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Abstract

Self-Adaptive Systems (SAS) and Cyber-Physical Systems (CPS) have received
significant attention in recent computer engineering research. This is due to their
ability to improve the level of autonomy of engineering artefacts. In both cases, this
autonomy increase is achieved through feedback. Feedback is the iteration of sens-
ing and actuation to respectively acquire knowledge about the current state of said
artefacts and steer them toward a desired state or behaviour. In this thesis we dis-
cuss the challenges that the introduction of feedback poses on the verification and
validation process for such systems, more specifically, on their testing. We highlight
three types of new challenges with respect to traditional software testing: alteration
of testing input and output definition, and intertwining of components with different
nature. Said challenges affect the ways we can define different elements of the test-
ing process: coverage criteria, testing set-ups, test-case generation strategies, and
oracles in the testing process. This thesis consists of a collection of three papers and
contributes to the definition of each of the mentioned testing elements. In terms of
coverage criteria for SAS, Paper I proposes the casting of the testing problem, to
a semi-infinite optimisation problem. This allows to leverage the Scenario Theory
from the field of robust control, and provide a worst-case probabilistic bound on a
given performance metric of the system under test. For what concerns the definition
of testing set-ups for control-based CPS, Paper II investigates the implications of
the use of different abstractions (i.e., the use of implemented or emulated compo-
nents) on the significance of the testing. The paper provides evidence that confutes
the common assumption present in previous literature on the existence of a hierar-
chy among commonly used testing set-ups. Finally, regarding the test-case gener-
ation and oracle definition, Paper III defines the problem of stress testing control-
based CPS software. We contribute to the generation and identification of stress test
cases for such software by proposing a novel test case parametrisation. Leveraging
the proposed parametrisation we define metamorphic relations on the expected be-
haviour of the system under test. We use said relations for the development of stress
testing approach and sanity checks on the testing results.

5





Acknowledgements

First and foremost, I’ll never be able to thank enough my supervisor Martina. You
have been a great and reliable guide for me through this journey under every aspect,
from the professional to the personal ones. I’m truly grateful for everything you
have done for me.

Secondly, I’d like to thank everyone at the Automatic Control department for
making my time there such a pleasant experience. Eva, Mika, Cecilia, and Monika
for running the department in such a smooth way. A special thank is for Eva for
always sharing a smile and caring words. Thank you to all the colleagues and friends
with whom I shared the office with and that made heading to work something to look
forward to in the morning. A special mention goes to Richard for having always
interesting nuances of mathematics to share and for the support with the provocative
jokes with my supervisor, to Marcus for the crazy trips, delicious dinners, and deep
conversations, to Ylva for being always positive and truly caring, and to Nils for all
the work together and the valuable friendship. I cannot mention everyone here but I
am grateful to all of the members of the department that I have had the luck to share
my time there with, inside and outside of the university buildings.

I’m thankful to all the people I have had the pleasure to share the challenge of
writing a paper. A special thank goes to Anton for being a great co-supervisor with
always a positive attitude, interesting intuitions and insights, and despite putting
banana on pizza. I’m grateful to my current and future collaborators from University
of Luxembourg: Seung, Domenico and Lionel. Thank you for all that you have
taught me. I am looking forward to continue the work we started together.

I cannot miss mentioning the friends outside of the office that I have shared the
PhD journey with. Special mention goes to Ana, you have been great support in my
first months in Lund helping me through my first impact with the PhD student life
and with Sweden. To David, thank you for all the office hours shared at home during
covid times, as well as the discussions about science, philosophy and politics. To
Gabrielle, my both cycling and PhD friend, thanks for making many bike rides also
an opportunity to share the ups and downs of this experience.

Last but not least, I am deeply grateful to my family that, despite the distance,
has been of great support throughout these five years. Especially, to Dino, for always

7



having clear and accurate views on the workings of the academic world, and to
Daniele, for sharing with me this experience in distance.

8



Contents

1. Introduction 11
1.1 Fundamentals of CPS, SAS and their Testing . . . . . . . . . . . 12
1.2 Challenges in Testing Feedback-Based Systems . . . . . . . . . 14

2. Background 18
2.1 Software Testing Background . . . . . . . . . . . . . . . . . . . 20
2.2 Control Engineering Background . . . . . . . . . . . . . . . . . 27

3. Control Perspective on the Testing of Systems with Feedback 34
3.1 Coverage Criterion (Paper I) . . . . . . . . . . . . . . . . . . . . 35
3.2 Testing Set-Up (Paper II) . . . . . . . . . . . . . . . . . . . . . 36
3.3 Test Case Generation and Oracle (Paper III) . . . . . . . . . . . 38
3.4 Other Publications . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography 40
Paper I. Testing Self-Adaptive Software with Probabilistic

Guarantees 53
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . 58
3 Background and Related work . . . . . . . . . . . . . . . . . . . 60
4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6 Limitations and Validity Threats . . . . . . . . . . . . . . . . . 88
7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Paper II. Testing Abstractions for Cyber-Physical Control Systems 101
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
2 Control Systems Development Background and Problem Statement 104
3 Testing Abstractions . . . . . . . . . . . . . . . . . . . . . . . . 108
4 Experimental case study . . . . . . . . . . . . . . . . . . . . . . 113
5 Discussion and limitations . . . . . . . . . . . . . . . . . . . . . 127
6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9



Contents

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Paper III. Testing of Control-Based Cyber-Physical Systems 143
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
2 Context and Background . . . . . . . . . . . . . . . . . . . . . 147
3 Control Engineering Perspective on CPS Stress Testing . . . . . 155
4 Control Loop Input Space Characterisation . . . . . . . . . . . . 160
5 Testing Approach . . . . . . . . . . . . . . . . . . . . . . . . . 171
6 Empirical Evaluation . . . . . . . . . . . . . . . . . . . . . . . 181
7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

10



1
Introduction

In recent decades, Cyber-Physical Systems (CPS) and Self-Adaptive Systems (SAS)
have been two central topics in computer engineering research. CPS are systems that
pair, through sensors and actuators, a physical and a computing component [Lee,
2015]. The coupling of the two components makes their analysis and design depen-
dent on one another. Prominent examples of CPS are autonomous cars and drones,
where the cyber component enables the autonomous motion of the system in an
uncertain physical environment. SAS are software systems that monitor the chang-
ing environment in which they operate and modify their runtime behaviour accord-
ingly [Diniz and Rinard, 1997]. This allows them to achieve system objectives inde-
pendently of the operating conditions. Examples of such systems are scalable cloud
services that adapt to the time-varying computational demand, or smart camera net-
works that change their behaviour depending on the video content.

At the root of the success of both SAS and CPS there is the ability to enhance
and create systems that operate without human intervention, while optimising their
resource consumption and improving their performance. An autonomous car should
drive from the starting point to a desired location, by independently identifying the
optimal route and adapting it to the changing surroundings, like roadworks and ac-
cidents. The car should also optimise its fuel consumption, and minimise the risk of
accidents, especially when compared to human-driven cars. An autonomous cloud
service should allocate or release virtual machines without human intervention, ac-
cording to the requests received by its users. It should also minimise the number of
running machines so that energy and cooling needs of the servers are minimised.

Systems like the ones mentioned above are more and more present in our daily
life and responsible for increasingly critical tasks [Wu et al., 2017]. Therefore, as-
sessing their correct functioning is of prime importance. This thesis contributes to
the assessment of the behaviour of CPS and SAS, and in particular to the method-
ologies available for their testing. This chapter presents the fundamental concepts
and challenges needed to frame the contribution of this work. To cast the explained
concepts into a more practical and relevant use case, we use an autonomous car, an
application that appears in both CPS literature [Kim et al., 2013] and SAS litera-
ture [Weyns, 2017].
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Chapter 1. Introduction
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Figure 1.1 Testing of a system with feedback. The figure highlights that the overlap
between testing inputs and outputs and software inputs and outputs characteristic of
traditional software testing is no longer valid.
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Test
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Figure 1.2 Traditional view of software testing where the testing inputs and the
outputs are also the inputs and outputs of the software under test.

1.1 Fundamentals of CPS, SAS and their Testing

At the core of both CPS and SAS there is the concept of feedback. Feedback is a
loop of cause-effect phenomena in which a managing component iteratively senses
and actuates a managed component (as shown inside the dashed box in Figure 1.1).
We say that the managing component, by measuring and actuating the managed
component, closes the feedback loop around it. For example, an autonomous car
detects the presence and movement of obstacles and objects around itself, analyses
the potential risk of collision and plans its own trajectory accordingly. A change in
the planned trajectory will affect the relative position and motion of obstacles and
objects, hence closing the cause-effect loop. Being such a general concept, feedback
has found application in different fields, ranging from the ones addressed in this
thesis, the Monitor-Analyse-Plan-Execute loop for SAS and the sense-actuate loop
in CPS, to others like the Observe-Orient-Decide-Act, loop for strategic decision
making [Boyd, 1995], and the carbon cycle in climate modelling [Hansen et al.,
1984].

In the context of feedback-based systems, control theory, also known as
feedback-systems theory [Åstrom and Murray, 2008], offers a set of powerful tools
for their analysis and design. Traditionally, control theory has been used mainly
for the design of industrial controllers (e.g., programmable logic controllers) and
the low level physical interface of CPS (a more detailed discussion on the role of
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1.1 Fundamentals of CPS, SAS and their Testing

control in CPS can be found in Section 1 of Paper III).However, recent research has
proven it’s applicability also to the design of adaptation strategies for SAS, sparking
a series of works that cross the bridge between the two fields [Filieri et al., 2011;
Filieri et al., 2017].

In the case of CPS and SAS, the decision-making process between sensing/mon-
itoring and actuation (i.e., the closing of the feedback loop) is implemented with the
use of software. Like for any other software project, it is important to evaluate that
the software implementing the feedback in a SAS or a CPS makes the system com-
pliant with the requirements and specifications. This activity is commonly known
as the Verification and Validation process (V&V) and usually comprises of differ-
ent activities—e.g. testing, code reviews, model checking, symbolic execution. In
the case of software, testing is arguably the most used V&V activity by practition-
ers [Briand et al., 2016; Garca et al., 2020]. Testing is usually a dynamic V&V
process, meaning that it leverages the system execution. This is opposed to static
approaches like formal methods and code reviews that instead analyse the arte-
fact [Garoche, 2019].1 During the testing process, the system-under-test (SUT) is
executed and fed with the chosen test input values. At the same time, the test out-
put (i.e. the set of quantities needed to check the fulfilment of requirements and
specifications) is measured, as shown in Figures 1.1 and 1.2.

The testing of a software that implements a feedback loop presents novel chal-
lenges that make traditional testing techniques inadequate. This has been evidenced
both in the SAS research community [Siqueira et al., 2016] and the CPS research
community [Briand et al., 2016]. The cause-effect loop introduced by feedback
makes testing of CPS and SAS software different from the traditional testing of soft-
ware. On an high-level, the input-output framework of traditional software testing
finds limited applicability. More specifically, traditional software testing identifies
the testing inputs with the software inputs and the testing outputs with the software
outputs, as exemplified in Figure 1.2. In the case of systems with feedback, the def-
inition of test inputs and outputs changes. As an example, if we want to test the
ability of an autonomous car to avoid a moving obstacle, the test input is the move-
ment of the obstacle. The obstacle movement is a quantity that lives in the managed
component of the feedback system, and is different from the input to the software
executed on the car. Similarly, the test output is the observation of whether the car
has hit the obstacle or not. To be evaluated, also the output requires to reason about
the physical (or managed) part of the SUT.

Another set of challenges that arises from the presence of a feedback loop in the
SUT is the different nature that usually characterises the managing and managed
components. For example, in an autonomous car, the physical car is the managed
system and its behaviour is usually described with equations from physical mod-
elling. The managing part is instead the ensemble of the microcontrollers and the

1 A discussion on the difference between static and dynamic testing is reported in Section 2.1. In this
work we focus on dynamic testing, i.e. on testing that includes the execution of the system under test.
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Chapter 1. Introduction

software that they execute. Such difference in the nature of the components gener-
ally implies that they are developed by different engineers and that said engineers
possibly leverage different modelling formalisms and methodologies. The V&V
process for such systems has therefore to take into account the different respon-
sibilities of the engineers involved with the development process. For example, a
failure of an autonomous car could be equivalently due to a fault in the design of
the planning algorithm, as well as in its software implementation, or in the design
of the car geometries. Due to the causality loop introduced by the feedback, when
the failure occurs, each of the three components is affected and ruling out which is
the faulty one can be difficult.2

In this context, this thesis sets out to leverage tools from control theory for the
effective testing of systems with feedback. Previous work has used control theory
during the design of such systems. This is the first work that proposes its use for the
testing. More specifically, the thesis leverages control theoretical tools for: (i) the
definition of coverage criteria that are general to (independent of) the models of
the managing and managed components in SAS system, (ii) how to design testing
setups to distinguish the responsibilities of the different engineers during the testing
of control-based CPS systems, and (iii) how to generate test cases for CPS systems
developed with the use of control theory.

1.2 Challenges in Testing Feedback-Based Systems

As discussed above, the introduction of feedback poses different challenges for the
testing process. In this section we discuss in further detail and provide examples for
the ones addressed in this thesis. More specifically, we discuss:

• the alteration of the definition of test input,

• the alteration of the definition of test output, and

• the intertwining of components of different nature.

Test Input Alteration
Figure 1.1 is used to exemplify that the test input to the SUT, for systems with
feedback, are not the inputs to the software. In fact, when feedback is used, the
software receives two types of inputs: some that are the measurements from the
managed component (i.e. the ones used to close the feedback loop) and others that
are exogenous to the loop. In an autonomous car, examples of measurements from
the managed component are the lidar readings or images from cameras. Examples
of signals exogenous to the feedback loop can be user commands like the desired
destination.

2 The motivating example of Paper II reports an instance of such problem.
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1.2 Challenges in Testing Feedback-Based Systems

The two sets of inputs to the software are fundamentally different from the point
of view of testing. The exogenous inputs can usually be arbitrarily set: for exam-
ple the testers can define any desired sequence of desired destinations for an au-
tonomous car that they believe can provide insight on the SUT. Conversely, the
measurements are affected by the outputs of the software itself through the loop
with the managed component and therefore they cannot be arbitrarily set [Gaaloul et
al., 2020]. For example, in an autonomous car, the testers cannot arbitrarily change
the speed measurements from the encoders mounted on the wheels. If the software
opens the throttle, then the car accelerates, and the measured speed has to increase
accordingly: the measurement cannot follow an arbitrary profile.3

Furthermore, those measurement do not depend only on the software output and
are usually also affected by external conditions that affect the managed component.
For example, the road conditions will affect how much speed a car will gain when
accelerating and hence also the encoder readings. As a consequence, said external
conditions have to be considered part of the test inputs for the SUT.

To summarise, the presence of feedback alters the definition of the test inputs
for a software implementing feedback in two ways. Firstly the measurements from
the managed system have to be representative of the closed loop interaction, and
secondly, the external phenomena that can affect the managed component are now
also part of the input set of the software. In general terms, we can say that the test
inputs for a system with feedback are all signals exogenous to the feedback loop
and that affect it. Said inputs include both the exogenous signals affecting the man-
aging component and the ones affecting the managed component. Therefore, this
alteration changes the nature of the test inputs with respect to traditional software
testing and consequently changes how test cases can be generated and how the in-
put space can be explored. Said in other words, feedback calls for novel test case
generation strategies and input coverage criteria that account for the different nature
of the managing and managed components.

Test Output Alteration
Here, with test outputs, we refer to the quantities that we measure when we perform
a test in order to evaluate if the test is passed or not. In the case of systems with feed-
back, the requirements usually concern quantities that belong to the managed com-
ponent. In fact, feedback is in the first place introduced to improve the behaviour of
the managed component. For example, when evaluating if an autonomous car has
reached its destination, we do not evaluate the output or final state of the software,
rather we evaluate the final position of the vehicle in the physical space.

This implies that the performance of the software is not quantified on the base
of its own output or behaviour (as assumed in traditional software testing) rather on

3 Apparently, it can be interesting to test the system also in presence of sensor faults that alter the
feedback signal. However, in that case, the feedback loop is opened (since the measurement does
not depend any longer on the behaviour of the managed part) and the feedback implemented in the
managing component cannot be properly tested.

15



Chapter 1. Introduction

how it influences the behaviour of the managed component. Therefore, the set of
the possible outcomes of the test, is defined in the domain of the behaviours of the
managed component, and not in the domain of the output values of the software. For
example, when testing an autonomous car, we want to define the different possible
obstacles that can appear and evaluate the software’s ability to make the car avoid
them rather than the raw throttle and breaking profiles that it generates. In practice,
this alteration of the test output in systems with feedback calls for the definition of
novel output coverage criteria and test oracles.

Intertwining of Components with Different Nature
For each component in the loop, feedback creates a connection between its own
output and input. Therefore, the component’s execution and testing requires, at the
very least, an emulation of the rest of the loop. The objective of this emulation is
to recreate said relation between the component’s own output and input. This need
to recreate the loop around the component implies that single components in the
loop cannot be tested in isolation. For example, we cannot test the software that
performs the on-line path-planning in an autonomous car without emulating how
its commands affect the movement of the car. In fact, said commands are supposed
to affect the car’s position and therefore the inputs to the path planning software
itself. Without iteratively feeding back this signal to the software, its execution is
impossible.

In systems with feedback, the components’ intertwining is such that, if one com-
ponent is faulty, all of the other components in the loop are likely to also misbehave.
If one single component is faulty, then its own output is affected: as a consequence
the other components in the loop will observe a relation between their own input
and output that is different from the one expected and will also show unexpected
behaviour. Take as an example the case in which the software that steers the front
wheels in an autonomous car is faulty and under-steers the vehicle (i.e. steers the
wheels less than requested). The on-line path-planning algorithm will expect higher
steering action and therefore generate a trajectory that is unsuitable for the car to
follow. Because of this, the measurements do not reflect what it expected and the
path-planning algorithm will change the trajectory. As a consequence, the resulting
trajectory will possibly not be the optimal or expected one. In this context, it is hard
to distinguish if the cause of the incorrect path is in the path-planning algorithm or
in the software that controls the steering (or any other element in the loop, like for
example the software that estimates the position of the car).

As it can be also noted from the example, the domains of the engineers involved
are very different and they possibly use different classes of models. In the just men-
tioned example, the path-planning algorithm is possibly designed by a robotics en-
gineer, the software that is implementing it might be written by a team of software
developers (in the context of a larger codebase), and the firmware controlling the
steering wheel might have been written by embedded systems engineers. Each of
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1.2 Challenges in Testing Feedback-Based Systems

those fields has very different models to describe their part in the system: as exam-
ples, the robotics engineer possibly uses differential equations, the software team
uses UML diagrams and the embedded systems engineers might use state machines.
Developing a testing strategy that enables the distinction between the responsibili-
ties of the different domains and covers their interactions is therefore challenging.

To summarise, feedback systems are limitedly tested at component level and
require significant testing in integrated environments (both with simulation models
and without). Furthermore, the components in the loop likely belong to different
domains. Therefore, there is need for the systematic definition of testing setups
and environments that allow the distinction of the different responsibilities of the
different engineers involved.

Outline

This thesis is written as a collection of papers and consists of three context chapters
and three papers. Of the three chapters, this introduction describes the basic con-
cepts needed to illustrate the contribution of the work. Furthermore it introduces
some of the high-level challenges that they pose. In Chapter 2 we introduce a brief
historical perspective on the fields of control and software engineering. We then
introduce the concepts from both fields needed for the rest of the thesis and the rel-
evant related work. Finally in Chapter 3 we illustrate the contribution of each paper
to the field. This latter chapter also reports the author contribution statement of this
thesis’ author.
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2
Background

This chapter opens with a brief historical overview on the origin of the fields of
control theory, software engineering, software testing, self-adaptive systems (SAS),
and cyber-physical systems (CPS). The overview is based on the events reported in
the timeline in Figure 2.1. The rest of the chapter reports the technical background
and related work relevant for this thesis.

Brief Historical Overview
The origin of control theory is commonly accepted to correspond to the seminal
paper written by the physicist James Clerk Maxwell in 1868 [Maxwell, 2011]. In
said paper, Maxwell proposed a mathematical analysis of the the centrifugal gover-
nor invented by James Watt. The purpose of this centrifugal governor was to con-
trol the speed of a steam engine. The origin of software engineering comes instead
around one century later. While there is not common agreement on the exact event

1868

M
ax

w
el

l’s
Se

m
in

al
Pa

pe
r

on
C

en
tri

fu
ga

l G
ov

er
no

rs

1969

U
se

of
th

e
te

rm

So
ftw

ar
e

En
gi

ne
er

in
g

in
th

e
A

po
llo

Pr
oj

ec
t

1979

Fi
rs

t B
oo

k
on

So
ftw

ar
e

Te
st

in
g

2006

Fi
rs

t D
efi

ni
tio

n
of

C
yb

er
-P

hy
si

ca
l S

ys
te

m
s

2009

Se
m

in
al

Ta
xo

no
m

y
on

Se
lf-

A
da

pt
at

iv
e

Sy
st

em
s

R
es

ea
rc

h

Figure 2.1 This figure shows the timeline of the seminal events mentioned in the
historical overview.
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Chapter 2. Background

or date, one of the most cited episodes is arguably the use of the term by Margaret
Hamilton in the 1960’ during the Apollo project [Message from the 50 Years of Soft-
ware Engineering Chairs 2018]. In the Apollo project, Margaret Hamilton was the
lead developer of the spacecraft control software. It is curious to note that this first
project acknowledged to be a software engineering one, was the implementation of
a control system. However, this can be seen more as a coincidence and, exception
made for few works, the fields of software engineering and control engineering are
distinct.

Soon after the origin of the field of software engineering, the quickly grow-
ing complexity of software artefacts demanded for more advanced and systematic
V&V tools. Accordingly, around one decade later, the software testing subfield es-
tablished itself, and one of the first books exclusively dedicated to software testing
was published in 1979 [Myers, 1979].

In the following decades, software systems continued to grow in size and com-
plexity. This growth eventually resulted in a loss of predictability in their behaviour.
To compensate for this predictability loss, researchers proposed to apply feedback
to software systems. In this way, a software system can monitor itself and adjust its
own behaviour in order to best meet its requirements. The application of feedback
to software systems gave origin to the field of SAS. A seminal paper providing
a taxonomy of the SAS field was written in 2009 [Salehie and Tahvildari, 2009].
However, more than a decade before, the paths of control theory and software engi-
neering had already crossed again, with the first works that apply control theory in
the context SAS being written around 1997 [Diniz and Rinard, 1997].

In the same years, computational devices had become more pervasive and avail-
able, thus increasing their connection with the physical world. For some software
systems, the design of the software became tightly intertwined with the properties
of the physical part that it has to operate with. This intertwining gave origin to the
field of CPS, where the design of a software and physical components cannot be
performed independently [Rawung and Putrada, 2014]. The first use of the term
CPS is attributed to Helen Gill in the early 2000 [Gill, 2005].

As discussed in Chapter 1, both SAS and CPS are fundamentally characterized
by a feedback loop. In the former, feedback appears in the form of software mon-
itoring itself, while in the latter it appears in the form of the software interacting
with a physical component. Furthermore, the previous chapter discussed how the
presence of feedback poses new challenges in the testing of such systems. This the-
sis leverages models and tools from the field of control engineering to address said
challenges and enhance the testing software systems that include feedback loops
(i.e., SAS and CPS).

In the remainder of this chapter, we include the software testing and control
engineering backgrounds that are relevant for this thesis. From the software testing
side we want to define the problem and the type of the solution. From the control
engineering side, we need to build the language needed to describe the SUT and its
development, as well as the associated tools leveraged in this thesis.
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2.1 Software Testing Background

This section introduces the relevant background on software testing. The first sub-
section introduces the testing fundamentals necessary to frame the contributions of
this thesis. The second subsection introduces instead two advanced testing topics
relevant for this thesis: Fuzz Testing (connected to Paper I) and Metamorphic Test-
ing (connected to Paper III). Afterwards, in the third and forth sections, we discuss
the related literature specific to the testing of SAS and CPS.

Software Testing Fundamentals
The literature proposes different definitions of software testing. A seminal defini-
tion of software testing attributed to Glenford J. Myers [Myers, 1979]: “Software
testing is the process of running a program with the intention of finding errors.”. In
this definition there is an explicit reference to the execution of the SUT; nowadays,
this is usually referred to as dynamic testing. In fact, other software testing defini-
tions differ on this aspect, like the ISO/IEC/IEEE 29119 standard [“ISO/IEC/IEEE
International Standard - Software and systems engineering –Software testing –Part
1:General concepts” 2022] that defines testing as the “set of activities conducted to
facilitate discovery and evaluation of properties of the software under test.” This lat-
ter definition includes both static and dynamic testing, where static testing includes
other V&V techniques that do not involve the execution of the program. Exam-
ples of static testing activities are code reviews and static analysis. In this thesis we
discuss solely dynamic testing.

On the high level, four elements are needed to systematically test a system:

• A test case generation strategy: which tests should we run?

• An oracle: is a tests output acceptable or not?

• A coverage or stopping criterion: when should we stop testing?

• A testing set-up: where and how should we run the test?

We now briefly define and discuss the role of each of them.

Test Case Generation. Test case generation is the definition of which inputs
should be fed to the SUT when executing it. Ideally, we would like to test a system
for any possible input and exhaustively explore its behaviours. This is apparently
impossible for any non-trivial program and some strategic choice in the selection of
the inputs has to be made.

Test case generation strategies can be divided in two classes, white-box and
black-box testing, depending on the type of information that they leverage. Pure
white-box testing leverages knowledge of the internal working of the software,
while pure black-box testing leverages only information external to the software
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(e.g. its interface and requirements). An example of white-box testing is the gen-
eration of test cases according to the control flow of the program under test. If a
program is supposed to identify leap years, and we know that it takes different ex-
ecution paths for odd and even years, then such test case generation strategy will
provide one test case with an even year input and one with an odd year input. On
the contrary, an example of black box testing is to define a partitioning of the possi-
ble outputs on the base of the requirements. The partition can then be covered with
test cases for each subset of the outputs. Continuing with the leap year detection
program, the possible outcomes are that a year is leap or that it is not. Accordingly,
this test case generation approach would generate two test cases, one that is a leap
year and one that is not. Apparently, testing techniques can also leverage both types
of information (internal and external to the SUT) and are referred to as grey-box
testing.

Test Oracle. The oracle is the method to evaluate the test outcome, i.e. to state
whether a test is passed or failed. Ideally, we would like an artefact that always pro-
vides the correct output of the program so that we could asses the the SUT output
by direct comparison. Apparently, this is a paradox, as the oracle (i.e. the artefact
always providing the correct output) becomes by definition a correct implementa-
tion of the desired program, hence defying the need of implementing the program
in the first place. Therefore, the approach is generally to use the requirements to de-
fine expected properties of the output that can be verified. For example, considering
again the leap year program, a property like “no odd year is a leap year” can be used
as an oracle: if an odd year is identified as leap then we have detected a program
failure.

The immediate consequence of the use of said properties, is that the oracle will
not be always correct: meaning that it could pass tests that should be failed or vice-
versa fail tests that should pass. Accordingly, common properties that are discussed
about oracles are soundness and completeness: an oracle is said to be sound when
it fails all tests that should fail (but also some that should pass). An oracle is instead
said to be complete if it passes all tests that should pass (but also some that should
fail). Soundness is a much harder property to achieve. For example, the oracle for
the leap-year program above is only complete, as it will pass every test with even
years (while some might still be incorrect).

Coverage or Stopping Criterion. The coverage or stopping criterion is the method
that the engineers use to decide when they have tested enough and do not need to
execute more test cases. It can also be used to evaluate the quality of a test suite, by
quantifying how much it covers the possible behaviours of the SUT (also enabling
the comparison of different test suites). As mentioned for the test case generation,
we would ideally test a system for all its possible inputs and hence achieve complete
coverage of its possible behaviours. Since this is not possible, and we have to resort
to a finite number of test cases, not only we have to define how to generate them,
but we also have to decide when we have generated and/or executed enough. In this
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context, a good coverage criterion exposes the trade-off between the number of tests
and the exhaustiveness of the exploration of the SUT behaviours.

Examples of common coverage criteria are:

• statement coverage (are all the lines of code executed at least once),

• branch coverage (are all the branches of the conditional statements taken at
least once), and

• condition coverage (are the different values of the boolean variables in the
conditional statements evaluated to all possible values at least once).

When picking one of those criteria, the engineers can quantify an associated metric
(e.g. the percentage of lines of code that are executed by the tests at least once), and
set a target value that they want to achieve. Once the target value is reached they
consider themselves satisfied with the testing and can stop it.

Testing Set-Up. The testing setup consists of the external conditions in which the
SUT is executed for testing. It is important that said conditions enable the exposition
of the properties of interest in the SUT—i.e. the ones defined in the requirements.
Which external conditions are relevant depends significantly on the specific appli-
cation: for example, for a smartphone app, the operative system within which the
app is tested is relevant. Differently, in the case of a floating point arithmetic library
for embedded devices, the relevant conditions include the hardware architecture.
Ideally, we would like the testing set-up to be equivalent to the environment in
which the software will be executed once it is deployed. This is not always possible
for different reasons: for example, there might be too many possible deployment
environments (e.g., all of the smartphone models for the app), or executing in the
deployment environment might be very expensive in time and resources (e.g., if the
floating point library is going to be deployed on an aircraft).

These limitations in the representativeness of the testing environment introduce
trade-offs in the design of the set-ups. On the one side, said trade-offs have the
coverage of the possible deployment environments and their representativeness. On
the other side, they have the cost of implementing and maintaining many and de-
tailed environments to execute the tests. For example, for testing the mobile app the
testers will have to select how many and which smartphones to use. Or potentially
they could use an hardware emulator, that might not behave exactly as the target
devices but has a lower execution cost.

Advanced Software Testing Techniques
Thanks to its results,random sampling of the system inputs has recently gathered
significant attention as test case generation approach [Chen et al., 2010; Arcuri and
Briand, 2011; Holler et al., 2012]. This approach has gained popularity under the
name of Fuzz Testing [Zeller et al., 2019; Yatoh et al., 2015; Tramontana et al., 2019;
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Böhme, 2019] and has found most of its applicability in security and vulnerability
testing [Holler et al., 2012]. Some recent reviews on the vast literature on Fuzz
testing can be found in [Yun et al., 2022; Lan and Sun, 2021; Shen et al., 2021].

Metamorphic Testing was first proposed in 1998 to enhance test case genera-
tion and support the detection of faults [Chen et al., 1998]. This enhancement is
achieved by leveraging properties (called metamorphic relations) defined over two
or more test cases—e.g. if the value of a test input is increased then also the output
value should. This is in contrast with traditional testing that treats the different tests
individually. A recent literature review can be found in [Chen et al., 2018]. Notably,
we report one application of Metamorphic Testing to control software testing [Chen
et al., 2011] and a recent industry paper on the synthesis of metamorphic relations
for CPS [Ayerdi et al., 2021]

Testing of Self-Adaptive Systems
A very recent survey on the whole field of SAS can be found in [Wong et al., 2022].
The problem of testing an adaptive software – in some cases also called context-
aware software [Wang et al., 2014; Micskei et al., 2012] – is not a new challenge
for the software testing community [Siqueira et al., 2016; Oliveira Neves et al.,
2018]. The software engineering literature that addresses the testing of self adaptive
software includes both design-time and run-time approaches (with the latter having
received significantly more attention in the literature [Wong et al., 2022]).

The design-time approaches to testing self-adaptive software include SIT [Qin
et al., 2016] and TestDAS [Santos, 2017]. SIT [Qin et al., 2016] proposes a test
case generation technique for self-adaptive applications. The sampling of the in-
put space is based on an interactive model of the application that is being tested.
TestDAS [Santos, 2017] focuses instead on triggering the adaptations during the
execution of the test cases. It leverages models of the software behaviour that are
defined in advance by the programmer.

The literature on software testing includes several efforts to develop run-time
testing methodologies for adaptive software [Cheng et al., 2014; Hänsel et al., 2015;
Reichstaller and Knapp, 2018; Wong et al., 2022]. Generally speaking, there is a
need to develop models for verification and validation at run-time [Cheng et al.,
2014]. This need is caused by the ever-changing nature of the environment the adap-
tive software operates in.

In a SAS, not only the environment changes, but also the software itself does.
Complementarily to the works above (that focus on the environmental changes),
in works like [Silva and Lemos, 2011; Fredericks and Cheng, 2015] the authors
develop a testing methodology that adapts the test cases to the architectural recon-
figurations in the SUT. A similar problem is addressed with a run-time analysis
approach in [Salama and Bahsoon, 2017].

Context-aware software is close to self-adaptive software, and there is a sig-
nificant amount of work addressing the problem of testing context-aware applica-
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tions [Wang et al., 2014; Yu et al., 2014; Mehmood et al., 2018; Micskei et al.,
2012]. The self-adaptive (or context-aware) software observes the execution envi-
ronment and selects actions to be performed based on the result of the observa-
tion phase. The research effort for context-aware software goes in the direction of
generating test cases that trigger the context-aware software layer [Yu et al., 2014;
Mehmood et al., 2018; Micskei et al., 2012]. In [Yu et al., 2014], automatically
generated bigraphs are used to model the interactions between the environment and
the software, and to generate the test cases. In [Mehmood et al., 2018] the authors
propose a framework for automatically generating test cases with high-level test
data.

Testing of Cyber-Physical Systems
Testing of CPS is a broad research field [Zhou et al., 2018; Abbaspour Asadollah
et al., 2015]. In order to focus the scope on the relevant work for this thesis we limit
this discussion to the testing of control-based CPS—i.e. the testing of CPS that
are developed also with the use of control-theory [Balasubramaniam et al., 2020;
Bradley and Bagheri, 2020; Broy et al., 2007]. The testing of control-based CPS
appears in the software engineering literature in different ways. We divide the rele-
vant literature in the following categories:

• model-testing and model-based testing,

• testing of embedded software,

• CPS falsification,

• application-specific control-software testing, and

• efforts from the control community.

Model-based approaches are well suited for control-based CPS [Nielsen et
al., 2015]. In fact, software tools like Simulink have gained widespread industrial
use [Menghi et al., 2019]. Following this drive, model-based testing (i.e. leveraging
models to guide the testing campaign) and model-testing (i.e. the testing directly
applied to executable models instead of the product) have received significant at-
tention in the last decade [Briand et al., 2016]. Furthermore, recent work shows
the complementarity of model checking and model testing for the verification of
requirements [Nejati et al., 2019]. The research literature is focused on generation
of test traces [Hänsel et al., 2011], or the use of models for the automatic genera-
tion of test cases with search algorithms [Matinnejad et al., 2014; Matinnejad et al.,
2017; Marculescu et al., 2015], classification trees [Lamberg et al., 2004], system-
identification based refinements [Menghi et al., 2019], or search algorithms [Aleti
and Grunske, 2015; Hänsel et al., 2011; Ben Abdessalem et al., 2018].

The embedded software literature sees control-software as a prime application
of computing in a resource constrained environment [Garousi et al., 2018]. This is

24



2.1 Software Testing Background

due to the imposition of strict constraints on non-functional properties (e.g., execu-
tion timing). Accordingly, control software appears in several surveys and reviews
on the testing of embedded software [Zander et al., 2011; Garousi et al., 2018;
Banerjee et al., 2016]. Notably, model-based approaches also frequently appear in
the embedded software literature [Zander et al., 2011; Banerjee et al., 2016].

The cited reviews extrapolate different challenges of embedded software testing.
We report a couple: the unavailability of a user interface, and the close integration
of software and hardware [Garousi et al., 2018]. Because of said challenges, there
are works discussing the relevance and properties of different testing set-ups. Intu-
itively, when there is tight connection between software and hardware, the testing
set-up has a significant impact on the effectiveness of the testing process. This led
to the naming convention “X-in-the-loop” where “X” can be different system com-
ponents (e.g. software, hardware, processor, system, process) and defines which
components are included in the set-up. We note that this naming is used in slightly
different ways across different works but with an overall consistency [Zander et al.,
2011; Bringmann and Krämer, 2008; Lamberg et al., 2004]. We refer the interested
reader to Section 3 of Paper II for a more detailed discussion on the definition of
the “X-in-the-loop” testing set-ups.

It is interesting to note a number of application-specific publications on the spe-
cific topic of testing control software. Those concern mainly the fields of avion-
ics [Peleska, 2002; White, 2001] and automotive [Bringmann and Krämer, 2008;
Bringmann and Krämer, 2006; Bücs et al., 2016]. It is important to remark that a
significant number of those are white papers. This latter consideration can be in-
terpreted as a marker of the topic’s industrial relevance and possibly the need for
dedicated tools specific to control-based software testing.

CPS falsification (as the generation of test cases that falsify a requirement) is
also an active research direction. In a recent work [Yamagata et al., 2021] the au-
thors use deep reinforcement learning to perform robustness guided falsification on
CPS. Interestingly, they note the importance of making the system internal dynam-
ics available to the reinforcement learning algorithm, which highlights the possi-
ble benefits of leveraging control-design information during the testing. Differently,
in [Plaku et al., 2009], the authors use a combination of model checking and path
planning to invalidate linear -temporal-logic formulas. A similar problem is ad-
dressed with the use of rapid exploration of random trees in [Dreossi et al., 2015].

The control and robotics communities show growing (but still limited) aware-
ness of the impact of the control-algorithms software implementation on their per-
formance [Zimmer et al., 2015; Silano et al., 2018]. Zimmer et al. [Zimmer et al.,
2015] discuss a case study on the consequences of implementation choices for the
control performance. In robotics, [Silano et al., 2018] showcase the potential in ex-
posing bugs of software-in-the-loop simulations (i.e. simulations that include the
actual control software implementation) for the design of quadcopter controllers.
We note that a similar work on the evaluation of such testing setup is found in the
recent software testing literature [Timperley et al., 2018].
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Figure 2.2 Graphical overview of development of control-based CPS. The
overview is simplified to focus on the role of control engineers in the development
of the interface between the cyber and physical components. In the figure, the boxes
represent development steps and the human-shaped figures represent the different en-
gineers involved. The black arrows represent artefacts or design information shared
between the engineers, and the red arrows represent the execution of a development
step by certain engineers. This figure is adapted from Figure 2 of Paper III.

To conclude, we note that, despite the significant number of publications on
model-based testing and model-testing, none of the reported works explicitly lever-
ages the fact that such systems are designed with the use of control theory. A partial
exception are [Aleti and Grunske, 2015; Menghi et al., 2019]: in both cases, system
identification (a field very close to, if not part of, control theory) is used to reduce the
number of tests that have to be executed in order to find faults [Menghi et al., 2019]
or to reduce the parameter definition effort required by genetic algorithms [Aleti and
Grunske, 2015]. In said cases, the system identification tool is used as part of the
testing process itself and not to gain insights on the SUT to be leveraged for its test-
ing. In addition, we report a very recent work in the context of runtime verification
that leverages system dynamics [Abbas and Bonakdarpour, 2022], where models of
the CPS physical component based on differential equations (same type of models
used at control design time) are used to either terminate the signal monitoring early
or to skip parts of the signal.
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2.2 Control Engineering Background

In this section we provide the control engineering background needed for this the-
sis. In the first part we introduce the development of control systems: this is needed
to frame the contributions of Papers II and III. In the second part we introduce Sce-
nario Theory: a tool from the field Robust Control that we leverage in Paper I. We
complement the discussion on Scenario Theory with background on the statistical
tools that, in the paper, we compare it against, namely: Monte Carlo methods and
Extreme Value Theory.

Control Systems Design and Development
Figure 2.2 gives a graphical overview of the development of control-based CPS,
from the definition of the requirements (top-left) to the combination of the physical
component with the software and hardware that implement the cyber component
(bottom-right, in the dashed box). This is a simplified overview that focuses on
the role of the control engineers in the CPS development. The development of a
CPS, like of any other engineering artefact, starts with the definition of the require-
ments.1 In the case of CPS, requirements usually describe the desired behaviour of
the physical component of the system, also in respect to commands provided by the
user. For example, in an autonomous car, the requirements might include that the
car is supposed to be able to safely drive to a requested destination, and to drive in
a comfortable way for the passengers (e.g. without too high accelerations).

The requirements are then passed to the different engineers involved in the de-
velopment of the CPS. In this context we identify mainly three types of engineers
involved:

• the physical-component engineers that design the physical component of the
CPS,

• the control engineers that design the control algorithms, and

• the software engineers that design the high-level controllers and the software
implementation—i.e., the cyber component.

On an high level, engineers specific to the physical component (e.g., mechanical or
aerospace engineers) provide information about the physical component to the con-
trol engineers. The latter uses said information to develop the control algorithms:
as highlighted in the figure, this includes three main steps. In the first step, the con-
trol engineers use the information provided by the domain engineers to develop an
equation-based model of the physical component, said equations are generally non-
linear and therefore difficult to analyse. Accordingly, the second step is to linearise

1 A more detailed discussion of the control design process can be found in Section 2 of Paper III. Here
we limit ourselves to mentioning the main steps.
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the model in order to make it tractable. The linearisation introduces an approxima-
tion and limits the model’s scope of validity.2 On the other side, the linearisation
allows the control engineers to use one of the several tools offered by control theory
to develop the control algorithms. Such algorithms are then passed to the software
engineers and are part of the software specification—said in other words, the soft-
ware implements the control algorithms as well as other functionalities like sensors
initialisations and sanity checks. The software engineers implement the CPS soft-
ware and defines the performance required from the hardware. According to the
needed hardware properties and performance, either an off-the-shelf platform can
be selected or custom hardware might be needed (with the latter possibly requiring
to involve electronics engineers for the platform design). Finally, software, hard-
ware and physical component can be combined to obtain the complete CPS. For a
more detailed discussion of the different control-based CPS components and their
role we refer the interest reader to Section 3 of Paper II.

In the autonomous car example, the mechanical engineers design for example
the car geometries, and the sizing of the brakes and engine. The control engineers
use this information to design the control algorithms. In this context, control algo-
rithms compute the commands sent to the engine and brakes so that the car can reach
and maintain a desired velocity, as well as the commands sent to the steering wheel
needed to drive in a desired direction. The software engineers implement the car’s
software that includes the control algorithms together with other functionalities like
the user interface, path-planning algorithms and autonomy engagement/disengage-
ment features. During this process, also the hardware of the car has to be designed,
according, for example, to the needed computational power, memory and I/O inter-
faces.

In this context, we highlight that the different engineers use fundamentally dif-
ferent models and methodologies to develop their part of the system. For example,
the mechanical engineers use finite-element methods to evaluate the mechanical
properties of the car [J N Reddy, 2005]. The control engineers use high-level dy-
namics models to evaluate the reaction of the car to motor and brakes commands.
The software engineers use UML diagrams to divide the software in modules.

