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Abstract

The Internet of Things (IoT) is a large network of connected devices. In IoT, de-
vices can communicate with each other or back-end systems to transfer data or
perform assigned tasks. Communication protocols used in IoT depend on target
applications but usually require low bandwidth. On the other hand, IoT devices
are constrained, having limited resources, including memory, power, and com-
putational resources. Considering these limitations in IoT environments, it is
difficult to implement best security practices. Consequently, network attacks can
threaten devices or the data they transfer. Thus it is crucial to react quickly to
emerging vulnerabilities. These vulnerabilities should be mitigated by firmware
updates or other necessary updates securely. Since IoT devices usually connect to
the network wirelessly, such updates can be performed Over-The-Air (OTA). This
dissertation presents contributions to enable secure OTA software updates in IoT.

In order to perform secure updates, vulnerabilities must first be identified and
assessed. In this dissertation, first, we present our contribution to designing a ma-
turity model for vulnerability handling. Next, we analyze and compare common
communication protocols and security practices regarding energy consumption.
Finally, we describe our designed lightweight protocol for OTA updates targeting
constrained IoT devices.

IoT devices and back-end systems often use incompatible protocols that are
unable to interoperate securely. This dissertation also includes our contribution to
designing a secure protocol translator for IoT. This translation is performed inside
a Trusted Execution Environment (TEE) with TLS interception.

This dissertation also contains our contribution to key management and key
distribution in IoT networks. In performing secure software updates, the IoT
devices can be grouped since the updates target a large number of devices. Thus,
prior to deploying updates, a group key needs to be established among group mem-
bers. In this dissertation, we present our designed secure group key establishment
scheme. Symmetric key cryptography can help to save IoT device resources at
the cost of increased key management complexity. This trade-off can be improved
by integrating IoT networks with cloud computing and Software Defined Net-
working (SDN). In this dissertation, we use SDN in cloud networks to provision
symmetric keys efficiently and securely. These pieces together help software devel-
opers and maintainers identify vulnerabilities, provision secret keys, and perform
lightweight secure OTA updates. Furthermore, they help devices and systems with
incompatible protocols to be able to interoperate.
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Introduction

Internet of Things (IoT) is an emerging technology that can connect a massive
number of smart devices around the world to each other and to the Internet. This
ability can be used for applications in smart homes, smart cities, healthcare, and in-
dustry. The key enablers of IoT were advances in communication in Wireless Sen-
sor Networks (WSNs) and the increasing availability of low-cost and low-power
devices that led to the popularity of IoT networks. However, these devices are
constrained with limited resources, including memory, power, and storage, mak-
ing them an attractive attack target. Providing security is a challenging task in
IoT. In software maintenance of IoT devices, vulnerabilities first need to be iden-
tified and assessed. Then, a lightweight and secure mechanism need to be used
to deploy upgrades and patches regularly. Other than security reasons, a firmware
update can also be utilized to deploy new features to the devices. In IoT, updates
are usually performed Over-The-Air (OTA), eliminating the need for detaching
devices and attaching cables during the update procedure, further reducing main-
tenance costs. There are many challenges in IoT environments that make secure
OTA upgrade procedures difficult. One of the main challenges is that IoT de-
vices are resource-constrained; furthermore, communication links often have low
reliability and low bandwidth. This challenge makes it difficult to apply security
solutions, such as implementing support for secure network protocols or digital
signatures. However, many secure and lightweight communication protocols were
designed for IoT at different network layers; some application layer protocols are
CoAP, MQTT, and OSCORE. These protocols consider the limitations of IoT
devices and can cope with low-bandwidth channels in IoT networks. Since IoT
devices are often battery operated, the devices’ lifetimes are highly affected by the
running operations and used protocols. An upgrade procedure is a highly energy-
consuming task (due to writing data to the flash memory); therefore, according
to the network and devices' requirements, the most suited protocol and security
options (considering energy consumption) for OTA upgrade need to be selected
or designed.

In IoT low-bandwidth networks, instead of flooding the network with broad-



2 Introduction

cast messages, multicast transmission is preferred, especially in OTA update cases
where the update or patch targets a large number of devices. In multicast OTA
upgrade, a group of IoT devices can be upgraded at once without flooding the
network. This requires an efficient selection of devices that need to be upgraded.
After selecting or grouping the devices for upgrade, one of the challenging tasks is
to share a secret key among group members (devices) that can be used later to pro-
tect upgrade messages. The secret key can be transferred to the devices (belonging
to the group) in a secure one-to-one way, but even in the key establishment phase
in IoT environments, a one-to-many way is preferred.

Another challenge in IoT is heterogeneity. The devices are heterogeneous and
are based on different network platforms (including both resource-constrained de-
vices and resource-rich servers) and protocols. Meanwhile, they need to interact
with other devices or back-end servers through different protocols. Interoperabil-
ity is used in IoT to address heterogeneity challenges; interoperability is the ability
to enable heterogeneous devices and servers to communicate with each other in
an efficient way and exchange data. Interoperability is a critical aspect of IoT, and
without interoperability, it is challenging to enable IoT networks’ connectivity.
In IoT, interoperability is a complex and difficult aspect since solutions to enable
interoperability need to consider heterogeneity of IoT environments, including
protocols, communication technologies, standards, etc.

Traditional solutions to provide interoperability through intermediary ele-
ments such as physical gateways are not scalable, and usually have poor security
[Hee+11]. Therefore, new scalable and secure solutions to enable interoperabil-
ity for IoT are required. To facilitate interoperability in IoT, Software Defined
Network (SDN), which is a set of networking technologies, can be used. SDN
networking abstracts and virtualizes network functionalities. The administrator
can access and control network functions through the SDN controller. SDN can
be used to make IoT interoperability scalable and abstracted from the endpoints.
To deal with interoperability security, middle-boxes (that perform protocol trans-
lation) can be created within Trusted Execution Environments (TEEs). TEE is
a secure processing environment where the integrity and confidentiality of the
loaded code and data can be protected. An unauthorized entity outside the TEE
cannot tamper with the code or data inside the TEE. As a result, to enable in-
teroperability through protocol translation, the protected transferred data can be
decrypted, processed, and re-encrypted securely inside a TEE.

Cloud computing provides on-demand system resources, data storage, and
computational power, and it has several benefits, including scalability and (almost)
unlimited resources. Cloud computing can be integrated with IoT networks to fill
the gaps of IoT, such as limited storage and limited computational power. SDN is
used in cloud computing to enable efficient network configuration and improve
network performance. Public key cryptography, rather than symmetric cryptog-
raphy, is mainly used to enable secure networking in SDN and cloud computing.
Public key cryptography is scalable; however, it requires heavy operations that
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make it unsuitable for most IoT environments [TTW17]. As a consequence, sym-
metric key cryptography is preferred in IoT. Symmetric key operations require
less computational power, but key provisioning is more difficult than in public
key cryptography. SDN can be used as a tool to efficiently provision and manage
symmetric keys in cloud and IoT environments.

In this thesis, we first focus on identifying and assessing vulnerabilities dur-
ing software maintenance. Then we focus on analyzing and designing security
practices and solutions that can be utilized by IoT devices to make secure and
lightweight upgrades feasible. These solutions consider the challenges of IoT en-
vironments mentioned above. Later we focus on designing a solution that makes
secure interoperability possible between IoT protocols. Finally, we focus on devel-
oping key management and distribution mechanisms suitable for IoT networks.
Our solutions utilize tools and approaches including SDN, TEE, and cloud com-
puting. They are designed for different stages of the software upgrade procedure,
including the key establishment and the actual update.

1.1 Dissertation Qutline

After the brief introduction and the scope of this dissertation, the rest of the disser-
tation is organized as follows. In Chapter 2, we present the technical background
together with the current state of research topics in this dissertation.

In section 2.1, we describe software maintenance and a tool used for software
maintenance (maturity model). In section 2.2, we discuss [oT concepts and com-
mon application layer protocols in IoT. In section 2.3, we cover cryptographic
concepts such as symmetric cryptography, asymmetric cryptography, hash func-
tions, digital signatures, etc. In section 2.4, we explain transport layer security
protocols, including TLS, DTLS, and TLS extensions. In section 2.5, we present
the concept of Over-The-Air (OTA) updates in IoT, transmission ways for OTA
updates, security requirements of OTA updates, and attacks on OTA updates. In
section 2.6, we describe group key management and different approaches for that.
In section 2.7, we explain the concept of interoperability in IoT, interoperabil-
ity approaches, and TLS interception. In section 2.8, we discuss cloud computing
and the technologies enabling cloud computing, such as virtualization and orches-
tration systems. In section 2.9, we cover SDN networking, OpenFlow protocol,
and Open vSwitch. In section 2.10, we describe the concept of Trusted Execution
Environment, Intel SGX, attestation, and some other Trusted Execution Environ-
ments. In section 2.11, we explain formal verification, modeling, and verifying
security properties using ProVerif. We present the contributions of each paper in
section 3.1, that is followed by conclusions in section 3.2. Finally, in the second
part of this dissertation, we present the included publications.






Background

In this chapter, we present the background of the various research fields of the
dissertation contributions.

In the following section, we explain software maintenance and maturity model;
it plays an important role in software vulnerability handling.

2.1 Software Maintenance

The Software Development Life Cycle (SDLC) [GS15] includes different stages
such as design, development, testing, deployment, and maintenance. Mainte-
nance is in the last stage of SDLC, and IEEE [Com+90] defines software main-
tenance as “the process of modifying a software system or component after delivery to
correct faults, improve performances or other attributes, or adapt to a changed en-
vironment”. Vulnerability handling is an essential part of software maintenance.
Security vulnerabilities [SZ12], weaknesses in software design or implementation
that can be exploited and result in software security breaches, can be seen as a
type of fault in software that has gained more attention in recent years. Security
vulnerabilities can cause attacks impacting organizations and customers on a large
scale. In recent years due to the increasing demand for IoT networks and cloud
computing, the attacks have become more sophisticated. Hence, an important
part of software maintenance is regularly applying software updates to eliminate
known security vulnerabilities. The main focus of this thesis is software updates in
IoT networks, and in such networks, the devices are usually unattended for long
periods. They are required to be frequently re-programmed Over-The-Air (OTA)
to resolve security vulnerabilities. OTA updates and its challenges (addressed in
this thesis) are described in detail in section 2.5.

2.1.1 Software Components

Software development can be component based such that reusable components are
assembled and developed. These components are usually divided into two types

[BWP16]:



6 Background

* Open Source Software (OSS): OSS components are obtained from differ-
ent OSS communities, and instead of developing all the code in-house, they
can be used to decrease development and software maintenance time. OSS
software component maintenance can focus on updating the component
when new versions are released by the community.

* Commercial Off-The-Shelf (COTS): COTS components are available in
commercial sources, and they are usually bought from those sources or
companies. In COTS components, time to market and also the develop-
ment time and costs are much lower than in-house developed components

[Wel08].

Identifying and evaluating new vulnerabilities accurately and efhciently and regu-
larly applying updates are important. It is also urgent to apply updates resulting
from security vulnerabilities or breaches in organizations using OSS or COTS
components.

Maturity models can help organizations in the software maintenance phase to
identify and handle vulnerabilities; maturity models are explained in detail in the
following section.

2.1.2 Maturity Model

Maturity is defined as “a measure to evaluate the capabilities of an organization in
regards to a certain discipline” [De +05]. Maturity models outline the desired,
and logical evolution paths towards maturity [BKP09]. They are seen as tools
that facilitate internal and external benchmarking and help organizations improve
their way of working by introducing and implementing organizational changes.
These changes are a step-by-step progression towards organizations’ capabilities
[Bec+10]. Implementing and applying maturity models is a slow process and re-
quires resources, efforts, and support both from management and other work-
forces throughout the organization. In order to support the required changes for
implementing improvements, the internal communication processes must be well
defined and implemented. Organizations can use maturity models to identify
the issues in improving and prioritizing their efforts (for example, in vulnerabil-
ity handling). It also helps organizations to make sure no important aspects in
implementing the changes are neglected. However, maturity models do not de-
scribe how these changes should be implemented; hence these changes are highly
dependent on the type, size of the organization, business domain, regulations, etc.

In order to assess the maturity of organizations, various maturity levels can be
used, and organizations need to fulfill some particular characteristics to reach a
specific level of maturity [Bec+10]. The maturity levels provide information about
the state of an organization. Different maturity models are described with 4 or 5
maturity levels, 5 maturity levels were defined in [Tea02] which are the basis of
many other maturity models, and they are described below:
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* Level 0: At this level, the processes within the organization are either not
performed or partially performed, but the defined goals of the processes are
not satisfied.

* Level 1: The specific goals of the enterprise are satisfied at this level. At this
level, the required work and practices to produce identified output from
specific input are supported. However, these practices might be performed
informally without following documented plans.

* Level 2: At this level, the processes are managed, which means that they are
performed based on defined policies using available resources to produce
output. The processes are monitored, controlled, reviewed, and evaluated.
Based on the results of the output, corrective actions are performed.

* Level 3: Processes are defined, established, and improved over time at this
level. The organization establishes standard processes that are the base ele-
ments of defined processes. Standard processes also describe the relationship
between these elements.

* Level 4: At the highest level, statistical and other quantitative measures are
used to control managed processes. Quantitative objectives are also defined
and used as criteria to manage the processes. These objectives are based on
the capability of the organization to set standard processes, the organiza-
tion’s business objectives, and customers’ need, etc.

Today, a variety of maturity models are used by organizations, and they con-
tain some aspects of vulnerability handling, such as vulnerability identification,
assessment of vulnerabilities, and vulnerability disclosure policy. However, vul-
nerability handling of third-party code (OSS or COTS components) is missing
in most of these maturity models. When the use of third-party components in-
creases, it is also important to include handling vulnerabilities of third-party code
in the maturity models.

2.2 Internet of Things

The term Internet of Things (IoT) [REC15] is used to describe a network of con-
nected devices or sensors to the Internet. IoT has become popular in recent years
in scenarios where connecting to the Internet extends to different sensors, objects,
and devices. Objects or devices connected to IoT are seen as key enablers of smart
homes, smart cities, and wearables. Connected devices can be monitored and con-
trolled remotely. They can gather and transfer real-time data to other devices or
back-end systems for further analysis. These features can improve healthcare mon-
itoring, energy management, traffic control, waste management, and many other

things.
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Many IoT protocols have emerged to enable Machine-to-Machine (M2M)
communication in [oT. They cope with the characteristics of IoT networks, in-
cluding low bandwidth connections, unreliability, latency, etc. The protocols were
also adapted to the limitations of constrained connected devices such as limited
power, memory, and CPU [Elh+18]. These protocols have different characteristics,
and for each IoT application, the most appropriate protocol should be selected.
A sample IoT protocol stack [SGI18] is depicted in Figure 2.1. HTTP, MQTT,
CoAP, and OSCORE are popular IoT protocols at the application layer. TCP
and UDD, as well as TLS and DTLS, are transport layer protocols. IPv6/IPv4 and
6LoWPAN in the network layer provide network routing. At the lowest layer or
physical layer, WiFi, BLE or other protocols enable data exchange.

Application Layer { MQTT, }{ CoAP, }

HTTP OSCORE

( 1s  J( DrLS |
( tce  J( upp

Transport Layer

Network Layer ‘ IPv6/IPv4/6LoWPAN ’

Physical Layer 802.XX, BLE, etc.

‘ WiFi, IEEE ’

Figure 2.1: A sample protocol stack for loT

2.2.1 Common Application Layer IoT Protocols

The application layer enables the application communication between IoT end-
points. It is responsible for providing services and determining a set of protocols
for message exchange at the application level [YS+16]. In this section, we explain
the common IoT application layer protocols related to this thesis.

HTTP

Hyper Text Transfer Protocol (HTTP) was developed in 1997 by IETF and W3C
jointly [Nail7]. It is a request-response protocol in client-server networks; it is a
text-based protocol that uses the Universal Resource Identifier (URI) instead of us-
ing topics to send and receive data [Nail7] (topic is a string that is used in MQTT
to tag and filter messages). HT'TP is a stateless protocol since each request is han-
dled independently without knowledge of previous requests. HT'TP typically uses
TCP as the underlying transport protocol and TLS for security, but HT'TP does
not provide Quality of Service (QoS).



2.2 Internet of Things 9

CoAP

Constrained Application Protocol (CoAP) is a lightweight protocol and was de-
veloped by IETF CoRE (Constrained RESTful Environments) Working Group.
It utilizes a URI to identify resources available on IoT devices instead of topics.
CoAP is similar to HTTP, with some modifications to meet lIoT-specific require-
ments, such as operating in Lossy Networks (LN) and Low Power (LP) consump-
tion [BCS12]. Itis a request and response protocol that runs over UDP; thus it sup-
ports both unicast and multicast CoAP requests. In CoAP reliability is provided
by the type of the messages and messages can be confirmable or non-confirmable.
Confirmable messages always require an acknowledgment (ACK) by the receiver.
In contrast, non-confirmable messages do not, and this type of message is useful
when the messages repeat regularly for the application requirements. Like HT'TP,
CoAP uses different methods, including GET, PUT, POST, and DELETE. CoAP
uses datagram transport layer security (DTLS) to protect the network communi-

cation [SHBI14b], and CoAP supports four different security modes:

* NoSec: DTLS is disabled in this mode, and no protocol-level security is
provided.

* PreSharedKey: In this mode, DTLS is enabled, and there is a list of pre-
shared keys, and each of them includes a list of nodes that the key can be
used to communicate with.

* RawPublicKey: In this mode, DTLS is enabled, and an asymmetric key pair
without a certificate (a raw public key) is pre-installed on the IoT device.

* Certificate: DTLS is enabled and the device uses asymmetric key pair but
this time an X.509 certificate is used that is signed by a trusted root. The
device has a list of trusted roots in order to validate a certificate.

In order to avoid IP fragmentation, a CoAP message should fit into a single
IP datagram; hence an IP Maximum Transmission Unit (MTU) of size 1280 bytes
should be used. If nothing is known about the headers, an upper bound of 1152
should be set for the message size, and 1024 bytes for the payload size [SHB14b].

For scalability and efficiency in CoAPD, proxies can be used, but CoAP-to-CoAP
or CoAP-to-HTTP proxies require the termination of DTLS or TLS session at the
proxies [Sel+19b]. Therefore, there is a security risk in the sense that an untrusted
proxy might eavesdrop and manipulate the payload of the messages. One way of
avoiding the end-to-end security problem with proxies is to use object security that
protects the messages on the application level, i.e., the CoAP level. This was the
primary motivation for introducing the Object Security for Constrained RESTful
Environments (OSCORE) protocol [Sch17].



10 Background

OSCORE

OSCORE is an extension of the CoAP protocol, and instead of securing a session,
it aims to protect end-to-end CoAP requests and responses. OSCORE protects
the messages on an object level and uses the Concise Binary Object Representation
(CBOR) for compact encoding. The messages are encapsulated as encrypted and
authenticated CBOR Object Signing and Encryption (COSE) [Sch17] objects.
Besides encryption and integrity protection, OSCORE provides replay protection
and request-to-response binding. Request-to-response binding is important to
protect against attacks forwarding a response to a request other than the intended
one.

OSCORE protects not only the CoAP payload but also the CoAP options
and parts of the URI indicating targeted resources in the request. OSCORE is
lightweight since it only protects the relevant application layer information, and
the added data to the actual CoAP message is 11-13 bytes. In order to use OS-
CORE, the devices must support CBOR and COSE, as well as the HMAC-based
Key Derivation Function (HKDF) and Authenticated Encryption with Associated
Data (AEAD) algorithms for key derivation and authenticated encryption. Other
than that, the devices must have an OSCORE security context to extract the key-
ing material [Gun+21]. The security context is a set of the necessary information
to perform cryptographic operations. Sender and recipient contexts are derived
from the common context. The sender protects messages by sender context, and
the receiver verifies them using recipient context. To derive the security context,
OSCORE requires a pre-shared master secret on the devices.

In OSCORE, different parts of CoAP messages can be protected in different
ways [Gun+21]. Confidential data is encrypted and integrity protected and cannot
be read or tampered with by the intermediate nodes such as proxies. Static data is
only integrity protected and can be read, and dynamic data is not protected at all.

MQTT

Message Queue Telemetry Transport (MQTT) is a messaging publish/subscribe
protocol over TCP. It is a lightweight protocol and can be used for many-to-many
communications [SM17]. In MQTT, a broker (server) operates alongside a set of
clients. The broker receives messages from the clients and routes them to their
designated destination clients. Clients can be publishers or subscribers; publishers
publish messages tagged with a topic, and subscribers can receive those messages.
The connection between publishers and subscribers is done through the broker,
and there is no direct connection between them. MQTT uses TCP as the transport
protocol, and to implement communication security, the broker and clients can
use TLS for communication. MQTT enables reliability using three different QoS
levels [SM17] as described below:
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* QoS0 (At most once): This level does not provide any acknowledgment of
delivering messages, and the messages are sent at most once.

* QoSl1 (At least once): In this level, it is possible to send messages more than
once until an acknowledgment is received.

* QoS2 (Exactly once): In this level of QoS, the messages are sent exactly one
time with the help of a 4-way handshake to ensure exactly one copy of the
message is received.

2.3 Cryptography

The base of secure communication on the Internet is cryprography [Kes03], and it
is essential for many applications, such as secure payments and protecting pass-
words. In application-to-application communication over the Internet, cryptog-
raphy needs to be used in order to provide the following features [Kes03]:

* Confidentiality: To make sure no one except the intended receiver can ac-
cess the message.

* Integrity: To make sure that the message has not tampered.

* Authentication: To prove the identity of communicating peers.

In general cryptographic schemes are divided into two groups [Sti05], sym-
metric key cryptography and asymmetric or public key cryptography; and they are
further discussed below.

2.3.1 Symmetric Key Cryptography

In symmetric key cryptography, a symmetric secret key is used both for encryp-
tion and decryption, and the same symmetric key must be known by both sender
and receiver [Kes03]. Thus, the major concern in symmetric key cryptography is
key distribution, or key management [Blu+92]. Symmetric methods are generally
categorized into two categories: stream ciphers or block ciphers. In stream ciphers,
each byte is encrypted at a time, while in block ciphers, one block of data is en-
crypted at a time. In this thesis, we only used block ciphers, and we describe the
used block cipher modes next:

* Cipher Block Chaining (CBC): In this mode, each plaintext block is XORed
with the previous ciphertext block before encryption [Kes03]. Thus, the ci-
phertext blocks are dependent on each other. The first block is XORed with

an initialization vector (IV).
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* Galois/Counter (GCM): GCM [MV04] combines Counter Mode (CTR)
of encryption with the Galois message authentication code (GMAC), GMAC
can generate incremental message authentication codes (message authenti-
cation codes are described in section 2.3.4). Similar to CTR, a counter for
each block is considered, and then this block counter is combined with an
IV. The combined value is then encrypted, and the result is XORed with
the plaintext to produce each block of ciphertext.

¢ Counter with Cipher block chaining Message authentication code (CCM):
This mode combines CBC-MAC mode (CBC-MAC of a message is gener-
ated by encrypting the message in CBC mode with zero IV and keeps the
last block.) with the CTR mode of encryption [WHFO03]. These modes
are applied in authenticate-then-encrypt order. This means CBC-MAC is
applied to the message first to generate a tag; then, the message and the tag
are encrypted together using CTR mode. The difference between CCM_8
with CCM is that it uses 8 octets for authentication instead of 16 octets.

One of the most popular symmetric key cryptography algorithms is Advanced
Encryption Standard (AES) [Dwo+01], which is used in this thesis. AES was estab-
lished by the National Institute of Standards and Technology (NIST) in 2001. In
AES, three key lengths can be used [Kes03]: AES-128, AES-192, and AES-256; key
lengths of 128, 192, and 256 bits are used to encrypt and decrypt 128 bits block of
messages, respectively. The key size specifies the number of transformation rounds
that should apply to the input to generate the final output. The required rounds
on different key lengths are as follows: 10 rounds for 128-bit keys, 12 rounds for
192-bit keys, and 14 rounds for 256-bit keys. In AES, before applying the rounds,
a plaintext input is converted into four to four matrices consisting of rows and
columns. Each round is then built up of several processing steps [SV18]: substi-
tution, transposition, and mixing of the columns of the plaintext input. In the
substitution step, each byte of data is replaced with another byte according to a
substitution table. In the transposition round, the bytes in each row are shifted to
the left a certain number of times. In the mix columns step, each column consist-
ing of four bytes is multiplied with a defined matrix. Finally, the resulted matrix
is XORed with the key to generate the cipher text.

2.3.2  Asymmetric Key Cryptography

In asymmetric encryption, a pair of keys, public and private keys, are used to
encrypt and decrypt data [Kes03]. The public key may be known by others and is
used for encrypting messages. Then, the relevant private key is used to decrypt the
data. Diffie-Hellman (DH) [Hel+76] algorithm was one of the first development
in the area of public key cryptography, it was discovered in 1976 and was invented
as a solution to the key distribution problem. In the DH algorithm, both sender
and receiver require to have private and public key pairs. Both peers compute the
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same shared secret by combining one’s private key with the other peer’s public key
[Res+99]. For instance z, y, A = g mod p, B = g¥ mod p, are the private
keys and public keys of sender and receiver respectively (p is a large prime and
g is a primitive root modulo p). Then, the shared secret S can be computed by
both peers as: S = B* mod p = AY mod p = g*¥ mod p. The security of
DH algorithm is based on hardness of discrete logarithm problem (DLP) that for
a given p, g, and g* mod p it is hard to compute .

One of the most well-known public key cryptography algorithms is RSA (Rivest
—Shamir—Adleman) [RSA78] that is used mostly for digital signatures (digital sig-
natures are explained in detail in section 2.3.5) or encryption of small blocks. The
public private key pair is derived from a large number, 7, which is the product of
two prime numbers p and ¢ (7 is used as the modulus for both the public and
private keys). The exponent ¢ is selected that is a number between 1 and (p - 1)(g
— 1) and the only common factor between ¢ and (p - 1)(q — 1) is 1. The public key
is then the bundle of (,¢). The number 4 is then derived from the inverse of ¢
modulo (p - I)(q—1). The private key is bundled as (7,4). To encrypt a message, M,
the sender creates the cipher text as C' = M® mod n. The receiver then decrypts
the cipher text using the private key as M = C? mod n. In these calculations,
the attacker cannot determine the prime factors of 7 or, subsequently, the private
key. The security of RSA is due to the difficulty of factorization of large prime
numbers.

Elliptic Curve Cryptography (ECC) is another public key cryptography that
was first proposed independently by Koblitz [Kob87] and Miller [Mil85] in 1985.
ECC is based on elliptic curves over finite fields and can offer the same level of se-
curity as RSA but with much smaller key sizes. This makes it ideal for devices with
limited resources, including power and memory, e.g., constrained IoT devices and
smart cards [Kes03]. The security of the ECC algorithm is based on the Ellip-
tic Curve Discrete Logarithm problem that is hard to solve [KAS08]. An Elliptic
Curve (EC) is defined as y? = 23 +ax+b. One of EC features is addition; adding
two points on the curve result in another point that is again on the curve. Another
EC feature is multiplication, multiplying a positive integer # to a point result as the
sum of # copies of the point. The EC can also be used in DH key exchange proto-
col, and the resulting protocol is called Elliptic-Curve Diffie-Hellman (ECDH)
[BJS07]. In the ECDH key exchange protocol, the sender first chooses a random
secret d,, that is its private key and then generates its public key as Q, = d,G,
where G is the base point on the curve that sender and receiver agreed on. The
receiver does the same procedure and calculates its public and private key pair.
After exchanging the public keys, the sender and receiver can calculate the shared
secret S as [KAS08]: S = d,Qp = dodpy G = dpd,G = dp @, and use it to secure
further communication.

Different ECC curves have different names (e.g., secp256r1, secp256kl), field
size (that defines the key length, e.g., 256 bits), strength, and other parameters.
ECC keys can have different length such as: 192-bit (curve secp192rl), 224-bit
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(curve secp224kl), 256-bit (curves secp256k1 and secp256r1), etc. The main curves
used in this thesis are the Koblitz curve (such as secp256k1) and the prime field
curve (such as secp256r1). The main difference between them is that Koblitz curves
are a few bits weaker than prime field curves [Bjo09]. Prime field curves are NIST
curves and are the most widely used.

2.3.3 Hash Functions

Hash functions or message digest algorithms are one-way mathematical functions
that take an input and generate a fixed length output without the usage of any
key [Sti05]. In hash functions, the input is called the message, and the output
is called the hash value or digest. Cryptographic hash functions have additional
security requirements and are used in security applications. Cryptographic hash
functions are not reversible, meaning it is impossible to obtain the plaintext or its
length from a hash value. The usage of cryptographic hash functions is to provide a
digital fingerprint on the data to ensure that an intruder attacker has not tampered
with it. The widely used hash algorithms belong to the Secure Hash Algorithm
(SHA) family.

SHA is a family of cryptographic hash functions published in 1993 by the
U.S. government agency NIST [SA93]. SHA hash functions include SHA-0, fol-
lowed by SHA-1 (1995), SHA-2 (2001), and SHA-3 (2015). In this thesis, SHA-2
is used. SHA-2 consists of different hash functions, such as SHA-224, SHA-256,
SHA-384, and SHA-512. SHA-256 with 32 bits output and SHA-512 with 64 bits
output are widely used hash functions. These two hash functions have a similar
structure but differ in the number of rounds, shift amounts, and additive con-
stants. The SHA-2 family is considered to be secure in most applications.

The family SHA-3, which is the latest member of the SHA family, was released
by NIST [Dwo+15] in 2015. It consists of four cryptographic hash functions:
SHA3-224, SHA3-256, SHA3-384, and SHA3-512. SHA-3 is based on Keccak,
which was designed by Bertoni et al. Keccak was developed in 2012 as a fully
functional hash standard. Later in 2014, NIST published the SHA-3 draft as FIPS
202, and finally, it was approved in 2015 [Dwo+15]. The SHA-3 uses a sponge
construction in which the data is absorbed into the hash function, and then the
result is squeezed out [DCDI17]. In the absorbing phase, small blocks of the data
are mixed into the buffer using XORs; then, the result is transformed as a whole
using a permutation function. Later in the squeezing phase, instead of XORing,
the same blocks of data are extracted as the output.

2.3.4 MAC

Message Authentication Codes (MACs) are known as tags and are used between
two parties that share a secret key to protect the integrity of transmitted messages
[Tur08]. The authenticity of the messages is also protected using MAC to ensure
the message was sent from the actual sender. Similar to hash functions, a MAC
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function also compresses an input into an output with a fixed length. The main
difference between the hash and MAC functions is that MAC utilizes a secret key
in the compression procedure. MAC:s are different from digital signatures since,
in the MAC, the output values are generated and verified with the help of the
same secret key. Therefore, the sender and receiver must agree on a key before
transferring messages (similar to symmetric encryption).

HMAC or Hash-based Message Authentication Code [Tur08] is a specific type
of MAC which utilizes a hash function and a secret cryptographic key to obtain
the HMAC value.

2.3.5 Digital Signatures

Digital signatures are used in many applications today to verify that the sender
of the message is authenticated (authenticity) and to ensure that the message has
not been tampered with after signing (integrity). They can also provide a non-
repudiation feature, which means that the signer of the message cannot later claim
they did not sign the message. It is used to prove that the alleged sender actually
sent the message. Digital signatures utilize asymmetric cryptography. Generally, a
digital signature scheme consists of three main steps: 1) key generation where the
private and public keys are selected; 2) signing step in which a signature is created
using a message and the private key; 3) verification step where the signature is
verified using the message, the public key, and the signature. The digital signature
algorithms used in this thesis are described below:

* RSA: The RSA public key cryptography can also be used for digital sig-
natures to sign and verify messages. RSA digital signatures are based on
the modular exponentiation and the computational difficulty of the RSA
problem [Sti05]. Similar to RSA cryptography, the RSA signature algo-
rithm key pair consists of a public key (n,¢) and a private key (n,d). RSA
signing and verifying are as follows: 1) The hash of the message is gener-
ated as: » = hash(message); 2) The hash is used to create the signature as:
signature = h® mod n, the created signature is then in range /1..n/. 3) To
verify the signature, the hash of the message () is generated, and A/ is cal-
culated as: ' = signature® mod n, if h and 4’ are equal then the signature
is valid.

* DSA: The Digital Signature Algorithm or DSA was proposed by NIST in
1991 [Nis92]. DSA is also based on modular exponentiation, discrete loga-
rithm problem, and its computational difficulty. Similar to RSA, this algo-
rithm uses a public and private key pair, the private key is used for signing
a message, and the signed message is verified by using the signer’s public
key. The DSA algorithm consists of three steps [Nis92]: 1) in key gen-
eration, first, a prime number ¢, known as the prime divisor, is selected.
Then another prime number, p, is selected such that p-I is a multiple of 4.
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Then the integer 4 is selected randomly from /2..p-2/, and g is calculated as:
g = h?=D/9 30d p. x is the private key which is a random integer from
[I..q-1] and y the public key that is y = ¢ mod p. Finally the private key
is packaged as /p, ¢, g x/ and the public key package is {p, ¢, g y/. 2) The
message is first hashed to get the hash value /A in the signature generation.
A random integer £ is selected from /1..¢-1], then 7 is calculated as: r = (g*
mod p) mod q. Then s is calculated as: s = k=Y (H+xr) mod g. The signature
is then (5 ). 3) In signature verification, first the hash of the message is
calculated (H) and it should be verified that 0 < 7 < gand 0 < s < gq.
Then the following values are computed: w = s mod g, w1 = Hw mod
g, ug = rw mod g, v = (g"1 y"2mod p) mod q. 1If v and r are equal the
signature is valid.

ECDSA: The Elliptic Curve Digital Signature Algorithm (ECDSA) [JMVO01]
is a variant of the DSA that uses elliptic curve cryptography. For creating
the ECDSA signature sender and receiver first must agree on curve param-
eters (Curve, G, n). The hash of the message is calculated as e. The private
and public key pair is (dgy, Qq = doG) respectively. A random integer # is
selected from /1..n-1], and a curve point is calculated as (1, y1) = #G. Then
7 and s are calculated as 7 = z1 mod n, s = k™1(2 + rd,) mod n where z is
the L,, leftmost bits of e. The signature is then (7 5). The receiver then first
verifies if 7 and s are in the range of /I..7-1/, then the hash of the message
is calculated (¢) and the L,, leftmost bits are extracted as z. Then, u; =
2871 mod nand ug = s~ mod n are calculated. Finally the curve point is
calculated as (z1,y1) = w1 G + u2Qq, if 7 = 1 mod n then the signature is

valid.

2.3.6 Elliptic Curve Integrated Encryption Scheme

In this thesis, other than public key and symmetric key cryptography, we used
Integrated Encryption Scheme (IES). IES provides capabilities for encryption,

key exchange, and digital signatures; hence, it is called Integrated Encryption

Scheme. IES is a hybrid encryption scheme that uses both public key and sym-
metric key cryptography, and the security of this scheme is based on the compu-
tational Diffie-Hellman problem [JNO03]. A variant of IES used in this thesis is
Elliptic Curve Integrated Encryption Scheme (ECIES). ECIES uses the following
functions [MEA10]:

* Key Derivation Function (KDF) produces a set of keys from keying material

and other optional parameters.

* Symmetric encryption algorithm.

* MAC is used to authenticate messages.



2.4 Security of Transport Layer 17

The elliptic curve parameters are (p, 4, b, G, n, ), where p is the prime number,
a and b are parameters defining the curve, G is the base point on the curve, 7 is
the order of elliptic curve, and 4 is the cofactor.

The encryption steps are as follows [MEA10]: 1) Alice or the sender generates
a random number 7 in the range /1..n-1] and calculates R = 7G. 2) Then, a shared
secret is derived as § = P, where P = (P, Py)=rKp (Kp is the public key of Bob
derived from Bob’s private key or kp as Kp = kpG). 3) KDF is used to derive
the symmetric encryption and MAC keys as kg||kas = KDF(S). 4) The message is
encrypted as ¢ = E(kg,m). 5) The tag is calculated as & = MAC(kjpy,c), and finally
the output message is R||c||.

Upon receiving the message Bob follows these steps to decrypt the message: 1)
Bob derives the shared secret S = P, using P = (P;, Py) =kpR = kprG =rKp.
2) Then he derives keys using KDF the same way Alice derived the keys. 3) He
checks whether MAC(kpy,c) is equal to & or not. 4) If the MACs are equal, he

uses symmetric encryption to decrypt the message.

2.3.7 Quantum Resistant Cryptography

Advances in quantum computing can break classical cryptographic systems, which
are based on the hardness of computational problems such as integer factorization
and discrete logarithms. These problems can be solved efliciently by a quantum
computer [Sho94]. If a quantum computer with several thousands quantum bits
can be built, many public key encryption algorithms, including RSA and ECC,
will no longer be secure [Sho94]. However, the impact of quantum computers on
symmetric key cryptography is not as drastic as public key encryption. To pro-
tect against Grover’s algorithm [Gro96a], which provides a quadratic speed-up for
quantum search algorithms, usually doubling the key size will be sufficient to pre-
serve security [Che+16]. Exponential speed up for search algorithms, including
Grover’s algorithm, is not possible, which makes symmetric algorithms and hash
functions usable in the quantum era as well [Ben+97]. Another countermeasure
is to switch to computational problems that are hard to solve with quantum com-
puters. These problems are quantum-resistant including discrete lattices [MR09]
and hard coding problems [OS09]. These algorithms are out of the scope of this
thesis.

2.4 Security of Transport Layer

Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)
are designed to provide communication security at the transport layer [DR08a].
The main goal of TLS/DTLS is to provide data privacy and integrity between
communicating peers, for that two communicating peers establish a secure session

and use it to protect the application messages. The main difference between DTLS
and TLS is that DTLS is built on UDP, while TLS uses TCP. TLS and DTLS
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protocols are composed of two layers: record protocol and handshake protocol
[DRO8a]. The handshake protocol is used to authenticate the communicating
peers, negotiate cryptographic information, and establish a shared secret. While
the record protocol is used to protect traffic between the communicating peers
with the help of established parameters during the handshake protocol. In the
following, we explain these protocols and their differences in different versions of
TLS and DTLS protocols.

241 TLS

In the record protocol of TLS, the connection has the following features [DR08a];
it is encrypted with a symmetric encryption (e.g., AES), and for each separate con-
nection, these keys need to be generated uniquely. The connection is reliable, and
the messages include an integrity check using a keyed MAC (e.g., SHA-2 and
SHA-3). The TLS record protocol is used to encapsulate higher-level protocols
such as the TLS Handshake Protocol. In the TLS handshake, first, the client and
the server specify which version of TLS they use and decide on cipher suites, a set
of encryption algorithms to establish the secure connection they are going to use.
Then, the client and server authenticate each other using asymmetric public key
encryption (e.g., RSA), and they generate session keys to use as symmetric encryp-
tion after finishing the handshake. Another possible approach for authentication
during the handshake is using symmetric pre-shared keys [ET05a] owned by the
client and the server. In this approach, the client suggests to the server which sym-
metric key it intends to use. TLS 1.2 handshake protocol is depicted in Figure
2.2a, and it is built up of the following steps [DR08a]:

* First, the client sends ClientHello message to the server, then the server
sends back a ServerHello message. In the hello messages, the TLS pro-
tocol version, session ID, cipher suites, and generated random values are
exchanged.

* Following the hello messages, the server sends its certificate back to the client
to be authenticated. The client verifies the server certificate and confirms
the server is the actual server. The server may send a ServerKeyExchange
message only if required (e.g., if the server has no certificate). The server may
require the client certificate as well. When the hello messages are complete,
the server sends a ServerHelloDone message to the client.

* Based on the public key algorithm selected between the ClientHello and
the ServerHello messages, the client sends the ClientKeyExchange message,
which contains secret key information encrypted using the server’s public
key. The server decrypts the message with its own private key. Both client
and server can now generate the secret key (session key) based on the re-
ceived information.
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(a) TLS 1.2 handshake

Figure 2.2: TLS 1.2 and 1.3 handshakes

* Finally, the client sends the ChangeCipherSpec message followed by a Fin-
ished message encrypted with the secret key. The server also sends back its
ChangeCipherSpec message followed by a Finished message encrypted with
the secret key. At this step, the handshake is done, and the client and server
can exchange application layer data.

