edge type

Figure 3: Graph represenations of uncoupled (3,6)-regular ensembles.

The compact graph of a (3, 6)-regular ensemble is shown in Fig. 3(a). Since
the edges define a clear assignment from outputs of the constraint nodes to the
variable nodes, this is an example of a structured graph. In order to simplify
analysis, when computing ensemble weight enumerators and thresholds, we will
instead consider single-edge type ensembles like shown in Fig. 3(b).
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3 Finite-Length Ensemble Weight Enumerators
A weight enumerator analysis for different ensembles of turbo-like codes, in-
cluding uncoupled BCCs, was carried out in [6]. Considering the (2, 3)-regular
ensemble in Fig. 1(b), let A(j)

i1,i1,p
denote the number of code sequences of input

weights i1, i2 and parity weight p for the length N convolutional code at con-
straint node j. Assuming uniform random permutations, it is then possible to
compute the average number of codewords ĀBCC

i,p over all codes in the ensemble
as follows:

ĀBCC
i,p =

∑
p1

A
(1)
i,p1,p−p1

·A(2)
i,p−p1,p1(

N
i

)(
N
p1

)(
N

p−p1

) . (1)

In principle, a generalization to general structured (dv, dc) ensembles, like il-
lustrated in Fig. 3(a), is possible1. Unfortunately, this approach becomes nu-
merically infeasible for a given N when the variable node degree increases. In
this work, we consider unstructured single-edge type ensembles, like illustrated
in Fig. 3(b), and generalize Gallager’s weight enumerator analysis for LDPC
codes [10,11] to our ensembles:

Ā(dv,dc)
w =

(
A

(j)
w

)dv

(
dc·N
w

)dv−1
, (2)

where w is the total weight of information and parity bits.
A bound on the minimum distance dmin of codes in an ensemble can be

obtained by computing the largest positive integer d̂ that satisfies the expression

d̂−1∑
w=1

Ā(dv,dc)
w < 1− α (3)

for a given α < 1. Then a fraction α of all codes in the ensemble must have a
minimum distance dmin ≥ d̂.

4 Convergence Thresholds for the BEC
We assume that the BP decoder of a CC-GLDPC code is based on optimal
bitwise a-posteriori probability (APP) decoding at the constraint nodes2. The
MAP decoding threshold, on the other hand, refers to the optimal bitwise de-
coding of the overall code, which is computationally infeasible. For the BEC it
is possible to find analytical expressions for the input/output transfer functions
of the component decoders [13]. By means of these it is possible to derive ex-
act DE equations for the ensembles introduced in Section II, which capture the
evolution of erasure probabilities of messages being passed back and forth along
the edges in the graph.

1As pointed out in [6], the weight enumerator expression in (1) is equivalent to protograph-
based GLDPC code ensembles analyzed in [9].

2This is the equivalent to the classical turbo decoder [12].
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4.1 Density Evolution Equations for Uncoupled Ensem-
bles

Consider a (dv, dc)-regular graph and let ej,k denote the edge connecting variable
node j to constraint node k, where j ∈ {1, . . . , dv} and k ∈ {1, . . . , dc}. The DE
update at a constraint node in iteration i can be expressed as

p(i)(ej,k) = fk

(
q(i−1)(ej,1), . . . , q

(i−1)(ej,dc)
)

, (4)

where q(i)(ej,k) and p(i)(ej,k) denote the probabilities that messages passed from
variable to check nodes and from check nodes to variable nodes are erased,
respectively. fk denotes the (extrinsic) transfer function of the constraint node,
corresponding to the trellis output message type associated with edge ej,k. For
conventional LDPC codes this transfer function is independent of k and reduces
to the well-known expression

p(i)(ej,k) = 1−
∏
k′\k

(
1− q(i−1)(ej,k′)

)
(5)

= 1−
(
1− q(i−1)

)dc−1

. (6)

Before the first iteration i = 1, all input erasure probabilities are initialized to
q(0)(ej,k) = ϵ, which is the erasure probability of the BEC. At a variable node,
the DE update can be written as

q(i)(ej,k) = ϵ ·
∏
j′\j

p(i)(ej′,k) = ϵ ·
(
p(i)
)dv−1

. (7)

In this work we consider single-edge type regular graphs, as illustrated in
Fig. 3(b), for which the trellis outputs of the constraint nodes are distributed
uniformly over all code symbols of the variable node. In this case p(i) and q(i−1)

are equal along all edges of the graph.