Apparently, the overall satisfaction of the CPS requirements depends on each of
the components functioning as required as well as on their correct interoperation.
However, the multidisciplinary nature of this step makes it challenging to verify and
validate them. Most notably, the development (and therefore the verification and
validation) of the software is concern of both the control and software engineers.
A more detailed discussion on the multidisciplinary nature of CPS can be found in
Section 2 of Paper III.

2 A more detailed discussion on models linearisation and, more in general, on the design scope of
control algorithms can be found in Sections 1 and 2 of Paper III.
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Scenario Theory and Tools from Statistics
In this section we first introduce Scenario Theory, a tool from the field of robust
control. This theory is at the base of the contribution of Paper I. Afterwards, we in-
troduce also the intuitions behind the tools from statistics that, in the paper, we com-
pare against Scenario Theory: namely, Monte Carlo Sampling and Extreme Value
Theory.

Scenario Theory. The scenario approach [Calafiore and Campi, 2006] was devel-
oped in the field of robust control [Francis and Khargonekar, 1995]. Robust control
theory develops control algorithms that are able to perform consistently in pres-
ence of uncertainty—e.g., modelling errors and unknown parameters from the first
step of control synthesis, Figure 2.2. For assumed bounds on the uncertainty, robust
control aims at providing guarantees on the performance of the final system. De-
spite being developed in the field of robust control, scenario theory is applicable to
a wider class of problems. In fact, it provides a method to solve the more general
class of semi-infinite convex optimisation problems. Semi-infinite convex optimisa-
tion problems are a class of optimisation problems that appear frequently in robust
control design, but are also found in other fields, such as decision making, finance,
and management [Ramponi and Campi, 2018; Calafiore, 2013].

In order to describe the contribution of Scenario Theory we need to first in-
troduce what is an optimization problem and what is a semi-infinite optimisation
problem. In an optimisation problem we want to maximise or minimise a given
quantity. This is done by selecting values for given variables, while in presence of
constraints on the available choices. More rigorously, optimisation problems are
defined by: (i) a cost function, (ii) one or more decision variables, and (iii) a set of
constraints. The cost function is the quantity we would like to maximise or min-
imise, and it should be a function of the decision variables. The decision variables
are the quantities that we can choose and change. The constraints are statements
about the decision variables that we want our final solution to satisfy. An example
of optimisation problem is the computation of the shortest path between two points
in presence of obstacles to be avoided. The decision variables are the parameters of
the path, the cost function is the total length of the path, and the constraints are the
positions of the obstacles that have to be avoided.

When the number of decision variables of the optimisation problem is finite,
but the number of constraints is infinite, we have a semi-infinite optimisation prob-
lem.3 In the shortest-path example, infinite constraints would correspond to infinite
obstacles. At first, accounting for infinite obstacles might not seem a practically rel-
evant problem. However, infinite obstacles can be used to represent uncertainty in
the position of a single obstacle. In presence of such uncertainty, we can choose to
plan a path that avoid any possible position of the obstacle. If the set of said posi-

3 Technically speaking, also an optimisation problem with finite constraints and infinite decision vari-
ables is a semi-infinite optimisation problem. However, in this work we are interested only in the
class of problems with infinite constraints.
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tions is infinite (e.g. if the set is dense), then we have a semi-infinite optimization
problem. While solving a convex optimisation problem is in most cases feasible and
there are well established tools that can quickly provide the solution, semi-infinite
problems are harder to treat, and generally require approximate solutions [Boyd and
Vandenberghe, 2004].

In this context, Scenario Theory [Calafiore and Campi, 2006] leverages a prob-
abilistic framework to treat semi-infinite optimisation problems. The theory allows
to use only for a finite number of randomly sampled constraints from the infinite
set of possible ones. Then, it provides probabilistic guarantees on the generality of
the solution, i.e., on the probability that the solution obtained with a finite number
of constraints is valid for all of the infinite possible constraints. In the shortest-path
example, its application would provide a result in the form of “with 99% probability
the obtained path will avoid the obstacle”, or, more rigorously, “the obtained path
will avoid 99% of the infinite possible obstacles”. Furthermore, the theory provides
a confidence metric on the obtained result, i.e. a quantification of the probability
that the obtained (probabilistic) bound is correct. In our example, this would be the
probability that the statement above on the percentage of fulfilled infinite constrains
is correct.

The fundamental result of Scenario Theory is that it allows to formally quantify
and connect

• d the number of decision variables,

• N the number of randomly sampled constraints,

• ε the probability of satisfying all of the infinite constraints, and

• β the confidence.

An important feature of this result that we leverage in our work, is that it holds ir-
respectively of the actual probability distribution of the constraints. Said in other
words, it does not require any assumption on the distribution underlying the un-
certainty, and significantly simplifies its modelling. In the shortest-path example,
this would allow to make no assumption on the probability distribution used to de-
scribe the possible positions of the obstacles. Section 4.3 of Paper I, provides a
more detailed discussion on Scenario Theory and how it can be applied to solve
SAS software testing problems.

Monte Carlo Sampling. Monte Carlo methods [Robert and Casella, 2005] use
random sampling to numerically infer the value of quantities of interest. The idea
is that we can reconstruct the properties of an unknown probability distribution by
sampling it enough many times. For example, we might be interested in knowing
how tall are the people living in a given country. To obtain full information about the
height of people, we would ideally measure each individual and obtain the complete
distribution. This is apparently practically impossible or at least very demanding.
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The idea of Monte Carlo sampling would be instead to measure only some randomly
chosen people and then use those data to infer properties like the average height
of the whole population or the percentage of people that are higher than a given
threshold.

The theoretical result leveraged by Monte Carlo methods is the Central Limit
Theorem [Johnson, 2004]. The theorem discusses the mean x̄ of the samples xi from
an arbitrary probability distribution X :

x̄ = 1/n∑
n
i=1 xi. (2.1)

The theorem states that, if one draws infinitely many samples from the random vari-
able (i.e. n→∞), the distribution of their arithmetic mean asymptotically converges
to a normal (gaussian) distribution, regardless of the original distribution that they
are taken from. Mathematically, x̄∼N (E[X ],σ 2/n), where N is the normal distri-
bution, E[X ] is the expected value of the random variable X and σ2 is the variance
of X . On an intuitive level, this result could be expressed as: irrespectively of the
nature of the underlying phenomenon, if we pick enough samples, the average be-
haviour observed in the random samples is representative of the actual phenomenon
average behaviour. In fact, the expected value of x̄ converges to the same expected
value of X , and its variance σ 2/n (i.e., the probability of the two being different) con-
verges to zero. In our people’s height example, we could say that, if we randomly
pick enough people, the average of our samples can be considered representative of
the average of the whole population.

Nowadays, Monte Carlo methods are employed in many different fields, from
optimisation [Robert and Casella, 2010] to decision making [Jiménez-Martín et al.,
2005]. In Section 3.2 of Paper I we provide more details on the theoretical founda-
tions of the theory and especially on how Monte Carlo methods can be applied to
the problem of software testing. However, we remark here two important features
of the theory’s application.

First, in order to apply Monte Carlo methods, it is of fundamental importance to
not introduce biases during the sampling. In the population height case, we might
for example use medical records to obtain our samples. This automatically excludes
all the people that do are not registered in the medical database, hence making
the sampling of the population biased towards those that have needed medical care.
Depending on the specific reasons why people have needed medical care, this might
or might not bias the final results.

Second, since the Central Limit Theorem discusses the average behaviour,
Monte Carlo methods are well-suited to infer properties about the average behaviour
of the phenomenon of interest. However, when it comes to atypical behaviours, i.e.
when we are interested in properties of the tails of the distribution, Monte Carlo ap-
proaches fall short. In our population height example, if we are interested in know-
ing how tall is the highest person in the population, Monte Carlo methods are not
well suited. In the context of software testing, this makes Monte Carlo approaches
unsuitable to provide worst case performance bounds. To overcome said limitation,
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Chapter 2. Background

researchers from the field probability theory have developed Extreme Value Theory,
which we discuss next.

Extreme Value Theory. Extreme Value Theory [Haan and Ferreira, 2010] studies
the samples of a random variable around the tails of its distribution. This is opposed
to Monte Carlo methods that study a variable’s behaviour around its average. More
specifically, Extreme Value Theory is used when we want to use observations to
evaluate the maximum or minimum values that a variable can have, for example, if
we want to analyse how tall is the tallest person in a country. The theory is nowadays
widely adopted to study rare phenomena such as earthquakes, quantitative risks in
finance, but also extreme events in engineering [Santinelli et al., 2014; Cazorla et
al., 2013].

Extreme Value Theory is based on a result analogous to the Central Limit Theo-
rem: the Fisher-Tippett-Gnedenko Theorem [Fisher, 1930]. This theorem discusses
the distribution of the maximum x̂ of a set of samples from a given distribution X :

x̂ = max
i
{xi}= max{x1,x2, . . . ,xN}. (2.2)

It states that, if we draw sufficiently many samples form the random variable, the
distribution of the maximum value among those samples is the Generalised Ex-
treme Value Distribution [Haan and Ferreira, 2010].4 However, this holds only if its
distribution actually converges, which is generally not known a priori. This is an im-
portant element of difference from the Central Limit Theorem (that instead applies
to any distribution with finite variance) because it restricts the general applicability
of the Extreme Value Theory.

The application of Extreme Value Theory comprises of three main steps: (i) ob-
tain a set of samples from the distribution that we want to study, (ii) extract a set
of so-called maxima from the samples (i.e. the samples that we consider belonging
to the tail of the distribution), and (iii) fit a Generalised Extreme Value Distribution
to the maxima. The obtained distribution then describes the maximum value that
could be observed in future realizations of the system. In this procedure, a criti-
cal step is the extraction of the maxima. There are different practices to extract the
maxima from a dataset. The most common are: (i) the Block Maxima, and (ii) the
Peaks Over Threshold. The former defines a partition on the dataset and extracts the
maximum value from each subset, the latter takes all the values that exceed some
predefined threshold. The difference between the two methods stems from the pos-
sibility of partitioning the dataset or not (for example if the performance data are
acquired with different software releases). When the data is naturally partitioned
into smaller sets, the block maxima methods is preferred. In the population height
case Block Maxima would for example pick the tallest person from each region;
Peaks Over Threshold would take all people above a used-defined height.

4 The mathematical formula of the Generalised Extreme Value Distribution can be found in Paper 3,
Section 3.2, Equation 3.
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As mentioned above, differently to the Monte Carlo methods (which talk about
the average behaviour of a system), Extreme Value Theory discusses the rare events
in a system. For this reason, by definition, few tests carry information about such
cases. The main consequence of this is that the convergence of the distribution of the
extreme value to the Generalised Extreme Value Distribution is generally slow. This
also limits the practical applicability of the theory. Section 3.2 of Paper I provides
a more detailed discussion on Extreme Value Theory and how it can be applied to
software testing. For both Monte Carlo methods and Extreme Value Theory, Sec-
tion 4.1 of Paper I discusses the limitations of their application to software testing
problems.
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3
Control Perspective on the
Testing of Systems with
Feedback

In this chapter we describe the contributions of this thesis. We contextualise our
contributions into the software testing problem using the four testing elements pre-
sented in Section 2.1: coverage criterion, test-case generation, testing set-up, and
oracle. Figure 3.1 shows a graphical representation of the mapping between the
different publications included in this thesis and the different elements of a testing
process. Paper I uses the probabilistic confidence to evaluate the coverage of an SAS
behaviour through randomized testing. Paper II investigates the impact of the test-
ing set-ups on the significance of the testing results in control-based CPS. Paper III
proposes a test-case parametrisation for control-based CPS which we leverage for

Test-Case
Generation

Coverage
Criterion

Testing
Set-Up

Result
Oracle

Paper I:
TSE 2020

Paper II:
TOSEM

Submitted

Paper III:
TOSEM

Submitted

Figure 3.1 Mapping of the papers included in this thesis to the basic elements of
a testing process. The 4 circular sectors represent the basic elements of a testing
process, the dashed boxes show how they map to the papers of this thesis.
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3.1 Coverage Criterion (Paper I)

both test case generation and for the definition of expected properties of the SUT
behaviour.

This chapter is divided in three sections each presenting the contribution of one
included paper. Within the presentation of the contributions, we motivate them using
the high-level challenges described in Section 1.2. Each section is closed with the
author contribution statement for each paper. Finally, the chapter is closed with the
references to the other papers published by the author of this thesis that haver not
been included.

3.1 Coverage Criterion (Paper I)

C. Mandrioli and M. Maggio (2022). “Testing self-adaptive software
with probabilistic guarantees on performance metrics: extended and
comparative results”. IEEE Transactions on Software Engineering
48:9, pp. 3554–3572. DOI: 10.1109/TSE.2021.3101130

Extends: C. Mandrioli and M. Maggio (2020). “Testing self-adaptive
software with probabilistic guarantees on performance metrics”. In:
Proceedings of the 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing. ESEC/FSE 2020. ACM. ISBN: 9781450370431. DOI: 10.1145/3
368089.3409685. ACM SIGSOFT Distinguished Paper Award.

Statement of Contribution. M. Maggio contributed the idea of applying the sce-
nario theory to the testing of self-adaptive software. C. Mandrioli cast the idea into
the specific application scenarios and implemented them either in simulation (for
the tele-assistance service case study) or within real software (for the self-adaptive
video encoder and the traffic routing platform). Both authors shared the writing of
the manuscript.

Scientific Contribution. In Section 1.2 we discussed how the alteration of test
inputs and outputs in systems with feedback calls for the definition of new input
and output coverage criteria. In Paper I we address this problem in the context of
the worst-case quantification for an SAS performance metric. Said in other words,
we address the problem of quantifying the coverage of the SAS behaviours and of
obtaining a performance bound that always holds for a given performance metric.

To address this challenge, we propose the use of a probabilistic approach to
the testing problem—i.e., to randomly generate the test cases [Böhme, 2019; Dutta
et al., 2019]. The probabilistic approach is beneficial in two ways: first, it allows
the efficient exploration of large input space, and second, when the result is rigor-
ously analysed, it can provide a quantification of its system coverage in the form of
statistical confidence.

The randomised generation of test inputs enables the efficient input-space ex-
ploration thanks to its independence from the size and quantity of the uncertainty

35

https://doi.org/10.1109/TSE.2021.3101130
https://doi.org/10.1145/3368089.3409685
https://doi.org/10.1145/3368089.3409685


Chapter 3. Control Perspective on the Testing of Systems with Feedback

present in the software execution [Robert and Casella, 2005; Dutta et al., 2019].1

However, the measured performance of the system (the test output) must now be
treated as a random quantity, that takes values as a probability distribution rather
than having a fixed value (as in traditional testing) [Böhme, 2019; Abu-Mostafa
et al., 2012]. Accordingly, it requires a probabilistic evaluation. As thoroughly dis-
cussed in Section 4.1 of Paper I, in order to evaluate the performance probability
distribution, traditional tools from statistics fall short because they require assump-
tions on the uncertainty that are not always fulfilled by SAS.

To address the quantification of the probabilistic guarantees on the worst-case
performance and to quantify our testing coverage, we cast our testing problem into
a semi-infinite convex optimisation problem. In this way, we can leverage Scenario
Theory (introduced in Section 2.2) to solve the optimisation problem and obtain
the probabilistic bound on the worst-case performance. At the same time, Scenario
Theory allows us to quantify the testing coverage in the form of the probabilistic
confidence on the obtained bound. The full explanation on how to cast the testing
problem is reported in Section 4.2 of Paper I. Here we limit ourselves to remarking
the powerful analogy between the infinite possible realizations of the SAS (because
of the uncertainty that characterises such systems) and the infinite constraints of
the optimisation problem. In the same way that Scenario Theory enables the use of
only a finite set of random samples of the constraints in the optimisation problem,
we leverage it to use only a finite set of random realizations of the SUT (i.e. a finite
set of tests). Analogously to how we obtain a probabilistic coverage of all the infinite
constraints for the optimisation problem, we obtain a probabilistic worst-case bound
on the performance for the testing problem .

3.2 Testing Set-Up (Paper II)

C. Mandrioli, M. Nyberg Carlsson, and M. Maggio (2022a). “Testing
abstractions for cyber-physical control systems”. Submitted to ACM
Transactions on Software Engineering and Methodology

Statement of Contribution. C. Mandrioli proposed the idea of investigating the
properties of the different testing set-ups for control-based CPS upon literature re-
view and discussions with M. Maggio. C. Mandrioli implemented the model-in-
the-loop and hardware-in-the-loop set-ups. M. Nyberg Carlsson implemented the
software-in-the-loop and process-in-the-loop set-ups during his master thesis.2 C.
Mandrioli had a leading role in writing the paper, with M. Maggio providing sup-
port. M. Nyberg Carlsson provided feedback and helped with the final proofreading.

1 For example, a result like the convergence of the central limit theorem depends on the number of
samples n and not on the size of the random variable sample space.

2 M. Nyberg Carlsson performed part of his work in the context of an internship at Bitcraze, the
company developing the Crazyflie drone used in the experiments.
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3.2 Testing Set-Up (Paper II)

Scientific Contribution. In Section 1.2 we discussed how the use of feedback cre-
ates intertwining between components of different nature. In Paper II we address
this problem in the context of testing of control-based CPS (introduced in Sec-
tion 2.2), where three elements (software, hardware and physics) of different nature
are connected in closed-loop (Figure 2.2). More specifically, we address the prob-
lem of defining different testing set-ups that improve the distinction of the respon-
sibilities of the different engineers in the development of the system.

While the idea of using different testing set-ups is a common industrial practice
and is found in previous literature [Zander et al., 2011], this is the first paper that
empirically compares their properties. In fact, previous works focus on individual
set-ups. In a given testing set-up, some CPS components included as their final
implementation and other components are instead emulated. In our work, we use
the concept of abstraction to define the different testing set-ups. The emulation of a
component implies the abstraction of its own behaviour as well as the abstraction of
its interaction with the other components. The relevance of the testing abstractions
comes from the fact that they implicitly carry assumptions on the representativeness
of the testing set-up with respect to the final system implementation. A complete
discussion on the concept of testing abstraction and its application to the testing of
control-based CPS is found in Section 3 of the paper.

In the paper we identify 4 main classes of testing set-ups: model-, software-,
hardware- and process-in-the-loop (see Figure 2 and Table 1 in the paper). We de-
velop a complete drone case study that covers each of them, ensuring the possibility
of consistent fault-injection across the set-ups. We then run flight tests for the nom-
inal software and 10 faulty versions of it (the faulty versions are designed to cover
different classes of control-software bugs defined in previous literature [Wienke et
al., 2016; Steinbauer, 2013]). The flight performances differ across the set-ups (see
Table 2 in the paper) and we root-cause the differences for each of them.

From the observations of the flight performances and the root-causing of the
differences we draw different conclusions on the relation between the set-ups and
their characteristics. Previous literature [Zander et al., 2011], assumed the existence
of a hierarchy among the set-ups: i.e. that a set-up with fewer abstracted compo-
nents can expose strictly more bugs than one with more. Our findings from the test
flights confute this assumption (see answer to RQ2 in Section 5 of the paper). Ac-
cordingly, we evidence the strengths and weaknesses in fault-finding capabilities of
each setup. Here we limit ourselves to reporting that best code coverage is achieved
with software-in-the-loop and that timing properties are best tested with hardware-
in-the-loop. Conversely, we observed a consistent performance across the set-ups in
the verification of functional properties. The complete discussion on said properties
can be found in the answer to RQ1 in Section 5 of the Paper. We use these findings
to provide insights in the best practices to be followed when designing the setups:
more specifically, we highlight that the difference in the testing abstractions among
the setups is more relevant than the accuracy of each of them (see answer to RQ2 in
Section 5 of the paper).
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3.3 Test Case Generation and Oracle (Paper III)

C. Mandrioli, S. Y. Shin, M. Maggio, D. Bianculli, and L. Briand
(2022b). “Testing of control-based cyber-physical systems”. Submitted
to ACM Transactions on Software Engineering and Methodology

Statement of Contribution. The idea of using the limitations of applicability of
control-theory to the testing of control-Based CPS was proposed by C. Mandrioli
upon discussions with S. Yeob Shin, D. Bianculli, L. Briand, and M. Maggio. C.
Mandrioli implemented and executed the case studies. C. Mandrioli took a lead-
ing role in writing the paper, while S. Yeob Shin, D. Bianculli, L. Briand, and M.
Maggio provided feedback and proofreading.

Scientific Contribution. In Section 1.2 we discussed how the use of feedback both
creates intertwining between components of different nature and how it alters the
definition of the outputs. In Paper III we address this problem in the context of test-
ing control-based CPS. In control-based CPS, the outputs (i.e., the quantities over
which the system requirements can be evaluated) belong to the physical part of the
system, instead of being a quantity in the domain of the software (as assumed in tra-
ditional software testing). This output alteration, together with the intertwining of
components with different nature, makes the development of CPS multidisciplinary.
For such systems, we identify three types of engineers involved: the domain engi-
neer, the control-engineer, and the software engineer (as discussed in Section 2.2,
Figure 2.2). To address the multidisciplinary nature of the system, we analyse the
control design process and discuss in which way the development of the software
concerns both control engineers as well as of software engineers. Afterwards, we
use this discussion to define the problem of stress testing control-based CPS soft-
ware.

We define stress testing of control-based CPS as the generation of test cases that
invalidate to different degrees assumptions made during the design of the system—
we list and thoroughly discuss said assumptions in Section 2 of Paper III. In the
paper, we identify the different classes of assumptions that control engineers make
when they apply control theory. We focus on assumptions related to the linearisa-
tion step performed by control engineers (described in Section 2.2). We then use
knowledge from control theory to define a qualitative characterization of the input
space of a control-based CPS that captures the inputs for which the assumption is
expected to be valid. This characterization is described in Section 4 of Paper III:
specifically, Figure 5 provides a graphical representation.

The proposed characterization identifies an area of validity where we expect
control models to apply. However, the qualitative nature of the characterisation
makes it difficult to apply to arbitrary inputs. To overcome this limitation, in the
paper we propose a novel test case parametrisation that enables its use. Afterwards,
we leverage our characterisation and parametrisation to define metamorphic rela-
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3.4 Other Publications

tions on the tests inputs and outputs, and to develop a testing approach that pushes
the CPS to its performance limits.

We empirically evaluate the proposed testing approach on two CPS and inject
different sources of non-linearity in one of them: this results in a total of six cases
of study. The tests results show that our test case generation approach is able to
generate and identify test cases that push the system to its performance limits. Fur-
thermore, we show how the evaluation of the metamorphic relations can be used
both as sanity checks for the testing process and also to identify the components
that limit the performance CPS.

3.4 Other Publications

The author of this thesis co-authored also the following papers during his PhD stud-
ies. They were not included in this thesis to favour it cohesion and flow.

N. Vreman, C. Mandrioli, and A. Cervin (2022). “Deadline-miss-adaptive
controller implementation for real-time control systems”. In: 2022 IEEE 28th
Real-Time and Embedded Technology and Applications Symposium (RTAS),
pp. 13–26. DOI: 10.1109/RTAS54340.2022.00010

P. Pazzaglia, C. Mandrioli, M. Maggio, and A. Cervin (2019). “DMAC:
Deadline-Miss-Aware Control”. In: S. Quinton (Ed.). 31st Euromicro Con-
ference on Real-Time Systems (ECRTS 2019). Vol. 133. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 1:1–1:24. ISBN: 978-3-95977-110-8. DOI: 1
0.4230/LIPIcs.ECRTS.2019.1. URL: http://drops.dagstuhl.de/op
us/volltexte/2019/10738

C. Mandrioli, A. Leva, B. Bernhardsson, and M. Maggio (2019). “Modeling
of energy consumption in gps receivers for power aware localization sys-
tems”. In: Proceedings of the 10th ACM/IEEE International Conference on
Cyber-Physical Systems. ICCPS ’19. Association for Computing Machinery,
Montreal, Quebec, Canada, pp. 217–226. ISBN: 9781450362856. DOI: 10.1
145/3302509.3311043. URL: https://doi.org/10.1145/3302509.33
11043

C. Mandrioli, A. Leva, and M. Maggio (2018). “Dynamic models for the
formal verification of big data applications via stochastic model checking”.
In: 2018 IEEE Conference on Control Technology and Applications (CCTA),
pp. 1466–1471. DOI: 10.1109/CCTA.2018.8511410

39

https://doi.org/10.1109/RTAS54340.2022.00010
https://doi.org/10.4230/LIPIcs.ECRTS.2019.1
https://doi.org/10.4230/LIPIcs.ECRTS.2019.1
http://drops.dagstuhl.de/opus/volltexte/2019/10738
http://drops.dagstuhl.de/opus/volltexte/2019/10738
https://doi.org/10.1145/3302509.3311043
https://doi.org/10.1145/3302509.3311043
https://doi.org/10.1145/3302509.3311043
https://doi.org/10.1145/3302509.3311043
https://doi.org/10.1109/CCTA.2018.8511410


Bibliography

Abbas, H. and B. Bonakdarpour (2022). “Leveraging system dynamics in runtime
verification of cyber-physical systems”.

Abbaspour Asadollah, S., R. Inam, and H. Hansson (2015). “A survey on testing
for cyber physical system”. In: El-Fakih, K. et al. (Eds.). Testing Software and
Systems. Springer International Publishing, Cham, pp. 194–207. ISBN: 978-3-
319-25945-1.

Abu-Mostafa, Y. S., M. Magdon-Ismail, and H.-T. Lin (2012). Learning From Data.
AMLBook. ISBN: 9781600490064.

Aleti, A. and L. Grunske (2015). “Test data generation with a kalman filter-based
adaptive genetic algorithm”. Journal of Systems and Software 103, pp. 343–352.
ISSN: 0164-1212. DOI: https://doi.org/10.1016/j.jss.2014.11.035.
URL: https://www.sciencedirect.com/science/article/pii/S01641
21214002660.

Arcuri, A. and L. Briand (2011). “Adaptive random testing: an illusion of effec-
tiveness?” In: Proceedings of the 2011 International Symposium on Software
Testing and Analysis. ISSTA ’11. ACM, Toronto, Ontario, Canada, pp. 265–
275. ISBN: 978-1-4503-0562-4. DOI: 10.1145/2001420.2001452. URL: htt
p://doi.acm.org/10.1145/2001420.2001452.

Åstrom, K. J. and R. M. Murray (2008). Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, USA. ISBN: 0691135762.

Ayerdi, J., V. Terragni, A. Arrieta, P. Tonella, G. Sagardui, and M. Arratibel (2021).
“Generating metamorphic relations for cyber-physical systems with genetic pro-
gramming: an industrial case study”. In: Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ESEC/FSE 2021. Association for Com-
puting Machinery, Athens, Greece, pp. 1264–1274. ISBN: 9781450385626. DOI:
10.1145/3468264.3473920. URL: https://doi.org/10.1145/3468264
.3473920.

40

https://doi.org/https://doi.org/10.1016/j.jss.2014.11.035
https://www.sciencedirect.com/science/article/pii/S0164121214002660
https://www.sciencedirect.com/science/article/pii/S0164121214002660
https://doi.org/10.1145/2001420.2001452
http://doi.acm.org/10.1145/2001420.2001452
http://doi.acm.org/10.1145/2001420.2001452
https://doi.org/10.1145/3468264.3473920
https://doi.org/10.1145/3468264.3473920
https://doi.org/10.1145/3468264.3473920


Bibliography

Balasubramaniam, B., H. Bagheri, S. Elbaum, and J. Bradley (2020). “Investigating
controller evolution and divergence through mining and mutation*”. In: 2020
ACM/IEEE 11th International Conference on Cyber-Physical Systems (ICCPS),
pp. 151–161. DOI: 10.1109/ICCPS48487.2020.00022.

Banerjee, A., S. Chattopadhyay, and A. Roychoudhury (2016). “Chapter three -
on testing embedded software”. In: Memon, A. (Ed.). Vol. 101. Advances in
Computers. Elsevier, pp. 121–153. DOI: https://doi.org/10.1016/bs.ad
com.2015.11.005. URL: https://www.sciencedirect.com/science/ar
ticle/pii/S0065245815000662.

Ben Abdessalem, R., S. Nejati, L. C. Briand, and T. Stifter (2018). “Testing
vision-based control systems using learnable evolutionary algorithms”. In: 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE),
pp. 1016–1026. DOI: 10.1145/3180155.3180160.

Böhme, M. (2019). “Assurance in software testing: a roadmap”. In: Proceedings
of the 41st International Conference on Software Engineering: New Ideas and
Emerging Results. ICSE-NIER ’19. IEEE Press, Montreal, Quebec, Canada,
pp. 5–8. DOI: 10.1109/ICSE-NIER.2019.00010. URL: https://doi.o
rg/10.1109/ICSE-NIER.2019.00010.

Boyd, J. (1995). A discourse on winning and losing. Air University Press Maxwell
Air Force Base, AL.

Boyd, S. and L. Vandenberghe (2004). Convex Optimization. Cambridge University
Press. DOI: 10.1017/CBO9780511804441.

Bradley, J. M. and H. Bagheri (2020). “Control software: research directions in the
intersection of control theory and software engineering”. In: AIAA Scitech 2020
Forum. DOI: 10.2514/6.2020-2102. eprint: https://arc.aiaa.org/doi
/pdf/10.2514/6.2020-2102. URL: https://arc.aiaa.org/doi/abs/10
.2514/6.2020-2102.

Briand, L., S. Nejati, M. Sabetzadeh, and D. Bianculli (2016). “Testing the
untestable: model testing of complex software-intensive systems”. In: Proceed-
ings of the 38th International Conference on Software Engineering Companion.
ICSE ’16. Association for Computing Machinery, Austin, Texas, pp. 789–792.
ISBN: 9781450342056. DOI: 10.1145/2889160.2889212. URL: https://do
i.org/10.1145/2889160.2889212.

Bringmann, E. and A. Krämer (2006). “Systematic testing of the continuous behav-
ior of automotive systems”. In: Proceedings of the 2006 International Workshop
on Software Engineering for Automotive Systems. SEAS ’06. Association for
Computing Machinery, Shanghai, China, pp. 13–20. ISBN: 1595934022. DOI:
10.1145/1138474.1138479. URL: https://doi.org/10.1145/1138474
.1138479.

41

https://doi.org/10.1109/ICCPS48487.2020.00022
https://doi.org/https://doi.org/10.1016/bs.adcom.2015.11.005
https://doi.org/https://doi.org/10.1016/bs.adcom.2015.11.005
https://www.sciencedirect.com/science/article/pii/S0065245815000662
https://www.sciencedirect.com/science/article/pii/S0065245815000662
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1109/ICSE-NIER.2019.00010
https://doi.org/10.1109/ICSE-NIER.2019.00010
https://doi.org/10.1109/ICSE-NIER.2019.00010
https://doi.org/10.1017/CBO9780511804441
https://doi.org/10.2514/6.2020-2102
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-2102
https://arc.aiaa.org/doi/pdf/10.2514/6.2020-2102
https://arc.aiaa.org/doi/abs/10.2514/6.2020-2102
https://arc.aiaa.org/doi/abs/10.2514/6.2020-2102
https://doi.org/10.1145/2889160.2889212
https://doi.org/10.1145/2889160.2889212
https://doi.org/10.1145/2889160.2889212
https://doi.org/10.1145/1138474.1138479
https://doi.org/10.1145/1138474.1138479
https://doi.org/10.1145/1138474.1138479


Bibliography

Bringmann, E. and A. Krämer (2008). “Model-based testing of automotive sys-
tems”. In: 2008 1st International Conference on Software Testing, Verification,
and Validation, pp. 485–493. DOI: 10.1109/ICST.2008.45.

Broy, M., I. H. Kruger, A. Pretschner, and C. Salzmann (2007). “Engineering auto-
motive software”. Proceedings of the IEEE 95:2, pp. 356–373. DOI: 10.1109
/JPROC.2006.888386.

Bücs, R., L. Murillo, E. Korotcenko, G. Dugge, R. Leupers, G. Ascheid, A. Rop-
ers, M. Wedler, and A. Hoffmann (2016). “Virtual hardware-in-the-loop co-
simulation for multi-domain automotive systems via the functional mock-up
interface”. In: pp. 3–28. ISBN: 978-3-319-31722-9. DOI: 10.1007/978-3-319
-31723-6_1.

Calafiore, G. C. and M. C. Campi (2006). “The scenario approach to robust con-
trol design”. IEEE Transactions on Automatic Control 51:5, pp. 742–753. ISSN:
0018-9286. DOI: 10.1109/TAC.2006.875041.

Calafiore, G. C. (2013). “Direct data-driven portfolio optimization with guaranteed
shortfall probability”. Automatica 49:2, pp. 370–380. ISSN: 0005-1098. DOI: h
ttps://doi.org/10.1016/j.automatica.2012.11.012. URL: http://w
ww.sciencedirect.com/science/article/pii/S0005109812005481.

Cazorla, F. J., T. Vardanega, E. Quiñones, and J. Abella (2013). “Upper-bounding
Program Execution Time with Extreme Value Theory”. In: Maiza, C. (Ed.). 13th
International Workshop on Worst-Case Execution Time Analysis. Vol. 30. Ope-
nAccess Series in Informatics (OASIcs). Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, pp. 64–76. ISBN: 978-3-939897-54-5. DOI:
10.4230/OASIcs.WCET.2013.64. URL: http://drops.dagstuhl.de/opu
s/volltexte/2013/4123.

Chen, T. Y., S. C. Cheung, and S. M. Yiu (1998). Metamorphic testing: a new ap-
proach for generating next test cases. DOI: 10.48550/ARXIV.2002.12543.
URL: https://arxiv.org/abs/2002.12543.

Chen, T. Y., F.-C. Kuo, H. Liu, P.-L. Poon, D. Towey, T. H. Tse, and Z. Q. Zhou
(2018). “Metamorphic testing: a review of challenges and opportunities”. ACM
Comput. Surv. 51:1. ISSN: 0360-0300. DOI: 10.1145/3143561. URL: https:
//doi.org/10.1145/3143561.

Chen, T. Y., F.-C. Kuo, R. G. Merkel, and T. H. Tse (2010). “Adaptive random
testing: the art of test case diversity”. J. Syst. Softw. 83:1, pp. 60–66. ISSN: 0164-
1212. DOI: 10.1016/j.jss.2009.02.022. URL: http://dx.doi.org/10
.1016/j.jss.2009.02.022.

Chen, T. Y., F.-C. Kuo, W. K. Tam, and R. G. Merkel (2011). “Testing a software-
based pid controller using metamorphic testing”. In: PECCS.

42

https://doi.org/10.1109/ICST.2008.45
https://doi.org/10.1109/JPROC.2006.888386
https://doi.org/10.1109/JPROC.2006.888386
https://doi.org/10.1007/978-3-319-31723-6_1
https://doi.org/10.1007/978-3-319-31723-6_1
https://doi.org/10.1109/TAC.2006.875041
https://doi.org/https://doi.org/10.1016/j.automatica.2012.11.012
https://doi.org/https://doi.org/10.1016/j.automatica.2012.11.012
http://www.sciencedirect.com/science/article/pii/S0005109812005481
http://www.sciencedirect.com/science/article/pii/S0005109812005481
https://doi.org/10.4230/OASIcs.WCET.2013.64
http://drops.dagstuhl.de/opus/volltexte/2013/4123
http://drops.dagstuhl.de/opus/volltexte/2013/4123
https://doi.org/10.48550/ARXIV.2002.12543
https://arxiv.org/abs/2002.12543
https://doi.org/10.1145/3143561
https://doi.org/10.1145/3143561
https://doi.org/10.1145/3143561
https://doi.org/10.1016/j.jss.2009.02.022
http://dx.doi.org/10.1016/j.jss.2009.02.022
http://dx.doi.org/10.1016/j.jss.2009.02.022


Bibliography

Cheng, B. H. C., K. I. Eder, M. Gogolla, L. Grunske, M. Litoiu, H. A. Müller, P.
Pelliccione, A. Perini, N. A. Qureshi, B. Rumpe, D. Schneider, F. Trollmann,
and N. M. Villegas (2014). “Using models at runtime to address assurance for
self-adaptive systems”. In: Bencomo, N. et al. (Eds.). Models@run.time: Foun-
dations, Applications, and Roadmaps. Springer International Publishing, Cham,
pp. 101–136. ISBN: 978-3-319-08915-7. DOI: 10.1007/978-3-319-08915-7
_4. URL: https://doi.org/10.1007/978-3-319-08915-7_4.

Diniz, P. C. and M. C. Rinard (1997). “Dynamic feedback: an effective technique
for adaptive computing”. In: Proceedings of the ACM SIGPLAN 1997 Confer-
ence on Programming Language Design and Implementation. PLDI ’97. Asso-
ciation for Computing Machinery, Las Vegas, Nevada, USA, pp. 71–84. ISBN:
0897919076. DOI: 10.1145/258915.258923. URL: https://doi.org/10
.1145/258915.258923.

Dreossi, T., T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. V. Deshmukh (2015). “Ef-
ficient guiding strategies for testing of temporal properties of hybrid systems”.
In: Havelund, K. et al. (Eds.). NASA Formal Methods. Springer International
Publishing, Cham, pp. 127–142. ISBN: 978-3-319-17524-9.

Dutta, S., W. Zhang, Z. Huang, and S. Misailovic (2019). “Storm: program reduc-
tion for testing and debugging probabilistic programming systems”. In: Pro-
ceedings of the 2019 27th ACM Joint Meeting on European Software Engi-
neering Conference and Symposium on the Foundations of Software Engineer-
ing. ESEC/FSE 2019. Association for Computing Machinery, Tallinn, Estonia,
pp. 729–739. ISBN: 9781450355728. DOI: 10.1145/3338906.3338972. URL:
https://doi.org/10.1145/3338906.3338972.

Filieri, A., C. Ghezzi, A. Leva, and M. Maggio (2011). “Self-adaptive software
meets control theory: a preliminary approach supporting reliability require-
ments”. In: 2011 26th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2011). IEEE, Lawrence, KS, USA, pp. 283–292. DOI:
10.1109/ASE.2011.6100064.

Filieri, A., M. Maggio, K. Angelopoulos, N. Dippolito, I. Gerostathopoulos, A. B.
Hempel, H. Hoffmann, P. Jamshidi, E. Kalyvianaki, C. Klein, F. Krikava, S.
Misailovic, A. V. Papadopoulos, S. Ray, A. M. Sharifloo, S. Shevtsov, M. Ujma,
and T. Vogel (2017). “Control strategies for self-adaptive software systems”.
ACM Trans. Auton. Adapt. Syst. 11:4. ISSN: 1556-4665. DOI: 10.1145/30241
88. URL: https://doi.org/10.1145/3024188.

Fisher, R. (1930). The Genetical Theory of Natural Selection. OUP Oxford.
Francis, B. and P. Khargonekar (1995). Robust control theory. The IMA volumes in

mathematics and its applications. Springer-Verlag. ISBN: 9780387944432. URL:
https://books.google.se/books?id=81vvAAAAMAAJ.

Fredericks, E. M. and B. H. C. Cheng (2015). “Automated generation of adaptive
test plans for self-adaptive systems”. In: 2015 IEEE/ACM 10th International

43

https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1145/258915.258923
https://doi.org/10.1145/258915.258923
https://doi.org/10.1145/258915.258923
https://doi.org/10.1145/3338906.3338972
https://doi.org/10.1145/3338906.3338972
https://doi.org/10.1109/ASE.2011.6100064
https://doi.org/10.1145/3024188
https://doi.org/10.1145/3024188
https://doi.org/10.1145/3024188
https://books.google.se/books?id=81vvAAAAMAAJ


Bibliography

Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pp. 157–167. DOI: 10.1109/SEAMS.2015.15.

Gaaloul, K., C. Menghi, S. Nejati, L. C. Briand, and D. Wolfe (2020). “Mining
assumptions for software components using machine learning”. In: Proceedings
of the 28th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering. ESEC/FSE 2020.
Association for Computing Machinery, Virtual Event, USA, pp. 159–171. ISBN:
9781450370431. DOI: 10.1145/3368089.3409737. URL: https://doi.or
g/10.1145/3368089.3409737.

Garca, S., D. Strüber, D. Brugali, T. Berger, and P. Pelliccione (2020). “Robotics
software engineering: a perspective from the service robotics domain”. In: Pro-
ceedings of the 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering.
ESEC/FSE 2020. Association for Computing Machinery, Virtual Event, USA,
pp. 593–604. ISBN: 9781450370431. DOI: 10.1145/3368089.3409743. URL:
https://doi.org/10.1145/3368089.3409743.

Garoche, P.-L. (2019). Formal Verification of Control System Software. Princeton
University Press. ISBN: 9780691181301. URL: http://www.jstor.org/sta
ble/j.ctv80cd4v (visited on 2022-09-14).

Garousi, V., M. Felderer, Ç. M. Karapçak, and U. Ylmaz (2018). “Testing embedded
software: a survey of the literature”. Information and Software Technology 104,
pp. 14–45. ISSN: 0950-5849. DOI: https://doi.org/10.1016/j.infsof.2
018.06.016. URL: https://www.sciencedirect.com/science/article
/pii/S0950584918301265.

Gill, D. H. (2005). “Challenges for critical embedded systems”. In: Proceedings of
the 10th IEEE International Workshop on Object-Oriented Real-Time Depend-
able Systems. WORDS ’05. IEEE Computer Society, USA, pp. 7–12. ISBN:
0769523471. DOI: 10.1109/WORDS.2005.21. URL: https://doi.org/10
.1109/WORDS.2005.21.

Haan, L. de and A. Ferreira (2010). Extreme Value Theory: An Introduction
(Springer Series in Operations Research and Financial Engineering). 1st Edi-
tion. Springer. ISBN: 144192020X.

Hänsel, J., T. Vogel, and H. Giese (2015). “A testing scheme for self-adaptive soft-
ware systems with architectural runtime models”. In: 2015 IEEE International
Conference on Self-Adaptive and Self-Organizing Systems Workshops, pp. 134–
139. DOI: 10.1109/SASOW.2015.27.

Hänsel, J., D. Rose, P. Herber, and S. Glesner (2011). “An evolutionary algorithm
for the generation of timed test traces for embedded real-time systems”. In:
2011 Fourth IEEE International Conference on Software Testing, Verification
and Validation, pp. 170–179. DOI: 10.1109/ICST.2011.37.