 Seerfldlo 4

Key share
Finished

(b) TLS 1.3 handshake

TLS 1.3 [Resl8] is the latest version of TLS, which was defined by Internet

* The first phase is the key exchange phase, and in this phase, the client sends

Engineering Task Force (IETF) in 2018. The main differences between TLS 1.2
and TLS 1.3 are as follows: 1) in TLS 1.3, a zero round-trip time (0-RTT) mode
was added to save a round trip during the connection. Using 0-RTT, the client
can send data early on the first flight (in case multiple messages are transmitted at
the same time, they are grouped together as a flight). 2) TLS 1.3 mandates forward
secrecy, and a new session key is generated for each new session; even if a session
gets compromised, the adversary cannot gain access to the previous messages. TLS
1.3 handshake has three phases [Res18] that are depicted in Figure 2.2b and these
phases are:
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the ClientHello message containing a random value, supported protocol
versions, a list of supported cipher suites, and the client’s key share for the
key agreement protocol. The client may include the PSK extension if a pre-
shared secret has been established between the client and the server. This
extension is explained in section 2.4.3.

* The server then sends back its own ServerHello message, which contains
the selected key agreement protocol and the server’s key share, as well as the
server Finished message (In TLS 1.3, sending the Finished message already
in step 2 saves 4 steps compared to TLS 1.2).

* The client can generate the secret key based on the server’s key share, and
finally, the client sends back a Finished message. At this point, the hand-
shake is complete, and the client and server can send encrypted application
data.

2.4.2 DTLS

TLS is the most widely used protocol for securing network traffic; however, it
must run over TCP and cannot be used to run over unreliable transport protocols,
e.g., UDP. DTLS [RM+06] was designed to execute over UDP, and it is a datagram
compatible version of TLS. DTLS does not provide any reliability, and it is suitable
for use in applications such as online gaming, media streaming, etc.

The record layer in DTLS is quite similar to TLS; only an explicit sequence
number is added to the record of each DTLS message. This sequence number
makes the messages independent from one another; thus, they can be correctly
processed despite the unreliable transport protocol and out-of-order delivery. The
sequence number allows the recipient to verify the DTLS MAC. DTLS MAC
handling differs from TLS, and records with bad MACs are just discarded, while
in TLS, the connection is terminated. The other difference between DTLS and
TLS is that stream ciphers are not supported in DTLS. DTLS record must fit into
a single datagram to avoid IP fragmentation. Thus, DTLS messages contain a
fragment offset and a fragment length.

The DTLS handshake is depicted in Figure 2.3. The client starts the hand-
shake with ClientHello message. Once the ClientHello is received by the server, a
Hello Verify Request which includes a locally generated cookie is sent to the client
[TGS17]. After receiving this message by the client, it should respond with the
second ClientHello message that includes the cookie from the server. The server
verifies the cookie, and only if it is valid it proceeds with the rest of the handshake.

DTLS handshake messages are similar to TLS handshake with three main
changes:

* A stateless cookie is added to prevent Denial-of-Service (DoS) attacks. Af-
ter the ClientHello message, the server may respond with a Hello Verify
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Figure 2.3: DTLS handshake

Request message that contains a stateless cookie and causes the client to re-
send the ClientHello with the added cookie. This technique makes DoS
attacks with spoofed IP more difficult, since it forces the attacker to receive
a cookie.

* In order to avoid IP fragmentation, the handshake message is divided into
N different parts with the same sequence number, and the fragment offset
in these messages is set.

* A retransmission timer is added to handle message loss. In DTLS, messages
are grouped together as message flights, and in case the timer expires, the
whole flight of messages will be retransmitted. Packet loss can be handled
by means of local timeouts and message retransmission policies [TGS17].

2.4.3 TLS Extensions

TLS messages can contain different extensions, and in (D)TLS 1.3, in case PSK
is used to establish cryptographic material, the ClientHello message must include
psk_key_exchange_modes and pre_shared_key mode [Res18]. The extension psk_key_
exchange_modes specifies the psk_ke or psk_dhe_ke key exchange mode. In psk_dhe_
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ke or PSK-with-DHE the handshake includes an ephemeral Diffie-Hellman key
exchange, which can provide forward secrecy. In ephemeral Diffie-Hellman, a new
temporary DH private key is generated for every connection to enable forward se-
crecy. On the other hand, the psk_ke handshake does not provide forward secrecy
in the case of PSK.

The pre_shared_key extension is used to negotiate the identity of the pre-shared
key to be used in a handshake. This extension includes a collection of offered pre-
shared keys in the form of a list of key identities and key binders [Res18], and they
are listed as follows:

* Key identities are a list of the identities that the client is willing to negotiate
with the server.

* Key binders are a list of HMAC values, one for each value of the identities
in the same order. The HMAC values are HMAC calculated with a binder
key derived from the corresponding pre-shared key.

When the client wants to use one of the two PSK-based key exchange modes,
first, it suggests one or several PSK identities be used in the pre_shared_key exten-
sion of the ClientHello message [Res18]. Further, it uses the psk_key_exchange_mo-
des extension to indicate which PSK mode is supported such as psk_ke or psk_dhe_ke.
Later, if one of the PSK identities is accepted by the server, the chosen identity will
be included in the pre_shared_key extension of the ServerHello message.

2.5 Over-The-Air Updates

An IoT system consists of services distributed in various devices that can com-
municate and collaborate with each other or back-end systems [ROL18]. In such
systems, the firmware (software for hardware) is an important part of the system
since it interacts with the hardware and it implements the required specifications
of the system [FRP17]. Furthermore, it can provide specific functionality in in-
teraction with hardware components. The IoT firmware may change due to sys-
tem reconfiguration related to the communication with other systems or the users
[FRP17]. This change might be required for bug and error correction, mainly due
to security-related issues, upgrading the system feature, etc. Applying the changes
can be accomplished by changing the firmware without modifying the hardware of
the devices. The devices, including IoT devices, require an interface to modify the
firmware, and in case this interface is connected to the network, the updates can
be applied over the network, which is referred to as Over the Air (OTA) update
[FRP17]. Using OTA, the updates can be performed remotely, which decreases the
maintenance costs drastically. Automation methods can be applied to the OTA
update procedure to apply fixes in a controlled manner. Using OTA, feedback can
be sent to the administrator on the success or failure of the update. OTA updates
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can be triggered periodically or on-demand. All update procedures throughout
this thesis are OTA on-demand updates.

2.5.1 Transmission Ways for OTA Updates
OTA updates can be transmitted in three different ways [Mal+10]:

* Unicast: In unicast OTA update, the software or firmware is sent only to
one device at a time.

* Multicast: In multicast communication, the update is targeted to one or
more receivers. In such a case, one or more senders might also be avail-
able. IP multicast is a dynamic way of many-to-many connection between
a group of senders and receivers. The format of packets in IP multicast is
identical to the unicast packets since they use a special class of destination
address (indicating a specific multicast group). 7CP does not support mul-
ticast mode; therefore, multicast packets use UDP as the transport protocol.
In multicast communication, the devices will receive the packets only if they
have previously joined the multicast group address [Mal+10]. Group mem-
bership can be controlled by the devices or the network administrator. In
this thesis, it is only possible by the network administrator.

* Broadcast: In broadcast communication, the update is sent to all devices in
the network.

Between the above communication methods, multicast is helpful in most [oT net-
works to perform OTA updates since, in an OTA update, there are usually a group
of devices targeted to the update procedure. Multicasting can also save bandwidth
[Mal+10], which is limited in most IoT networks.

2.5.2  Security Requirements of OTA Updates

The OTA updates introduce attack vectors, e.g., Bluetooth, and Wi-Fi, to the ma-
licious attackers [HGC20]. Using these attack vectors, the attackers can endanger
the OTA updates and further reprogram or control IoT devices. It is essential to
provide the security of the OTA updates during the whole update procedure steps,
including downloading and storing update packages. Thus, a secure OTA update
procedure needs to fulfill the following security requirements [Asc+12; HGC20]:

* Protecting the update packages during transmission: Update patches or
firmware updates are usually divided into different packages. Authenticity,
confidentiality, and integrity of update packages transmitted from the up-
date server to IoT devices must be guaranteed. This protection needs to be
established end-to-end from the update server to the end devices.
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* Protecting the update packages while stored: When update packages are
received on the IoT side, they must be stored securely until the software
update is installed. It should not be possible for an attacker to tamper with
the intermediate packages that are stored.

* Authorization verification: In the update or upgrade procedure (update is
used to apply patches, while the upgrade is used to update the version), only
the authorized servers must be able to update IoT devices.

* Compromise-tolerant: In case a single device is compromised, the security
of other devices in the network must be preserved.

* Protection and mitigation of overloading the devices: In IoT, since the
devices’ resources are limited, it is possible that an attacker aims to perform
a DoS attack. Using a DoS attack, the attacker can force the device to verify
the fake or malicious update packages and further cause consumption of
resources.

In the majority of IoT applications ranging from smart homes to smart cities,
IoT devices are powered by batteries; therefore, DoS attacks targeting these devices
are usually battery-draining attacks. The IoT battery draining attacks are explained
in section 2.5.3.

2.5.3 OTA Update Attacks

OTA update attacks can have different targets, including IoT devices, intermediate
links, and the update servers [EB22]. The attacks on the update servers are out of
the scope of this thesis.

The most common attack on the intermediate links is the Man-In-The-Middle
(MITM) attack, in which the attacker tries to spoof the exchanged packages be-
tween loT devices and the update server. In a successful MITM attack, the attacker
can force the devices to install a tampered or malicious update.

IoT devices are the most resource-constrained devices in the OTA update pro-
cedure, and in the network, they are mainly the target of DoS attacks, such as
battery drain attacks. Battery drain attacks on IoT devices can be grouped into
the following three categories [Smi+20]:

* Denial of Sleep: These attacks can cause devices to consume more energy
than usual. One example is the jamming attack that causes the network to
become unusable. The attacker transfers interfering signals on the network
so that the channel will not be able to become idle to receive actual data.
This forces devices to retransmit their data repeatedly.

* Flooding Attack: In these attacks, the attacker creates massive traffic and
sends it to the devices in the network, which causes the receivers to respond
to those messages. As a result, the nodes would drain their energy resources.
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* Vampire Attack: This type of attack does not allow the batteries of devices
to stop working by putting a strain on them. An example of such an attack
is the stretch attack, where the packet is sent along a longer route in the
network by changing the packet’s header. This attack can increase the energy
consumption by a factor of four [MDI14], and it is most likely to succeed in
networks where authentication is not performed.

2.5.4 OTA Update Challenges

One of the most blocking challenges in IoT is the limited capability of devices,
particularly in performing heavy cryptographic operations [EB22]. However, one
of the advancements of IoT devices is to contain cryprographic hardware acceler-
ation. Cryptographic hardware acceleration is the use of hardware to perform
cryptographic operations faster than in software. However, not all manufacturers
include hardware acceleration in their devices due to higher production costs.

Another OTA update challenge in IoT is to efficiently manage key distribu-
tion [EB22] and share keys among devices targeting the OTA update. Key man-
agement approaches will be further discussed in section 2.6.

One of the other OTA update challenges in IoT networks is interoperability
[EB22]; due to the heterogeneous nature of the loT devices, it is difficult to have a
single solution available for all devices. Devices use different applications and pro-
tocols (CoAP, HTTE, MQTT, etc.) that are not interoperable. Different solutions
exist that can be used in IoT to provide interoperability, and they are presented in
detail in section 2.7.

2.6 Group Key Management

The demand for multicast communication is increasing in IoT networks and can
be used as an eflicient communication mechanism for IoT devices. A secure multi-
cast solution in IoT requires a secure group key management scheme. In group key
management, there are two main functional entities [CS05]: a Group Controller
(GC) that is responsible for authentication and authorization and a Key Server
(KS) that is responsible for maintenance and distribution of the key material to
devices. In this thesis, these two functions are implemented on a single physical en-
tity which is referred to as server. In order to multicast a message securely to group
members, a secret symmetric key called session key needs to be shared among group
members. Each group member also has access to a long-term symmetric master
secret which is used in re-keying procedure. Upon joining or leaving a group mem-
ber, a new session key needs to be created and distributed to provide forward and
backward secrecy; this process is called re-keying. The maintenance procedure and
the distribution of the secret keys in re-keying are commonly referred to as group
key management.
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A secure and efficient group key management scheme should fulfill the fol-
lowing requirements [CS05]:

* Security: It should provide forward secrecy, meaning that a member should
not be able to decrypt the messages after leaving the group. It should also
provide backward secrecy; a newly joined member should not be able to
decrypt the previously encrypted messages.

* Low computation overhead: Due to the limited resources of IoT devices,
the re-keying procedure should require as low computation resources on
devices as possible.

* Low communication overhead: The re-keying procedure of the group should
not induce a high number of transmitted messages in the network due to
bandwidth limitations.

* Low storage overhead: The re-keying procedure should require low storage
overhead on IoT devices.

One of the main challenges of the re-keying procedure is scalability [CS05];
in case a network consists of a large number of IoT devices, the groups of devices
might be divided into subgroups. In such a case, a group controller is required
within each subgroup to maintain and distribute the keys.

2.6.1 Group Key Management Approaches

Group key management schemes are classified into three categories [CS05]:

* Centralized: In centralized approaches, the key distribution function is as-
signed to a single entity that generates and distributes the keys whenever
required. Centralized approaches are divided into three categories:

— Pairwise key: In this subcategory, the key server shares a master secret
key with each group member. These keys are utilized to establish a
secure channel between the server and each member to distribute the
session key securely whenever required.

— Broadcast/multicast secrets: In this subcategory, the re-keying pro-
cedure of the members is based on broadcast or multicast messages
instead of device-to-device separate transmissions.

— Hierarchy of keys: A drawback of the pairwise approach is the re-
quirement of sending the message to each individual member. To
reduce the number of update messages, in this subcategory, the server
shares secret keys with subgroups of members in addition to the indi-
vidual channels. Whenever a member leaves a group, the server uses
the secret of the subgroup that is not known by the leaving member
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to distribute the new session key. As a result, the subgroup secret keys
reduce the required number of transmitted messages.

* Decentralized: In decentralized approaches, a number of key manager servers
are responsible for distributing the session group keys in order to provide
scalability and avoid a single point of failure. This approach is divided into
two subcategories [CS05]:

— Membership-driven re-keying: Every time a member joins or leaves
the group, the session group key is changed.

— Time-based re-keying: In this subcategory, after a specific period of
time, the session key is changed. Therefore, new members have to wait
until the next re-keying to access the messages. Also, the members that
have left will have access to the messages until the key times out.

* Distributed: In distributed approaches, the group members usually coop-
erate with each other to establish a group key. This is only applicable to
networks where group members interact with each other. These approaches
are out of the scope of this thesis.

2.7 Interoperability in IoT

Nowadays, different IoT vendors have various platforms, each with its own IoT
infrastructure, protocols, incompatible standards, formats, and semantics. As a
result, loT interoperability has become demanding for different solutions to inter-
act and exchange data or services. IEEE defines interoperability as “the ability of
two or more systems or components to exchange information and to use the informa-
tion that has been exchanged [Com+90].” In IoT systems, elements such as devices,
services, and applications should be able to cooperate and communicate with each
other. Interoperability was defined as a layered model with six layers by Tolk et
al. [Tol04], which includes no connection, technical, syntactical, semantic, prag-
matic/dynamic, and conceptual layers. Based on this layered model, different per-
spectives of interoperability were proposed in [NAGI19] that include:

* Device interoperability concerns the exchange of information between het-
erogeneous devices.

* Network interoperability deals mainly with enabling mechanisms for mes-
sage exchange between systems with different networks for end-to-end com-
munication [NAGI19]. Network interoperability should handle issues such
as addressing, routing, resource optimization, and security [BZB17].

* Syntactic interoperability refers to the interoperation of the format and
used data structures in exchanging information or services between IoT de-



28 Background

vices. Syntactic rules are used by the sender and receiver to encode and
decode messages, respectively.

* Semantic interoperability was defined by W3C as “enabling different agents,
services, and applications to exchange information, data and knowledge in a
meaningful way, on and off the Web [UMO05].”

* Platform interoperability caused by the diverse platforms of IoT systems,
including operating systems, programming languages, data structures, and
architectures [NAGI9]. Cross-platform interoperability can enable inter-
operability between different IoT platforms specific to a domain, such as
smart home, smart healthcare, etc.

2.7.1 Interoperability Approaches

There are many approaches and mechanisms that can enable interoperability in
IoT systems. We present an overview of these approaches in this section.

Physical Gateways

Physical gateways address interoperability using an intermediate tool between IoT
systems, which act as a bridge between different specifications, standards, and net-
works. A one-to-one protocol gateway is a special hardware that enables inter-
operability between two different types of protocols (i.e., CoAP and MQTT).
Gateways have scalability issues since different numbers of IoT devices interacting
with each other are required to have specific connections to the gateway, which in-
crease the time complexity of the system [NAGI19]. For each one-to-one protocol
translation, a separate gateway is required that imposes high costs on the system.
In the layered network model, physical gateways are usually used to achieve inter-
operability in the network and transport layers.

For the application layer translation, middleware can be used, but middle-
ware has limitations such as locking applications to a specific technology which
further reduces interoperability. Protocol proxy is another alternative middleware
for protocol interoperability in IoT systems. There are three proxies [DED17]:
the forward proxy acts as the client, the reverse proxy acts as the server, and the
interception proxy that acts as a man-in-the-middle. Among these three proxies,
interception proxies can be used for application layer interoperability; however,
proxies increase network delay since the translation is not on-demand, and all net-
work traffic should be transmitted to the proxies. Similar to gateways, protocol
proxies do not scale because of the complexity of the configuration and inefhciency
of direct translation when the number of protocols increases [DEDI17].
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Protocol Translators

Protocol translators are the replacement of hardware gateways or proxies for inter-
operability, and they are service-oriented architecture-based components [DED17].
In a service-oriented architecture, different services are used to enable distributed
computing and remote system interaction. Protocol translators are active func-
tions rather than being a passive network component. They can provide on-
demand protocol translation without introducing any specific dependency to the
applications in the system [DED17]. These translators can perform direct protocol
to protocol translation and are intermediate in the system. Protocol translation in
such translators should fulfill the following requirements [Derl6]:

* Transparency: It should be transparent to the underlying network compo-
nents and not add any extra configuration to the system by increasing the
number of devices.

* Scalability: The translation should be easy to scale for hundreds or thou-
sands of devices.

* Security: In the translation, distributed applications should be able to au-
thenticate and authorize within the interoperability mechanism, and attacks
such as man-in-the-middle attacks should not be possible.

Protocol translation can be done at different network layers, e.g., network,
transport, and application layers. Lower layer protocol translation is more com-
plicated than upper layer translation. This is primarily due to the complexity of
these layers in handling packets, routing, forwarding, etc. However, if protocol
translation is implemented at lower layers, it can be used in parallel with an upper
layer translation. This thesis focuses on the protocol translation above the trans-
port layer, and other lower layer translations are out of scope. (D)TLS is usually
used to provide security for communications between application layer protocols.
The security of protocol translation in these communications is usually guaranteed
using 7LS interception, which is explained below.

2.7.2  TLS Interception

In TLS, by default, an intruder cannot intercept the traffic between two parties.
Meanwhile, there are some application use cases where network operators allow
inspection, e.g., for malware detecting, content filtering, and network policy en-
forcement [EWDI16]. This interception is legitimate, and the parties are informed.
They agree on installing the certificate of a middlebox (issued by a Certificate Au-
thority (CA)) in advance; the middlebox is typically a TLS proxy [JU12]. TLS
interception is usually done through interception proxies, where a proxy is placed
between client and server. Upon receiving a request from the client, it terminates
the request and can analyze the actual plaintext. Then, the proxy makes another
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request to the server on behalf of the client, and an end-to-end session is separated
into two distinct but related sessions. The interception proxy must have access to
the private key corresponding to the certificate it provides. For that, the intercep-
tion proxy generates a new certificate and a key pair for the certificate, and they
are used for a specific session. This certificate is signed by a CA the client and the
server trust [JU12].

In TLS interception, the proxies can be deployed transparently or explicitly
[WMY18]. In the explicit proxy, the client knows the IP address of the proxy,
and a specific listening port is configured on the client. On the other hand, a
transparent proxy can operate without the explicit awareness of the client. In such
a case, the proxy intercepts outgoing requests that are sent to the server without
the usage of any specific configuration on the client side. Nevertheless, for TLS
interception, the certificate of the proxy must be added to the trusted root CA of
the client certificate [WMY18].

2.8 Cloud Computing

Cloud computing is one of the most useful technologies that is widely used today
to provide on-demand services and products. NIST [MG+11] defines cloud com-
puting as “a model for enabling convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort
or service provider interaction”. Over the last years, cloud computing has greatly
impacted IoT networks [Bot+16]. Cloud computing and IoT networks are com-
plementary technologies each with its own benefits and restrictions. In IoT, the
devices have limited capabilities, and the network has scalability problems; on the
other hand, cloud computing is scalable, and its resources are virtually unlimited.
Thus, the integration of IoT and cloud computing has gained much attention
[AABI5].

The main features of cloud computing are [Wan+10]:

* On-demand resource provisioning: Cloud computing provides resources
and services on-demand, and users can customize their resources.

* Scalability and flexibility: Cloud-based resources are scalable and can scale
up to additional resources as needed and later scale down. The cloud com-
puting resources are flexible to adapt to a large number of end-users.

* Guarantee QoS: The resources provided by cloud computing guarantee
QoS in terms of hardware performance, CPU speed, bandwidth, memory
size, etc., for the users.

* Automatic management: Computing resources are managed transparently
to users. Hardware and software-based resources in the clouds can be auto-
matically reconfigured and orchestrated.
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Virtualization and orchestration are among the primary enablers of cloud com-
puting, and they are discussed in detail below.

2.8.1 Virtualized Environments

Virtualization systems are key enablers of cloud computing. Virtualization is de-
fined as encapsulating the software layer from an operating system and providing
the same behavior that is expected from physical hardware [PZH13]. In virtual-
ized environments, applications can be decoupled from the underlying physical
resources; these resources can be modified or transformed into various virtual or
logical resources on-demand; this procedure is known as provisioning. The two
most used virtualization technologies are [TRAI5]:

* Hardware virtualization refers to abstracting the underlying hardware lay-
ers; the software performing this abstraction is a Hypervisor or a Virtual
Machine Monitor (VMM). A hypervisor provides a virtual environment to
the software that is equivalent to the host system, but it is decoupled from
the state of the hardware. The hypervisor requires the provisioning of the
operating system. The virtual environments are called Virtual Machines
(VMs), in which different operating systems can be installed. Since VMs
are independent of the state of the hardware, multiple VMs can run on the
same hardware. Operating systems on the VMs are called guest operating
systems.

* System virtualization is based on a lightweight virtualization process and
can place an entire application with its dependencies inside a virtual con-
tainer that is able to run on Linux distributions. Containers do not require
provisioning of the operating system; meanwhile, they can also run inside a
VM. A container is an abstraction at the application layer. Itis a lightweight
software package that packages dependencies like libraries, external third-
party code packages, etc. [SKA18] that are required to execute the contained
application. Different containers can run on the same machine in case they
share the operating system’s kernel with other containers.

The main difference between a container and a VM is that a VM virtualizes an
entire machine from the operating system down to the hardware layers. However,
a container only virtualizes the software layer above the operating system level.
Containers require less disk and memory space compared to VMs, and they re-
quire less storage space [SKAI8]. Containers also have better performance and
scalability; they are easier to manage, and all of them are accessible from the host
system [TRAI5].

There exists a variety of applications for virtualization, such as the consolida-
tion of physical servers, isolation of VMs or containers, debugging, etc. Setting
up multiple physical systems to mitigate potential security risks or other purposes
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have significant costs, including operational, physical, and technical costs. Physi-
cal machines require space, cabling, energy, administration, etc. Virtualization can
help to decrease the above mentioned costs. Furthermore, it allows the installation
of multiple VMs or containers on the same hardware and can protect systems from

being a single point of failure [PZH13].

2.8.2 Container Orchestration

Orchestration refers to the control and management of different system architec-
tures, including virtualized environments. Open Networking Foundation (ONF)
defines Orchestration as “the selection of resources to satisfy service demands in an
optimal way, where the available resources, the service demands, and the optimization
criteria are all subject to change” [TR516]. Orchestration solutions are essential in
managing virtualized environments and cloud data centers effectively.

Docker is an open-source platform that enables building, deploying, running,
and managing containers. Container orchestration is used for system-level virtual-
ization [TRA15], and it facilitates the deployment of applications among various
Linux-based platforms. Container orchestration can automate the applications
that are deployed inside the containers; it adds an extra layer of deployment engine
on top of the containers. The container orchestration engine is used to monitor
and control the containers, plan the actions to be performed, and coordinate dif-
ferent containers. It is also possible to monitor packaged applications and their
status inside containers, perform updates, fix any errors, and restart them. One of
the well-known container orchestration engines based on docker is Kubernetes.

Kubernetes is an open-source orchestration engine that was initially devel-
oped by Google. Kubernetes is a system-level virtualization orchestrator [TRA15];
it allows to scale both the computing resources available for the containers and
the number of containers available to applications. Therefore, applications can
scale up and down according to their needs. Besides the automatic scaling of con-
tainerized applications, Kubernetes can perform load balancing/spreading, disk
management, etc. Kubernetes has some disadvantages, including the complexity
of deploying and managing the containers [MK20].

2.9 Software Defined Networking

The limitations of traditional networks with data traffic growth have become more
evident. In traditional networks, each device has local control and data plane; such
devices, e.g., switches and routers, are often vendor and application-specific, which
makes their configuration and management complex [NPH20]. Low-level com-
mands are required to configure each device separately [Kre+14]; other than con-
figuration complexity, network environments have to adapt to load the changes
in the network. The control and data plane on devices are responsible for pol-
icy definition and traffic forwarding, but they reduce flexibility and scalability.



2.9 Software Defined Networking 33

Traditional networks cannot cope with the increasing demand and continuous ex-
pansion in the number of devices and applications brought through advances in
cloud computing and IoT. Therefore, there is a shift from traditional networks
toward Software-Defined Networking (SDN). SDN is an approach to enable net-
work programmability, or increasing the network capacity to control network be-
havior dynamically via open interfaces [Hal+15]. SDN is designed to separate
the network control or control plane from the forwarding process or data plane;
this separation offers several benefits in network controllability and flexibility. It
helps to implement a centralized network intelligence that makes network man-
agement and maintenance easy, and it enhances the network reactivity [BEE10].
In SDN networking, separating the control and data planes makes the network
switches act as simple forwarding devices, and the control logic is implemented in
a logically centralized controller that simplifies policy enforcement and network
(re)configuration. A simplified view of the traditional network and SDN network-
ing architecture is presented in Figure 2.4. In SDN, the routing and forwarding
decisions of networking components (routers, and switches) are separated from
the data plane. The network management becomes less complicated because the
control plane only deals with the information regarding logical network topology,
traffic routing, etc. In contrast, the data plane forwards the traffic related to the
established configuration in the control plane.
The SDN architecture has four main characteristics [Kre+14]:

* The control and data planes are separated, and controlling functionality is
removed from devices that will act as simple packet forwarding components.

* Forwarding decisions are flow specific instead of destination specific. A
network flow is defined by a set of field values of a packet that can match
a filter criterion or a set of actions. In the context of SDN, a flow is a
number of packets between a specific source and a destination. Using the
flow abstraction, the behavior of different network devices can be unified,
and flow programming enables network flexibility that was limited to the
capabilities of the devices’ flow tables [McK+08b].

* Control logic is moved to a central entity called the SDN controller, which
dictates the network policies. The SDN controller provides the required
resources and abstractions to ease the programming of the data plane based
on a logical and abstract view of the network. Its purpose is similar to a tra-
ditional operating system. There are many open-source platforms available
for the controller such as Floodlight [Flo22], OpenDayLight [Ope22], and
Ryu [Ryu22].

* 'The network is programmable with the help of the applications running on
top of the SDN controller that communicates with the devices on the data
plane. This is an essential characteristic of the SDN architecture, consider-
ing its main value proposition.
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Figure 2.4: Traditional network and SDN architecture

SDN has different interfaces, including northbound and southbound APIs.
Northbound API is an interface between applications and the control plane, and
it makes the information from the controller available to the applications. On the
other hand, southbound API is an interface between the data and control planes.
The southbound API allows control over the network and is used by the controller
to dynamically re-configure and make changes to forwarding rules installed on the
data plane devices [SNKI2]. It also abstracts the information of physical network
resources. As can be seen in Figure 2.4, the controller has direct control over the
data plane elements via the southbound API, and the most common example of
such an API is the OpenFlow [McK+08b] protocol. OpenFlow is described in
more detail in the subsection below.

2.9.1 OpenFlow

OpenFlow [McK+08b] is a network protocol that enables managing traffic in a
standardized way and specifies how a controller should communicate with other
network components such as switches and routers. OpenFlow makes it possible
to control the switches without requiring the vendors to reveal the code of their
devices [LKR13]. OpenFlow has two logical components [BEE16]: a flow table
that specifies how the packets need to be processed and forwarded in the network
and an OpenFlow API that is responsible for handling the exchanges between
switches, routers, and controllers. A flow table consists of a list of flow entries
with matching fields and instructions. Incoming packets are checked against the
match fields, and if a match is found, the packet is processed based on the action
specified by that entry. OpenFlow makes it possible for software applications to
program the flow table of switches in the network.

In the SDN architecture, the controller is responsible for controlling the flow
tables of the switches with the help of the OpenFlow protocol. Using the Open-
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Flow AP], the controller can connect to the switches, manage them, receive packets
from switches, and forward packets to switches [LKR13]. OpenFlow has several
capabilities [LKR13] listed below:

* Centralized control: In OpenFlow, the controller has a wide knowledge
of the network, and different switches are connected to a single controller.
Therefore, the controller can make decisions for the broad part of the net-
work.

* Software-based traffic analysis: This capability can be used to analyze net-
work traffic in real-time. Since this analysis is performed by software, it is
possible to use advanced features, including machine learning algorithms,
for traffic analysis.

* Dynamic update of forwarding rules: In OpenFlow networks, forwarding
rules in the flow table can be updated dynamically since the controller can
modify flow table entries at any time without human interaction. The con-
troller can use this feature to load balance the network traffic by dynamically
changing the forward rules [LKR13].

* Flow abstraction: In OpenFlow, all traffic is abstracted as different flows
in the flow table. For example, one flow can specify the whole TCP traf-
fic; another flow can be all packets forwarding to the same destination IP

address.

In OpenFlow, flow tables are installed on the OpenFlow switch. Open vSwitch
(OVYS) [Tu+21] is an open-source virtual OpenFlow switch that can work in vir-
tualized environments; the OVS and its components are explained in more detail
below.

2.9.2 Open vSwitch

OVS is a standard implementation of the OpenFlow protocol and is commonly
used for OpenStack deployments. In OVS, packet forwarding is implemented
on the datapath, and it consists of two datapaths [TSP17]: the slow path (ovs-
vswitchd) handles the complexity of the OpenFlow protocol and the fast path (data
path) that acts as a caching mechanism for packet lookup and delivery. OVS can
be integrated with many operating systems, including Windows Hyper-V, Solaris,
and Linux [TSP17]. OVS can work with hypervisors, e.g., KVM, and container
systems such as docker, and it interconnects the virtual machines and containers.
An overview of the OVS architecture and its components is depicted in Figure 2.5.

After the NIC inside the host OS receives the packets, OVS starts process-
ing the packets in its datapath. A datapath can be deployed in the kernel or in
userspace which requires additional firmware support. The datapath of the OVS
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Figure 2.5: Open Vswitch components

first parses the packets to extract protocol headers that are required to perform the
lookups. Then, it looks up the matching caches to determine which actions need
to be performed on the packet (fast path). If no match is found in the caches,
the packet is forwarded from datapath to the slow path or ovs-vswitchd by data-
path, called upcall. In ovs-vswitchd the required information on processing and
forwarding the packet is maintained. After a match is found in ovs-vswitchd flow
tables, it passes the information regarding how to handle the packet to the datapath
in the kernel or userspace.

As can be seen in Figure 2.5, two caches are used in the OVS datapath: mi-
croflow cache and megaflow cache [TSP17]. Microflow caches the entries that
match the forwarding decision for connections at the transport layer, and the
megaflow caches the forwarding decisions for aggregated traffic consist of different
individual connections [TSP17]. In the datapath, the packet processing between
these caches is as follows: if a matching entry is found in the microflow cache,
the packet is later sent to the specific table in the megaflow cache to retrieve the
required actions. In case of matching failure in the microflow, an expensive search
is performed on every table in megaflow. If no match is found in both microflow
and megaflow caches, an upcall is used to contact ovs-vswitchd. The ovs-vswitchd
uses the flow classifier to find matching rules in the flow tables. Whenever a match
is found, it will be forwarded to the datapath, and a new entry will be added to the
relevant cache. Finally, the packet is forwarded to its destination. If ovs-vswitchd
fails to find a match in its flow tables, it sends a packet-in request to the controller
in the network to obtain information about the unknown packet.

Despite the flexibility offered by the SDN, OpenFlow enabled switches have
fixed set of header fields [KKA21]. These headers can not be extended to meet
the requirements of various applications. Moreover, SDN switches heavily de-
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pend on the control plane to forward the packets, which increases the overhead of
data-control communication [KKA21]. To resolve these issues, P4 (Programming
Protocol-Independent Packet Processors) was designed. P4 is a programming lan-
guage designed to change the packet forwarding behavior of the SDN switches.
P4 expresses how packets are processed by a switch with the support of custom
match/action tables and other forwarding related constructs. P4 has the capabil-
ity to define the custom header formats and parse these headers dynamically. This
language is protocol-independent, and if a new protocol is deployed in the net-
work, it is easy to change the P4 program to support the new header fields. In this
thesis, we only use SDN and OpenFlow, and P4 is not used.

2.10 Trusted Execution Environment

Confidentiality and integrity of sensitive code or data inside computing systems
must be preserved against attacks over the network as well as attacks originating
from software or hardware components on the same platform. This is because
these systems can host multiple untrusted components. The problem of protect-
ing sensitive data against co-located attackers raises the need for Trusted Execu-
tion Environments (TEEs) [Sch+22]. The demand to integrate trusted computing
platforms into different systems, such as IoT networks, is also raised. TEE is a se-
cure and isolated environment where sensitive data and code can be processed and
run with higher levels of security than an operating system. A TEE provides an
integrity-protected environment that consists of both memory and storage capa-
bilities [Aso+14]. It can authenticate the executed code and guarantee the integrity
of the runtime states, such as CPU registers, memory, and sensitive I/O. It can also
preserve the confidentiality of running code, data, and runtime states stored on
the persistent memory. The TEE content can be updated securely, and its con-
tent is not static. The TEE is resistant to software, and physical attacks performed
on the main memory of the system. There are different solutions for TEE, such
as Intel Software Guard Extensions (SGX), ARM TrustZone, and AMD Secure
Encrypted Virtualization (SEV). In this thesis, we only use Intel SGX, which is

explained below.

2.10.1 Intel SGX

Intel SGX [CD16] is a set of extensions to the Intel architecture that aims to pro-
vide integrity and confidentiality of sensitive data on a system that potentially has
malicious components. SGX is able to isolate the execution environment from
other applications and the operating system’s kernel, as well as the hypervisor, with
the help of enclaves [NBB20]. In SGX, enclaves are execution isolation environ-
ments that are able to run code and process sensitive data. Enclaves protect code
and data from the outside enclave environment, including other applications on
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the system and the operating system’s kernel. In SGX, multiple enclaves can exist
simultaneously; isolation is also provided between enclaves.

The execution process of SGX is as follows: a host process can start either in
a normal or critical region. Normal code and data are loaded into the untrusted
or normal region, while critical code and data are loaded into enclaves. External
access to the enclaves is denied, and only the loaded code inside the enclave can
access the data of Processor Reserved Memory (PRM). The result of the operation
inside the enclave is later returned to the host process, while the enclave’s code and
data will remain protected in memory space.

Security features of SGX are listed below [Fei+21]:

* Physical Memory Isolation: The memory isolation feature is used to protect
the enclave memory from unprivileged access during runtime. The PRM
inside the enclave enables memory isolation protection at a hardware level;
thus, any access to the isolated region is checked by the processor, and any
unprivileged access is refused.

* Data Sealing: Data sealing can encrypt enclave data to store it persistently.
Only the enclave that originally sealed data can decrypt it later.

* Software Attestation: SGX relies on software attestation [CDI16] to prove
that running code inside an enclave is trustworthy to the user and is hosted
by trusted hardware.

SGX is vulnerable to various side channel attacks [NBB20] that can be used
to break the confidentiality of enclaves. However, there are some techniques, such
as applying microcode patches or changing application design, that can be utilized
to mitigate such attacks.

2.10.2 Attestation

To check whether an enclave code has been appropriately instantiated and the data
is trustworthy, SGX uses two attestation mechanisms [Fei+21]: local attestation
and remote attestation. In this thesis, we only use the local attestation. The local
attestation is performed between two enclaves running on the same platform to
authenticate each other. The procedure of local attestation is depicted in Figure
2.6. In this attestation, a communication channel is established between a prover
enclave and a verifier enclave. The prover enclave obtains the measurement of the
other enclave or verifier enclave [Fei+21]. The measurement is used to establish
the identity of verifier enclave. The prover enclave generates a REPORT structure
and then forwards it to the verifier. After receiving the REPORT structure by
the verifier, it retrieves the Report Key from the REPORT structure through the
EGETKEY instruction. Subsequently, the verifier uses the Report Key to generate
the MAC value over the REPORT structure and verifies whether the REPORT is
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Figure 2.6: SGX local attestation

authenticated or not. If this verification succeeds, the verifier can determine that
the prover enclave is trustworthy.

Remote attestation is an extended version of the local attestation; in that, an
enclave can prove its identity to a remote party (challenger) [Fei+21]. The goal
of remote attestation is to enable a remote party to determine the level of trust
in another system. Using remote attestation, an enclave can present evidence to
a remote party. Based on that evidence, the remote party can decide on autho-
rization decisions. The remote attestation procedure is depicted in Figure 2.7. As
can be seen, remote attestation uses a special enclave or quoting enclave to ver-
ify the REPORT and transforms it into a structure called a QUOTE structure.
First, a communication channel is established between a sample application and
a challenger that can be an attestation service provider. Then, the challenger is-
sues a challenge to the application to check whether the enclave and the platform
are legitimate. The application sends the quoting enclave’s identity with the chal-
lenge to the application enclave. The application enclave generates a response to
the challenge that also contains an ephemeral public key. The application enclave
then generates and sends the REPORT structure to the application. Then the
REPORT structure is sent by the application to the quoting enclave for signing
[Fei+21]. The quoting enclave first extracts the Report Key and verifies the MAC
of the REPORT. The quoting enclave creates the QUOTE structure, signs it, and
then sends it to the application. The application sends the QUOTE structure to
the server, and the server verifies the QUOTE signature. The server also checks
the integrity of the QUOTE.

2.10.3 Other Trusted Fxecution Environments

Intel SGX is one of the solutions to provide a trusted execution environment; there
are other solutions, including Intel Trust Domain Extensions (Intel TDX). TDX is
a newer architecture than SGX, and it deploys hardware-isolated virtual machines
called trusted domains (TDs). In TDX, the virtual machines are isolated from
VMM, hypervisor, or other non-TD software on the platform. TDX can provide
memory and CPU state confidentiality and integrity to keep sensitive data secure
from various attacks. TDX supports remote attestation, in compared to SGX,
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TDX attestation provides more evidence and measurements from TD [SMF21].

Another trusted execution environment is ARM TrustZone, which can also
provide an isolated execution environment. It includes security extensions to
ARM System-On-Chip (SoC) that cover the processor, memory, and peripher-
als [Hua+17]. TrustZone provides hardware-based access control of hardware re-
sources by enabling a processor to run in two execution environments. TrustZone
splits the processor into a normal world and a secure world. Each world has its
own user space and kernel space, cache, and other resources. The normal world
cannot get access to the secure world’s resources, while the secure world can access
all of the resources [Hua+17].

AMD SEV is another TEE that aims to provide confidential computing for
virtual machines or containers [ABT16]. It is a hardware-assisted TEE mainly
responsible for encryption and protecting the system memory of different cloud
infrastructures. AMD SEV enables encryption of the main memory by encrypting
each individual VM memory space with a unique secret key associated with each
guest VM and protecting the key from other VM attacks, or malicious hypervi-
sors [ABT16]. AMD SEV uses Secure Memory Encryption (SME) to protect the
main memory against physical attacks. The problem of the original SEV is that it
could leak sensitive information during interrupts from guests to the hypervisor
through registers [Mén+22; HB17; Wer+19], and this problem was addressed in
the extended version of SEV or SEV Encrypted State (SEV-ES). In SEV-ES, the
register states are encrypted using the guest-specific encryption key, and the guest
operating system needs to give access of the guest registers to the hypervisor.