4.2 Transfer Functions for Punctured Trellises
In order to compute the transfer functions of the constraint nodes of the graph,
a rate-1/2 trellis is punctured to match the constraint node degree of the graph.
The mother code transfer functions for the considered generator polynomials
can be derived as shown in [5]. Let fs and fp denote these transfer functions
for systematic and parity bits, respectively. Then we can write

p(i)s = fs

(
q(i)s , q(i)p

)
, (8)

p(i)p = fp

(
q(i)s , q(i)p

)
, (9)

where p
(i)
s and p

(i)
p denote the extrinsic output erasure probabilities, and q

(i)
s

and q
(i)
p the erasure probabilities of incoming messages to the constraint node.

Assuming that random puncturing of parity bits is used for achieving a target
rate (dc − 1)/dc, these input erasure probabilities are given by

q(i)s = q(i−1) , (10)

q(i)p =
dc − 2

dc − 1
· 1 + 1

dc − 1
· q(i−1) =

q(i−1) + dc − 2

dc − 1
. (11)
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Figure 4: Spatially coupled (2, 3)-regular ensemble: single-edge type
representation with coupling memory m = 1.

The average erasure probability of messages sent from the constraint nodes to
the variable node is equal to

p(i) =
(dc − 1)

dc
· p(i)s +

1

dc
· p(i)p . (12)

DE iteration i is then completed by a variable note update according to (7),
resulting in q(i).

4.3 Density Evolution Equations for Coupled Ensembles
For spatially coupled ensembles, as illustrated in Fig. 4, we have a sequence of
L graphs whose constraint nodes and variable nodes are placed at time instants
t = 1, . . . , L. We consider ensembles with uniform coupling, i.e., every edge
from a variable node at time t is connected to a constraint node at time t′ ∈
{t, t+ 1, . . . , t+m} with probability 1/(m+ 1), where m is called the coupling
memory.

For conventional SC-LDPC codes a constraint node represents a rate (dc −
1)/dc single parity-check code and the update equation becomes

p
(i)
t = 1−

(
1− 1

m+ 1

m∑
ℓ=0

q
(i−1)
t−ℓ

)dc−1

. (13)

For CC-GLDPC codes with punctured component code trellises, we update the
transfer functions (8)–(9) with the input erasure probabilities

q
(i)
s,t =

1

m+ 1

m∑
ℓ=0

q
(i−1)
t−ℓ , (14)

q
(i)
p,t =

q
(i)
s,t + dc − 2

dc − 1
(15)

and obtain p
(i)
t analogously to (12) for each t. Before the first iteration i = 1,

the input erasure probabilities are initialized to q
(0)
t = ϵ for t ∈ {1, . . . , L}. For

all other t, the code symbols are known to be zero by definition and q
(0)
t = 0.
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At the variable nodes, the DE update can be written as

q
(i)
t = ϵ ·

(
1

m+ 1

m∑
ℓ=0

p
(i)
t+ℓ

)dv−1

, t = 1, . . . , L . (16)

4.4 BP and MAP Thresholds
The BP threshold ϵBP is defined as the largest channel erasure probability ϵ for
which the a-posteriori erasure probabilities p(i)a at the output of the BP decoder
converge to zero for all variable nodes as the number of iterations i tends to
infinity. The probabilities p

(i)
a = ϵ ·

(
p(i)
)dv can be computed by repeated use

of the density evolution equations for different ϵ. The (bitwise) MAP threshold
ϵMAP can obtained by applying the area theorem [13,14], which makes it possible
to connect the performance under BP decoding to that of MAP decoding. Let
p̄e(ϵ) = limi→∞ p̄a(ϵ)

(i)/ϵ denote the average extrinsic probability of erasure.
An upper bound on the MAP threshold can be computed by the equation∫ 1

ϵMAP

p̄e(ϵ)dϵ = R , (17)

where R is the rate of the considered code.

5 Results and Discussion

5.1 Minimum Distance Bounds
The minimum distance bounds, computed using (3) with α = 0.5 for the ensem-
bles of rate R = 1/3 and R = 1/2, are shown in Fig. 5(a) and (b), respectively.
It follows from the bound that half of the codes in an ensemble must have min-
imum distance dmin ≥ d̂. From the figure, it is observed that in general the
minimum distance improves when the component code gets stronger. Further-
more, for a given component code the distance improves if the variable node
degree is increased. Interestingly, for R = 1/3, the weakest CC-GLDPC codes
with 2-state components appear to have better minimum distance than clas-
sical LDPC codes. The results show that we indeed can reduce the variable
node degree if we increase the number of states of the component encoder. For
example, codes from the (3, 6) ensemble with 4 states have better minimum
distance than those of the (4, 8) ensemble with 2 states and the (4, 8) LDPC
ensemble. As expected [10], the minimum distances of LDPC ensembles with
variable node degree 2 are very poor, which is also observed for the 2-state
CC-GLDPC ensembles.