44

https://doi.org/10.1109/SEAMS.2015.15
https://doi.org/10.1145/3368089.3409737
https://doi.org/10.1145/3368089.3409737
https://doi.org/10.1145/3368089.3409737
https://doi.org/10.1145/3368089.3409743
https://doi.org/10.1145/3368089.3409743
http://www.jstor.org/stable/j.ctv80cd4v
http://www.jstor.org/stable/j.ctv80cd4v
https://doi.org/https://doi.org/10.1016/j.infsof.2018.06.016
https://doi.org/https://doi.org/10.1016/j.infsof.2018.06.016
https://www.sciencedirect.com/science/article/pii/S0950584918301265
https://www.sciencedirect.com/science/article/pii/S0950584918301265
https://doi.org/10.1109/WORDS.2005.21
https://doi.org/10.1109/WORDS.2005.21
https://doi.org/10.1109/WORDS.2005.21
https://doi.org/10.1109/SASOW.2015.27
https://doi.org/10.1109/ICST.2011.37


Bibliography

Hansen, J., A. Lacis, D. Rind, G. Russell, P. Stone, I. Fung, R. Ruedy, and J.
Lerner (1984). “Climate sensitivity: analysis of feedback mechanisms”. In: Cli-
mate Processes and Climate Sensitivity. American Geophysical Union (AGU),
pp. 130–163. ISBN: 9781118666036. DOI: https://doi.org/10.1029/GM0
29p0130. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf
/10.1029/GM029p0130. URL: https://agupubs.onlinelibrary.wiley
.com/doi/abs/10.1029/GM029p0130.

Holler, C., K. Herzig, and A. Zeller (2012). “Fuzzing with code fragments”. In: Pro-
ceedings of the 21st USENIX Conference on Security Symposium. Security’12.
USENIX Association, Bellevue, WA, p. 38.

“ISO/IEC/IEEE International Standard - Software and systems engineering
–Software testing –Part 1:General concepts” (2022). ISO/IEC/IEEE 29119-
1:2022(E), pp. 1–60. DOI: 10.1109/IEEESTD.2022.9698145.

J N Reddy, D. (2005). An Introduction to the Finite Element Method. McGraw-Hill
Education. ISBN: 9780072466850. URL: https://books.google.se/books
?id=8ofqngEACAAJ.

Jiménez-Martín, A., A. Mateos, and S. Ríos-Insua (2005). “Monte carlo simulation
techniques in a decision support system for group decision making”. Group
Decision and Negotiation 14, pp. 109–130. DOI: 10.1007/s10726-005-2406
-9.

Johnson, O. (2004). Information Theory and the Central Limit Theorem. Imperial
College Press. ISBN: 9781860945373. URL: https://books.google.se/bo
oks?id=r5XI8a0lYykC.

Kim, J., H. Kim, K. Lakshmanan, and R. ( Rajkumar (2013). “Parallel schedul-
ing for cyber-physical systems: analysis and case study on a self-driving car”.
In: Proceedings of the ACM/IEEE 4th International Conference on Cyber-
Physical Systems. ICCPS ’13. Association for Computing Machinery, Philadel-
phia, Pennsylvania, pp. 31–40. ISBN: 9781450319966. DOI: 10.1145/250252
4.2502530. URL: https://doi.org/10.1145/2502524.2502530.

Lamberg, K., M. Beine, M. Eschmann, R. Otterbach, M. Conrad, and I. Fey (2004).
“Model-based testing of embedded automotive software using mtest”. In: SAE
2004 World Congress and Exhibition. SAE International. DOI: https://doi
.org/10.4271/2004-01-1593. URL: https://doi.org/10.4271/2004-0
1-1593.

Lan, H. and Y. Sun (2021). “Review on fuzz testing for protocols in industrial con-
trol systems”. In: 2021 IEEE Sixth International Conference on Data Science in
Cyberspace (DSC), pp. 433–438. DOI: 10.1109/DSC53577.2021.00068.

Lee, E. A. (2015). “The past, present and future of cyber-physical systems: a focus
on models”. Sensors 15:3, pp. 4837–4869. ISSN: 1424-8220. DOI: 10.3390/s
150304837. URL: https://www.mdpi.com/1424-8220/15/3/4837.

45

https://doi.org/https://doi.org/10.1029/GM029p0130
https://doi.org/https://doi.org/10.1029/GM029p0130
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/GM029p0130
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/GM029p0130
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GM029p0130
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/GM029p0130
https://doi.org/10.1109/IEEESTD.2022.9698145
https://books.google.se/books?id=8ofqngEACAAJ
https://books.google.se/books?id=8ofqngEACAAJ
https://doi.org/10.1007/s10726-005-2406-9
https://doi.org/10.1007/s10726-005-2406-9
https://books.google.se/books?id=r5XI8a0lYykC
https://books.google.se/books?id=r5XI8a0lYykC
https://doi.org/10.1145/2502524.2502530
https://doi.org/10.1145/2502524.2502530
https://doi.org/10.1145/2502524.2502530
https://doi.org/https://doi.org/10.4271/2004-01-1593
https://doi.org/https://doi.org/10.4271/2004-01-1593
https://doi.org/10.4271/2004-01-1593
https://doi.org/10.4271/2004-01-1593
https://doi.org/10.1109/DSC53577.2021.00068
https://doi.org/10.3390/s150304837
https://doi.org/10.3390/s150304837
https://www.mdpi.com/1424-8220/15/3/4837


Bibliography

Mandrioli, C., A. Leva, B. Bernhardsson, and M. Maggio (2019). “Modeling of
energy consumption in gps receivers for power aware localization systems”.
In: Proceedings of the 10th ACM/IEEE International Conference on Cyber-
Physical Systems. ICCPS ’19. Association for Computing Machinery, Montreal,
Quebec, Canada, pp. 217–226. ISBN: 9781450362856. DOI: 10.1145/330250
9.3311043. URL: https://doi.org/10.1145/3302509.3311043.

Mandrioli, C., A. Leva, and M. Maggio (2018). “Dynamic models for the formal
verification of big data applications via stochastic model checking”. In: 2018
IEEE Conference on Control Technology and Applications (CCTA), pp. 1466–
1471. DOI: 10.1109/CCTA.2018.8511410.

Mandrioli, C. and M. Maggio (2020). “Testing self-adaptive software with prob-
abilistic guarantees on performance metrics”. In: Proceedings of the 28th
ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering. ESEC/FSE 2020. ACM. ISBN:
9781450370431. DOI: 10.1145/3368089.3409685.

Mandrioli, C. and M. Maggio (2022). “Testing self-adaptive software with proba-
bilistic guarantees on performance metrics: extended and comparative results”.
IEEE Transactions on Software Engineering 48:9, pp. 3554–3572. DOI: 10.11
09/TSE.2021.3101130.

Mandrioli, C., M. Nyberg Carlsson, and M. Maggio (2022a). “Testing abstractions
for cyber-physical control systems”. Submitted to ACM Transactions on Soft-
ware Engineering and Methodology.

Mandrioli, C., S. Y. Shin, M. Maggio, D. Bianculli, and L. Briand (2022b). “Testing
of control-based cyber-physical systems”. Submitted to ACM Transactions on
Software Engineering and Methodology.

Marculescu, B., R. Feldt, R. Torkar, and S. Poulding (2015). “An initial industrial
evaluation of interactive search-based testing for embedded software”. Applied
Soft Computing 29 (0), pp. 26–39. DOI: http://dx.doi.org/10.1016/j.as
oc.2014.12.025. URL: http://www.sciencedirect.com/science/arti
cle/pii/S1568494614006693.

Matinnejad, R., S. Nejati, L. Briand, and T. Brcukmann (2014). “Mil testing
of highly configurable continuous controllers: scalable search using surrogate
models”. In: Proceedings of the 29th ACM/IEEE International Conference on
Automated Software Engineering. ASE ’14. Association for Computing Ma-
chinery, Vasteras, Sweden, pp. 163–174. ISBN: 9781450330138. DOI: 10.1145
/2642937.2642978. URL: https://doi.org/10.1145/2642937.2642978
.

Matinnejad, R., S. Nejati, and L. C. Briand (2017). “Automated testing of hybrid
simulink/stateflow controllers: industrial case studies”. In: Proceedings of the
2017 11th Joint Meeting on Foundations of Software Engineering. ESEC/FSE
2017. Association for Computing Machinery, Paderborn, Germany, pp. 938–

46

https://doi.org/10.1145/3302509.3311043
https://doi.org/10.1145/3302509.3311043
https://doi.org/10.1145/3302509.3311043
https://doi.org/10.1109/CCTA.2018.8511410
https://doi.org/10.1145/3368089.3409685
https://doi.org/10.1109/TSE.2021.3101130
https://doi.org/10.1109/TSE.2021.3101130
https://doi.org/http://dx.doi.org/10.1016/j.asoc.2014.12.025
https://doi.org/http://dx.doi.org/10.1016/j.asoc.2014.12.025
http://www.sciencedirect.com/science/article/pii/S1568494614006693
http://www.sciencedirect.com/science/article/pii/S1568494614006693
https://doi.org/10.1145/2642937.2642978
https://doi.org/10.1145/2642937.2642978
https://doi.org/10.1145/2642937.2642978
https://doi.org/10.1145/2642937.2642978


Bibliography

943. ISBN: 9781450351058. DOI: 10.1145/3106237.3117770. URL: https:
//doi.org/10.1145/3106237.3117770.

Maxwell, J. C. (2011). “On governors”. In: Niven, W. D. (Ed.). The Scientific Pa-
pers of James Clerk Maxwell. Vol. 2. Cambridge Library Collection - Physical
Sciences. Cambridge University Press, pp. 105–120. DOI: 10.1017/CBO97805
11710377.009.

Mehmood, M. A., M. N. A. Khan, and W. Afzal (2018). “Automating test data gen-
eration for testing context-aware applications”. In: 2018 IEEE 9th International
Conference on Software Engineering and Service Science (ICSESS), pp. 104–
108. DOI: 10.1109/ICSESS.2018.8663920.

Menghi, C., S. Nejati, L. C. Briand, and Y. I. Parache (2019). “Approximation-
refinement testing of compute-intensive cyber-physical models: an approach
based on system identification”. CoRR abs/1910.02837. arXiv: 1910.02837.
URL: http://arxiv.org/abs/1910.02837.

Message from the 50 Years of Software Engineering Chairs (2018), pp. 30–30.
Micskei, Z., Z. Szatmári, J. Oláh, and I. Majzik (2012). “A concept for testing ro-

bustness and safety of the context-aware behaviour of autonomous systems”. In:
Proceedings of the 6th KES International Conference on Agent and Multi-Agent
Systems: Technologies and Applications. KES-AMSTA12. Springer-Verlag,
Dubrovnik, Croatia, pp. 504–513. ISBN: 9783642309465. DOI: 10.1007/97
8-3-642-30947-2_55. URL: https://doi.org/10.1007/978-3-642-309
47-2_55.

Myers, G. (1979). The Art of Software Testing. Business Data Processing: A Wiley
Series. Wiley. ISBN: 9780471043287. URL: https://books.google.se/boo
ks?id=DV0ZAQAAIAAJ.

Nejati, S., K. Gaaloul, C. Menghi, L. C. Briand, S. Foster, and D. Wolfe (2019).
“Evaluating model testing and model checking for finding requirements viola-
tions in simulink models”. In: Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering. ESEC/FSE 2019. Association for Computing
Machinery, Tallinn, Estonia, pp. 1015–1025. ISBN: 9781450355728. DOI: 10.1
145/3338906.3340444. URL: https://doi.org/10.1145/3338906.3340
444.

Nielsen, C. B., P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska (2015).
“Systems of systems engineering: basic concepts, model-based techniques, and
research directions”. ACM Comput. Surv. 48:2. ISSN: 0360-0300. DOI: 10.114
5/2794381. URL: https://doi.org/10.1145/2794381.

Oliveira Neves, V. de, A. Bertolino, G. De Angelis, and L. Garcés (2018). “Do
we need new strategies for testing systems-of-systems?” In: Proceedings of the
6th International Workshop on Software Engineering for Systems-of-Systems.
SESoS ’18. ACM, Gothenburg, Sweden, pp. 29–32. ISBN: 978-1-4503-5747-0.

47

https://doi.org/10.1145/3106237.3117770
https://doi.org/10.1145/3106237.3117770
https://doi.org/10.1145/3106237.3117770
https://doi.org/10.1017/CBO9780511710377.009
https://doi.org/10.1017/CBO9780511710377.009
https://doi.org/10.1109/ICSESS.2018.8663920
https://arxiv.org/abs/1910.02837
http://arxiv.org/abs/1910.02837
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1007/978-3-642-30947-2_55
https://doi.org/10.1007/978-3-642-30947-2_55
https://books.google.se/books?id=DV0ZAQAAIAAJ
https://books.google.se/books?id=DV0ZAQAAIAAJ
https://doi.org/10.1145/3338906.3340444
https://doi.org/10.1145/3338906.3340444
https://doi.org/10.1145/3338906.3340444
https://doi.org/10.1145/3338906.3340444
https://doi.org/10.1145/2794381
https://doi.org/10.1145/2794381
https://doi.org/10.1145/2794381


Bibliography

DOI: 10.1145/3194754.3194758. URL: http://doi.acm.org/10.1145/3
194754.3194758.

Pazzaglia, P., C. Mandrioli, M. Maggio, and A. Cervin (2019). “DMAC: Deadline-
Miss-Aware Control”. In: Quinton, S. (Ed.). 31st Euromicro Conference on
Real-Time Systems (ECRTS 2019). Vol. 133. Leibniz International Proceedings
in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany, 1:1–1:24. ISBN: 978-3-95977-110-8. DOI: 10.4230/LI
PIcs.ECRTS.2019.1. URL: http://drops.dagstuhl.de/opus/volltext
e/2019/10738.

Peleska, J. (2002). “Hardware/software integration testing for the new airbus air-
craft families.” http://www.informatik.uni-bremen.de/agbs/jp/papers/peleskaT-
estCom2002.html. DOI: 10.1007/978-0-387-35497-2_24.

Plaku, E., L. E. Kavraki, and M. Y. Vardi (2009). “Falsification of ltl safety prop-
erties in hybrid systems”. In: Kowalewski, S. et al. (Eds.). Tools and Algo-
rithms for the Construction and Analysis of Systems. Springer Berlin Heidel-
berg, Berlin, Heidelberg, pp. 368–382. ISBN: 978-3-642-00768-2.

Qin, Y., C. Xu, P. Yu, and J. Lu (2016). “Sit: sampling-based interactive testing
for self-adaptive apps”. Journal of Systems and Software 120, pp. 70–88. ISSN:
0164-1212. DOI: https://doi.org/10.1016/j.jss.2016.07.002. URL:
http://www.sciencedirect.com/science/article/pii/S0164121216
301029.

Ramponi, F. A. and M. C. Campi (2018). “Expected shortfall: heuristics and certifi-
cates”. European Journal of Operational Research 267:3, pp. 1003–1013. ISSN:
0377-2217. DOI: https://doi.org/10.1016/j.ejor.2017.11.022. URL:
http://www.sciencedirect.com/science/article/pii/S0377221717
310330.

Rawung, R. H. and A. G. Putrada (2014). “Cyber physical system: paper survey”.
In: 2014 International Conference on ICT For Smart Society (ICISS), pp. 273–
278. DOI: 10.1109/ICTSS.2014.7013187.

Reichstaller, A. and A. Knapp (2018). “Risk-based testing of self-adaptive systems
using run-time predictions”. In: 2018 IEEE 12th International Conference on
Self-Adaptive and Self-Organizing Systems (SASO), pp. 80–89. DOI: 10.1109
/SASO.2018.00019.

Robert, C. P. and G. Casella (2005). Monte Carlo Statistical Methods (Springer
Texts in Statistics). Springer-Verlag, Berlin, Heidelberg. ISBN: 0387212396.

Robert, C. P. and G. Casella (2010). “Monte carlo optimization”. In: Introducing
Monte Carlo Methods with R. Springer New York, New York, NY, pp. 125–165.
ISBN: 978-1-4419-1576-4. DOI: 10.1007/978-1-4419-1576-4_5. URL:
https://doi.org/10.1007/978-1-4419-1576-4_5.

48

https://doi.org/10.1145/3194754.3194758
http://doi.acm.org/10.1145/3194754.3194758
http://doi.acm.org/10.1145/3194754.3194758
https://doi.org/10.4230/LIPIcs.ECRTS.2019.1
https://doi.org/10.4230/LIPIcs.ECRTS.2019.1
http://drops.dagstuhl.de/opus/volltexte/2019/10738
http://drops.dagstuhl.de/opus/volltexte/2019/10738
https://doi.org/10.1007/978-0-387-35497-2_24
https://doi.org/https://doi.org/10.1016/j.jss.2016.07.002
http://www.sciencedirect.com/science/article/pii/S0164121216301029
http://www.sciencedirect.com/science/article/pii/S0164121216301029
https://doi.org/https://doi.org/10.1016/j.ejor.2017.11.022
http://www.sciencedirect.com/science/article/pii/S0377221717310330
http://www.sciencedirect.com/science/article/pii/S0377221717310330
https://doi.org/10.1109/ICTSS.2014.7013187
https://doi.org/10.1109/SASO.2018.00019
https://doi.org/10.1109/SASO.2018.00019
https://doi.org/10.1007/978-1-4419-1576-4_5
https://doi.org/10.1007/978-1-4419-1576-4_5


Bibliography

Salama, M. and R. Bahsoon (2017). “Analysing and modelling runtime architec-
tural stability for self-adaptive software”. Journal of Systems and Software 133,
pp. 95–112. ISSN: 0164-1212. DOI: https://doi.org/10.1016/j.jss.201
7.07.041. URL: https://www.sciencedirect.com/science/article/p
ii/S0164121217301620.

Salehie, M. and L. Tahvildari (2009). “Self-adaptive software: landscape and re-
search challenges”. ACM Trans. Auton. Adapt. Syst. 4:2. ISSN: 1556-4665. DOI:
10.1145/1516533.1516538. URL: https://doi.org/10.1145/1516533
.1516538.

Santinelli, L., J. Morio, G. Dufour, and D. Jacquemart (2014). “On the sustainabil-
ity of the extreme value theory for wcet estimation”. In: OpenAccess Series in
Informatics. Vol. 39. DOI: 10.4230/OASIcs.WCET.2014.21.

Santos, I. d. S. (2017). TESTDAS: Testing MEthod for Dynamically Adaptive Sys-
tems. PhD thesis. Universisdade Federal do Ceara, Fortaleza, Brazil.

Shen, Q., M. Wen, L. Zhang, L. Wang, L. Shen, and J. Cheng (2021). “A system-
atic review of fuzzy testing for information systems and applications”. In: 2021
2nd International Conference on Electronics, Communications and Information
Technology (CECIT), pp. 156–162. DOI: 10.1109/CECIT53797.2021.00035.

Silano, G., E. Aucone, and L. Iannelli (2018). “Crazys: a software-in-the-loop plat-
form for the crazyflie 2.0 nano-quadcopter”. In: 2018 26th Mediterranean Con-
ference on Control and Automation (MED), pp. 1–6. DOI: 10.1109/MED.2018
.8442759.

Silva, C. E. da and R. de Lemos (2011). “Dynamic plans for integration testing
of self-adaptive software systems”. In: Proceedings of the 6th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems.
SEAMS ’11. Association for Computing Machinery, Waikiki, Honolulu, HI,
USA, pp. 148–157. ISBN: 9781450305754. DOI: 10.1145/1988008.1988029
. URL: https://doi.org/10.1145/1988008.1988029.

Siqueira, B. R., F. C. Ferrari, M. A. Serikawa, R. Menotti, and V. V. de Camargo
(2016). “Characterisation of challenges for testing of adaptive systems”. In: Pro-
ceedings of the 1st Brazilian Symposium on Systematic and Automated Software
Testing. SAST. Association for Computing Machinery, Maringa, Parana, Brazil.
ISBN: 9781450347662. DOI: 10.1145/2993288.2993294. URL: https://do
i.org/10.1145/2993288.2993294.

Steinbauer, G. (2013). “A survey about faults of robots used in robocup”. In: Chen,
X. et al. (Eds.). RoboCup 2012: Robot Soccer World Cup XVI. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 344–355. ISBN: 978-3-642-39250-4.

Timperley, C. S., A. Afzal, D. S. Katz, J. M. Hernandez, and C. Le Goues (2018).
“Crashing simulated planes is cheap: can simulation detect robotics bugs early?”
In: 2018 IEEE 11th International Conference on Software Testing, Verification
and Validation (ICST), pp. 331–342. DOI: 10.1109/ICST.2018.00040.

49

https://doi.org/https://doi.org/10.1016/j.jss.2017.07.041
https://doi.org/https://doi.org/10.1016/j.jss.2017.07.041
https://www.sciencedirect.com/science/article/pii/S0164121217301620
https://www.sciencedirect.com/science/article/pii/S0164121217301620
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.4230/OASIcs.WCET.2014.21
https://doi.org/10.1109/CECIT53797.2021.00035
https://doi.org/10.1109/MED.2018.8442759
https://doi.org/10.1109/MED.2018.8442759
https://doi.org/10.1145/1988008.1988029
https://doi.org/10.1145/1988008.1988029
https://doi.org/10.1145/1988008.1988029
https://doi.org/10.1145/2993288.2993294
https://doi.org/10.1145/2993288.2993294
https://doi.org/10.1145/2993288.2993294
https://doi.org/10.1109/ICST.2018.00040


Bibliography

Tramontana, P., D. Amalfitano, N. Amatucci, A. Memon, and A. R. Fasolino (2019).
“Developing and evaluating objective termination criteria for random testing”.
ACM Trans. Softw. Eng. Methodol. 28:3, 17:1–17:52. ISSN: 1049-331X. DOI:
10.1145/3339836. URL: http://doi.acm.org/10.1145/3339836.

Vreman, N., C. Mandrioli, and A. Cervin (2022). “Deadline-miss-adaptive con-
troller implementation for real-time control systems”. In: 2022 IEEE 28th Real-
Time and Embedded Technology and Applications Symposium (RTAS), pp. 13–
26. DOI: 10.1109/RTAS54340.2022.00010.

Wang, H., W. K. Chan, and T. H. Tse (2014). “Improving the effectiveness of testing
pervasive software via context diversity”. ACM Trans. Auton. Adapt. Syst. 9:2.
ISSN: 1556-4665. DOI: 10.1145/2620000. URL: https://doi.org/10.114
5/2620000.

Weyns, D. (2017). “Software engineering of self-adaptive systems: an organised
tour and future challenges”. Chapter in Handbook of Software Engineering, p. 2.

White, A. (2001). “Comments on modified condition/decision coverage for software
testing [of flight control software]”. In: 2001 IEEE Aerospace Conference Pro-
ceedings (Cat. No.01TH8542). Vol. 6, 2821–2827 vol.6. DOI: 10.1109/AERO.2
001.931302.

Wienke, J., S. Meyer zu Borgsen, and S. Wrede (2016). “A data set for fault de-
tection research on component-based robotic systems”. In: Alboul, L. et al.
(Eds.). Towards Autonomous Robotic Systems. Springer International Publish-
ing, Cham, pp. 339–350. ISBN: 978-3-319-40379-3.

Wong, T., M. Wagner, and C. Treude (2022). “Self-adaptive systems: a system-
atic literature review across categories and domains”. Information and Software
Technology 148, p. 106934. ISSN: 0950-5849. DOI: https://doi.org/10.10
16/j.infsof.2022.106934. URL: https://www.sciencedirect.com/sc
ience/article/pii/S0950584922000854.

Wu, M., H. Zeng, C. Wang, and H. Yu (2017). “Invited: safety guard: run-
time enforcement for safety-critical cyber-physical systems”. In: 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC), pp. 1–6. DOI: 10.11
45/3061639.3072957.

Yamagata, Y., S. Liu, T. Akazaki, Y. Duan, and J. Hao (2021). “Falsification of
cyber-physical systems using deep reinforcement learning”. IEEE Transactions
on Software Engineering 47:12, pp. 2823–2840. DOI: 10.1109/TSE.2020.29
69178.

Yatoh, K., K. Sakamoto, F. Ishikawa, and S. Honiden (2015). “Feedback-controlled
random test generation”. In: Proceedings of the 2015 International Symposium
on Software Testing and Analysis. ISSTA 2015. Association for Computing Ma-
chinery, Baltimore MD USA, pp. 316–326. ISBN: 9781450336208. DOI: 10.11
45/2771783.2771805. URL: https://doi.org/10.1145/2771783.27718
05.

50

https://doi.org/10.1145/3339836
http://doi.acm.org/10.1145/3339836
https://doi.org/10.1109/RTAS54340.2022.00010
https://doi.org/10.1145/2620000
https://doi.org/10.1145/2620000
https://doi.org/10.1145/2620000
https://doi.org/10.1109/AERO.2001.931302
https://doi.org/10.1109/AERO.2001.931302
https://doi.org/https://doi.org/10.1016/j.infsof.2022.106934
https://doi.org/https://doi.org/10.1016/j.infsof.2022.106934
https://www.sciencedirect.com/science/article/pii/S0950584922000854
https://www.sciencedirect.com/science/article/pii/S0950584922000854
https://doi.org/10.1145/3061639.3072957
https://doi.org/10.1145/3061639.3072957
https://doi.org/10.1109/TSE.2020.2969178
https://doi.org/10.1109/TSE.2020.2969178
https://doi.org/10.1145/2771783.2771805
https://doi.org/10.1145/2771783.2771805
https://doi.org/10.1145/2771783.2771805
https://doi.org/10.1145/2771783.2771805


Bibliography

Yu, L., W. T. Tsai, Y. Jiang, and J. Gao (2014). “Generating test cases for context-
aware applications using bigraphs”. In: 2014 Eighth International Conference
on Software Security and Reliability (SERE), pp. 137–146. DOI: 10.1109/SER
E.2014.27.

Yun, J., F. Rustamov, J. Kim, and Y. Shin (2022). “Fuzzing of embedded systems:
a survey”. ACM Comput. Surv. Just Accepted. ISSN: 0360-0300. DOI: 10.1145
/3538644. URL: https://doi.org/10.1145/3538644.

Zander, J., I. Schieferdecker, and P. Mosterman (2011). Model-Based Testing for
Embedded Systems. ISBN: 9781439818459.

Zeller, A., R. Gopinath, M. Böhme, G. Fraser, and C. Holler (2019). “The fuzzing
book”. In: The Fuzzing Book. Retrieved 2019-09-09 16:42:54+02:00. Saarland
University. URL: https://www.fuzzingbook.org/.

Zhou, X., X. Gou, T. Huang, and S. Yang (2018). “Review on testing of cyber
physical systems: methods and testbeds”. IEEE Access 6, pp. 52179–52194.
DOI: 10.1109/ACCESS.2018.2869834.

Zimmer, M., J. Hedrick, and E. A. Lee (2015). “Ramifications of software imple-
mentation and deployment: a case study on yaw moment controller design”.
2015 American Control Conference (ACC), pp. 2014–2019.

51

https://doi.org/10.1109/SERE.2014.27
https://doi.org/10.1109/SERE.2014.27
https://doi.org/10.1145/3538644
https://doi.org/10.1145/3538644
https://doi.org/10.1145/3538644
https://www.fuzzingbook.org/
https://doi.org/10.1109/ACCESS.2018.2869834




Paper I

Testing Self-Adaptive Software with
Probabilistic Guarantees on Performance

Metrics: Extended and Comparative Results

Claudio Mandrioli, Martina Maggio

Abstract

This paper discusses methods to test the performance of the adaptation layer in
a self-adaptive system. The problem is notoriously hard, due to the high degree
of uncertainty and variability inherent in an adaptive software application. In
particular, providing any type of formal guarantee for this problem is extremely
difficult. In this paper we propose the use of a rigorous probabilistic approach to
overcome the mentioned difficulties and provide probabilistic guarantees on the
software performance. We describe the set up needed for the application of a
probabilistic approach. We then discuss the traditional tools from statistics that
could be applied to analyse the results, highlighting their limitations and moti-
vating why they are unsuitable for the given problem. We propose the use of a
novel tool – the Scenario Theory – to overcome said limitations. We conclude
the paper with a thorough empirical evaluation of the proposed approach, us-
ing three adaptive software applications: the Tele-Assistance Service, the Self-
Adaptive Video Encoder, and the Traffic Reconfiguration via Adaptive Partic-
ipatory Planning. With the first, we empirically expose the trade-off between
data collection and confidence in the testing campaign. With the second, we
demonstrate how to compare different adaptation strategies. With the third, we
discuss the role of the randomisation in the selection of test inputs. In the eval-
uation, we apply the scenario theory and also classical statistical tools: Monte
Carlo and Extreme Value Theory. We provide a complete evaluation and a thor-
ough comparison of the confidence and guarantees that can be given with all
the approaches.

Originally published in Transactions of Software Engineering. Reprinted with
permission.
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1. Introduction

Software systems are affected by uncertainty that alters their behaviour and can ren-
der their performance unpredictable. Adaptation layers were introduced in software
as a viable solution to deal with performance fluctuations and minimise the effect
of uncontrolled changes [Salehie and Tahvildari, 2009; Cheng et al., 2009; Cheng
et al., 2014]. This makes software self-adaptive. The idea behind self-adaptive soft-
ware is to have a layer responsible for observing behavioural changes and taking
counteractions. This can guarantee more stable and predictable software perfor-
mance in terms of non-functional software behaviour [Filieri et al., 2011; Moreno
et al., 2015], e.g., lower response times, or higher reliability.

Adaptation can be implemented using different methodologies; some of them
provide guarantees based on formal models [Filieri et al., 2014; Moreno et al.,
2015; Gulisano et al., 2017], others are empirically proven effective [DIppolito et
al., 2014; Shevtsov and Weyns, 2016; Moreno et al., 2017]. In both cases there is
a need for appropriate performance testing of the system composed of the software
and its adaptation layer. The presence of an adaptation layer opens up the possibil-
ity that in the same exact condition the software will behave differently, depending
on its past behaviour and accumulated knowledge. It is necessary to conduct em-
pirical validation of satisfactory behaviour to verify the correctness of the system
and adaptation-layer implementation [Weyns, 2012]. In addition, it is important to
quantify the achievable performance.

In general, testing is a crucial aspect of software development. For self-adaptive
software, the testing process is complicated by the presence of the adaptation
layer [Briand et al., 2016; González et al., 2018; Siqueira et al., 2016; Bertolino
and Inverardi, 2019]. Self-adaptive systems testing is intrinsically hard, due to the
extreme variability and uncertainty involved in the software execution [Siqueira et
al., 2016; Oliveira Neves et al., 2018; Bahar et al., 2019; Bertolino et al., 2003]. In
fact, the adaptation layer explicitly reacts to the uncertainty, and may influence it for
the future. This creates a loop around the software [Salehie and Tahvildari, 2009].
In the context of uncertainty and adaptation, this paper’s challenge is to achieve and
maintain formal guarantees on non-functional aspects of the software execution,
such as reliability and response times.
Research Challenges: The adaptation layer and the presence of uncertainty im-
pose specific challenges for testing. Triggered by the environmental variability, the
adaptation generates changes in the system - and this changing nature makes it
difficult (and in many cases impossible) to exhaustively guarantee its correct be-
haviour [Siqueira et al., 2016; Munoz and Baudry, 2009; Tse et al., 2004; Welsh
and Sawyer, 2010; Micskei et al., 2012; Ferrari et al., 2011]. The adaptation also
creates a difficulty in the performance quantification and in determining the testing
sufficiency and effectiveness [Oliveira Neves et al., 2018; Siqueira et al., 2016].

As an example, consider testing a web-application that can run on different
servers with different and time-varying performance results. Not all of the servers
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Figure 1. Overview of the proposed approach. In the figure, black blocks represent
components of the adaptive system and of the testing procedure. The red text and
boxes highlight the main high-level concepts of the testing procedure. The arrows
represent information flow. Figure from [Mandrioli and Maggio, 2020].

can provide the same reliability. The adaptive layer should choose dynamically
which server to use, in order to maximise the overall reliability. In general, it is not
possible to guarantee that the application is always reliable, since any server may
fail. Also, the actual reliability will depend significantly on the specific servers, and
on their performance. As a consequence, when testing the system, any evaluation of
its reliability is heavily affected by the specific test cases. Determining which tests
are sufficient and when it is possible to stop the testing process becomes challeng-
ing. Prior literature contributions highlighted a set of research challenges for testing
adaptive software [Siqueira et al., 2016; Oliveira Neves et al., 2018]. The quoted
papers listed a series of challenges, and then group them into macro areas: types of
guarantees, quantification of performance metrics, and quantification of the testing
effectiveness. In this paper, we try to address these macro challenges:

• CH1: Definition of what type of guarantees can be given for self-adaptive
software.

• CH2: Quantification of the mentioned guarantees.
• CH3: Quantification of the testing sufficiency and effectiveness (or testing

adequacy).
Furthermore, any method based on statistics heavily depends on the input data. In
this paper we also discuss an additional challenge (that is mentioned in [Siqueira
et al., 2016; Oliveira Neves et al., 2018] with less emphasis):

• CH4: Definition and collection of testing input data.
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We believe CH1 to be the main challenge that we try to solve in this paper.
The remaining challenges can be viewed as sub-challenges, that mark relevant as-
pects in the definition of a methodology to address CH1. Towards a solution for
CH1, we define a particular notion of probabilistic guarantees that can be provided
after a testing phase of self-adaptive strategies and software. The need to provide
such formal guarantees, forces us to think and consider the other relevant aspects.
Probabilistic guarantees trigger the need for repeated testing, resulting in the need
of generating randomised test cases and to carefully select input data, therefore
triggering CH4. When tests are performed, the data gathered in the testing phase
should be analysed to quantify the provided guarantees, giving an answer to CH2.
It is also important to quantify the testing adequacy – as mentioned in CH3 – i.e. to
understand if the number of conducted tests is sufficient or if more tests are needed.
This clearly depends on the nature and type of the probabilistic guarantees to be
produced.

Contribution: In this paper we address the four mentioned research challenges by
leveraging a rigorous probabilistic approach [Böhme, 2019; Dutta et al., 2019]. The
probabilistic approach is beneficial in two ways: (i) it allows the efficient exploration
of large input and configuration spaces [Robert and Casella, 2005], and (ii) it can
provide a quantification of its own adequacy. In the field of probability theory, the
testing adequacy is called confidence.

As discussed in the research challenges above, the uncertain nature of self-
adaptive systems does not allow for the definition of strict guarantees. This limi-
tation mainly arises from the large (and possibly infinite) number of combinations
of inputs that can be provided to the system [Siqueira et al., 2016; Oliveira Neves
et al., 2018]. Despite this, we need to test self-adaptive systems when said vari-
ability is present, in order to trigger the adaptive behaviour. Leveraging a proba-
bilistic approach, the uncertainty and variability can efficiently be explored using
randomised inputs. As a consequence, the measured performance metric must be
treated as a random quantity, and requires statistical evaluation. We therefore enter
the domain of probabilistic guarantees [Böhme, 2019; Abu-Mostafa et al., 2012].
The randomised approach allows for an efficient exploration that is independent
from the size and quantity of the uncertainty that is present in the software execu-
tion [Robert and Casella, 2005; Dutta et al., 2019].

In this work, we focus on the evaluation of probabilistic bounds for a given per-
formance metric. In contrast with conventional testing, statistical testing can only
provide confidence values. In conventional testing, a property is either evaluated to
true or false. When the same test is repeated with a different set of random input
values, the property evaluation becomes a stochastic variable. This means that the
result of the testing process is the confidence in the property being either true or
false, when repeating the test with a new input set.

According to the probabilistic framework, our aim is testing what is the value
of the performance parameter that the adaptive software can guarantee in the “ma-
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jority” of its execution environments. We formally define majority in a probabilistic
fashion, e.g., that a given performance bound will hold in 99% of the execution in-
stances. We also quantify the confidence that we can claim, i.e., the adequacy of our
testing campaign. High confidence means a high probability that we performed a
sufficient number of randomly generated tests to sustain our claim. In some sense,
this is analogous to a coverage criterion – a reference for choosing when to stop the
testing campaign. One of the contributions of the paper is the discussion of input
data. We provide guidelines on what needs to be randomised and what – in con-
trasts – remains fixed over the set of executed tests. We also discuss testing a partial
system in contrast to testing the real system in operation, where there is no need
for randomisation of input data because the real execution uses a realistic set of
execution conditions.

In the paper, we discuss traditional tools from statistics (Monte Carlo and Ex-
treme Value Theory) and highlight their limitations for testing self-adaptive soft-
ware. We overcome these limitations using a tool called Scenario Theory [Calafiore
and Campi, 2006]. The Scenario Theory was developed in the field of robust con-
trol but can actually be applied to a very general class of problems. In this paper we
show how to apply it to the problem of testing self-adaptive software. We provide
a thorough comparison between the confidence and the results obtained with the
Scenario Theory and with Monte Carlo and Extreme Value Theory.
Experimental Evaluation: To support our claims, we use our methodology to
test the behaviour of three self-adaptive software applications: the Tele-Assistance
System [Weyns and Calinescu, 2015], the Self-Adaptive Video Encoder [Maggio
et al., 2017b], and the Traffic Reconfiguration via Adaptive Participatory Plan-
ning [Gerostathopoulos and Pournaras, 2019]. We show the complete application
of Monte Carlo, Extreme Value Theory and the Scenario Theory. In all cases, we
discuss how these methods can be used to: (i) rigorously quantify the adaptation
performance, (ii) evaluate the trade-off between the number of performed tests and
the confidence in the testing campaign, and (iii) compare adaptation strategies.1 Our
experimental results show that the Scenario Theory provides better guarantees and
higher confidence in the results.
Extension: This paper extends our previous work [Mandrioli and Maggio, 2020]
providing novel contribution, both on the methodological discussion, and on the
empirical evaluation. For what concerns the methodology, we present a detailed
discussion of the application of traditional statistical tools to the testing of self-
adaptive systems. We also apply the mentioned tools in our empirical evaluation,
comparing the results obtained with our proposed testing strategy. We included an
additional case study to evaluate the methodology on a different software applica-
tion, in particular with respect to the relevance of the randomisation of the input

1 The implementation of the experiments presented in the paper is publicly available and has been
reproduced through the conference artifact review process https://github.com/ManCla/ESEC
-FSE-2020 [Martina Maggio, 2020].
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data.
Paper Structure: In Section 2 we provide an overview of our proposed testing
approach. Section 3 discusses related work. Section 4 presents our methodology and
describes how it overcomes the limitations of classical statistical testing. Section 5
presents experimental results. Finally, Section 6 discusses the limitations and threats
to validity of the proposed approach and Section 7 concludes the paper.

2. Approach Overview

In this section we provide an overview of our testing approach (shown in Figure 1).
In particular, we discuss: (i) the definition of test inputs, (ii) the definition of the
test outcome, and (iii) the evaluation of the results of the testing campaign. In Sec-
tions 3.2 and 4 we discuss in detail how to apply respectively traditional tools and
the Scenario Theory to evaluate the test outcomes and obtain performance bounds
and testing confidence.

The objective of our testing campaign is to empirically provide guarantees on
the system behaviour. These guarantees should be general and independent of the
specific test cases. Practically, we want independence from the variability and un-
certainty that affects the executed tests. We obtain this by performing different ran-
dom tests, each of which represents a possible system realisation. We then statisti-
cally evaluate the results of the testing campaign.

Performing repeated random tests requires, as a first step, the definition of what
are the test inputs that need randomisation. The remaining inputs, instead, should
be fixed across the tests. Using the web application example, we can say that the
number of connected users is a parameter that should vary from one test to the
next, but (possibly) the amount of threads that are assigned to serving requests from
clients is fixed and defined by the specification of the software architecture.

The choice of what to randomise and what to keep constant highly impacts the
significance of the testing campaign. If more than necessary test inputs are ran-
domised, the testing results can be unnecessarily conservative. Conversely, fixing
inputs that will actually vary in the actual software execution – and therefore are
uncertain and unknown – will provide results that do not carry on between the test-
ing campaign and the actual software implementation.

The testing engineer should randomise all inputs that are not known at devel-
opment time and that will affect the system performance. Most importantly, these
have to include the exogenous inputs that the software is supposed to adapt to. In
this way, the random sampling will trigger the adaptation layer and explore the pos-
sible performances of the system. From a practical point of view, the randomised
inputs should be all of those inputs that will make the same implementation of the
system potentially behave at a different performance level. The definition and anal-
ysis of the relevant test inputs are domain and application dependant: different types
of adaptive software are required to respond to different inputs (e.g. discrete signals
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or continuous quantities). Moreover, an evaluation on the quality of the test inputs
requires assumptions and modeling efforts so that an analysis can be carried on.
Apparently, this implies that a significant effort is required to the testing engineer
for the definition of the testing inputs. On the contrary, one of the main strengths of
ST is to include a coverage criteria that requires minimal assumptions on the testing
inputs definition without loss of guarantees.

Exhaustively listing all the system inputs in an adaptive system can be a difficult
task [Trubiani and Apel, 2019]. In some cases, the test input definition problem can
be circumvented by executing the actual system with the actual inputs, rather using
synthetic random inputs. In the web application example, one could collect traces
from the execution of the actual software and analyse this data as a set of random
test cases. If the executions are collected systematically (i.e., two different system
executions will differ exclusively by the unknown inputs), the uncertain inputs are in
this way by definition representative of a possible realization of the adaptive system.
This is a viable solution thanks to the minimal assumptions on the distribution of
the inputs required by ST.For this reason, in this paper we build on an approach that
does not require any of such assumptions. As we discuss formally in Section 4, the
fact of not requiring any assumption on the input probability distributions is one of
the strengths of the proposed scenario theory.

Conversely, in our testing set-up, all the inputs that are known and fixed once the
system is implemented should not be randomised. In the web application example,
this could be the number of servers on which the applications is deployed. If the
number is known and fixed at deployment-time, their number should be fixed also
in the tests. Otherwise, if the application is expected to adapt to a varying number
of severs, their number should be randomised during and across the tests.

In order to evaluate the effectiveness of the adaptation strategy, we define a
performance parameter that we compute for each test. The performance parameter
is a quantity that (i) can be measured from the execution of a test case, and (ii)
is higher or lower, according to the degree at which the adaptation strategy has
achieved its goals. In the web-application case mentioned above, this parameter
could be, for example, the average time spent recovering from server failures over
the whole test duration. The key intuition is that this performance parameter is itself
a random variable [Böhme, 2019], and we can therefore use tools from statistics to
deduce properties of its value.

The extraction of such properties can be done in different ways. Traditional
statistics offers different tools that could be considered. We argue that these tools
present fundamental limitations that hinder their applicability to test self-adaptive
software. As an alternative, we propose the use of scenario theory.

Hence, we collect the outcomes of the tests and evaluate them using the scenario
theory. By leveraging this theory we obtain probabilistic bounds on the chosen per-
formance metric and a testing confidence. The probabilistic bounds are in the form
of a minimum performance that is guaranteed in a high percentage of the cases.
The testing confidence is given as a probability. To be precise, the confidence is
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the probability that we have missed relevant test cases that would have changed
the obtained bound. Continuing with the example above, we would obtain a bound
like “the time it takes to recover from a server failure is on average less than 42
seconds in 97% of the cases, with a 95% confidence”. This means that we have a
100− 95 = 5% probability of having missed a relevant test case. If the confidence
is not sufficient, the scenario theory allows the testing engineer to directly compute
how many additional tests are needed to increase it to the desired level.