2.11 Formal Verification

Security protocols are used in different areas, such as e-commerce, wireless net-
works, and IoT networks, and the design of these protocols is error-prone [Bla+16].
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Some security errors cannot be found by functional testing; hence, formal verifi-
cation is desirable. Formal verification helps in proving the correctness of the pro-
tocols with the help of a formal mathematical model of the protocol. Two main
models used to verify protocols are [Bla+16]:

* In the Symbolic model or Dolev-Yao model cryptographic primitives are
modeled by function symbols in an algebra of terms with different equa-
tions. In this model, messages are terms of these primitives.

* In the Computational model messages are represented as bitstrings, and
cryptographic primitives are functions from one bitstring to another bit-
string.

The symbolic model is easier to build than the computational model, and it
is used in many automatic verification tools such as AVISPA [Arm+05], Tamarin
[Mei+13], and ProVerif [Bla+18]. However, the computational model is closer to
the real execution of the protocols, and it is more challenging to automate [Bla+16].
In this thesis (papers I11, V, and VI), we used ProVerif as an automatic verifier tool.

The basic security properties required by most protocols are secrecy and authen-
tication [Bla+16]. Secrecy means that the adversary cannot gain information on
data transferred and manipulated by the protocol. The secrecy property is formal-
ized in two ways: 1) secrecy which means the adversary cannot compute the actual
data, and 2) strong secrecy means that the adversary cannot detect any change in the
secret value (or has no information about the secret value at all). In order to verify
the protocols, a set of terms (messages) that an adversary knows is computed, and
if a message does not belong to this set, the secrecy of the message is preserved.

Authentication means that if participant A runs the protocol with participant
B, then B runs the protocol with A [Bla+16]. Correspondence properties are used
to formalize authentication. Correspondence indicates that if A executes an event
e1, then B has executed event e previously. Correspondence has two different
variants including injective correspondence and non-injective correspondence. Injec-
tive correspondence means that each execution of e is corresponding to a distinct
execution of ey, but if eo has been executed at least once, this is referred to as
non-injective correspondence.

2.11.1 ProVerif Modeling

As mentioned earlier, ProVerif is a symbolic protocol verifier representing proto-
cols with Horn clauses. Horn clauses are formulas in the form of I} A..AFy
where different Fs are facts [Bla+16]. ProVerif takes as input a protocol that was
modeled with applied pi calculus (a language for describing and analyzing security
protocols) and the security properties that we want to prove. Then, ProVerif au-
tomatically translates the model into Horn clauses and a set of security properties.
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Then ProVerif determines whether a fact is derivable from the clauses or not. If it
is derivable, then the security property is proved.

The modeling starts by defining terms, expressions, and processes. Terms can
have different types, such as boolean, bitstring, or other user-defined types. Con-
structors are represented with function symbols. They are used to make terms
modeling primitives used in cryptographic protocols such as hash functions, en-
cryptions, and digital signatures. Destructors are used to manipulate terms formed
by constructors. As an example, the asymmetric encryption is represented with a
constructor as:

aenc(bitstring , pkey):bitstring
where pkey is the type of public key. The corresponding destructor is defined as:
adec (aenc(x, pk(y)), y) — x

It can decrypt the cipher text aenc(x, pk(y)) where y is the secret key and pk(y) is
the public key.

2.11.2  Verifying Security Properties

In ProVerif, the adversary is capable of intercepting, computing, and sending all
messages; in other words, it has the Dolev-Yao adversary model. In the modeling,
a process P preserves the secrecy of message M if it cannot be read on a public
channel in the process run by any adversary [Bla+18]. To test if the adversary can
gain access to message M, we use the following query:

query attacker (M)

where M is a term that is private and not known to the attacker.

As mentioned earlier, correspondence indicates the relationship between events.
An event is defined as e(t1, ..., t,) where t1, ..., t,, declare the types of the event
arguments. The correspondence assertion is defined as:

query Tp:t1 ,...,Tp:ty;
event (e (My,....,M;)) = event(e’ (Ni,....,Ni))

where different M's and Vs are the terms built by constructors and xs are variables
of types 1, ..., t. The above query shows a non-injective correspondence and it
is satisfied if for each occurrence of e(Mj, ..., M;) there is a previous occurrence
of ¢(N1, ..., Np).

Injective correspondence shows a one-to-one relation between events. It is
desirable in cases such as financial transactions where a server should complete the
payment transaction only once for each transaction started by a client [Bla+18].
The injective correspondence is denoted as follows:

query Z1:t1 ,...,%nty;
inj—event (e (Mi,....,M;)) = inj—event (e’ (Ng,..,N;))
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In papers I1I, V, and VI, we used ProVerif modeling to model the protocols and
verify security properties. In verifying security properties, we use both injective
and non-injective correspondence.

In this chapter, we present the various research background topics used in this
thesis. There are many security aspects and challenges in deploying software up-
dates, especially in IoT devices with limited resources. The main aspects covered
in this thesis are handling vulnerabilities, deploying actual software updates, trans-
lating protocols, and managing secret keys. In the next chapter, we demonstrate
our contributions to each paper and conclude with the final remarks.






Contributions and
Conclusions

This thesis aims to identify and design solutions that can make secure and lightweight
updates feasible in IoT environments. The different contributions of this thesis are
visualized within the areas as presented in Figure 3.1. These contributions are de-
scribed in more detail in section 3.1, followed by the conclusions in section 3.2.
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Figure 3.1: The different contributions of this thesis. Each paper is located in the area it
contributes mostly.
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3.1 Contributions

This thesis contains six papers and each paper contribution is described below.

3.1.1 HAVOSS: A Maturity Model for Handling Vulnerabilities in Third
Party OSS Components

In paper I, we present and evaluate a maturity model (HAVOSS) for managing
vulnerabilities in third-party OSS and COTS components. Software maintenance
is an important aspect of the software development life cycle, and it mainly focuses
on changing software to include new functionalities or fixing errors and bugs. Due
to the high increase in the number of attacks on software systems in recent years,
identifying and handling security vulnerabilities is an important aspect of software
maintenance. The usage of open-source software (OSS components) can decrease
development and maintenance time compared to developing all the code in-house.
However, in the case of using open-source components, handling urgent updates
is difficult and costly, and a mechanism is required to handle new vulnerabilities
efficiently.

A maturity model can be viewed as a tool that can help organizations to de-
scribe how well their practices and processes can generate the desired outcomes. It
helps organizations to improve their way of working by introducing the required
changes. In paper I, we design a maturity model called HAVOSS (HAndling Vul-
nerabilities in third-party OSS), and its main focus is on identifying and managing
vulnerabilities in third-party code. HAVOSS is built upon other existing mod-
els for secure software maintenance, such as CMMI, BSIMM, SAMM, etc., and
the published guidelines for the security of IoT devices. It is not a replacement
for other models; it is mostly intended to complement other maturity models.
HAVOSS consists of 6 capability areas and 21 practices in total; these capability
areas are product knowledge, identification and monitoring of sources, evaluating
vulnerabilities, the remedy of vulnerabilities, and delivering updates and commu-
nication.

We take the following steps in designing HAVOSS; based on the identified
need, a first version of the model was designed. For that, the responses of inter-
views from practitioners on how they handle their vulnerabilities and other rele-
vant maturity models were used. Then, the first version of the model was iteratively
improved using two offline evaluation rounds. In the first round of evaluation, we
refined the model based on feedback from practitioners. In the second round, we
focused on the importance of the practices inside the model and asked practition-
ers to rate the importance of practices. The evaluations indicate that our model
practices are seen as important by the practitioners.
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3.1.2 Energy Consumption for Securing Lightweight IoT Protocols
In paper II, we compare the energy consumption of CoAP and MQT'T protocols

in performing secure OTA updates. We also analyze the energy consumption of
using TLS and DTLS in these two protocols with different security options. CoAP
and MQTT are the two most common application-level protocols in IoT. CoAP
is a lightweight request and response protocol that runs over UDP. On the other
hand, MQTT (runs over TCP) is a publish/subscribe protocol designed for low
bandwidth environments. DTLS and TLS are used for security at the transport
layer in CoAP and MQTT, respectively.

For measuring energy consumption, we consider a use case scenario in which
a sensor (IoT device) sends data to a server for analysis. The sensor uses both in-
house developed and third-party codes and is subject to different vulnerabilities
that requires a regular update. In this work, we compare the cost of adding security
to CoAP and MQTT, the difference between various modes of operations in AES,
and the effect of different key sizes. Furthermore, we analyze the cost of handshake
using different cipher suites and the cost of updating the device firmware securely.

We perform the tests on ESP32, a popular development board for IoT, and the
result of sending encrypted data indicates that MQT'T in larger payload sizes has
an advantage over CoAP since, in CoAP, the payload size is bound to 1024 bytes.
Regarding the handshake, we conclude that ECDHE should always be preferred
to DHE. Due to the asymmetric cost of signing and verification in RSA, it can be
used if client authentication is not needed. In firmware updates, MQTT is again
more efficient (a factor of 4 for energy and a factor of 2 for time) than CoAP.

3.1.3 RoSym: Robust Symmetric Key Based IoT Software Upgrade Over-
the-Air

In paper III, we propose RoSym, a secure and symmetric-based upgrade scheme
for IoT environments. IoT is a system of interconnected heterogeneous devices.
IoT devices are usually resource-constrained with limited resources, including bat-
tery, memory, power, etc. IoT devices are mostly controlled remotely, and soft-
ware updates or patches are performed Over-The-Air (OTA). Since IoT devices are
battery-powered with limited resources, they are an attractive target of DoS attacks
over the network. This motivates using a secure and robust OTA upgrade mech-
anism in IoT. However, existing upgrade solutions are primarily based on heavy
public key operations and were designed for Wireless Sensor Networks (WSNs).
These solutions do not cope with the characteristics of IoT networks, and they do
not provide quantum resistance.

A secure and robust software upgrade scheme for resource constrained devices
should have integrity and confidentiality protection, DoS attack protection, effi-
cient communication and low computation overhead, and low memory require-
ments. Considering these requirements and the issues of other existing schemes,
we designed the RoSym upgrade scheme. RoSym is a lightweight and symmetric
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key based scheme, and in that larger key sizes can be used to resist quantum search
algorithms. RoSym is robust, and it can protect against battery drain DoS attacks.
In RoSym, a central unit called Device Management System (DMSY) is responsible
for upgrade preparations and the upgrade itself. To protect against a single point
of failure, several DMSs can be used.

The software upgrade or patch is divided into different packages, and confi-
dentiality of packages is provided using a symmetric key. In order to protect the
integrity of these packages, we use MAC verification, and for that, an integrity pro-
tection key is used. The encryption and integrity protection keys are transferred
to the devices using a secure channel, and these keys will be revoked at the end of
a successful upgrade procedure. To protect against DoS attacks, other than MAC
verification, we use two time thresholds; one threshold defines the maximum delay
between individual package arrival times, and the other threshold defines the to-
tal allowed upgrade time. Whenever the packages are received on the IoT device,
the local arrival times of the packages are captured by the devices. The difference
between different packages” arrival times is checked against the thresholds. If the
time difference exceeds the allowed thresholds, the upgrade will be aborted.

RoSym is implemented and tested on a real testbed setup using ESP32-S2
boards, and the result of our evaluation indicate that RoSym is efficient with re-
spect to computation, communication, and memory overhead. We also use formal
verification using ProVerif to prove the security features of RoSym, including con-
fidentiality, integrity, and DoS resistance, and ProVerif verifies these features using
secrecy and correspondence assertions.

3.1.4 Chuchotage: In-line Software Network Protocol Translator for
(D)TLS

In paper IV, we design Chuchotage, an on-demand, in-line TLS interception and
confidential solution to provide interoperability for IoT. Due to the heterogeneous
nature of IoT devices, they use many incompatible protocols to communicate with
each other or to communicate with a back-end server. This communication is en-
abled through protocol translation, using hardware translators or gateways; how-
ever, these solutions cannot address security, latency, and scalability requirements,
especially in IoT environments. To address these requirements and enable a secure
massive M2M communication, we design Chuchotage.

Chuchotage uses prior technologies, including Software Defined Networking,
Trusted Execution Environments, and TLS interception. The translation is per-
formed on-demand with the help of translator boxes created by software switches
on the network path. This translation is done at the application layer, and we tar-
get the application layer since it has a great impact on application performance.
During translation, secure TLS interception is provided using TEEs, and TEEs
provide confidentiality and integrity with the help of isolated execution environ-
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ments. TEEs are used on the network path to decrypt, translate, and re-encrypt
data.

SDN decouples data and control planes and in that controller has a global view
over the network. OpenFlow protocol is usually used in SDN and enables the
communication between the controller and other network components. Open-
Flow can be used with both hardware and software switches, and in Chuchotage,
we used the software switch Open vSwitch. Open vSwitch is used to translate
network flows between endpoints. Whenever a translation action is triggered by
the switch, a translator box is created inside a TEE. Translator boxes can be child
processes of the switch, or they can be external. External translator boxes are in-
stantiated by the controller. For TEE, we use Intel SGX in our implementation,
but other TEEs can be used as well. After the creation of a translator box, its
trustworthiness is attested by a verifier network function, then the required cryp-
tographic materials for TLS interception are provisioned to the TEE. The trans-
lator box creation is network-flow specific, and different translator boxes will be
created for distinct flows; this solves scalability issues. For TLS interception inside
the translator boxes, we use the ME-TLS protocol. ME-TLS allows cryptographic
key materials to be delivered to the translator boxes in-band, does not require ad-
ditional TLS connections or round-trips, and is compatible with TLS 1.3.

For the evaluation of Chuchotage, we translate two popular IoT protocols,
secure CoAP and HT'TD, and we use Ryu as the SDN controller. We evaluate the
solution with several tests, including sending packet batches with different sizes or
sending packet batches with different payload sizes. We measure translation and
transmission times with and without using the TEE (Intel SGX in our case). We
conclude that with the use of TEE, there is a slight increase in the translation and
transmission time, but this increase depends to the choice of the TEE.

3.1.5 LMGROUP: A Lightweight Multicast Group Key Management
for IoT Networks

In paper V, we design LMGROUP, which is a lightweight and multicast group
key establishment protocol for IoT networks; it is based on the Elliptic Curve
Integrated Encryption Scheme (ECIES) and HMAC verification. Due to the lim-
itations of IoT devices (limited resources) and limitations of IoT networks (low
bandwidth), multicast group communication is preferred. Multicast communica-
tion is especially useful when software updates are required to be sent to a large
number of devices. To enable a secure multicast group communication, a group
key needs to be established to the group members. There are a variety of group key
establishment protocols, mainly designed for WSN. In WSN, sensors have high
interaction with each other to share the group key, but this is usually not the case
in most IoT networks, e.g., when the device sends periodic aggregated data to the
server for further analysis. The usage of multicast transfer instead of broadcast-
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ing is also preferred due to availability reasons, since in broadcasting, in case of
unexpected errors, the availability of all devices can be endangered.

For multicast group communication, a central server (resource-rich node) needs
to decide the group members; this can be done by the network administrator or
by using automatic member selection algorithms. Automatic algorithms are pre-
ferred to make the group members less predictable to the attacker. After selecting
the group members, the group key needs to be established, and this key needs to
be renewed frequently due to changes in the group members to provide forward
secrecy. This change can be done for many reasons, including physical mainte-
nance, adding new members, etc. For the group key establishment, we design
LMGROUP, a lightweight multicast group key management scheme for small to
large-sized networks. In LMGROUPD, the devices do not interact in any way to
establish the group key, and the devices cannot decide which group they want to
belong to, and these are only performed by the server(s).

Our group member selection algorithm is based on the criticality levels of the
IoT devices in the network (how critical is the role of an IoT device), and it makes
sure not all critical devices are grouped together, e.g., the main entrance doors of
a hospital. After deciding about the group members, a hint is piggybacked along
with the acknowledgment of the previously received message to the group mem-
bers. This hint carries information about the new group and can be used as the seed
of a key derivation function to extract an authentication key which is used later to
authenticate group key establishment messages in HMAC verification. The actual
key establishment phase is based on ECIES operations, and after receiving mes-
sages, the group members can authenticate the messages and calculate the group
key.

We implement LMGROUP on a real testbed setup using ESP32-S2, and the
results indicate that it is lightweight in case of communication, computation, and
memory overhead. We also indicate that LMGROUP is scalable for large group
sizes. We use formal verification to formally verify LMGROUP, and we verify that
it is secure against different attacks, including MITM, replay, impersonation, and
DoS attacks.

3.1.6 Flowrider: Fast On-Demand Key Provisioning for Cloud Net-
works

In paper VI, we present Flowrider, a key provisioning mechanism for cloud net-
works that uses symmetric keys and can significantly reduce the related compu-
tational load on network endpoints. Cloud computing gained more attention
in recent decades and has many advantages, including unlimited resources and
scalability. Cloud computing can also be integrated with IoT to provide these
advantages for IoT. SDN is one of the key enabling technologies of cloud com-
puting; however, network security operations did not cope with the capabilities
of SDN, and public key cryptography rather than symmetric key encryption is
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the main choice in such networks. Public key cryptography is CPU-expensive,
and it has key management complexity. Endpoints may even lack sufficient com-
putational resources to generate public key material. Generating symmetric keys
requires less computational power but secure key provisioning and authentication
are more complex than public key encryption. In Flowrider, we use the capabili-
ties of SDN networking to provision key materials, and it embeds key distribution
into the flow establishment of the network. In Flowrider, key distribution is ag-
nostic to the network topology or architecture. Flowrider enables flow-specific
symmetric key in such a way that each flow is isolated from other network traffic
and is compatible with (D)TLS v1.2 and v1.3.

Whenever a client (device) wants to establish a secure session with a server, it
can use either symmetric pre-shared keys or public key-based material. However,
if the client and server use multiple flows, communications on each network flow
will be secured with the same key material. Compromising key materials of one
flow can endanger the security of all flows. Therefore enabling flow-specific key
provisioning is an advantage that can be gained using Flowrider. In Flowrider, each
time a client initiates a session with the server and triggers flow establishment,
the SDN network controller generates a new pre-shared key for that flow and
provisions it to both endpoints through the pre-established secure channel. In case
of a compromise, the controller can revoke the flow keys issued to the endpoints.

We implement and test Flowrider using the Ryu SDN controller. The results
of the experiments indicate that Flowrider performs much better in the case of task
clock and CPU utilization compared to establishing public key-based material. We
also successfully verify the security properties of Flowrider, including the secure
provisioning and secrecy of pre-shared keys associated with the flow and mutual
secure possession of keys by the endpoints using formal verification with ProVerif.

3.2 Conclusions

The main focus of this dissertation is to analyze and design different security mech-
anisms for deploying secure software updates in IoT. Our contributions cover sev-
eral aspects, including vulnerability handling, OTA updates, interoperability, and
key management.

The diversity of the contributions indicates that in a secure software update,
especially in IoT, there are many security aspects that cannot be neglected. Failing
to provide security in any aspect can result in compromising the security of the
whole update procedure. In a secure software update, vulnerabilities need to be
identified and handled, and a secure OTA mechanism based on the characteristics
of the network needs to be selected or designed. In case of communication between
incompatible protocols, an efficient and secure solution to enable interoperability
need to be used. Furthermore, a lightweight key management scheme must be
used to renew the secret keys.
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The secure software update is an essential part of software maintenance; before
the actual update can take place, vulnerabilities need to be identified. Our matu-
rity model presented in paper I, can be used for efficient vulnerability identification
and handling. After that, a secure update mechanism needs to be utilized to trans-
fer updates or patches to the endpoints; in paper II, we compare two common IoT
protocols (CoAP and MQT'T) and find out which one is more energy efficient for
specific use cases. Later in paper III, we design a lightweight scheme for OTA up-
grade in IoT, considering the requirements of IoT networks and devices. Due to
the heterogeneous nature of IoT, devices should be able to communicate securely
with incompatible protocols. To make this possible, in paper IV, we design a solu-
tion that can be used to translate protocols to each other securely. The secret keys
need to be renewed frequently due to any changes in the network, and in papers
V and VI, we present mechanisms that can be used for key management and key
provisioning. Finally, all of these pieces together can make the secure software
updates possible. To deliver secure updates, developers and software maintainers
need to pay special attention to all of these aspects.
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HAVOSS: A Maturity Model
for Handling Vulnerabilities
in Third Party OSS
Components

Abstract

Security has been recognized as a leading barrier for IoT adoption. The growing
number of connected devices and reported software vulnerabilities increases the
importance firmware updates. Maturity models for software security do include
parts of this, but are lacking in several aspects. This paper presents and evaluates
a maturity model (HAVOSS) for handling vulnerabilities in third party OSS and
COTS components. The maturity model was designed by first reviewing industry
interviews, current best practice guidelines and other maturity models. After that,
the practices were refined through industry interviews, resulting in six capability
areas covering in total 21 practices. These were then evaluated based on their im-
portance according to industry experts. It is shown that the practices are seen as
highly important, indicating that the model can be seen as a valuable tool when
assessing strengths and weaknesses in an organization’s ability to handle firmware
updates.
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1 Introduction

Software maintenance focuses on issues such as adapting systems to changed func-
tionality requirements, changed environments and corrections of faults. Identified
security vulnerabilities can be seen as one type of fault that has received more at-
tention in the last decade, following a number of attacks impacting large organi-
zations, customers, and the society. Attacks have also become more sophisticated
and the increasing number of software intensive systems, in IT systems and in the
shift towards cloud computing and IoT devices, have resulted in more attack tar-
gets. 'The number of security vulnerabilities reported and recorded in the NVD
CVE (National Vulnerability Database, Common Vulnerabilities and Exposures)
database has for many years been relatively stable, ranging between approximately
4,200 to 7,900 between 2005-2016 [NIS]. In 2017 the number increased to about
14,700. New companies producing connected devices, as well as older mature
companies adjusting their products to the current trend of connectivity, increases
the competition on the market. Meeting this competition requires high func-
tionality and fast time-to-market. Using open source software (OSS) instead of
developing all code in-house decreases development time, and software mainte-
nance for OSS can focus more on updating the software when new versions are
released. However, urgent updates as a result of security vulnerabilities can be very
costly for the organization. Thus, it is important to handle the process of identify-
ing and evaluating new vulnerabilities, and subsequently update the software, in
an accurate and efficient way.

A maturity model can be seen as a tool that helps organizations improve the
way they work, typically by introducing and implementing changes in the orga-
nization. This is often a slow process, requiring efforts and resources through-
out the organization. The change, to be effective, must have support both from
management and the work force, and internal communication processes must be
well implemented in order to support the change management required for imple-
menting improvements. The maturity model will help the organization identify
the issues in need for improving and prioritizing the efforts. It will also help the
organization in ensuring that no important aspects are neglected. However, it will
typically not in detail describe how the changes should be implemented since this
can vary widely between organizations and depend on size, type of organization,
business domain, regulations etc.

The goal of this paper is to define, evaluate, and present a maturity model
(HAVOSS — HAndling Vulnerabilities in third party OSS) focusing on managing
vulnerabilities in third party libraries and code, and the subsequent software up-
date activities that are required to limit a product’s exposure to attacks. We target
all practices related to this aspect of software maintenance for embedded systems.
The model builds upon existing models for software maintenance and security,
interviews with industry, and recently published guidelines and recommendations
for security in IoT devices. An initial version has been iterated using feedback from
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industry representatives, and has then been evaluated by industry. The evaluation
shows that the proposed practices are highly relevant.

The paper is organized as follows. In Section 2 we first present related work
and maturity models focusing of secure software. In Section 5, we describe the
methodology used when defining and evaluating the model, and in Section 5 the
different maturity levels are defined. Then we present the results of our evaluation
in Section 6 and the paper is concluded in Section 7.

2 Related Work

The Capability Maturity Model for Software, CMM, and CMMI (e.g. [SEI08])
have been very influential in how to support process improvement in software en-
gineering. The models guide an organization through five maturity levels where
process standardization (level 3) is seen as more mature than project level pro-
cesses (level 2), and experience based improvement (level 4 and level 5) is a natu-
ral continuation after that type of standardization. The idea of standardizing ap-
proaches in the organization, and after that to improve through experiences, has
influenced the model presented in this paper. There is also the Software mainte-
nance maturity model (SMmm) [Apr+05] addressing unique activities of software
maintenance, and there are maturity models for process improvement implemen-
tation [NWZ05].

There are several well-known maturity models focusing on software security
and the software development life cycle.

The Building Security in Maturity Model (BSIMM) [MMW15] is based on
actual practices in a large number of companies. It thus represents the current
state of software security. It can be used to assess the Secure Software Development
Lifecycle (SSDL). BSIMM covers 12 practices divided into the four main domains
Governance, Intelligence, SSDL Touchpoints, and Deployment.

OWASP Software Assurance Maturity Model (SAMM) [Chal7] is an open
framework developed by OWASP, with the aim to help organizations evaluat-
ing their existing software security practices throughout the whole organization.
SAMM is a flexible model that is designed to be utilized by both small, medium,
and large companies. SAMM is built on business functions of the software de-
velopment life cycle, and each business function is tied to three security practices.
The business functions are Governance, Construction, Verification, and Operations.

The Systems Security Engineering — Capability Maturity Model (SSE-CMM)
[ISO08] is intended to be used as a tool to evaluate and assess security engineering
practices. It allows organizations to establish confidence in their own capability,
but it also helps customers to evaluate a provider’s security engineering capabilities.
The model is based on the idea that organizations need a repeatable, efficient and
assured mechanism to improve their security engineering practices. SSE-CMM
has been developed to address these needs by reducing the cost of delivering secure
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systems. The model contains a number of base practices which are organized into
in total eleven process areas.

The Microsoft Security Development Lifecycle (SDL) [Micl0] is another se-
curity assurance process focusing on secure software development. The purpose of
SDL is to reduce the number and severity of vulnerabilities in software and it aims
to guarantee security and privacy during all phases of the development process.
Education, continuous process improvement, and accountability are three main
concepts of SDL which emphasizes ongoing activities within the whole software
development lifecycle. SDL is built upon five capability areas which correspond to
different phases of the software development lifecycle, and each area consists of a
collection of security activities. SDL defines four levels of maturity for these areas,
namely Basic, Standardized, Advanced, and Dynamic. The basic level means little
or no processes related to the activity, while dynamic level corresponds to complete
compliance across an entire organization.

The Cybersecurity Capability Maturity Model (C2M2) [Chrl4] is designed to
help organizations of any type and any size to evaluate and improve their cyberse-
curity programs. The model can be used to strengthen cybersecurity capabilities
and also to prioritize actions to improve organization’s cybersecurity processes.
The model is organized into 10 domains and each domain has a set of cybersecu-
rity practices. Practices in each domain will help organizations to achieve more
mature capability in the domain.

The most important features for vulnerability handling such as vulnerabil-
ity identification, vulnerability assessment, vulnerability tracking and disclosure
policy are included in some of mentioned maturity models. Vulnerability iden-
tification through software development process exists in BSIMM [MMW15],
SAMM [Chal7], SDL [Micl0] and SSE-CMM [ISO08] and only in SMmm
[Apr+05] it exits in maintenance phase. Assessing vulnerabilities only includes
in SSE-CMM [ISO08]. Vulnerability tracking by incident response team exists
in almost all of them. None of them has any communication or disclosure pol-
icy except C2M2 [Chrl4]. We tried to gather all of these vulnerability handling
features in our maturity model and make a complete maturity model for vulner-
ability handling. Being highly focused on handling vulnerabilities in third party
code, our proposed maturity model should not be seen as a replacement for the
other models. HAVOSS is intended to be used as a complement to other, more
general, maturity models.

3 Methodology

The model has been designed iteratively based on feedback from presenting it to
practitioners in the field. A first problem-understanding was achieved through
an interview study with practitioners [Hos+18] where it was clear that there is a
need to support these processes in industry. In that study, 8 companies in the
IoT domain were interviewed about how they handle vulnerabilities in OSS and



3 Methodology 69

Evaluation +
Scoping of model First version second version Evaluation
v v v v

Problem Definition of First evaluation Second_

. — — — evaluation
understanding first model round

round
- Interview study - Mapping other - Qualitative - Collected metrics
- Literature models experiences from on importance and
- Interview study assessing own importance for
organization completness

Figure 1: Research steps

COTS code in their developed and maintained products, and what challenges they
see in that. It was clear that there is a need to support these activities, meaning
that the scope of the model was decided to include all activities that are relevant
to identifying and solving vulnerabilities in third party (OSS and COTS) code. A
literature study with a comparison to available models also showed the need for
this type of model.

3.1 Research Steps

The maturity model was defined through a series of research steps as described in
Fig. 1. Based on the identified need, a first version was designed. One important
source was the previously conducted interview study with industrial practitioners
on how they handle vulnerabilities [Hos+18]. In that study it was clear that many
organizations do not have defined processes, neither for identifying, analyzing, or
taking care of vulnerabilities in third party code in the products they develop and
support. Another input source was already available models, as presented in Sec-
tion 2. Many of the models include aspects that are related to the capability areas
in our model. However, the available models are more general and not as com-
plete in managing third party software vulnerabilities as this model. For example,
BSIMM [MMW15] includes “Software Environment” which is related to product
knowledge in our model, and it includes “Configuration Management & Vulnera-
bility Management” which is related to evaluating and remedy of vulnerabilities in
our model. It is similar for the other models. They include relevant areas, but they
are not as focused on vulnerability management for included third-party software
where sources of vulnerabilities must be identified and monitored. Based on these
input sources, a first version of the model was defined.

The model was decided to consist of capability areas, each consisting of a set
of practices that can be used to identify improvement proposals in assessments.
Each practice is represented as a question in order make it easier to interpret in
an assessment. The final resulting capability areas and questions are presented in
Section 4.
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When the first version was available it was iteratively improved through evalua-
tions with practitioners, in two main evaluation rounds. Helgesson et al. [HHW11]
identify three ways of evaluating maturity models when they are designed, either
off-line by the authors alone, off-line by including practitioners, or on-line, i.c.,
in actual process improvement. Both evaluation rounds in this study can be clas-
sified as off-line by including practitioners, since all evaluations are carried out
based on practitioners’ opinions and experiences of trying to assess their organi-
zation. However, at this stage we have not actually conducted any improvement
activities guided by the model where a before/after scenario could be analyzed.

In the first evaluation round, refinement of the model was conducted through
feedback from practitioners. This was done in several sub-steps, where we in each
sub-step sent the model to a contact person in industry who individually assessed
their own processes with the model. When they had done that we had a meeting
with the organization where we discussed general feedback on the model and we
discussed a number of feedback questions, e.g. about if there were any miscon-
ceptions from researchers, if the questions were hard to answer, if there were any
questions missing, and if the respondent had any thoughts about the answer alter-
natives. All meetings were held in a way resembling a semi-structured interview
where audio was recorded, so the information could be accessed in the analysis.
This type of feedback was obtained from two companies, which resulted in a num-
ber of adaptions of the model.

In the second evaluation round, feedback was received with other feedback
questions than in round 1, now focusing more specifically on every practice of the
model. As in the first evaluation round, the model was sent to practitioners, but in
this step they were asked to consider not just the answer of each question, but they
were also asked to assess the practice with respect to the following two dimensions:

o Importance of practice: For each question the participant was asked to judge
how important the practice described by the question is in management of
vulnerabilities. Possible answer alternatives were 1 — 5.

* Importance for completeness: For each question the participant was asked to
judge how important it is to include the practice for the completeness of the
questionnaire. Possible answer alternatives were 1— 5. The given motivation
was that some practices can be overlooked if they are not included in a model
like this. A high score represents that the practitioner thought that it is easily
overlooked if it is not included in the model. In the same way a low score
means that the practice would probably be solved also without a model like
this, i.e. the practice can be considered “obvious”.

For each question in the model the participants were allowed to give free text
comments in a separate field in the form they received.

The conducted research was influenced by design science. Compared to the
framework according to Hevner et al. [Hev+04] it identified the needs and the
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Table 1: Participating practitioners

Company A|B|C|DJ|E]|F]|G
Evaluation round 1 |V
Participants in evaluation round 2 12 2| 4 1 1| 1] 2

problems in the environment e.g. through the interview study, and the evaluations
were conducted with people from the same environment. The developed model
was, as described above, based on available models and it represents a contribution
to the available knowledge base.

3.2 Participating Companies and Practitioners

The participants in evaluation round 1 and evaluation round 2 are summarized in
Table 1. The second row shows if the company participated in evaluation round 1

v = yes) and the third row shows how many practitioners from each company
who individually answered the questions on importance and importance for com-
pleteness in evaluation round 2. The companies are working with software engi-
neering and they represent different size, age, and maturity. Companies A, D, and
F are large companies, while the other are smaller. Company E is an example of a
startup while the other companies are more traditional companies. Company G
offers consultancy services to other companies, while the other companies work
with traditional in-house development. All companies but company C are work-
ing in the area of embedded software for IoT systems. All involved practitioners
were in some way responsible for security and/or working with security-related
questions in the organization. In company A most communication was held with
the main security responsible. Other persons were working within development
roles.

3.3 Validity

The goal has been to obtain good validity of the research by considering typical
threats to validity (e.g., [RH09]). Construct validity denotes to what extent the
operational constructs are interpreted in the same way by the researchers and the
involved practitioners. Care was taken to use as general terms as possible, not
to focus on wrong specific meanings of terms in the organizations. This risk can
never be ruled out completely, but it can be noticed that some terms in the model
were changed in the first evaluation round, in order to not give too specific (and
not completely right) meaning to the company practitioners.

Reliability denotes to what degree the analysis is dependent on the specific
researchers. This is always a threat, but care has been taken to do the analysis in
the whole group of researchers. The analysis has also considered feedback from
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Figure 2: The capability areas included in the proposed maturity model.

members of the industrial participants. For example, both company A and B were
involved in both the first end second evaluation round.

Internal validity denotes the risk that other factors than the ones known by the
researchers affect the result. This is not a typical controlled study where factors are
controlled, but still there may be some factors that affect the results such as ongoing
and general improvement attempts with respect to security. Care has been taken
to understand the situations of the participating organizations, and many of them
have been involved in previous research studies with the researchers. Basically, we
see the situation of the participating companies as typical examples of industrial
organizations, and no major internal threats.

External validity denotes the possibility to generalize the results. All organiza-
tions are Swedish or has a Swedish origin and all participants are employed in Swe-
den, but they operate on an international market and most of them have mainly
international customers. We do not classify them as particularly typical, but more
as general examples of organizations in general, at least in the area of embedded
systems and IoT systems, when it comes to their approach to managing vulnera-
bilities. However, in this type of study care must be taken when generalizing to
other organizations.

4 Capability Areas and Practices

In this section our proposed vulnerability management maturity model is pre-
sented in detail. The six capability areas consist of in total 21 practices. In the
assessment sheet, the practices are formulated as questions, e.g. Al, “Tracking
maintained and used products” is formulated as “How do you keep track of which
type of products are maintained and/or used?”!. The capability areas are product
knowledge, identification and monitoring of sources, evaluating vulnerabilities, remedy
of vulnerabilities, delivering updates and communication. The areas and the relation
between the areas is depicted in Fig. 2. Product knowledge is a prerequisite for

'The assessment sheet, together with evaluation data are available at https://zenodo.org/
record/1340623#.W2wP7RixWkB
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the other areas and practices. Without this, it is not possible to efficiently, or even
at all, handle vulnerabilities. Identifying, evaluating, and remediating vulnerabil-
ities, as well as deploying updates, can be seen as areas of practices that are carried
out in sequence. Finally, communication of vulnerabilities and related informa-
tion can, and often should, be done in parallel with the practices and activities in
the other areas. In the following subsections, each capability area and the practices
are given in more detail.

4.1 Product Knowledge

Product knowledge assesses companies’ knowledge of their products’ components.
A higher maturity level in this area indicates higher knowledge about the compo-
nents. This capability area is divided into five practices:

Al. Tracking maintained and used products. Organizations should track main-
tained products by themselves and also products used by customers regularly, in
order to be able to identify their active products.

A2. Tracking included third party OSS and COTS components included in
products. Developing companies use many OSS components. This reduces the
time-to-market and allow a more cost-efficient development and maintenance or-
ganization. Development is largely reduced to selecting the appropriate compo-
nent to use, while maintenance is reduced to updating it when needed.

A3. Tracking used OSS or COTS versions in the included components. In
addition to tracking used OSS and COTS components, it is also of importance to
track the versions used in released products and firmware. Version tracking allows
an efficient identification of potential vulnerabilities.

A4. Tracking possible threats that products are facing. Threats are possible dan-
gers that might exploit a vulnerability in software products. To avoid critical dan-
gers, and to facilitate correctness in the evaluation of vulnerabilities, it is necessary
to track possible threats in software products.

A5. Specifying product usage, operating environment, and end-of-life. By spec-
ifying intended usage and operating environment, customers can better under-
stand the intended use of a product, and it also provides important parameters
when evaluating the threats and identified vulnerabilities. Specifying an end-of-
life informs customers the duration for which they can expect feature and security
updates for products. Note that end-of-life for feature updates and security up-
dates can differ.

4.2 Identification and Monitoring of Sources

New vulnerabilities are found on a daily basis and there are several sources for
information regarding these. A well defined and efficient process for identifying
and monitoring sources of vulnerability information allow both faster and more
robust management of vulnerabilities and maintenance of products and devices.
The practices in this capability area focus on three aspects.
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B1. Determining external sources to use for identifying new vulnerabilities. New
vulnerabilities are typically recorded and identified through the CVE numbering
scheme [Mit] and further detailed in NVD [NIS]. While this centralized database
contains most vulnerabilities, and some other information related to them, it is
also worthwhile to monitor new academic results through conference proceedings
and journals, as well as monitoring security advisories and the most well-known
mailing lists where software security and vulnerabilities are discussed.

B2. Receiving and following up on vulnerabilities reported to the company by
external parties. In some cases, new vulnerabilities are disclosed directly to the
organization. This can be the case if a third party researcher or professional ana-
lyzes the product and reports the results to the manufacturer through a responsible
disclosure process.

B3. Monitoring the identified sources of vulnerabilities. Having a well defined
process for monitoring vulnerability sources will help minimize the exposure time
for products and devices. Often, there are exploits widely available either at the
time of disclosure or very shortly after [SSL12].

4.3 Evaluating Vulnerabilities

The goal of this capability area is to help organizations assess their maturity in
evaluating the severeness and relevance of identified vulnerabilities. This has di-
rect impact on the next area (remedy of vulnerabilities). Accurate and efficient
evaluation, as well as well-founded and correct decisions regarding vulnerabilities,
are prerequisites for timely and cost-eflicient remediation. The practices in this
area thus focus on the following two aspects.

Cl. Evaluating severity and relevance of vulnerabilities. After identifying a po-
tential vulnerability, it must be evaluated with respect to product configuration,
operating environment, and threat assessment. Unused component functionality,
network configuration or unrealistic exploit requirements might render the vul-
nerability unexploitable. Methods for ranking vulnerability severity might aid in
the evaluation. A well-known metric is the Common Vulnerability Scoring System
(CVSS) [FIR; MSRO7], which gives a rating on the scale 0-10.

C2. Making decisions for handling and reacting to identified vulnerabilities.
Firmware and software is often updated on a regular basis in order to include new
functionality and patch bugs. Severe security vulnerabilities might need immedi-
ate attention and result in updates that are not within the planned cycle. Such
updates are very costly and often engage large parts of the organization. It is thus
very important to only perform out-of-cycle updates if necessary.

4.4 Remedy of Vulnerabilities

Based on the severity, vulnerabilities can be divided into three basic categories,
namely those that need urgent changes, those that can be patched in the next
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planned release, and those that need no changes or updates. This capability area
assesses the maturity level of organizations for handling these categories.

D1. Handling vulnerabilities that need urgent changes. Urgent changes require
immediate action and will impact several processes within the organization. The
organization should have an action plan for handling this event in order not to
cause unnecessary and unforeseen problems.

D2. Handling vulnerabilities that are updated in a planned release. Here, the
maintenance organization must make sure that the affected component is patched
in the next release.

D3. Handling vulnerabilities that need no changes. When vulnerabilities have
been evaluated, and the results show that attacks are impossible or very unlikely,
the organization must make sure that this is well documented. If the component
is not updated to a patched version, the vulnerability will always be present, so
the organization must make sure that it is not unnecessarily evaluated over and
over. Moreover, new information might affect the status of a vulnerability. In that
case, it must be re-evaluated since updated information (e.g., new exploits), might
affect the decision.