5.2 Thresholds
Table 1 shows the BP thresholds and MAP thresholds for the uncoupled ensem-
bles of rate R = 1/3 and R = 1/2. It is observed that BP thresholds tend to
decrease with increasing variable node degree and increasing number of trellis
states. However, MAP thresholds tend to increase with increasing variable node
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Figure 5: Bound on the minimum distance: a fraction α = 1/2 of codes in an
ensemble have dmin ≥ d̂: (a) R = 1/3 (b) R = 1/2.

degree and increasing number of trellis states. An exception from this behav-
ior is observed for 2-state ensembles and LDPC ensembles with variable node
degree 2 at rate R = 1/2.3

In order to understand the trade-off between variable node degree and num-
ber of trellis states, we compare the minimum distances, BP thresholds and
MAP thresholds of the (2, 3) ensemble with 4 states and 8 states, the (4, 6) en-
semble with 4 states, and the (6, 9) ensemble with 2 states. The (2, 3) ensemble
with 8 states has better BP and MAP thresholds than the (6, 9) ensemble with
2 states, but the minimum distance is clearly worse. If a comparable minimum
distance is a requirement, but it is desired to keep the variable node degree
as low as possible, then the (4, 6) ensemble with 4 states can be used instead.
In terms of the BP decoding performance, this ensemble is not as good as the
(2, 3) ensemble with 8 states or the (6, 9) ensemble with 2 states, but it has the
best MAP threshold among these three ensembles. The strong MAP threshold
of the (4, 6) ensemble with 4 states makes it a compelling candidate for spatial

3These ensembles are poor and not of practical interest. As shown in [15], regular GLDPC
ensembles with dv < 3 require component codes with minimum distance dmin > 2 in order
to guarantee that the block error probability tends to zero at the BP threshold.
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Thresholds States Graph rate 1/3
(2,3) (4,6) (6,9)

ϵBP 2 0.6086 0.5339 0.4698
ϵMAP 2 0.6213 0.6564 0.6610
ϵBP 4 0.5618 0.4464 0.3853
ϵMAP 4 0.6647 0.6662 0.6664
ϵBP 8 0.5352 0.4041 0.3401
ϵMAP 8 0.6659 0.6665 0.6666
ϵBP LDPC 0.2570 0.5061 0.4034
ϵMAP LDPC 0.5089 0.6658 0.6667

Graph rate 1/2
(2,4) (3,6) (4,8)

ϵBP 2 0.3234 0.4110 0.3916
ϵMAP 2 0.3444 0.4557 0.4737
ϵBP 4 0.4426 0.3929 0.3555
ϵMAP 4 0.4890 0.4958 0.4976
ϵBP 8 0.4249 0.3638 0.3225
ϵMAP 8 0.4955 0.4985 0.4991
ϵBP LDPC 0.1725 0.4294 0.3834
ϵMAP LDPC 0.4002 0.4883 0.4978

Table 1: Thresholds of uncoupled ensembles.

coupling.
The BP thresholds of the spatially coupled ensembles are shown in Table 2

for different coupling memories m, until saturation to the MAP threshold occurs.
Due to the threshold saturation phenomenon, the BP thresholds approach the
MAP thresholds as m increases and the (4, 6) ensemble with 4 states from
our example above has now a better BP threshold than the other considered
ensembles.

6 Conclusion
We have introduced a family of GLDPC codes with convolutional code con-
straints, which allows a one-by-one comparison with corresponding LDPC code
ensembles of arbitrary variable node and check node degrees. Although we have
focused in this work on regular graphs only, the ensembles can easily be ex-
tended to irregular codes by removing some edges in the graphs. Furthermore,
it is possible to use component codes of lower rate at the constraint nodes, but
then the rate of the resulting ensembles will be different from the LDPC code
ensembles defined by the same graphs. An advantage of using convolutional
codes at the constraint nodes is that the strength of the component codes can
be altered without changing the node degrees in the graph.