3. Background and Related work

This section discusses how this work is connected to the existing research literature.
To start, we present related work in the software testing research field. Then we
present the traditional statistical tools used to extract probabilistic properties from
test outcomes.

3.1 Testing of Adaptive Systems
Our work connects to different areas of the existing software testing literature: (i)
testing of self-adaptive and context-aware systems, (ii) testing in the presence of en-
vironmental dependencies, (iii) fuzz testing, and (iv) testing for probabilistic guar-
antees.

The problem of testing an adaptive software – in some cases also called context-
aware software [Wang et al., 2014; Micskei et al., 2012] – is not a new challenge for
the software testing community [Siqueira et al., 2016; Oliveira Neves et al., 2018].
We split the work that addresses the testing of self adaptive software in design-time
and run-time approaches. For self-adaptive software, the design-time approaches
include SIT [Qin et al., 2016] and TestDAS [Santos, 2017]. SIT [Qin et al., 2016]
proposes a test case generation technique for self-adaptive applications. The sam-
pling of the input space is based on an interactive model of the application that
is being tested. TestDAS [Santos, 2017] focuses on triggering the adaptations dur-
ing the test cases. It leverages models of the software behaviour that are defined in
advance by the programmer. Context-aware software is close to self-adaptive soft-
ware, and there is a significant amount of work addressing the problem of testing
context-aware applications [Wang et al., 2014; Yu et al., 2014; Mehmood et al.,
2018; Micskei et al., 2012]. The self-adaptive (or context-aware) software observes
the execution environment and selects actions to be performed based on the result
of the observation phase. The research effort for context-aware software goes in the
direction of generating test cases that trigger the context-aware software layer [Yu
et al., 2014; Mehmood et al., 2018; Micskei et al., 2012]. In [Yu et al., 2014], au-
tomatically generated bigraphs are used to model the interactions between the en-
vironment and the software, and to generate the test cases. In [Mehmood et al.,
2018] the authors propose a framework for automatically generating test cases with
high-level test data.
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Our proposal is different from previous work on context-aware and self-adaptive
software testing, since in our case the interaction with the environment only needs
a probabilistic characterisation, and no further modelling effort. Moreover, in our
contribution, the number of test cases does not depend on how the interaction with
the environment is performed. This is important since it allows our method to scale
with the amount of interaction between software and environment.

The literature on software testing also includes efforts to develop run-time test-
ing methodologies for adaptive software [Cheng et al., 2014; Hänsel et al., 2015; Re-
ichstaller and Knapp, 2018]. Generally speaking, there is a need to develop models
for verification and validation at run-time [Cheng et al., 2014]. This need is caused
by the ever-changing nature of the environment the adaptive software operates in.
We describe our approach for design-time testing, but in principle2 the resulting
method can be applied during the run-time execution of the software application,
since it only requires data collection and analysis. A clear difference between our
work and the related literature is that we develop a probabilistic approach.

In our work, we use statistical tools to evaluate the performance of the adapta-
tion layer of a self-adaptive software, independently from changes in the environ-
ment. Previous work also addressed the problem of testing a software regardless of
its environmental dependencies [Arcuri et al., 2014; Hervieu et al., 2012]. These
works aim at decoupling the tests outcomes from such dependencies. To test the
adaptation layer, we need to preserve the dependency on the environment, since it
triggers the need for adaptation. However, we aim at obtaining an evaluation that is
general with respect to the environment changes.

The approach we propose in this paper is based on random sampling of the
system inputs and environment scenarios. This practice is known to the software
testing community [Chen et al., 2010; Arcuri and Briand, 2011], and is often called
fuzz testing [Zeller et al., 2019; Yatoh et al., 2015; Tramontana et al., 2019; Böhme,
2019]. The literature focuses on using random generation for achieving adequate ex-
ploration of the software behaviour, e.g., code coverage [Tramontana et al., 2019].
We take inspiration from fuzz testing, and use random sampling with two differ-
ent objectives: (i) decoupling given inputs or environmental scenarios from perfor-
mance parameters that indicate how well the adaptation layer is performing, and (ii)
obtaining a probabilistic characterisation of the performance metric.

Probabilistic guarantees have been explored [Hierons and Merayo, 2009;
Rosario et al., 2008; Hwang et al., 2007]. In some cases this exploration targeted
approximate computing [Dutta et al., 2019; Bahar et al., 2019; Joshi et al., 2019;
Dutta et al., 2018], which is not the subject of this study. Some existing work target
service-oriented software architectures [Canfora and Di Penta, 2006] and how to
combine the probabilistic guarantees given by the different services to obtain guar-

2 The requirement to apply our approach at run-time is that the run-time tests are considered random
independent tests. Testing the system continuously might not guarantee independence. This can be
solved (for example) by introducing a delay between consecutive tests.
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antees for the complete system [Rosario et al., 2008; Hwang et al., 2007]. Recent
work used a probabilistic approach to compensate for the uncertainty of the depen-
dence between system configurations and system performance [Dorn et al., 2020].
However, no prior work targets dynamic behaviour (i.e., behaviour that changes
during the execution of the software, as it is the case with the adaptation layer) and
adaptive software, which is the focus of our work.

3.2 Tools from Statistics
In this section, we recall traditional tools from statistics, that could be used to anal-
yse the result of tests and provide statistical guarantees on the software behaviour.
We both describe the underlying theory and their application. A throughout discus-
sion of the limitations that make them unsuitable for the testing of self-adaptive
software is later presented in Section 4.1. We choose Monte Carlo Sampling (MC)
and Extreme Value Theory (EVT) due to their application in software testing, sim-
ulations, and rare event analysis. Statistics offer additional tools, e.g., martingale
and black swan theory, that are less suited to the analysis of a vast corpus of data or
require additional knowledge. We have not found evidence of application of other
theoretical results to the field of software testing.
Monte Carlo Sampling (MC): Monte Carlo (MC) methods [Robert and Casella,
2005] use repeated random sampling and simulation to numerically predict the
value of parameters. The parameters are unknown, and usually no exact analysis
can be carried out (for example because there are too many random variables, i.e.,
too much uncertainty). Nowadays, MC methods are employed in many different
fields, from optimisation [Robert and Casella, 2010] to decision making [Jiménez-
Martín et al., 2005]. MC methods leverage the Central Limit Theorem [Johnson,
2004] as a main mathematical result. The theorem discusses the mean of a random
variable with an arbitrary probability distribution, under the assumption that the
variance of the distribution is finite. The theorem states that, if one draws infinitely
many samples from the random variable, the distribution of the arithmetic mean
of the samples asymptotically converges to a normal distribution, regardless of the
original variable distribution.

The application of MC approaches allows to conduct an arbitrary number n of
tests and measure the random variable X , obtaining a set of outcomes {x1, . . . ,xn}.
Then it is possible to determine the mean value x̄ as the arithmetic average of the
tests outputs,

x̄ = 1/n∑
n
i=1 xi. (1)

The computed arithmetic mean x̄ is also a random variable. The Central Limit Theo-
rem guarantees that its distribution converges to a normal distribution for increasing
n, i.e., x̄∼N (E[X ],σ 2/n), where E[X ] is the expected value of the random variable
X and σ2 is the variance of X . When n is big enough, the observed mean value
converges to the actual expected value for the quantity of interest. This result is
well-known in statistics and it holds irrespective of the specific software application
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under test. In fact, convergence is guaranteed independently from the probability
distribution of the performance metric. However, there is no general result on the
speed of the convergence and it is therefore application-dependant. With MC sam-
pling, the significance of the test results and the choice of n is therefore left as an
arbitrary choice to the testing engineer.

MC methods are therefore naturally used to evaluate the average behaviour of
a system. By average behaviour x̄ we mean a performance that best summarizes the
different possible performances that the system can expose.3 The standard deviation
σ complements this information by quantifying instead the spread of the possible
performance. By spread we mean the width of the range of possible performance
values. The standard deviation can be estimated using the sampled standard devia-
tion:

σ̄
2 =

√
∑i(xi− x̄)2

n−1
. (2)

Intuitively, since the sampled mean is a description of the average behaviour, each
randomly generated test carries significant information about it. For this reason rel-
atively few test can provide already a good convergence of the sampled mean x̄ to
the expected value E[x]. This is still application dependant and there is no general
approach for quantifying this convergence.

Using MC methods we could be able to state, using again the recovery time ex-
ample from Section 2, that if the variance is sufficiently low, the system in is most
likely recovering from a server failure in a time close to 42 seconds. Unfortunately
the theory doesn’t allow us to rigorously quantify the “most likely” words used in
the statement. In the same way, also the word “close” cannot be generally quantified
rigorously. Finally, we cannot quantify the confidence that we can have in this state-
ment. In fact, the confidence depends on whether the number of tests is sufficient to
apply the central limit theorem or not.

MC methods have found limited use in the context of software testing [Ko-
rver, 1994; Singh and Pal, 2013]. None of these works focuses on the testing of
self-adaptive software. In [Singh and Pal, 2013] MC methods are used to test the
reliability of a software system, while [Korver, 1994] generally discusses how MC
methods can be applied to software testing.
Extreme Value Theory (EVT): The Extreme Value Theory [Haan and Ferreira,
2010] (EVT) study a random variable around the tails of its distribution. This is op-
posed to MC methods that study the behaviour of a variable around its average. EVT
could therefore be used when we specifically want to analyse the software’s worst-

3 Formally, the average corresponds to a normalized sum of the possible outcomes weighted by their
probability. In general, the average value is not necessarily the most probable outcome, and it is
not even guaranteed to be an actually possible outcome. For example, if we average the number of
attempts necessary to obtain a response from a server, the average will likely have decimal values,
but the possible outcome is only an integer. These aspects also limit the effectiveness of analyzing a
performance metric by looking at its (sampled) average.
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case behaviour, e.g., what is the maximum memory occupation of a program. The
theory is nowadays widely adopted to study rare phenomena such as earthquakes,
quantitative risks in finance, but also extreme events in engineering [Santinelli et al.,
2014; Cazorla et al., 2013].

The role of the Central Limit Theorem for MC sampling is taken by the
Fisher–Tippett–Gnedenko Theorem [Fisher, 1930] for the EVT. The Fisher–
Tippett–Gnedenko theorem defines the family of distributions to which the maxi-
mum value of a set of samples converges. The family of distributions is called the
Generalised Extreme Value Distribution (GEVD) [Haan and Ferreira, 2010]. To
apply EVT, we can look at a set of data (in our case the performance parameters
obtained from the test cases) and extract a set of samples that belong to the tail
of the dataset – i.e., a set of maxima. We then fit the the GEVD to the extracted
maxima. In this way, we can obtain a probability distribution for the extreme value
of the performance metric that could be observed in future executions of the system.

There are different practices to extract the maxima from a dataset. The most
common are: (i) the Block Maxima, and (ii) the Peaks Over Threshold. The former
defines a partition of the dataset and extracts the maximum value from each subset,
the latter takes all the values that exceed some predefined threshold. The difference
between the two methods stems from the possibility of partitioning the dataset or
not (for example in smaller sets of data – acquired with different software releases).
When the data is naturally partitioned into smaller sets, the block maxima methods
is preferred. Since in our case each data belongs to the same partition we use the
peak over threshold method.

Using the obtained maxima we can estimate the parameters of the GEVD. This
distribution has the following form:

fGEV D(x) =
1
σ

1+

(
ξ (x−µ)

σ

)− (ξ +1)/ξ

 , (3)

where µ is the location parameter, σ is the scale parameter and ξ is the shape
parameter. The location parameter defines the starting point, the scale parameter
defines the weight of the tail and the shape parameter defines the rate of decrease of
the probability density.

With the obtained distribution we can evaluate a probabilistic bounds τ on the
performance of the system, i.e. P(x> β ). To do so we need to account for the proba-
bility that a value is actually a maximum and the probability of that maximum being
greater than the bound. This can be computed multiplying the two probabilities:

P(x > β ) = P(x > β |x > τ) ·P(x > τ), (4)

where τ is the threshold used for the selection of the maxima. The first term in the
multiplication is equivalent to the cumulative probability distribution of the GEVD.
The latter can be estimated as the ratio between the total number of performed tests
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and the number of test that resulted in one of the maxima:

P(x > τ)≈ nmaxima/ntests.

In this way, we can use EVT to obtain a probabilistic bound for the performance
of the system under test. When applied to the example from Section 2, we would be
able to provide guarantees in the form: there is a 1.5% probability that the recovery
time is worse than 50 seconds. If needed, a different numerical bound can be given
– apparently with a different associated probability. This is due to the fact that EVT
allows us to retrieve a complete distribution for the maximum of the performance.

EVT presents similar limitations compared to MC approaches [Embrechts,
2000]. EVT uses an arbitrary number of samples from the distribution of inter-
est. Moreover, the choice of which and how many samples can be considered as
the maxima is also arbitrary. There are also no results on the rate of convergence
of the samples to the Generalised Extreme Value Distribution. Conversely to the
MC methods that talk about the average case EVT discusses the rare cases. For this
reason few tests carry information about such cases. Therefore the convergence to
the GEVD is generally slow. Finally, as MC, EVT requires finite variance of the
parameter that is sampled.

4. Methodology

In this section, we describe our approach to obtain probabilistic guarantees and its
theoretical underpinning.

4.1 Limitations of Traditional Statistics
In Section 3.2 we described the traditional tools from statistics that could be used to
obtain probabilistic guarantees when testing self-adaptive software: MC and EVT.
Both those methodologies suffer from limitations that make them inconvenient for
analysing the results of the testing campaign – i.e. being used in place of the “Sce-
nario theory” block in Figure 1. These limitations are: (i) arbitrary choice of testing
parameters, (ii) unknown, case-dependent, testing confidence (or testing adequacy),
and (iii) assumption that the variance of the measured quantity is finite.

MC and EVT use an arbitrary number of samples for the desired estimation. The
MC approach assumes that the set of samples is large enough that the Central Limit
Theorem holds [Robert and Casella, 2005], and the EVT similarly relies on the
convergence of the maxima samples to the Extreme Value Distribution [Embrechts
et al., 1997]. Unfortunately, in both the theories, there is no general way to define
how many samples are needed to achieve convergence.

The impossibility of quantifying the convergence to the Gaussian and Extreme
Value Distributions has another relevant implication for the testing problem. If the
desired testing confidence is not reached, it is impossible to quantify how many
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extra tests are needed to reach it. In other words, we cannot know a priori how the
confidence will change when performing one extra test.

Another assumption needed by both EVT and MC sampling is that the perfor-
mance parameter has finite variance. In practice, this means that either the proba-
bility of it being infinite must be very low, or that the parameter can only take finite
values. Suppose we are trying to assess the worst-case execution time of a software
function. The presence of a bug could cause the processor to stall and the function
to never terminate. As long as the occurrence of this bug is sporadic, it is possible to
use EVT and MC to determine metrics on the execution time. However, if the bug
is triggered more often, the (higher) probability of an infinite execution time would
prevent us from applying EVT and MC methods. Some commonly used engineering
solutions can enforce finite variance in given performance parameters. An example
of this is the presence of timeouts. Introducing a timeout does not help overcoming
the limitation. In fact, the test that resulted in a timeout does not provide a sample
of the possible performance of the system (i.e., conveys less information than its
number-based counterpart, resulting only in a ‘timeout reached’ outcome). Merg-
ing this information in the statistical evaluation is non-trivial, and could even be
detrimental and hide behaviours of the system.

Our proposal overcomes these limitations by formulating the testing problem as
an infinite optimisation problem and solving it using the scenario theory.

4.2 Scenario Theory for Software Testing
The scenario approach [Calafiore and Campi, 2006] was developed in the field
of robust control [Francis and Khargonekar, 1995]. However, it is more generally
applicable than control design. It provides a method to solve infinite convex optimi-
sation problems. Infinite convex optimisation problems are a class of optimisation
problems that appear frequently in robust control design. However, they are also
classically found in other fields, such as decision making, finance, and manage-
ment [Ramponi and Campi, 2018; Calafiore, 2013]. The contribution of this paper
is the formulation of the testing problem with the scenario approach and the study of
the results that can be obtained for self-adaptive software. We show how this allows
us to overcome the research challenges from Section 1.

In our testing problem, we want to find bounds for a performance parameter
of an adaptive system (i.e., of the software and a given adaptation strategy imple-
mented on top of it). In general, finding a safe and very pessimistic bound on what
the software can achieve is trivial. The interesting question is how much we can
move this bound toward higher performance. This problem can be formulated as:
we would like to maximise the value of the performance parameter that we can
safely guarantee when using a given adaptation algorithm.

The evaluation of this performance bound can therefore be seen as an optimi-
sation problem. Solving optimisation problems means finding the extreme value of
a quantity, either the highest or the lowest possible. In the following sections we
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introduce optimisation problems, the scenario theory, and how they can be used to
bound the performance of a self-adaptive software.

Optimisation Problems: Optimisation problems are defined by: (i) one or more
decision variables, (ii) a cost function, and (iii) a set of constraints. The decision
variables are the quantities we can choose and change. The cost function is the
quantity we would like to maximise or minimise, and it should be a function of the
decision variables. The constraints are statements about the decision variables that
we want our final solution to satisfy. An example of a problem that can be formu-
lated as an optimisation problem is the travelling salesman problem [Applegate et
al., 2011]. A salesman needs to determine a route to visit a given number of cities,
minimising the travelling distance. The decision variables are the segments to add
to the path, the cost function is the total travelled distance, and the constraint is that
all the cities in the given list are visited at least once.

In our proposed testing methodology the decision variable is the worst-case per-
formance of the adaptation strategy (i.e. the best value of the performance metric
that we can safely guarantee), the cost function is the worst-case performance itself,
and each of the test outcomes is a constraint. The performance bound evaluation
therefore becomes the following optimisation problem: maximise the performance
that can always be guaranteed, under the constraint that it cannot exceed what is
experienced in the conducted tests.

Being even more practical and using the web application example from Sec-
tion 1, suppose we want to provide guarantees on its maximum response time thanks
to the adaptation strategy. We conduct a certain number n of tests. Each test is com-
posed of servicing 1000 requests in random execution instances of the overall sys-
tem, and monitoring their response times. We record the average response times
in the vector r = {r1,r2, . . . ,rn}. Where ri is the average response time of the web
application for the 1000 requests of the i− th test. These values are constraints on
what the software can achieve. We then take the maximum element of the vector as
our worst-case performance metric, wmax = max{r1,r2, . . . ,rn}. If we tested all the
possible execution cases, we could then say that we guarantee that the response time
will be lower than the maximum value wmax. However, for self-adaptive software
the set of possible execution cases is likely infinite.

Ideally, if we could perform an infinite number of tests, we would test the system
in every possible situation. In this way, we could obtain an exact evaluation of the
worst case behaviour of the system. In practice, this is apparently not achievable,
and we have to rely on only a finite number of tests. Despite this, when the number
of tests is sufficiently large, it will still provide significant information about the
general case.

Infinite Optimisation Problems: If we cast our (ideal) testing problem into an
optimisation problem, we would have infinite constraints (the infinite test cases).
For our web application example this would mean performing an infinite number of
tests and obtaining the real bound. Unfortunately, solving an optimisation problem
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with an infinite set of constraints is not always possible (or desirable). Similarly, in
our testing problem, we cannot perform infinite tests.
Scenario theory: The scenario theory [Calafiore and Campi, 2006] addresses the
problem of solving an infinite optimisation problem while accounting only for a
finite number of the constraints. The theory provides probabilistic guarantees on
the generality of the solution. The scenario approach is used to solve infinite opti-
misation problems. The approach is to transform the infinite-sized problem into a
finite-sized problem by randomly sampling a finite number of constraints from the
infinite set of possible ones. Then, it is possible to solve the optimisation problem
accounting only for the finite set of sampled constraints. The scenario theory allows
then to quantify the uncertainty and the guarantees that are lost by only considering
the finite set.

In the testing of our web application, this corresponds to obtaining the proba-
bilistic guarantee that the average response time is lower or equal to wmax in a high
percentage of the cases. This means that, with high probability, the future execu-
tions of the web application would not result in a higher average response time, i.e.,
P(rm ≤ wmax | m > n) = pw ≈ 1.

Using the scenario theory, we can compute the probability pw that the solution
– computed using the finite set – does not satisfy all the constraints in the possi-
bly infinite set. For our testing problem, this means that we evaluate the worst-case
performance using only a finite number n of test results. We then compute the prob-
ability that the obtained worst-case value wmax holds for all of the infinite tests that
we could possibly run – i.e., we compute the probability that in future tests we
would obtain a worse value than wmax, which is obtained using the first n tests, i.e.,
that ∃m > n | wm > wmax.

In our specific optimisation problem for testing, we have only one decision vari-
able (the evaluation of our worst-case). We now state the relevant result of the sce-
nario theory in that case.4 We denote with ε the probability of observing (in future
executions) a performance value that is worse than the observed worst-case up to n
tests (i.e., ε = 1− pw). In the original optimisation framework this is the probability
of not satisfying all the infinite constraints.

Using the scenario theory, we can evaluate the probability that, in our n test
cases, we could have missed a test case with a worse performance than the obtained
bound. We call this probability β and it is computed from ε and n as

(1− ε)n = β . (5)

In the original optimisation problem, ε quantifies the probability that a new
(randomly picked) constraint taken from the infinite set would invalidate the solu-
tion found using the finite set. In our testing analogy, ε is a quantification of how
tight we want our bound to be. Choosing a lower probability ε means having a

4 We omit the complete formula for an arbitrary number of decision variables, since it is not of interest
in our case.
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Figure 2. Graphical representation of the scenario parameters ε and β . In this case
poor performance of the system is captured by high values of the performance pa-
rameter while low values correspond to more desirable performance. The histogram
bars represent the performance observed in the test cases. The red bar is the ob-
served word case. The red area corresponds to the probability ε quantified with ST
of observing (in future executions) a performance worse than the worse performance
observed so far. Figure from [Mandrioli and Maggio, 2020].

tighter bound, and choosing a higher value means that we allow for higher risk of
not having observed the true worst-case. We remark that we can arbitrarily choose
ε , but this will result in different degrees of confidence β that we can have in the
obtained result.

The probability β can be seen as a quantification of how confident we are of our
testing campaign result. A lower value of β implies that we are more confident and
a higher value represents a higher probability that the final result is not correct. A
tighter worst-case bound (lower ε), in fact, results in a higher β , a higher probability
that we could have “missed” a relevant test case (constraint) in our sampling. In this
sense, β can be seen as a coverage parameter, since it quantifies our confidence
of having explored enough of the possible instances of the self-adaptive software
behaviour.

Figure 2 shows a graphical interpretation of the probabilities ε and β . The
dashed line shows the true and unknown probability distribution of the performance
parameter. The histogram represents the observations that we obtained when mea-
suring the performance of the system in our tests (i.e., our test results). The red bar
indicates the worst case obtained during the testing campaign. The red area has size
ε , i.e., ε is the probability that in the future we will experience a worst performance
than the observed worst-case. Here, β is the probability that – assuming that ε is
the correct area – we would not have observed a test case in the ε area during our
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n observations. For example, if we had more test results, these could or could not
be lower than the observed worst-case. In any case, with more observations, we are
able to: (i) tighten the bound (i.e., decrease ε), (ii) increase the confidence (i.e., de-
crease β ), or (iii) do both things to a lesser extent. Without running additional tests,
we can tighten the bound at the cost of losing confidence in it. Alternatively, we
could loosen the bound and increase our confidence.

We highlight that the theory does not require any prior knowledge on the prob-
ability distribution of the performance metric (i.e., on the dashed line in Figure 2).
This is the strength of scenario theory with respect to the traditional methods that
require assumptions on this probability distribution (e.g., its variance being finite).

We also remark that the test cases have to be randomly generated (or taken from
the execution of the software in different scenarios). This is what guarantees the
probabilistic characterisation. It could be argued, in fact, that what is actually used
is only the test case where the system exposed the worst behaviour, and therefore
this one is the only test case of interest. But identifying the testing conditions that
expose the worst case might be not be straightforward and could require a greater
effort than running a number of randomly generated test cases. In other cases, in-
stead, the worst-case performance could be a trivial, arbitrarily bad performance.
For example, the worst case response time of a web service will be infinite if all
the servers become unavailable. Differently, we ask instead the following question:
given a number of tests we ran on the real system, what is the average response
time that we can guarantee in 99% of the cases? We argue that this probabilistic
characterisation of self-adaptive software is (i) simpler to achieve and, (ii) more in-
teresting than its deterministic counterpart. Therefore, when taking the probabilistic
approach, even though a new test might not change the worst-case bound, it is still
valuable because it increases the reliability and confidence in the obtained bound.

This probabilistic characterisation of the guarantees specifically addresses the
research challenge CH1. Our argument is that, since deterministic guarantees can-
not be given for adaptive systems, we should aim for probabilistic ones. Within the
choice of probabilistic guarantees we have then addressed the other two research
challenges. In fact, we have showed how to apply scenario theory for quantifying
the system performance and testing confidence. Respectively, ε quantifies the prob-
abilistic bound on the performance (CH2), and β quantifies the testing adequacy
(CH3).

5. Experiments

This section aims at validating the proposed methodology. Our approach is designed
to: (i) provide formal probabilistic guarantees from experiments (CH1), (ii) allow us
to perform a fair comparison of different adaptation strategies (CH2), (iii) quantify
the trade-off between the number (and cost) of experiments and the obtained proba-
bilistic confidence (CH3). Finally, every method has to take into account the choice
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of test inputs. Hence, we explain how the choice of randomized testing inputs can
affect the results of the testing campaign (CH4)

The proposed approach (shown in Figure 1) is application independent. We
highlight this strength presenting experimental data from well-established adaptive
software with different application domains: healthcare, video processing, and traf-
fic flow optimisation.

In this section we show two different applications of the approach using the three
presented analysis tools: MC, EVT, and ST. We highlight and discuss the respective
limitations and what each technique can be used for.

In particular, in Section 5.1 we focus the discussion on the trade-off between
the number of performed tests and the obtained probabilistic confidence using a
simulation tool for the Tele Assistance Service (TAS) [Baresi et al., 2007; Weyns
and Calinescu, 2015]. This shows how we address the research challenges CH1 and
CH3. In Section 5.2 we focus on the comparison of different adaptation strategies
using the Self-Adaptive Video Encoder (SAVE) [Maggio et al., 2017b]. Our ap-
proach allows us to address the research challenge CH2. Furthermore we include a
discussion on the possible consequences of a partition of the test inputs, this con-
cerns the discussion the research challenge CH4. In Section 5.3 we use the TRAPP
case study to discuss the role of test inputs definition in our testing methodology:
this discussion addresses the research challenge CH4.

5.1 Data vs. Confidence Trade-Off
Aim: The aim of this case-study is to discuss the different probabilistic guaran-
tees that can be provided with the different methodologies. To do so we show the
complete application of the different methodologies (MC, EVT and ST) to the TAS
system and comment the results. The results expose, among other facts, the lim-
itations of the traditional statistical approaches in terms of confidence evaluation.
Conversely, we discuss the probabilistic guarantees obtained with ST: the proba-
bilistic performance bound and the testing confidence are discussed. More specif-
ically, when using ST, we can offer guarantees on the software performance level,
even for test cases that have not been explicitly executed (CH1), and we evidence
the direct connection between the amount of collected experimental data and the
probabilistic testing confidence (CH3).
Self-Adaptive Software: TAS is a service-oriented software application that pro-
vides care and assistance to elderly people that suffer from chronic diseases [Baresi
et al., 2007]. The software [Weyns and Calinescu, 2015] periodically monitors pa-
tients conditions using sensors and activates a chain of services invocations. First,
the patient conditions are sent to an Analysis Service, that inspects the data and de-
termines the next steps to be taken for the patient well-being. The outcome of the
analysis is one of the following: (i) do nothing, (ii) invoke a Drug Service that will
compute a new medicine dosage, or (iii) invoke an Alarm Service that will dispatch
an ambulance.
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Each service can be realised by multiple service providers, potentially doing
different computations that follow the same specification and interface. During the
execution of the software, the selection of which provider to invoke to obtain a given
functionality introduces an element of choice in the management of each request.
Service providers have different properties; e.g., quality of the service, availability,
success rate, and failure probability. In our experiments we focus on service rate
and availability in the presence of failures, i.e., the number of requests processed
per time unit and the probability of serving incoming request successfully.

The presence of different service providers and variety of potential needs for
each request introduces the need to adapt the software behaviour to the current
operating conditions. Adaptation strategies were introduced with the aim of se-
lecting given services based on properties to be enforced for the overall system,
e.g., [Shevtsov and Weyns, 2016; Caporuscio et al., 2017; Maggio et al., 2017a;
Edwards and Bencomo, 2018]. In our experiments, the adaptation strategy should
recognise the service providers with higher service rates and prioritise them when
distributing the requests. Also, since services might not always be available, the
adaptation layer should avoid submitting requests to unavailable service providers.

To identify the best choices, the adaptation layer stores one number per service
provider, called weight. For all the alternatives, the weight is initialised to 1 and in-
cremented or decremented (using a fixed step equal to 50 in our experiments) based
on the service performance. For each successfully processed request, the weight in-
creases, and for each failed invocation the weight decreases. We further introduce a
timeout and reset the weight to 1 if the service invocation failed for all the requests
sent in the timeout interval.

When distributing the requests, the weights are used to define a probability dis-
tribution over the different providers of a given service. The probability distribution
can be obtained by normalising each of the weights over their overall sum. The re-
quests are distributed according to this probability distribution. We limit the weights
to an interval between 1 and 1000. This avoids that overly positive weights attract
all the requests. In the same way, negative weights imply that the service provider
is never chosen, making it impossible to recover even in case of potentially correct
operation.

Test Design: We use the TAS case study to highlight the trade off between data and
confidence, i.e., how the exploration of the system’s behaviour improves with the
increasing number of tests. The definition of which inputs should be randomised
is critical for the correct coverage of the system’s behaviour. Here, we randomise:
(i) the requests profile, i.e., the number of incoming requests; (ii) the workload
mix, i.e., the type of incoming requests; (iii) the availability of the different ser-
vice providers, i.e., a provider being reachable or not; and (iv) the reliability of the
service providers, i.e., request processing may fail due to internal reasons.

We can use one or more performance parameters, depending on the specific soft-
ware and on what are the aspects that we want to test. The performance parameter
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Figure 3. TAS: Histogram of experienced average number of attempts and plot of
the obtained normal distribution of the sampled average performance.

should be representative of the behaviour of the adaptation layer. Practically, this
means that it should enable the distinction of whether the adaptation layer worked
well for the specific test case, or not. In the TAS case we want to build a system
that is robust to the occurrence of failures. We choose as performance parameter
the average number of attempts needed for a request to be correctly handled. Lower
numbers indicate better adaptation, 1 being the best possible value (often not achiev-
able).

Results MC: Figure 3 shows the histogram of the obtained worst case in the dif-
ferent tests. For each possible performance value on the horizontal axis the column
above is proportional to the number of tests that exposed that performance. In the
same figure, we also plot the gaussian distributions obtained for the sampled mean
and its sampled variance using an increasing numbers of test cases.

We use this figure to investigate what MC methods allow us to state about the
average performance of the system and comment on its applicability. The obtained
gaussian distributions do not change significantly when increasing the number of
tests – i.e., the different line plots are close to each other. This shows the quick
convergence of the MC methods: already with 25 tests we obtain some confidence
that we can expect (on average) a performance of around 1.45 number of attempts
with this adaptation strategy.

On the other side, this evaluation does not give formal guarantees on such state-
ment. Specifically, we would like to quantify the words “around” and “some confi-
dence” from the statement above, but with MC this cannot be done in the general
case. As an example, we cannot state that 1.45 is the performance that we are most
likely to observe. The most probable performance, in fact, seems to be slightly lower
according to the histogram.

To summarise, the experiments show that MC methods can be used to get a
rough evaluation of the average behaviour of an adaptive system. Their quick con-
vergence allows to achieve this with relatively few experiments. But, if the purpose
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Figure 4. TAS: Histogram of all the test outcomes that exceed 1.5554 average at-
tempts per request. In red are plotted the GEVDs fitted for different maxima choices
in the TAS case study – namely 100, 75, 50, 25 maxima.

of the testing campaign is to formally constrain the adaptation performance, they
lack of a general approach to the evaluation of the testing confidence.
Results EVT: Figure 4 shows the histogram of 100 maxima from the testset of
the TAS system. Overlying to the histogram, are plotted the GEVDs fitted using
different numbers of maxima, namely: 100, 75, 50, and 25. The application of EVT
provides a full probabilistic characterization of what can possibly be the worst case
performance of the system.

If we take one set of maxima and the associated fitted distribution we can pro-
vide probabilistic guarantees on what is the worst case performance of the adapta-
tion strategy. For example if we take 1.9 as candidate worst case the fitted distribu-
tions can be used to compute the probability of obaining a performance worse than
that. Using the distribution fitted to 100 maxima we would obtain a 0.92% probabil-
ity of obtaining a performance worse than 1.9. The same statement could be made
for different candidates for the worst case performance (apparently associated to a
different probability).

Unfortunately, this evaluation doesn’t include a quantification of the confidence
we can have on the statement. This depends on whether the used maxima are suffi-
cient to obtain convergence to the GEVD and the theory doesn’t provide a way to
quantify it. Experimental evidence of such statement is that the different choices of
the maxima provide different results for the worst case probability. Using 75 max-
ima we would have in fact obtained a probability of 0.73%, using 50 maxima we
would have obtained a probability of 0.58%, or using 25 maxima we would have in
fact obtained a probability of 0.37%. The theory doesn’t provide a way to evaluate
the confidence and therefore to state which of those choices can be considered more
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performed tests using the Scenario Theory. Figure from [Mandrioli and Maggio,
2020].

appropriate or reliable.
Results ST: Figure 5 shows the evolution of our quantities of interest when we
perform an increasing number of tests and analyse them using ST. In particular, it
shows: (i) the worst experienced average number of attempts needed per request
(using the left y-axis), and (ii) the confidence β in the test outcome for different
values of ε (using the right y-axis).

In the figure, we highlight with circle markers the newly experienced worst
cases. The worst case is monotonically increasing with the number of conducted
experiments. For example, in test #226, the average number of attempts per request
to complete the TAS cycle is 2.081. This is a new worst case, as the previously
experienced value was 1.8479 (from test #117).

The probability of not performing a relevant test (i.e., a test that would lead to
a different worst case) is monotonically decreasing with the number of performed
experiments. Analogously, a higher number of test cases is leading to a higher test
coverage. Despite an unchanged worst case, between tests #117 and test #226, our
confidence in the experimental results grew (lower values of β ).

Decreasing the value of ε means being more conservative with our evaluation.
The non-solid lines show the confidence β with smaller values of ε (up to 1%).
Many more experiments are needed to obtain the same level of confidence when a
smaller ε is selected.

The quantity β is the key difference between ST, and EVT or MC. Within ST, the
test brings information both on the reliability of the testing process and the system

75



Paper I. Testing Self-Adaptive Software with Probabilistic Guarantees

under test itself. In MC and EVT the information carried by the tests is used only
to evaluate the system’s performance. Differently from MC and EVT the testing
confidence allows the testing engineer to make a conscious choice on the number
of randomly generated test cases according to the needed testing confidence and
performance evaluation.

Using the scenario theory, we can state:

Based on the results of n = 500 tests, requests sent to TAS (with the descri-
bed adaptation strategy) will not need more than 2.081 attempts on average to
complete (despite service failures) with probability 1− ε = 0.98. This state-
ment is correct with probability 1−β = 0.99996.

This performance is apparently strongly dependant on the chosen adaptation strat-
egy. More interestingly, it does not depend on the specific values of the quantities
that have been randomised for the test case generation. Conversely, we could deter-
mine the number of tests to be performed based on the desired ε and β values:

Given the desired probabilistic guarantees of confidence of 1−β = 0.99996
and a bound that holds in 98% of the cases, we perform n = 500 tests. In our
case, the 500 tests indicate that in the worst case 2.081 attempts are needed
on average per request.

Suppose that we could afford to conduct only n = 250 tests. In Figure 5 we can see
that the measured worst case is the same as the complete test campaign. However,
keeping 1− ε = 0.98, we could only claim a lower confidence in our test findings:

Based on the results of n = 250 tests, requests sent to TAS (with the descri-
bed adaptation strategy) will not need more than 2.081 attempts on average to
complete (despite service failures) with probability 1− ε = 0.98. This state-
ment is correct with probability 1−β = 0.9936.

Vice versa, we could also determine the larger bound ε that we need to accept for if
we wanted the same confidence 1−β = 0.99996 for 250 experiments. In this case
we would obtain 1− ε = 0.9603.

5.2 Adaptation Strategies Comparison
Aim: The aim of this second set of experiments is to show the use of the proposed
methodology for the comparison of different adaptation strategies. We run the tests
and quantify the performance for each case with all the three discussed tools. The
experiments expose the limitations of MC and EVT in enabling fair comparison.
This is achieved, instead, with the use of ST (CH2). We aim at using the presented
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statistical tools to compare in a fair way the different adaptation strategies. More-
over, we also show the application of the scenario theory for testing with different
and conflicting adaptation requirements (CH1). To further emphasise the validity of
the proposed methodology, in this section we run the tests using the real software,
rather than a simulation tool.

Self-Adaptive Software: SAVE [Maggio et al., 2017b] is a video encoding tool
that aims at automatically achieving the desired size compression of a video stream
whilst preserving as much as possible of its content. We target video broadcasting
services, where multiple videos are streamed with a fixed amount of bandwidth and
unpredictable demands. We also assume that the video content is not known a priori
and is expected to change over time. The need for adaptation arises from the strong
dependence of the encoding performance on the specific content of the video.

The adaptation strategy should leverage the frame characteristics to au-
tonomously find an effective combination of encoding parameters. For each frame,
the adaptation layer selects: (i) the quality parameter that specifies the compression
density. It ranges between 1 and 100, where 100 preserves all frame details and 1
produces the highest compression; (ii) the sharpen parameter, which specifies the
size of a sharpening filter to be applied to the image. The filter size ranges between
0 and 5 where 0 indicates no sharpening; (iii) noise correction, which specifies the
size of a noise reduction filter, also between 0 and 5. High filtering should in general
generate a more uniform image, making it simpler to compress.

For each frame the adaptation layer measures size and quality and selects the
encoding parameters accordingly, using its own algorithm. The size is measured
in bytes and the quality is measured using the Structural Similarity (SSIM) in-
dex [Zhou Wang et al., 2004]. This index is a unitless metric that ranges between
0 and 1 and quantifies the similarity between the original and the encoded frame
(high index meaning high similarity). The measurements are used to evaluate the
size error and the SSIM error as differences between the measured values and the
desired ones.

We compare four different adaptation strategies, two from the original arti-
fact [Maggio et al., 2017b] and two developed specifically for this work:

• Random: this adaptation strategy (from the original artifact) selects random
encoding parameters. We use it as a baseline for our evaluation.

• Model Predictive Control (MPC): this adaptation strategy (from the origi-
nal artifact) exploits model predictive control algorithm [Garcia et al., 1989].
It solves a model-based optimisation problem for each frame and uses the
result to determine the encoding parameters for the next frame. For our tests,
we used the tuning parameters from the original publication [Maggio et al.,
2017a].

• Integral: we developed an heuristic adaptation strategy, inspired by control
theory principles. Here, the size error is used to choose the quality parameter.
If the size is larger than the desired one, the quality parameter is reduced
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Table 1. SSIM performance [adimensional].

Mean Var Max EVT (30%) EVT (20%) EVT (10%)
Random 0.0710 ±0.0054 0.3251 0.002720 0.002602 0.002264
MPC 0.1145 ±0.0068 0.4565 0.004850 0.005141 0.002810
Integral 0.0315 ±0.0029 0.1685 0.003230 0.002876 0.001808
Greedy 0.0135 ±0.0018 0.1777 0.002010 0.003062 0.003528

Table 2. Size performance [bytes].

Mean Var Max EVT (30%) EVT (20%) EVT (10%)
Random 8806 ±1033 82488 0.003925 0.005366 0.004677
MPC 492 ±94 8718 0.006511 0.005625 0.005046
Integral 126373 ±13942 992342 0.006526 0.006001 0.005460
Greedy 1885 ±318 35191 0.004277 0.002834 0.004337

by 5. If smaller, the quality is increased by 5. The SSIM index determines the
choice of noise and sharpen filter radius. Both are increased by 1 if the quality
is more than desired, and reduced otherwise. From an analytical perspective,
the errors are integrated to perfect the encoding parameters choice.

• ε-Greedy: this adaptation strategy is based on the homonym machine-
learning algorithm [Sutton and Barto, 1998]. More specifically it belongs to
the class of reinforcement learning algorithms. It alternatively leverages two
adaptation approaches: (i) a greedy approach that exploits the knowledge of
the best parameters already encountered with probability 1−ε , and (ii) a ran-
dom approach that explores new possible choices, by randomly selecting new
parameters with ε probability. The performance of a given choice of param-
eters is quantified based on the errors and normalised by the desired values.
Higher similarity and lower size are desired, inducing errors that are close to
zero. The greedy approach chooses the set of parameters that is associated to
the lowest performance value. We use ε = 0.2.

Test Design: In SAVE, adaptation takes place along a stream of frames, i.e. the
feedback from one frame is used to improve the encoding of the next frame. To
capture the behaviour of the adaptation strategy, each test should be an adequately
long video, in which changes occur, triggering the need for adaptation. We would
like to evaluate the performance of the different adaptation strategies independently
from the content of the processed videos.

According to the proposed methodology, we define a set of videos that can be
considered a random sample, with respect to their content. Here, we used the User
Generated Content dataset from Youtube [Wang et al., 2019]. This dataset is rep-
resentative of videos uploaded by users to Youtube. The videos are classified in
categories and we focused on the sport category, because, due to the ever-changing
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scene, these are usually the most difficult to encode for real-time streaming and will
expose the most of the adaptation strategy properties. The database contains 160
sport videos.

The adaptation strategy tries to achieve multiple objectives (a given size of the
encoded frames, and a given content loss) at the same time. To capture the results
obtained for both objectives, we define two different performance parameters, used
to measure the outcome of the tests. The encoding performance on a single frame
is directly quantified as the errors on: (i) the encoding size and (ii) the SSIM. For
performance evaluation, we only consider relevant the cases in which the size is
larger than the desired value or the quality is lower than the setpoint.