4.5 Delivering Updates

After updating the used components with the latest version, or applying patches
to the software, the new firmware or updated software must be deployed to the
actual devices. This does not only require a communication channel to the devices,
but the channel must also be secure, including verifying the authenticity of new
software. However, verifying authenticity is not enough, it is also important to
make sure that updates are actually installed on devices [CCS13]. This capability
area is divided into two activities.

El. The process of delivering and applying upgrades to deployed products. The
update process can be done fully automatically if the devices support that. In some
cases, users will be notified of new updates but needs to go through manual steps
to apply them. In other cases, new firmware or software is posted on a website,
and it is up to the user to identify and apply these patches. Exactly which process is
used can be situation dependent. Although a fully automatic approach is typically
preferred, requirements on system or device availability, and also privacy concerns,
can render such an approach infeasible in some cases. It can be noted that a recent
survey [Powl8] based on 2205 users, reported that only 14% have ever updated
their router’s firmware.

E2. The process of protecting the integrity of patches while they are delivered
and deployed. Integrity protection, typically through digital signatures or MAC:s,
is needed to protect from malicious updates being installed on devices. This in
turn will require a PKI or pre-shared keys.
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4.6 Communication

Communicating vulnerability and security information, internally and externally,
and have structured ways of doing this, allow a more robust and transparent pro-
cess. It will make the security awareness more visible and contribute to more secure
products. This capability is divided into six practices.

F1. Communicating internally when vulnerabilities are identified and resolved.
Informing everyone within the company that is somehow affected by the vulner-
ability, its evaluation, remediation and deployment, allow a well-managed and
structured process for updating the software.

F2. Communicating externally when vulnerabilities are identified and resolved.
External communication here means e.g., producing advisories that inform the
public that the vulnerability has been identified and solved. It also includes for-
warding new information to other manufacturers or providing OSS patches up-
stream.

F3. Communicating with media when vulnerabilities are handled. Widespread
and critical vulnerabilities will often come to the attention of media. Well de-
fined processes for communicating with media can improve how the security work
within the company is perceived by the public.

F4. Communicating with important customers about critical vulnerabilities.
Very large and important customers might be particularly affected by some vul-
nerabilities, requiring a heads-up when new vulnerabilities are found. Moreover,
attacks that affect important customers can have significant impact on the manu-
facturer’s business. At the same time, such communication is resource consuming,
for both parts, so it should only be practiced if necessary.

F5. Informing customers about the patching status of products. In order for
customers to verify the security of their products, it should be easy to see which
software, versions, and patch levels products have. This is part of what is sometimes
referred to as a bill of materials. Processes for delivering such information, perhaps
together with specific information related to patched vulnerabilities can ease the
burden for the support team.

F6. Transferring other security related information while delivering patches.
Attaching information on patched vulnerabilities and also providing information
on how the patch should be applied, or which additional configuration settings
should be applied, can help the customer understand why the patch is applied.

5 Maturity Levels

The intention of the maturity levels is that they should represent an increasing ma-
turity for the assessed organization when it comes to their processes for working
with third-party vulnerability updates. This type of maturity can, of course, be
defined in different ways, but as described in Section 2, we have chosen a way of
viewing maturity that is inspired by the approach in CMMI for software devel-
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Table 2: Maturity levels used in the assessment

Level | Description
0 We don’t do this.
We do this in an ad-hoc way based on individual’s own initiatives.
We know how we do this, but we do it in different ways in different teams/products.
We have defined processes for this that are common to all teams/products.
We collect experience and/or metrics from our approach and base improvements on that.

BN =

opment. This means that an increasing maturity implies an increased definition
and standardization of approaches in the organization. We argue that this stan-
dardization is necessary in order to be able to learn from experiences and also to
be effective in managing vulnerabilities. If different parts of an organization have
individual responsibility to define and manage their processes for this it will not
be effective. This means that we can formulate the basic contents of the levels as
follows.

The first level is level 0, which means that no effort is spend at all on the
activity. It may be that an organization does not work with vulnerabilities at all.
Then they are assessed at this level. The next level, resembling level 1 in CMMI,
level 1 means that the process is carried out in some way but it is often unclear
how it is done, and the responsibility is often left to developers who happen to
find the need and have the right competence and resources for it. At the next
level, level 2, there are defined approaches and routines, although there is not a
standardized approach in the organization. The next level, level 3, represents a
state where there is a standardized process in place for the practice. That is, the
same, defined, procedures are used in all teams and projects. At the most advanced
level, level 4, experiences are collected from using the standardized procedures, and
these experiences are used when constantly improving the processes.

In the model presented to the participants, the maturity levels were presented
as described in Table 2. When performing an assessment of the maturity, the
intention is that every question is assessed. That is, there is one assessment result
(level 0 — level 4) for each question. The results can then be presented either as
one result for each question or a summary for each area of questions.

When improvements are identified based on an assessment it is possible to
identify improvements based on the questions with low scores. When this is done
there are some dependencies that can be identified. It is, as described in Section 4,
possible to see that capability area A about product knowledge is a pre-condition
for the other capability areas, see Fig. 2. It is therefore recommended to start with
capability area A in an improvement programme.

6 Results of Evaluations

In this section the results of carrying out the evaluations are presented.
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Figure 3: Importance of activity

6.1 First Evaluation Round

In the first evaluation round a number of adaptions were made. In the discussions
it was clear that the practitioners thought that there were no major misconcep-
tions, and that the model included the major important aspects according to them.
However, it was clear that some terminology that was used could be changed to
terms that are more general in order to lower the risk of confusion about com-
pany specific terms. There were also some questions, especially in capability area
A that were refined in order to be more understandable. Concerning the com-
pleteness, new questions about how to communicate with external sources, such
as customers, were added. Also, based on the question about answer alternatives,
i.e. the maturity levels, they were presented in a clearer way and the two highest
levels in that version of the model were combined into the current most advanced
level. In the original version there was one level for collecting experience and an-
other level for using the experiences for improvement. These changes resulted in
the model that is presented in this paper (Section 4 and Section 5).

6.2 Second Evaluation Round

In the second evaluation round the focus was on understanding the important
of the questions and to what extent the questions would be handled without any
model. The results with respect to importance of activity and importance for com-
pleteness of each question are shown in Fig. 3 and Fig. 4. Median values have been
explicitly given to avoid ambiguity in the plots.

It can be observed that almost all questions are seen as important by the prac-
titioners. The freetext answers reveal some more detailed perceptions. One com-
ment on D3 (Handling vulnerabilities that need no changes) was that this might
be easily overlooked. This captures the importance of the question but also indi-
cates why it has received slightly lower score overall. It is not seen as important as
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vulnerabilities that do require changes. Question F3 (Communicating with me-
dia), which also had a relatively low score, was not present in the initial version. It
was added after interviewing company A, who viewed this as an important aspect
that was not covered by the other questions. One comment on this question (from
another company) was that this is mostly relevant for larger companies.

Some freetext answers also suggested adding more questions. One suggestion
was to add security assessment, in which assets are identified. The importance of
such a question will depend on to which extent the company knows which assets
are actually protected. Another suggestion was to also consider how third party
components are selected. Components, and in particular their maintainers must
be trusted not to e.g., add malicious code into the software. To see if there are
differences between the capability areas, we aggregate the answers to these areas,
see Fig. 5. Again, it can be seen that the values are high, and there are only minor
differences between the areas. A Kruskal-Wallis test (non-parametric alternative to
one factor, n-levels, ANOVA) shows that no significant difference could be found
between the areas (p = 0.23 for importance), which can be expected from the
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graphs.

Approximately half of the evaluation answers were from company A. We com-
pared the results from company A to the results from the other companies by
looking at box-plots and it seems they are not different. This is a motivation why
we analyze the results from every respondent without considering the company.
These differences were also analyzed for each question with Mann-Whitney tests,
but as expected no significant differences were found. Company A was shown a
summary of their responses and asked if they think their result would have differed
2 years back or 2 years from now.

Not significantly different. If we look back a bit further, say 5 years, most
activities have definitely increased in importance. Some activities will prob-
ably increase a bit further in the future, especially the F-section where laws
and regulations might play a part, but overall the activities are already per-
ceived as important. Reduced importance is unlikely in the foreseeable fu-
ture.

They were further asked if the similarity between Company A and other companies
were expected.

It’s expected. It indicates the increased attention to security issues is not
restricted to specific businesses and this is what we have perceived as well.

That is, it can be seen that company A are working with improvements that are in
line with the model.

7  Conclusions

The presented maturity model aims to help organization assess their maturity in
handling software vulnerabilities in third party OSS and COTS components. The
importance of such a model is due to the increasing number of vulnerabilities that
are being reported, and the growing number of connected devices that are bound
to change the society in the near future. The model is based on six capability ar-
eas and 21 practices. Related maturity models, i.e., those that focus on software
security are very broad and cover many aspects related both to software develop-
ment, maintenance, and organizational aspects, but they are not detailed enough
to cover all aspects of handling vulnerabilities in third party code. Thus, this model
can be seen as an important complement to other well-known models. This is also
supported by our evaluation, which shows that the defined practices are highly
relevant.
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Energy Consumption for
Securing Lightweight loT
Protocols

Abstract

In this paper we address the energy consumption of the Constraint Application
Protocol (CoAP) and the Message Queue Telemetry Transport (MQTT) protocol
and compare their overhead. We also pay attention to the use case of security in
IoT and analyze the energy consumption when using TLS/DTLS for the two pro-
tocols. In our experiments we use ESP32 with libcoap, MQTT, and mbed TLS
libraries and conduct real-world measurements using Otii, a high precision voltage
and current measurement tool. While the particular numbers are implementation
and hardware dependent, we can still make interesting observations. For data
transfer, we find that aggregating data to larger packets can significantly reduce
the energy consumption. We also find that AES-CCMS8 seems slightly more ef-
ficient than other modes of operation. In comparison, the DTLS handshake for
setting up the secure connection is very expensive, and also very dependent on
security level and algorithm choices. For firmware updates, AES-CCMS is again
slightly better than the alternatives, but the differences between CoAP and MQTT
are much more significant, favoring MQTT due to the use of the retransmission
support in TCP. This is also evident in lossy networks, where MQTT saves up to
91% energy compared to CoAP at 20% loss rate. Finally, we find that energy con-
sumption in CoAP can to some extent be reduced in lossy networks by modifying

Pegah Nikbakht Bideh, Jonathan Sénnerup, and Martin Hell. “Energy Consumption for Securing
Lightweight IoT Protocols”. In proceedings of the 10th International Conference on the Internet of
Things, loT 2020, Malmé, Sweden, pp. 1-8, ACM.
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the retransmission timeout.

1 Introduction

Devices connected to the Internet of Things (IoT) are seen as key enablers for
e.g., the smart city, home automation, wearables, and asset tracking. Connected
devices will supposedly also improve or even revolutionize, among other things,
energy management, healthcare and the management of our infrastructure. The
devices will be realized as e.g., sensors for detecting and monitoring physical char-
acteristics of the environment, or actuators to control our environment, machines,
systems or processes. Their interconnection with other devices, gateways and/or
the cloud introduces new security challenges, but it also makes them more ex-
posed to attacks, targeting e.g., unpatched vulnerabilities. The most common
application level communication protocols for IoT are the Constraint Application
Protocol (CoAP) and the Message Queue Telemetry Transport (MQTT) protocol.
CoAP is a lightweight protocol, in many aspects similar to HT TP, while MQT'T is
a publish/subscribe protocol. Both protocols are widely supported and have gained
widespread adoption, but neither include security functionality. Still, support for
confidentiality and integrity of messages, as well as message authentication, is of-
ten needed, and the natural choice is then to use DTLS for CoAP and TLS for
MQTT.

The ubiquitous nature of IoT devices often requires them to run on batteries,
making energy efficiency a primary concern. The large number of devices make it
costly to replace batteries, and it will also make the total energy consumption con-
siderable, further motivating energy efficient data communication and processing.
At the same time, adding security to the communication will add additional over-
head. Thus, it is important to not only develop lightweight security protocols,
but also to understand to which extent security affects the energy consumption of
the devices. Such understanding will allow vendors and users to make informed
decisions when choosing and implementing security in the devices and systems.

The main contribution of this paper is a thorough analysis of CoAP and MQTT
and the investigation of their energy footprint in different scenarios, and how
added security at the transport layer (TLS/DTLS) affects the energy consump-
tion. Important design choices, such as cipher suite, PKI vs. PSK, and client
authentication are also analyzed in order to better understand how such choices
impact the energy consumption. In our real-world experiments, we use ESP32 to
represent a device. For measurements, we use an Otiil, which is a high precision
voltage and current measurement unit Note that the actual numbers given in this
paper are implementation and hardware specific and might differ between libraries
or [oT devices. Still, the main takeaways will apply to the general case.

1https://vvww.qoitech.com/
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2  Related Work

Efficiency and comparisons of [oT protocols have been considered in several previ-
ous works. An important thing to note is that the library or implementation used
can heavily impact performance [IOU17]. Optimized implementations was pur-
sued for DTLS in [Cap+15], where the authors exploited ECC optimizations in
order to minimize ROM occupancy, time and energy. They only considered ECC
based operations with two different cipher suites, one with ECDH and ECDSA,
and one with ECDHE and PSK. The importance of optimized implementations
was also noted in [Sud+18] where it was shown that secp256r1 was more efficient
than the secp224rl curve due to a more optimized implementation. They com-
pared ECDSA and RSA in TLS 1.2 and on ESP32, and showed that ECDSA
performs better than RSA.

Performance of security updates for IoT were measured and discussed in
[TBK19]. Three different models, CoAP, MQT'T, and encapsulating CoAP inside
MQTT, was proposed for delivering Over-the-Air updates and software patches.
While it was shown that MQTT is faster and more reliable than CoAP to send
urgent updates, no energy measurements were made and cryptographic protection
was not considered. Since power consumption differs over time, it is not possible
to draw accurate conclusions for energy consumption by only measuring time. In
this paper, we consider both energy and time for the software update case, while
also comparing both CoAP and MQTT using different encryption algorithms.

In [Tha+14], the authors designed a common middleware for MQTT and
CoAP and measured performance of these based on end-to-end delay of single
packets and bandwidth consumption. Their results indicated CoAP has lower
average delay in case of high packet loss, around 25%. No energy measurements
were made. In this paper, we measure energy and looks at a sequence of packets
instead of average time for individual packets.

Energy can also be reduced by instead making changes to the protocol. Lithe
(Lightweight Secure CoAP for the Internet of Things) [Raz+13] is an integration
of DTLS and CoAP for IoT, in which the authors proposed a header compres-
sion scheme which aims to reduce energy consumption by leveraging 6LoWPAN.
In their evaluation, they demonstrated that CoAP overhead by using DTLS com-
pression can be significantly reduced in terms of energy consumption and network
response time. While such modifications are valuable, they require protocol mod-
ifications. In this paper we do not aim to make modifications to the protocols.

3 CoAP and MQTT
3.1 CoAP

CoAP [GMSI15] is a web transfer protocol, for constrained networks and was de-
veloped by IETF CoRE (Constrained RESTful Environments) Working Group.
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CoAP was designed for UDP communication over 6LoWPAN networks. It uses a
Universal Resource Identifier (URI) to identify available resources on constrained
devices. Messages are exchanged between endpoints using CoAP requests and
responses. CoAP is a one-to-one protocol for transferring information between
client and server.

A CoAP message has a 4-byte fixed header, consisting of 2 bits for Version
field, 2 bits for message Type, 4 bits of Token Length, 8 bits of Code field and 16
bits of Message ID. The Message ID is utilized for duplicate detection. A token
can optionally be used to match requests and responses. In our experiments, we
do not include Token or Options, so the Token Length is zero.

The CoAP specification describes four security modes:

* Nosec: No security provided.

* PreSharedKey: Symmetric pre-shared keys are used in one of the PSK ci-
pher suites in DTLS.

* RawPublicKey: DTLS is used with an asymmetric key pair that is pre-
installed on the device, without a corresponding X.509 certificate.

¢ Certificates: x.509 certificates are used with DTLS.

For CoAP, we may choose to send either confirmable (CON) messages or non-
confirmable (NON). CON messages will be ACKed, or retransmitted in case of
packet loss, whereas NON messages will not.

CoAP can also run over TCP [Borl8] instead of UDP, but it is only applicable
for cases where there is no other choice for networking infrastructure. It causes
larger code and packet sizes, increases RAM requirements, and increases round
trips. Therefore, in this paper the original CoAP protocol over UDP is considered.

3.2 MQTT
The MQTT protocol is a publish/subscribe messaging protocol designed for low

bandwidth environments, originally for communication over satellite links. It uses
a server (broker), together with a set of clients. A client sends messages tagged with
a topic, and other clients can subscribe to that topic, in which case the server routes
the messages to the subscribing clients. In MQT'T, the connections to the server
can be specified with a Quality of Service (QoS). QoS can vary from 0 to 2 in
which 0 has the least overhead. In our experiments, we used the default QoS,
which is 0. MQTT is a many-to-many protocol as it passes the messages between
clients through the broker.

MQTT runs over the TCP protocol. There is also a variant called MQTT-
SN? which can use UDP. It has however not received widespread adoption and is
not well supported, so it is not considered in this paper.

*http://mqtt.org/new/wp-content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf
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3.3 Security on the Transport Layer

Both CoAP and MQTT can have security added at the application layer. OS-
CORE (Object Security for Constrained RESTful Environments) [Sel+19a] is an
example of an object security protocol for CoAP. Still, the two protocols are com-
monly used with DTLS and TLS and both specifications explicitly discuss the use
of these protocols. TLS and DTLS differ primarily by the fact that DTLS, be-
ing used for UDP, must e.g., handle packet loss and out-of-order packets in the
handshake phase.

The two main protocols in TLS are the handshake protocol and the record
protocol. In the handshake protocol, the peers are authenticated and encryption
and message authentication keys are established. A Diffie-Hellman key exchange,
or a pre-shared key, is used to agree on a premaster secret, from which the en-
cryption keys are derived. With Diffie-Hellman, the messages are authenticated
using a digital signature. It is also possible to combine Diffie-Hellman and PSK,
in which case the two values are concatenated to form the premaster secret. For
improved performance, Diflie-Hellman can be computed over elliptic curves (de-
noted ECDHE in the cipher suites). Also the digital signature can be computed
over an elliptic curve (ECDSA), instead of using an RSA signature. Once keys
have been established in the handshake protocol, data can be encrypted and au-
thenticated in the record protocol.

The record layer in DTLS is very similar to TLS, but an explicit epoch (2 bytes)
and sequence number (6 bytes) are added to the record. This results in DTLS 1.2
messages having 29 bytes overhead while TLS 1.2 has only 21 bytes overhead.

Other than normal message overheads, DTLS 1.2 handshake messages have
7 extra bytes header overhead. This overhead in the DTLS 1.2 handshake, in
comparison to TLS 1.2, is due to the fact that DTLS handshake messages can be
fragmented over several DTLS records.

4  Experimental setup

Here we present the architecture used during the experiments, i.e., the hardware
and software components.

4.1 Selected Hardware

To select the development board, based on our requirements including low price,
good documentation, support for CoAP/MQTT and TLS/DTLS and widespread
use, we decided to use ESP32-WROOM-32D [Espl9]. It is relatively cheap, has
support for the software libraries we target, and has good documentation and a
large community. It can also be used in many applications ranging from low-power
sensor networks to very demanding tasks. Moreover, AES hardware acceleration
is supported (and was enabled). It has an Xtensa 32-bit dual-core microprocessor
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Figure 1: CoAP/MQTT testbed architectural overview

with 240 MHz clock speed and 512 KiB of RAM. We directly supplied ESP32
with 3.3V which was the supported operating voltage. Although, 6LoWPAN is
beneficial in low power IoT networks but we have used WiFi for connectivity since
6LoWPAN was not supported on ESP32.

As WiFi router, an Asus RT-ACS1U was used. The CoAP server and the
MQTT broker, were run on a 64-bit Linux system with an Intel Core i5-6200U
at 2.4 GHz with 8 GB RAM.

To measure energy consumption, an Otii Arc was used. Otii is a portable
power supply and data-acquisition module which can be used for very accurate
voltage measuring. It is commonly used by developers in device and application
designs to optimize energy consumption. Otii Arc has a desktop application avail-
able for Windows, Ubuntu and macOS. We used the application on Ubuntu.

4.2 Software

The official development framework for ESP32-IDF v3.3 [Esp20], denoted ESP-
IDE, was used for development. The CoAP client was developed with libcoap
4.2.1, and the mbed TLS 2.16.2 library was used to setup the DTLS connection.

The libcoap 4.2.1 library was also used to setup the CoAP server on the Linux
machine. For transport layer security, libcoap has support for GnuTLS, OpenSSL
and Tinydtls, and can also be configured with mbed TLS. In our testbed libcoap
with mbed TLS 2.8 was used.

The MQTT library used on the client side is the one included in the ESP-
IDE, running MQTT version 3.1.1. The library utilized mbed TLS for TLS 1.2,
supporting both PKI-based and PSK-based cipher suites. On the server side, the
Mosquitto broker 1.6.7 is utilized using OpenSSL 1.1.01. The code for the ESP32
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along with used scripts can be found online’.
To do the measurements with the Otii software, the Otii device is connected to
a power supply via a USB port. Then, the Otii device powers the ESP32, allowing
it to measure the power used. UART messages are sent from the ESP32 to the
Otii in order to annotate the measurements. This allows us to accurately correlate
the energy consumption to the different phases of the application under test.
The selected components are connected as shown in Fig. 1.

5 Methodology and Use Case

In this section, we discuss, and give the rationale behind, our chosen measure-
ments. In the following, the cost will refer to the energy cost of first computing,
and then sending information over the communication channel.

A typical use case would be a client/server application in which a client or
sensor communicating data back to a server for aggregation and further analy-
sis. The sensors are developed using a mix of third party and in-house developed
code. They will thus be subject to discovered security vulnerabilities, requiring
new firmware with regular intervals. The sensors will typically be powered by a
battery. The process of changing the battery is resource consuming, requiring en-
ergy efficient computation and communication.

Although TLS 1.3 has faster encryption speed and requires less round trips to
complete the handshake in comparison to TLS 1.2, in this paper, we focus on TLS
1.2 and DTLS 1.2. TLS 1.3 was finalized in August 2018 and DTLS 1.3 is only
in draft state. The versions are not compatible with each other, so to have a fair
comparison between CoAP and MQT'T, we do not consider TLS 1.3 for MQT'T.
Still, we only consider cipher suites that are compatible with TLS 1.3, i.e., we
exclude RSA key exchange and we only consider AEAD modes of operation on
the record layer.

The main goal is to better understand the following aspects:

* The cost of adding security to CoAP and MQTT and the difference between
AES modes of operation and key sizes when encrypting bulk data.

* 'The handshake cost, using different cipher suites.
* The cost of updating the device firmware, using a secure channel.
* The influence of packet loss for bulk data transfer.

Adding TLS/DTLS at the transport layer will incur overhead for both initial
handshake messages and encryption/decryption and authentication of messages in
the record layer.

3https:/ /github.com/Noxet/squidward
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5.1 Adding Encryption to Data

To understand the cost of encrypting data, and how algorithm choices affect the
cost, we measure the energy used to encrypt messages of different sizes.

According to the CoAP specification [BZ16], CoAP messages should fit into a
single IP datagram to avoid IP fragmentation. Thus, the payload size is bound to
1024 bytes. To transfer larger payloads, CoAP supports a block-wise transfer op-
tion. This option enables transferring multiple blocks of information represented
as multiple request-response pairs. The block-wise option enables a server to be
stateless, since the server handles each block separately and there is no need for
any connection setup on server side. In order to cover a wide range of use-cases,
we measure the energy for message sizes between 16 and 8192 bytes, i.e., up to 8
blocks.

When measuring the encryption overhead, the TLS/DTLS handshake is not
considered, only the encryption in the record layer. The handshake is measured
separately, as detailed in the next section.

5.2 TLS/DTLS Handshake

The TLS/DTLS handshake can be based on asymmetric keys or a symmetric Pre-
Shared Key (PSK). In the case of asymmetric keys, digital signatures are used to
authenticate the key exchange message in the handshake, while in the PSK case it
is possible to either directly agree on a PSK to use as pre-master secret, or to use
ephemeral Diffie-Hellman key exchange (for perfect forward secrecy), and then
adding the PSK to construct the pre-master secret. Since asymmetric operations
are computationally expensive, PSK can be favourable in constrained environ-
ments. Still, digital signatures can be preferred when it is not feasible to pre-share
keys. The RawPublicKey variant is currently not supported in mbed TLS, the li-
brary used by our device. We analyse the energy consumption for the handshake
in the other modes, PreSharedKey and Certificates. The comparison measures
both the difference between the modes and how different algorithms and levels of
security compare to each other. Moreover, we compare how client authentication
influences the energy and time. All measurements are made for CoAP.

Many cipher suites are available, but we take the NIST guidelines [MC19]
into account for the selection of cipher suites. Apart from PSK, we only consider
ephemeral keys and Diffie-Hellman key exchange (RSA for key exchange is depre-
cated). Since mode of operation and cipher algorithm only marginally effects the
handshake, we fix these to AES in GCM mode.

We use two approximate security levels of 128 (moderate) and 256 (high) bits.
For moderate security level we choose elliptic curves of size 224 and 256 bits. For
RSA signatures, we then use RSA-2048. CoAP explicitly mandates the use of the
curve secp256rl, which uses an elliptic curve with a 256-bit prime (also known as
NIST P-256). The curve secp224rl corresponds to the 112-bit security provided
by RSA-2048. For the application data, we use AES-128 together with SHA-256.
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Since we use GCM/CCM, the hash algorithm is only used for the PRF in the
handshake, not to compute a MAC on the record layer. For high security level, we
instead use 384- and 512-bit curves, and RSA-4096. We adjust the encryption key
to 256 bits and use SHA-384. See e.g., [Barl9] for more information on security
levels.

Although the use of PSK is not recommended by NIST, they do list a set of
PSK cipher suites that can be used. We compare both plain PSK, i.e., (PSK as
premaster secret (PSK), and when Diffie-Hellman is used together with the PSK
(DHE_PSK).

5.3 Firmware Update

A new firmware is often relatively large, at least in comparison to the typical data
packets sent by devices. A firmware update process typically consists of:

1. Download the firmware from a server.
2. Store the firmware such that the bootloader can boot into the firmware.
3. Reboot the device, using the new firmware.

The ESP32 has built-in OTA (Over-The-Air) update functionality, combining
steps 1 and 2 above. We measure the energy and time used to both download and
store a firmware with size 870 KiB. Rebooting is not part of the measurement.
We compare different encryption key sizes and modes of operation for AES, for
both CoAP and MQTT, in order to analyze the difference for these larger data

transmissions.

5.4 Packet Loss

Packet loss can be costly due to retransmission, resulting in more energy con-
sumption. If a CoAP message is marked as CON, it will be retransmitted until
the receiver sends an ACK. For MQTT, retransmission is handled by the TCP
layer.

We simulate packet loss with loss rate varying from 0 to 20% using CoAP
and MQTT, both with and without security. Very high ranges of packet loss may
cause a session to be lost due to timeout and ranges of very low packet loss does not
have much effect on energy consumption. Also, based on used loss rates defined
in [Tha+14], we use packet loss rates up to 20%.

The CoAP messages were marked as CON in our experiments, thus when a
packet loss occurs, the packet will be retransmitted until an ACK is received from
the server. One might believe that NON messages are more efficient, if packet loss
is not a concern, but this is not the case. According to RFC 7252 [SHB14a], CoAP
is a request and response protocol, this means that CON and NON messages both
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are followed by a response. In the case of a CON message, the ACK is usually
piggybacked, resulting in no byte overhead.

In CoAP, the retransmission time is primarily controlled by the ACK_TIMEOUT
parameter, i.e., the time after which a retransmission is made. According to RFC
7252, the default value is 2 seconds, and it is recommended to not be less than 1
second. Following this, we vary the timeout between 1 and 3 seconds, and analyze
its effect on the energy consumption with different packet loss rates.

6 Results and Discussion

In this section we give the results of our measurements. In some measurements, we
also measured the duration time since energy and time is not fully correlated. En-
ergy consumption is not necessarily the same for doing the required computations
and for sending the actual payload. All our measurement results are given as the
average of 10 measurements. The power consumption in the idle state is 108 mW,
which corresponds to 30 uWh during a second. For the PKI-based handshake,
certificates are signed by a CA, so they have a certificate chain of length two. Note
that the required energy for WiFi initialization is included in all of the measure-
ments.

6.1 Analysis of Adding Encryption to Data

We analyze the energy consumption for sending data from the client to the server.
CoAP and MQTT communication is analyzed, both without security, and with
different variants of channel encryption. We start the measurement after the
client’s finished message in the handshake and stop the measurement when all
data has been transmitted.

The total energy consumption for CoAP is given in Fig. 2, while the results for
MQTT can be found in Fig. 3. Looking at plain data (NULL), CoAP consumes
slightly less energy than MQTT and is more efficient for packet sizes up to 1024
bytes. This is reasonable since UDP is more efficient than TCP over a reliable
network. However for larger data chunks (> 1024 bytes), CoAP consumes much
more energy, so here MQTT is more efficient. The reason for this can be found on
application level. CoAP has a 1024 byte limitation on packets with no support for
fragmentation. Thus, CoAP must send several consecutive chunks of 1024 bytes,
while MQTT can send larger payloads up to 256MB although fragmentation may
occur in lower layers. Further, we can note that the energy cost of sending data is
constant for up to around 1 KiB of data for both CoAP and MQTT. The energy
needed to initiate and end the actual WiFi communication is then significantly
larger than the energy cost of the actual data transmission. For CoAP (UDP),
this overhead is around 5.7 ¢Wh (with standard deviation 0.07) and for MQTT
(TCP) it is around 6.1 uWh (with standard deviation 0.3).
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Figure 2: Energy consumption for COAP/CoAPs protocols with different cipher suites and
different payload sizes

From Fig. 2, we can see that adding DTLS to CoAP messages (shown with dif-
ferent cipher suites in Fig. 2) adds a small amount of energy (compared to NULL),
in the order of 0.3 ;tWh, for small messages. For larger messages, the added energy
is increasing. Adding TLS to MQTT gives lower overhead compared to DTLS,
likely since it has less byte overhead compared to DTLS. For smaller messages
the difference is within one standard deviation of the measurements. For larger
messages the difference is evident.

Looking at Fig. 2 and 3, with different cipher suites, it is clear that there is not
much difference in the choice of keysize (128 vs. 256 bits) and modes of operation
(GCM vs. CCM). Calculating a 95% confidence interval shows that there is no
statistical difference. One thing that we can notice is that for CoAP messages, the
CCMS8 variants require (statistically) less overhead compared to the other variants.
For messages of size 8192 bytes the energy saving is around 6 tWh.

From Fig. 2 and 3 we can also conclude that aggregating as much data as pos-
sible is beneficial for energy consumption. For instance, sending 8 kiB in frames
of 16 bytes is much more energy consuming than transferring 8 KiB in frames of
1024 bytes. This is even more important if it can also reduce the number of hand-
shakes, as will be seen in the next section.

Key takeaways:

* Though modes of operation and key sizes changes the cryptographic algo-
rithms, for our used hardware and software libraries, this has very little im-
pact on energy consumption. Still, CCM8 seems to be somewhat cheaper.
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Figure 3: Energy consumption for MQTT/MQTTs protocols with different cipher suites and
different payload sizes

* Since CoAP can send packets of size up to 1024 bytes, the overhead of send-
ing several packets makes MQTT less energy consuming for payload sizes
larger than 1024.

* In both CoAP and MQTT, sending aggregated data is more beneficial than
sending data in smaller packets.

6.2 Analysis of PSK-based and PKI-based DTLS Handshakes

To measure the handshake part of a secure connection in CoAD, we setup a secure
connection from the ESP32 to the server, forcing the client to support only one
specific cipher suite listed in Table 1. To establish the actual connection, the client
sends 16 bytes of data to the server. For each cipher suite, we measure the energy
consumption for the handshake, including transferring 16 bytes of data and closing
the connection. This is performed both with and without client authentication.
The measured values and duration times, are given in Table 1.

For the two PSK-based methods, the addition of Diffie-Hellman (i.e., PES)
will significantly increase the energy needed.

‘The remaining cipher suites can be compared from different perspectives. Com-
paring RSA and ECDSA shows that when only the server is authenticated, RSA
performs better, but when also the client is authenticated, RSA becomes less effi-
cient than ECDSA. This is due to the asymmetry in RSA signatures, where signing
is much more costly than verification. For ECDSA, these costs are much more
symmetric.
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Comparing the elliptic curves, the increase in energy when increasing the size
is relatively constant, except for the case of RSA signatures. This suggests that
using 4096-bit signatures is much more costly than using 2048-bit signatures. For
high security levels and mutual authentication, ECDSA is thus highly preferred.
However, without client authentication, RSA can be considered.

DHE (2048-bit prime) with RSA signatures requires much energy. The main
reason is that this (Diffie-Hellman) uses an exponentiation with a secret value. It
is thus clear that ECDHE should always be preferred over DHE.

Looking at the time for the handshake, it is often very slow. Analyzing the
communication using Wireshark, we find that the vast majority of the time is
being spent while waiting for the client to respond with the Client Key Exchange
message.

Comparing the handshake to sending data, it costs around 6 1¢Wh to send up
to 1 KiB data, while any (non-PSK) key exchange will cost in the order of 50-500
Wh depending on cipher suite. Thus, minimizing the number of handshakes,
and to make them more efficient, should be prioritized.

Key takeaways:

* Due to the asymmetric cost for signing and verifying RSA signatures, RSA
is a viable option when client authentication is not used.

* ECDHE should always be preferred over DHE.

* Client computations are responsible for most of time and energy. This is
particularly evident when the client computes RSA signatures, as is the case
when we have mutual authentication (and RSA).

* Plain PSK is significantly more efficient than any other alternative.

Table 1: The handshake energy consumption (with standard deviation from 10 measure-
ments is given in parentheses)

Mutual authentication One way authentication
. . CoAP energy CoAP CoAP energy CoAP

Cipher suite consumption (;£Wh)  time (ms)  consumption (1/'Wh) time (ms)
TLS_DHE_PSK_WITH_AES_128_GCM_SHA256 268.66 (5.13) 4186 (23.06) - -
TLS_PSK_WITH_AES_128_GCM_SHA256 18.53 (0.61) 163.39 (5.28) - -
TLS_ECDHE (224r1) _RSA_AES_128_GCM_SHA256 114.33 (2.88) 1606 (8.14) 48.90 (3.90) 578.96 (34.78)
TLS_ECDHE(256r1) _RSA_AES_128_GCM_SHA256 125.00 (2.00) 1771 (12.16) 57.36 (1.59) 720.66 (9.44)
TLS_ECDHE (384r1) _RSA(4096) _AES_256_GCM_SHA384 463.66 (19.29) 7572 (367.73) 118.37 (20.09) 1678 (326.05)
TLS_ECDHE(521r1) _RSA(4096) _AES_256_GCM_SHA384 473.00 (15.39) 7691 (205.14) 155.00 (4.35) 2209 (112.42)
TLS_DHE_RSA_AES_128_GCM_SHA256 339.00 (1.00) 5395 (30.31) 276.33 (3.51) 4328 (19.15)
TLS_ECDHE_ECDSA(224r1)_AES_128_GCM_SHA256 106.33 (12.22) 1556 (217.41) 75.86 (0.90) 1033 as8.71)
TLS_ECDHE_ECDSA(256r1) _AES_128_GCM_SHA256 135.66 (0.57) 2098 (26.57) 100.23 (1.53) 1475 (7.63)
TLS_ECDHE_ECDSA(384r1)_AES_256_GCM_SHA384 178.00 (8.18) 2721 as1.71) 143.00 (2.64) 2168 (36.17)

TLS_ECDHE_ECDSA(521r1)_AES_256_GCM_SHA384 276.66 (7.37) 4432 (148.67) 213.33 (0.57) 3327 (26.40)




96 Paper II: Energy Consumption for Securing Lightweight IoT Protocols

<=
B 00 coar
g 0 0marr
~ — ]
e 4 N M M M
5
=
a,
g
3
g ol i
15
Q
&5
Q
0 Q:‘ N T T T T
P S &P
\2\‘?‘ Q\‘?* &7 o7
AN S SO Y
N 4 N %
O O Y
RS A A
Rl ¥ ¥
& ¢

Figure 4: OTA firmware update energy consumption in CoAP and MQTT protocols with
different cipher suites

6.3 Analysis of Firmware Update

In our experiments, we used the block-wise option in CoAP for transferring a
firmware. Being around 870 KiB, it was transferred in 870 consecutive blocks
from the server to the client, and then written to flash. We used MQTT as-is, since
it handles the data size without problems. Upon completion, the client verifies the
firmware and reboots into the new firmware.

In the experiments, we measured the energy between the client receiving the
first and last firmware block. The results of the energy consumption, and also
the time for receiving all the blocks, are shown in Fig. 4 and 5. As illustrated in
Fig. 4, there is not much difference between different cipher suites in case of energy
consumption for both CoAP and MQTT. The small differences that we can see
in Fig. 4 are consistent with the previous measurement in that CCMS is slightly
more efficient than the other options (the two rightmost bars). Calculating a 95%
confidence interval supports this observation. The time to receive all the encrypted
firmware blocks in CoAP using CCM8 is also less than the time for other ciphers,
as illustrated in Fig. 5.

We again notice that CoAP requires more energy and time compared to MQTT.
This is consistent with the previous measurement shown in Fig. 2 and 3.

Key takeaway:

* For transferring the OTA update, MQTT is more efficient with a factor 4
for energy, and almost a factor 2 for time. This is because in CoAD, the
firmware is transferred in several small blocks.
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6.4 Analysis of Packet Loss

We simulated packet loss using the traffic control utility tc* along with the net-
work emulator NetEm> on the server side for both CoAP and MQTT with and
without security. NetEm was configured to drop packets from the interface with a
given probability. In our experiments, 500 packets with a fixed size of 512 bytes
were sent from the client to the server (without any delay between sending the
packets), with a loss rate up to 20 %. The energy consumption was measured to
capture the effect of retransmission.

In bulk CoAP transmission, the packets will be sent consecutively until a
packet loss occurs. When a loss occurs, the client waits until the next retransmis-
sion time. In the retransmission, the lost packet and also the remaining packets
will be sent to the server.

Bulk transmission is handled differently in MQTT. Since MQTT utilizes TCP
with its sender window, the sender might send the last packet while it is still waiting
for previous packet acknowledgements. As a result, bulk transmission in MQTT
with packet loss is much faster than CoAP since it does not have to wait for every
packet to be acknowledged.

Since there was not much difference between key sizes and cipher suites, as
discussed in Section 6.1, in these measurements we only consider AES with key
size 128. 'The energy consumption for different packet loss rates for transferring

500 packets of size 512 bytes for CoAP and MQTT protocols are given in Fig. 6

*https://man7.org/linux/man-pages/man8/tc.8.html
Shetps://man7.org/linux/man-pages/man8/tc-netem.8.heml
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and 7. The energy consumption will increase with increasing packet loss, but this
increase in CoAD, as illustrated in Fig. 6, is much more than in MQTT (note the
different scaling of the y-axis). This is due to the differences in handling bulk
transmission as explained above.

In Fig. 6 and 7, there is no significant difference between different modes of
operation. NULL has the lowest energy consumption in both CoAP and MQTT,
but in CoAD, the difference between NULL and other cipher suites decreases for
loss rates higher than 10 percent. Because, in CoAD, when the rate increases, the
waiting time between retransmissions also increases and the actual number of re-
transmissions decreases. The required energy for each second of waiting time be-
tween retransmissions is around 30 ©Wh. Sending the same number of pack-
ets (500 packets) in CoAP and MQTT, the required time in CoAP for 20 per-
cent packet loss is around 7 minutes while in MQTT this time is only around 1
minute. This results in the huge difference between energy consumption in CoAP
and MQTT protocols for higher packet loss rates.

We only consider a uniform distribution of the lost packages. Other packet
loss distributions, e.g., burst errors, would likely affect the TCP window differ-
ently. Such specific network conditions should be take into account when analyz-
ing the performance in case of packet loss.
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Figure 6: Energy consumption for CoAP/CoAPs protocols with different packet loss rates

The effect of the ACK_TIMEOUT parameter under different loss rates is shown
in Table 2. Since much energy is consumed while waiting for the next packet,
lowering waiting time can reduce energy. Comparing a 1 second ACK_TIMEOUT
with the default 2 second value indicates that the control parameters can have
significant impact on the energy consumption, in particular with high packet loss
rates. As seen in Table 2, the energy consumption for 15 and 20% packet loss rates
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Figure 7: Energy consumption for MQTT/MQTTs protocols with different packet loss rates

with 2 seconds ACK_TIMEOUT is almost double the required energy for 1 second.