The considered ensembles permit us to study the trade-off between variable
node degree and component code strength in terms of their minimum distance,
BP decoding thresholds and MAP decoding thresholds.4 A larger number of

4Note that the computational complexity increases with the number of trellis states and
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States/SC Graph
memory (2,3) (4,6) (6,9) (2,4) (3,6) (4,8)
2/1 0.6212 0.6532 0.6294 0.3345 0.4556 0.4715
2/2 - 0.6563 0.6586 - 0.4557 0.4736
2/3 - 0.6563 0.6608 - - -
2/4 - 0.6564 0.6609 - - -
4/1 0.6581 0.6351 0.5822 0.4885 0.4911 0.4829
4/2 0.6645 0.6639 0.6510 0.4890 0.4956 0.4967
4/3 0.6647 0.6661 0.6643 - 0.4957 0.4975
4/4 - 0.6662 0.6662 - - -
4/5 - - 0.6663 - - -
8/1 0.6479 0.6029 0.5364 0.4917 0.4825 0.4644
8/2 0.6643 0.6560 0.6271 0.4953 0.4974 0.4947
8/3 0.6658 0.6651 0.6570 0.4954 0.4983 0.4987
8/4 0.6659 0.6664 0.6645 - 0.4984 0.4991
8/5 - - 0.6662 - - -
8/6 - - 0.6664 - - -
8/7 - - 0.6665 - - -
LDPC/1 0.5014 0.6611 0.6118 0.3348 0.4880 0.4943
LDPC/2 - 0.6655 0.6622 - 0.4881 0.4977
LDPC/3 - 0.6655 0.6664 - - -
LDPC/4 - 0.6655 0.6665 - - -
LDPC/5 - 0.6656 - - - -

Table 2: Thresholds of SC ensembles.

trellis states is shown to yield better minimum distances and MAP thresholds
but degraded BP thresholds. This degraded BP performance is avoided by
applying spatial coupling to the underlying uncoupled ensembles. It can also
be seen from the threshold results that for a regular LDPC ensemble with dv >
2, there is an alternative CC-GLDPC ensemble, having a lower variable node
degree than the LDPC ensemble, that has a better BP threshold and a similar
or better MAP threshold than the LDPC ensemble.

with the node degrees. A complete analysis of the complexity/performance trade-off is beyond
the scope of this work.
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Improving the Thresholds of Generalized
LDPC Codes with Convolutional Code

Constraints

We propose a generalized framework for the design of convolutional
code (CC) based GLDPC codes. A novel construction method of class of
CC-GLDPC codes is presented, which extends the construction method
of CC-GLDPC codes discussed in [1]. We leverage the BP EXIT function
technique, that was used for the LDPCs in [2], in the thresholds analysis to
the proposed class of codes, and perform an exhaustive search using these
thresholds in finding the CC-GLDPC codes with competitive thresholds.
Results show that for low-rate CC-GLDPC codes, a trade-off between the
BP and the MAP optimized CC-GLDPC codes offer a moderate BP decod-
ing performance, with steep slopes in the waterfall region and no visible
error-floor. For high-rate CC-GLDPC codes, the MAP optimized CC-
GLDPC codes seem to be the preferred design choice. MAP optimized
CC-GLDPC codes are in general observed to have structure matching to
a regular graph, whereas BP optimized CC-GLDPC codes are composed
of an irregular graph.

M. U. Farooq, A. G. i. Amat, and M. Lentmaier,
"Improving the Thresholds of Generalized LDPC Codes with Convolutional Code
Constraints", To be submitted at IEEE Communication Letters in Nov 2022.
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1 Introduction
A family of regular GLDPC codes with convolutional code (CC) constraints
was introduced in [1]. These CC-GLDPC codes can be viewed as turbo-like
codes with regular graph structure [3] and hence as an extension of braided
convolutional codes to arbitrary regular graphs. The aim was to identify the
performance trade-off between CC-GLDPC codes with strong component codes
and lower variable node degree to conventional LDPC codes with larger vari-
able node degree. The decoding thresholds and the minimum distances of CC-
GLDPC codes and LDPC codes were compared. It was observed that sparser
CC-GLDPC code graphs—graphs with lower variable node degrees—with a suit-
able trellis strength can perform better than the LDPC codes with similar graph
structure. Furthermore, their performance was comparable to LDPC codes with
denser graph structures in some cases.

It was observed that both the minimum distance of CC-GLDPC codes and
their MAP thresholds improve with either the strength of the component code
trellis or increasing the variable node degree of the graph at the expense of
degraded BP thresholds. This type of performance behavior make CC-GLDPC
codes suitable for spatial coupling (SC). Indeed, the SC-CC-GLDPC codes were
observed numerically to exhibit threshold saturation phenomenon. Some prac-
tical matters regarding CC-GLDPC codes such as encoding, optimization of
graph structures were still an open question.