Intuitively, the size error is a problem when the images require more bytes than
desired, and the SSIM quality is a problem when the image has less information
than desired. We therefore evaluate the performance over a video of an adaptation
strategy as the average of the size and SSIM errors weighted with the REctified
Linear Unit, relu(·) function. The relu(·) function returns 0 for negative inputs and
leaves the input unchanged for positive values. The complete formula for the per-
formance parameters is shown in Equation (6), where SSIMv and SIZEv are the
integrated errors on the video v, SSIMsp and SIZEsp are respectively the SSIM and
size setpoints, SSIMi and SIZEi are the SSIM and size of the i-th frame and n f is
the number of frames in the video.

SSIMv = (1/n f ) ·∑i relu(SSIMsp−SSIMi),

SIZEv = (1/n f ) ·∑i relu(SIZEi−SIZEsp). (6)

In our evaluation, we use a SSIM reference of 0.9, preserving most of the content
in the videos, and a frame size reference of 70% of the size of a frame randomly
picked from the uncompressed video. The choice of having per-video references for
the size is driven by the strong dependence of the frame size on the specific video.
Results: We ran the 160 encoding tests with each adaptation strategy. For each
video v, we computed the two performance parameters SSIMv and SIZEv defined in
Equation (6). The histograms in Figure 6 show the results of the tests.5 The dashed
grey lines mark the average performance for both similarity index and size, and the
red dotted lines highlight the worst case experienced during the tests.

Tables 1 and 2 respectively show different performance metrics for the SSIM
and frame size. The two leftmost columns contain the sampled mean and variance,
used by the MC analysis. The Max column displays the maximum values experi-
enced for the parameters in the tests, relevant for the ST approach. The three right-
most columns show three different probabilities computed with the EVT method.
These are the probabilities of obtaining a performance value worse than the worse
experienced value in the tests. We specifically computed three EVT probabilities us-
ing the same threshold value (the maximum value experienced in the experiments).

5 In the figure, we enforce the same scales for the axes to ease the comparison between the different
plots. This results in hiding part of the plot of the size performance for the Integral strategy.
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The three probabilities correspond to the GEVD being fitted to respectively the
30%, 20%, and 10% largest values from the test outcomes. The chosen threshold
value allows us to directly compare the results of the EVT approach with the ST
probabilistic bound.

For what concerns the ST analysis, the number of performed tests n = 160 al-
lows for the scenario parameters ε = 0.03 and β = 0.008. As for the TAS case
study, this is not the only possible choice and a tighter bound could be traded for
lower confidence (e.g. ε = 0.01 and β = 0.04) or vice versa (e.g. ε = 0.05 and
β = 0.0003). Apparently, the two quantities hold equally for each of the tested
adaptation strategies.

For the size performance, the MPC adaptation strategy vastly outperforms all
the other strategies. This is achieved at the price of a SSIM adaptation performing
worse than the Random strategy – i.e. the baseline. This is consistent with the adap-
tation objectives stated in the design of the strategy, where the size compression was
considered the main objective [Maggio et al., 2017a]. This is equivalently observed
by all the three alternative analysis techniques – i.e. comparing the first (MC) and
third (EVT and ST) columns of the tables.

The Integral adaptation achieves the complementary result with respect to the
MPC strategy. It presents good performance (among the strategies studied here)
from the point of view of the SSIM but exposes the worse performance for what
concerns the size. This can be attributed to the decoupled approach between the
adaptation objectives pursued with this adaptation. Size and quality are not really
decoupled (although the adaptation strategy treats them as such) and cannot effec-
tively be treated separately.

When we compare the SSIM performance for the Integral and the ε-greedy
strategies, the average and worst-case metrics are in slight disagreement. Whilst the
former suggests a preference for the ε-greedy approach, the latter (the bare max-
imum) favours the Integral adaptation strategy. However, the tail of the histogram
obtained with ε-greedy approach (Figure 6) seems lighter – i.e., less test cases per-
forming “around and above” the performance value of 0.1. Intuitively, we would
expect this to result in a higher probability of exceeding this bound. This is the
probability that we computed with EVT in the right-most three columns of Table 1.
Unfortunately, the value significantly depends on the number of maxima used for
the GEVD fitting: if 30% of the values are considered maxima we should compare
0.32% for the integral adaptation and 0.2% for the ε-greedy strategy, otherwise
0.28% and 0.3%, or 0.18% and 0.35% if were respectively 20% and 10% of the
values. Apparently, the conclusion on which is the best strategy will be different
depending on the chosen number of maxima. Using EVT, we are not equipped with
tools to select a number of maxima. Whilst these might seem minor variations in
the probabilities, we recall that we are discussing probabilities of rare events (worst
cases). Those probabilities are therefore intrinsically small and also minor varia-
tions can have high relative significance. This exposes one of the main limitations
in applying the EVT to the testing of self-adaptive software. Conversely, ST assigns
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the same probability to the two adaptation strategies, leaving in some sense the fi-
nal choice to the testing engineer. In this case, the sampled average from the MC
method helps the testing engineer in choosing which adaptation strategy to favour.
Despite this, it does not allow us to formally state that the ε-greedy approach out-
performs the Integral strategy.

When simultaneously looking at both performance parameters, the machine-
learning based approach achieves good performance. The SSIM performance is
comparable to the one of the Integral adaptation and the size performance is in
the order of the tens of kilobytes. This latter performance parameter can be con-
sidered small with respect to the biggest frames in the dataset, whose size is a few
gigabytes. The ε-Greedy adaptation strategy proves therefore to be the best one at
simultaneously achieving both adaptation objectives. This can be attributed to the
exploration of the possible combinations of encoding parameters and the coupled
feedback used for the two objectives.

Our testing methodology, when leveraging ST, guarantees that the comparison
between the different adaptation strategies is fair. This is based on the rigorous
quantification of the confidence we can have in obtained bounds. In particular, for
the ε-Greedy algorithm, ST ensures that with a probability of 1− ε = 0.97 we will
not observe: (i) an error worse than 0.1777 for the SSIM performance parameter,
and (ii) an error worse than 35191Kb for the size performance parameter (see Equa-
tion 6 for the performance definitions). The confidence in our test campaign is of
1−β = 0.992, meaning that there is little probability of the choice of the adapta-
tion strategy being wrong. Conversely, using MC and EVT, such formal statements
would not be possible. Finally, if there was a need to tighten the bound or increase
the confidence in the test campaign, the scenario theory would directly provide the
extra number of test cases needed.

We highlight the difference between worst-case and average-case metrics.
Analysing the average case (as done with the MC approaches) for the results in
Figure 6, one would conclude that the Random adaptation strategy actually per-
forms more or less as well as the others. However, this is not at all true for the
worst-case metrics, which clearly expose the trade-off between size and quality and
the difference between having an adaptation strategy that targets one or both these
quantities and picking the next frame configurations at random.

Results with different inputs choices: To conclude the discussion on the results
obtained with SAVE, we would like to discuss the impact of the choice of input
videos. The discussion belongs to a more general remark on the choice of represen-
tative samples for the random inputs to be provided to the testing machinery.

Suppose that the broadcast videos are acquired by surveillance cameras and that
we have a set of cameras with given resolutions. Initially, we envision cameras with
360P, 480P, 720P and 2160P resolutions. We therefore test the adaptation strategies
using a diverse set of videos but only with the mentioned resolutions and draw some
conclusion on the worst case frame size and similarity errors. When our system
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expands, we want to introduce additional cameras, with a new resolution of 1080P.
In the testing phase, we did not collect collected any data on videos with such a
resolution. However, given that we tested higher and lower resolutions, we could
think that our test results are valid nonetheless and apply also to the extended set. We
could then use the measured worst case in our tests and assume this is (most likely)
not going to be violated. However, the input set of videos was not representative of
the data that we then experience from the actual system.

To show this, we partition our initial data set in different subset with the given
resolutions. Table 3 shows the worst case and average case errors for the subsets of
our initial input sample. Computing the worst case value excluding videos from the
1080P resolution shows that it was necessary to test for this specific resolution and
the corresponding test output changed our worst case. In fact, if one looks at the
column representing the 1080P resolution videos, the worst case errors for the size
of the resulting frames is much higher than it is for the other videos. Excluding the
1080P videos from the dataset would result is a much more favourable worst-case,
which is not representative of what would have happened had the test sample being
complete. On the contrary, including these tests from the beginning (i.e., before our
system expansion) would have resulted in a conservative value being computed for
the first setup.

The same remarks apply to average performance metrics and similar considera-
tions hold for the video quality metric (SSIM) when one removes the 480P subset.

This shows that there is indeed a need for a representative set of input videos
to properly provide guarantees on the worst-case experienced values. This does not
simply apply to the video streaming service, but to any system that is tested using
statistical methods (including ST).

5.3 Test Input Definition

Aim: The aim of this case study is to discuss how to define test inputs in a random-
ized testing campaign. We introduce and analyse an adaptive software application
for traffic flow optimisation [Gerostathopoulos and Pournaras, 2019]. We assume
that the software is utilised to understand if a given traffic adaptation strategy (im-
plemented in the original artifact) is beneficial or not. We formally define the objec-
tives of the testing campaign and show how those map to the choice of which inputs
to randomise and which inputs have to be fixed across the tests (CH4). Leveraging
ST we define the number of tests that are needed according to the desired probabilis-
tic guarantees on the software performance (CH1). We ran two rounds of experi-
ments (with and without adaptation) to identify the potential benefits of enabling the
adaptation strategy. We discuss the connection between the outcome of the testing
campaign and the choices made for the input randomisation. This case study shows
the practical applicability of the proposed testing approach to the performance test-
ing and evaluation of an adaptation strategy.
Self-Adaptive Software: TRAPP [Gerostathopoulos and Pournaras, 2019] is a self-
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adaptive framework for decentralized traffic optimization. It is based on the micro-
scopic traffic simulator SUMO [Lopez et al., 2018], and implements the interopera-
tion with the decentralised combinatorial optimizer EPOS [Pournaras et al., 2018].
Within TRAPP, smart vehicles populate a simulated network of roads defined by
the user. Vehicles can be introduced in the map in arbitrary points and will drive to
reach a desired destination. Each vehicle produces different possible routes that it
can take to reach its destination. The generated routes are associated to a specific
cost that captures the preferences of the passengers. The routing options of every
vehicle, together with their cost, are periodically collected. The EPOS optimiser is
then executed to produce a route choice for each vehicle that accounts at the same
time for both the desires of the car passengers and the overall efficiency of the road
network. We extended the TRAPP artifact to enable repeated randomised testing.6

The traffic optimisation problem complexity grows exponentially with the num-
ber of cars, and achieving the global optimum in a general fashion is impossible.
Moreover, the best approach to the optimisation problem depends on the current
state of the network: e.g. the distribution of the cars in the streets, the specific desti-
nations of the cars, and more. For this reason, adaptive approaches to the execution
of the optimisation in EPOS have been proposed. The adaptation idea is to mon-
itor in real-time the performance of the network and of the traffic flow optimisa-
tion. Leveraging this information, the EPOS optimisation can be adapted in order
to improve the overall performance of the system. Among others, in TRAPP can be
adapted the planning horizon, the planning fairness, or the agents selfishness.

In our case study, we assume a scenario in which the administration of a city
wants to improve the city mobility by adopting the framework proposed by TRAPP.
An adaptation strategy has been developed and needs to be tested in order to assess
the potential benefit. More specifically, we consider the strategy avoid-overloaded-
streets proposed in the original paper [Gerostathopoulos and Pournaras, 2019]. The
idea is that the adaptive software layer monitors in real time which streets are closer
to the limit of their capacity and adapts the EPOS optimisation so that those streets
are avoided if possible.
Test Design: Analogously to the original paper [Gerostathopoulos and Pournaras,
2019], we quantify the performance of the adaptation strategy as the average trip
overhead of the trips completed by all the cars. The trip overhead is defined as the
ratio between the trip duration and the ideal trip duration that would be achieved
in absence of other vehicles (hence if the vehicle was travelling always at the max-
imum allowed speed). A well performing adaptation strategy will be able to redi-
rect the cars through the fastest route, thus reducing their traveling time and conse-
quently the average trip overhead. Conversely, if the starting and end points of the
cars are changed, the average trip is also likely to change. In this latter case, the per-
formance change is related to the specific change in the testing scenario and not to

6 The code used for this set of experiments can be found in this repository: https://github.com/M
anCla/TRAPP.
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Figure 7. TRAPP: Measured worst case with adaptation stratergy (in red), without
adaptation (in blue), and confidence level (in black) according to the desired 97%
probabilistic bound computed using Scenario Theory.

the quality of the adaptation strategy. Leveraging the probabilistic approach taken
in this paper, we therefore randomise the origin and destination of each trip over
repeated tests. In this way, leveraging ST we obtain an evaluation of the adaptation
performance that is independent of the source and destination parameters.

More in general, we depict a scenario in which the administration of the city
mentioned above, wants a performance evaluation that is independent of both the
specific vehicles and drivers that are currently populating the network, and also of
the total number of vehicles in the streets. Following this specification, in our simu-
lations we randomize these specific quantities. When a car is introduced in the net-
work, we randomly pick values for its acceleration and deceleration (representing
how performing are the engine and brakes of a car or driving style of the driver).
Namely, for respectively the acceleration and deceleration we used two truncated
normal distributions N (4,2) and N (6,2), both with unit of measure [kmh/s]. In
order to avoid unrealistic car performances both values are forced to be at least 1.
Said distributions represent a statistical knowledge of the cars used in the city. To
account for the preferences of the different drivers, we select the weights for the
different routing options from a uniform distribution between 0 and 1. The different
routing options can optimise the length of the trip, the expected average speed, or
a combination of the two. To achieve independence from the specific trips, the cars
are introduced in random points in the network and are supposed to drive to equally
random points. Finally, we assume that the city administration has an evaluation of
the possible number of cars that populate the network. Specifically, it has been es-
timated that the number of cars can be any value between 800 and 1200 with equal
probability. Therefore, the number of cars included in each test is chosen according
to the estimated distribution.

86



5 Experiments

Conversely, in the testing of the adaptation strategy, it will not be relevant to ran-
domize parameters that will be fixed once the system is deployed. Examples of such
parameters are: the network, the triggering period of the adaptation, and the dura-
tion of each test. While randomising those parameters will provide a more general
evaluation of the chosen adaptation strategy, it will not provide further information
concerning the actual use of the adaptive system. For example, it is not important
that an adaptation strategy performs well independently from the specific city where
the TRAPP framework is implemented. Once the system is deployed, the network is
not expected to change significantly and require a consequent reaction of the adap-
tive system. For what concerns instead the triggering period, its analysis should be
systematic rather than randomised, so that an optimal choice can be made in the
system design. This kind of analysis is out of the scope of this paper and has been
discussed in recent related research [Dorn et al., 2020], hence we chose the arbitrary
period of 100 simulation ticks. The last mentioned parameter is the duration of the
simulation. The choice of this parameter is driven by a trade-off between the effi-
ciency and the relevance of the testing campaign. Apparently, efficiency purposes
call for a simulation that is as short as possible. In our case study, we consider a test
to have achieved significance when most cars have indicatively performed more
than one trip. Since car trips can take from tens to hundreds of simulation ticks we
chose for our tests a fixed value of 1000 simulation ticks.

In the depicted testing problem, we assume that a risk analysis requires that
the obtained performance bound will hold in 97% of the cases. Equivalently, it is
accepted a 3% probability that the adaptive system will not provide the expected
performance: thus, for the application of ST ε is set to 0.03. Finally, we consider
1−β = 0.9999 and acceptable confidence in the final result – i.e. the probability
that ε is effectively equal to 0.03 and not larger. By applying Equation 5 we obtain
the number n = 300 of required tests. In order to evaluate the effectiveness of the
proposed framework, we ran two separate round of tests: one including the proposed
strategy and another one where the EPOS optimisation is never executed.

Results: Figure 7, shows the worst case performance observed along the two rounds
of tests together with the confidence increase (quantified using ST). In the figure,
the blue plot shows the worst case observed without adaptation, the red plot shows
instead the worst case in presence of the adaptation. The tests on the adapted system
showed an overall worst case of 3.0223 for the average trip overhead. The tests
on the system without adaptation showed an overall worst case of 3.0568. Under
the light of the chosen scenario parameters, we can state that, with a confidence of
99.99%, there is a 3% probability that a combination of the randomised parameters
will lead to an average trip overhead larger than 3.0223 and 3.0568 for respectively
the adapted and non adapted cases. Conversely, the obtained bounds will not hold
if different choices are made for the fixed parameters: the network, the adaptation
triggering period, and the test duration. If these latter parameters are changed, the
tests would have to be performed again in order to obtain bounds that are valid for
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the new set-up.
The experiments did not show a significant difference in the performance of the

network when the adaptation was introduced. Hence, it can be concluded that the
proposed adaptation strategy does not provide any relevant contribution to the traffic
flow, and the city administration should investigate different solutions. In fact, given
the choices that were made for the random parameters, there is a 97% probability
that this conclusion will hold for any number of cars between 800 and 1200. On the
other side, if a different map was to be chosen, the obtained values wouldn’t hold
anymore and the obtained conclusion would not be valid anymore.

6. Limitations and Validity Threats

In this section, we discuss validity threats to the proposed approach. Validity threats
can be divided into internal and external. The methodology of the paper is a direct
application of ST [Calafiore and Campi, 2006] and as such does not pose any inter-
nal validity threat. On the contrary, we identify external validity threats in how the
test inputs are collected, how the scenarios are randomised, and how many sample
data are available. These external validity threats result in three main limitations of
the proposed approach.

The first one is rooted in the definition of the testing of an adaptive system. The
need for adaptation in a system rises from limited knowledge of the operational en-
vironment. This generates an intrinsic limitation to the definition of test cases, since
the software, as a requirement, should adapt to new unforeseen circumstances. On
the other side the testing process is only as effective as the test cases are represen-
tative of the real use case. These two objectives of the introduction of adaptation
and rigorous definition of test cases are colliding [Bahar et al., 2019]. The software
engineer needs to synthesise a definition of the set of tests that adequately covers
the adaptation use cases. However, the adaptive layer programmer has an interest in
leaving the use cases as undefined as possible, for generality. In the TAS example,
we would like the adaptation layer to handle general providers failures. However,
this also means that (for proper testing) we need to define possible service failure
patterns.

The second limitation arises from the interpretation of the performance param-
eters as random variables, and for this reason it is common to all the three statistical
tools discussed. This interpretation is the key to exploit random sampling and to
leverage the different theories that are based on probability theory. The roots of the
limitation reside in the assumption of unbiased random sampling. Achieving unbi-
ased random sampling can be challenging, especially when randomness cannot be
quantified. The testing engineer must select a significant and relevant set of samples,
e.g., sport videos with random content to test SAVE. The Scenario Theory reduces
this limitation by not requiring any assumption on the probability distribution of the
performance parameter. This allows to process data from tests that are conducted in
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a production environment (when available) and hence are, by definition, represen-
tative of the actual distributions.

A last limitation arises from the need to conduct many tests to achieve high
confidence. EVT and ST are particularly affected by this, whilst MC seems to re-
quire a smaller number of tests – even though this cannot be generally guaranteed.
Conducting many test cases can, in fact, be time-consuming and the process needs
to be automated. On the other side, the number of needed tests is known a priory
and allows for timely allocation of the resources. Also, within scenario theory the
confidence grows exponentially with respect to the number of tests, avoiding the
uncontrolled “explosion” of the number of tests to be executed.

7. Conclusions

In this paper we addressed the problem of testing the performance of a self-adaptive
software system. Conventional testing techniques are limited in the guarantees they
provide, due to the adaptation presence. The presence of adaptation makes this prob-
lem challenging, due to the need to test the system in the presence of uncertainty.

To deal with uncertainty, we investigated probabilistic techniques to analyse
the resulting data. Moving to the probabilistic framework gave us the possibility
of obtaining formal (albeit probabilistic) guarantees on the results of our testing
campaign. We investigated classical statistical tools, like Monte Carlo Simulations
and the Extreme Value Theory. In this investigation, we highlighted their limitations
and shortcomings for the testing of adaptive software.

To overcome said limitations, we leveraged the scenario theory, a tool from ro-
bust control that was originally intended for the design of control systems in the
presence of uncertainty. We reinterpreted the scenario theory results in light of our
software testing problem. This allows us to provide formal probabilistic guaran-
tees on the adaptation performance. Moreover, our method provides a probabilistic
quantification of the testing adequacy, that can be used for the evaluation of testing
coverage.

Finally, we empirically evaluated the effectiveness of our approach using
three self-adaptive applications. We showed the trade-off between the experimen-
tal campaign volume and the confidence that can be obtained, demonstrated how
to formally compare different adaptation strategies, and how to select randomised
inputs for the testing process depending on the specified experimental evaluation
objective. In our experimental results, we provided a thorough comparison of the
application of Monte Carlo, Extreme Value Theory and the Scenario Theory. Our
comparison showed why the latter is a better tool to test adaptive software.
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Paper II

Testing Abstractions for Cyber-Physical
Control Systems

Claudio Mandrioli, Max Nyberg Carlsson, Martina Maggio

Abstract

Control systems are ubiquitous and often at the core of Cyber-Physical
Systems, like cars and aeroplanes. They are implemented as embedded soft-
ware, that interacts in closed loop with the physical world through sensors and
actuators. As a consequence, the software cannot just be tested in isolation.
To close the loop in a testing environment and root causing failure generated
by different parts of the system, executable models are used to abstract spe-
cific components. Different testing setups can be implemented by abstracting
different elements: the most common ones are model-in-the-loop, software-
in-the-loop, hardware-in-the-loop, and process-in-the-loop. In this paper, we
discuss the properties of these setups and the types of faults they can expose.
We develop a comprehensive case study using the Crazyflie, a drone whose
software and hardware are open source. We implement all the most common
testing setups and ensure the consistent injection of faults in each of them. We
inject faults in the control system and we compare with the nominal perfor-
mance of the non-faulty software. Our results show the specific capabilities of
the different setups in exposing faults. Contrary to intuition and previous lit-
erature, we show that the setups do not belong to a strict hierarchy and they
are best designed to maximize the differences across them rather than to be as
close as possible to reality.

Under Submission to Transactions of Software Engineering and Methodology.
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1. Introduction

Control is at the core of many Cyber-Physical Systems (CPS) and pervasive in mod-
ern life [Müller, 2017]. Control is found in many devices, from small consumer
electronics like phones, to cars, or space vehicles [Bach et al., 2017; Molzahn et
al., 2017; Menghi et al., 2019b]. Historically, control systems were built using me-
chanical devices, like hydraulic circuits [Maxwell, 2011]. Nowadays, they are built
using software that interacts with the physical world through sensors and actua-
tors [Åström and Wittenmark, 2013]. The ubiquity and criticality of software-based
control systems makes their verification and validation of primary importance [van
der Knijff, 2014; Briand et al., 2016].

A controller comprises of sensors, actuators, hardware and software, and is used
to make a physical system behave according to given requirements [Åström and
Wittenmark, 2013]. The union of controller and physical process is called “control
system”. A prominent example of control system is the cruise control of a car. Its
objective is to ensure that the car reaches and maintains the desired velocity [Nilsson
et al., 2016]. To achieve this, the control software iteratively reads the encoders at-
tached to the wheels, computes a control action, and actuates it by opening the throt-
tle or pushing the brakes. This iteration of sensing and actuation creates a closed
loop between the physical process and the software. The two parts (controller and
physical system) are hence coupled and cannot be evaluated separately.

In control systems, the software plays a crucial role of decision-making. De-
pending on the application, if this process is incorrect there can be dramatic conse-
quences. Furthermore, modern applications include high levels of digitalisation and
integration. For example, the software of a car executes several control systems in
parallel (traction control, stability control, anti-lock braking system), also together
with the infotainment systems [Broy et al., 2007; Grässler et al., 2020]. This makes
control software complex, and prone to errors. Unsurprisingly, control software re-
quires a long and costly verification and validation process [Garca et al., 2020].

During the verification and validation process, engineers spend most time on
testing [Zheng et al., 2017; Garca et al., 2020; Bertolino et al., 2021]. The main dif-
ficulty in testing control systems arises from the necessity of executing the system
in a closed loop. Unit testing of the individual components is clearly important, but
of limited effectiveness, and system testing is crucial [Menghi et al., 2019a; Afzal
et al., 2020]. Given the tight coupling of components, it can be very difficult to
identify a fault location. In fact, even when only one component is faulty, the mal-
function spreads to all the components in the loop. Furthermore, the physics makes
the execution of tests non-deterministic and costly both in time and resources.

To work around the tight coupling of the system and reduce the cost of ex-
ecuting system tests, it is common practice to abstract specific components and
substitute them with executable models [Maia et al., 2019]. The choice of which
components to abstract defines different testing setups [Zander et al., 2011; Bring-
mann and Krämer, 2008; Lamberg et al., 2004]. Said setups are called X-in-the-loop,
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where “X” (e.g., software or hardware) describes which components are included
as their final implementation and which components are abstracted. To the best of
the authors’ knowledge, despite being common industrial practice, the differences
in fault-finding capabilities among X-in-the-loop setups have never been studied.

In particular, previous research started from the – often implicit – assumption
that there exists a hierarchy among the testing setups. This hierarchy is supposed
to manifest itself in terms of the testing capabilities and the coverage achieved with
one or another setup. To mention some examples: [Zander et al., 2011, pp.13−14]
and [Marrero Perez and Kaiser, 2009, pp.2] discuss of how each testing setup adds
detail to the testing representativeness, [Bringmann and Krämer, 2008, pp.3] dis-
cusses the increasing level of integration of the different testing setups, [Bringmann
and Krämer, 2006] and [Peleska, 2002] discuss the re-use of test cases across test-
ing setups, and their incremental nature in approximating the real-world behaviour.
Accordingly, previous literature uses the naming “testing levels” for the different se-
tups, hence implying an ordering. A likely explanation of why this assumption has
not been challenged, is that research on the topic is also limited by the development
effort required by the implementation of the different setups.

With the aim of filling the gap in the study of the setups differences and of
enabling further research, this paper provides the following contributions:

(i) a general discussion of the testing abstractions in control systems’ testing
(Section 3),

(ii) the development of four complete testing setups for a fully open-source case
study,1 and consistent injection of different types of faults (Section 4),

(iii) comparison and discussion of said setups in terms of their ability to detect
different types of software faults (Section 5).

We address the latter point by answering the following research questions:

RQ1: What are the differences between the testing abstractions with respect to their
fault revealing capability?

RQ2: When and why is it beneficial to have different testing setups? What are the
principles to be followed when designing the testing setups?

RQ3: What are the domain-specific characteristics of system testing for closed-loop
control software?

Our findings confute the common assumption of hierarchy among the setups.
We evidence the strengths and weaknesses in fault-finding capabilities of each setup
in the verification of functional properties, timing properties, and code (statement)
coverage. We provide insights in the best practices to be followed when designing

1 https://github.com/dummy-testing-abstractions/cps-testing-abstractions
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the setups: more specifically, we highlight that the difference in the testing abstrac-
tions among the setups is more relevant than the accuracy of each of them. While the
results are based on a single case study, the algorithms used – Kalman Filtering and
Proportional Integral and Derivative (PID) Control – are the most common choice in
control systems. According to an industrial survey [Desborough and Miller, 2002],
97% of controllers worldwide are PIDs. As a further element of general validity, we
note that all control systems share significant commonalities in the implementation
structure. This because they all implement an iterated loop of sensing, state esti-
mation, control computation and actuation. Said considerations support the general
validity of the case study.
Paper Outline. The paper is organised as follows. Section 2 provides the back-
ground on the development of control systems and defines the testing problem ad-
dressed in the paper. Section 3 defines the testing setups according to their corre-
sponding testing abstractions. Section 4 presents the implementation of our open-
source case study and the results of fault injections. Section 5 discusses our testing
results and their generalisability and limitations. Section 6 and Section 7 conclude
the paper, presenting related work and conclusions.

2. Control Systems Development Background and
Problem Statement

Control systems regulate physical quantities so that they behave as desired [Lee
and Seshia, 2016]. In practice, control software samples in real time a vector of
measurements y(t) from a physical process. Control algorithms use this information
to compute the values of a vector u(t) of actuation commands. The actuators affect
the state vector x(t) of the physical process. The state vector is linked to the vector
y(t) of measurements, creating a closed loop between the physical process and the
control algorithm. The control objective is that the state x(t) follows a vector of
corresponding reference signals r(t).

The synthesis of a control system starts with the definition of the control re-
quirements [Levine, 2009], i.e. the description of how x(t) is expected to follow
r(t). The most basic and common control requirements are: (i) stability (the system
eventually converges to an equilibrium point), (ii) set-point tracking (constraining
the difference between x(t) and r(t)), and (iii) settling time (constraining the time
needed for x(t) and r(t) to be sufficiently close).

As a practical example, we cast these requirements into a classical control sys-
tem: vehicle cruise control. In this case, we want to regulate the vehicle longitudinal
velocity, v(t). Stability requires that the velocity eventually reaches a constant value,
formally defined as limt→∞ v(t)= v̄ where v̄ is finite. Set-point tracking may be spec-
ified as: the absolute value of the difference between v̄ and r(t) is not greater than
2km/h, |v̄− r(t) | ≤ 2km/h. The settling time requirement may impose a maximum
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of 10s to bring the vehicle velocity from 50km/h to 70km/h: given v(t0) = 50km/h
and r(tx) = 70km/h for tx ∈ (t0, t], then v(t) ∈ [68km/h,72km/h]∀t ≥ t0 +10s.

The next step in the development is the synthesis of a physical process model
– usually a set of nonlinear differential equations. For the cruise control, these
equations describe the longitudinal dynamics of the vehicle. Models are derived
using first principles (from physics), data-driven methods, or a combination of the
two [Åstrom and Murray, 2008].

Given the requirements and the model, the control engineer, together with
application-domain-specific engineers, chooses which quantities must be measured
and actuated—i.e. the sensors and actuators that have to be installed on the phys-
ical process. This defines the measurements and actuation signals available to the
control algorithm. In the cruise control example, possible choices are: encoders
mounted on the axes of the wheels to measure the car speed, a hydraulic pump to
actuate the brakes of the car, and a servo motor to open or close the engine throttle.

Given model, sensors and actuators, control theory provides different classes of
algorithms and design methodologies to synthesise a controller that fulfils a pri-
ori the specified requirements [Levine, 2009]. Examples of such algorithms and
methodologies are: PID controllers or state-feedback, and frequency-domain design
or Linear-Quadratic Regulator control.

Independently of the application, the vast majority of control design methods
specify the controller as a set of differential (in continuous-time) or difference (in
discrete-time) equations. To handle discrete inputs, like user commands and oper-
ation mode switches, this equation-based controller is complemented with a high-
level discrete-state controller, usually specified as a state-machine [Lamb, 2013;
Murugesan et al., 2015]. Continuing with the cruise control example, the low-level
equation-based controller is responsible for using the encoders measurements to ac-
tuate the throttle or brakes. The high-level discrete-state controller instead handles
the control engagement and disengagement and other discrete inputs, e.g. signals
from a collision detection system. Hence, the complete controller specification is a
combination of a state-machine and equations.

State-machines and differential equations are ideal mathematical objects: their
implementation on discrete computers requires approximation. For example dis-
cretisation of continuous equations and practical definition of transition signals. Fi-
nally, the code of the controller is implemented and executed on hardware, closing
the loop around the physical process. In our example, the cruise control algorithm
is translated into code, compiled and flashed onto an electronic control unit on the
vehicle.

The correctness of control software and the satisfaction of requirements depends
not only on the code, but also on all the other components in the loop. For exam-
ple, the resolutions of digital to analog and analog to digital converters, the sen-
sors’ noise, and the actuators’ performance play a fundamental role in the achieved
performance. Different errors in the development can affect the satisfaction of the
requirements. After the requirements definition, there could be errors like: (i) us-
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Figure 1. Step responses of the DC motor of the motivating example. The plots
show how the control system makes the angular position of the motor (the blue line)
follow the reference (the black line). The orange line shows the voltage actuated to
the motor. The plot on the left-hand side shows the system performance with the
correct implementaiton of the control system. The central plot shows the system
performance in presence of a software fault in a matrix-vector multiplication. The
plot on the right-hand side shows the system performance in presence of a wrong
tuning of the control algorithm.

ing modelling assumptions that are not consistent with the physical process or are
not detailed enough for the control problem, (ii) faulty design of the controller, ei-
ther in the choice of control type or of control parameters, (iii) software faults, and
(iv) issues with the physical process.

When failures appear in the control system, the co-dependant implementation
and the interdependence of the different components make it difficult to single out
the specific fault that is causing the problem [Nguyen et al., 2018; Balasubramaniam
et al., 2020]. To identify the source of the problems, engineers use different testing
setups that abstract different system components. In this way, they can expose the
responsibility of the different parts.

At this stage, the testing objective is to verify that the implemented system ful-
fils the control requirements stated at the beginning of the control system design
process. This is done by feeding the system with a sequence of reference values
r(t) (the test inputs) and evaluating the requirements over the output traces y(t).
The most common practice for verifying control properties is to look at step re-
sponses, as those allow the direct verification of stability, tracking and settling time
properties [Åstrom and Murray, 2008]. We show how this is common control engi-
neering practice with an example. Furthermore we use the example to showcase the
difficulty of root causing failures in control systems.
Motivating Example. We consider the control of a DC motor where the objective
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is to move the rotating motor to reach a desired angle.2 The reference r is the de-
sired angle, the output y is the measured angle, and the control action u is the voltage
fed to the motor. We use the Simulink3 simulation environment for simulating the
motor’s physics, the encoder’s quantization, and the pulse-width-modulation that
implements the digital to analog conversion. For the implementation of the con-
trol algorithm, we leverage the possibility of incorporating custom C code in the
Simulink environment and consider a fixed-point implementation of the controller.

We perform three different step-response tests: one with the correct system im-
plementation and two with different types of faults. The first injected fault is an
incorrect implementation of the state estimator of the controller: more specifically,
a matrix-vector multiplication is altered. This emulates an error by the software de-
veloper at the time of implementing the control algorithm as C code. The second
injected fault is an incorrect tuning of the control algorithm: more specifically, a pa-
rameter is altered. This emulates a mistake of the control engineer when designing
the control algorithm. We show the results of the three tests in Figure 1. In the plots,
the black lines represent the reference values that we ask the physical system to fol-
low. The controller then performs a sequence of steps for the physical quantities to
meet their reference values. The blue lines show the actual angular position of the
motor, i.e., the quantity that we are trying to control. The orange line in the lower
plots are the voltages fed to the motor, i.e., the control signal.

Step responses allow to directly verify the main requirements of the control
algorithm. We observe that the system is stable in each test, meaning that the blue
and orange lines do not diverge. Also, the controller achieves reference tracking, as
the output eventually (i.e., after a transient phase) converges to its reference value
(blue and black lines). We also observe that it takes approximately one second (in
the test with the correct implementation) for the blue line to reach the black line
after a step change. This is the settling time and measures the (reaction) speed of the
control system. Finally, we observe that the faulty tests show significant oscillations
after the step changes in the reference. This is apparently undesirable behaviour and
exposes the presence of a fault.

The oscillations in the faulty tests are similar and there is no way to state, on the
sole base of these tests, which is the root cause of the faulty behaviour: i.e. the soft-
ware fault or the control design fault. An extra test on the sole model of the control
algorithm (hence directly using the differential equations designed by the control
engineer) would abstract the software fault but still include the control tuning fault.
This would allow to distinguish the responsibility of the faulty behaviour. If this
extra test fulfils the requirements (i.e. doesn’t show the oscillations of the rightmost
plot), then the fault is in the software implementation: this conclusion can be made
leveraging the fact that the software implementation is abstracted in the new setup
that includes the model of the controller. Differently, if the extra test also fails, then

2 Such systems are also commonly known as servo systems.
3 https://www.mathworks.com/products/matlab.html
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the fault is in the control design: this conclusion can be made since the control al-
gorithm is not abstracted in either of the setups (and assuming that the model is
implemented correctly).

This example shows two things: first, it shows how the step response can be
used to verify the main control requirements. Secondly, that the use of different
testing setups helps root causing of failures in control systems. However, this is
possible only if there is a thorough understanding of what the different abstractions
of the different setups are. Furthermore, implementing a setup, and executing the
corresponding tests, comes with costs, hence the choice of how many and which
setups to consider in a given application should be optimised. In this paper we set
out to investigate what are the different abstractions involved in the common testing
setups used in control systems and evaluate what implications they have in the fault
finding process. This will help engineers in the design of their testing infrastructure
for CPSs. In the next section, we define and describe the most common testing
setups for control systems and the related design choices that practitioners have to
make [Lamberg et al., 2004; Bringmann and Krämer, 2008].

3. Testing Abstractions

Section 2 showed the multi disciplinary nature of control systems. As a conse-
quence, system-level testing is of fundamental importance. Like shown in our mo-
tivating example, it allows the engineers to establish the different responsibilities
during the development process. Accordingly, it is one of the main activities soft-
ware engineers perform in this context [Garca et al., 2020].

The overall structure of a CPS control system is usually represented with a block
diagram similar to the ones shown in Figure 2. A cyber controller block is connected
to a physical process block to form the closed loop. The system has three main
components: (i) the physical process, (ii) the software implementing the control
algorithm, and (iii) the hardware executing the software. The interaction between
the controller and the physical process happens through actuators and sensors. The
controller can also receive inputs from other software components or from human
operators.

In the cruise control example, the hardware is the control unit (usually a mi-
crocontroller) mounted on the vehicle and the software is the code executed by the
control unit, implementing the control algorithm. The external inputs are the com-
mands received from the driver (e.g. commands from the steering wheel buttons to
increase or decrease the speed).

Potentially, components can be abstracted – i.e. substituted with simulation
models – so that the other components can be tested in isolation. Abstracting one or
more components defines a testing setup [Zander et al., 2011]. When a component
is abstracted, it is important that its simulation model and interaction with the other
components are representative of the actual implementation. Said in other words,
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Notation: r (reference commands), u (actuation signals), y (measured signals), (actuators),
(sensors).
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Figure 2. Testing setups for different testing levels. Dashed lines indicate that the
corresponding component is simulated, while solid lines denote the component exe-
cution. Notation: c (external commands), u (actuation signals), y (measured signals),

(actuators), (sensors).

for an abstracted system-level testing setup to be effective, there are associated as-
sumptions that have to hold: these assumptions concern the validity of the models,
their implementation, and their interaction. Figure 2 provides a graphical represen-
tation of the closed loop for each testing setup: the dashed blocks are emulated and
solid ones are implemented. Table 1 summarises the main testing setups and their
fundamental assumptions.

To abstract a component, a corresponding executable model has to be provided.
The control synthesis phase produces executable models for both the control law
and the physical process. On top of these, in this paper we consider leveraging a
hardware emulator.4 In the following sections we discuss possible implementation
choices for each setup and the consequent testing abstractions—i.e. the set of as-
sumptions that have to hold for the testing setup to be effective in detecting faults.

3.1 Model in the Loop (MIL)
At the model-in-the-loop abstraction level, all components of the system are sim-
ulated through models, as shown in Figure 2-MIL. The execution of said models
requires a dedicated simulation environment. During the system development, MIL
testing is performed in two ways: during the control design, and as part of the system

4 Apparently, such emulator is not always available and requires a development effort. This has to be
considered during the design of the testing process and infrastructure.
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Table 1. Abstractions for system-level testing of control systems. Comparison
among: Model in the Loop (MIL), Software in the Loop (SIL), Hardware in the
Loop (HIL) and Process in the Loop (PIL). The setup comprises controller code (C),
hardware (H) and process (P); Calculator indicates that a component is simulated, PLUG that its
real instance is used.

Setup
Name

C H P
Underlying Assumptions

MIL Calculator Calculator Calculator (i) process model is accurate, (ii) controller model cor-
responds to implementation

SIL PLUG Calculator Calculator (i) process model is accurate, (ii) hardware model cap-
tures the relevant properties (e.g., timing and instruc-
tion set)

HIL PLUG PLUG Calculator (i) process model is accurate, (ii) execution of in-
put/output hardware peripherals is not affected

PIL PLUG PLUG PLUG —

testing (so called model-testing [Briand et al., 2016]). For control design, the con-
trol engineer develops an executable model of the physical process, represented in
Figure 2-MIL by the function f , and a control law g, that uses measurement signals
and control commands to compute the actuation signals. The models are defined as
differential equations, difference equations, and state machines [Levine, 2009], they
can be implemented using common simulation software, like MATLAB5 or Mod-
elica.6 In this way, the closed loop is tested to verify that the algorithm meets the
expected performances and can be used to fine-tune the parameters [Whalen et al.,
2014].
Testing Abstractions. MIL testing is completely simulation-based, and hence it
fully relies on modelling assumptions. These can be divided in two categories de-
pending on what they concern:

(i) physical process-related assumptions, and

(ii) controller-related assumptions.

Examples of assumptions on the process are: neglected dynamics (like tyre dy-
namics in the vehicle model for cruise control), modelling approximations (like
linearisation of nonlinear models), and neglected phenomena (like friction and road
surface variability). Control theory provides metrics and rules-of-thumb to quantify
the robustness of a control algorithm to non-ideal behaviour. However, these metrics
also rely on assumptions, and hence need verification.

5 https://www.mathworks.com/products/matlab.html
6 https://modelica.org
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Examples of controller-related assumptions are: ideal timing (instantaneous ex-
ecution) and infinite numerical precision. Moreover, not necessarily all of the re-
quired control features are implemented at this level. For example, a controller with
different modes of operation may benefit (in terms of simplicity) from these modes
being implemented and verified individually, neglecting the mode switching. In the
cruise control example, a controller handling the distance from the vehicle ahead
and a controller keeping the desired speed might be tested separately. If this is the
case, the mode switching code has to be tested in other setups.

3.2 Software in the Loop (SIL)
In the software-in-the-loop setup (Figure 2-SIL), we include the actual software im-
plementation, while hardware and physical process are still abstracted. The physical
process is implemented using models that are similar to (or the same as) the ones
used for MIL testing.7 On the hardware side, different choices are viable, from
simulating only a few hardware components – like for example in our motivating
example where we emulated the encoder and the pulse width modulation – to com-
plete cycle-accurate hardware emulation. A simple alternative is to test the code in a
general purpose machine. The code is then compiled for and executed on a machine
different from the target one, hence abstracting the hardware and the execution en-
vironment. Under the associated assumptions, this enables testing of the functional
component of the software, i.e., if the control law g is implemented correctly. How-
ever, other non-functional properties (e.g. execution time) cannot be verified, since
they relate to system components that are abstracted. A more detailed alternative is
hardware emulation: tools like gem58 and Renode,9 can provide a higher degree of
testing significance. Such a solution is often preferred in embedded systems (hence
in control systems as well) given the strong coupling between hardware and soft-
ware. In this way, the software is compiled for the target hardware. Among other
things, hardware emulation enables the testing of the interaction with the Real-Time
Operating System (RTOS) and possibly low-level software routines that interface
with the sensor and actuator peripherals [Asadollah et al., 2018].
Testing Abstractions. In SIL, the testing abstractions can still be divided into two
sets: the first set is equivalent to MIL and relates to the process modelling, that
needs to be accurate. The second set of abstractions is related to the environment
in which the software is executed, varying significantly according to the specific
choices made for the hardware abstraction. In general, these require that execution
environment is representative of the actual one. Such abstractions mainly include:

7 Here, models might need refinement. In the cruise control example, during the control design pro-
cess, the engineer may assume direct control over the vehicle acceleration. In the SIL setup, on the
contrary, the simulation needs to include the fact that the actuation signal is the voltage command
sent to a digital-to-analog converter connected to a servo, that moves the throttle valve of the engine.