The experiments showed that by increasing the ACK_TIMEOUT, the energy
consumption will be increased but this increase is more visible in higher packet
loss rates. Therefore, it is important to optimize the retransmission parameters in
CoAP protocol according to the environment.

Key takeaways:

* For CoAP on lossy networks, the encryption overhead decreases with the
loss rate.

* MQTT performs significantly better in lossy networks due to the algorithms
used in TCP.

* In CoAP, retransmission parameters such as ACK_TIMEOUT should be opti-
mized according to the environment.

7  Conclusions

In this paper we give a better understanding of the difference in energy overhead
for two common IoT protocols, CoAP or MQTT. We have done real-world ex-
periments to measure and analyze the energy overhead of adding security to CoAP
and MQTT on an ESP32 IoT device. During data transfer, we show that there is
a constant energy overhead for up to around 1 KiB of data, which is the cost for
setting up the WiFi connection. Above 1 KiB, CoAP has a higher penalty com-
pared to MQTT, due to the block-wise transfer mechanism. Thus, for smaller
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Table 2: The effect of ACK_TIMEOUT parameter on CoAP protocol energy consumption

Energy Consumption (mWh)
ACK_TIMEOUT (s) 1 1.5 2 2.5 3

5% packet loss 1.39 1.55 1.88 2.38 2.50
10% packet loss 2,39 3.16 3.85 4.85 6.29
15% packet loss 3.98 6.00 8.05 9.86 10.73
20% packetloss  6.46  7.78 12.20 13.58 16.65

packet sizes, CoAP and MQT'T are comparable, while MQTT is favorable for
larger packets. Due to the overhead of setting up the wireless connection, it is
clear that data should be aggregated, whenever possible.

Looking at the DTLS handshake, ECDHE should always be preferred over
DHE, while RSA as digital signature has a slight advantage when client authenti-
cation is not needed.

In most cases, MQTT outperforms CoAP, much due to the window based
retransmission strategy in the underlying TCP protocol. The most suitable use
case for CoAP is on a reliable network, transmitting small packets of data. For
other cases, the strength of TCP becomes evident.

Note that the numbers provided are hardware and implementation specific.
Also there are other factors that can affect the results, such as environmental con-
ditions, network topology, integration of many sensors in IoT systems, device use
case, etc. As a result, all of above factors need to be considered in the energy
consumption of IoT devices.
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RoSym: Robust Symmetric
Key Based loT Software
Upgrade Over-the-Air

Abstract

Internet of Things (IoT) firmware upgrade has turned out to be a challenging task
with respect to security. While Over-The-Air (OTA) software upgrade possibility
is an essential feature to achieve security, it is also most sensitive to attacks and
lots of different firmware upgrade attacks have been presented in the literature.
Several security solutions exist to tackle these problems. We observe though that
most prior art solutions are public key-based, they are not flexible with respect
to firmware image distribution principles and it is challenging to make a design
with good Denial-Of-Service (DoS) attacks resistance. Apart from often being
rather resource demanding, a limitation with current public key-based solutions
is that they are not quantum computer resistant. Hence, in this paper, we take
a new look into the firmware upgrade problem and propose RoSym, a secure,
firmware distribution principle agnostic, and DoS protected upgrade mechanism
purely based on symmetric cryptography. We present an experimental evaluation
on a real testbed environment for the scheme. The results show that the scheme is
efficient in comparison to other state of the art solutions. We also make a formal
security verification of RoSym showing that it is robust against different attacks.

Pegah Nikbakht Bideh and Christian Gehrmann. “RoSym: Robust Symmetric Key Based IoT
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1 Introduction

The Internet of Things (IoT) is a common term for describing systems of inter-
connected devices. The devices can be of many different types and are used in
divergent local networks and with a wide range of capabilities. Some units are
very powerful while others are extremely tiny and resource constraint with respect
to computing capabilities, volatile and non-volatile memory sizes, etc. IoT de-
vices are not directly human operated, they are often managed remotely [Fer+17].
This means that software updates and other critical maintenance operations need
to be performed over the network and when the device is wireless, often referred
to as Over-The-Air (OTA) updates. Several severe attacks against loT Firmware
upgrades have been reported in recent years. The attacks are of different types ei-
ther attacking the firmware during transfer [Shi+17] or through Denial of Service
(DoS) of the actual update process [Fan+21]. Hence, there are very good reasons
to offer highly secure and robust software upgrades for IoT systems. As we discuss
in Section 2, lots of efforts have historically been put into code dissemination solu-
tions for Wireless Sensor Networks (WSNs) [BS13]. Even if wireless IoT networks
share many WSN characteristics, they also have some specific characteristics and
needs. Especially, IoT firmware upgrade does not always happen through direct
multicast, but through many other distribution mechanisms [Ara+21]. This put
special requirements on how the upgrade packages are verified and protected. In
particular, the firmware upgrade scheme must in such a situation be able to handle
both out of order delivery and intermediate storage of upgrade packages. Another
problem is that most existing firmware upgrade solutions are public key-based us-
ing non post-quantum resistant algorithms. Even if it would be possible to transfer
existing public key schemes into ones using quantum cryptographic algorithms,
those currently available do not promise efficient enough signature algorithms in
terms of performance and size compare to currently non post-quantum resistant
algorithms [Beu21]. This is a problem when we consider resource constraint IoT
units. On the other hand, to resist Grover’s algorithm [Gro96b] against symmetric
key primitives, only a double of the key size is needed. Consequently, there is a
need for investigating new, completely symmetric key-based upgrade solutions.

Our new scheme, RoSym, is a new solution addressing exactly these concerns.
We have looked into the IoT firmware upgrade problem with a focus on the re-
quirement of being transport agnostic while also being able to handle the most
recent DoS threats against the upgrade procedure. We have worked with a design
offering post-quantum resistance by limiting the solution to only being depen-
dent on pure symmetric key operations. RoSym is an upgrade scheme that has
very low complexity. The design approach has been very pragmatic, taking state-
of-the-art symmetric cryptography and well-proven techniques and bringing them
together to make an overall firmware upgrade solution that can easily be imple-
mented, both on the IoT and the software management side of the system. The
main contributions of the paper are the following:
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* We consider the secure IoT software upgrade problem and identify the main
security, robustness, and performance requirements for software distribu-
tion transport agnostic, pure symmetric key protected upgrade.

* We propose a new transport agnostic and secure software upgrade scheme
with good DoS robustness fulfilling the identified requirements.

e implemen e proposed solution an resen crrormance ures.
* We impl t the proposed solut dp t perf fig

* We make a formal security verification of the proposed protected upgrade
scheme.

The rest of this paper is organized as follows, in Section 2, prior art firmware
upgrade techniques for WSNs and IoT networks are reviewed. Section 3 gives
problem background and derives main design requirements. In Section 4 and
Section 4, the design of our new scheme is given. We describe our implementation
in Section 6. The evaluation results are represented in Section 7. The formal
security verification of our scheme is given in Section 8 and finally, the paper is
concluded in Section 9.

2 Related Work

Next, we present the most relevant related work. We start by discussing different
code dissemination protection principles previously suggested in the literature. We
then treat the DoS aspect of firmware upgrade in the related art. A comparison of
prior-art solutions with respect to these aspects is given at the end of the section.

2.1 Secure Code Dissemination Approaches

The problem of software update or code dissemination has been studied in the
area of WSN and IoT for a long time. One of the first papers discussing the code
dissemination problem for WSN was the pioneering paper on the scheme Del-
uge [HCO04]. Deluge did only treat the distribution principle as such, suggesting
that a firmware image is divided into fixed size pages and then pages are divided
into fixed size packets, which are then distributed to the networked devices. How-
ever, the security aspect was never treated in the original Deluge scheme.

Later, many secure versions of Deluge were proposed. For example, in secure
Deluge [Dut+06], after the division of code image to packets, a hash is computed
over the last packet and is appended to the end of the previous packet and similar
hashes are embedded recursively to all packets. Then, the base station signs the first
hash and the receiver verifies the signature and stores the hash to authenticate the
next packet. Sluice [LGNOG] is similar to secure Deluge but in Sluice page level
hashes are used instead of packet level hashes. Other Deluge protection solutions
were at about the same time proposed. The authors in [DHMOG], investigate
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different trade-offs between a special hash tree structure with signed roots and a
hash chain. A rather similar approach is taken by the solution in [Hyu+08], called
Seluge. Seluge builds a Merkle hash tree with hash values of packets on the first
page, the rest of the packets can then be authenticated by a hash chain. All these
previous methods are public key based. Even if Seluge uses conventional public
key encryption (non post-quantum resistance), it is interesting to compare Seluge
with our approach and we present performance figures in Section 7. Several other
public key based protocols have been proposed such as SDRP [He+11], SCATTER
[KD11], SenSeOP [Asc+12] and Flexicast [LKK15].

Similar to our solution, also different pure symmetric key based techniques
have been introduced. PETRA [IKCO09] is based on symmetric keys, and its secu-
rity is built upon a combination of Message Authentication Codes (MACs) and
a Bloom-filter technique. One MAC is used to protect the Bloom-filter and an-
other to verify the whole software image. The drawback of the Bloom-filter is
that it gives false positive answers which might not be acceptable in some circum-
stances. Similar to our approach, PETRA assumes a common MAC key among
all devices.

Castor [KGNO7], another symmetric scheme, similar to [DHMO6] uses a one-
way hash function to verify the software update packages. This approach shares
the characteristics of our scheme with respect to the usage of a hash chain with a
root value. However, it does not suggest any individual packet verification making
it more vulnerable to battery drain attempts and it uses a much less practical dis-
tribution principle of the root hash value. Furthermore, packet confidentiality is
not considered in Castor. We compare our solution to PETRA and Castor as well.
#TESLA [Per+02a] is yet another generic multicast data distribution scheme that
uses a one-way key chain and a delayed key method applicable also to code dissem-
ination. #TESLA is very efficient since it purely uses symmetric cryptography but
does not give very strong integrity guarantees and requires time synchronization
between the distributing unit and the IoT units.

Also, different combinations of asymmetric and symmetric key approaches
exist. For instance, SECNRCC [Xie+15] combines a hash tree and key chain to
provide confidentiality and authentication. Similar to other solutions, in SECN-
RCC, the hash values in a Merkle tree and the root hash are signed by the software
distributor. In SECNRCC, the packets with hash values are also encrypted with
a session key. DoS resistance is provided through the usage of a special purpose
symmetric key chain with individual keys distributed to all units.

Later, IoT oriented (instead of WSN) firmware upgrade procedures have been
suggested. SEDA [Kim+16] is one such multicast-based update scheme for IoT
environments. In SEDA, a secure group key distribution mechanism is used which
requires pre-installation of public and private keys on all IoT units using classical
public key algorithms. The evaluation in [Kim+16] indicates better performance
compare to methods such as Seluge [Hyu+08]. Hence, we find it relevant to com-
pare our approach with SEDA as well and the figures are presented in Section



2 Related Work 107

7. ASSURED [Aso+18] is another OTA firmware upgrade solution for embed-
ded devices taking a life-cycle perspective on the software upgrade by considering
four different system entities: 1) an original equipment manufacturer (OEM), 2) a
firmware distributor, 3) a domain controller and 4) a connected device. In the AS-
SURED approach, the OEM signs the new firmware using ECC and the devices
need to perform ECC signature verification before installing the firmware. In the
adopted model, OEM and domain controller keys need to be stored on devices at
manufacturing time. This gives some additional complexity to the realization of
the solution.

All the previously discussed approaches are quite complicated and have a per-
formance impact due to the fact that they integrate the verification protection
under the assumption that the firmware distribution must be done in a direct fash-
ion (using for instance multicast). In all these approaches when a hash or chain of
hashes is used for verification of the firmware blocks, the whole process starts or
integrates the secure distribution of these hashes into the firmware dissemination
protocol. In this paper, we take a much more practical and pragmatic approach
by dividing the firmware upgrade into zwo phases, in one phase very essential in-
tegrity data (session key material and hash value) are done prior to the phase of
actual distribution or download of the actual image. Such an approach makes it
possible to make the actual firmware loading process independent of the transport
method, i.e., it allows any suitable distribution mechanism of the software pack-
ages. This is inline with how most modern IoT units are connected to a back-end
management system. This is also a much more feasible principle to use than for
instance a most recent suggestion to use an injection of integrity checks, directly
into the firmware [VRM21] as part of the software distribution.

2.2 DoS Protection Aspects

The possibility for an attacker to use the software dissemination mechanism to
issue DoS depends on how the actual firmware packages are protected during
transfer and when processed on the IoT unit. If the whole image must first be
installed before the integrity can be checked, this constitutes a major security risk.
This can take for instance the form of some type of “repacking” as reported in
[Shi+17] demonstrating a practical attack on commercial fitness trackers. Just the
fact that large parts of the firmware image must be processed before the validity
can be checked constitutes a DoS risk such as a battery drain attempt against a
battery driven IoT unit. This is for instance the case for the previously discussed
schemes Secure Deluge and Sluice. This type of simple DoS aspect has been tack-
led by many of the later schemes such as Seluge [Hyu+08] using a Merkle tree
approach or the SECNRCC scheme [Xie+15], which combines a key chain with
a hash chain to achieve the same thing. Another approach with the same aim is
the scheme presented in [Tan+13], which also uses Deluge as the basic distribu-
tion scheme. It provides confidentiality by leveraging session keys derived from
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hashed data packets. In this scheme, a Cipher Puzzle is used as a weak authenti-
cator for DoS protection. It is here worth noticing that a Cipher Puzzle can cause
sender-side delay which might not be acceptable in every network.

IoT units are also sensitive to direct physical tampering. This can be used to at-
tack the scheme by for instance using power analysis [Ron+17]. Countermeasures
to handle this are to use IoT unit individual keys and/or public key protection
of the firmware upgrade. In the paper by Yan-Hon Fan et al., [Fan+21], it is no-
ticed that these approaches are not feasible for many resource constraint devices
and they instead suggest a limit to the number of allowed upgrades per 24 hours
to five. This will prevent the power analysis attack described in [Ron+17] but it
also opens up for DoS attacks by the attacker managing to fill up the number of
updates to the maximum allowed number. The authors in [Fan+21] suggest an
application layer protocol between the update server and the IoT unit to solve this
issue. In this paper, as discussed above, we use a similar approach by dividing the
update process into two phases, one phase handles the key material and the sec-
ond one handles the actual upgrade. Different from the solution in [Fan+21], we
suggest a trade-off between individual packet MAC checks combined with a more
traditional hash chain. The advantage of this is to have better protection against
the previously discussed packet modifications [Shi+17], i.e. DoS attacks during
the actual firmware load.

A completely different way of handling the upgrade DoS problem, which typ-
ically occurs over a wireless interface, is to instead focus on detecting them. Such
solutions have been reported in several papers [JHC22; §S21], but that is an or-
thogonal problem and solution to the prevention mechanisms and can be used in
parallel with our solution.

2.3 Protected Code Dissemination Comparison

We compare the different state of the art solutions for code dissemination in WSN
or IoT networks in Table 1. Table 1 summarizes the characteristics of the reviewed
schemes in Section 2 and our scheme includes used cryptography, DoS protection,
and source authentication mechanisms. In Table 1, the schemes which use both
symmetric and asymmetric cryptography are marked as mixed. Table 1 indicates
that in most asymmetric schemes, Merkle hash tree and digital signatures are used
to authenticate the messages while in symmetric schemes, including our scheme
different MAC verification techniques are used instead. Different DoS protection
methods including Puzzle based approaches are used but Puzzle based approaches
have some drawbacks which will be further discussed in Section 4. The main
difference between our scheme with other symmetric approaches is the indepen-
dence of the distribution mechanism (multicast/broadcast, direct download, etc.)
and also the use of time limited MAC verification for DoS protection.
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Table 1: Comparison of existing code dissemination procedures and our scheme

Features Cryptography DoS resistance Source authentication Multicast
Deluge [HC04] No security
Secure Deluge [Dut+06]  Asymmetric Digital signatures and packet level hash
Sluice [LGNOG] Asymmetric Digital signatures and hash chains
[DHMO06] Asymmetric Signed hash tree verification Digital signatures
Seluge [Hyu+08] Mixed Immediate authentication, Message Specific Puzzle Merkle hash tree and digital signatures
SDRP [He+11] Asymmetric Merkle hash tree and digital signatures
DiCode [He+12] Asymmetric  Immediate authentication, Message Specific Puzzle Merkle hash tree and digital signatures
SCATTER [KD11] Asymmetric Signature verification Merkle hash tree and r-time signatures
SenSeOP [Asc+12] Asymmetric Signature verification and time lock Hash value and digital signatures Yes
SECNRCC[Xie+15] Mixed Cipher Puzzle Digital signatures
Felxicast [LKK15] Asymmetric Fingerprint with bloom filter
[Tan+13] Mixed Cipher Puzzle Digital signatures
PETRA [IKC09] Symmetric MAC with bloom-filter
Castor[KGN07] Symmetric MAC with hash chain
JTESLA [Per+02a] Symmetric MAC with time synchronization
SEDA [Kim+16] Mixed HMAC verification HMAC and Digital signatures (Advertisement packets) Yes
ASSURED [Aso+18]  Asymmetric Digital signatures
RoSym Symmetric Time limited MAC verification MAC with hash chain Yes

3 Problem Definition and Requirements

We consider a threat model where an attacker is able to interfere with any part of
the software distribution chain including any potential intermediate storage of the
whole or part of the firmware image. This means that an attacker has the power
to modify and read upgrade packages or interfere with any communication to and
from the IoT unit. However, we assume the loT management system, or what we
refer to as the Device Management System (DMS) to be fully trusted not under
the control of an attacker. When it comes to the IoT units themselves, we adopt a
trust model where attacks on a single or a few IoT units are possible but typically
time and resources consuming as is the case for direct tampering of the unit or if
the attacker use for instance a power analysis to get access to long or short terms
keys [Ron+17]. We consider it infeasible for the attacker to get direct control of a
large number of the deployed IoT units to perform such an attack.

In Section 2, we discussed several previous design efforts for secure and ro-
bust software upgrades of wireless units. Many solutions use a reverse hash chain
delivery or Merkle hash tree for the integrity protection of the software upgrade
following the threat model above completely or in part. However, as we concluded
in the review, the existing solutions typically have one or several of the following
drawbacks in a resource constraint IoT setting:

* Depends on non post-quantum resistant public key operation or operations
on the IoT side,

* Cannot handle out of order packet delivery,

* Do not offer individual checks of packets making the scheme vulnerable to
battery drain attacks,

* Require complex Puzzle solving or time synchronization on the IoT side,

* Require direct multicast or broadcast delivery not supporting intermediate
storage of upgrade data.
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We conclude that a secure and robust software upgrade scheme of resource con-
straint units using pure symmetric key should fulfill the following requirements:

RI1.

R3.

R4.

RS5.

Integrity and confidentiality protection: The integrity and confidentiality
of individual software packets, as well as the complete software distribution,
must be guaranteed.

DoS robustness: It must not be possible for an attacker to use false software
packet distribution to force the IoT unit to consume significant computing,
power, and/or memory resources on a single or several IoT units.

Efficient communication and computational cost: The software upgrade
process shall require as little bandwidth and resources as possible.

Efficient memory requirements: The software upgrade process shall use as
little IoT volatile and non-volatile memory resources as possible.

Transportagnostic upgrade: The upgrade scheme shall support direct down-
load from local or remote update servers as well as direct or local multicast
delivery and out of order delivery of upgrade packages. The scheme shall

allow intermediate storage of the upgrade images.

In this paper, we seek a protected, robust, and secure code dissemination
scheme that fulfills all these requirements.

3.1 Notations

For the rest of the paper we use the following notations:

Denote the set of IoT units subject to upgrade by
U= {Uo, Uty .- ,’U,wfl}.

In our scheme, IoT units are controlled by a back-end system, or, what we
refer to as the DMS.

We denote the complete new software upgrade information by 7 = Iy, I,
Is,..., I,_1, i.e. the upgrade information is split into 7 distinct pieces.

The software image is distributed using a sequence of software packages
denoted by P = Py, P1, Ps,..., Pp—1. These upgrade packages not only
hold software image parts, 7, but also additional information.

Vu € U, a shared long-term secret between # and DMS is denoted by K.

An integrity protection key used by the DMS to protect the integrity of
software upgrade packages is denoted by I K,,.
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* A confidentiality protection key used by the DMS to encrypt the software
packages prior to distribution is denoted by K.

* T isa first time parameter set by the DMS that indicates the validity period
of each upgrade packet.

* T is a second time parameter defining the validity of I K, and K.
* h; is a one-way secure hash and denotes hash of P;.
» C; = Ek,,,(I;) is an encrypted software update block.

* We assume each software package is integrity protected using a MAC de-
noted by M AC; = M ACk.,,, (D;), where D; is a protected subfield of
P;.

4  Design Features of RoSym

Before describing the details of RoSym, here, first, we briefly explain the commu-
nication and security features of our scheme. As previously discussed, the basic as-
sumption in our solution is the possibility to distribute key material and firmware
image hash values prior to the actual firmware download process. This is different
from the prior-art solutions but has the advantage that we both achieve transport
agnostic download and very low complexity with respect to security checks and
distribution format. This requires that the IoT unit has a security relationship and
performs a handshake with a trusted entity responsible for the code distribution,
i.e. the DMS. While one might think that this limit the applicability of the design,
we instead argue that this is indeed inline with state of the art IoT architecture,
which typically is under the control of a cloud-based management system. Exam-
ples of such systems are Thingsboard! and Mainflux?. Below, we further discuss
the precise design assumptions of RoSym.

Code dissemination principles: We assume a central unit, DMS, to be re-
sponsible for the code dissemination and code protection preparations. Each IoT
unit must have direct contact with DMS prior to software installation. The DMS
distributes the actual code image according to the choice best suited for the partic-
ular IoT scenario. A central or several local servers can be used for direct download,
packet by packet by the IoT unit, or a multicast or unicast protocol can be used for
the actual firmware distribution, i.e. our solution is completely firmware transport
agnostic.

Reduced communication load and energy consumption: Energy consump-
tion of IoT units can be significantly decreased by reducing their active time. They
can be programmed in a way to wake up in defined time intervals to send alive

'heeps://thingsboard.io/

Zhttps://www.mainflux.com/
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packets. As our solution allows arbitrary code distribution, the distribution server
can wait until a unit becomes alive to trigger a new upgrade.

Integrity and confidentiality protection: In RoSym, we used MAC to protect
the integrity of update packages. For that, the DMS and IoT units need to setup
a secure key prior to the update procedure. Although symmetric cryptography
requires lower computational resources, if a single device gets compromised, the
adversary can compromise the whole procedure. As a result, any time a group
of IoT units needs to be updated, integrity and confidentiality protection keys,
I K, and Ky, are transferred to the units subject to the software update, then
the transferred keys are stored securely on the IoT units. These keys will be revoked
or expired at the end of the upgrade procedure.

DoS protection: DoS attacks exploiting authentication delays are important
to address [Hyu+08]. There are a number of broadcast weak authenticator mecha-
nisms for symmetric encryption including Message Specific Puzzle (MSP) [Hyu+08;
He+12] and Cipher Puzzle (CP) [Tan+13] which can be used. Although, these
mechanisms have high security they can cause unreasonable sender-side delays. In
order to decrease this delay, a Dynamic Cipher Puzzle (DCP) method was proposed
in [AS+18]. This method decreases the sender-side delay but the used resources,
consumption time, energy and RAM will be increased on the receiver units. In
our scheme due to the mentioned limitations, we introduce time limited MAC
verification, instead of these techniques. One way of deploying a time limit in the
MAC verification is to time synchronize all of the IoT units in the network. A
variety of secure time synchronization approaches have been proposed for WSN
or IoT networks [San07; Qiu+17]. Although these methods are valuable they in-
crease the complexity, overhead, and energy consumption of IoT units. Instead
of synchronizing the IoT units, we keep local packet arrival times on all IoT units
and only allow a maximum 77 delay between individual packets and a maximum
of T5 for the total upgrade time, i.e. the time from that the IoT unit received the
keys I K5, and K, until the upgrade must be finalized. When different packets
arrive, the arrival times will be recorded by the IoT units based on their local time
and then the time difference between different packet arrivals will be considered,
as a result, time synchronization is not needed. In order to prevent other types
of DoS attacks including jamming attacks, other prevention mechanisms can be
used in parallel with our solution.

5 Solution

The solution we propose, is as previously discussed, based on the principle that
each IoT unit has a trusting relationship with the DMS through the sharing of an
IoT unique, long-term secret. This secret is used by the DMS to keep control of
all IoT units in the system and when a firmware upgrade is about to take place,
securely transfer upgrade key material to all the IoT units. Once this is done, the
DMS can use the code dissemination channel for the actual firmware download.
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Here, to defend against DoS attacks, as discussed in Section 4 above, we use a
limited time window, i.e. an update must take place within a certain time period.
This is true both with respect to the maximum time allowed for the delay of two
consecutive download packages to arrive and the total time allowed for an upgrade.
Once this period has elapsed, the keys used to protect the firmware are no longer
valid and will be refused by the IoT units. In this section, we described the detailed
procedures of the needed steps.

5.1 Key Establishment and Parameter Setup

We assume that on the first setup of the IoT units, the DMS URI/s (based on the
number of available DMS server/s) will be included in all IoT units. A long-term
shared key or K, is stored on each unit and the DMS server/s as well. The IoT
units send with some regularity alive messages to the “owning” DMS server on
the network. In case of available updates, the response from the server includes
update availability, the number of seconds to wake up after receiving the response,
and a wake up time window to be awake during that time (to avoid time synchro-
nization requirements). If they get a response that indicates the availability of a
new software upgrade, they will exchange upgrade parameters with the DMS on
the specified wake up time window as described below.

During the wake up time window of IoT units and before the units receive
the new software upgrade image, a secure configuration session needs to be setup
between the DMS and the IoT units. Any appropriate secure protocol can be used
but in this paper, the Object Security for Constrained RESTful Environments
(OSCORE) protocol [G S19] is used to protect the transfer using K, as a master
secret. After configuration of the secure session, the DMS transfers the following
information to all IoT units in the network or either the ones inside the multicast

group:

1. Two randomly generated symmetric keys, I K, and Kgy.

2. Timing information, 77 and 75 determines the maximum allowed delay
between two consecutive software packages and the validity of 1K, and
K keys respectively.

3. A software image one-way hash root value, hg.

4. The number of packages (#) in the new software distribution.

5.2 Upgrade Procedure

Before the upgrade procedure starts, the DMS also needs to package the software
update image into suitable size packages. The package format is indicated in Fig-
ure 1 and the different parts will be explained in detail below. The related size
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selections are given in Section 6.2. According to our solution, all software pack-
ages are integrity and confidentiality protected. The purpose of this protection is
not to give a very high protection level (as the keys need to be shared with a large
number of devices), but above all, to make it harder for an attacker to perform a
direct attack on single packets (DoS).

The different software packages can then be distributed to the IoT units in
any way, i.e. the different packages can for instance be downloaded to several
local software upgrade servers, where they are in turn fetched by the IoT units.
They can also be distributed using multicast by the DMS to all the units. In our
proof of concept implementation described in Section 6, this is the principle used.
According to our design, the DMS performs the following steps:

1. The software update image is split into 7 distinct parts: I, I1, I2,..., In—1.

2. Calculate 7 different software upgrade packages:
P; = {i, E(Kgw, I;), hit1, MAC;}, 0 < i < n-2,
P, 1 = {nl, E(Ksun Infl)a MAC,, 1},
where E() denotes the encryption using a suitable symmetric encryption
scheme under the key K. <> and where:

(@) hi = H{i, E(Ksw, Li), hit1}), 0 < i< n-2,
hn—1=H{n -1, E(Ksw, In—1)}), and where H is a suitable, se-
cure one-way hash function such as SHA-2 [PUBI2] or SHA-3 [DRA14].
The hash of each package is dependent on the next package hash value.
(b) MAC; = MAC(IKsy, {i, E(Ksw, I;), hitv1}), 0<i<n-2,
MAC,_1 = MAC(Iksw,{n — 1, E(Ksy, In—1)}), where MAC
denotes a suitable message authentication code function under I K,

such as HMAC [KBC97a] or short MAC [GTHI5].

3. On the wake up time window of the IoT units, Vu € U the following
happens:

(a) A confidentiality and integrity protected session based on the key K,
is established between # and the DMS.

(b) By using the secure session, the DMS transfers at least the following
parameters to #: 1 Ky, Kgy, ho, T1 and T5.

5.3 Upgrade Procedure on IoT Unit Side

On the IoT side, the procedure starts with the actual firmware download creden-
tials receiving and preparing as described in Section 5.1. Next, the IoT unit makes

*Typically this encrypted structure will also include a suitable TV.
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Field name { index: 4B | Enc software: 944B hash;: 32B MAC;: 32B

index Package index, 7
Enc software Encrypted software block: E(K sy, I;)
hash; One-way hash, h; = H{i, E(Ksy, 1), hiy1}), 0 <i<n-2

MAC: Message Authentication Code, M AC; = MAC(I K gy, {i, E(K s> 1),
! hip1}), 0 <i<n-2

Figure 1: RoSym software package format and size

preparations to receive the firmware image. During the image transfer, each soft-
ware package is integrity and confidentiality protected to prevent both malicious
code read and direct packet modification done with the purpose of for instance
wasting IoT resources. Also, the IoT unit keeps track of time parameters to pre-
vent DoS attacks. Here it is important to notice though that these clocks are
internal, i.e. there is no need for any synchronization across the system. The de-
tailed step-by-step procedure for receiving the actual software and installation is
given below:

1. Get the time of arrival of the control parameters packet and store it as ?..
2. Seti=0,
3. Get the next software package F;, and store its arrival time as ¢;.

4. Ift; -t;—1 > T, 1 < i < n-1, the software upgrade is aborted and no more
package is accepted by the IoT unit. If i == 0, consider ¢, as t;_1.

5. Ift; -t. > Th, 0 < i < n-1, the software upgrade is aborted. Else, verify the
integrity of P;, by calculating M AC; using the key I K, over the fields 7,
E(Kgy, I;), hit1,if 0 < i < n-2, and over the fields 7 and E(K,, I;), if i

== n-1.

6. Compare M AC; with M AC’; in the received package and only if coincide,

accept the new package.

e IfO<i<n2:

(a) Verify the integrity of package P; using the hash h; (previously re-
ceived and stored hash) and A/ (calculated hash over ¢, E(K gy, ;)
and h;41). If the verification fails, request retransmission of P;.

(b) Store hji1, existed in the received package, in RAM memory.
(Note: if h; is not available in memory due to out of order packet
delivery, only h; 1 will be stored in memory and verification of
h; will be postponed until previous package arrives.)
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(c) Decrypt software upgrade package, I;, using the key K, and
store it in flash memory.

* Else:
(a) Verify the integrity of software package P,,—1 using h,_; and

h!,_. If the verification fails, request retransmission of P,,_; or
try to fetch it again from a distribution server (if a direct down-
load is applied).

(b) Ifthe verification is successful, decrypt the software upgrade pack-
age, I,_1, using the key K, and store it in flash memory.

7. seti =i+l
8. If i < n, repeat step 2.

9. Install the complete new valid software image, / = Iy, I1, Io,..., In—1.

Error Handling

The upgrade procedure of IoT unit/s (at any step) might be disturbed due to un-
expected errors. If an error occurs before the update procedure starts, the DMS
will realize this on receiving the next alive message and it will upgrade the failed
units in a unicast way again. On the other hand, if the error occurs in the middle
of the upgrade procedure, the failed unit will send a direct request to the DMS,
and the procedure can be resumed from where it failed.

6 Implementation and Experiments

In our implementation of RoSym?*, we use a multicast distribution of firmware
upgrade image directly from the DMS, and the UDP protocol is used as the un-
derlying transport protocol. Our implementation consists of DMS and IoT unit
realizations. IoT units communicate with the DMS over WLAN. All IoT units
in the system send alive messages periodically to the DMS server. The alive mes-
sages include the current firmware version along with other information about the
IoT unit. Once an IoT unit sends an alive message and receives an acknowledg-
ment from the DMS, it goes to sleep until the next alive message needs to be sent.
If there is an update available on the DMS, it piggybacks the number of seconds
that IoT units need to wake up after receiving the acknowledgment, and the awake
time window (this window can be decided by the administrator based on network
delay) on the acknowledgment. Then, the IoT unit will be added to a multicast
group by the DMS as well. No extra time synchronization is needed since by re-
ceiving the acknowledgment the IoT units calculate their wake up time based on

4Our implementation is available at: https://github.com/pegahnikbakht/RoSym
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their internal local time and they prepare to wake up and be awake during the
specified time window, this window is required since different devices may receive
the acknowledgments with some delay.

After identifying the IoT units which need to be updated, the DMS generates
I K4y and K. The DMS divides the plain firmware into different chunks with
the size of 944 bytes (the size selection will be explained in Section 6.2) and each
chunk will be encrypted using K., then, the hash chain will be calculated. Fi-
nally, using the key I K, the MAC of each chunk will be calculated using the
encrypted value of the current chunk and the hash of the next chunk.

After preparing the secure firmware, on the wake up time window of the IoT
units, a secure OSCORE session using K, as the master secret will be established
to the identified IoT units and then the randomly generated keys along with other
required information will be sent to the units. Then, the secure session will be
closed by the DMS. Immediately after that, a multicast socket will be opened
on the target IoT units. Finally, those units will receive the upgrade multicasted
packages and they will perform the verification, and after successful verification of
all packages, the units will boot the new firmware. The information flow between
IoT units and the DMS is shown in Figure 2.

6.1 Hardware Choice

In our implementation, we have used ESP32-S25, which is a single core board
with Xtensa 32-bit LX7 CPU which operates at up to 240 MHz. ESP32-S2 is low
power and single-core WiFi microcontroller, it is also cost-efhicient, and has high
performance with the following features:

* Support for cryptographic hardware accelerators to enhance performance
* Good protection against physical fault injection attacks
* Protection of private key and secrets from software access

* Integrating a set of peripherals, with different programmable GPIOs which
can provide USB OTG, LCD interface, camera interface, UART, etc.

* It can be configured with both MbedTLS and WolfSSL libraries but in this
paper, the default SSL/TLS library or MbedTLS is used.

* It has an official development framework® and we used it in our implemen-
tations as well.

Shetps://www.espressif.com/en/products/socs/esp32-s2
Shetps://github.com/espressif/esp-idf
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In order to measure energy consumption and annotate the measurements via UART
logs, we used the Otii Arc’ device. Otii is a high precision power supply and ana-
lyzer unit, which comes with Otii software. Otii can be used to monitor or record
real-time voltage, current, and UART logs and it is powered by USB. We supplied
ESP32-S2 with 3.3V and we used baud rate 11520 for the logs.

_____________

——p Alive messages

= == DMS responses
g Parameter setup

=0
“; H <= = = Multicast upgrade
=411 ]
o0 =41
00

—— e e —

_____________

IoT units in

. DMS
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Figure 2: Information flow between DMS and IoT units

6.2  Security Choices and Package Size

In our implementation, we have used AES as an encryption algorithm and evalu-
ated performance for key sizes of 128 and 256 bits with GCM mode and a standard
IV size of 128 bits. For the hash function, we have used the SHA-256 function
and for MAC, we have used HMAC with digest mode SHA-256 and key sizes of
128 and 256 bits. Hence, the hash or MAC size in our package is 32 bytes.

The new firmware size is usually less than a few Megabytes, thus, we chose 4
bytes for that which is big enough to represent the index of all chunks. In order to
avoid IP fragmentation, the payload size of packages is bound to 1012 bytes, and
as a result, the encrypted part of the package by excluding Hash, MAC, and index
size will be 944 bytes, different field sizes are shown in Figure 1.

6.3 Testbed Setup

We have designed a testbed scenario consisting of ten ESP32-S2 boards, one DMS,
and a WiFi router which is used by the IoT units to communicate with the DMS.
In the test scenario, four out of ten IoT units send alive messages to the DMS
and they will be added to a multicast group by DMS. In our testbed, the original
firmware length is 139200 bytes and it divides into 148 chunks of 944 bytes and
they were prepared by DMS for the upgrade procedure. Finally, those four IoT
units will receive the multicast update and their firmware will be updated. In the

7https://www.qoitech.corn/
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test scenario, Otii is connected to one of the four IoT units and is used to record
the required energy and time to complete the OTA procedure.

7  Evaluation

In order to show the security and efficiency of RoSym, we have evaluated it with
respect to security as well as communication, computation overhead, and memory
footprints.

7.1  Security

RoSym firmware upgrade protection is based on the assumption of having long
term, individual keys shared between each IoT unit and the DMS. These can and
should be updated on a regular basis, but still, if this key is compromised, the
security for that single IoT unit is lost. As long as such attack does not happen, the
security of the scheme will depend on the protocol for software dissemination as
such. We show in Section 8.1 using ProVerif that the confidentiality and integrity
of the software distribution then hold in all cases. We also show using ProVerif
that under these assumptions, the DoS resistance with respect to the possibility
for an attacker to get any non original firmware upgrade packet to be accepted
also holds in all cases. The security of the distribution of the actual keys for the
protection of the upgrades is made using standard OSCORE (see Section 5.1).
Hence, the security of this part is kept as long as the OSCORE protocol and the
implementation are secure.

According to our threat model, a full compromise of a single or few IoT units
might happen. Under this circumstance, the confidentiality and integrity proof
will not hold anymore on the packet level. However, the integrity of the final hash
is protected by the individual 10T, long-term keys, and will not be affected. This
means that compromise of a single unit, independent if it is on execution level or
through key compromise by external analysis, will destroy the security of that unit
only and not the software integrity of the rest of the units in the same system. In
this case, DoS attacks against the complete system will be possible. However, one
might argue that the effort of a direct physical attack against an IoT unit with just
a DoS attack goal is less likely. Furthermore, if such happens, it will be possible
to detect and it should be possible to find the compromised units in the system
and replace and/or exclude them from the system. Hence, we have a reasonable
trade-off between security, implementation complexity, and DoS resistance in our
design.

Our design also considers the possibility for an attacker to change the deliv-
ery order of upgrade packages with the purpose of exhausting resources. Such
an attack can be performed through a combination of packet modification and
packet delivery delay, i.e. the attacker just modify one of the first packets, which
is then delayed until the very end of the firmware load. This would then fill up the
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Figure 3: Comparison of communication overhead in different schemes

firmware upgrade memory with almost a complete software image that is invalid.
Our design has protection against such an attack by setting a maximum time value
for the delay between two consecutive packets. This considerably reduces the time
window for a DoS attack of this type while still allowing some out of order delivery
(within the selected time threshold).

7.2 Communication Overhead

Considering communication overhead, we have compared our approach to two
mixed approaches, SEDA, and Seluge, and two symmetric approaches, PETRA,
and Castor in the actual update phase. We compare the key establishment phase
only with SEDA and Seluge and we exclude PETRA and Castor since they do not
present any key establishment method. SEDA support multicast upgrade similar
to our scheme, although the key establishment phase in our scheme requires trans-
ferring the security keys to all units using an underlying secure channel. In SEDA,
a group key distribution technique is instead used to share the private key, and Sel-
uge uses pairwise key establishment with neighbor units which causes logarithmic
overhead. The total number of bytes need to be transferred to each IoT unit in
our key establishment phase are 108 bytes including I K.y, Ky ho, T1, T, and
n. We included the byte overhead of OSCORE in our key establishment phase as
well. As it can be seen in Figure 3a, our key establishment phase is more efficient
in medium to large sized networks in comparison to SEDA and Seluge (the figures
of SEDA and Seluge schemes are taken from [Kim+16]). The efhiciency of SEDA
in a small sized network is due to the use of multicast group transfer.