In this paper, we extend the concept of CC-GLDPC codes to a much broader
class of codes containing both irregular and regular graph structures for a given
design rate. Some strategies to numerically search the CC-GLDPC codes opti-
mized for BP and MAP performance are discussed, where the search is restricted
to a sub-class of a broader class of codes. The search results show the potential
of irregularity in the CC-GLDPC codes that are optimized for BP configura-
tions. A search strategy tailored to leverage both the optimized BP and MAP
performances is further explored, and its findings are discussed as well. Finally,
the threshold analysis is validated through bit-error-rate (BER) simulations.

2 An Ensemble of Irregular GLDPC Codes with
Convolutional Code Constraints

2.1 Compact Graph Representation
CC-GLDPC codes, analogously to protograph-based LDPC codes, can be de-
scribed by means of a compact graph representation, as shown in Fig. 1(a) for
a (2, 4)-regular ensemble [1]. In general, each variable node corresponds to a
block of code symbols and each constraint node to a convolutional code Cj of
rate rj = kj/nj and memory mj , represented by a trellis of length Nj . The
degree dc,j of a constraint node is equal to the number of code symbols per
trellis section, i.e., dc,j = nj .

The value Nj is equivalent to the lifting factor of a protograph node, and the
number of edges ne,j = dc,j ·Nj in the lifted graph are equal to the total number
of code symbols in the corresponding trellis. The permutations occur along the
edges of the compact graph. A component code Cj of rate rj = kj/nj ≥ 1/2 can
be constructed by puncturing a rate rm = 1/2 mother code trellis with kjNj
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(a) (b)

Figure 1: Compact graph: (a) (2,4) regular ensemble (b) proposed ensemble
with adjustable constraint nodes.

sections. The factor graph of the mother code trellis is illustrated in Fig. 2(a),
together with the corresponding constraint node. The desired rate is achieved
by combining kj sections to a rate kj/(2kj) code and puncturing 2kj − nj of
the parity bits. The punctured bits are shown as non-shaded variable nodes in
Fig. 2(b).

Within this paper we assume that the number of constraint nodes is equal
to two and all variable nodes have degree dv = 2, i.e., both information and
parity symbols are protected twice by a trellis. The resulting overall codes have
length n = (ne,1 + ne,2)/2. In order to improve the decoding thresholds we
consider different types of irregularity at the constraint node side while keeping
the variable nodes regular.

2.2 Irregular Component Code Memory
Under a preserved graph structure, in [1] the strength of the code ensemble was
changed by varying the component code strength. Component code trellises
with generator polynomials having trellises memories of one, two and three,
respectively were used.

An irregular CC-GLDPC w.r.t. the component code trellis strength is ob-
tained when m1 ̸= m2, whereas a regular CC-GLDPC w.r.t. the component
code trellis strength is obtained when m1 = m2. In this work, we have utilized
the trellises with memories mj = 1, 2, 3 having generator polynomials (1, 1/3),
(1, 5/7), and (1, 13/15). A strong feature of trellis based GLDPC codes is that
the strength of the component codes can be changed without altering the graph
structure, or equivalently the design rate rD of the graph.

2.3 Irregular Distribution of Edges
Now consider the case that dc = dc,1 = dc,2, N1 ̸= N2, and m1 ̸= m2. In this
case, both the strengths and the proportions of the component codes Cj become
irregular, but their rates are kept regular. Let us introduce ρj , which represents
the fraction of the total number of edges that are connected to Cj , which can
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Figure 2: Factor graph representation of a constraint node trellis (a) Rate 1/2
trellis (left) in a constraint node (right). (b) Trellis section at time t after

puncturing to rate kj/nj .

be expressed as

ρ1 = ρ =
dc,1 ·N1

dc,1 ·N1 + dc,2 ·N2
, ρ2 = 1− ρ . (1)

A varying ρ produces a family of codes with a varying proportion of Cj , under
a fixed R = 1− 2/dc, and fixed component code rates r = r1 = r2.

2.4 Irregular Component Code Rates
For a given design rate R, an irregularity w.r.t. the component code rates pair
r = (r1, r2) is achieved if r1 ̸= r2, whereas regularity w.r.t. the rates is achieved
if r1 = r2. Regular or irregular component code rates rj can be combined with
regular or irregular memories mj , and regular or irregular lifting factors Nj

under the constraint that the design rate R remains fixed. The design rate in
terms of component code rates pair r = (r1, r2), is expressed as

R(ρ, r) = 1− dv(1− rc(ρ, r))

= 2rc(ρ, r)− 1 ,
(2)

where rc denotes the average component code rate

rc(ρ, r) = ρ r1 + (1− ρ) r2 . (3)

For a given r1 and a fixed design rate R we can then express r2 as a function of
ρ, namely

r2(ρ) =
rc − ρ · r1
(1− ρ)

=
(R+ 1)/2− ρ · r1

(1− ρ)
. (4)



148 PAPER V

We remark that both r1 and r2 are rational fractions, and lie within the
interval [rm, 1), where rm = 1/2 is the rate of the mother code trellis used in
this work. For a given design rate R or an averaged component code rate rc,
a family of CC-GLDPC codes with irregular component codes is obtained for
ρ ∈ [0, 1].