8 http://www.gem5.org
9 https://renode.io
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(i) software environment (meaning the interaction with other software compo-
nents: for example the RTOS, if the code is executed on machine other than
the target one),

(ii) hardware (e.g. support for floating point arithmetic [Lohar et al., 2021]),

(iii) time modelling (the timing of the software execution has to be consistent with
the physics simulation and possibly with other events, like user commands),
and

(iv) input and output definitions (measurement and actuation signals are represen-
tative of the real ones, e.g. with respect to measurement units).

3.3 Hardware in the Loop (HIL)
The hardware-in-the-loop setup includes the target hardware in the testing process,
as shown in Figure 2-HIL. The control software is now executed on the target com-
puting platform – e.g. the microcontroller of the car in the cruise control example
– and the model of the physical process is simulated on a different machine. The
actuation signals produced by the software are extracted and fed to the physics sim-
ulator, while synthetic sensor readings from the simulator are fed to the hardware.
The main design choices for this setup concern (i) the level at which the measure-
ments and actuation signals are redirected, (ii) and the synchronisation between the
controller execution and the physical process. For the first item, options range from
using a debug port and accessing the memory registers of interest, to manipulating
the software so that it interacts with the simulator instead of the actual peripher-
als. If signals are intercepted at lower levels, more details will be required for the
model simulation: for example, in the cruise control, speed readings might have to
be scaled to the encoder resolution instead of being in the physical units of measure.
As an alternative, dedicated testing hardware can be developed so that it interfaces
with the simulator at the physical connection level (i.e. I/O pins) instead of re-
quiring that the software is redirected. This allows better coverage of the low-level
firmware. Concerning the time synchronisation, the testing setup must ensure the
consistency of time between the target hardware and the simulated physics; this can
be done by performing the physics simulation and the I/O operations in real-time.
Such a solution is however difficult to realise [Lee and Seshia, 2016] and explicit
synchronisation points might be needed—e.g. every millisecond the hardware is
halted, then outputs are read, the physics is simulated, and sensor values are written
before execution is resumed.
Testing Abstractions. Apparently, also the HIL setup includes the abstractions
associated to the modelling of the physical process. The two sets of design choices
mentioned above are associated to respective testing abstractions. Intercepting the
actuation and sensor signals at a higher level will possibly exclude more of the
software that handles said signals in the control system. Consequently, this software
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is abstracted from the testing and assumptions have to be made about its behaviour.
Analogously, the chosen synchronisation mechanism (if a real-time simulation is
not implemented) can abstract timing phenomena from the test. For example, if the
controller and physical simulator are synchronised every millisecond, events that
happen at a higher rate are abstracted. To summarize, the HIL testing abstractions
concern:

(i) the input-output interactions of the hardware with the physical world, and

(ii) the consistent evolution of computational time in the hardware and the evolu-
tion of time in the physical process.

3.4 Process in the Loop (PIL)
In the PIL setup the physical process is included in the closed loop, therefore the full
implementation of the CPS can be used and there are no testing abstractions. Extra
sensors could be installed on the process and prototypes might be used in place of
production models: such solutions are highly application-dependant and therefore
excluded from this discussion. Hence, PIL testing effectiveness mostly depends on
the testing strategy. However, in this work we focus on the design of the setups
rather than of the testing strategy.

4. Experimental case study

In this section, we present a case study to empirically investigate the differences
between the testing setups described in Section 3. We developed and implemented
the MIL, SIL, HIL and PIL testing setups for the Crazyflie 2.1 quadcopter,10 shown
in Figure 3.

We developed the setups with the objective of allowing consistent injection of
the software faults in each of them. We did so by allowing only minimal modifi-
cations in the drone software when implementing the different setups. We provide
a detailed report on the modifications and the setup design choices behind them.
This is crucial to avoid biases in the study caused by the differences in the fault
implementations and to assess the general validity of the results.

With the different setups, we first run the control software. We then inject faults
in it, and run tests in each abstraction configuration. We use this procedure to expose
the different fault-revealing capabilities of the setups.

The choice of the Crazyflie case study is motivated by two main reasons. First,
the control system of the quadcopter is both not trivial and based on the most used
control algorithms, making it a practically relevant case study. In fact, the Crazyflie
is known to the research community; it is used for both education and research, e.g.,
quadcopter control design [Carlos et al., 2020], swarm robotics [Araki et al., 2017;

10 https://www.bitcraze.io/products/crazyflie-2-1/
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Figure 3. Crazyflie 2.1 with the STM debugger link.

Laclau et al., 2021; Mitchell et al., 2016], distributed [Wang et al., 2020] and robust
control [Müller and D’Andrea, 2014]. Second, both the Crazyflie software11 and
hardware12 are completely open-source. We therefore have complete knowledge
about the design of the system, which allows us to build a testing infrastructure for
all the MIL, SIL, HIL, and PIL setups. In particular, using the open source hardware
specification, we can build the hardware emulator for the SIL testing. Similarly, we
use the open source code for both SIL and HIL testing. To ensure reproducibility
of the results and make the artefact available to the research community for further
investigation we used only open source tools for the implementation of the infras-
tructure needed in the different setups.

This section is organised as follows. In Subsection 4.1 we provide the relevant
background information on the Crazyflie.13 In Subsection 4.2 we describe our im-
plementation of the testing setups. Finally, in Subsection 4.3 we both run tests with
the nominal software and inject faults in the software. We report on the execution of
the tests in each setup. A repository accompanies the submission,14 providing the
code we developed for the testing setups, documentation to reproduce the tests, but
also pre-recorded flight data and detailed plots for each of the tests.

4.1 Crazyflie Quadcopter
In this work we consider a Crazyflie equipped with an Inertial Measurement Unit
(IMU) sensor, a camera for optical flow, and a vertical laser ranging sensor.15 The
vertical laser provides a direct measure of the distance from the ground, while the

11 https://github.com/bitcraze/crazyflie-firmware
12 https://github.com/bitcraze/hardware
13 For the sake of reproducibility, in this work we refer to the Crazyflie software at commit 23e9b80c

available at https://github.com/bitcraze/crazyflie-firmware/commit/23e9b80caa9
137d2953ae6dce57507fda1b05a8c.

14 https://github.com/dummy-testing-abstractions/cps-testing-abstractions
15 https://www.bitcraze.io/products/flow-deck-v2/
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combination of optical flow and IMU data allows the drone to estimate the horizon-
tal speed. Such setup is very common in drones, a notable example being the NASA
Ingenuity drone flying on Mars [Smith et al., n.d.] Furthermore, this setup does not
require external measurements systems (like the lighthouse positioning system16),
making it more portable.

As discussed in Section 2, the controller of the drone is constituted of two main
components: one high-level discrete controller and one lower-level continuous con-
troller. The high-level discrete controller17 mainly handles the external user inputs
and generates reference signals r(t) for the low level controller. The low level con-
troller combines a state-estimator and a feedback controller.

In the repository associated to the submission we provide a detailed report
on the control design of the Crazyflie.18 Here, we limit ourselves to the discus-
sion of the main quantities involved, since those are needed for interpreting the
results of the tests. The state-estimator uses sensor readings to estimate the state
x(t) of the drone in real time, producing the estimated value x̂(t). The state vector
x(t) = [p(t) ,v(t) ,q(t) ,ω(t)]∈R13 includes the drone position p(t)∈R3, the drone
velocity v(t) ∈ R3, the attitude q(t) ∈ R4 and the attitude rate ω(t) ∈ R3. Figure 3
shows the axes definition for p. The attitude q is expressed using quaternions19 and
encodes the three angles: pitch (rotation θ around y axis), roll (rotation φ around
the x axis), and yaw (rotation ψ around the z axis). The feedback controller uses the
estimated state x̂(t) together with the reference values r(t), to compute the voltage
signals to be issued to the motors M1, M2, M3 and M4 illustrated in Figure 3.

When flying with optical flow data, the state estimator is implemented as an
Extended Kalman Filter (EKF) [Mueller et al., 2015; Mueller et al., 2016], while
the feedback controller is a set of cascaded PID controllers [Åström and Hägglund,
2006]. The setup with state-estimator and feedback controller is standard in control
theory and found in most control systems.20 The control design process provides
equations used to model the quadcopter and equations to describe the estimator and
the controller [Förster, 2015; Greiff, 2017]. Such equations can be found in our
technical report.21

16 https://www.bitcraze.io/documentation/system/positioning/ligthouse-positio
ning-system/

17 https://www.bitcraze.io/2020/05/the-commander-framework/
18 https://github.com/dummy-testing-abstractions/cps-testing-abstractions/bl

ob/main/Technical_Report.pdf
19 Quaternions are a four-dimensional extension of complex numbers, and a very convenient tool to

represent rotations in the three dimensional space.
20 We describe the Crazyflie EKF and PID in a technical report in the repository https://github.c

om/dummy-testing-abstractions/cps-testing-abstractions.
21 https://github.com/dummy-testing-abstractions/cps-testing-abstractions/bl

ob/main/Technical_Report.pdf
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4.2 Crazyflie Testing Setups
This section discusses our implementation of the testing setups for the Crazyflie.
In every setup, we use the same simulator of the physical process, so that the tests
expose only differences in the control algorithm executions and the associated test-
ing abstractions.22 The testing setups of SIL, HIL and PIL require changes in the
Crazyflie software, for which we provide patch files and application instructions.23

MIL. We implemented in Python a physical model to describe the Crazyflie and
its controller [Greiff, 2017]. We use the SciPy module24 to integrate the differential
equations describing the physics. In MIL, several aspects are abstracted with respect
to the software implementation of the controller. Some examples are: (i) the compu-
tation of the matrix exponential is performed using the NumPy25 linear-algebra li-
brary, while, in the real Crazyflie software, the calculation is approximated, (ii) each
floating point variable has double precision, while the firmware uses single-word
floats, and (iii) our model implementation is single-threaded, while in the software
the algorithm is distributed over different threads. The physics model is based on
first principles, however it also abstracts different phenomena. Some examples are:
(i) the flexibility of the structure of the drone is abstracted (hence assumed infinitely
rigid), (ii) the dynamics of the electric motors is abstracted (the relation between the
voltage fed to the motors and the vertical thrust is assumed quadratic), and (iii) the
differences between the two horizontal axes are abstracted (the drone is assumed
symmetric).
SIL. In our SIL setup, we rely on the open-source hardware emulator Renode.26

Bitcraze27 maintains its own fork of Renode28 and of the Renode-Infrastructure29

which contains the emulators of the peripherals. We implemented the platform
emulator, which is able to execute the binaries as they are compiled for the tar-
get hardware. We also implemented the infrastructure to allow communication be-
tween Renode and our simulator of the physics. Said infrastructure leverages the
possibility of exposing, along with a Renode emulation, an OpenOCD30 interface.
Some changes were required in the software to interface with the physic simulator:
(i) in the Flow deck driver, the low-level interaction with the camera is disabled,
(ii) in the Z-ranger driver, the low-level interaction with the ranging sensor is dis-
abled, (iii) in the motor driver, no output is written to the motors, (iv) in the IMU
driver, the sensors calibration is skipped, (v) in the Kalman filter, a division by zero

22 Investigating the use of different models for the physics is a very interesting research problem, but it
is out of the scope of this work.

23 https://github.com/dummy-testing-abstractions/cps-testing-abstractions
24 https://docs.scipy.org/doc/scipy/reference/tutorial/integrate.html
25 https://numpy.org/doc/stable/reference/routines.linalg.html
26 https://renode.io
27 https://www.bitcraze.io/
28 https://github.com/bitcraze/renode/tree/crazyflie
29 https://github.com/bitcraze/renode-infrastructure/tree/crazyflie
30 http://openocd.org/
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Figure 4. Nominal flight tests in the MIL, SIL, HIL, and PIL setups. For each axis
x, y and z, the solid coloured lines show the drone’s true position (when available).
The black lines show the step references. The dashed lines show the estimated po-
sition. For the 30 repeated PIL flights, at each time point, the dashed lines show the
average over the 26 successful flights of the estimated state. Furthermore, the shades
show the area between the maximum and minimum value measured at each time
step.
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check has been added. (vi) debug variables are added in mm_flow.c and mm_tof.c.
For the interested reader, the exact changes can be found in the patch file. When
compiling the code, our changes are triggered by defining the preprocessor macro
SOFTWARE_IN_THE_LOOP.

The most frequent interaction with the physics is the sampling of the IMU sen-
sors, which happens every 1ms. This periodic event is triggered by the IMU itself
which sends an interrupt to the CPU. In our SIL setup, we use a python script to
iteratively: (i) simulate the physics for 1ms, (ii) feed the synthetic sensor data to
the hardware emulator, (iii) trigger the sensor interrupt, and (iv) run the emula-
tor. We empirically observed that the virtual time in the emulator is dilated. More
specifically, the 1ms software tick of the RTOS does not always increase when the
emulator is issued to run for one millisecond. For this reason, at each iteration our
script checks whether the software tick has increased or not and run the emulator
until the tick increases. This check suffices to keep the simulated physic time and
the RTOS time synchronised, at least to the resolution at which the sensors are sam-
pled. Differences from execution on the real platform can still happen in other tasks
that are timed on something else than the RTOS tick.

To summarise, our SIL setup for the Crazyflie is based on the following assump-
tions and abstractions:

(i) the physical model is representative of the physical process and of the sensors,

(ii) the emulator of the CPU is accurate,

(iii) the synchronisation between the physical model and the emulator is represen-
tative of the actual interaction, and

(iv) the hardware of the Flow deck is not emulated.

HIL. In our HIL setup, to enable low-level access to the hardware, we used the
debugger link ST-LINK/V2,31 also depicted in Figure 3. We used OpenOCD32 to
interface with the debugger, and communicate with the CPU. OpenOCD exposes a
Telnet port through which it is possible to read and write to specific memory ad-
dresses, or insert breakpoints. We introduced the following changes in the software
to interface with the physics simulator: (i) in the Flow deck driver, the low-level
interaction with the camera for optical flow is disabled, (ii) in the Z-ranger driver,
the low-level interaction with the laser ranging sensor is disabled, (iii) in the mo-
tor actuation, no output is written to the motors, (iv) the IMU sensor is never read,
(v) the sensor thread is timed on the RTOS ticks instead of the external IMU in-
terrupt, (vi) in the Kalman filter implementation, a check for division by zero has
been added. (vii) debug variables are added in the files mm_flow.c and mm_tof.c,

31 https://www.st.com/en/development-tools/st-link-v2.html
32 http://openocd.org/
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(viii) two assert statements in uart_syslink.c are skippeed.33 These changes are
introduced with the provided patch file and triggered by defining the preprocessor
macro HARDWARE_IN_THE_LOOP.

To synchronise the hardware with the physics simulator, we issue a breakpoint
when the IMU sensor is read. When the breakpoint is hit, our python script per-
forms the following operations: (i) read the motor values, (ii) simulate 1ms in the
physics, (iii) feed the sensor readings to the CPU, and (iv) issue the CPU to resume
execution.

To summarise, our HIL setup for the Crazyflie is based on the following as-
sumptions and abstractions:

(i) the physical model is representative of the physical process and of the sensors,

(ii) the synchronisation between the physical model and the emulator is repre-
sentative of the actual interaction (in a different way compared to the SIL
abstraction),

(iii) the IMU interrupt is not used, and

(iv) the hardware of the IMU sensors and of the Flow deck is not executed in the
same way as in normal flight.

PIL. Finally, our PIL testing setup consists of running the Crazyflie with its nomi-
nal software. We use the Micro SD card deck to log flight data.34 When compiling
the code, the changes needed for the logging are triggered by defining the preproces-
sor macro PROCESS_IN_THE_LOOP. Our MIL, SIL, and HIL setups are determin-
istic, meaning that, when executed twice with the same inputs they will generate
the same output. Instead, the PIL setup is not deterministic, because of the uncer-
tainties related to the physical part of the system. For this reason we performed 30
test flights in PIL with the nominal software to assess the repeatability of the PIL
experiments.

4.3 Experimental Results
Here we describe our experimental results, using the MIL, SIL, HIL, and PIL setups.
Initially, we discuss MIL tests results. We then introduce the implementation of the
control software, first in its nominal state (as released by Bitcraze) and then after
injecting different faults. We aim at exposing the differences in the capability to
uncover faults that the testing setups offer. In Section 5, we comment our tests and
discuss the research questions in light of our results.
Nominal Software. Figure 4 shows plots of flight with the software as released by
Bitcraze in our different setups. The flight sequence consists of a take-off phase

33 The assert statements are related to the communication with the onboard microcontroller. In HIL
they might be triggered and halt the CPU because the breakpoint interferes with the communication.

34 https://store.bitcraze.io/products/sd-card-deck
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(from t = 0 to t = 2), followed by a setpoint step change in the x direction,
rx(2) = 0.2, followed at time t = 6 by a setpoint step change in both the x and
the y directions, rx(6) = 0.0 and ry(6) = 0.2. As mentioned in Section 2, those step
responses expose the main properties of a control algorithm thanks to their broad
frequency spectrum [Åstrom and Murray, 2008]. Furthermore, a recent paper on the
automatic detection of software faults in CPSs showed that the majority (in the case
of said paper 80%) of control-related software faults appear in normal operation
nor they need specific environmental conditions (and therefore trajectories) [Tim-
perley et al., 2018]. Apparently, exhaustive testing of the controller implementa-
tion requires more tests, and test case generation for CPSs is an active research
topic [Zander et al., 2011]. In this work, we focus on the differences among the
testing setups, rather than how to achieve exhaustive testing.

In the figure, the three top-left plots show the position of the quadcopter in the
x, y, z coordinates in the MIL setup.35 For each plot, the figure shows both the
actual position from the simulated physics (coloured solid lines) and the drone’s
estimation (coloured dotted lines). The plots also include the reference position r
(dark solid lines). This test shows that the model of the controller is able control
the model of the process. Guarantees on the behaviour of the actual control system
are however subject to the validity of both process and controller models, and on
the implementation details [Alshahwan et al., 2019]—i.e. the testing abstractions
discussed in Section 3.1.

The top-right and bottom-left three plots in Figure 4 show the same test flight
respectively in the SIL and HIL setups, using the same conventions. The bottom-
right three plots show the results of the repeated tests obtained with the physical
process in the PIL setup. In PIL, there is no physics model involved and ground
truth is not available, so we only display the position estimated by the quadcopter.
Among the 30 PIL flights performed 4 failed without apparent reason, resulting
in immediate crash. One possible explanation, as the producers suggest on their
website, is that the IMU moving parts can get stuck at times. Using the successful
26 flights, we plot the average over the different flights of the estimated position
(dotted lines), and the range between the maximum and minimum estimation. The
PIL flights show consistent results, with the exception of the first 2 seconds. At take
off, the turbulence caused by the ground effect can make the drone unpredictably
oscillate. We also note that the z direction control is more accurate. This is due to
the higher performance of the laser sensor compared to the optical flow.

While the general behaviour is consistent across the setups, few differences
arise. In the SIL, HIL and PIL setups, the drone oscillates around the reference
position in the x and y directions: this is due to the optical flow quantisation caused
by the camera pixels. Movements smaller than the resolution of the camera are
not detected. When the flow reading changes, the controller reacts at once, and the

35 More comprehensive plots for all the nominal and faulty test scenarios can be found at: https:
//github.com/dummy-testing-abstractions/cps-testing-abstractions
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drone oscillates. This quantisation is abstracted in the MIL setup, hence not seen.
In the MIL setup, the drone loses some elevation (z position) while performing the
step in the x direction. This is caused by the loss of vertical thrust when the drone
tilts to move laterally. Our tests show that the software implementation of the con-
troller is robust to this disturbance. Finally, the ground effect is not captured in the
physics model hence observed only in the PIL setup. Such phenomenon is chaotic
and difficult to model hence often neglected in simulated setups.

We note the general consistency across all the setups in nominal conditions. In
the next section, we show that when faults are present in the software implementa-
tion, the testing setups exhibit significant differences.
Faults Design. We inject faults in the control software to expose the differences be-
tween the testing abstractions and highlight the capacity of each of them to unmask
errors in the controller implementation. Unfortunately, it was not possible to mine
the Bitcraze repository36 for faults, as the developers do not use consistent prac-
tices to mark issues and commits associated with the control software faults, and
frequently squash commits losing part of the version history. Furthermore, to the
best of the authors knowledge, there exists no database of faults in control software.

Therefore, for obtaining faults to inject in the software we used different meth-
ods: (i) We selected two solved issues in the Bitcraze repository: the faults we
used were suggested by Bitcraze engineers, because they struggled to reproduce
and identify them. (ii) We took faults types from the close research field of faults
in robotics systems: specifically, we considered [Steinbauer, 2013; Wienke et al.,
2016] to retrieve common types of faults and used the descriptions and examples
to develop faults to inject. The scopes of the cited works are wider than ours as it
relates to the whole robotic system and not just the control system. Hence, we manu-
ally filtered fault types that do not relate to the control system implementation—e.g.
faults in communication protocols.

In [Wienke et al., 2016], the authors use a practitioners survey to identify differ-
ent categories of faults and provide some example for each category. Said categories
are (with an example from the original work):

• algorithms and logic (e.g. erroneous mathematical computations),

• resource leak (e.g. not closing a no longer needed connection),

• skippable computation (e.g. executing the same computation multiple times),

• configuration (e.g. erroneous initialisation of an address),

• threading (e.g. incorrect timing code), and

• communication (e.g. incorrect address in the radio communication stack).

36 https://github.com/bitcraze/crazyflie-firmware
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4 Experimental case study

Among said categories we excluded communication, as it apparently does not relate
to the implementation of the control system performance. We also exclude resource
leak, and skippable computation since they concern the embedded computing per-
formance of the system rather than the control loop. For example, a memory leak
is likely not seen in the control system performance, since it should not affect the
functional properties of the software. Similarly, a repeated computation is not harm-
ful, as the control software is supposed to be executed in an infinite loop. Such faults
can become an issue when affecting the execution timing of the code, timing faults
are however included in the threading class.

In [Steinbauer, 2013], the authors surveyed the participants to the RoboCup37

competition about faults encountered during the robot development. The practition-
ers were asked about faults concerning: the robotic platform, the sensors, the control
hardware (where “control” refers to the communication with a master device that
monitors and provides commands), sensors, robot software (the control software),
and algorithms. Among those components we exclude the control hardware since,
as mentioned, “control” is used with a different meaning than in this work, and
refers to the user interface. For each of the remaining we report the main sources of
faults mentioned by developers:

• platform: batteries, motor drivers, and controller board,

• sensors: connectors, configuration, and communication,

• robot software: computer vision, inter-robot communication, and low-level
device drivers,

• algorithms: configuration, wrong estimation, and missed deadlines.

Among those fault types we exclude “inter-robot communication” since we con-
sider a single system.

We manually develop and inject faults on the base of the descriptions and exam-
ples of the categories mentioned above. We cover all of the categories listed by the
two surveys that relate to control software. Table 2 reports the list of the developed
faults: the second and third columns map them to the different categories of [Wienke
et al., 2016; Steinbauer, 2013]. For each fault, we provide a patch file that injects it
in the software.38 After injecting a fault, we perform tests in the SIL, HIL and PIL
setups with the same flight sequence from Figure 4. The drone software used is the
same in each setup, ensuring consistent injection of the fault. By setting one com-
pilation macro (respectively SOFTWARE_IN_THE_LOOP, HARDWARE_IN_THE_LOOP,
and PROCESS_IN_THE_LOOP) the code is compiled for the desired setup.

37 https://www.robocup.org/
38 The repository (https://github.com/dummy-testing-abstractions/cps-testing-abs

tractions) contains information about the specific version of the software that we used, together
with detailed instructions on how to retrieve the correct version and inject the faults.
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Faults Description and Setup Detection Analysis. Table 2 reports the test results
for each injected fault and each setup. We report whether the fault affects flight
performance (PLANE-SLASH) or not (PLANE) in the corresponding setup by comparing to the nom-
inal behaviour observed in Figure 4. Complete flight data and pre-generated plots
are available at,39 respectively inside the flightdata and pdf subfolders for each
setup. We also report plots for the faults that did not cause an immediate crash and
are different from the nominal flights (Figures 5, 6, 7, and 8). In said plots, we show
only the position along the x-axis, both the ground truth px and its estimated value
p̂x, as it suffices our discussion.

We now describe each fault and analyse the reasons why it appears or not in our
different setups. This is necessary to assess if the differences in fault exposition that
we observe are due to our specific implementation choices of the setups or are as-
sociated to more general properties. For example, as mentioned in Section 4.2, the
use of dedicated hardware in the HIL setups can enable better coverage of low-level
drivers—as experienced and reported below in the fault motorRatioDef. There-
fore, as we did not develop custom hardware for this experimental campaign, we
have to assess if and how it would have changed the results.

The voltageCompCast and initialPos faults are taken from the Bitcraze
repository.40 The first consists of casting a float always smaller than 1 to an integer,
which is then always rounded to zero. The variable contains the normalised motor
commands: the control action is therefore always zero and the drone never takes
off. The second fault concerns the wrong initialisation of the state estimator. In
particular, the position estimate along the x axis is initialised to 1.5m. Since no
absolute position measurements is available, the state estimator cannot recover from
this error. As shown in Figure 5, the controller reacts to the wrong estimation and
brings the drone back to the presumed 0 position, which however is not the actual
0 position. This happens equivalently in each of our setups, hence showing that our
testing abstractions do not alter the detection of these faults.

The flowGyroData fault alters how the estimator compensates for the angular
rotation in the optical flow generated measurements. The code uses a local variable
containing the latest gyro measurement. In the altered version, the code uses instead
another queue containing the same information. However, the queue is also accessed
in other parts of the code, making the data inconsistent at times. Figure 6 shows the
drone flight results in each of our setups. The injected fault causes an error in the
estimation of the speed and consequent large oscillations during the flight. This
fault, like the two above, appears equivalently across the setups. It is interesting
to note that this fault affects the functional properties of the control code since the
equations of the state estimator are distorted. However, the behaviour of the drone is
very similar among both the setups that include the simulated physics and the PIL.

39 https://github.com/dummy-testing-abstractions/cps-testing-abstractions
40 https://github.com/bitcraze/crazyflie-firmware/issues/766, https://github.c

om/bitcraze/crazyflie-firmware/issues/760
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Figure 5. SIL, HIL and PIL plots of x-axis position with the initialPos fault.
This fault affects the initialization of the state estimator and appears equivalently
in each setup. These tests show that faults in the functional aspects of the software
appear equivalently across the setups.
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Figure 6. SIL, HIL and PIL plots of x-axis position with the flowGyroData fault.
This fault affects the fusion of the inertial and visual odometry data and appears
equivalently in each setup, more specifically the optical flow data with the attitude
rate. These tests show that faults in the functional properties of the software appear
equivalently across the setups.

This means that, the abstraction introduced by the use of the physics model do not
alter the impact of this fault on the drone behaviour. It can be noted however, that
the oscillations resulting from the fault have a slightly different frequency, being
faster in PIL with respect to SIL and HIL.

The motorRatioDef fault consists of two parts of the software assuming differ-
ent definitions for the variable containing the command signal to the motors.41 In the
altered software, the variable is implemented as a float smaller than 1 (a percentage)
but read as an integer containing the actual command to the motors. This variable
(which was not introduced by us and belongs to the original software) is read in
the SIL and HIL setups, to detect if the drone is in flight or not. This information
is used by the state estimator to compensate ground contact forces when the drone
is not flying. Figure 7 shows how this affects the flight for the position along the x

41 This fault is inspired by the episode of the NASA Mars Climate Orbiter that crashed in 1999. In that
case, one software component assumed that a variable containing a pressure value was defined in
Imperial Units while another used the International System of Units.
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Figure 7. SIL, HIL and PIL plots of x-axis position with the motorRatioDef fault.
This fault is caused by different software components assuming different definitions
of the same quantity: in this case the motor actuation value. As it affects the interac-
tion with the low-level driver of the motors, it does not appear in all setups, in fact it
does not affect the flight at the PIL level. This shows that abstract setups can cause
false positives.
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Figure 8. SIL, HIL and PIL plots of x-axis position with the slowTick fault. This
fault affects in the timing in the real-time operative system. As the timing of the
code execution is abstracted in different ways it appears differently in the setups.
Specifically it shows a limitation in capturing timing behaviour both in SIL and HIL.

direction in our setups. In the PIL setup, the motor commands are directly read from
the motor’s hardware, hence the flight is not disturbed. This discrepancy is caused
therefore by the abstraction of the motor hardware in our SIL and HIL setups. It
could be avoided in SIL with the implementation of a more detailed emulator of the
motors hardware and in HIL with the use of custom hardware.

The simUpdate fault concerns the incorrect implementation of different con-
troller equations in the state estimator. When updating a vector with a matrix multi-
plication, the old vector values are not stored in a temporary variable, and the new
values of the already updated components are used in place of the previous ones,
as per specification. In a correct implementation, the software needs to store and
use the previous vector values and use those to perform the update. In each testing
setup, the controller code is robust to this fault. The obtained plots (reported in the
associated repository42) are not distinguishable from the plots form Figure 4. As in
flowGyroData, this fault that distorts the implementation of the control algorithm
equations and alters the functional properties of the control software.

42 https://github.com/dummy-testing-abstractions/cps-testing-abstractions
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The byteSwap and gyroAxesSwap faults are injected in the low-level software
that handles the interaction with the IMU. The former swaps the least and most sig-
nificant bytes in the accelerometer readings. The latter swaps the x and y axes in the
gyroscope readings. Both faults disrupt the flight in SIL and PIL, causing immedi-
ate crash. Conversely, the HIL setup is not affected and the fault is not detected. In
the HIL setup, in fact, the IMU readings are injected at a higher level than in SIL.
As a result, the section of code where the faults are injected is not executed with the
HIL setup, and the fault does not affect the flight. This is caused by the abstraction
in the HIL setup of the low-level software used for communicating with the IMU.
The use of dedicated hardware could avoid this abstraction in our HIL setup.

Finally, the timingKalman, flowDeckdtTiming and slowTick faults concern
the timing of the code execution and its real-time properties. In the nominal soft-
ware, the periodic execution of the thread executing the state estimator is triggered
by a semaphore released by the IMU interrupt that signals the availability of the
data. In timingKalman, the thread is instead put to sleep for a time equal to its
period. This sleep time is measured by the software tick of the RTOS. This is a poor
real-time programming practice as it introduces jitter in the execution of the thread.
The flowDeckdtTiming uses a different timer to measure the time interval over
which the optical flow is measured. The optical flow provides a differential measure,
hence it is highly dependant on its recording time, which needs to be measured. Rig-
orously speaking, this is not a fault, as long as the different timers are consistent,
however, we use it to expose the different timing properties of the setups. Both these
faults impair the flight in the SIL setup but not in HIL or PIL. In both cases, this
is due to a distortion in the representation of time (and hence of timers) during the
execution of the software in Renode (the hardware emulator used to implement the
SIL). Better representation of time in the Renode emulator would reduce the impact
of the abstraction of the execution timing of the software. Achieving this is however
a challenging task and high-fidelity emulation of time execution of software is an
open research problem. In slowTick, a hardware clock malfunction is simulated by
setting the RTOS software tick to 800Hz instead of 1000Hz. In our tests this does
not affect our implementations in SIL and HIL setups but, as shown in Figure 8, it
does impair flight in PIL. In the SIL and HIL setups, the simulated physics is timed
by the RTOS main clock and hence the flow of time is still consistent between the
controller and the simulated physics despite the injected fault. In the PIL setup, the
physics evolves with the actual time, and the execution of the controller is therefore
disturbed. The abstraction of the synchronization of time evolution in the execution
of the software and in the evolution of the physics is at the base of this discrepancy.

5. Discussion and limitations

In this section, we use the test results to address the research questions presented in
Section 1. We use the analysis of each fault to discuss how our answers generalise to
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other control systems. At the end of each answer we summarize the main take-away
messages from our observations. We conclude this section discussing the limitations
and threats to validity in our study.

RQ1: What are the differences between the testing abstractions with respect to
their fault revealing capability? Our case study shows that the testing abstrac-
tions achieve different coverage of software and timing properties, but are similarly
effective when testing the software functional properties.

In fact, the different testing setups equally expose the voltageCompCast,
initialPos, flowGyroData, and simUpdate faults. These faults affect the func-
tional properties of the software (i.e. the implementation of the control law) and do
not alter the low-level interaction with the hardware nor the timing of the software
execution. The main testing abstraction that directly relates to the functional prop-
erties is the model of the physics. We also note that such abstraction is always found
in the abstract setups of control software. Our experiments show that this does not
cause relevant differences in the exposition of functional faults with respect to the
PIL setup. However, the use of different physical models might still impact the de-
tection of functional software faults (this discussion is out of the scope of our work,
some investigations in this direction can be found in the literature [Sotiropoulos et
al., 2017]).

Among the other faults, byteSwap, gyroAxesSwap, and motorRatioDef
affect the interaction between software and hardware, while timingKalman,
flowDeckdtTiming, and slowTick affect the software timing. Both byteSwap
and gyroAxesSwap are hidden in the HIL abstraction level. This is due to the ab-
straction in HIL of the low-level interaction with the IMU. For our system, the
SIL setup has a better code coverage than HIL. Generalising this consideration, we
can say that when the code is executed in an emulated environment, the low-level
interaction with the hardware can be fully emulated. Conversely, when the target
hardware is used, the code needs to be manipulated to inject the inputs and read the
outputs. This limits the testing capabilities for some software components in HIL.
More specifically, faults in the low level software – which has been reported to be
prone to faults in robotic systems [Steinbauer, 2013; Wienke et al., 2016] – can be
hidden. As mentioned in Section 3.3, to improve the low-level code coverage of the
HIL abstraction level setup, dedicated hardware could be produced. With dedicated
HIL hardware, output commands could be read form the output ports, and artificial
data can be fed using the dedicated input ports. Apparently, dedicated hardware pro-
totype likely increases production costs. On the other hand, SIL testing also requires
an implementation effort to emulate sensors.

The fault motorRatioDef alters the flight in the SIL and HIL setups (Figure 7).
This fault affects the low-level interaction with the motors, hence a component that
is abstracted in both setups. In PIL, the variable containing the faulty value is only
written to and never read. In SIL and HIL, the motor commands cannot be read
directly from the hardware, and this variable is read instead. Despite not affecting
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the PIL flight, the variable does contain a faulty value. This can be interpreted in
two equally valid ways: either that SIL and HIL are introducing a false positive
(i.e., they fail a test that should pass), or that the difference between the testing
abstractions is pointing to dead code. Which interpretation is valid depends on the
specific application. Either ways this shows that the abstraction of a component can
not only potentially cause a false negative (i.e. hiding a fault), but also introduce a
false positive (i.e. causing a failure when it shouldn’t happen).

The three faults timingKalman, flowDeckdtTiming, and slowTick af-
fect the timing of the code execution, and expose the differences in the
timing-related abstractions between the testing setups. Both timingKalman and
flowDeckdtTiming disrupt the flight in SIL: this is inconsistent with the PIL (and
HIL) tests where flight is successful. The SIL setup is therefore introducing false
positives, showing limitations in the abstraction of the timing of the code execu-
tion. More specifically, the faults affect the synchronization of different parts of
the code: respectively the estimator task and the time measurement of the optical
flow readings with the rest of the control code. Due to the time distortion of SIL,
this loss of synchronisation impairs the correct execution of the code and the flight
performance is impaired. Since these changes do not affect HIL or PIL, we can
conclude that the modelling of time in Renode is not accurate enough. In SIL, it
could be possible to improve the timing aspect of hardware emulation, for example,
by profiling the target architecture. However, this is not an easy task and it is rather
an open research problem [Taylor et al., 2014a; Taylor et al., 2014b].

The remaining timing-related fault, slowTick, shows a limitation that is com-
mon to both SIL and HIL. In both setups, the simulation of the physic is synchro-
nised to the RTOS software tick. A distortion in the RTOS clock will therefore not
impair the synchronisation between the control algorithm and the physical compo-
nent of the system. In the PIL setup, it is possible to detect this fault, since there is
no modelled physics, the physical part is evolves according to the actual time, inde-
pendently of the software execution. In this case, the abstraction of the real-world
flow of time in the physical model causes false negatives in SIL and HIL. In HIL,
it would be possible to develop a simulator of the physics that is executed in real
time and doesn’t need to be synchronized with the software execution: this would
allow to expose the slowTick fault in the HIL setup. A similar solution could be
implemented in SIL: however, the limitations mentioned above in the emulation of
time aspects of hardware execution would still hold.

These tests show that abstracted testing setups will always have inherent lim-
itation in the modelling of time, and this can significantly affect the quality of the
control software testing process. HIL setups have an advantage with respect to SIL
setups, since they do not require explicit modelling of the timing of software exe-
cution as they include the target hardware. PIL does not require any abstraction and
can provide time consistency (between software and physics) by definition.

On the other side, our tests also show that there are several aspects that speak
in favour of complementing PIL with SIL and HIL. In the abstracted setups the

129



Paper II. Testing Abstractions for Cyber-Physical Control Systems

physical world is simulated, and accessing the ground truth is always possible (e.g.,
the drone position in our case) while external sensors would be required for the PIL
setup. Further considerations are related to the practical execution of the tests. SIL
and HIL tests are fully reproducible, reducing the occurrence of flaky tests [Luo
et al., 2014]; moreover, they are more easily automated and performed remotely.

Our observations support the following considerations on the fault-revealing
capabilities of the different testing setups:

• functional properties appear equivalently across the setups,

• SIL provides better low-level code coverage with respect to HIL,

• HIL provides better representation of the code execution timing, with
respect to SIL,

• abstractions in the testing setups can cause both false negative (hiding
faults) and false positive (failing tests that should pass).

RQ2: When and why is it beneficial to have different testing setups? What are
the principles to be followed when designing the testing setups? We have seen
that the use of different testing setups improves the testing coverage. However, the
improved coverage comes from having different abstractions in the testing setups,
that therefore rely on different assumptions.

As discussed in Section 1, previous literature assumed that the setups are hier-
archically ordered and that the faults that can be found at a level of abstraction are
a superset of the faults that can be found in a less abstract setup. However, our tests
disprove this statement and show that the faults detectable in a setup are neither a
subset nor a superset of the ones found in another setup. Accordingly, the best prac-
tice is to maximise the difference between the testing abstractions of the available
setups, to enhance testing coverage and fault finding. Said in other words, it is not
best to have every setup as detailed as possible (i.e. with minimal number of ab-
stractions), rather it is important that the abstractions overlap between the different
setups is minimal.43

The flowGyroData fault is discovered in all different testing setups. This sug-
gests that the fault is related to a behaviour that is not abstracted in any of them.
Because the testing abstractions are not the same across the setups, we can narrow
the scope of the search for the fault and exclude all components that are abstracted
in each of the setups. In our case we can deduce that the fault is not (among others)

43 From a practical point of view, it shall also be considered that testing in more abstract setups is
usually less expensive, since more components are simulated. This is an important consideration
for practical applications, but the evaluation of setup development costs is out of the scope of this
investigation.
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in the low-level interaction with the sensors and actuators, nor in the timing aspects
of the code.

Conversely, byteSwap and gyroAxesSwap are detected in SIL and not in HIL.
This suggests that they are faults related to the low-level IMU firmware which is
executed in SIL but not in HIL. Suppose that the HIL tests were performed with
dedicated hardware (as mentioned in Section 3.3) to enable the coverage of the
IMU low-level firmware and detect faults like byteSwap and gyroAxesSwap. In
this case, it would be more difficult to root cause the failure and identify the fault.

When designing the different testing setups the objective shall be to maximise
the differences in the testing abstractions across the different setups rather
than focusing on making each setup detailed. The natural choice is to focus
on the strengths of each setup pointed out in the answer to RQ1. This will
improve the fault identification process.

RQ3: What are the domain-specific characteristics of system testing for closed-
loop control software? System testing is clearly an important step in the develop-
ment of any software [Garca et al., 2020]. On top of the general considerations on
system testing and the motivation of this paper of tight coupling, our case study
highlights challenges that specifically belong to system-level testing of control soft-
ware. In particular, we conclude that control systems expose robustness to software
faults, and couple functional and non-functional properties, especially with respect
to timing.

In our example, the simUpdate tests show that, despite the fault, the drone is
able to fly without decreased performance. This is not surprising, as control systems
possess a certain level of robustness to the distortions that appear in their software
implementation [Åstrom and Murray, 2008]. Said robustness varies depending on
the process under control and its characteristics, as well as the specific control al-
gorithm used. While robustness is a desirable property in the final product, in the
simUpdate case, the code fails to match its specifications (i.e., it does not imple-
ment the prescribed equations). Consequently, the control theoretical guarantees
cease to apply for a general flight and may be lost in certain operating conditions
(e.g. in presence of wind). This poses the challenge of developing adequate cov-
erage metrics and test cases that enable the detection of faults that are hidden by
closing the control loop.

The three faults flowDeckdtTiming, timingKalman and slowTick show the
sensitivity of the software to its timely execution. This is a general property of con-
trol software and time modelling is extremely important in the setups for system
testing of control systems. We formulate the research challenge of synthesising re-
quirements of time modelling for the system testing of control systems. Failing to
formulating and meeting such requirements can hide faults (e.g. slowTick), or cre-
ate false positives (e.g. timingKalman and flowDeckdtTiming in SIL).
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Our experiments show the following domain-specific characteristics in control
software:

• robustness to software faults, and

• coupling of functional properties with execution timing properties.

Limitations and threats to validity. Our analysis is based on a single case study.
Hence, we report its properties that limit the generalisation of our conclusions (ex-
ternal validity). Then, we discuss the limitations of our research methodology (in-
ternal validity).

Other control systems may differ from the Crazyflie with respect to hardware
platform, software architecture, dynamics of the physical process, development
method, and system criticality. For example, the control software of an aeroplane
runs on more powerful hardware, has redundant sensors, and is (most likely) dis-
tributed. The development of the software is also different, as regulations constrain
the verification and validation process [Moy et al., 2013]. Finally, physical processes
can have different dynamics. As a consequence, timing properties are more or less
relevant, the robustness to software faults changes, and input and output signals are
different in nature. However, our observations focus on aspects that characterize the
testing of any control systems, namely: modelling of time in the setups, synchro-
nisation of the different components, emulation of hardware, testing of functional
and non-functional properties, and abstraction of low-level software. Furthermore,
there are significant commonalities across every control system: for example, every
control system performs at constant time intervals the actions of sensing, computing
and actuating, and every control algorithm developed with traditional control engi-
neering is specified with differential or difference equations. Apparently, a complete
generalisation of our observations still requires further experimental validation.