In Seluge the payload size is bound to 102 bytes and in order to have a fair com-
parison of the number of transmitted packets for different code sizes in the update
phase, we bound the payload size of SEDA, PETRA, Castor, and our scheme to
102 bytes, although we can send larger payloads in our scheme. In Seluge, SNACK
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(Selective Negative ACK) packets, hash packets, and data packets are included in
the communication overhead. Seluge uses sequential packet delivery along with
a Merkle hash tree for integrity protection. This sequential delivery increase the
number of SNACK packets which further results in an increase in communica-
tion overhead and as can be seen in Figure 3b, Seluge has the highest overhead
in the number of transmitted packets. Figure 3b represents RoSym has a slightly
higher communication overhead with respect to the number of transmitted pack-
ets compared to SEDA (The figures of SEDA and Seluge schemes are taken from
[Kim+16]). This is due to the fact that SEDA uses SHA-128 bits and HMAC with
SHA-128 bits which causes lower byte overhead in comparison to our scheme
which uses SHA-256 bits for both hash function and HMAC. This allows SEDA
to have more data payload in each packet and therefore the total number of trans-
mitted packets will be reduced. Hence, at an equal security level, SEDA’s overhead
would be almost equal to our scheme. Castor and PETRA have the lowest byte
overhead among all, this is due to the fact that in Castor instead of packet level
hashes, page level hashes and MAC:s are used and more data payloads can be sent
in each packet. PETRA also avoids MAC verification of individual packets and it
uses bloom-filter along with the MAC verification of the whole update package.
Although Castor and PETRA have the lowest byte overhead avoiding packet level

verification makes them vulnerable to DoS attacks.

7.3 Computation Overhead

The energy consumption and required time from receiving the first upgrade pack-
age until the last have been measured using the Otii device and the results are
shown in Table 1. All the measurements are the average values over 10 times up-
grade using the ESP32-82 and the Otti Arc device. The required time and energy
for session setup and rebooting the IoT unit are disregarded in the measurements.
As can be seen in Table 1, RoSym almost doubles both energy consumption and
time compared to a completely unprotected upgrade. The UDP row in the Table
is the case without any added security.

As mentioned earlier, ESP32-S2 has cryptographic hardware acceleration sup-
port both for AES encryption and hash functions including SHA-256. We have
performed measurements both with and without using them. The results of the
measurements are shown in Table 1. Using hardware acceleration for RoSym with
the symmetric key in the case of AES 128 and AES 256, in the case of HMAC with
the key size 128 bits saves 28 piwh and 27 piwh energy and reduces the required
time by around 0.67 seconds and 0.31 seconds respectively in comparison to the
case when hardware acceleration was disabled. Though, the comparison of RoSym
in the case of AES and HMAC 128 bits to AES and HMAC 256 bits (with and
without hardware acceleration) does not indicate any significant difference.

For comparison, we tried RoSym with an asymmetric key as well. We modi-
fied RoSym in the following way: we encrypted a 128 or 256 bits symmetric AES
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key with RSA key size 2048 bits and transferred it to the ESP32-S2 units. The
recipient units can then access the AES key after asymmetric decryption. We re-
moved HMAC verification and added RSA signature verification instead. This
setup with 128 bits AES gave 1170 piwh, 15.88 seconds with hardware accelerator,
and 1200 pewh, 15.94 seconds without hardware accelerator, respectively. The fig-
ures for RSA with 256 bits AES resulted in 1170 pwh, 15.87 seconds, and 1210
uwh, 15.96 seconds, with and without hardware accelerator.

7.4 Memory Footprints

The on-chip memory on ESP32-S2 includes 320 kB SRAM and 128 kB of ROM
on the MCU and it has also 4 MB SPI flash and 2 MB PSRAM. The D/IRAM
is a part of RAM that can contain both data and executable data. In each round
of our scheme, other than the newly received package, the hash of the next pack-
age is stored in D/IRAM memory. The flash memory is used to store the whole
decrypted firmware packages, other than that, some other information including
I Ky, Ky, the hash of the first chunk, timing information, etc. need to be
stored in flash memory. The memory footprints of our scheme and MbedTLS
library (used for cryptographic operations) on ESP32-S2 are shown in Table 3.

Table 2: Required energy and time for OTA using RoSym on ESP32-S2

Type Key Size (bits) Hardware Acceleration Energy (uwh) Time (s)
128 AES, 128 HMAC N 848 12.19
128 AES, 128 HMAC 876 12.86
256 AES, 128 HMAC 836 12.18

v’
RoSym 256 AES, 128 HMAC 863 12.49
128 AES, 256 HMAC v 831 12.19
128 AES, 256 HMAC 846 12.78
256 AES, 256 HMAC v’ 833 12.21
256 AES, 256 HMAC 871 12.81
UDP - - 419 5.74

Table 3: Memory usage of RoSym on ESP32-S2

Module Flash (kB) D/IRAM (kB)
RoSym OTA scheme 97.7 11.1
MbedTLS library 8.4 0.05

Total 106.1 11.15
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8 Formal Security Verification

We formally model and verify the security properties of our designed solution
using ProVerif [Bla+18] tool. ProVerif is an automated tool that is used in verifying
the security properties of protocols and it uses Dolev-Yao model [DY81] as the
adversarial model. In ProVerif applied pi calculus [RS11] is used as the modeling
language.

8.1 ProVerif Modeling

For modeling RoSym with ProVerif, we first declared types, variables, functions,
assumptions, queries, events, and processes. We have modeled DMS and two
sample devices in ProVerif as top level processes named DMS, deviceA, and deviceB.
Thus, RoSym is encoded using a main process and three other process macros to
represent DMS, deviceA, and deviceB. The process macros are defined as (!process)
in the main process.

In the model, we define free names which are globally known, and [private]
names which are not known to the attacker. We assume the DMS to be fully
trusted and can not be compromised. Furthermore, we do not, in general, assume
that IoT units are compromised, as a result, the attacker can not access the [private]
names defined in the model including device individual key K, or authentication
and encryption keys (I K, and Kj,,) stored on the DMS.

The main functions of the protocol including MAC, symmetric encryption,
and decryption are modeled as constructors and the destructor below, both mac
and sencrypt take two arguments of type key and bitstring and they return an
argument of type bitstring which is either the MAC or the encryption output.
The decryption function is modeled as the destructor sdecrypt represented below:

fun mac(key, bitstring) : bitstring.

fun sencrypt(bitstring ,key): bitstring.
reduc forall x:bitstring , y:key;
sdecrypt (sencrypt(x,y),y) = x.

There are a number of events defined in the model including initiating and
terminating device and the DMS server representing as: initserver, initDevice, ter-
mDevice, and termserver. The relationship between these events is denoted as cor-
respondence assertion.

After modeling RoSym in ProVerif we have verified the following security
properties using ProVerif: 1) Confidentiality of software packages, 2) Integrity
of packages and 3) DoS resistance. In order to verify these security properties,
different properties in ProVerif including secrecy property, correspondence asser-
tion, and authentication property were used and all of these properties had been
successfully verified in ProVerif as we show below.
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8.2 ProVerif Verification
Confidentiality

We used the secrecy property in ProVerif to verify the confidentiality of the keys
I K, and K, and the plain software package /. The secrecy property is specified
using the queries below:

query attacker ( IKsw ).
query attacker ( Ksw ).
query attacker ( I ).

All three queries above have been successfully verified in ProVerif which indi-

cates that the attacker can not gain any knowledge about 7 or even the keys I K,
and K.

Integrity

The integrity of software packages is preserved if the obtained package by all devices
(from the DMY) is consistent. This means that for the same input and the same
function, all of the devices should retrieve the same result. We prove this property
using the correspondence queries as follows.

query a:key,b:key, q:bitstring;
event (termDevice(a,b,q))
==>event (initserver (a,b,q)).

query a:key,b:key ,m:key,n:bitstring;
event (termserver (a,b,m,n))
==>event(initDevice(a,b,m,n)).

As it can be seen the input argument of these events are type key and bizstring
and the key types are used to represent different keys such as 1 Ky, Ky, and de-
vice key K, and bizstring type is used to represent the encrypted value of software
packages. As indicated in the queries the input values on both sides are consis-
tent and ProVerif had successfully verified these queries, as a result, the integrity
of software packages is preserved.

DoS Resistance

According to the Denial of Service definition which is defined in [MWCI2], a pro-
tocol is resistance to denial of service attacks if and only if all of the received mes-
sages in a set of received messages are authenticated, as a result for DoS resistance
verification, we verified all messages are authenticated in RoSym. In RoSym, this
authentication should be done in a limited time interval which this feature adds
another layer of DoS protection. For formal verification, we only verified message
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authentication in ProVerif since the time limit is out of the scope of modeling the
protocol.

The authentication property is specified as different correspondence assertions,
which indicates the relationships between events as if an event has been executed
then another event has been previously executed. The queries defined in integrity
property Section 8.2 can be used to prove DoS resistance as well. Those queries
will be satisfied only if for each occurrence of the events termDevice and termserver
there is a previous execution of event initserver or initDevice, ProVerif successfully
verified these correspondence assertions as well, therefore DoS resistance is verified.

9 Conclusions

In this paper, we proposed RoSym an efficient, robust and DoS protected OTA
upgrade procedure for IoT networks. RoSym can be used in a multicast manner as
well as through direct download from local or remote upgrade servers. The latter is
possible as each packet is protected individually during transfer or at intermediate
storage. The scheme only uses symmetric cryptography, as required for resource
constraint IoT devices. RoSym can handle out of order packet delivery without
DoS risk as packets can be individually verified (with weak integrity). Strong in-
tegrity verification can be done as soon as the packet arrives in the correct order at
the target device. The scheme is built upon that prior to the upgrade procedure,
secret keys are transferred from a central distribution entity, the DMS, to IoT de-
vices targeted to upgrade. For that, a secure session using OSCORE or similar
can be used as we showed in our paper. Unlike other existing upgrade procedures,
in our scheme, command packets are not required and IoT devices do not need
to be awake continually. Instead, they send alive messages periodically and any
information that needs to be sent to IoT devices will be sent as a piggyback on the
response of alive messages. This feature and the use of symmetric cryptography
along with a robust DoS protection technique, make our scheme robust, secure,
and at the same time energy efficient even during idle times. As it is a purely
symmetric solution, for larger key size choices, it provides full post-quantum re-
sistance. Our security verification showed that RoSym offers the expected security
level fulfilling the identified confidentiality, integrity, and DoS protection prop-
erties. Finally, our experiential results on ESP32-S2 confirmed the efficiency and
robustness of RoSym.
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Chuchotage: In-line Software
Network Protocol Translator
for (D)TLS

Abstract

The growing diversity of connected devices leads to complex network deploy-
ments, often made up of endpoints that implement incompatible network ap-
plication protocols. Communication between heterogeneous network protocols
was traditionally enabled by hardware translators or gateways. However, such so-
lutions are increasingly unfit to address the security, scalability, and latency re-
quirements of modern software-driven deployments. To address these shortcom-
ings we propose Chuchotage, a protocol translation architecture for secure and
scalable machine-to-machine communication. Chuchotage enables in-line TLS
interception and confidential protocol translation for software-defined networks.
Translation is done in ephemeral, flow-specific Trusted Execution Environments
and scales with the number of network flows. Our evaluation of Chuchotage
implementing an HTTP to CoAP translation indicates a minimal transmission
and translation overhead, allowing its integration with legacy or outdated deploy-
ments.

Pegah Nikbakht Bideh and Nicolae Paladi. “Chuchotage: In-line Software Network Protocol
Translator for (D)TLS ”. In the 24th International Conference on Information and Communications
Security, ICICS 2022, Kent, Canterbury, UK, pp. 589-607. Springer, Cham.
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1 Introduction

Despite efforts towards standardization and interoperability, many applications
use proprietary protocols and incompatible data models for information exchange
[NAG19]. This is particularly acute to address in growing density of connected
embedded devices or “things”. Such devices are increasingly expected to commu-
nicate in a machine-to-machine (M2M) pattern. Communication among devices,
or between devices and back-end systems that use incompatible protocols can be
enabled through protocol translation. This is commonly realized either with hard-
ware translators, virtual gateways', or distributed software applications [Zan+14].
Existing approaches for protocol translation are unfit to address the scalability,
latency, and security requirements of current and emerging deployment topolo-
gies [DED17]. Such solutions display at least one of the following limitations.

1. in-line translation solutions do not support encrypted network traffic;

2. solutions to circumvent limitation (1) rely on deploying trusted certificates
to unprotected devices on the network path and increase the attack surface;

3. cloud-based protocol translation solutions support translation over secure
network communication by terminating TLS connections in a single cen-
tralized component. This increases communication latency between net-
work endpoints and introduces a single point of failure.

Addressing the above challenges is a prerequisite to enable wide-scale device
connectivity. This requires support for secure and fast in-line software network
protocol translation of encrypted traffic; support for communication over several
application layer protocols while maintaining latency requirements; and finally
support for distributed protocol translation. Our goal is to enable secure massive
M2M communication using protocol translation capable of dynamically adapting
to new devices and network topologies. Our contributions are as follows:

e we introduce Chuchotage?, an efficient and secure protocol translator ar-
chitecture addressing scalability, latency, and security requirements of large-
scale networks; Chuchotage builds on earlier work in Software Defined Net-
working, Trusted Execution Environments, and TLS interception;

* Chuchotage performs in-line protocol translation while supporting secure
distributed network communication throughout the network fabric, avoid-
ing translation in a logically or physically centralized back-end;

* we introduce flow-specific, on-demand translator boxes created by software
switches on the network path for TLS interception and protocol translation.

'Communication servers including a virtual gateway to perform protocol translation.
*The term chuchotage is a form of interpreting where the linguist is near a small target audience
and whispers a simultaneous interpretation of what is being said.
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* we integrate secure protocol translation in OpenFlow [McK+08a] by reusing
and extending its signaling. This allows to maintain backward compatibil-

ity.

Our solution relies on three principles: (i) secure TLS interception with the use
of TEEs; (ii) high-performance confidential protocol translation, and (iii) fault-
tolerant distributed architecture with the help of SDN networking. A TEE pro-
vides confidentiality and integrity with the use of an isolated execution environ-
ment. The loaded code and data to the TEE can be protected from various attacks.
In our architecture, we use TEEs to securely decrypt, translate data, and re-encrypt
it with a high level of confidentiality and integrity.

In SDN networking, network intelligence is logically centralized, thus ab-
stracting the network infrastructure from network applications [Kre+14]. In SDN,
the controller has a global view and can decide what suits best for the network. The
OpenFlow protocol is usually used in SDN to link the controller and other com-
ponents, e.g. switches, and routers. OpenFlow is compatible with both hardware
and software switches. In Chuchotage, the software switch (Open vSwitch [Tu+21]
in our implementation) makes informed decisions on application layer protocol
translation to provide a high-performance and fault tolerant architecture. To the
best of our knowledge, this is the first work that integrates datapath flow match-
ing with secure protocol translation. To improve the performance, we introduce a
cross-layer optimization for switch actions described in Section 4.

The rest of this paper is structured as follows: in Section 2 we introduce the
relevant background and problem, followed by a review of the related work in Sec-
tion 3. We describe the design of Chuchotage in Section 4. We discuss in Section 4
the design choices of the Chuchotage implementation, followed by performance
and security evaluation in Section 7. We conclude in Section 9.

2 Background

We define interoperability in IoT networks as the capability of heterogeneous de-
vices and applications to communicate and exchange data or services. Tolk et al.
presented interoperability as a layered model with two main layers: zechnical and
semantic interoperability [Tol04]. Zechnical interoperability enables compatibility
of heterogeneous devices through common communication protocols and stan-
dards. Semantic interoperability enables heterogeneous services and applications
to exchange information in a meaningful way [05].

Data or information models used by heterogeneous IoT devices are often in-
compatible, thus limiting semantic interoperability. Semantic protocol translators
are a possible solution; they are able to convert information formats, allowing
communication between heterogeneous endpoints. Such translators ingest a stan-
dardized way of representing vocabularies of processes or messages. However, de-
spite ongoing efforts for IoT semantic translation, we are yet to see a unified secure
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platform compatible with most common IoT protocols. We next briefly introduce
several interoperability solutions.

Physical gateways: A traditional way of interoperability is the use of hardware
gateways thatact as an intermediate component between endpoint devices [NAG19].
Hardware gateways can translate protocols with different standards and specifica-
tions, they are commonly one-to-one protocol translators that do not scale (new
protocols require adding new hardware); moreover, they require special hardware
connectors, thus increasing both the overhead and complexity.

Protocol translators:  Protocol translators replace traditional interoperability so-
lutions, such as gateways; they are intermediate components that perform direct
protocol to protocol translation. Depending on where the translation is done, pro-
tocol translators are either: a) cloud back-end translators or b) middleboxes. In
the first case, the traffic is re-routed to the cloud back-end for translation. In the
second case, a middlebox is a hardware component or software network function
placed on the communication path between the endpoints.

We review existing protocol translators in Section 3.1. These translators either
do not consider security or do not scale. Some perform the translation below the
application layer, thus adding further network complexity.

For further information about common IoT protocols and different interop-
erability solutions at different protocol layers refer to Appendix 7. We propose the
Chuchotage architecture to enable protocol interoperability on the application
layer. We target the application layer as it has the highest impact on application
performance [Gre20].

2.1 Threat Model

Our threat model considers two aspects - security of the network communication,
and security of protocol translation. We assume the Dolev-Yao model [DY83],
with an adversary capable of intercepting, and synthesizing any message, being
only limited by the constraints of the cryptographic methods used. Considering
protocol translation, we assume limited physical access to the platform, akin to the
tasks of a legitimate third party user, and excluding physically modifying, probing,
or monitoring the system. The adversary is capable of exploiting software vulner-
abilities in the host operating system and software network components (network
switch and network functions), reloading the switch binary, accessing the host
memory, and starting arbitrary processes on the host. The attacker may modify
any firmware of software component on the network platforms, including the hy-
pervisor for virtualized set-ups. This threat model is aligned with the threat models
of both process-based trusted execution environments (such as Intel SGX [Ana+13]
or Keystone [She+20]) as well as virtualization-based trusted execution environ-

ments (AMD SEV-SNP [20], Intel TDX [YZ20] and IBM PEF [Hun+21]). The
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Chuchotage architecture may be tuned to use other TEE implementations. Con-
sidering the growing diversity of TEE implementations [YZ20] and their vari-
ous approaches to defending or preventing side-channel attacks, we exclude side-
channel attacks. Likewise, we exclude attacks on control-plane components of
SDN deployments (such as the SDN controller) or ancillary components (such
as the Certificate Authority); these components are trusted and attacks on them
can be prevented using best-practice operational security. Translator boxes are not
trusted and translation cannot be done securely without a TEE.

3 Related work

3.1 Protocol Translation

An early work on protocol conversion was presented in 1988 by Lam [Lam88],
proposing a formal model to achieve interoperability between processes with dif-
ferent protocols. Its’ limitation was that it needs to be implemented as a process or
as a low layer protocol in the physical layer, thus adding complexity and overhead
to the network.

In [DEDI17], the authors proposed a protocol translator for industrial IoT
protocols. They proposed the use of an intermediate format in order to trans-
late more than three protocols rather than direct protocol-to-protocol translation.
The solution satisfies interoperability features including transparency, scalability,
reporting, verifiability, and QoS, however without addressing any security aspects,
which Chuchotage explicitly addresses.

Muppet [Udd+18] is an edge-based multi-protocol switching architecture that
can be used for IoT service automation. Muppet is a P4-based switch which
can communicate with IoT devices using different protocols, where switches are
managed by an SDN controller. Muppet was designed for translation between
Zigbee [SMO06] and Bluetooth low energy (BLE) [Gar+20] protocols or transla-
tion between BLE/Zigbee and IP protocols and is therefore complementary to
Chuchotage, which works at the application layer. However, similar to [DED17],
Muppet does not support protocol translation over TLS communication.

3.2 TLS Interception

HTTPS interception is implemented for purposes such as content filtering, mal-
ware detection, DDoS mitigation, load balancing, etc [CO20], and despite the
relative maturity of the topic, research on TLS interception proxies gained fur-
ther attention in recent years. The ME-TLS protocol [Li+20] supports TLS 1.3
and enables endpoints to introduce middleboxes into a session given the consent
of both parties. Endpoints can control middlebox access permissions on traffic
data, and verify the middlebox service chain. The protocol is based on monitor-
ing handshake messages passively without modifying the handshake of TLS 1.3.
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An implicit version negotiation mechanism in the ME-TLS handshake protocol
enables it to interoperate with TLS endpoints seamlessly. However, ME-TLS re-
quires deploying the Boneh—Franklin identity-based encryption (BF-IBE) [KG10]
instead of the widely adopted Public Key Infrastructure (PKI) approach.

maTLS is an extension to TLS that allows middlebox visibility and auditability
by enabling a client to authenticate all middleboxes through a dedicated middle-
box certificate. 'The use of middlebox certificates eliminates the insecure practice of
installing custom root certificates or servers sharing their private keys with third
parties. Furthermore, the middlebox-aware TLS (maTLS) protocol enables audit-
ing the security behaviors of middleboxes [Lee+19].

IA2-TLS [BKS20] is an encryption-based approach to enable in-line packet
inspection. IA2-TLS is based on binding an inspection key to the random nonces
that are generated by the endpoints during a TLS handshake. The advantage of
this approach is the capacity to introspect traffic both inline and offline, at any
location along the network path. This approach requires modifying the client and
server TLS implementation. Similar to many other TLS interception approaches,
it is not practical considering the lack of backward compatibility.

Considering the properties and backward compatibility of the ME-TLS pro-
tocol, we use it for the remainder of this paper as the reference TLS interception
protocol. Other approaches to TLS interception are complementary.

4  Chuchotage Protocol Translator

4.1 Architecture

Figure 1 illustrates the Chuchotage architecture, relying on principles introduced
in Section 1: (i) secure and protocol-compliant TLS interception; (ii) efficient
confidential protocol translation; and (iii) fault-tolerant distributed architecture.
The proposed architecture assumes that network switches are configured € with
an action to translate network flows between endpoints that use incompatible ap-
plication layer network protocols @ (we use OpenvSwitch for implementation).
When invoked, the action triggers the creation of a translator box @ in a trusted
execution environment (Intel SGX in our implementation). The translator box is
subsequently attested by a verifier network function and provisioned with creden-
tials for TLS interception @. The translator box is network-flow specific, trans-
lates subsequent communication between the endpoints @ and terminates once
the network flow is cleared from the switch flow table, as described next.

Dynamic Translator Box Creation

We use TEEs to run translator boxes that decrypt the TLS trafhic on the respec-
tive flow, use application protocol translators to convert it to the target protocol,
and re-encrypt it before forwarding. A translator box is instantiated whenever the
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translation action is triggered by a new network flow matching the flow table
rule. Depending on the implementation, translator boxes are instantiated either
as a child process of the switch daemon (in-switch) or external to the switch. In-
switch translator boxes are instantiated by the ovs-vswitch daemon, while external
translator boxes are instantiated by the network controller. Translator boxes are
deployed in TEEs to ensure execution isolation, confidentiality, and integrity of
packet data.

To instantiate a translator box, the parent process first invokes the creation
of a TEE and deploys the translation logic configured for the pair of application
layer protocols in the respective network flow. Next, a verifier network function
attests the integrity and authenticity of the translator box [Cok+11]. Following a
successful attestation, a trusted certificate authority network function provisions
the cryptographic artifacts necessary for intercepting the TLS communication be-
tween endpoints. The exactartifacts depend on the approach for TLS interception,
as described next in Section 4.1. The parent process of the translator box terminates
it once the respective flow is evicted from the datapath cache.

‘ Certificate Authority ‘

Verifier
Attestation
Credential provisioning
Network control :

and configurations '

SDN Controller

v
//
. TEE /
SWItCh TEE External
In-switch Translator
Translator Box

-~ Datapath Box
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Figure 1: Conceptual illustration of the Chuchotage architecture

In our current implementation, we used Intel SGX enclaves to create TEEs.
SGX enclaves rely on a trusted computing base of code and data loaded at enclave
creation time. Program execution within an enclave is transparent to the under-
lying operating system and other mutually distrusting enclaves running on the
platform. The CPU is an enclave’s root of trust; it prevents access to the enclave’s
memory by the operating system and other enclaves. Library operating systems
were used in this context to facilitate both the portability and performance of
legacy applications in SGX enclaves [She+20].
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TLS Interception

We focus on the TLS v1.2 [DR08b] and v1.3 [Eril8] for transport security due to
their wide adoption. We further use the ME-TLS [Li+20] protocol extension for
TLS interception in protocol translator boxes. The use of ME-TLS allows deliv-
ering session key materials to translator boxes in-band and does not require addi-
tional TLS connections or round-trips. Moreover, this allows retaining backward
compatibility with TLS 1.3 [Eril8] through implicit protocol version negotiation.
In case one of the endpoints does not support ME-TLS, communication remains
encrypted but without protocol translation.

Following the TLS1.3 specification [Eril8], ME-TLS reuses the TLS 1.3 Fin-
ished message to achieve two additional goals, endpoint authentication and trans-
lator box negotiation (agreement between client and server about the transla-
tor boxes to be used). For middlebox negotiation, the ClientFinished and
ServerFinished messages each contain two middlebox lists specifying the trans-
lator involved in each direction of the network path. Once both client and server
endpoints complete the translator box negotiation by including the list of cho-
sen translator boxes to the ClientFinished and ServerFinished messages,
they distribute the necessary session key materials to selected translator boxes.
ME-TLS achieves this through an additional SessionKeyDistribution mes-
sage sent by the endpoints to the translator boxes on the communication path. The
SessionKeyDistribution message is an application data message (not a hand-
shake message); the record field of the message contains a byte sequence, which is
an HMAC generated from the shared secret between the client and server (552
and a string constant to differentiate from other application data records, followed
by encrypted session key materials for the translator boxes. The ME-TLS protocol
uses a property of the BE-IBE scheme [KG10] that allows endpoints and transla-
tor boxes to establish a shared secret between each other through zero-round secret
negotiation. In BF-IBE, a trusted authority called a private key generator (PKG)
generates private keys for endpoints and translator boxes using their identities and
a master key. The endpoints (client and server) can then use the shared secret to
encrypt the session key materials communicated to the translator box instances.

Translator Box Integration with OvS

Translator boxes are created following the #ranslate action in the flow rules and
are instantiated during the transport layer protocol handshake between two com-
municating endpoints, regardless of the application layer protocol they use. An
incoming packet to the switch is first matched against the available rules (see Ap-
pendix 7). A match against a rule that contains the #ranslate action on the datap-
ath triggers the creation of a flow-specific translator box. The translator box can
be created either on the datapath in kernel space or user space, depending on the
TEE implementation. When using Intel SGX, translator boxes are created in user
space enclaves, since SGX enclaves can only run as user processes. While this may
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affect their performance (due to IO penalties inherent to the Intel SGX model),
recent work indicates that modifying software network components deployed in
TEEs can help to improve their IO performance [SPV22]. Next, a verifier network
function of the network controller attests the enclave to make sure it is trustwor-
thy, then the enclave receives the key shares through key provisioning that allows
it to compute session key materials and decrypt the TLS communication between
the endpoints in the respective flow Figure 1. Attestation and key provisioning are
done in parallel with the ongoing transport layer protocol handshake. All subse-
quent packets in the respective flow will be processed by the translator box.

Protocol to Protocol Translation

Once a translator box inside the enclave receives a packet from the respective flow,
it first decrypts the packet using the session key materials computed from the key
shared received from the network controller. Next, the translator box parses the
decrypted packet, extracts the application data, and formats it into the destination
protocol format. Finally, the formatted packet is re-encrypted and returned to the
switch data path to be forwarded to its destination.

4.2 Challenges

The design of Chuchotage addresses several important challenges, namely enabling
distributed protocol translation and combining TLS interception with attestation
primitives of the trusted execution environments. We address distribution and
scalability by introducing the concept of ephemeral, flow-specific, on-demand
translator boxes created by software switches on the network path. To achieve scal-
ability in high density networks, multiple switches, and SDN controllers can be
used in the network depending on the network topology and available resources.
Chuchotage combines the ME-TLS protocol for TLS interception [Li+20] with
the SGX attestation protocol to provide an uninterrupted chain of trust that in-
cludes the communicating endpoints, the translator box, and the certificate au-
thority by the communicating parties.

4.3 Operating flow

In the following operating flow description, we assume that a network adminis-
trator uses a deployment blueprint to define flow rules for the endpoints included
in the topology. For the types of devices and communication protocols known
beforehand, the network administrator specifies a translate action for the flows
that require translation. Note that two distinct translation policies will be speci-
fied for each source-destination pair in a flow where endpoints implement distinct
application layer protocols. In the following operating flow description, we as-
sume the latest version of TLS, version 1.3; while other TLS versions can be made
compatible with this operating flow, this requires additional adjustments.
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In-line operating flow The sequence diagram in Figure 2 illustrates how trans-
lator boxes instantiated by the switch obtain the session keys negotiated between
two endpoints, client and server:

Client ' Switch ' (Controllea (Translator boxC) (Translator box‘S) ( Server )
[
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Figure 2: Chuchotage operating flow

* The Client initiates a communication session by sending a TCP SYN packet
to Server (step 1).

* A Switch on the network path matches the SYN packet against entries in its
Microflow cache. Since the Client did not communicate with the Server
earlier, the search continues in the Megaflow cache and ultimately in the
OpenFlow flow tables, where it matches the translation policy defined by
the network administrator (step 2). The results of Megaflow cache lookup
will be cached in Microflow cache. The switch triggers the controller to
instantiate the translator boxes (step 3).

* The SYN packet is immediately forwarded to the destination; this avoids
introducing additional latency (step 4).

¢ The controller instantiates translator boxes for the flows ¢. (client-server,
step 5) and 5 (server-client, step 6). The controller instantiates the trans-
lator box in a TEE, attests it [Cok+11; Ana+13] and provisions key shares
generated by the PKG [KGI10].
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* The server returns a SYN ACK reply, the transport session is established at
this point (step 7).

* The TLS negotiation starts; the negotiation follows the TLS 1.3 with the
ME-TLS extensions [Li+20] (step 8). The Client TLS request includes an
implicit version negotiation to check that the Server supports the ME-TLS
extensions. The Server TLS response follows the TLS 1.3 specification and
additionally specifies the identifier of the server translator box (step 9).

* Next the Client starts sending encrypted application data (step 10).

* TheClientDataMessage packet containing application data is matched in
the Microflow cache of the switch and processed by translator box ¢.. At this
point, . obtains its session key material from the SessionKeyDistributi-
on message and generates the key distribution bytes using the shared secret
between itself and the endpoints (step 11). It derives the application traffic
secrets, allowing it to derive symmetric keys to encrypt and decrypt applica-
tion data on the client-server path. The session key is used for the remainder

of the TLS session.

* Having decrypted the data, ¢, converts the application data to Server ap-
plication protocol format, re-encrypts it, and forwards the packet to the
Server;

* The Server returns the application data encrypted with a TLS session key.
The ServerDataMessage application data packet is matched in the Mi-
croflow cache of the Switch and processed by translator box ts; t5 obtains
its session key material from the SessionKeyDistribution message, gen-
erates the key distribution bytes using the shared secret between itself and
the endpoints, and derives the application traffic secrets allowing it to derive
symmetric keys to encrypt and decrypt application data on the server-client
path. The session key is used for the remainder of the TLS session (step 12);

* s converts the decrypted application data to the client’s application proto-
col format, re-encrypts it and forwards it to the client (step 13);

* Translation of application data continues for the remainder of the TLS ses-
sion; the translator boxes are terminated once the network flow is evicted
from the Switch flow cache.

In case of DTLS, the operating flow is modified such that the translator boxes are
created after the ClientHello message.
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5 Implementation

For evaluation purposes, we implemented Chuchotage with two popular IoT pro-
tocols, CoAP and HTTP. Our implementation includes the following compo-
nents. A client, an HTTP client representing an IoT device contacts a server with
a different protocol, a Server, A CoAP server is listening for client connections.
Open vSwitch (OvS): endpoints are connected to OvS through the same bridge
and OvS is responsible for forwarding incoming client or server packets to the
translator box, as well as forwarding outgoing packets from the translator box to
their destinations; SDN controller: an SDN controller manages the network flows
to improve network performance. For that we used Ryu?, an open source con-
troller. Whenever OvS does not find any matching entry in its flow caches to
handle packets in need of translation it contacts the controller, which will trigger
a translation. Translator box: via the translation process, the controller creates a
translator box responsible for translating the traffic between client and server. In
the translator box, we used an HTTP to CoAP parser/formatter library?, capa-
ble of parsing and converting HTTP to CoAP messages and vice versa. 7EE: to
ensure execution isolation as well as confidentiality and integrity during packet
translation, we ported the protocol translator to an SGX enclave using the Oc-
clum library OS [She+20]. Occlum® is a memory-safe library OS for SGX. Note
that for implementing other protocol translation (other than CoAP and HTTP),
a new parser/formatter is required but the rest of the components will remain un-

changed.

5.1 Implementation choices

In Chuchotage, the translator box can be instantiated either by the network con-
troller (external) or OvS (in-switch [SPV21]). In our prototype implementation,
the SDN controller deploys an SGX enclave with the translator code and attests it,
as deploying, managing, and debugging external translators is easier for network
administrators. Attestation can be done locally or remotely based on the location
of the appraiser and of the target enclave [Cok+11]. In our prototype implementa-
tion, the SDN controller (appraiser) and translator box (target) both exist on the
same platform and hence we used local attestation with a trusted enclave that exists
on the SDN controller and keypair provisioning. As mentioned above, the TEE
hosting the translator box can be instantiated using several alternative approaches,
both virtualization-based [YZ20] or process-based [Lee+20; McK+13]. Enterprise
deployments should consider remote attestation of translator boxes, or a combi-
nation of both as supported by some virtualization-based TEEs [Hun+21]. The

*https://ryu-sdn.org/
*heeps://github.com/keith-cullen/FreeCoAP

>heeps://github.com/occlum/occlum
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choice of TEEs depends on constraints on application portability, security, perfor-
mance, etc.

For TLS interception, we assume that session key materials are distributed
to the involving parties including the client, server, and SDN controller prior
to the handshake procedure and ME-TLS overhead is explicitly excluded in our
evaluation since it only affects the handshake, not the actual communication.

Our translation policy is defined by using features extracted from the traffic
flow, namely a combination of specific source and destination IP addresses and
port numbers. When an incoming flow matching these features triggers the trans-
lation action and the packets in the matching flow are forwarded to the translator.
After translation, the packets are sent back to the switch to be forwarded to their
own destination. While distinct translator boxes can be created for inbound and
outbound flows (client to server or server to client, see Section 4.3), we use one
translator box for both in- and outbound flows.

5.2 Testbed

Our testbed consists of four docker containers representing client, server, a Ryu
controller, and a translator box deployed in an SGX enclave (see Figure 3), as it
can be seen in Figure 3 the testbed is compatible with different pairs of clients
and servers. OvS was installed on the host OS and the four docker containers
are connected to the OvS via one bridge (br@ in Figure 3). Each container is
connected to the bridge through its own virtual interface, indicated as vethp in
Figure 3. Whenever a flow needs to be translated, Ryu creates and attests an SGX
enclave inside container 3. The translation is done inside the enclave and the flow
to be translated is afterwards forwarded through container 3.

Container 1 Container 3 Container 2
Occlum (SGX)
172.3113
Client Server
172.31.1.1 172.31.1.2
Translator box
[ vethp ] [ vethp ] [ vethp ]

e -

Container 4

RYU
(SDN Controller)

Host

Figure 3: Testbed Overview
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6 Evaluation

6.1 Performance Evaluation

We conducted several tests to evaluate the performance of Chuchotage. In the first
test, we send packet batches of different sizes (100, 1000, and 10000 packets) from
the client to the server and measured the translation time for the entire batch. We
also measure the transmission time, i.e. the time between sending the first and last
packets excluding the handshake. In this test, the client sends empty HTTP GET
messages translated to CoAP confirmable Reset messages.

We measured translation and transmission time both with and without SGX,
to measure the effect of the TEE on the performance (see Figure 4). Without a
TEE, the translator box is created inside container 3 in Figure 3. As illustrated
in Figure 4, both translation and transmission times slightly increase with the use
of a TEE (Intel SGX in this prototype); however, this increase is acceptable in
most IoT networks considering the added benefit of protecting network traffic
confidentiality. Error bars are based on standard deviation.

We also compared our results with the transmission time of a vanilla CoAP
to CoAP communication. Confirmable CoAP Reset messages were sent from a
CoAP client to the CoAP server. The transmission time for transferring 100, 1000,
and 10000 packets respectively are: 0.00719, 0.07428, and 0.70909 seconds. We
consider these values as a reference point for the added overhead by the translation
procedure compared to a vanilla CoAP to CoAP transfer.

In a second test, we send batches of 100 packets of different sizes (128, 256,
and 512 Bytes) from client to server and record their translation and transmission
time with and without using a TEE. In this test, we send HTTP POST requests from
the client to the server and they are translated to CoAP confirmable POST requests.
The results of this test show that using a TEE (Intel SGX in this prototype) results
in increasing both the translation and transmission time (see Figure 5). Packet
data length does not affect the translation time.

In a third test, we measured the time to complete a successful handshake.
The handshake takes place between the client, server, and translator box; however,
the translator box is transparent for the client and server. The overall handshake
time (an average of 10 handshakes) including local attestation (0.0164 seconds),
enclave creation (0.80410 seconds), and additional communication between the
Chuchotage components averages 2.83574 seconds. This is roughly equal to trans-
ferring and translating 10000 packets; a vanilla CoAP to CoAP handshake aver-
ages to 0.000907 seconds. However, the handshake is only performed once before
translating all subsequent packets in the flow.

The performance of our proposed protocol translator is not comparable to
centralized approaches, such as gateway or proxy-based approaches, since they are
not suitable for large heterogeneous distribution deployments and often do not
consider security of network traffic. Chuchotage is not also comparable to other
existing protocol translation solutions, as earlier highlighted in Section 3.1.
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6.2 Security Evaluation

Reflecting the structure of the threat model (Section 2.1) we discuss the security
of network communication and of protocol translation.

Network Security Chuchotage uses TLS 1.3 [Eril8] to implement transport layer
security - including key establishment - and inherits its confidentiality and in-
tegrity properties. On the other hand, Chuchotage also inherits any potential
vulnerabilities yet to be discovered in TLS 1.3 ; this underscores the importance
of following vulnerability management best practices. The security of ME-TLS
extensions to TLS 1.3 is reviewed in detail in [Li+20]. There are several types of
network based attacks that can target Chuchotage, such as Denial of Service (DoS)
or traffic flooding. Similar to other contexts, DoS attacks can be mitigated by DoS
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prevention techniques including intrusion detection and prevention systems, us-
ing load balancers, filtering, etc.

Protocol Translation Availability of a Chuchotage deployment can be ensured
through network deployment best practices. High availability is an inherent ca-
pability of Chuchotage as translator boxes are instantiated and deployed in TEEs
by switches throughout the network topology.

Translator boxes are central to the security of protocol translation and network
communication in Chuchotage. Integrity of the protocol translation software de-
ployed in translator boxes is verified through attestation [Cok+11]. The chain of
trust evaluated through attestation is specific to the platform implementation of
the TEE. During protocol translation confidentiality of provisioned cryptographic
material and intercepted network trafhc is ensured through TEE isolation mech-
anisms that include memory isolation on hardware or firmware level, run-time
memory encryption, and cache flushing upon execution transition [YZ20].

In our current prototype implementation, we use Intel SGX enclaves asa TEE
implementation target. SGX is vulnerable to a wide category of attacks reviewed
in [NBB20]. Chuchotage can be vulnerable to any attacks applicable to SGX.
However, there are a number of mitigation techniques that can be used to mitigate
attacks on realistic applications deployed in SGX enclaves [Hos+18].

7 Conclusion

In this paper, we proposed Chuchotage, an in-line application layer protocol trans-
lator with transport layer security. Chuchotage relies on secure TLS interception,
efficient protocol translation, and fault-tolerant distributed architecture. In Chu-
chotage we translate, and re-encrypt network flows with minimal latency, on the
network path. Scalability is guaranteed by growing the number of translator boxes
with the number of flows; translator boxes are instantiated by individual software
network switches in the deployment. Depending on the capabilities of the under-
lying platform and their support for TEEs, Chuchotage allows creating translator
boxes either in-switch or external to the switch, in kernel space or user space. We
implemented a Chuchotage prototype for HTTP to CoAP translation with Intel
SGX enclaves and Open vSwitch. Our evaluation indicates a slight increase in the
translation and transmission time. This overhead depends primarily on the choice
of TEE in the implementation.
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Common IoT Communication Protocols

In the TCP/IP network model, the physical or data link layer is responsible for
physical transmissions; characteristics of applications - such as latency and avail-
ability - directly impact trafhic characteristics on the link layer. The network layer
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is responsible for routing and forwarding packets; considering that IoT devices are
often resource-constrained, the information necessary for routing should be kept
ata minimum. Finally, transport layer protocols (such as TCP and UDP) manage
end-to-end communication between network endpoints.

Physical network gateways are commonly used for interoperability in the phys-
ical and network layers or transport layer [NAG19]. Gateways have limited scal-
ability [NAG19]: as the number of IoT devices increases, special connectors are
required for their interaction, thus adding both cost and complexity to the net-
work.