3 Threshold Analysis and Optimization
In this section, we discuss the exhaustive grid search employed in the CC-
GLDPC code design space to determine the CC-GLDPC codes with competitive
decoding thresholds. The search uses the DE and MAP decoding thresholds of
the considered code space on the BEC. A more efficient and reliable BP and
MAP thresholds computation method than the DE analysis method that was
used in [1] is discussed. Furthermore, the derivation of the decoder transfer
function of a punctured trellis is also described. In the end, the findings of the
exhaustive search are discussed.

3.1 Density Evolution Equations
The mother code transfer functions of considered generator polynomials can be
derived by following the method explained in [3]. Suppose fs and fp denote
the decoder transfer functions of systematic and parity bits of the mother code,
then

p(i)s = fs(q
(i)
s , q(i)p ), (5)

p(i)p = fp(q
(i)
s , q(i)p ), (6)

where p(i)s and p
(i)
p are the erasure probabilities of the outgoing extrinsic message

from the CN, and the q
(i)
s and q

(i)
p are the erasure probabilities of the incoming

extrinsic messages to the CN. If the parity bits of the mother code trellis are
punctured randomly with a uniform distribution to achieve the desired compo-
nent code rate, then the incoming erasure probabilities to the transfer functions
become

q(i)s = q(i−1), (7)

q(i)p =
2kj − nj

kj
· 1 + nj − kj

kj
q(i−1) . (8)

After the decoding, the erasure probability of the averaged extrinsic message
from Cj is computed using

p
(i)
j =

kj
nj

· p(i)s +
nj − kj

nj
· p(i)p . (9)

Combining the contributions of both decoders we get

p(i) = ρ1p
(i)
1 + ρ2p

(i)
2 = fT(q

(i−1)) , (10)

where the transfer function fT(·) follows from applying equations (5)–(9). Fi-
nally, including the variable node update the DE recursion can be expressed
as

q(i) = ε · fT(q
(i−1)) . (11)

The transfer function of the punctured trellis in (9) is applicable for a rate
range of

(
1/n(j), · · · , (n(j) − 1)/n(j)

)
.
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3.2 Computation of BP and MAP Thresholds
We use the BP-EXIT function hBP(ε) [4] to determine the BP and MAP thresh-
olds of CC-GLDPC codes, which in parameterized form is expressed as

hBP(ε) =

{
(ε, 0) ε ∈ [0, εBP)
(ε(x), f2

T(x) ε ∈ (εBP, 1] ↔ x ∈ (xBP, 1]

since we restrict the variable node degree to dv = 2 in this work. Note that xBP

corresponds to value of x for which ε(x) is minimum.
The MAP threshold is determined from the BP-EXIT function as

R(ρ, r) =

∫ 1

εMAP
hBP(ε) dε .

3.3 Threshold Optimization
A CC-GLDPC code design space is constructed by choosing the component
codes: rates pair r, trellis memory pair m, degrees pair dc or equivalently the
fraction pair (ρ, 1 − ρ). The resulting code space is infinite dimensional along
component code rates pair r, and fractions pair (ρ, 1− ρ). We remark that the
possible choices of component code rates, and the fraction ρ are interlinked via
(3), which must be satisfied for the codes belonging to the code space.

The restriction to a code graph with two CNs and degree two VNs results in
a symmetry in the component code rates. This symmetry allows us to reduce
the dimensions of the code space to r1, ρ and m instead. Note that r2 is
computed from (4) for a given ρ ∈ [0, 1] and r1 ∈ [rc, 1). The graph symmetry
in component code rate implies that for a fixed ρ, when r2 lies within [rm, rc],
then the resultant r1 lies within [rc, 1). This holds even when the rate ranges
described above are swapped.

A significant reduction of the code space comes from the discretization. The
discretization of the code space is linked to the length of the sequence ρ =
(2/n, · · · , (n − 2)/n). For n → ∞, the length of the sequence, and possible
choices of component code rates approaches infinity. This corresponds to infinite
dimensional code space. A discretized code space is obtained by limiting the
number of edges n in a code graph.