Concerning our research methodology, a possible limitation is that our discus-
sion and observations are based on faults developed from descriptions of typical
robotics faults from previous literature [Steinbauer, 2013; Wienke et al., 2016]. This
can affect the real-world validity of the injected faults. However, in this study we fo-
cus on the capabilities of different testing setups in finding different types of faults.
Therefore, what really matters is the component that is affected and in which way
it is affected. It is not a strict requirement that the fault per se is realistic. Rather
what is important is that the implementation specifications of the component are
not fulfilled.

We also performed manually the analysis of the causes why the different faults
appear or not in the different setups. However, we developed each of the testing
setups from scratch, which gives us high confidence that our understanding of their
implementation and properties is adequate. Concerning the development of the se-
tups, a limitation is that we developed our setups by the reverse-engineering of a
pre-existing control system. In a production environment, the development of the

132



6 Related Work

testing setups is done in parallel with the development of the system. Implementing
the testing setups together with the system can help to better tailor them to the spe-
cific process and may increase their specific coverage. However, our analysis is fo-
cused on the differences between the setups rather than on the development process,
and we argue that the observed differences are related to fundamental properties of
the setups rather than to how they are developed. Furthermore we developed the se-
tups in close contact with the engineers at Bitcraze and we discuss in the paper the
potential alternatives in the design of our testing setups, together with their potential
impacts on the results of the study.

6. Related Work

Recent research highlighted interesting research directions at the intersection of
control and software engineering [Balasubramaniam et al., 2020; Bradley and
Bagheri, 2020]. In the control literature, Zimmer et al. [Zimmer et al., 2015] dis-
cuss a case study on the consequences of implementation choices for the control
performance. A comprehensive book on model based testing for embedded systems
is [Zander et al., 2011]; another review can be found in [Garousi et al., 2018; Baner-
jee et al., 2016].

Whilst testing control software is not a new field, the vast majority of previ-
ous work is focused either on the testing models (i.e., model based testing), or on
applications, mainly in the fields of avionics [Peleska, 2002; White, 2001] and au-
tomotive [Bringmann and Krämer, 2008; Bringmann and Krämer, 2006].

The concept of testing abstractions is discussed in [Zander et al., 2011], and the
testing setups discussed in this paper appear in different work, with slightly varying
but overall consistent definitions [Zander et al., 2011; Bringmann and Krämer, 2008;
Lamberg et al., 2004]. The MIL setup has been extensively leveraged in the litera-
ture of model based testing [Briand et al., 2016]. The research has been focused on:
verification of requirements [Nejati et al., 2019], generation of test traces [Hänsel
et al., 2011], or the use of models for the automatic generation of test cases with
search algorithms [Matinnejad et al., 2014; Matinnejad et al., 2017; Marculescu et
al., 2015], classification trees [Lamberg et al., 2004], system-identification based re-
finements [Menghi et al., 2019b], or genetic algorithms [Aleti and Grunske, 2015].
In robotics, [Silano et al., 2018] showcased the usefulness of SIL for the design
of quadcopter controllers. Keranen et al. [Keränen and Räty, 2013] perform a val-
idation of model based approaches in the context of HIL testing, and Hansen et
al. [Hansen et al., 2017] do the same in the context of SIL testing. Meedeniya et
al. [Meedeniya et al., 2011] propose an optimisation for reliable deployment of
control software. Ore et al. [Ore et al., 2018] propose to use program analysis to
enrich of physics simulation and better test control software.

The papers above focus on individual setups, and we found the conclusions
drawn in the literature compatible with ours. Despite the common industrial use of
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different testing levels, to the best of the authors’ knowledge, this is the first study
on the comparison of the different testing setups and the associated abstractions.

7. Conclusion

In this paper, we provided a comparison of the characteristics with respect to fault
finding of the model-in-the-loop, software-in-the-loop, hardware-in-the-loop and
process-in-the-loop testing setups for the system-level testing of control systems.
We presented the case study of an open source drone and developed testing sup-
port for all the mentioned testing abstractions. We provide a complete replication
package that enables further research on the topic (generally limited by the high
implementation cost of different setups).

In order to investigate the differences across the setups we injected different
types of faults in the drone software developed on the base of descriptions of com-
mon faults by practitioners. Contrary to previous literature, we demonstrated with
our case study that a hierarchy among these setups and abstractions does not exist.
In other words, it is not necessarily true that testing setups closer to the real im-
plementation can expose more bugs than the setups that rely on more abstractions.
We evidenced that SIL setups are superior with respect to HIL in terms of low-
level code coverage. Conversely, HIL better cover the timing properties of the code;
however, there are not major differences in terms of exposition of functional faults.
We also highlighted the relevant properties and principles that have to be discussed
by practitioners in the design of the testing setups: we evidenced that maximizing
variety in the testing abstractions of the different setups (instead of minimising the
abstractions in each setup) will enhance the testing process in terms of system cov-
erage and fault identification.
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Testing of Control-Based Cyber-Physical
Systems

Claudio Mandrioli, Seung Yeob Shin, Martina Maggio,

Domenico Bianculli, Lionel Briand

Abstract

Cyber-Physical Systems (CPS) are most times safety-critical and expected
to perform in uncertain environments. Therefore the identification of which
scenarios prevent the CPS from performing according to its requirements is
of fundamental importance. However, the multidisciplinary nature of CPS can
make is difficult to identify such scenarios. In this paper we discuss the test-
ing of CPS that are developed with the use of control theory. In such sys-
tems, the software is developed partially by the control engineers and par-
tially by the software engineers. When testing, it is important to account for
this multidisciplinary development. We control engineers make different sets
of design assumptions when contributing to the system development. How-
ever, such assumptions are not always satisfied in the implemented system.
We then define the problem of stress testing control-based CPS as the gener-
ation and identification of test cases that invalidate said design assumptions.
Among the listed sets of assumptions, we highlight the use of linearised mod-
els of the physics. With focus on the linear model assumptions, and on the base
of control-theoretical background, we develop a qualitative characterisation of
the input space of the control layer in CPS. We then propose a novel test case
parametrisation for control-based CPS and use it together with the proposed
characterisation to develop a testing approach aiming at falsifying the targeted
assumptions. We evaluate our testing approach on six case of studies. Our re-
sults show that the proposed testing approach is effective at invalidating the
linearity design assumption and that it can be used to highlight the components
of the CPS that can limit the scenarios in which it can fulfil its requirements.
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1. Introduction

Cyber-Physical Systems (CPS) are engineering artefacts characterised by the tight
coupling of physical and software components [Lee, 2015]. This tight coupling is
created by sensors and actuators that allow the software component to measure and
affect the physical part of the system. Figure 1 graphically shows this interaction
between the cyber component (green dashed box) and a physical component (red
dashed box). The objective of this interaction is to obtain a desired behaviour of
the physical component. Accordingly, the CPS requirements are generally defined
over quantities that live in the physical part of the system, this is highlighted by the
CPS output arrow in the figure. In the cyber component, we highlight the control
layer. The control layer receives desired values for given physical quantities (the
references) and uses sensors and actuators in order to enforce said values in the
physical component. For example, a drone uses sensors (such as accelerometers
and cameras) to estimate its position and actuators (such as propellers) to move.
The desired behaviour is usually that the drone performs stable flight and reaches a
desired position.

CPSs are often by nature safety-critical, and they are expected to operate in
uncertain environments [Wu et al., 2017]. For example, drones and cars operate in
environments where people are present and the external conditions are never fully
known (e.g., the presence of wind and obstacles for the drone, and other vehicles
and pedestrians on the road for the car). In such circumstances, it is of primary
importance to identify the scenarios in which the CPS is no longer able to fulfil its
requirements. To identify such scenarios, stress testing aims at executing a system
under test (SUT) in conditions that are different from the ones expected during the
system design [Priyadarshi Tripathy, 2008]. The execution and analysis of stress
tests should provide the engineers with information on the design choices that limit
the SUT capability of fulfilling its requirements in different scenarios.

However, CPS development is known to be multidisciplinary [Lee, 2015]. Ac-
cordingly, the definition of the operating conditions expected during the CPS design
will depend on the design choices of different types of engineers (e.g., software en-
gineers and control engineers), as well as on their combinations. For example, for a
drone we want to identify what can limit its capability to avoid a moving obstacle.
The limiting factors can be the hardware design (e.g., the sizing of the propellers),
different software components (e.g. ,the path planning), or their interaction.

Intuitively, being composed of a physical and software part, CPS development
involves both software engineers and engineers with specific knowledge of the phys-
ical part of the system (e.g., aerospace engineers for a drone or mechanical engi-
neers for a car). However, besides these categories of engineers, many CPS appli-
cations involve also control engineers [He et al., 2019]. We call CPS that involve
control engineers control-based CPS. In such applications, there are multiple levels
of decision making, depending on the decision relevance and time-scale. For ex-
ample, for a delivery drone, high-level decision making concerns the definition of
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Figure 1. Structure of a CPS, where a cyber component (green dashed box) inter-
acts with a physical component (red dashed box). The CPS requirements are gen-
erally defined over quantities that live in the physical part of the system, the CPS
output arrow. In the cyber component, we highlight the control layer. The control
layer receives desired values for given physical quantities (the references) and uses
sensors and actuators in order to enforce said values in the physical component.

the sequences of picking up the object to be delivered and the trajectory planning.
As shown in Figure 1, at the lowest level we find the control-layer that handles
the real-time interaction with the physics. In our drone example, the control layer
adjusts the propellers commands to react to wind gusts and maintain the desired
position. In such systems, the role of control engineers is to design different con-
trol algorithms that are implemented as part of the control-layer. The control layer
provides high-level components (like the “High-Level Decision Making” block in
Figure 1) with an interface to control the physical component. Broadly speaking, it
allows the high-level components to provide desired values (i.e., the reference val-
ues) for some specific physical quantities. It then uses readings from the sensors to
decide actuation commands and force the actual physical quantities (the CPS out-
put) to reach the desired values. For example, for a drone, the control layer allows
the high-level components to set the desired drone position. It then uses the ac-
celerometer and camera data to estimate the current drone position, and determines
the propellers voltage commands to bring the drone to the target location.

When designing control algorithms, control engineers leverage control theory.
To apply the theory, they make design assumptions and abstract certain aspects of
the design problem. Such abstractions concern both the physical component as well
as the software implementation of the control layer. For example, for a drone, they
simplify the behaviour of the device, and neglect other functionalities of the soft-
ware like flight mode changes. Although, from a strictly theoretical point of view,
control theory can provide formal guarantees on the CPS performance (e.g., drone
flight speed along a certain trajectory), in practice the design assumptions do not
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necessarily hold. We can then distinguish scenarios in which the design assump-
tions hold (and therefore also the formal guarantees are valid) from scenarios in
which they are falsified. The scenarios in which the assumptions hold (e.g., values
of the references, environment conditions, system state) define the design scope of
the CPS. Conversely, other scenarios, where the software implementation of the
control layer does not fulfil the design assumptions, are outside of the design scope
of the algorithm and lead to the loos of the a priori guarantees. Said in other words,
the design assumptions limit the control layer design scope, i.e., they reduce the
number of scenarios in which the designed algorithm can provide a priori guaran-
tees.

In this work, we use the falsification of the control design assumptions to define
the problem of stress testing control-based CPSs software. We assessed our test-
ing methodology by applying it two different case studies: the altitude control of
a drone and the position control of a DC servo (a continuous current motor). Our
results prove the capability of our approach and metrics of respectively generating
and identifying test cases that invalidate the control design assumptions. Our test
cases invalidate the design assumptions to different degrees and allow to observe
the behaviour of the SUT at the bounds of its design scope. We showcase how this
tests can be used to gain insight on the design choices that limit the ability of the
SUTs to perform safely in different scenarios.

To summarise, this article makes the following contributions:

(i) We use control engineering domain knowledge to develop an input space
qualitative characterisation for individual elements of the control layer real-
valued inputs (Section 4.1).

(ii) We define different metrics to make quantitative the relevant aspects of the
proposed characterisation (Section 4.2).

(iii) We propose a novel test case parameterisation for CPS control-layers that
enables the use of the characterisation (Section 5.1). We use such parameter-
isation to develop a control-based CPS stress testing approach (Section 5.2).

The rest of the article is structured as follows. First, given the multidisciplinary
nature of this problem, we present in Section 2 the relevant background on the
control-based CPSs development and the control algorithms design process. We
complement this with the discussion of the related work from the software engi-
neering literature on the testing of control-based CPSs. Section 3 provides a control
engineering perspective of CPS stress testing. In Section 4 we describe our char-
acterisation of the control loop input space. We illustrate our testing approach in
Section 5. Section 6 reports on our empirical evaluation. Section 7 concludes the
article and outlines directions for future work.
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Figure 2. High-level description of the control system development;→ represent
development steps, while→ represent data flow. The development flow is simplified
(e.g. neglecting iterations) to focus on the role of control engineering.

2. Context and Background

This section provides the relevant background on the development of control-based
CPS; we use the position control of a drone as running example to exemplify the
different concepts. The section is divided in three parts. First, in Section 2.1 we
present the engineering process for developing a control system, and define the key
roles involved in this process. Then, in Section 2.2 we provide the relevant control
engineering background needed to understand the remainder of this article. Finally,
in Section 2.3 we present related work on the testing process for cyber-physical
systems and control systems in particular.

2.1 Development of Control-Based CPS
Figure 2 provides a graphical overview of the typical development workflow of
control-based CPS. The overview is simplified and focuses on the role that control
engineers play in the development of the software handling the interaction between
the physical and the cyber components.

The development of any engineering system starts with the definition of the sys-
tem’s requirements, denoted by Overall CPS Requirements in the figure. In the case
of control-based CPSs, the requirements usually describe the desired behaviour of
the physical part of the system. In our running example, the overall CPS require-
ments describe, at a high level, how the drone is supposed to move in space. A
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concrete example of such a requirement could be that the drone must plan and fol-
low a prescribed trajectory, (at every point in time) with discrepancy not higher than
a given threshold (e.g., two meters), and reach the desired position within a given
time distance (e.g., three minutes).

These requirements are then made available to the engineers involved in the de-
velopment of the CPS. We identify three types of engineers involved, each having
different duties. In Figure 2, we use red arrows to highlight their role in the devel-
opment.

(i) Physical-Component Engineers design the physical part of the system. These
could be for example mechanical or aerospace engineers depending on
whether the considered CPS is a car or a drone. In our running example,
an aerospace engineer may size up the propellers and draw the mechanical
structure of the drone’s body.

(ii) Control engineers select and design the control algorithms. In the case of our
running example, this means designing the algorithms in charge of estimating
the drone current position based on the sensors readings, and computing the
commands to be sent to the drone motors so that it can fly.

(iii) Software engineers are in charge of the cyber part of the CPS. They imple-
ment the control algorithms, and design the functions that are needed to inte-
grate the different software components (e.g., the high-level decision making
in Figure 1). In our running example, there might be an aggressive and faster
control algorithm when the drone is flying outdoors, compared to a safer one
when the drone is flying indoors in a constrained space.

In Figure 2, we use black arrows to highlight the data and information flow dur-
ing the development workflow. For instance, in our running example, the physical-
component engineer communicates the data related to the propeller thrust to the
control engineer, who then uses it in the control design process, further described
in Section 2.2. The result of the control design process is a set of algorithms that
are provided to the software engineers, so that they can integrate them with the rest
of the software necessary to fly the drone (e.g., the functions that perform initial
checks, sensor data acquisition, communication with the motors).
Consequences of Multidisciplinarity on the Testing Process: The software de-
velopment flow highlights the multidisciplinary nature of control-based CPSs. This
multidisciplinarity observed during the development has an impact on the testing
process. In particular, for control CPSs, it becomes very difficult (if not impossi-
ble) to distinguish the testing of the control algorithm (i.e., does the chosen control
algorithm fulfil the overall CPS requirements?) from the testing of its software im-
plementation. Ideally, we would like to be able to verify the control algorithm and
the control implementation independently, in order to obtain a better separation of
concerns in the development process.

148



2 Context and Background

However, this ideal separation of concerns is not achievable. Testing of CPS
software (i.e., the cyber component of a CPS) has very limited effectiveness with-
out an integrated setup that includes the physics behaviour. In fact, the overall CPS
requirements are defined on the behaviour of the physical component. Hence, in
order to evaluate the compliance with these requirements, the physical component
needs to be included in the testing setup. For instance, to evaluate how the drone
follows a prescribed trajectory, we need to either include a model (and hence a sim-
ulation) of how the drone flies in space, or conduct tests with the drone itself in a
specific physical space. Only in this way, we can simulate or measure the output po-
sition of the drone, and use it to assess that the distance between the actual position
and the planned trajectory satisfies the prescribed requirement.

The need for testing the interaction between the cyber and the physical compo-
nents of a CPS is particularly relevant for control software (i.e., the software im-
plementing the control layer). In fact, the control software handles the low-level
interactions with actuators and sensors (i.e., processing the sensor readings and
computing the actuation commands). To obtain a valid interaction, both the con-
trol algorithm and its implementation have to be correct. This makes it difficult, if
not impossible, to separate the testing of these two aspects.

In the specific case of stress testing, this impossibility to distinguish the testing
of the control algorithm from the testing of its software implementation implies that
we need to account for the design scope of both the software development and of
the control design processes. In fact, since the software has been also developed
with the use of control-theory, the domain of the assumptions to test against is also
the one of control engineering.

2.2 Control Engineering Primer
In this section, we introduce the definition of a control design problem and the
control design process.1 We illustrate the frequency domain (in contrast to the time-
domain) description of signals and systems, and introduce the basic concepts used
in the remainder of this work.
Definition of Control Design Problems: As mentioned in Section 1, the objective
of the control layer in a CPS is to steer physical quantities to track a desired value.
More rigorously, the input of the control layer is a vector of desired (or reference)
values r. The control objective is to ensure that the actual values in the physical
system are as close as possible to the corresponding reference values. Using the
control terminology, we say these physical quantities constitute an output vector y,
and the control objective is y≈ r (i.e., y tracks the reference values in r).

To achieve its objective, the control layer uses sensors to iteratively measure
signals from the physical part of the system, and actuators to steer it. Based on mea-
surements and reference values, the control algorithm computes the commands to be

1 The content of this section is mostly based on the book “Feedback Systems: an Introduction for
Scientists and Engineers” [Åstrom and Murray, 2008].
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sent to the actuators. The control algorithm is executed repeatedly, at constant time
intervals, resulting in a continuous interaction between cyber and physical com-
ponents. This interaction is called control loop; the union of the control layer and
physics is called closed-loop.

In the drone example, the control objective is to use the propellers to move
the drone following a reference trajectory. The software iteratively (i) uses sensors
to measure quantities like its own acceleration every millisecond, (ii) executes the
control algorithm, and (iii) actuates voltage commands to the motors to spin the
propellers. On the physical side, the propellers generate forces that cause the drone
movement, and (in turn) affect the future acceleration readings, hence generating
the closed-loop interaction.

As r and y are vectors, the engineers usually define multiple control loops, often
one for each element of the vectors. In a drone, we can expect to find one loop for
each of the three dimensions in the space that the drone can move in: forward or
backward, left or right, and up or down. Furthermore, the CPS requirements might
call for different control modes, such as fast (but risky) flight mode, and an safe
(but slower) one. In traditional control, the design of the different control loops
and control modes is addressed separately: engineers develop a dedicated control
algorithm for each mode. The implementation can switch between the algorithms
of the different modes during execution.

The identification of the control loops and modes is the control problem defini-
tion, and constitutes a preliminary step in the control design process. For each of the
identified loops and modes, the control design problem is the design of the control
algorithms needed to control the physics. Each control algorithm, when executed
in closed loop with the physical component, is expected to guarantee (to the best
degree possible) that the output y tracks the reference r when operating in the mode
it is designed for. We now discuss the control design process for one individual loop
and mode.

Control Design Process: As highlighted inside the control design block in Figure 1,
the design of a control algorithm comprises of three main steps. The first step is to
define an equation-based model of the physical component. The role of this model is
to provide a representation of how the actuators affect the measurements and output.
For example, in the drone, this is a model that represents how the thrust generated
by the propellers affects the position and orientation (called attitude) of the drone
itself. These models can be obtained using either first-principle approaches, through
the laws of physics, or with data-driven approaches through system identification.
Either ways, the models are typically in the form of non-linear differential equa-
tions, i.e., non-linear equations that contain both signals and their derivatives (rate
of change). Non-linear models are generally difficult to analyse, as small changes in
the input can cause significantly different behaviours and hence they do not allow
for general approaches [Khalil, 2002].

To overcome the complexity of non-linear models, the second step of the con-
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trol design is to approximate them using linearised models. Retrieving such approx-
imated models is called linearisation, and restricts the model scope to the surround-
ings of an expected operating point.2 Accordingly, the operating point is chosen as
the physical state around which we expect the system to operate most of the time.
In the drone, the operating point would be the horizontal state in which the drone is
parallel to the ground and not tilted in any direction. Through linearisation we then
obtain a model that is still valid for small variations in the attitude angles around
the operating point. The model is now a set of ordinary differential equations and
therefore it can be handled in a simpler way thanks to a large variety of analytical
tools [Åstrom and Murray, 2008].

The third step is finally the design of the control algorithm. For models based
on linear differential equations, control theory provides numerous tools to perform
exact analyses and design control algorithms with formal performance guarantees.
Such tools are based on a frequency-domain description of the physical system.
Frequency-domain descriptions are well-suited for treating ordinary differential
equations because they provide a compact description for the derivative of a sig-
nal with respect to the signal itself. This makes it easier to analyse the physics and
draw conclusions on the system’s properties. The control algorithms obtained using
control theory are also in the form of linear differential equations.

Frequency Domain Descriptions: We now provide an high-level description of the
frequency domain for both signals and systems, together with some intuition about
why the frequency domain is well suited for treating differential equations.

The frequency domain description of signals is based on the fact that signals
can be decomposed and treated as the sum of sinusoidal functions with different
frequencies. The description in the frequency domain specifies which sinusoidal
components are present in the signal and what their amplitude is. This is in contrast
to the time-domain, where signals are represented as a sequence of values over
time. The frequency-domain sinusoidal components are commonly called frequency
components: for example, a fast-changing signal is mostly composed by fast (i.e.,
high-frequency) sinusoids. On the contrary, a signal that does not change much is
mostly composed by slow (i.e., low-frequyency) sinusoids.

The translation of a signal from the time-domain representation to its frequency-
domain one uses the Fourier Transform—or its time-sampled equivalent Discrete
Fourier Transform (DFT [Cooley and Tukey, 1965]), which we will use in the re-
mainder of this paper. Figure 3 shows three examples of time-domain signals and
their frequency domain representations obtained with the DFT. The first row shows
a constant signal, whose frequency representation consists of a single sinusoidal
wave at 0Hz. The second row shows a pure sinusoidal signal, that is mapped by

2 Linearising a non-linear equation means approximating its non-linear relations (e.g. if a variable is
squared, like in the case of aerodynamic drag) with a linear function. The linear function is based on
the first derivative of the non-linear relation, and more specifically, on the value of the first derivative
in the chosen operating point.
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Figure 3. Examples of DFT spectra (on the right) of different signals defined in the
time-domain (on the left). A constant signal is described by only a zero frequency
component, a pure sinusoidal maps to one single frequency component, and a non-
periodic step maps to multiple frequencies.
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Figure 4. Example of how we can expect the CPS output y (solid line) to track the
desired value r (dashed line). In the figure we intuitively highlight how a control sys-
tem usually behaves like a low-pass filter, by filtering the fast-changing components
of the input and tracking the slow-changing ones.

the DFT into a single frequency component. More complex signals, like the step
function in the third row, include larger number of frequency components.

The frequency-domain representation provides a compact description of signals
according to their the rate of change, or frequency content. The derivative of a sig-
nal is another signal that describes its rate of change. This correspondence can be
seen as the intuitive reason why the frequency-domain description is convenient for
analysing differential equations.

In the frequency domain, systems (i.e., entities that take an input signal and gen-
erate an output signal) are described by how much they react to an input according
to its frequency content, and more specifically by how much they amplify or re-
duce every frequency component of the input signal. For example, many physical
systems behave like a low-pass filter, transmitting or amplifying slow signals (i.e.,
low-frequency components), while reducing quickly changing components (i.e.,
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high-frequency components). This behaviour of reducing a frequency component
is called filtering.

In the case of control systems, ideally we want the physical quantity y to track
the reference r at every time instant. In the frequency domain this corresponds to
unit amplification between the reference and the output at every frequency. This is
apparently infeasible, since a change in r (a variable in the software) requires some
time for y (the physical quantity) to follow. In other words, reference changes that
are too rapid cannot be tracked by the output of a system. In Figure 4 we show an
example of how we could expect the drone to follow a step-like change in the desired
position along one direction. The output y, denoted by the solid line, does not follow
instantly the reference r, denoted by the dashed line. On the contrary, the quick
change of reference value is smoothed in the output signal, which gradually reaches
the new reference value. The frequency domain concept of filtering can be used to
describe this phenomenon. In fact, we could rephrase this as “the output only tracks
the slowly changing (low-frequency) components of the reference, while it filters
the fast-changing (high-frequency) ones”. We illustrate this intuitive interpretation
in Figure 4 with red ellipses. The ellipse on the left highlights the filtering behaviour
that occurs when the reference signal has a rapid change, while the one on the right
highlights the tracking behaviour when the reference signal does not change.

Given this behaviour consisting of tracking the lower frequencies and filter-
ing the higher frequencies, for a given control loop, we can identify the so-called
closed-loop bandwidth, denoted by fb. The closed-loop bandwidth is the threshold
frequency below which we expect to have a tracking behaviour (i.e., r ≈ y) and
above which we have a filtering behaviour. This quantity therefore corresponds to
the fastest frequency components of the reference that the control system is able to
track. Accordingly, it is also considered a quantification of the speed of the control
system: the higher the closed-loop bandwidth, the higher the speed of the control
system.

While it may seem intuitive that the control engineer wants to design a control
algorithm that maximises fb, to obtain a fast system there are other factors to ac-
count for. As an example, a high value of fb usually comes at the cost of a high
control actuation (e.g., a fast-moving drone will generate high forces that can ruin
the actuators). Furthermore, noise can be found in the measurements at high fre-
quencies: an accelerometer that measures a drone’s acceleration is usually affected
by high-frequency electrical noise. If the control system reacts to input signal in the
high-frequency range (obtaining high speed), then it will also react to noise. In turn,
this will reduce the system performance making its behaviour unpredictable. Such
considerations lead to a trade off in the control algorithm design between speed of
the system and noise rejection.
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2.3 Related Work
The topic of testing control-based CPS software is not new in the software engi-
neering literature. In fact, control systems are seen as a class of CPSs in which most
of the added value is placed in the software part [Broy et al., 2007]. Accordingly,
recent works highlighted interesting research directions at the intersection of con-
trol and software engineering [Balasubramaniam et al., 2020; Bradley and Bagheri,
2020].

Testing of control systems has been approached in the literature in different
ways.

Given the widespread industrial use of Simulink3 model testing has received
significant attention in the last decade [Briand et al., 2016], with recent work
showing the complementarity of model checking and model testing for the veri-
fication of requirements [Nejati et al., 2019]. Generation of test traces is one of
the main topics. Very different types of algorithms are used for the generation
of input sequences: search algorithms [Matinnejad et al., 2014; Matinnejad et al.,
2017; Marculescu et al., 2015], classification trees [Lamberg et al., 2004], system-
identification based refinements [Menghi et al., 2019], and search algorithms [Aleti
and Grunske, 2015; Hänsel et al., 2011]. We also note a number of application-
specific works in the avionics [Peleska, 2002; White, 2001; Samad and Balas, 2003]
and automotive [Bringmann and Krämer, 2008; Bringmann and Krämer, 2006] do-
mains.

CPS falsification (as the generation of test cases that falsify a given require-
ment) is also an active research direction. In a recent work [Yamagata et al., 2021]
the authors use deep reinforcement learning to perform robustness guided falsifica-
tion. Interestingly, they note the importance of making the system internal dynam-
ics available to the reinforcement learning algorithm, which highlights the possible
benefits of leveraging control-design information during the testing. Furthermore, a
combination of model checking and path planning can be used to invalidate linear-
temporal-logic formulas [Plaku et al., 2009]. Similar problems can be addressed
with rapid exploration of random trees [Dreossi et al., 2015].

The embedded software literature sees control systems as a prime application
of computing in a resource constrained environment [Garousi et al., 2018]. This is
due to the presence, in control software, of constraints on non-functional properties.
Accordingly, it appears in several surveys and reviews on the testing of embedded
software [Zander et al., 2011; Garousi et al., 2018; Banerjee et al., 2016].

The control and robotics communities show growing awareness of the impact
of the software implementation of control algorithms on their performance [Zim-
mer et al., 2015; Silano et al., 2018]. Zimmer et al. [Zimmer et al., 2015] discuss
a case study on the consequences of implementation choices for the control perfor-
mance. In robotics, software-in-the-loop simulations (i.e., simulations that include

3 A software environment for the development of control systems (https://www.mathworks.com/
products/simulink.html).
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the actual control software implementation) can be effective in exposing bugs in
the software design of quadcopter controllers [Silano et al., 2018; Timperley et al.,
2018].

None of these works explicitly leverages the control-theoretical design of these
systems or integrates control knowledge in the definition of the software testing
problem. Partial exceptions are [Aleti and Grunske, 2015; Menghi et al., 2019]: in
both cases system identification (a field very close to, if not part of, control the-
ory) is used to reduce the number of tests that have to be executed in order to find
faults [Menghi et al., 2019] or to reduce the parameter definition effort required by
genetic algorithms [Aleti and Grunske, 2015]. In these approaches, system identi-
fication is used as part of the testing process, and not to obtain knowledge on the
system under test. In addition, a recent work in the context of runtime verification
leverages system dynamics (differential equations, the same type of models used at
control design time) to either terminate the monitoring early, or to skip samples of
the signal [Abbas and Bonakdarpour, 2022].

In this work we introduce the control engineering perspective starting from the
CPS testing problem definition, i.e., with the discussion of the control design as-
sumptions and the consequent limitation of the CPS design scope.

3. Control Engineering Perspective on CPS Stress
Testing

In this section, we first motivate and define the problem of stress testing the con-
trol layer in a CPS. Second, based on the development workflow of control-based
CPS illustrated in Section 2, w identify the classes of assumptions that the engineers
make in the different control software development stages. For each of these classes,
we discuss which techniques are already available for testing the corresponding as-
sumptions, and which assumptions require an application-specific solution; we ex-
clude the latter from the scope of this work. For the remaining classes we discuss
the relative dependencies that can be identified: i.e., we identify which assump-
tion classes should be tested first. We conclude this section defining the problem
addressed in this paper.

3.1 Problem Motivation
As discussed in Section 2.2, when applying control theory, engineers make design
assumptions about both the physical part of the CPS and the control algorithm to
be developed. The role of these assumptions is to abstract away the details of the
system that are not necessary for development, and to define the fundamental build-
ing blocks used by the theory. For instance, when designing the control algorithm
of a drone, engineers assume that the generated thrust is proportional to the volt-
age command and that, for example, it does not saturate when the maximum power
of the motors is reached. This allows engineers to use a linear model of how the
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voltage, when applied to the motors, affects the drone movement and position. This
linearity assumption is necessary to apply traditional control theory [Åstrom and
Murray, 2008].

As discussed in Section 2.1, software engineers are provided with the control
algorithms from control engineers. These algorithms are only one component of
the control layer. In fact, when implementing the latter, software engineers address
the implementation of other functionalities such as the flight mode changes, the
interaction with sensors and actuators (e.g., filtering and sanity checks), the paral-
lel execution of the different control loops and the discretisation of the equations.
The implementation and integration of other software functionalities can make the
design assumptions made by control engineers become invalid. For example, the
linear model used for the control design is an assumption that is falsified when the
drone motors saturate. This happens because the motors are requested to produce
more thrust than their capacity, as in the cases when the reference value changes too
much or too fast. In such scenarios, the drone control algorithm will be operating in
conditions different from the ones assumed during the design.

Control algorithms are usually robust (at least to some degree) to the falsifica-
tion of the different design assumptions; this property is one of the reasons for the
successful adoption of control theory [Åstrom and Murray, 2008]. Control theory
provides metrics to quantify the algorithm robustness to the deviation from assump-
tions, e.g., “stability margins”. However, those metrics are also based on the control
design models and are therefore still subject to the validity of their design assump-
tions. Hence, the quantification of the extent to which a CPS can be pushed outside
of the validity boundaries of its design assumptions still requires an empirical eval-
uation. This evaluation can be obtained through stress testing of the software that
implements the control layer, by targeting the control design assumptions.

3.2 Design Assumptions in Control Algorithms
Before defining our stress testing problem, we need to identify the classes of de-
sign assumptions that control engineers make at design time. These assumptions
are made at the different development stages of a control-based CPS. In Section 2.1
we identified three main development stages:

(i) control problem definition,

(ii) control algorithm design, and

(iii) control algorithm implementation.

We now discuss the design assumptions made in each of the stages.
Assumptions at Control Problem Definition Time: At this stage the engineers
identify the different control loops and modes for which they will develop a control
algorithm. As a consequence, when designing the individual control loops, they as-
sume that (i) the different loops do not interfere with each other and (ii) the mode
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changes do not impact the control design performed afterwards. For example, for
a drone, the design of the altitude controller may not account for the horizontal
controllers (and vice versa). Similarly, the design of the “aggressive flight” con-
trollers is done independently from the “safe flight” controllers. Such assumptions
significantly simplify the design of the control algorithms, allowing, among others,
to independently design the response to a change in each element of the vector r.
However they do not always hold in practice. For example, when the drone tilts
to move horizontally, it also loses vertical thrust, affecting the altitude controller.
Another case of assumptions not holding is when a mode change command is is-
sued during the flight. Such a change can cause a sudden change in the motors’
commands, which possibly affect the CPS performance.

Assumptions at Control Design Time: During the control design, the engineers
develop a non-linear model of the physical part of the CPS, also on the base of in-
formation received from the physical-component engineers that designed it. Such
a model (like any model) is only an approximation of reality and will neglect or
approximate certain aspects of the problem. For example, a drone model assumes a
given mathematical relation between the rotational speed of the propellers and the
generated vertical thrust. However, this type of aerodynamic phenomena are diffi-
cult to quantify. Moreover, there could be some inconsistency between the mathe-
matical model and the real physical system. By using such models, the engineers
implicitly assume that they are a sufficiently accurate representation of the physical
reality.

As mentioned above, the models of the physics also need to be linearised in
order to use the tools from control theory. The linearised version of the model is
only valid in the surroundings of the operating point chosen for the linearisation.
Practically, by using the linearised model, the engineers implicitly assume that,
during operations, the CPS stays sufficiently close to the operating point so that
the linearised model is an accurate enough representation of the physical part. For
example, the propellers cannot generate more thrust than the motors can provide:
in fact, the motors saturate (max-out) once they reach their maximum capacity. To
linearise this relation, the engineers assume that the motors are not in the saturated
state, and that they always provide a thrust proportional to the voltage command.
When, during the actual flight, the motors saturate, this proportional relation loses
validity (and therefore also the model and design).

Assumptions at Control Algorithm Implementation Time: Control algorithms
are generally specified as linear differential equations. Such equations are defined
with the use of continuous mathematics. However, they are implemented on com-
puters which are discrete machines. Hence they have finite precision in the repre-
sentation of the parameters and execute the algorithms in discrete steps over time.
Accordingly, the engineers, when designing the control algorithm with continuous
mathematics, are implicitly assuming that the discretisation happening during the
implementation does not significantly alter the algorithm (with respect to the ideal
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mathematical object). More specifically, they assume both that the finite precision
does not significantly alter the computed values, and also that the discrete execu-
tion does not alter the frequency properties (meaning the properties of the algorithm
execution over time).
Design Assumptions Summary: To summarise, we identify the following classes
of design assumptions that are made by the engineers during the development of
control algorithms:

• they neglect the interaction between different control loops;

• they neglect the impact of mode changes on the control algorithms perfor-
mance;

• they assume that the non-linear model of the physics is a sufficiently accurate
representation of the real system;

• they assume that the system stays sufficiently close to the operating point
chosen for the linearisation;

• they assume that the finite precision of the representation of the equation
variables and parameters is sufficiently accurate; and

• they assume that the execution in discrete time steps does not significantly
affect the expected execution time properties of the algorithm.

When performing stress testing for a control-based CPS, engineers should aim at
falsifying each of these assumptions.4 We now discuss for which classes of as-
sumptions there exist already software testing techniques and which ones require
an application-specific solution.

Testing numerical properties of numerical algorithms is not a novel problem;
there is a significant literature corpus [Yi et al., 2017; He et al., 2020], also target-
ing control algorithms [Sanchez-Stern et al., 2018; Magnani et al., 2021]. Similar
considerations can be made about test the execution timing properties. A number of
works can be found in the literature for testing embedded software (characterised
by the relevance of non-functional properties like execution timing) [Garousi et
al., 2018; Afzal et al., 2009]. Furthermore, we note recent works dedicated to the
verification and testing of the robustness of control algorithms to execution timing
faults [Ghosh et al., 2022; Vreman et al., 2021]. Given the above previous works, we
leave the testing of numerical and timing properties out of the scope of this paper.

4 We note that there are branches of control engineering that try to mitigate each of those simplify-
ing assumptions, e.g., multivariable control and robust control. However, like the stability margins
mentioned above, such approaches are still subject to design assumptions and also require verifi-
cation. Furthermore, those are rather advanced theories and, as of now, find limited application in
practice [Desborough and Miller, 2002].
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Testing the validity of the physical model is a highly application-specific prob-
lem. To test the aspects of the physics model that are unknown one must know
the aspects that were uncertain when developing it. For example, for a drone, two
assumptions of the model can be on the aerodynamic properties of the propellers
(needed to evaluate the vertical thrust that can be generated) and on the rigidity the
drone body (to simplify the equations describing the motion of the drone in space).
Among those, the former is likely to be associated to a higher degree of uncer-
tainty because the aerodynamic phenomena are generally hard to characterise. In
contrast, the assumption on the rigidity is more likely to be valid: intuitively, we
do not expect the drone motor supports to bend. Such considerations are clearly
application-specific and require an understanding of the specific model that is being
used. Accordingly, the generation of test cases that falsifies this type of assumptions
cannot be treated in a general fashion. Given its application-specific nature we leave
the testing of this type of assumptions out of the scope of this work.

We are therefore left with the assumptions regarding non-interactions between
control modes and control loops, and about the sufficiently large range of validity
of the linear models. Among those we note that the first two are dependent on the
latter. In fact, if an individual control loop does not have a sufficiently large range of
validity when operating independently (i.e., without mode switches and in absence
of reference changes for the other loops), then, the switching across different modes
and the interaction between loops are unlikely to improve its range. For example, if
we have an altitude control loop for a drone that is not very robust when operating
alone, then it is unlikely to perform better when the control loops of the horizontal
directions are also active and can disturb it. Given this dependency, we argue that
testing the validity of linear models should occur before testing the interactions be-
tween control modes and control loops. In light of this discussion, this work focuses
on the testing of the linearised model control design assumptions, for which we give
our problem statement below.

3.3 Problem Statement
In this work, we address the problem of stress testing the linearised model design
assumptions in an individual control loop of a CPS control layer. The objective is
to generate and identify tests that create a gap between the behaviour of the system
and the linearised model used during the control algorithm design. This gap should
appear in different degrees and make the control algorithm increasingly unable to
provide the control-theoretical guarantees. Accordingly, our test inputs exercise the
control layer and consist of sequences of reference values over time. Our test outputs
are the traces of the physical quantity that has to track the reference value.
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Figure 5. Qualitative frequency-amplitude characterisation of the input space of a
signal control loop. The colours highlight the validity of the linearised model with re-
spect to the input frequency content and amplitude The green area corresponds to the
input signals for which the system remains within the assumptions of control theory.
The orange area corresponds to the input signals that trigger non-linear phenomena
but not enough to cause significant performance degradation in the system. The red
area are the input signals for which control theory assumptions are not fulfilled and
the behaviour of the system becomes unpredictable.

4. Control Loop Input Space Characterisation

In this section, we use domain knowledge from control theory to provide a qual-
itative characterisation of a single control loop input space. The proposed char-
acterisation maps frequency and amplitude features of the input to the expected
behaviour, i.e., the expected relation between the (scalar) output y of a control loop
and the (scalar) input reference r. In the first part, we present the qualitative char-
acterisation based on the validity boundaries of the linearised model and insights
from control theory.5 We use a minimal example (a simplified model of the altitude
control of a drone) to exemplify the different system behaviours highlighted by the
characterisation. In the second part of this section, we list the qualitative aspects
of the characterisation and propose approaches to quantify them. Such quantifica-
tions enable the practical use of the characterisation, and constitute the basis for the
test case generation approach proposed in the following section. We conclude the
section discussing our problem statement in the context of the proposed characteri-
sation.

5 We note that a similar qualitative characterisation of the input space of a control loop is found only
in one book on control engineering from 1959 [Gille-Maisani and Decaulne, 1959]. However, the
treatment of the topic is brief and high-level and has not been investigated further in later literature.
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4.1 Qualitative Input Space Characterisation
In order to leverage domain knowledge from control-theory (Section 2.2), we base
our characterisation on a frequency-domain description of the input sequences.
Practically, this means that we describe the input space with two dimensions: one
captures the input frequency content and the second captures its amplitude. Being a
two-dimensional space, the input space can be represented as a frequency-amplitude
plane. We provide a graphical representation of this input space plane in Figure 5:
one input sequence corresponds to one or more points according to its frequency
content and its amplitude. We now use control-theory knowledge to identify differ-
ent areas in the input plane according to the expected behaviour of the control loop,
depicted by colours and boundaries in Figure 5). We now identify these areas in
terms of:

• where control theoretical guarantees apply (i.e. validity of the linear model),
and

• tracking and filtering behaviour within the applicability boundaries of control
theory.