Application communication between network endpoints is implemented on
the application layer. Middleware can perform translation in the application layer;
however, connecting middleware components risks further reducing interoperabil-
ity by locking applications to a specific technology. Interception proxies are an
alternative for application layer translation; however, proxies cause delays since all
traffic transits through proxies even when translation is unnecessary [DEDI17].

Proxies and middleware currently available for application layer protocol trans-
lation are increasingly unsuitable for secure, distributed, and transparent applica-
tion layer protocol translation.

Several application layer protocols - namely HTTP, CoAP, MQTT, and AMQP
- have been widely reviewed in academic publications and adopted in large scale
deployments. We compare these protocols in Table 1.

Table 1: loT protocols comparisons

IoT protocols HTTP CoAP MQTT AMQP
Transport layer TCP UDP  TCP TCP
Security TLS/SSL DTLS  TLS/SSL TLS/SSL
Architecture Req/Res Req/Res Pub/Sub Pub/Sub
QoS No Yes Yes Yes

Low Power/Lossy Networks | Fair Excellent Fair Fair
Dynamic discovery No Yes No No

Open vSwitch Overview

OpenvSwitch (OvS) is an open source programmable switch [Tu+21] that imple-
ments packet forwarding on the datapath; it is a flow-based switch, where clients
install flows determining forwarding decisions. Flows are installed in a cache level
structure that assists the datapath to execute actions on received packets, e.g. allow,
drop, etc. For each ingress packet, the datapath consults its cache and forwards
the packet to its destination if matching entries exist. For each cache miss, the
datapath issues an upcall and forwards the packet to ovs-vswitchd. A datapath
can be deployed as a kernel module or in user space with additional firmware sup-
port. Packet classification in OvS is computationally expensive, mostly due to the
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many types of matching fields. Matching is implemented in a hash table of flow
rules, with matching fields hashed as keys. OvS uses a modified Tuple Space Search
(TSS) algorithm for packet classification. The algorithm searches through the hash
map tables based on the maximum entry’s priority and terminates after finding the
highest priority matching flow rule. Early OvS releases implemented OpenFlow
processing exclusively as a kernel module. However, the difficulty of developing
and updating kernel modules motivated moving packet classification to user space.
A multi-level cache structure kernel implementation compensates the resulting
performance impact. The cache structure consists of two levels with increasing
lookup costs: a microflow cache (or Exact Match Cache) and a larger megaflow
cache. The megaflow cache matches multiple flows with wildcards [MPA19].

Open vSwitch Forwarding Figure 6 illustrates the OvS internals. An incom-
ing packet reaches the datapath from either a physical or virtual NIC (1). In the
datapath, the switch runs a first search based on an exact match (2). If there is
a matching entry in the microflow cache, the packet is sent to the specific table
in the megaflow cache to retrieve the required actions. Otherwise, the forward-
ing process performs a second search in the next cache line (3). Failing to find
a match, the datapath uses upcalls (4) to inform the ovs-vswitchd that it cannot
handle the packet. The ovs-vswitchd uses the classification process (5) to obtain
a matching rule via its flow tables. Next, ovs-vswitchd returns to the datapath,
inserts the entry in the cache (6), and returns the packet to the kernel (7). Finally,
the datapath forwards the packet to the intended destination (8). Failing to find
matching information in the flow tables, ovs-vswitchd sends a packet-in request
to the network controller to get a matching rule for the unknown packet.

[ovsdb-tool] [ ovs-vsctl ] [ovs-dpctl] [ovs-appctl} [ovs-ofctl]
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Figure 6: An overview of Open vSwitch internals






LMGROUP: A Lightweight
Multicast Group Key
Management for loT

Networks

Abstract

Due to limitations of IoT networks, including limited bandwidth, memory, bat-
tery, etc., secure multicast group communication has gained more attention, and
to enable that, a group key establishment scheme is required to share the secret key
among the group members. The current group key establishment protocols were
mostly designed for Wireless Sensor Networks, requiring device interaction, high
computation costs, or high storage on the device side. To address these drawbacks,
in this paper we design LMGROUPD, a lightweight and multicast group key estab-
lishment protocol for IoT networks, that is based on Elliptic Curve Integrated
Encryption Scheme and HMAC verification and does not require device inter-
action. We also suggest an algorithm for unpredictable group member selection.
Our experimental result of implementing LMGROUP indicates it has low stor-
age, low computation, and low communication costs. Furthermore, the formal
security verification indicates LMGROUP is secure and robust against different
attacks.

Pegah Nikbakht Bideh. “LMGROUP: A Lightweight Multicast Group Key Management for IoT
Networks”. In the 17th International Conference on Information Security Practice and Experience
(ISPEC 2022), laipei, Taiwan.
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1 Introduction

IoT networks have several challenges; one of the challenges is that the majority
of devices are resource constrained, which means that they have limited mem-
ory, battery, power, and limited computational resources. In IoT networks, band-
width is another challenge [Sam16; CK16] since increasing the number of devices
also makes the bandwidth and communication resources limited. Due to these
limitations, multicast group communication has become more favorable in IoT
networks since sending multicast messages to a group of devices is more efficient
than sending unicast messages and overloading the network with multiple mes-
sages. Multicast group communication is particularly important, where software
updates or patches are required to be sent to a group of devices simultaneously.

In order to enable multicast secure group communication, a group key needs
to be established in advance. Various group key establishment methods have been
proposed, which will be described in detail in Section 2. Most of these schemes
have been designed for WSN (Wireless Sensor Network), which do not take the
characteristics of IoT environments into account. The designed schemes for WSN
require interaction between group members to get access to the shared key. In
such solutions, many nodes participate in the computations, and this results in
unnecessary intensive cryptographic operations, and additional packet forwarding
overhead [Kim+16]. Device interaction is hard to achieve in IoT networks where
devices have the least communication. Examples of such networks in smart cities
or smart homes are where different sensors are placed in different places to gather
information about temperature, air pollution, etc. These sensors gather data and
send aggregated data periodically (in a unicast way) to a central server for further
analysis, and device-to-device communication is less likely.

The central server then should be able to send control commands or up-
dates/upgrades and patches to the sensors in a multicast way. These commands
and updates should not be broadcasted to all IoT sensors for availability reasons
since if any unexpected error happens, it can affect the availability of the whole
network. As a result, the central server needs to group the IoT devices and de-
cides on group membership; this can be done manually by the administrator or
automatically to make the group membership less predictable to attackers. In this
paper, we first suggest an automatic algorithm for unpredictable group member
selection. After the selection of group members, a group key needs to be estab-
lished to the group members. These group keys need to be renewed frequently
due to changes in the group membership to provide forward secrecy. For that,
we then design LMGROUP, a new lightweight multicast group key management
scheme that can work efficiently in small to large networks. LMGROUP does not
have the problems of other group key establishment schemes for WSN, including
interactions between group members or heavy procedures on constrained devices.
We implement LMGROUP, and the experiments indicate it has efficient memory
usage, communication, and computation costs. The experiments also show the
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scalability of LMGROUP. Finally, the formal security verification indicates our
multicast scheme is secure against different attacks, such as replay attacks. Our
main contributions are:

* We suggest an algorithm for unpredictable group member selection.

* We design a new lightweight and multicast group key management scheme
based on hybrid cryptography.

* We implement LMGROUP and indicate it is scalable and has efficient

memory usage, communication, and computation costs.

* We formally verify LMGROUP and indicate it is secure against different
attacks.

The rest of this paper is organized as follows: in Section 2, the related work
on group key establishment methods for WSN and IoT networks is presented. In
Section 4, the details of LMGROUP, including the suggested group member se-
lection algorithm and our designed scheme, are described. Implementation details
are presented in Section 4. Performance evaluation and formal security verifica-
tion are described in Sections 7 and 6. Finally the paper is concluded in Section

9.

2  Related Work

Various Group Key Management (GKM) methods had been proposed for WSNs
and IoT networks and were extensively reviewed in [Chel6; Dam+20; PPW20], in
the case of the used cryptography method, they are divided into three categories:
symmetric, asymmetric, and hybrid. In the case of key establishment authority,
these methods can be divided into centralized and distributed methods [Chel6].
Centralized methods are mostly applicable to networks with static topology, while
distributed approaches are more suitable for dynamic networks where nodes have
high levels of mobility and can join and leave the network quite often. Our work
focuses on centralized schemes, and we do not review distributed schemes here.
Among the reviewed schemes in [Chel6], the most lightweight centralized ap-
proaches applicable to static small to large networks are: LKH [WGLO00], S2RP
[DS06], TKH [SLS10], and LEAP [ZS]06].

LKH (Logical Key Hierarchy) is a multicast rekeying approach for WSNs.
In LKH the nodes are divided into subgroups based on a logical hierarchy and a
symmetric key is assigned to each leaf node. LKH has a reasonable communica-
tion cost in most WSN networks since only the existing members in the subgroup
receive the rekeying messages. However, each member of the group needs to main-
tain the keys from the leaf to the root node path, which causes additional storage
and computation cost on the node’s side [WGL00]. S2RP (Secure and Scalable
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Rekeying Protocol) is similar to LKH with almost the same performance results,
but instead, it has added security to authenticate the rekeying messages through
the use of a one-way hash function [DS06].

TKH (Topological Key Hierarchy) is another variant of LKH in which the
logical key tree is mapped to the physical topology of the nodes in the network (key
tree); this further reduces the communication cost of total rekeying messages. In
TKH, based on the routing tree, the key tree can be constructed; the nodes attach
to a parent node until they reach the group controller (sink node). Although
TKH reduces the storage overhead on the node side, it does not provide any key
authentication mechanism.

In LEAP (Localized Encryption and Authentication Protocol), four types of
keys are established to the nodes, including an individual key, a pairwise key, a clus-
ter key, and a global key. This scheme has low computation, communication, and
storage overhead, but for broadcast authentication, it relies on ' TESLA [Per+02b]
which requires synchronization between nodes, but the node synchronization is
heavy, and it is hard to achieve in IoT or WSN networks.

Another lightweight and decentralized group key establishment for IoT was
proposed in [Dam+20]. This scheme is also based on a logical hierarchy with
one Key Distribution Center (KDC) and several Sub Key Distribution Centers
(SKDCs) that can be used to avoid the single point of failure problem in centralized-
based schemes discussed above. Same as LKH based schemes, each device needs
to store the keys from the leaf to the parent path. Again, this scheme can have
high storage costs on the device side, which depend on the subgroup size.

As mentioned above, the problems of Key Tree Hierarchy-based key establish-
ment methods are high storage, high computation costs, and inability to provide
key authentication mechanisms or requirement of time synchronization, which
makes them non-practical to use for IoT networks. Most of these methods de-
pend on the contribution of members of the same group, which is difficult to
handle in IoT networks, especially in networks where IoT nodes do not interact
with each other.

Other than key tree-based methods, there are a variety of non-interactive key
agreement protocols [Fer+18; HL10; Lee+11; Por+15; San+18] applicable to WSNs
or IoT networks. For IoT networks, a secure group key establishment based on
Elliptic Curve Cryptographic (ECC) operations was proposed in [Fer+18]. This
work has high computation cost since the key establishment requires one signing
and one signature verification on the IoT unit side.

In [Por+15], two lightweight protocols based on ECC operations were pro-
posed, which was an improvement of the schemes proposed in [HL10; Lee+11].
The protocols provide authenticity, confidentiality, and integrity. However, they
are vulnerable to replay attacks [San+18], and they have high computational costs
(especially protocol 1, which requires two signature verifications on the IoT unit
side), which make them non-applicable to IoT environments. As an improvement
of [Por+15], the authors in [San+18] proposed a new key establishment protocol
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based on the Identity-Based Credentials (IBC) mechanism and ECC operations,
which is resistant to replay attacks. In this scheme, they have used HMAC verifica-
tion instead of signature verification which is more applicable to IoT devices than
heavy signature-based operations. Although this scheme has a lower computation
cost in comparison to protocols in [Por+15], it has higher communication costs
due to the increased number of transferred messages. Also, it does not consider
multicast communication and group key sharing.

Considering the problems of Key Tree Hierarchy-based methods, we address
these problems and suggested a scheme, LMGROUP, that does not require time
synchronization, has low storage (it does not require storing all the keys from
the leaves to the root) and has low communication and computation overhead.
LMGROUP is a multicast authenticated key establishment mechanism with hy-
brid cryptography. In LMGROUP we consider the advantages of the protocol in
[San+18] including HMAC verification and replay protection; we modified the
second protocol presented in [Por+15], protocol 2, and proposed a new scheme
that applies to IoT networks. LMGROUP will be explained in detail in Section
4.

3 Scenario and Scheme

In this section, first, we provide the assumptions about the IoT network and the
use case in which the proposed scheme is most suitable, and then we present the

details of LMGROUP scheme.

3.1 Assumptions

In our network, we assume two types of nodes: resource-rich nodes and con-
strained IoT nodes. Resource-rich nodes do not have limited storage and process-
ing capabilities, and they can be used to perform heavy operations and are used
to manage different groups of IoT nodes. Resource-rich nodes are referred to as
servers throughout this paper. We assume to have a fault-tolerant centralized ar-
chitecture with redundant servers available in the network. To avoid a single point
of failure having redundant servers is required. We assume a network scenario
in which IoT devices are stable or have low mobility. Devices can join or leave
the network for any reason, e.g., physical maintenance operations, adding new
devices, or removing old ones from the network. Examples of such use case sce-
narios are in smart buildings with smart lights or smart doors where the devices
have fixed positions.

In our use case networks, device interaction is not possible. We consider that
the devices will not contribute in any way to the group key establishment. In
these network scenarios, since there are usually many devices available, to keep
the bandwidth as low as possible, the group key establishment is preferred to be
done in a multicasted way. If during multicast group key establishment, one of
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the group members fails to receive or update the group key in its next contact with
the server, it can retrieve the group key in a unicast way.

We assume that each device has owned a symmetric master key denoted by
K, this key is provisioned by the network administrator in the setup phase, and
the &y, keys are also stored with each device identity securely on the server. Later,
in the bootstrapping step, kp, is used to extract a session key, ks, based on a key
derivation function to establish a secure session with the server. We assume that the
server decides on the group members, and the devices themselves can not decide
which group they want to belong to. The devices can belong to multiple groups at
the same time, but messages encrypted with one group key can not be decrypted
with another key.

3.2 Network scenario

In our network scenario, after the bootstrapping phase, the devices send their ag-
gregated data encrypted with k4 keys back to the server periodically based on de-
fined time intervals. Then after receiving an acknowledgment from the server, the
devices go to sleep mode to reduce the energy consumption. The server needs to
decide which devices should to be grouped; our suggested algorithm to decide on
the group members will be described below in Section 3.3. After deciding on the
group members, the server will piggyback a hint along with the acknowledgment
of the previous message to the IoT device. This hint carries information about
the new group /D, and it can be used as the seed of the key derivation function
on the IoT unit side to extract an authentication key which is further going to be
used to authenticate the group key establishment messages. The required commu-
nication between IoT devices and the server to derive the group authentication
key is depicted in Figure 1. After receiving the new group /D by the IoT devices
inside the group, they use it to derive the key K*, which is the authentication key.
The authentication key will be used during the group key establishment phase to
protect the authenticity of multicast messages.

Other than the new group /D, the wake-up time should also be sent to the
IoT devices so they can wake up at the defined time to receive the multicast group
key establishment messages. To avoid heavy time synchronization procedure on
IoT unit sides, instead of sending the wake-up time, the server sends two other
parameters to the devices: 7" and a window frame. 7 defines the number of
seconds that the device needs to wake up after receiving the acknowledgment,
and the window frame (which depends on the network latency, delay, etc., will
be defined by the network administrator), defines the window frame in which the
device should be active. As an example, if 7" is 6000 and the window frame is 60,
then the device needs to be active from 5940 until 6060 seconds after receiving
the acknowledgment.
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Figure 1: Communication between the server and three loT devices in the same group to
derive authentication key

3.3 Group Member Selection

In WSN or IoT networks with more mobility, the nodes themselves can join or
leave the groups based on different factors, e.g., signal strength, distance, etc.
There have been some methods suggested for group member selection [Kaz+11]
or cluster head selection [Beh+19; HD16] in WSN. These algorithms do not apply
to our use case scenario or, in general, to the networks where nodes are stable and
cannot choose the grouping themselves; thus, we suggest an algorithm for group
member selection that the server in our scheme can use.

The network administrator registers available IoT devices in the network to the
central server (and redundant servers). On the device registration, information,
including device identity number, device master secret, device public key, and
device criticality level, will be stored on the server. The network administrator will
decide the device’s criticality level, depending on how critical the device’s role is
in the network. For example, in the case of smart doors in a hospital, the main
entrance door has the highest criticality while the sub-doors have lower criticalities.
We have considered three levels of criticality: low, medium, and high. These levels
will be used for group member selection.

The group member selection should not be predictable by an outsider attacker;
otherwise, the devices targeted for multicast group keying or update can become a
target of DoS (Denial Of Service) attacks. Our suggested group member selection
algorithm selects devices based on criticality levels and makes sure not all critical
devices are in the same group. The algorithm works as follows:

As it can be seen in Algorithm 1, based on the number of available devices with
different criticality levels, the members of a group will be formed randomly. If new
devices join the network, they will get group membership in the next round of the
algorithm. If a device leaves the network due to maintenance or replacement, the
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Algorithm 1 Group member selection algorithm

Require: n, the number of group members, N, the total number of registered
devices
H, M, and L > 0 are the number of devices with high to low criticality, re-
spectively, such that H + M + L = N.
Ge+ &,
H' + L%J, M «+ LGMLJ’ L'« LGLCJ’ (The remaining members will be
added to the groups later by the administrator.)
140,
while 7 < G do
GJi] + Take random members from H, M, L with the size of H', M’,
and L/, respectively.
1 i+1
end while
Return the groups, G[ils.

group will continue with previous members until the next round of running the
algorithm. Leavinga group to join another group is not possible by the device since
the server only does the grouping process. The network administrator decides how
often the group member selection algorithm should happen.

3.4 Designed scheme

As mentioned earlier in Section 2, two lightweight key establishment protocols
based on ECC operations were proposed in [Por+15], and an improved version
of them was proposed in [San+18]. The second protocol presented in [Por+15],
protocol 2, and the improved protocol presented in [San+18] are the basis of our
scheme. In order to better understand our designed scheme, here, we first briefly
explain these two protocols and then we suggest our scheme.

Basis of LMGROUP

Protocol 2 [Por+15] uses ECIES or Elliptic Curve Integrated Encryption Scheme
algorithm to establish a shared secret among the group members. In this scheme,
an initiator (/) with several responders Ujs in the network is considered, and the
initiator determines the group members. The random 7 is generated by 7, then R
is calculated as R = G (G is the base point as in ECDH). Then for each group
member EC points Sjs are computed by the initiator, Sj = d;Q; + R, and Q;
represents the public key of the group members. The point S; = (x;,y;) will be
encoded to another point (u;,v;) by calculating the hash over the point values.
Then the encoded points will be XORed, and the results will be concatenated to
make the set P. The group’s secret key, 4, is then the hash value over the XORed
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values of w;. The Auth value is calculated as Auth = h(k || R || P). The multicast
message that will be sent to the group members includes: Auth, C, R, U, P, in
which C is the counter value and U contains identities of all group members.
Finally, a digital signature will be added to the message, and the message will be
broadcasted to all sensor nodes in the network. Each receiver first checks if its
identity is included in the U part of the message; if yes, it verifies the signature
and the counter value. If the verification is successful it computes u; using R and
its private key as: S = d;Q; + R. The node will encode the point, and finally, the
values of the encoded point will be used to derive the group key. After that, the
node verifies the authenticity of the key by checking if Aut is equal to h(k|| R|| P).
Finally, the recipient nodes will send an acknowledgment to the initiator to finish

the handshake.

The problems of the above scheme are listed below:

* It is not protected against replay attacks;
* It requires heavy signature verification on the loT unit side;

* The first message needs to be broadcasted to all sensor nodes in the network;
this can cause many extra checking by IoT devices not belonging to the same
group and can further cause extra overhead to the whole network.

In [San+18], the authors proposed a key management scheme that is quite
similar to the work explained above [Por+15]. In [San+18] HMAC verification
is used instead of signature verification which makes it more energy efficient in
comparison to [Por+15]. In [San+18], replay attack protection is considered, but
the scheme only works in a unicasted way, and it can not be used for group key
management. The other problem of the scheme [San+18] is that, although it has
lower computation overhead than the work presented in [Por+15], it causes higher
communication overhead.

LMGROUP

In our designed scheme, we take the advantages of these two protocols [Por+15;
San+18] including multicast and ECIES based operations for group key sharing
from protocol [Por+15] and HMAC verification instead of heavy signature veri-
fication for authenticity from protocol [San+18]. We design LMGROUP that is
lightweight in case of communication, computation, and storage overhead. We
also suggest a replay protection mechanism and a group member selection tech-
nique so that the messages are not required to be sent to all devices in the network
and can be sent to the target devices in the beginning. We describe the details of
LMGROUP here.

The operation flow of our designed scheme is depicted in Figure 2. After
deciding about the group members and pre-establishment of the authentication
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key K* to group members by the server, as can be seen in Figure 2, the operation

flow of LMGROUP, which starts on the server side, is as follows:

The server selects a random 7 and computes R = rG, in which G is the
base point as in ECDH, and based on the number of group members in
the range of I 70 n, the point S; = dQ; + R = (z;,y;) will be calculated,
where d is the private key of the server and @); is the public key of group
members.

A unique random session /D will then be generated by the server that is
used to protect against replay attacks.

For each member of the group, T; = {®;;z;} ® y; will be calculated and
then the set Se = (77, ..., T,,) will be formed, and the group key is calculated
as k = h(®;z;) which is the hash over XOR values of ;.

The authentication value is calculated as Auth = h(k || R || Se).

The HMAC will be calculated over the fields of {ID, Auth, R, Se} with
the use of the authentication key K™ and it will be sent along with {/D,
Auth, R, Se} to all group members.

Then the flow continues on the device side:

The group members upon receiving the message, first verify the HMAC,
then each recipient device uses R and its own private key d; to construct

the point S; = d;Q + R = (z;, ;).

Then, the device extracts its own Z; from the received set Se, and then it
can derive the group key as k& = h(ZT; ® x; @ y;), T; contains other =
and y; value, therefore the similar values of y; will be removed from the
calculation and only all 2 values will be XORed as expected.

After key derivation, the Auth should be checked if it is equal to A (k || R ||
Se) or not. If Auth is valid then an acknowledgment will be calculated as
Ackj = h(k || ID || @), in which k is the extracted group key, ID is the
received session /D by the device and @); is the device public key.

The acknowledgment along with device /D (device identity number) will
be sent back to the server.

The flow is then finalized on the server side:

The server uses the group key and device public key @ to verify the ac-
knowledgment. On a successful verification, the authenticity of the derived
group key by the device is verified.
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Server Device j

Select r and compute R = rG,
Compute S; = dQ; + R = (x;,¥))

vj € {1,..,n},

Select a random ID,

Calculate % = {D; x;} D yj,
Calculate the set Se = (X7, ..., %),
Calculate the group key k = h(6D; x;),
Compute the Auth = h(k || R || Se), {ID, Auth, R, Se}, HMAC
Calculate HMAC (k*,{ID, Auth, R, Se})

Verify HMAC,

Compute S; = d;Q + R,

Compute k = h(X; @ x; ® y;),

Check if Auth is equal to h(k || R || Se),

Compute Ack; = h(k Il ID || Q)

Verify Ack; {Ack;, Device ID}

Figure 2: Operation flow between server and a sample device in LMGROUP

4 Implementation

We have implemented LMGROUP on a real testbed setup. For the implemen-
tation, we have used ESP32-S2! a popular IoT development board representing
IoT devices (the implemented code for device side and server side is available?).
ESP32-S2 is a low power and single-core Wi-Fi Microcontroller SoC with high
performance and a rich set of IO capabilities. ESP32-S2 has cryptographic hard-
ware accelerators for enhanced performance, and it integrates a rich set of pe-
ripherals with different programmable GPIOs that can be configured to provide
USB OTG, LCD interface, UART, and other common functionalities. In our im-
plementation, to annotate measurements, we have used UART interface. In our
measurements, we used Otii Arc® device as a power analyzer to record and measure
real-time currents and voltages using UART logs.

We have used SHA256 for the hash function, and for HMAC, we have used
HMAC-SHA256. For the hash function, we have used hardware acceleration on
ESP32-S2. On the IoT device side, for the ECC point addition and multiplica-
tion, we have used the Mbed TLS library.

4.1 Testbed and Environmental Setup

Our testbed consists of 10 ESP32-S2 boards, and 7 out of these 10 boards are
grouped by the server to receive the group key. After the server decides the group
members, it calculates: Sj, Z; (j in range of 1 to 7), Se, k. Auth and HMAC

1https:/ Iwww.espressif.com/en/products/socs/esp32-s2
*hteps://github.com/pegahnikbakht/Multi-key-share

3 hetps://www.qoitech.com/otii/
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Figure 3: Testbed setup for LMGROUP

(as explained in Section 3.4). The calculation of these values can be done at any
time between the time the group members have been decided until the time the
devices wake up, based on the server workload during this time. During the spec-
ified wake-up time window, the devices wake up and wait to receive the group
key information from the server. Our testbed setup and further communications
between the server and IoT devices are depicted in Figure 4. As shown in Figure
4, the multicast group key message will be sent to all of the grouped devices by
the server. After receiving, verifying the message, and extracting the group key,
the devices will send back an acknowledgment to the server. Whenever the server
receives the acknowledgment from all members, the group key is established and
can be used for further communications. The server has a specified timeout for
receiving the acknowledgments from all group members; if the server does not re-
ceive the acknowledgment from any of the group members, it will send the group
key information again to those members in a unicast way later.

5 Performance Evaluation

In order to show the efficiency of our group key establishment scheme, we measure
the communication, computation, and storage overhead of our scheme.

5.1 Communication and Computation Cost

In order to calculate the communication overhead, the number of transferred bytes
between the server and IoT devices during the group key establishment has been
calculated; in the calculations, the number of bytes in the acknowledgment is also
included. The number of bytes in the first message from server to the devices are
145 + 32 * n (n is the number of devices inside the group), which consists of 16
bytes of ID, 32 bytes of HMAC, 32 bytes of Auth, 64 bytes of R, and 32%n bytes of



5 Performance Evaluation 165

Table 1: Computation overhead of LMGROUP with two different curves

Curve Energy (uwh)  Time (ms)
Secp256k1 | Total key establishment (IoT side) 32.0809 405.7857
Total key establishment (Server side) - 570.3442

Single Ack verification (Server side) - 0.1129

Time between arriving Acks (Server side) - 0.8210
Singel EC point addition and multiplication 25.6172 321.3448
Secp256r1 | Total key establishment (IoT side) 39.0281 494.0000
Total key establishment (Server side) - 692.0681

Single Ack verification (Server side) - 0.1226

Time between arriving Acks (Server side) - 1.3483
Singel EC point addition and multiplication 33.5333 414.1000

Se which depends to the number of group members 7. The response back from the
device includes an acknowledgment (32 bytes) and a Device ID (12 bytes) which
is in total 44 bytes. Therefore the total number of transmitted bytes between the
server and the devices are 189 4 32 x n.

In order to compute the computation overhead on the device side, the energy
consumption and the time was measured from the time the device receives the
group key information from the server until it sends back the acknowledgment.
We have done the measurements using two different elliptic curves with the same
security level, Secp256r1 (prime field curve) and Secp256kl (Koblitz curve). The
total time elapsed for the key establishment on the server was also measured, which
is the time from when the key establishment message was sent until all acknowl-
edgments from the devices in the multicast group have been received and verified.
The results of computation overhead are indicated in Table 1. As can be seen, a sin-
gle EC point addition and multiplication of Secp256r1 consumes more energy and
requires more time than Secp256kl since prime field curves are a few bits stronger
than Koblitz curves [Bjo09]. Therefore, using the prime field curve Secp256r1 for
the group key establishment would require more time and energy on both the de-
vice and server sides. The required time for single acknowledge verification does
not depend on the curve type, and it is almost equal for both curves, as can be
seen in Table 1. Since Secp256r1 requires more processing time on the device side,
it increases the arrival time of different acknowledgments as well as the total key
establishment time. From Table 1, we can also conclude that the greatest part of
the used energy and time on the IoT side is due to the ECC operations; therefore
the hash and MAC function operations are considered negligible.

According to the measured values in Table 1, we tried to calculate how long
the whole key establishment time (from the time the server sends the key estab-
lishment message until it receives and verifies all the acknowledgments from the
group members) takes on the server side for larger group sizes. The results for dif-
ferent group sizes are depicted in Figure 4. As can be seen, the key establishment
time increases by increasing the group size, and for large group sizes (larger than
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Figure 4: Total key establishment time of LMGROUP for different group sizes

100), this increase is more noticeable. Although the key establishment time for
larger group sizes increases but for instance, this increase for a group of 448 nodes
is still less than a second; hence LMGROUP is scalable to large-size networks as
well. Note that based on the latency threshold in the network [RPC18], appropri-
ate group size should be selected. As mentioned earlier curve Secp256k1 has better
performance than Secp256r1 as can be seen in Figure 4.

We have also compared the computation and communication overhead of
LMGROUP to the schemes presented in [Por+15; San+18], and the results are
depicted in Table 2. Different operations are indicated as follows: PM for ECC
point multiplications, PA for point addition, 4 for hash function operation, SV
for signature verification, HM for HMAC operation, MM for modular multipli-
cation, SE for symmetric encryption, and SD for symmetric decryption. As the
hash function and HMAC operations are negligible, we can conclude from Table
2 that the protocols presented in [Por+15; San+18] obviously have more compu-
tation overhead than LMGROUP due to heavy signature verification operation
and also more ECC or modular operations in schemes [Por+15; San+18], respec-
tively. In scheme, [Por+15], the authors have originally used the curve Secpl60rl,
which has less byte overhead than Secp256r1 or Secp256kl (the curves used in
LMGROUP), for the scheme [Por+15] to be comparable with our scheme, we
have also considered a curve with 256 bit modulus in [Por+15]. The results of the
communication overhead comparison are also indicated in Table 2.

Considering the communication overhead represented in Table 2, we calculate
the communication overhead for different values of 7 or the group size, and the
results are depicted in Figure 5. As can be seen, LMGROUP has slightly higher
overhead than the protocol [Por+15] and this is due to the fact that in scheme
[Por+15] SHA128 was used as the hash function which generates 16 bytes lower
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Table 2: Communication and computation overhead comparison of LMGROUP with the
protocols presented in [Por+15; San+18]

LMGROUP Protocol [Por+15] Protocol [San+18]
Computation Overhead 2PM+2MM+
(number of operations) PM+PA+3h+HM  PM+PA+5h+SV h+2HM+SE+SD

Communication Overhead

189 4+ 32 xn 146 + 18 x n 128 x n

(number of bytes)

/g\ I I I

5. —=—  LMGROUP
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; 6,000 —A— Protocol [Por+15]

E —— Protocol [San+18]
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Figure 5: Communication overhead comparison of LMGROUP with protocols [Por+15;
San+18]

overhead than SHA256 which was used in LMGROUP. The protocol [San+18]
is not a multicast protocol, and as can be seen, it has the highest byte overhead;
increasing the group size will cause a significant increase in its communication
overhead.

5.2 Storage Overhead

In LMGROUP the following information needs to be stored on the device side:
the public key of the server, the device private and public keys, the device /D, and
some other variables regarding the used ECC curve. We measured the memory
footprints of our multicast key establishment scheme using ESP32-S2, and the
results are shown in Table 3. DRAM specifies the RAM usage, which is assigned
to zero and non-zero values at the program’s startup. IRAM indicates the total
executable code which is executed from IRAM, and D/IRAM specifies the total
size of DRAM and IRAM together. Flash code specifies the total size of executable
code which is executed from the flash cache or IROM. Flash rodata, on the other
hand, indicates the total size of read-only data that is loaded from the flash cache
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Table 3: Memory footprints of LMGROUP

D/IRAM(B) Flash Code(B) Flash rodata(B)  Total image size(B)
LMGROUP 110855 467427 102736 681018

or DROM. Finally, the total image size indicates the estimated total binary file
size of the program, which includes the whole size of all used memory types. As
indicated in Table 3, the RAM and ROM usage of LMGROUP are reasonable on
the IoT device side. Considering the limitations of resource-constrained devices,
LMGROUP is applicable to be used in such devices.

6 Formal Security Verification

In order to formally verify the security properties of LMGROUP, we have used
ProVerif [Bla+18]. ProVerif uses Dolev-Yao model [DY81] for the adversary model,
and it can be used to verify the security properties of cryptographic protocols for-
mally. Applied pi calculus [RS11] is used in ProVerif as the modeling language. In
our protocol modeling, we start with the declaration phase, where different pro-
tocol components, including variables, functions, and channels, are declared. We
used different types in our ProVerif model to declare the type of variables, such
as key, nonce (used for session /D), point (used for ECC point), and bitstring.
The term [private] in front of some variable definitions indicates that those vari-
ables are not known by the attacker. Our modeled protocol using ProVerif is also
available®.

The main functions used in the modeling of our key establishment scheme are
hash function, ECC point multiplication and addition, MAC, and XOR; these

functions are modeled as follows:

fun hash(bitstring): bitstring.

fun mul(bitstring , bitstring): bitstring.

fun add(bitstring , point): point.

fun mac(key,nonce, bitstring , point, bitstring)
bitstring .

fun xor(bitstring , bitstring): bitstring.

The functions can have different input and output types; as an example, the
MAC function takes five inputs of type key, nonce, bitstring, point, and bitstring,
and it generates an output of type bitstring.

After declaring variables and functions, we defined different queries; these
queries are used to check whether the protocol has specific security properties or

*hetps://github.com/pegahnikbakht/Multi-key-share/
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not. We verified security properties, including secrecy, authentication, and corre-
spondence, through different queries. These security properties can protect against
various attacks, including 1) Man in The Middle attack, 2) Replay and Imperson-
ation attacks, and 3) Denial Of Service attack. The queries used to verify the
secrecy properties to protect against these attacks are described below.

6.1 Man in The Middle Attack Protection
Man in The Middle Attack (MITM) can be protected through secrecy property.

To verify secrecy, we have used the following queries:

query attacker ( da ).
query attacker ( db ).

In our ProVerif model, we modeled two devices, Device A and B, modeled as
Da and Db, and a server modeled as S. In the above queries, dz and db represent
the private keys of devices A and B, and the queries check whether the attacker
can gain any knowledge about the private keys of those devices or not. ProVerif
verification results indicate that the above queries are successfully verified, and the
attacker can not get access to the private keys (dz and db) and can not access the
information required to generate the group key.

6.2 Replay and Impersonation Attacks Protection

We have used correspondence property to verify protection against replay and im-
personation attacks. To prove correspondence, we have used these queries:

query a:bitstring ,b:nonce,c:bitstring ,d: point,
e:bitstring;

event (termDevice(a,b,c,d,e))==>
event(initserver (a,b,c,d,e)).

query a:bitstring ,b:bitstring;
event (termserver (a,b))==>event(initDevice(a,b)).

As it can be seen, four different events are used in the above queries: initDevice
and zermDevice refer to initiating and terminating the device, respectively, and
initserver and termserver refer to initiating and terminating the server. The inputs
of the events in the first query represent HMAC, Session ID, Auth, R, and Se and
the inputs of events in the second query are device /D and acknowledgement. The
above queries are satisfied if for each occurrence of the event termDevice, there is a
previous execution of inizserver, and also if for each occurrence of termserver there is
a previous execution of initDevice. These correspondence relations protect against

replay and impersonation attacks. The above queries are successfully verified in
ProVerif.
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6.3 Denial Of Service Attack Protection

To protect against DoS attacks, we have used the authentication property; if all
of the messages are authenticated in the protocol, then it can protect against DoS
attacks; we have used HMAC verification to verify the authenticity of the messages
in LMGROUP. To prove the authentication, again, the correspondence assertion
(the relationships between the execution of events) is used in ProVerif, and the
same queries used in Section 6.2 are used to verify the authentication property.
ProVerif has already verified the correspondence successfully.

7 Conclusion

In this paper, we propose LMGROUP a lightweight and multicast group key es-
tablishment scheme for IoT networks. In LMGROUP the IoT devices do not
need to interact with each other to gain the shared key; instead, a central server is
used to select the group members and send the group information to the members
(having some redundant servers is preferred to avoid a single point of failure). In
this paper, we suggest an unpredictable group member selection algorithm based
on the criticality level (which is decided by the network administrator) of the de-
vices in the network. LMGROUP uses ECIES based operations to share the group
key and uses HMAC verification instead of heavy signature verification to authen-
ticate the group key establishment messages. The evaluation result of implement-
ing LMGROUP on a real testbed setup indicates it is lightweight and scalable and
can be used in small to large-size networks. The results also indicate that LM-
GROUP has low storage, communication, and computation costs. Furthermore,
we formally verify LMGROUP and prove it is secure and robust against different
attacks, including replay and DoS attacks.
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Flowrider: Fast On-Demand
Key Provisioning for Cloud
Networks

Abstract

Increasingly fine-grained cloud billing creates incentives to review the software
execution footprint in virtual environments. For example, virtual execution en-
vironments move towards lower overhead: from virtual machines to containers,
unikernels, and serverless cloud computing. However, the execution footprint of
security components in virtualized environments has either remained the same
or even increased. We present Flowrider, a novel key provisioning mechanism
for cloud networks that unlocks scalable use of symmetric keys and significantly
reduces the related computational load on network endpoints. We describe the
application of Flowrider to common transport security protocols, the results of its
formal verification, and its prototype implementation. Our evaluation shows that
Florwider uses up to an order of magnitude less CPU to establish a TLS session
while preventing by construction some known attacks.

1 Introduction

Throughout the past decade, cloud computing has evolved to support a panoply
of orchestration, deployment, and billing approaches. Notable trends are the use
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On-Demand Key Provisioning for Cloud Networks”. In the 17th EAI International Conference on
Security and Privacy in Communication Networks, EAI SecureComm 2021, Canterbury, Great
Britain(online), pp. 207-228. Springer, Cham.
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of resource description templates [D W17], emergence of serverless computing [I
B17] and fine-grained resource billing [K'T20; Y Z17]. Resource description tem-
plates allow to dynamically deploy workloads and provision them with crypto-
graphic material or network and application configuration. Most major cloud
providers offer serverless computing'. This defers the operation of the server plat-
form to the cloud provider, while allowing developers to focus on the application
code. Cloud users are billed for the number of function invocations and consumed
computation resources, rather than for a pre-purchased unit of computation such
as a bare-metal server or a virtual machine. Finally, serverless plans are billed based
on the CPU, memory, and I/O operations that functions consume. Fine-grained
billing provides strong incentives to develop and deploy applications that utilize
a minimum amount of computing resources. This calls for a rigorous review of
software development and deployment approaches to reduce the use of computing
resources.

Consider software-defined networking (SDN): separation of control and data
planes helps network configuration and management; however, network opera-
tions security did not keep up with new capabilities enabled by SDN. So far, the
distribution of cryptographic material to network endpoints leverage to a lim-
ited extent the logical centralization of network control [WZN19]. As a result,
public-key cryptography, rather than symmetric key cryptography, remains almost
pervasively the tool of choice for enabling secure network traffic in virtualized de-
ployments regardless of the network architecture. While public-key cryptography
is robust and scalable, it introduces key management complexity and is relatively
CPU-expensive; with fine-grained billing in place, this directly translates into ad-
ditional financial costs. On virtualized hosts where tenants share a common en-
tropy pool, generating asymmetric keys may slow down applications if sufficient
entropy is not available [I D13]. Some network endpoints may even lack the com-
putational capacity to generate cryptographic material without disrupting their
own operations. Generating keys on a dedicated host with deep entropy pools
can reduce the key creation overhead. On the other hand, while generating sym-
metric keys requires less computational power and has firmware support on many
platforms, the use of symmetric keys leads to challenges such as secure key pro-
visioning and key authentication. This introduces the research question: can the
SDN model be leveraged to conveniently provision symmetric keys and reduce compu-
tational resource consumption?

We posit that the answer is yes and demonstrate this with Flowrider, a novel key
provisioning mechanism for network endpoints in SDN deployments that consid-
ers the practicalities of cloud systems deployment. In particular, Flowrider takes a
reactive, on-demand, and automatic approach that embeds key distribution into
the network flow establishment. Furthermore, Flowrider makes key distribution
agnostic of the network topology and communication patterns in the system, of

See Amazon Lambda, Google Cloud Functions, Azure Functions, Salesforce Evergreen, etc.
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which it does not require any early knowledge. Overall, Flowrider reduces the
number of steps for providing symmetric key material to endpoints and the time
required to set up secure communication.