A reduced code space—characterized as r1(ρ,m, r2) for ρ = (2/n, · · · , (n−
2)/n) with a finite n, r2 ∈ [rm, rc], and all trellises strengths pairs m —become
feasible for an exhaustive grid search using the BP and MAP thresholds on
the BEC. With a fine enough resolution in reduced space, the findings of the
exhaustive search may be regarded as reliable.

3.4 Results and Discussion
Thresholds of CC-GLDPC codes having regular graph structure dc,1 = dc,2,
N1 = N2, and both regular and irregular trellis strengths are shown in Ta-
ble 1 (left). It can be observed that irregularity w.r.t. trellis strength alone,
while keeping the component codes degrees, and rates regular, doesn’t offer
performance improvement compared to the fully regular CC-GLDPC codes.

Figure 3 shows how an irregular distribution of edges, characterized by the
parameter ρ, influences the thresholds. Choosing the best parameter ρ = ρ∗
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(m1,m2), εBP εMAP ρ∗ εBP

(1, 1) 0.3334 0.3361 - -
(2, 1) 0.4423 0.4570 103/128 0.4453
(3, 1) 0.4396 0.4673 56/128 0.4399
(2, 2) 0.4429 0.4889 - -
(3, 2) 0.4339 0.4926 0 0.4429
(3, 3) 0.4249 0.4955 - -

Table 1: Thresholds of R = 1/2 CC-GLDPC codes with irregular trellis
strength.
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Figure 3: BP and MAP thresholds vs ρ of rate R = 1/2 CC-GLDPC codes
with irregular trellis strength.

results in the values shown in Table 1 (right). Now the BP threshold can be
improved compared to the fully regular case.

Now we compute BP and MAP thresholds of rate R = 1/3, 1/2, 2/3 CC-
GLDPC codes over the complete search space, including irregular component
code rates. For a given trellis memory pair m, the exhaustive search produces a
family of curves εBP as a function of r1(ρ) for each ρ. The design configuration
with the best BP decoding performance then corresponds to the largest BP
threshold in the family of curves εBP(r1(ρ,m)).

Suppose ρ∗ denotes the fraction that produces the best BP threshold in the
reduced code space. The plot of εBP as a function of r1(ρ = ρ∗,m) for rD = 1/2
CC-GLDPC is shown in Fig. 4. The plot is obtained by projecting the curves
εBP of all trellis memory combinations into a single dimension. It can be seen
from the figure that ρ∗ = 0.5212, m = (3, 2), and r1 = 0.6554 constitute the
design parameters corresponding to the best BP threshold of rate R = 1/2 CC-
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Figure 4: BP Threshold vs rate at ρ∗ of Rate 1/2 CC-GLDPC codes with
irregular component code rates.

GLDPC codes. Similarly, we obtain the design configuration with best MAP
decoding performance.

The design parameters corresponding to best BP and best MAP thresholds
for R = 1/3, 1/2, 2/3 are listed in Table 2. It is observed that the irregular
CC-GLDPC graph structures yield the best BP and MAP decoding thresholds.
However, the MAP decoding performance of the regular code ensembles is very
similar to that of the irregular ones, also visible in Table 2.

4 Finite Length Performance of CC-GLDPC
codes

We perform BER simulations of length n = 102400 CC-GLDPC codes with
the design configurations corresponding to the best thresholds w.r.t. the BP
and MAP decoding performance listed in Table 2. Some strategies leading
to a trade-off between the BP thresholds and error floors are also discussed.
The simulations are compared with AWGN channel thresholds. Table 3 shows
AWGN channel thresholds computed by the erasure channel prediction method
used in [5], while the thresholds in Table 4 are obtained by Monte Carlo DE
based on histograms.

The threshold computation of CC-GLDPC codes in this work assumes an
unstructured code graph. The simulation of such unstructured CC-GLDPC
codes results in a BER performance with high error floor. This is circumvented
by introducing a semi-structured graph. An edge type is distinguished by the
CN to which an edge in the graph is attached to. In this way, a type-1 edge
from a VN is connected to the first CN, and a type-2 edge is connected the
second CN in the code graph. The number of variables nodes or block length
n = ne/2 in the graph. In the semi-structured ensembles construction, we first
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Parameter Best BP MAP (r) Best MAP (ir)

Rate-1/3 CC-GLDPC

εBP 0.6441 0.5352 0.5356
εMAP 0.6603 0.6659 0.6660
(ρ∗, 1− ρ∗) (0.4773,0.5227) (0.5,0.5) (0.3295,0.6705)
(r(1), r(2)) (0.5159,0.8043) (0.6667,0.6667) (0.6552,0.6723)
(m(1),m(2)) (2,2) (3,3) (3,3)