By conveniently enabling the use of symmetric keys [SPT20], Flowrider re-
duces by an order of magnitude the computation load of secure channel estab-
lishment on network endpoints and simplifies key management in SDN deploy-
ments [Pal+21], without compromising communication security properties. Mi-
nor modifications of network endpoints introduce another contribution - flow-
specific symmetric keys - that enable per-flow cryptographic isolation of network
traffic. Flowrider is compatible with common transport layer security protocol
suites including (D)TLS v1.2 [DR08b; RM12] and v1.3 [Eril8; E R21]. Our con-
tribution is three-fold:

* We describe a key provisioning mechanism that leverages the use of sym-
metric encryption keys in virtualized deployments within an administrative
domain.

* We describe the mechanism and functioning of flow-specific symmetric keys,
for establishing secure channels between network endpoints.

* We detail how the proposed mechanism works in the (D) TLS security suites
v1.2 and v1.3, where it also prevents the “Selfie” attack [DG19] by construc-
tion.

Our Flowrider implementation shows reduced computation effort and fewer
round-trips to generate authentication credentials and establish secure communi-
cation between endpoints. Note that Flowrider primarily targets controlled enter-
prise environments and does not focus on privacy for network endpoints.

The rest of this paper is organized as follows. We introduce the necessary back-
ground in Section 2 and describe the system model, threat model, and assumptions
in Section 3. In Section 4, we introduce the Flowrider key provisioning mecha-
nism. In Section 5, we describe the use of Flowrider with (D)TLS. In Section 6,
we provide a formal security analysis of Flowrider with ProVerif, followed by an
experimental evaluation in Section 7. We review the related work in Section 8 and
conclude in Section 9.

2 Background

We first introduce the main concepts and context considered in the rest of the
paper.
2.1 Deployment in Virtualized Environments

In modern distributed systems, workloads are commonly deployed using a re-
source orchestration system such as Kubernetes [E A15], Micado [KT19] or Ranch-



176 Paper VI: Flowrider: Fast On-Demand Key Provisioning for Cloud Networks

er’. Workloads are deployed based on a resource description expressed in a tem-
plate encoded in a domain-specific language such as TOSCA [Ts 14]. Based on the
deployment template, an orchestrator creates and configures workload environ-
ments (virtual machine images, containers, or microservices), and deploys them
on the underlying hardware. The orchestrator also deploys network components -
such as the network controller and network functions - and implements a network
configuration defining the communication topology between workload contain-
ers. Depending on operating considerations, the orchestrator may be co-located
with the network controller. Orchestrators commonly maintain a control channel
to patch and update the workloads, re-provision cryptographic material, and col-
lect operation logs. Finally, deployments can be dynamically reconfigured depend-
ing on the availability of resources (such as memory, CPU, 10O, and bandwidth).

2.2 SDN and OpenFlow

SDN emerged in response to the increasing complexity of network deployments,
facilitating operation and management of virtualized networks [A GO05]. Its op-
erational advantages lead to wide adoption in enterprise deployments [S J13]. We
next introduce several relevant components of the SDN model.

The data plane contains hardware and software routing components and im-
plements routing policies that satisfy network administrator goals. It is optimized
for forwarding speed but may contain logic for in-network processing [R B16].
The Southbound API is a vendor-agnostic set of instructions implemented by the
data plane, allowing two-way communication between the data and the control
planes. In this paper, we consider the OpenFlow protocol [Opel5]. The control
plane is an abstraction layer transforming high-level network operator goals into
discrete routing policies based on a global network view. Network functions are
used by network administrators to express their network configuration goals using
a set of high-level commands. Examples of such applications are firewalls, intru-
sion detection systems, traffic shapers, etc. In this paper, we use a custom network
function to generate symmetric keys for establishing secure channels between net-
work endpoints.

2.3 Secure Channels

To establish a secure channel, two parties authenticate with each other and de-
rive key material to protect their communication. To this end, two fundamental
approaches exist.

The first approach uses a symmetric pre-shared key held by both parties. Ad-
vantages of this approach include the typically small size of keys, computationally
efficient operations needed to use those keys, and resilience against cryptanalysis
using quantum-based algorithms. On the other hand, pre-shared keys are typically

“https://rancher.com/
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Client(C) |,.. Established (U, | Established | Server (S)
secure channel secure channel

Figure 1: High-level system architecture and components

more difficult to manage, requiring dedicated management procedures to provide,
distribute, and revoke them. Management tasks become especially complicated in
large and dynamic systems.

The second approach is based on public-key cryptography, where each party
acquires the other’s public share of a key pair. In practice, this is a bare raw public
key, or a public certificate including the public key and signed by a trusted certi-
fication authority. This approach is widely used: since only public information
is shared, management tasks are simpler compared to pre-shared keys and can be
automated through dedicated Public Key Infrastructure. On the other hand, this
approach results in much larger key material, heavier computation load when per-
forming cryptographic operations, and higher entropy requirements on the com-
munication parties.

3 Network Scenario

Consider the network scenario illustrated in Figure 1: an orchestration node col-
located on a network controller deploys two endpoints, i.e. C as Client and S
as Server, as well as an OpenFlow Switch on the communication path between
C and S. Also, it configures the network controller to establish and manage the
network flows between the endpoints. For monitoring and patch management
purposes, the orchestrator node establishes at deployment time and maintains a
secure channel with the endpoints. Note that this approach is in-line with the
industry best-practice recommendations [Eurl8].

We assume that the network controller established at deployment time three
secure communication channels: with C, with S, and with the Switch. These can
practically be enforced through (D)TLS sessions. The Switch is able to forward
network traffic between C and S, according to the established flows.

For simplicity and with no loss of generality, we hereafter focus on the scenario
in Figure 1. Nevertheless, the solution presented in this paper seamlessly works
also in more complex and scalable scenarios, where multiple switches, as well as
multiple pairs of client and server peers, are deployed. We assume that the network
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deployment follows best practices in terms of capacity for network flows, flow
establishment rate, and the number of peers engaged in acceptable traffic shapes.
This includes proper allocation of bandwidth resources and a sufficient number of
deployed switches to prevent bottleneck points and congestion.

With reference to Figure 1, C intends to securely communicate with S. As
discussed in Section 2.3, typical approaches to establish a secure communication
channel rely on either: a symmetric key pre-shared between C and S; or asymmet-
ric key material either pre-provisioned at orchestration time, exchanged during the
secure channel establishment, or acquired out-of-band, such as through a custom
PKI infrastructure. We argue that, currently, the above approaches display at least
the following limitations.

First, if Cand S use multiple network flows, communications on each network
flow occur over secure channels created with the same pairwise set of key material.
Thus, compromising the single set of key material leads to endangering the data
security on all network flows between the two endpoints.

Second, asymmetric key material, e.g. raw public keys and public certificates
require computationally- and resource-demanding operations on the endpoints.
This becomes critical in virtualized environments and serverless model with fine-
grained resource billing and limited entropy pools.

Third, while use of symmetric keys is computationally lightweight and faster
than public-key approaches, they are rarely used to establish secure communica-
tion between endpoints due to constraints in key provisioning and management.
Symmetric keys are harder to distribute and revoke, especially in large-scale and
dynamic distributed workload deployments.

Fourth, provisioning of symmetric key material must occur before commu-
nication between the endpoints can start. Moreover, it requires pre-knowledge
of the network topology and of the communication patterns expected from the
two endpoints, further complicating the management of symmetric key material.
We describe an alternative solution allowing to: (i) provide per-flow key mate-
rial, where a single key compromise does not affect the security of other flows; (ii)
distribute symmetric key material in a way that is fast, dynamic, and automatic.
This approach does not require a priori knowledge of the network topology and
communication patterns among the involved endpoints; (iii) facilitate centralized
maintenance of software and hardware for cryptographic operations and key gen-
eration.

Flowrider achieves this by provisioning the Client and Server with a flow-
specific symmetric key used to establish a secure communication channel. Key
provisioning is done az flow installation time, whenever the Client initiates a new
communication session with the Server. This approach, further described in Sec-
tion 4, can be used with various protocol suites for secure channel establishment.
In Section 5, we additionally detail how it can be implemented in the (D) TLS suite
without transcending the isolation between the transport and encryption layers of
a communication session.
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Switch: Network controller: Server/S:
First packet P to S
No matching ﬂowJ ﬁ Request for information‘D

| Create new flow F Provide K

[The network controller generates a symmetric key K]

- Provide K —‘
Install X for flow F Install X for flow F
| Flow setup information D

D Forward packet P = D

Er Secure session establishment >D
-«

Figure 2: Step-by-step general execution

4 Key Provisioning Method

We next describe Flowrider, a novel key distribution method for cloud networks.
In particular, Flowrider enables fast, automatic on-demand provisioning of sym-
metric pre-shared keys to peer endpoints. Pre-shared keys are distributed con-
textually with the establishment of a network flow between two endpoints and is
associated with that respective network flow. Once received, the endpoints can
use the pre-shared key to establish a secure channel for communicating over that
network flow.

Flowrider builds on the following rationale: each time the Client initiates a
session with the Server and triggers the establishment of a new network flow, the
network controller generates a new symmetric pre-shared key associated to that
flow, and provisions it to both endpoints. To convey the concept, in this paper we
assume that the control plane operates in a reactive mode. However, this is not a
hard requirement: packets can be matched on the switch while matching packets
can be mirrored and upstreamed to the controller.

In the network scenario illustrated in Figure 1, the network Controller pro-
vides the Client and the Server with symmetric per-flow keys. Key provisioning
is done over the secure channel between the Controller and the Client (C) and
Server (S), pre-established at deployment time. Key provisioning is contextual to
establishment of a new network flow between C and S, involving the Switch and
the Controller.

We illustrate a run-through of Flowrider in Figure 2, with the following steps:

1. C sends the first packet P addressed to S. The packet reaches the Switch.

2. The Switch does not find in its flow table a flow rule matching with packet
P.
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3. 'The Switch sends a control message to the network controller.
4. The network controller:

(a) Generates a flow rule F to handle traffic between C and S matching
packet P.

(b) Generates a cryptographic symmetric key K associated to E together
with a related key identifier®.

5. The network controller provisions the key K and the related key identifier to
both C and S, through the respective pre-established secure channel. The
network controller may additionally provide C with the IP address of S,
echoing what is specified in the control message from the Switch.

6. Cand S install the received key K and related key identifier. If the message
from the controller includes also an IP address, C verifies that to be the des-
tination address of its original request to S. This prevents possible internal
adversaries from carrying out misbinding attacks based on IP-spoofing.

7. The network controller communicates to the Switch the new flow rule E
8. The Switch forwards the packet P to S, according to the flow rule F.

9. Cand S use the key K to establish a secure session, for example using the
(D)TLS Handshake protocol (see Section 5).

10. Cand S use the flow F to exchange packets over the established secure chan-
nel.

Note that steps 5 and 7 occur concurrently.

4.1 Discussion

In Flowrider, the network controller distributes symmetric keys ad-hoc and on-
demand when installing network flows between C and S. Flowrider generates and
provisions symmetric keys on a per-flow basis. Hence, different flows between two
peer endpoints are related to different and independent security domains. There-
fore, compromising the symmetric key associated with a flow does not endanger
the security of any other flow between the two endpoints. Note that provisioning
symmetric key material is embedded in the OpenFlow control traffic to upstream
matching packets and install network flows.

The symmetric key material provided with Flowrider is an alternative to state-
of-the-art use of certificates and asymmetric cryptography. Flowrider reduces com-
putational efforts on network endpoints, and hence lowers economic costs. It also

?As a possible optimization, the network controller may have generated in advance a number of
symmetric keys, which would thus be immediately available to distribute.
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reduces entropy requirements for the network endpoints, which is particularly im-
portant in virtualized networks.

Section 5 describes how Flowrider can be embodied in versions 1.2 and 1.3
of the security protocol suites TLS and DTLS, without transcending the isolation
between the transport layer and (D)TLS. Flowrider is easily and effectively de-
ployable in existing network scenarios that use (D)TLS. Further optimizations are
possible, such as indirect provisioning of pre-shared keys to the Server endpoint,
through local key derivation on the Server. Section 5.4 describes this optimization
with (D)TLS.

The process in Figure 2 refers to a common execution pattern, i.e. where the
establishment of the network flow between C and § is triggered by C sending a
first packet P. Flowrider supports alternative execution patterns, where the SDN
deployment is not configured in reactive mode and establishing the network flow
- and the consequent key provisioning to C and S - is triggered by the Switch
or the network controller, forcing the installation or change of a flow rule. This
can happen when enforcing management network policies at deployment time, or
when dynamically addressing changes in the network topology and traffic load.

In case of a compromise, the Controller will revoke every flow key issued to
a pair of peers. Determining if a peer was compromised can be achieved through
intrusion- and anomaly-detection, which are out of the scope of this work. When
the Controller determines that one peer P was compromised, the Controller prom-
ptly revokes each per-flow key K issued to P which is not yet expired, and notifies
any other peer than P that has been provided with K, over the respective secure
control channel. This requires the Controller to store at least the key identifier of
each non-expired per-flow key.

5 Compatibility with (D)TLS

While Flowrider can be used with various common transport security protocols,
we next discuss compatibility with the TLS and DTLS security suites. In Sections
5.2 and 5.3, we describe the embodiment in version 1.2 and 1.3 of (D)TLS, al-
lowing Flowrider to be immediately deployable without breaking existing security
standards.

5.1 Transport Layer Security

Most of the network traffic exchanged today, especially on the Internet, is pro-
tected at the transport layer. That is, two communicating peers establish a secure
channel, namely session, and use it to secure the entire application message. The
protected message is then handed over to the transport layer, e.g. to the TCP
or UDP protocol, for delivery to the other peer. Such secure communication
is typically achieved using the protocol suites Transport Layer Security (TLS) and
Datagram Transport Layer Security (DTLS).
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The TLS 1.2 protocol suite [DRO8b] secures the exchange of application data
over TCP among two peers, namely Client and Server, by preventing the eaves-
dropping, tampering, and forgery of exchanged messages. The two main protocols
composing the TLS suite are the Handshake protocol and the encapsulation Record
protocol. The Client initiates the Handshake execution with the Server, by send-
ing a ClientHello Handshake message. Following the Handshake protocol, the two
peers agree on a number of security parameters and establish key material to later
secure their communications.

‘The Handshake execution is fundamentally based on two possible approaches,
depending on the type of security material pre-installed on the two peers and used
during the secure session establishment. In the first approach, the two peers own
one or more symmetric pre-shared keys [ET05b], and the Client can suggest to the
Server which key it intends to use during the Handshake. In the second approach,
the peers rely on asymmetric key pairs, and public keys are exchanged either as con-
veyed in public certificates [Coo+08] or as raw public keys [Wou+14] generated
by manufacturers and installed on nodes before deployment. A node must use
out-of-band means for validating raw public keys received from other peers, and
usually retains a list of trusted peer identities. Upon successful Handshake com-
pletion, peers can exchange application data messages over the established secure
session, using the Record protocol.

The DTLS 1.2 protocol suite [RM12] provides secure communication of ap-
plication data over unreliable datagram protocols such as UDP. DTLS is based on
TLS, provides equivalent security guarantees, and relies on analogous Handshake
and Record protocols. The DTLS protocol suite has several differences from TLS,
to deal with the unreliable underlying datagram transport protocols it runs on. In
particular, it does not support stream ciphers, admits preserving secure sessions
upon silently discarding invalid incoming messages, and includes an explicit fresh
sequence number in every protected message. This allows to correctly distinguish
and process incoming DTLS messages, also in case of out-of-sequence delivery
due to the unreliable transport service.

Finally, DTLS introduces an optional additional exchange of a stateless Cookie
between the Client and Server, as a first step of the Handshake. Upon receiving
a first ClientHello message, the Server can reply with a HelloVerifyRequest mes-
sage, including a locally generated value as Cookie. The Client must then reply by
sending a second ClientHello, which includes the same Cookie. The Handshake
further continues only if the Server successfully verifies the Cookie received in this
second ClientHello. This forces the Client to prove its alleged source IP address,
and, possibly in combination with additional means such as [M T17], compli-
cates possible Denial of Service attacks against the Server performed by an active
adversary able to spoof IP addresses.

TLS 1.3 was released to improve both performance and security assurances
[Eri18]. While fundamentally providing the same security guarantees as TLS 1.2,
TLS 1.3: i) reduces the handshake by one round trip, while having more handshake
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messages also encrypted; ii) provides new functions for key material derivation,
with improved key separation and facilitating cryptographic analysis; iii) always
provides perfect forward secrecy if peers run the handshake through public-key
based key establishment; iv) supports the latest key establishment, cipher, and
signature algorithms, deprecating insecure or obsolete ones; and v) enables the
exchange of early secure data at the beginning of the handshake, at the cost of
sacrificing a subset of security properties for such data. While TLS 1.3 has been
increasingly adopted since its release, TLS 1.2 is expected to continue being used
for a long time, as (a dominant) protocol suite for secure communication.

5.2 Flowrider with (D)TLS 1.2

Assume the Client and Server intend to securely communicate using the TLS 1.2
[DRO8b] or DTLS 1.2 [RM12] protocol suite. With reference to the steps in Sec-
tion 4 shown in Figure 2, Flowrider can be embedded in the (D)TLS Handshake
protocol as follows.

At Step (1), the first packet P from C addressed to S is either a TCP SYN (for
a TLS handshake) or a ClientHello Handshake message (for a DTLS handshake).
In either case, C performs the (D)TLS Handshake with S in pre-shared key mode
[ETO5b].

Later on during the Handshake execution, i.e. at Step (9) of the Flowrider
execution (see Section 4), C points S to key K to be used as a pre-shared key for
mutual authentication and as input for deriving the (D)TLS session key mate-
rial. C specifies the key identifier of the key K in the PSK identity field of the
ClientKeyExchange Handshake message sent to S.

5.3 Flowrider with (D)TLS 1.3

Assume that the Client and Server intend to securely communicate using the TLS
1.3 [Eril8] or DTLS 1.3 [E R21] protocol suite. Flowrider can be embedded in the
(D)TLS Handshake protocol as follows (see Section 4, Figure 2).

At Step (1), the first packet P from C addressed to S is either a TCP SYN (for
a TLS handshake) or a ClientHello Handshake message (for a DTLS handshake).
In either case, C performs the (D)TLS Handshake with S in pre-shared key mode.
That is, as per (D)TLS 1.3 [E R21][Eril8], C has to include in the ClientHello
Handshake message:

1. A psk_key_exchange_modes ClientHello extension, which specifies the psk_ke
or psk_dhe_ke key exchange mode.

2. A pre_shared_key ClientHello extension, present as the last extension and
including a collection of offered pre-shared keys. This collection is struc-
tured as follows: (1) a list of key identifiers; (2) a list of key binders, one for
each pre-shared key and in the same order as the key identifier list. Each key
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binder is an HMAC computed with a binder key derived from the corre-
sponding pre-shared key. The key binder is computed over the ClientHello
message up to and including the key identifier list of the pre_shared_key
ClientHello extension.

S expects a valid hint of the pre-shared key already at the first (D)TLS Clien-
tHello message. However, if DTLS is used, C does not have the key K and its
key identifier from the network controller already at Step (1) of the Flowrider exe-
cution, where the first packet P addressed to S is already the ClientHello message.
Thus, when starting a new communication flow in the DTLS case, the Client can-
not produce a ClientHello message, as the per-flow symmetric key is not available
yet. Intuitively, this is overcome by the network controller finalizing the original
and incomplete ClientHello message, before the Switch eventually forwards it to
the Server as per the newly established traffic flow. In particular, C stores a dummy
pre-shared symmetric key and a related key identifier, which is not associated with
any corresponding server. Then, the following adaptation of the Flowrider execu-
tion is performed, as also shown in Figure 3.

ClientHello to S with dummy
pre_shared_key extension

>
r‘

=
No matching HOWJ Request for information

D Forward ClientHello =D

Create new flow F

[The network controller generates a symmetric key:K and updates the pre_shared_key extension in the ClientHello message]

Provide K »
D< Provide X' F

Install K for flow F Install K for flow F
Flow setup information

D‘ Update ClientHello

H Secure DTLS session establishment D
>

Forward the up@ated ClientHello

Figure 3: Step-by-step execution for implementing Flowrider in DTLS 1.3

1. C sends the ClientHello message in the first packet P addressed to S. In
particular, the pre_shared_key ClientHello extension offers only the dummy
pre-shared key used by C for this purpose. Then, the packet reaches the
Switch.
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10.

5.4

. The Switch fails to find in its flow table a flow rule matching with packet 2.

The Switch sends a control message to the network controller, asking for
information about setting up a new flow between C and S and also forwards
the entire packet B, including ClientHello, to the network controller.

The network controller:

(a) generates a new flow rule F to handle traffic between C and S akin to
packet P;

(b) generates a cryptographic symmetric key K associated to flow E to-
gether with a related key identifier;

(c) builds a new pre_shared_key ClientHello extension for the ClientHello
message in the packet P. The new extension offers only the key K asso-
ciated to flow F, and includes one consistently recomputed key binder.
The recomputed extension replaces the one originally included in the
ClientHello message in the packet P.

. The network controller provisions the key K and the related key identifier

to both C and S, through the respective pre-established secure channel.
Both C and S install key K and related key identifier.

The network controller replies to the Switch with:

(a) information on handling packets in the new flow F;

(b) packet P including the updated ClientHello message.

. The Switch forwards the packet P to S, as per the newly installed flow F.

C and S establish a secure session/channel, by using the key K, as per the
DTLS 1.3 Handhshake protocol.

C and S use the flow F to exchange packets over the established DTLS 1.3

channel.

Optimization through key derivation

As an optimization, the network controller may not explicitly provide S with the
key K. Instead, S can derive the key K from its key identifier, provided by C as a
hint during the (D)TLS Handshake, allowing to further reduce the communica-
tion overhead. The optimization requires that:

* 'The network controller and S share a pairwise symmetric key-derivation key

K*.
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* The network controller maintains a counter Ng, which is uniquely associ-
ated with S and incremented upon generating a new per-flow key K asso-
ciated to S.

* The network controller generates the key K by means of a secure key deriva-
tion function PRF(-) that takes as input the key-derivation key K* and a
nonce N set as the current value of the counter Ng. PRF'(+) can be based
on a HMAC function [KBC97b] and rely on the same data expansion
scheme described in [DRO8b].

* Nonce NN used to generate the key K is also used as the key identifier of
that key.

In (D)TLS 1.2, the Client C simply specifies the nonce NV as a key identifier for
the key K in the PSK identity field of the ClientKeyExchange Handshake message.
Upon receiving the ClientKeyExchange Handshake message, S derives the key K
by means of PRF(-), using the retrieved nonce N and the key-derivation key
K*. This approach was discussed in [G S15].

In (D)TLS 1.3, the nonce N is used as the key identifier for the key K in
the pre_shared_key ClientHello extension for the ClientHello message. In TLS 1.3,
this is directly specified by C, after having received the key K from the network
controller. In DTLS 1.3, this is specified by the network controller, when building
the new pre_shared_key ClientHello extension for the ClientHello message in the
packet P (see step (4¢) in Section 5.3). In either case, upon receiving the Clien-
tHello message, S derives the key K by means of PRF'(-), using the retrieved
nonce N and the key-derivation key K*.

5.5 On Preventing the Selfie Attack
Flowrider prevents the reflection attack (“Selfie” [DG19]) against (D)TLS, which

tricks a session peer into processing messages generated by itself, assuming they
come from the other peer. This exploits the use of the same pre-shared key in two
secure sessions, as (D)TLS client and (D)TLS server.

In an SDN deployment, a peer A (B) acting as (D) TLS client (server) results in
one flow, as an exact combination of source address/port and destination address/-
port. Instead, peer A (B) acting as (D) TLS server (client) results in a different flow,
with a flipped combination of source and destination address/port.

In Flowrider, the SDN Controller generates and provides two different pre-
shared keys to peers A and B, one for each of the flows. A and B never use the same
pre-shared key for both combinations of roles, as they always result in different
flows, and distributed pre-shared keys are per-flow. Thus, a given peer gets one
different pre-shared key for each role that such peer has with the other peer sharing
the same key, and the Selfie attack is prevented by construction.
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6 Formal Security Verification

We verified the security properties of Flowrider, using ProVerif [B B20]. ProVerif
is based on the applied pi calculus modeling language and can represent processes,
their interactions, and available security channels. ProVerif considers an active
adversary (Dolev-Yao model [D D83]) that cannot decrypt encrypted messages
without accessing the secret keys.

6.1 ProVerif Modeling

To model Flowrider with ProVerif, we started by declaring types, cryptographic
functions, security assumptions, queries, and processes. Throughout the model,
we maintain the assumption of a pre-established secure channel between the net-
work controller and the endpoints (Client and Server), consistently with the net-
work scenario presented in Section 3). The channels were securely established
using key material assumed to be inaccessible and infeasible to derive for the ad-
versary. The Client, the Server, the Switch, and the network controller are each
modeled as independent, top-level processes.

We verified* the following security properties of Flowrider: i) the secure provi-
sioning and resulting secrecy of key K i.e. the key associated with the flow between
the Client and Server (see Section 6.2); and ii) the mutual secure possession of key
K by Client, Server, and controller (see Section 6.3). Note that we do not verify
security properties that are assumed to be already satisfied, such as the security
of the (pre-)established secure sessions and the security of session establishments

themselves. In particular, the security of the TLS session establishment has been
formally verified in [C C17].

6.2 Key secrecy

In the protocol model we assume that, upon receiving from the controller the
key K associated with the flow, C and S use it to derive the key material for the
secure session. While this consists of executing a session establishment protocol,
the model assumes thata cryptographically secure Key Derivation Function (KDF)
is used to derive a single session key K g as key material. The KDF takes as input
the flow key K and context information related to the secure session. Once the
Client-Server session is established, the Client sends a message M to the Server,
encrypted using the session key Kg. We verified that the adversary cannot access
the secret message, with the following query:

query(attacker(M)) 1)

4ProVerif scripts available at https://anonymous.4open.science/r/
8e9da3de-6ccd-4f49-b925-389fbcc9bcab/
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The model successfully verified the secrecy of message M. Since K was used as
input to securely derive the session key Kg, in turn used to protect the message
M, we conclude that the secrecy of key K is also preserved.

6.3 Mutual secure key possession

In Flowrider, only the Client and Server with access to the flow key K can suc-
cessfully establish a secure session with each other in a symmetric mode, over that
flow. We verify that the parties that possess K can establish a secure session over
the flow associated with K.

To this end, we verified that, if the Server receives an encrypted message M
from the Client over a flow, then i) the Client has previously established a secure
session with the Server over that flow; and ii) the Client has sent the message M
to the Server, encrypted with the session key Kg derived from the flow key K
associated to that flow.

ProVerif allows specifying send and receive operations, as well as to initiate and
terminate communications between the Client and Server, by means of events such
as Initclient(Kg), Termserver(Kg), Initserver(K g,Ack) and Termclient(K g,Ack),
where Kg is the session key Kg derived from the flow key K. The session estab-
lishment is successfully completed by both parties when each of them received an
acknowledgment from the other party, over that session. The formalized queries
for the above events are:

inj — event(termclient( Ky, Ack))

2
==> inj — event(initserver(Ks, Ack)) @)

inj — event(termserver(Ky))

==> inj — event(initclient(Kj)) ©

Queries 2 and 3 verify that for all Initserver(/g,Ack) and Initclient(Kg),
events Termclient(K g,Ack) and Termserver(K g) were previously executed. ProVe-
rif successfully verified both correspondence properties in queries 2 and 3. This
implies that only the Client possessing the flow key K can connect to the Server
over that flow, protecting messages with the session key Kg derived from K. This
also implies that the Server accepts communications over that flow only from the
Client corresponding to the flow key X, i.e. exchanging messages encrypted with
the session key Kg derived from K.

The injective correspondence in query 2 and 3 verifies that the relation between
correspondence events is one to one, implying that the Client with access to flow
key K can successfully open a dedicated session with the Server. Injectivity holds
and ProVerif verified the injective correspondence since the Server should complete
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the session establishment using the flow key only once for the session initiated by

the Client.

6.4 Verifying the optimization through key derivation

Flowrider can be further optimized for certain (D) TLS protocol use cases (see Sec-
tion 5.4). In this optimization, the controller does not send the flow key X to the
Server. Instead, the Server locally derives the flow key K using a nonce generated
by the controller and a long-term symmetric key shared with the controller. The
nonce is used as a key identifier for the flow key K and is specified in the session
establishment message addressed to the Server. We verified the optimized version

of Flowrider and included the nonce in the first message sent out by the Client to
the Switch.

event(termclient( Ky, Ack))

4
==> event(initserver(Ks, Ack)) )

We verified the security properties discussed in Sections 6.2 and 6.3. In this
case, we verified only the correspondence, since we considered also multiple flows
between the Client and the Server. For non-injective correspondence, the one to
one relation between events is not required, but only the event after the arrow is
executed prior to the event before the arrow. The formalized queries are:

event(termserver(Ky)) ==> event(initclient(Ky)) (5)

ProVerif verified the security properties of the optimized Flowrider version.

7 Experimental Evaluation

In order to understand the practical implementation aspects, trade-offs and perfor-
mance of Flowrider, we implemented5 it in a distributed virtualized environment.
We ran the experiments on Google Compute Platform [S P15] in a g1-small vir-
tual machine (VM) instance (1 vCPU, 1.7 GB memory).

The test bed is distributed between four Docker containers with the follow-
ing roles (see Figure 4): (a) Client, (b) Server, (c) Controller, (d) Open vSwitch
(OvS). The endpoints (Client and Server) use TLS 1.3 [Eril8] implemented with
the GnuTLS library [N M15], version 3.6.5. Two distinct but closely related Client
and Server implementations were created for using symmetric keys and certificates
respectively. The controller container runs Ryu 3.12 and a custom Python applica-
tion, that defines packets to be matched and subsequently generates and delivers
keys to the endpoints. The OvS container runs an instance of Open vSwitch that

SImplementation code available at https://anonymous.4open.science/r/
8e9da3de-6ccd-4f49-b925-389fbccObcab/
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Figure 4: System test bed

routes packets between endpoints and forwards predefined packet types to the
controller.

We measured the performance of establishing a TLS session in two scenarios.
We ran the TLS handshake in asymmetric mode using PKI certificates (vanilla
scenario) and in pre-shared key (PSK) mode using symmetric keys (Flowrider
scenario) consistently with the Flowrider embodiment for TLS 1.3 (see Section
5.3). The Client established a TLS session with the Server in the considered mode
and terminated the session immediately afterward. We ran the experiment 10,000
times. In both cases, the OvS flow table did not contain any flows between the
Client and the Server; as a result, the first Client message (TCP SYN) was for-
warded to the controller in each scenario run.

We illustrate the results of our experimental evaluation in Figure 5 and Table
1. Figure 5 shows that the ‘PSK’ scenario (representing Flowrider) performs better
in terms of time spent on the task and CPU utilization. Time elapsed is longer for
the ‘PSK’ scenario, partly due to the overhead introduced by the communication
between the switch and the controller. However, the overhead is mostly offset by
distributing the pre-shared keys after the first TCP packet, before the TLS session

negotiation starts.

B Psk
W PKI

msec

percentage
seconds

0.1

0 Task Clock

CPU Utilized

Time Elapsed

Figure 5: Task Clock, CPU utilisation and Time elapsed for PSK/PKI scenarios
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Table 1: Overview of the performance measurements data set

Type PSK PKI
Task clock, msec | CPU utilized | Time elapsed, msec | Task clock, msec | CPU utilized | Time elapsed, msec

Minimum 3.17 0.034 0.087 13.71 0.183 0.056
Maximum 4.43 0.049 0.097 16.06 0.269 0.080

Mean 3.37 0.037 0.089 14.31 0.24 0.058
Median 3.34 0.037 0.089 14.23 0.24 0.057

Stddev 0.096 0.001 0.0006 0.32 0.005 0.001
Variance 0.00923 0.000001 0.0000004 0.1081 0.00002 0.000002

Table 1 presents a more detailed view. The mean task clock is lower in the
Flowrider (‘PSK’) scenario (3.37 msec compared to 14.31 msec). The CPU uti-
lization is significantly lower in the Flowrider (‘PSK’) scenario, with a mean of
0.037 versus 0.24 CPU. The time elapsed is about 30% higher in the case of the
Flowrider (‘PSK’) scenario. However, considering that this delay occurs once at
setup time and is not recurrent, we consider that this is an acceptable overhead.

The Flowrider scenario highlights an order of magnitude lower CPU con-
sumption, due to the use of symmetric key material when establishing the TLS
session. Note that the overall time to establish the secure channel does not change
significantly. In fact, the very first step of the TCP session establishment triggers
the distribution of the symmetric key, which is used to establish the TLS session
in PSK mode.

8 Related Work

Protocols such as Kerberos [Neu+05] are widely used for symmetric key distribu-
tion. This involves a Key Distribution Center - a Trusted Third Party generating
and distributing ephemeral keys to clients, without disclosing the secret shared key
of the server. Internet applications often rely on an Authorization Server providing
trusted assertions to servers about requesting clients [Harl2].

Flowrider key distribution can be viewed as a three-party setting, with the
switch acting as a relay and middleman. Three-party authenticated key exchange
has received much attention. Its security was formalized by Bellare and Rogaway
in [M B95] and much research has focused on the password-based variant, intro-
duced in [S B92] and given for the three-party case in [M S95]. In the three-party
password-based authenticated key exchange (3PAKE), low entropy secrets shared
with the server are used to negotiate a session key between two parties. This proto-
col in [M §95] was shown to have weaknesses [Y D95; CL 00] and many variants
have been proposed since then, some using a server public key [HT 03; TF 09],
and some that do not [CL 01; TY 11]. More recent work on PAKE protocols in-
clude making them post-quantum secure, both in the two-party setting [J D17]
and for three parties [C L19]. While authenticated key exchange protocols assume
an unprotected channel and pre-shared keys, Flowrider uses TLS as the under-
lying protocol for distributing the key from the cluster manager to the involved
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parties. This can be accomplished either through symmetric pre-shared keys or
public keys and is not predetermined by the Flowrider protocol. Flowrider adapts
the problem of three-party key distribution to the SDN setting. The cluster man-
ager is a natural part of the network, and not an otherwise added trusted third
party (Key Distribution Center) as in the case with e.g, Kerberos. Since TLS is
already used e.g., for deploying jobs to the endpoints and configuring the switch,
there is no need to implement additional key exchange protocols. Moreover, new
cryptographic primitives incorporated into TLS can be used by Flowrider to take
advantage of improved ECC [A L16] and post-quantum resistant algorithms [E
C19].

Key distribution for SDN deployments was explored in several contexts. Li
et al. proposed a symmetric key generation and distribution for content deliv-
ery network interconnections using SDN and application-layer traffic optimiza-
tion [SB09]. The mechanism relies on key generation on the endpoints and a
central entity for matching and distributing key pairs. Similar to Flowrider, this
relies on a central authority. However, it neither reduces the computational load on
the endpoints nor improves the performance of the key exchange. Cloud frame-
works commonly rely on a central authority to provision authentication material
to virtual instances (either virtual machines or containers) before deployment [D
S14; S M15]. Provisioning authentication credentials before instantiation reduces
the computational load on the endpoints and reduces the entropy requirements.
However, the use of public keys certificates for key establishment requires more
round trips compared to protocols using symmetric keys.

Provisioning cryptographic material to network endpoints by storing it in
trusted execution environments (TEEs) was explored in both academia and in-
dustry [K S16].While this approach leverages hardware security guarantees to store
the provisioned cryptographic material, it also introduces additional overhead on
accessing the cryptographic material. This includes both provisioning the mate-
rial to TEEs and retrieving it from TEEs. Finally, other less common approaches
rely on information that may be public or not unique, such as the serial number
of the device [E M13], or require manual steps that do not scale in production
settings [Opel9].

Flowrider builds on earlier work and leverages the OpenFlow protocol to en-
able symmetric key provisioning. In contrast to existing approaches, Flowrider
drastically reduces the computational requirements for supporting end-to-end en-
cryption; it reduces the number of steps for providing symmetric key material to
two endpoints and hence for them to set up secure communication; finally, it al-
lows granular cryptographic isolation of network flows. While Flowrider does not
require TEE support on network endpoints, it is complementary to approaches
provisioning credentials to TEEs.
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9 Conclusion

We have presented Flowrider, a novel approach to distribute cryptographic sym-
metric keys to endpoints in software networks, contextually with network flow
establishment. Flowrider efficiently provisions symmetric key material and signif-
icantly reduces the number of CPU cycles needed to establish a secure communica-
tion channel between two endpoints. Flowrider leverages the logical centralization
of software-defined networks to enable eficient use of symmetric keys.

Furthermore, Flowrider makes key distribution agnostic of the network topol-
ogy and communication patterns in the system, of which it does not require any
early knowledge. Finally, Flowrider is compatible with the (D)TLS 1.2 and 1.3
security protocol suites, with only minor modifications to endpoint implementa-
tions. Our experimental performance evaluation shows that Flowrider requires up
to an order of magnitude less CPU for a TLS session establishment. Future work
will focus on the embodiment and evaluation of Flowrider in alternative protocols
for secure channel establishment.
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You may use various smart devices in your home, such as light bulbs, cameras,
etc. These devices are usually connected to the Internet; this makes them acces-
sible anywhere and at any time. You can generally connect to smart devices, for
example, through your smartphones, and control them remotely. However, such
devices might have security flaws (known as vulnerabilities) that can cause attack-
ers to attack and control them remotely. This situation is undesirable since you
do not want an attacker to access your devices or even use them to perform large-
scale attacks. Whenever new security vulnerabilities are discovered, the device
manufacturers identify and evaluate vulnerabilities; then, based on how critical
the vulnerabilities are, they release new updates. Manufacturers are required to
transfer and install these updates on the devices securely. However, performing se-
cure updates over the air is a challenging task since such smart devices have limited
resources such as memory, battery, etc. Enabling secure updates in smart devices
over the air is the primary aspect of the content of this thesis.

The secure protocols used by powerful computers around the world as a com-
mon language to talk to each other are unfit to address the limitations of smart
devices. Hence, many other secure and lightweight protocols were designed for
such devices. Manufacturers choose the best-suited protocol based on their de-
vices applications and requirements. Sometimes some devices need to talk to
other devices or systems that use other protocols. There are tools such as proto-
col translators that can enable such communications. Enabling secure protocol
translation is another aspect of this thesis.

The updates are usually targeting a large number of devices. Therefore, the
devices can be grouped so that all group members can be updated at once instead
of updating them one by one. In cither group or one-to-one communication, the
communication is secured through the use of secret keys. Secret keys are important
in any secure communication, including applying updates. These secret keys must
be distributed among the devices before the communication starts. Enabling secret
key distribution for group or one-to-one communication is the final aspect covered
in this thesis.
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What we did?

Identifying and analyzing vulnerabilities. We designed a tool that can help man-
ufacturers to identify, evaluate, and prioritize vulnerabilities. This tool can benefit
manufacturers in the maintenance procedure of their products. We showed that
our tool can be important to increase devices” security using the results obtained
from participating manufacturers in our evaluation.

Analyzing existing common protocols for smart devices. We analyzed and com-
pared two common protocols (CoAP and MQTT). We measured the energy con-
sumption of a sample device in performing a secure update procedure over the air.
Our evaluation indicated that each protocol has different merits depending on the
specific application or use case.

Designing a new protocol for smart devices’ updates. We designed a new secure
update protocol for smart devices. We showed that the protocol consumes rea-
sonable energy during the update procedure. It is also resistant to attacks such
as attacks trying to consume the resources of smart devices. Therefore, the new
protocol is an attractive choice for large-scale updates of devices with limited re-
sources.

Designing a new architecture for protocol translation. We designed a protocol
translator architecture that can securely convert one protocol to another. This
architecture can be used by manufacturers designing products that use different
protocols, and still, the devices are able to talk to each other. Using our architec-
ture, the translation is done in an environment isolated from potential attackers.
We showed that using such an isolated environment slightly increases the trans-
mission time of the traffic. However, for critical security applications, this increase
is acceptable given the increased security level which was achieved.

Designing new key establishment methods for smart devices. We designed one-
to-one and group key establishment methods to share secret keys among smart
devices. Manufacturers can use any of both methods based on their requirements
and specifications. Our results indicated that both schemes are efficient and can
be used in practice.
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