Rate-1/2 CC-GLDPC

εBP 0.4799 0.4249 0.4250
εMAP 0.4858 0.4955 0.4955
(ρ∗, 1− ρ∗) (0.5215,0.4785) (0.5,0.5) (0.2266,0.7734)
(r(1), r(2)) (0.6554,0.8531) (0.75,0.75) (0.7414,0.7525)
(m(1),m(2)) (3,2) (3,3) (3,3)

Rate-2/3 CC-GLDPC

εBP 0.3041 0.2893 0.2893
εMAP 0.3093 0.3189 0.3189
(ρ∗, 1− ρ∗) (0.8274,0.1726) (0.5,0.5) (0.1726,0.8274)
(r(1), r(2)) (0.8082,0.9540) (0.8333,0.8333) (0.8276,0.8345)
(m(1),m(2)) (3,3) (3,3) (3,3)

Table 2: Design Parameters of Best Thresholds

rD Parameter Best BP Regular Best MAP (ir)

1/3 εBP -0.1261 1.4747 1.4692
1/3 εMAP -0.3893 -0.4824 -0.4841

1/2 εBP 0.4511 1.1565 1.1548
1/2 εMAP 0.3740 0.2467 0.2467

2/3 εBP 1.4313 1.6216 1.6216
2/3 εMAP 1.3648 1.2426 1.2426

Table 3: Predicted Thresholds Eb/N0(ρ
∗)-dB of CC-GLDPC

combine the n symbols with their permuted version through a length-n pseudo-
random permutor Πs with spreading factor s. Next, the first ne,1 symbols of
the combined sequence are connected to C1. The remaining ne,1 symbols are
connected to the second C2.

BER simulations of rates R = 1/3, 1/2, 2/3 semi-structured CC-GLDPC
codes with design configurations in Table 2 are shown in Fig. 5. The AWGN
channel thresholds shown in the figure correspond to Table 3. In general, the
BP optimized CC-GLDPC codes BER plots of the considered ensembles show
a larger gap between the waterfall performance and the capacity. Furthermore,
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rD Parameter Best BP Best MAP (ir)

1/3 (Eb/N0)
BP -0.0046 1.2386

1/2 (Eb/N0)
BP 0.9953 1.0616

2/3 (Eb/N0)
BP 1.6037 1.6516

Table 4: MC-DE-H Thresholds Eb/N0(ρ
∗)-dB of CC-GLDPC

high-rate BP optimized CC-GLDPC codes exhibit an error floor in the per-
formance, whereas no visible error floor is present for the rate R = 1/3 BP
optimized CC-GLDPC codes down to a BER of 10−7.

MAP optimized CC-GLDPC codes on the other hand reveal an excellent
waterfall performance with steep slopes in the waterfall region. Additionally,
no error floor is observed in the performance of these ensembles down to the
BER of 10−7. Low-rate MAP optimized CC-GLDPC codes, however, show a
relatively poor BP decoding performance due to their weak BP thresholds. The
BP threshold of MAP optimized CC-GLDPC codes is observed to improve with
increased code rate. This threshold improvement is observed by measuring the
gap in the sub-optimal decoding performance of the BP and MAP optimized
CC-GLDPC codes. The gap is observed to be the largest for R = 1/3, whereas
it is smallest for R = 2/3. Such an improvement is observed to be consistent in
the BER performance as well.

For ensembles with trellis strengths (3, 3) in Table 2, the decoding complexity
can be interpreted in terms of total length of the trellises k1N1 + k2N2, and the
number of decoding iterations. In this work, maximum number of iterations are
restricted to 100 during the performance simulations. It is observed that the
BP optimized CC-GLDPC codes require larger number of iterations compared
to the MAP optimized CC-GLDPC codes. For instance, for MAP optimized
ensembles, 10 decoding iterations were observed to be sufficient to achieve an
adequate performance, whereas for the BP optimized ensembles the required
number of iterations were observed to be fluctuating around 50 to 60.

4.1 Concluding Remarks
We have introduced different types of irregularity at the constraint nodes of
CC-GLDPC codes in order to improve their BP and MAP decoding thresholds.
The proposed ensemble can be flexibly tuned in terms of trellis memory, fraction
of edges connected to the different constraint nodes, and the component code
rates. An exhaustive grid search was then performed over these three dimensions
to optimize the thresholds. Our results show that the BP thresholds can be
improved compared to the turbo-like code ensembles considered in [3].
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Figure 5: BER simulations.
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