In order to exemplify the different behaviours that we highlight in the charac-
terisation we use a minimal example of the altitude control of a drone. To enable
the easy detection of the limitations of the linear model, we use a simulator based
on a linear model and introduce one single source of non-linearity: the saturation
of the thrust. Practically, this saturation limits the force that can be applied by the
motors to move up and down the drone. In Figure 6 we report four tests showing the
response to square waves with different amplitudes and periods. For each test, the
upper plot shows the desired position (the black line) and the actual position (the
blue line). The lower plot shows instead the command sent to the motor that can be
used to accelerate or decelerate the drone (the red line). The saturation of the motor
(and hence the validity of the linear model) can be detected in these plots when the
force becomes fixed at ±2N.
Within Applicability of Control Theory: Inputs of small amplitudes will not push
the CPS far away from its operational point. Accordingly, for lower amplitudes
we are within the validity bounds of the linear model: this is represented by the
green area in Figure 5. Within this area, we expect the system to be able to track
the slower inputs: those sequences correspond to low-frequency inputs inside the
“Reference Tracking” area. Faster signals map instead to higher frequencies and
are not expected to be tracked: those belong to the “Reference Filtering” area. In
the figure we highlight the closed-loop bandwidth fb that separates the tracking and
filtering areas. To exemplify the tracking and filtering behaviours, in the upper plots
of Figure 6, we feed the controller of the drone with a slower (in the left-hand side
plot) and a faster square wave (in the right-hand side plot), both of amplitude 0.6m.
In the former we can see that the reference is successfully tracked within seconds
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Figure 6. This figure exemplifies the four different behaviours highlighted in the
qualitative characterization of the input space of a control loop. The plots are based
on the simulation of a minimal model of the altitude control of a drone. The only
source of non-linearity in this example is the saturation of the motor that limits (be-
tween ±2N) the thrust that can be generated by the motors. The blue lines show
the altitude of the drone (i.e. the output y), the black line shows the desired altitude
(i.e. the input r), and the red line in the lower plots shows the thrust generated by
the motors. Appearance of non-linear phenomena can be detected when the red line
saturates at ±2N.

after a step. In the latter the reference changes are too fast and the drone cannot
follow it successfully: we say therefore that it is filtered.
Validity Bounds of Linearised Model: When we consider input signals that are
larger in amplitude, the CPS moves further away from the operational point used for
the linearisation and non-linear phenomena start to appear. In Figure 5, such signals
correspond to the orange area “Non-Linear Phenomena Appear”. In the altitude
controller example this corresponds to hitting the motor saturation. Accordingly,
in the lower-left plot of Figure 6, we feed the drone with a larger square wave of
amplitude 1.5. As we can see from the plot of the control action, the motor now sat-
urates for some time after the occurrence of the step in the reference. This, however,
does not significantly affect the way that the actual altitude of the drone follows the
desired reference, i.e., the reference is still successfully tracked. In other words, the
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control algorithm is showing some robustness to the motors being saturated over a
limited amount of time. When the system moves even further away from the design
scope, the linearised models are falsified and there is no way to predict the system
behaviour. This is the “Out-of-Design Scope” red area. In fact, in the lower right
plot of Figure 6, we can see that the drone is not only unable to track the square
wave of amplitude 3.5m, but it also exhibits a new behaviour, a triangular wave.

Finally, we note that either large (high amplitude), fast changing (high fre-
quency) inputs, or a combination of the two can lead the system out of its design
scope. For example, in the drone altitude control, either a fast-changing input or a
large input can require high thrust and hence can cause motors saturation. Accord-
ingly, we draw the thresholds for which non-linear behaviour appears and show the
bound of the design scope to be decreasing with respect to increasing frequencies.

4.2 Qualitative Aspects of the Characterisation and their
Quantification

We aim at using the qualitative characterisation proposed in the previous section to
generate test cases that invalidate the linearised model used for the algorithm design
and hence push the control layer to its performance limits. In other words, we want
to be able to sample (test) points in the frequency-amplitude plane and identify the
behaviour that the test results expose in various areas of the plane. In order to stress
test the CPS, we want to sample around the border of the “out-of-scope” area to
understand when the control algorithm is no longer able to provide the performance
guarantees. Furthermore, we also want to identify the border between “tracking”
and “filtering” behaviours in order to characterise the fastest signals that the control
algorithm can track.

We note that the latter distinction between the “tracking” and “filtering” areas
(i.e., the closed-loop bandwidth) is not strictly related to the falsification of the
design assumptions (both areas are in fact coloured green). However, it represents
how fast a reference the control loop can track and hence represents a performance
limit of the system. If we want to push the system to its performance limits, then we
have to ensure that the test cases cover both behaviours.

Accordingly, in order to make our qualitative characterisation usable for the gen-
eration of stress test cases, we have to make quantitative the following qualitative
aspects:

• One input sequence generally contains more than one frequency, and hence
can map to more than one point in the frequency-amplitude plot. Accordingly,
we need to define a mapping between a test input sequence to a corresponding
set of frequency-amplitude coordinates in the input plane. This enables the
identification of which points in the frequency-amplitude plane are sampled
by a test.

• The detection of when a test trace shows a behaviour that is out of the validity
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ranges of the linearised model—i.e. when a test belongs to the red area—does
not have a formal definition in present literature. Accordingly, we need to
define a “degree of non-linearity” observed in a given test result. This enables
the detection of test cases that belong to the red area and that are outside of
the scope of the design assumptions.

• Since a test can map to multiple frequency-amplitude points, it can ex-
pose multiple behaviours simultaneously. Accordingly, we need to define a
mapping between the different behaviours observed in a given test and its
frequency-amplitude points (i.e. the different coordinates mentioned above).
This enables the distinction of the different behaviours (tracking, filtering, out
of scope) that might appear in the same test.

• It is practically impossible to know a priori the actual shape of the thresh-
old for which non-linear phenomena start to appear, nor of the threshold for
which they invalidate the linear models enough to impair the system perfor-
mance. Hence, the bounds between the areas of different colours can have
an arbitrary shape. However, we can define a set of properties that are gen-
erally expected to hold between the behaviours exposed by test cases in dif-
ferent points of the input plane. This enables the definition of test case gen-
eration strategies in the frequency-amplitude plane that explore the different
behaviours of the control loop. Furthermore, said properties can be used as
sanity checks for the testing process.

We now address the definition and quantification of each of those qualitative
aspects. Since we leverage the DFT of the input and output of the tests, we report in
Figure 7 the frequency-domain representation for the tests of Figure 6. The figure
uses the same colour convention as its time-domain equivalent: blue crosses repre-
sent the frequency components of the trace of the actual position of the drone, and
black crosses represent the frequency components of the input sequence. We use the
plots of the DFT to exemplify the different definitions and explain the underlying in-
tuitions. We remark that, analogously to common practice in the frequency-domain,
we use a logarithmic scale on both the axes of all the plots in Figure 7. This enhances
the readability of the plots.
Mapping of Tests to Frequency-Amplitude Points: Given an input reference se-
quence r(t), we want to define the frequency-amplitude coordinates that we are sam-
pling with the associated test. We define this mapping according to the frequency
spectrum (the DFT) of the input reference. In practice, inputs are signals sampled
over time, and therefore also the spectrum computed with the DFT is discrete [Coo-
ley and Tukey, 1965]. More specifically, the time-domain samples are mapped to
an equally numerous set of equally spaced frequency components, like in the DFT
examples in Figure 3. The number of the frequency components is therefore large:
for example, a 5 seconds trace sampled every millisecond is mapped to 5000 fre-
quency components. However, most of those components are usually zero or close
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Figure 7. This figure reports the input (the black crosses) and output (blue crosses)
DFT of the traces from the tests on the minimal example of the drone altitude control
shown in Figure 6. These plots exemplify how we use the frequency content of the
input and output to detect the different behaviours of control systems. The filtering
behaviour is detected when input components are not found in the output (upper-right
plot). Non-linear behaviour is detected when new frequency components are found
in the output (bottom-right plot). Furthermore, the red dashed line highlights the
threshold that we use to identify the relevant input components use for the mapping
of the test case to the frequency-amplitude plane.

to it, meaning that only few of those samples actually carry information about the
signal.6 Accordingly, among all of the frequency components computed with the
DFT, we consider as relevant only the ones with larger amplitudes. Formally, given
an arbitrary input r(t), we map it to a set of frequency amplitude coordinates ( f ,A):

f Amap[r(t)] = {( f ,A) : A= |DFT [r(t)]( f ) |∧A> γ ·max
f
{|DFT [r(t)]( f ) |}}, (1)

where DFT [·] denotes the DFT, | · | denotes the modulus,7 and γ is a parameter in the
range [0,1] that we use to select the relevant components (i.e. the larger ones) in a
relative way to the largest one: max f {|DFT [r(t)]( f ) |}. We exemplify this approach
to selecting the relevant points of the input DFT with the red dashed line (for γ =
0.1) in the plots of Figure 7. In fact, the quantity A > γ ·max f {|DFT [r(t)]( f ) |}

6 The reason for excess of samples is that signals are usually oversampled (sampled more frequently
than strictly necessary) for redundancy and robustness. Such oversampling introduces extra fre-
quency components in the higher part of the spectrum that do not carry much information about
the signal and are therefore zero or close to it.

7 The modulus is needed as the DFT computes the frequency components as complex numbers.
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Figure 8. This figure shows a graphical representation of how the repetition of the
same input sequence increases the resolution in the frequency-domain. The repeti-
tion of the same sequence does not introduce new information to the input signal,
whose non-zero frequency components remain unchanged. However, when the input
is repeated, the output signal is now sampled also in frequencies outside of the input
main components (the ones that are null in this plot) hence enabling the detection of
frequency spectrum broadening because of non-linear behaviour.

defines a threshold above which we include the components and below which we
exclude them. Accordingly, the f/A points of the input space sampled by the tests
are the are the black crosses found above red thresholds—i.e. the larger components
of the DFT of the input sequence. We can then observe in Figure 7 that: the faster
square waves of the two right-hand side plots map to points further to the right on
the frequency axis with respect to the other tests associated to slower square waves.
Furthermore, the larger amplitudes of the square waves from the bottom plots map
to points higher in the amplitude axis with respect to the other tests associated to
smaller square waves. This exemplifies how the size and the speed of the inputs are
captured in the frequency-domain.
Degree of Non-Linearity Definition: As exemplified in the bottom right plot of
Figure 6, non-linearities affect the CPS by introducing in the output new compo-
nents that were not present in the input. This kind of behaviour can be harmful as it
implies that the control algorithm is introducing some new behaviour in the system
that was not part of the reference. For example, in the bottom right plot of Figure 6
the altitude of the drone reaches 4m, when the reference is at 3m. This intuition of
non-linearities introducing new components finds confirmation also in the telecom-
munication field. In fact, non-linear components in telecommunication electronics
are known to cause the the broadening of the spectrum of a signal [Smirnov et al.,
2006]. Broadening of the spectrum means that in the output we find frequency com-
ponents that were not present in the input signal.8 The bottom right plot of Figure 7

8 From a theoretical perspective, this can be explained in terms of the Taylor expansion of a non-linear
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shows the DFT of the input and output of the test that shows non-linear behaviour
in our drone altitude control example. In this example, we can note the presence
in the output (the blue crosses) of components in the frequency range [0.02,0.4]Hz
that were not present inn the input (the black crosses). This is the broadening of the
spectrum mentioned above.

According to this intuition, we define the degree of non-linearity on the base of
how much output signal we find outside of the input spectrum. This requires that
we sample the spectrum of the output also outside of the frequencies of the input
components. In order to increase the number of samples in the frequency spectrum
without altering the frequency content of the input we can repeat the input sequence
(i.e., make it periodic). This apparently does not alter the information contained in
the input (since it is just repeated), and the non-zero frequency components do not
change. However, for each repetition we double the samples in the time-domain,
hence also double the samples in frequency-domain. The new samples obtained in
this way are found on the frequency axis between the samples previously available
(rather than only in the higher part of the spectrum, as for the samples introduced
by the oversampling). We exemplify graphically the sampling of new frequencies
in Figure 8. The figure shows how repeating the steps in the time-domain (plots
on the left-hand side) increases the resolution in the frequency-domain (plots on the
right-hand side) by adding new samples outside of the spectrum of the non-repeated
input (the first row).

When identifying non-linear behaviour, we are interested in detecting new fre-
quency components that are too large. We are not interested, for example, in how
many those are, since even a single one can be harmful. Hence, we define the degree
of non-linearity according to the maximum amplitude of the output spectrum outside
of the main components of the input spectrum. We look therefore at all the frequen-
cies present in the DFT of the output y minus the relevant ones found in the input
(i.e. f Amap[r(t))]). Formally, given a reference sequence r(t), we can define the set
of frequencies to check as fnew = { f : ∃DFT [r(t)]( f )∧¬( f ∈ f Amap[r(t))]} that
takes all the frequencies of the input DFT and then excludes the ones of the main
components. For example, in the tests of Figure 6 it means that we are looking at the
frequencies that are not associated to any input frequency component (black cross)
above the red dashed line—i.e., the ones associated to the components below the
threshold. Furthermore, in order to obtain comparable results across tests with dif-
ferent amplitudes we normalize our metric with respect to the amplitude of the input
max f {|DFT [r(t)]( f ) |}. We then obtain the following definition for the degree of

input-output relation: if the relation is non-linear, then higher-order terms will appear in the expan-
sion. Higher order terms depend on powers higher than 1 of the input, which is then multiplied by
itself. Then, even considering the simplest case of a sinusoidal input we can see with basic trigono-
metric rules that new frequencies appear—e.g. the sinus squared makes appear a new component at
double the frequency: 2sin2(x) = 1− cos(2x).
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non-linearity of a given test i

dnl(i) =
max f∈ fnew{|DFT [yi(t)]( f ) |}

max f {|DFT [ri(t)]( f ) |}
, (2)

where apparently ri(t) and yi(t) are respectively the input and output associated to
the test and the other elements follow the same conventions as in previous equations.
When we apply the dnl formula to the examples in Figure 7, we obtain the values
reported in the titles of the different plots.9 By comparing the numbers, we see that
the new frequencies that appear in the bottom right plot cause the dnl to be of one
order of magnitude higher than the dnl of the other tests. This example also shows
that already a seemingly small value like 16% of the maximum input amplitude can
significantly impact the performance.

To conclude, we note that the idea of repeating the input sequence exposes the
trade-off between test duration and the frequency resolution. Naturally, higher fre-
quency resolution increases the chances of detecting new frequency components,
hence non-linear behaviours. However, more repetitions require longer tests. How
many frequency samples are needed to detect new frequencies in the output is de-
pendant on the specific application. In the experimental part of this work, we run
tests preliminary tests to explore this trade-off for our case of studies and select an
adequate number of input repetitions.
Mapping of Behaviour to Frequency-Amplitude Points: When we analyse the
degree of non-linearity, we obtain a metric that characterises the whole input se-
quence. Said in other words, it characterises equally each of the input frequency-
amplitude components. In fact, for example, there is no way to identify which input
component in the bottom right plot of Figure 7 is causing the non-linear behaviour.
Hence, we associate the dnl metric equally to all of the frequency components of
the input.

Differently, when the SUT behaves linearly, some frequency components of the
same input are tracked and pass through to the output, while other components are
filtered. For example, in the upper right plot of Figure 7 we can observe that the in-
put component at frequency 1Hz is found, albeit reduced, also in the output, while
the component at frequency 3Hz has much lower amplitude in the output. There-
fore, when we quantify the filtering behaviour, first we have to consider only tests
that expose linear behaviour, and second we have to analyse the different frequency
components individually.

For each of the frequency-amplitude points of the input, we define a degree of
filtering depending on how much of the input is found in the output. If a frequency
component is perfectly tracked, its intensity in the input and output are equal, hence
their ratio measures to 1. Instead, if the ratio of the input over the output is below the
unit, it corresponds to filtering since part of the signal is lost. Analogously, values

9 In this cases, to compute the dnl we used ten repetitions of the step sequence.
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above 1 detect amplification: while a small amplification can be expected in real-
world systems, large amplification can be dangerous (for the very same reason as
the risks of the broadening of the frequency spectrum).

Hence, given a test i, we define the degree of filtering for a given input frequency
component f as the difference between 1 and the mentioned output-input ratio:

do f (i, f ) = 1− |DFT [yi(t)]( f ) |
|DFT [ri(t)]( f ) |

, (3)

with the same conventions as for the equations above, and the remark that this defi-
nition is valid only for tests with linear behaviour. Given the absolute values at the
numerator and denominator (which therefore can only be positive numbers), this
metric takes values in the range [−∞,1]. A value of 1 describes complete filtering,
while 0 describes perfect tracking. Negative values correspond to input amplifica-
tion.

We can then use this degree of filtering to identify the closed-loop bandwidth.
According to its control-theoretical definition, the closed-loop bandwidth fb cor-
responds to a ratio of 0.5 between output and input [Åstrom and Murray, 2008].
Therefore, the bandwidth can be identified as the threshold below which the fre-
quency components show a do f lower than 0.5 (reference tracking area), and above
which the do f is higher (reference filtering area).
Expected Properties of the Characterisation: While the plot in Figure 5 is qual-
itative, and we cannot predict the shape of the different behaviour areas, we can
define some properties that are expected to hold across different tests. Said prop-
erties describe the expected relative positioning in the frequency-amplitude plane
of the tests showing different behaviours. Therefore, they can be leveraged both to
develop test case generation strategies and or as sanity check for the testing process.

From the relative positioning of the different behaviour areas, we can identify
the following expected properties:

PR1 non-linear degree should increase for increasing amplitudes and frequencies.
In fact, the further we move away from the origin of the frequency-amplitude
plane the closer we should be to the input area outside of the design scope.

PR2 for linear tests, the filtering degree should increase as the frequency increases.
In fact, faster signals should be always harder to track than slower ones.

PR3 the closed-loop frequency bandwidth should be independent of the specific
test. In fact, when the system is behaving linearly, the threshold between the
tracking and filtering areas should not depend on the specific input and be
instead a property of the system.

We now exemplify an evaluation of these properties on the tests of Figures 6 and 7.
Property PR1 is fulfilled “on the high-level” since, the test with largest amplitude
(the bottom-right one) is the one with the largest dnl and the one with the second
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highest dnl is the one with the fastest input (the upper-right one). However, when
we compare the two plots on the left-hand side we would expect that the lower
one has a higher dnl than the upper one, since the latter receives a smaller input
with the same frequencies. This showcases that, when the linear model loses va-
lidity (in this case because of the appearance of the saturation) the behaviour of
the system becomes unpredictable and not necessarily worse. Such unpredictability
further underlines the importance of testing in the areas of the input space that are
at the bounds of validity of control theory. Property PR2 is fulfilled: looking at the
tests that show linear behaviour we can observe that the blue crosses move further
down from the black ones as we move to the right (hence to higher frequencies).
This means that the reference signal is found in the output less and less. Concerning
Property PR3, we can observe, in the upper tests, that the frequency above which
the input is filtered in the output, is similar for both tests (around 0.9Hz). For the
bottom right test it seems to be a bit lower instead (around 0.6Hz). This is possibly
due to the appearance of the saturation that limits how large and fast references the
drone can track (hence practically decreasing the closed-loop bandwidth for larger
amplitudes). Given that in the real world we would not necessarily know that the
bottom-left test is triggering some non-linear phenomenon, this discrepancy from
the two upper tests can be used to highlight that this test might require a more de-
tailed analysis (even though the control performance is possibly still acceptable).

4.3 Benefits and Limitations of the Frequency-Amplitude
Characterisation

Our testing objective is to generate and identify stress test cases that push the system
around the limits of validity of the linearised model. In the context of our proposed
characterisation, this can be quantified as generating test cases that expose different
dnl values. In fact, different dnl values correspond to different levels of non-linear
behaviour. More specifically, in order to explore the validity limits, we are interested
in test cases where the dnl is non-zero (hence not being fully within the design
scope) but also not too large (hence not being far outside of the design scope).

However, the identification of a boundary in the input space where the dnl tran-
sitions from the zero value to non-zero values is not possible for arbitrary input
sequences. In fact, as discussed above, the dnl metric characterises equally all of
the frequency-amplitude components of a given test. Consequently, a given point
in the frequency-amplitude plane can express different values of dnl depending on
the other components of the input. For example, in both the two right-hand side
tests presented in Figure 7, we can identify a main component around 1Hz and am-
plitude 0.2m. The two components are very close in the plane but are associated
to two test with different dnl values (and accordingly different behaviours). The
test in the upper plot shows linear behaviour and is within the design scope, while
the lower one is outside of the scope. This discrepancy appears because the two
components belong to different tests and are therefore coupled with other different
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components. Practically, this further remarks the qualitative nature of Figure 5 since
the highlighted areas cannot be distinguished in the general case.

To overcome this limitation, in our testing approach we propose a novel test-
case parametrisation for the control layer of CPSs. With this parametrisation we
separate, in a test case, the definition of

• the frequency content,

• the amplitude content and

• the combination (i.e. the relative positioning) of the different frequency-
amplitude components.

As shown in the next section, thanks to this separation, we can circumvent the prob-
lems that arise from the fact that different inputs can have different combinations of
frequency components.

5. Testing Approach

In the first part of this section we propose a novel test case parametrization for the
control layer of CPSs. The objective of the proposed parametrisation is to enable and
ease the use of the definitions proposed in the previous section. More specifically, it
allows for

• the use of the dnl (which requires periodic input sequences),

• the separation of the different input features (frequency content, amplitude
content and the combination of different frequency-amplitude components),
and

• the definition of the expected properties as metamorphic relations [Ayerdi et
al., 2021; Chen et al., 2018].

In the second part of this section, we use our test case parametrisation to develop
our testing approach. In our testing approach, we use the dnl and the expected prop-
erty PR1 to obtain a preliminary optimistic bound on the input amplitudes that the
control layer can track. Using the preliminary bound, we use random sampling to
explore the frequency-amplitude plane. Afterwards we execute the test cases, and
use the dnl, the do f and the metamorphic relations to sanity check the test outcomes
and identify the stress test cases.

5.1 Test Case Parametrisation
One test case i corresponds to a sequence ri(t) of reference values over the time t. In
order to achieve the desired properties listed above, we define ri(t) as a function de-
fined by three elements: an amplitude gain, a time scaling coefficient and a periodic
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shape function. More specifically, we use the expression

ri(t) = αi φi(γit) ,

where:

φ(·) Is a periodic function defining the input shape. For example, it can define
a square wave or a triangular wave (arbitrary sequences can be chosen as
long as they are periodic). Without loss of generality, we assume that shape
functions are normalized to have a unit period (i.e. ∀t : φ(t) = φ(t +1)) and
also have a unit amplitude range (i.e. maxtφ(t)−mintφ(t) = 1).

α Is a gain used to scale the input amplitude.

γ Is a time scaling coefficient that changes how quickly we go through the input
shape.

One test case i is therefore fully defined by a triplet (φi,αi,γi). We note that, as long
as φ is a periodic function, the sequence ri(t) is also periodic. Hence it is a repeated
sequence and enables the use of the proposed dnl.
Sampling of Frequency-Amplitude Coordinates: We now use the reference
square waves from the examples in Figures 6 and 7 to exemplify how the pro-
posed parametrisation works and how it enables intuitive sampling of the frequency-
amplitude plane. More specifically, how it separates the choice of the relative po-
sitioning of the different main frequency-amplitude components and of their fre-
quency and amplitude values. The four tests from the figures can be defined using
our parametrisation with φ being a square wave with unit period, and switching be-
tween the values 0 and 1. Concerning the α value, it corresponds to the amplitude
of the square wave. Hence, the tests in the upper plots have both amplitude gain
0.6, while the lower plots have amplitude gain 1.5 and 3.5. Concerning the values
of γ , the left-hand side plots have period 10, hence a time scaling of 0.1 to make
the signal slower. The right-hand side plots have instead periods 1 and 5, hence
respectively a time scaling of 1 and 0.2.

The shape function φ defines the relative positioning of the different ( f ,A) test
coordinates. Said in other words, it defines their pattern (e.g., combination of larger
and smaller components) in the frequency-amplitude plane. Apparently, different
shape functions will map to different patterns of the frequency-amplitude compo-
nents. However, thanks to the linearity of the DFT, this pattern is independent of
the α and γ coefficients. For example, if we look at the main frequency-amplitude
components of the inputs in Figure 7 (the black crosses above the red dashed line),
we can see that the different square waves all map to components along a decreasing
straight line.10 This showcases that relative positioning of the main components is

10 Square waves map to a decreasing straight line in logarithmic scale. In linear scale they map to an
hyperbole, like exemplified in Figure 8.
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defined only by the shape function and is independent of the scaling coefficients α

and γ .
The α coefficient enables the movement of the ( f ,A) test coordinates along the

amplitude axis: i.e., the choice of the vertical coordinate A. Intuitively, increasing
its value makes the frequency-amplitude components map to components further
up in the plane. Vice-versa decreasing its value makes them map to components
further down. Thanks to the linearity of the DFT, doubling (or equivalently for any
other scaling) the value of α doubles the main components’ amplitude coordinate
A [Cooley and Tukey, 1965]. For example, comparing the two left-hand side plots
of Figures 6 and 7 we can see that the two square waves with the same period map
to components with the same frequency but scaled amplitude.

The γ coefficient enables the movement of the ( f ,A) test coordinates along
the frequency axis: i.e., the choice of the horizontal coordinate f . Analogously to
the amplitude, increasing its value increases the speed with which we go through
the shape function, hence increases its frequency content. Vice-versa decreasing its
value makes them map to components at lower frequencies. Noticing again the lin-
earity of the DFT, a scaling of this coefficient corresponds to an equivalent scaling
of the main components’ f coordinate. For example, comparing the two upper plots
of Figures 6 and 7 we can see that the two square waves that have the same ampli-
tude but different periods map to points with the same amplitude but respectively
lower and higher frequency.

Definition of Metamorphic Relations: The properties introduced at the end of Sec-
tion 4.2 describe relations between different tests. Properties that concern the inputs
and outputs of multiple test cases are known as metamorphic relations (MR) [Chen
et al., 2018]. We define one MR for each property. We define the first two MRs
as implications over tests with the same shape. Accordingly, we define each on
the base of a condition and an expected implication. The conditions concern rela-
tions between the amplitude and frequency content of different test inputs as well
as whether the output shows non-linear behaviour or not. The implications concern
relations between the dnl and do f observed in the tests outputs. Differently, we
define the third MR as a property across tests with different shapes.

Using our test case parametrisation, for tests based on the same shape, we can
directly identify relations in the input amplitude and frequency content on the base
of the parameters α and γ . More specifically, given two tests i and j with the
same shape (i.e. φi = φ j), the relations between αi and α j, and γi and γ j identify
their relation in terms of respectively amplitude and frequency content. For exam-
ple, αi > α j automatically implies that the test i maps to points all higher in the
frequency-amplitude plane with respect to the points of j. Analogously, γi > γ j
automatically implies that the test i maps to points all further to the right in the
frequency-amplitude plane with respect to the points of j.

Property PR1 states that an increase in amplitude or frequency content of the
input should cause an increase in the dnl. Thanks to our characterisation, for two
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tests i and j based on the same shape (φi = φ j) an increase in amplitude and fre-
quency are identified with αi > α j and γi > γ j. Their conjunction can be used to
define the MR condition. The MR implication instead concerns an increment in the
degree of non-linearity. This can be expressed as dnl(i) > dnl( j). Hence, we can
write the following MR:

MR1: (φi = φ j)∧(αi > α j)∧(γi > γ j) =⇒ dnl(i)> dnl( j) . (4)

Property PR2 states that, as long as the tests shows linear behaviour, an increase
in the frequency content will correspond to increase in the filtering behaviour. To
identify linear tests we use a threshold dnlth on our degree of non-linearity. Tests
below said threshold (dnl(i) < dnlth) are therefore considered to show linear be-
haviour and we limit the definition of this MR to those. Like for the previous MR,
we identify an increase in the frequency content for two tests with the same shape
as a greater time scaling parameter γi > γ j. The conjunction of the dnl threshold and
the increase in frequency content constitute the MR condition. For the MR implica-
tion an increase in the filtering behaviour can be identified with an increase of the
do f . However, differently from the dnl, the do f applies to each main frequency-
amplitude component of the test. Hence we need to evaluate it for each component
of the inputs, i.e., ∀ f |( f ,A) ∈ f Amap[ri(t)] and compare it with the corresponding
component of the other test, i.e., the one with frequency f γ j

γi
(leveraging the linear-

ity of the DFT). Using this quantification in the implication of increasing do f we
obtain

MR2: (φi = φ j)∧(γi > γ j)∧(dnl(i)< dnlth)∧(dnl( j)< dnlth) =⇒
∀ f |( f ,A) ∈ f Amap[ri(t)],do f (i, f )> do f ( j, f γ j/γi) .

(5)

Property PR3 states that, as long as the tests show linear behaviour, the closed-
loop bandwidth should not depend on the specific test. To complement the two
previous MRs that concern tests belonging to the same shape, we use this property
to define an MR across different shapes. We identify the closed-loop bandwidth
estimated with the tests of a given shape φ as the threshold fb,φ . As discussed in
Section 4.2 the fb can be evaluated for each shape as the frequency below which the
do f of the different frequency components (of tests that show linear behaviour) is
smaller than 0.5. Therefore the third MR can be defined the expectation that the fb
estimated using tests from different shapes are similar

MR3: | fb,φi − fb,φ j |< ε, (6)

where ε is a small discrepancy that can be accepted.

5.2 Approach Steps
In this section we describe the main steps of our testing approach. We use our test
case parametrisation to generate test cases that cover different ranges of amplitudes
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Figure 9. Graphical representation of main steps of proposed testing approach. For
each step we describe the contribution to the testing in terms of the information that
it adds in the frequency-amplitude plane. In each plot we show the bounds provided
by the engineers as required input. The dashed line represents the optimistic bound
on the amplitude values obtained in the Step 1. The crosses represent how the tests
generated in Step 2 sample the frequency-amplitude plane. In Step 3 the colouring
of the crosses and pr(i, j)? respectively exemplify the evaluation of the behaviour
observed in the tests and the evaluation of the metamorphic relations.

and frequencies. Afterwards, we use the MRs enabled by the parametrisation to
sanity check the results and the dnl to identify stress test cases.

In our approach, we require the engineers to provide ranges of frequency and
amplitude values that are relevant for the SUT. Starting from these ranges, we pro-
pose a testing approach based on three main steps. We use Figure 9 to provide an
approach overview and a graphical representation of how the required input and
steps contribute to the generation and identification of stress test cases:

Step 0. Required Input. In this preliminary phase we ask the engineers to pro-
vide bounds on the relevant frequency and amplitude ranges as well as the
desired resolution. We use the ranges ( fmin, fmax, and Amax in Figure 9) to
limit the scope of the testing to practically relevant values. The resolution
is instead used to define how small variations in the reference value are
expected to impact the control behaviour.

Step 1. Optimistic Bounding of Amplitude Values. This iterative step provides
an optimistic evaluation of amplitude values that cause non-linear be-
haviour in the SUT (the dashed line in Figure 9). To obtain such values, we
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use tests with sinusoidal shape. The sinusoidal shape maps to an individual
frequency-amplitude component and does not account for the combination
of different components, hence giving its optimistic nature to this step.

Step 2. Generate Test-Set. This step uses different input shapes to generate the
actual test-set. We use the optimistic amplitude bounds to limit the target
area of the input space during the test-case generation. For each shape,
we use uniform sampling of frequencies and random sampling over am-
plitudes to cover the target area (each of the black crosses in Figure 9 cor-
responds to a pair of frequency-amplitude coordinates, hence a generated
test).

Step 3. Tests Execution and Evaluation. In this step we execute the tests and
quantify the observed behaviours (the colouring of the crosses in Fig-
ure 9 symbolically represents the different behaviours). We sanity check
the measured behaviours with the MRs (the pr(ti, t j) in Figure 9). We use
the degree of non-linearity to identify test cases that push the control algo-
rithm out of its design scope to various degrees.

We now delve in to the details of each step.
Required Input: In order to practically initialise the approach we ask the engineers
to define different quantities specific to the control system. Such quantities initialise
the ranges of the amplitudes and frequencies that are relevant for the SUT, and
define the desired resolution across the tests. The required quantities are:

• A bound on the maximum amplitude Amax that can be fed to the system11:
this is an upper boundary to limit in practice the exploration of high values
along the amplitude axis. For example, for drone altitude control, it can be set
to the maximum altitude that the drone is expected to fly at.

• A frequency range [ fmin, fmax] around the expected closed-loop bandwidth
fb. Such expected value can be obtained from the control design process or
from the speed requirements. As discussed above, it is important to cover the
closed-loop bandwidth in order to push the CPS to its performance limits. As
a rule of thumb, a factor of 10 around the expected fb should be sufficient to
make sure to include the actual one.12

• An amplitude resolution ∆A that is used to define how small variations in the
input size are expected to have an impact on the system behaviour. Ideally,
this should be a range within which differences in performance are expected

11 The lower boundary is always zero since the amplitude describes the absolute value of the signal.
12 With such rule of thumb, if the tests show that the fb is not included in the used frequency range, it

implies that there is an error of more than one order of magnitude on the expected system bandwidth.
Such large error in the expected value detects the presence of some issue in the system development.
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to either not matter or be indistinguishable because of practical limitations
(e.g. sensor resolution). However, such fine grained resolution is not practi-
cally needed (nor achievable) and larger values can be used.

As we discuss later, we propose an automated approach to retrieve a desired fre-
quency resolution from the results of Step 1. In fact, it can be difficult to intuitively
define a desired frequency resolution. In case of specific needs, the engineers can
set the desired frequency resolution manually (e.g., to control the number of tests
on the base of a given testing budget).

Concerning the approach itself, we require the definition of an upper bound
dnlth on the degree of non-linearity. This quantity defines a dnl value above which
tests are considered to be outside of the design scope of the SUT. Being a bound
on the dnl, it can be interpreted as the maximum accepted relative amplitude of
new frequency components that we can accept in the CPS. Accordingly, it can be
chosen in the range of the maximum relative accepted deviation from the reference
tracking. For example, for drone altitude control, we might accept up to 0.15m of
deviations from the reference when hovering around 1m and in presence of wind,
hence set dnlth = 0.15.13 Furthermore, its value does not need to be strict. In fact, for
what concerns the test case generation, it is used only for the preliminary optimistic
bounding of the amplitude values (Step 1). Hence, a larger value can be selected
without compromising the approach effectiveness. However, as for the ranges, a
conservative choice for this parameter results in a larger test-set.

In general, the mentioned values can be defined according to the domain knowl-
edge of the SUT and the requirements on the tracking of the reference. Furthermore,
they can be chosen in a conservative way (i.e., large ranges and high resolution) at
the cost of a higher number of tests. They might however require interaction with
the domain experts for the given CPS application.
Optimistic Bounding of Amplitude Values: The purpose of this step is to obtain,
for the different frequencies, an optimistic evaluation of the input amplitude values
α that push the control algorithm out of its design scope. This optimistic evalua-
tion allows us to restrict the sampling of the frequency-amplitude plane and avoid
trivially large amplitudes that will expose non-linear behaviour (i.e., dnl > dnlth).
Accordingly, it helps targeting the area of the input space where non-linearities start
to appear.

To obtain this optimistic bound, we use sinusoidal inputs, i.e., φ = sin. As noted
in Section 2.2 (Figure 3), sinusoidal inputs sample a single point in the frequency-
amplitude plane and therefore avoid potential interactions between different com-
ponents. Since those tests do not account for said interactions, the test provides only
an optimistic evaluation of the SUT behaviour for that frequency-amplitude com-
bination. Said in other words, even if a sinusoidal test with a given value of α and

13 Note that, being the dnl based on the DFT, it has a linear proportion with time-domain values. Hence
relative amplitudes in the two domains are equivalent.
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Algorithm 1 Optimistic Bounding of Amplitude Values
function OPTIMISTICAMPLITUDEBOUND( fmin, fmax, δA, Amax,dnlth)

Abound ← binary_search_dnl_th( fmin,δA,dnlth)
upperbound_dnl ( fmin)← Abound
Abound ← binary_search_dnl_th( fmax,δA,dnlth)
upperbound_dnl ( fmax)← Abound
while max_gap (upperbound_dnl)> δA do

f ← sample (upperbound_dnl)
Abound ← binary_search_dnl_th ( f ,δA,dnlth)
upperbound_dnl ( f )← Abound

end while
return upperbound_dnl

end function

γ exposes linear behaviour, it could happen that other shapes paired with the same
values, expose non-linear behaviour (i.e. dnl > dnlth). On the other side, if a sinu-
soidal test shows non-linear behaviour, the use of a different shape (with the same
values for α and γ), is unlikely to show linear behaviour. In fact, by changing to a
more complex shape, we are adding new frequency components to one component
that was already sufficient to push the control algorithm out of its design scope.

We show the pseudocode implementing this step in Algorithm 1. The algorithm
takes as inputs the frequency range, the desired amplitude resolution, the upper
bound on the maximum amplitude value, and the non-linearity upper bound dnlth.
It then uses tests with sinusoidal inputs to sample the frequency-amplitude plane
and obtain a frequency-dependant bound upperbound_dnl( f ) of amplitude values.

On the high level, our algorithm iteratively samples the frequency axis, i.e., it
samples values of γ . For each sampled frequency, it performs a binary search to
obtain the minimum value Abound = α for which the SUT shows dnl > dnlth.14

Accordingly, the obtained minimum amplitude value is assigned to the threshold
upperbound_dnl( f )← Abound .

The sampling of the frequency axis starts with the sampling of the minimum
fmin and maximum frequency values fmax provided as input. It uses the obtained
values to initialize the bound upperbound_dnl. Afterwards, the iteration mentioned
above starts (the while loop in the pseudocode). This iteration continues as long
as the gap between two threshold values of subsequent frequencies in the bound
is larger than the desired resolution max_gap(upperbound_dnl)δA. More rigor-
ously, it continues until for each sampled fi it holds that upperbound_dnl( fi+1)−
upperbound_dnl( fi)< ∆A. Accordingly, at each loop iteration it identifies a pair of
frequencies for which the condition above does not hold and samples a new fre-
quency between them ( f ← sample (upperbound_dnl)).

14 We note that, in order to perform this binary search, the algorithm is assuming that MR1 holds: i.e.
that the dnl increases for increasing values of α .
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Generate Test-Set: In this step we generate the actual test set. Given our test case
parametrisation, we need to define a set of shape functions and different amplitude
and time scaling parameters. We now discuss each of them.

Concerning the shape functions, we propose to use a set of shapes inspired by
common practice in control engineering. In control engineering, the most common
inputs used to evaluate a control algorithm are the step (instantaneous change of the
reference) and ramp (linear change in the reference) [Åstrom and Murray, 2008].
Accordingly, we propose the use of shape functions that resemble said inputs: i.e.,
square, sawtooth, triangular, and trapezoidal waves. If other patterns are available
from use cases for the specific CPS application, engineers can expand this set.

For each of the chosen shapes, we generate a set of (γ,α) pairs. We aim at ex-
ploring the area of the input space delimited by the upper-bound threshold identified
in Step 1. Since one shape corresponds to more than one frequency-amplitude( f ,A)
point, we take as reference the point associated with the largest amplitude (in rel-
ative terms), which we call the main component of a shape. Accordingly, we use
the α and γ parameters to move the main component of each shape and obtain test
cases that cover the area delimited by the upper-bound threshold.

For what concerns the frequency axis, in the general case, there is no reason
to test a specific range more than others. Therefore, along this dimension, we aim
at uniformly covering (with the main component of the shape) the frequency range
[ fmin, fmax]. Practically, we sample frequencies at equal intervals in the given range.
Since it can be difficult to have an intuition for a desired frequency resolution, we
propose to compute a desired resolution δ f from the results of Step 1. Specifically,
we suggest to use the average frequency gap (i.e., avgi{ fi+1− fi}) obtained in the
amplitude upper-bound. The intuition is that said gaps were obtained by imposing a
maximum difference δA in the amplitude threshold for which the SUT shows non-
linear behaviour. Therefore they should resemble a frequency variation for which
the dnl does not change significantly. In specific cases, the engineers can adapt the
sampling of the frequency axis according to application-specific needs. For exam-
ple, if a frequency range is known to be particularly relevant for the specific SUT, a
biased random sampling can be applied.

Differently, along the amplitude dimension, we are generally more interested in
exploring the area with large amplitudes. For the amplitude values we can leverage
the upper bound obtained at Step 1 and avoid sampling large amplitudes that, al-
ready with a sinusoidal input, would provide a very high dnl. Practically, we limit
the sampling range with the optimistic upper bound obtained in each sampled fre-
quency. Within this range, we propose to sample different amplitudes α according
to a beta distribution skewed toward the higher values.15 In order to define the num-
ber of samples, we use to base it on the desired amplitude resolution δA. Practically,
we compute the number of tests for each frequency f with upperbound_dnl( f )/δA
to obtain a number of samples compatible with the desired resolution. Similarly to

15 A beta distribution is a version of the more classical exponential distribution with bounded support.
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the frequency dimension, application-specific sampling strategies might be adopted
if areas of particular interest are given.
Tests Execution and Properties Verification: Once the test cases are defined, in
this final step we proceed to executing and evaluating them. The evaluation in-
cludes the verification of the MRs and the identification of the stress test cases.
More specifically, we identify the stress test cases as the ones that show a degree of
non-linearity in the range between 0 and dnlth. In fact, as mentioned in Section 4.3
test with dn= 0 are tests clearly within the design scope while tests with dnl > dnlth
are tests clearly outside of the design scope. We now provide guidelines for the exe-
cution of this step. In the experimental section, we showcase in detail this final step
of visualisation and analysis for our case of studies.

For each executed test we store the output trace and compute, according to the
definitions given in Section 4: (i) the set of relevant ( f ,A) points, (ii) the degree of
non-linearity, and (iii) one degree of filtering per ( f ,A) point. Such information can
then be analysed by leveraging plots based on the frequency-amplitude characteri-
sation.

For analysing the dnl (and identifying stress test cases), the main component of
the test can be plotted in a frequency-amplitude plane using the associated ( f ,A)
coordinates.16 The marker can be coloured with a gradient that represents the mea-
sured dnl. The engineers can then use the colours to identify regions of the input
space where non-linear behaviour appears. Using the colouring, MR1 can now be
checked. In fact, MR1 enforces a pattern similar to the one shown in Figure 5 (as-
suming that red corresponds to dnl > dnlth, green to dnl = 0 and the colour gra-
dients to the values in the range [0,dnlth]). Test cases that are at the boundaries
between the colours and that deviate from said pattern are the stress test cases. The
inspection of said test cases is expected to provide information about the phenomena
inside the CPS that can cause the control algorithm to fail.

For what concerns MR2 and MR3, we use them for sanity check of the test
outcomes. We note that those latter MRs (i) concern only the tests that show linear
behaviour, (ii) do not depend on the input amplitude, and (iii) discuss the do f .
Accordingly, we first select only the tests that fulfil dnl < dnlth, i.e., the tests that
show linear behaviour. From the remaining tests, we extract the individual ( f ,A)
components and associated do f value. We then plot, separately for each shape, the
do f of each frequency-amplitude point as function of its frequency coordinate f .
MR2 states that an increase in the frequency content corresponds to an increase
in the degree of filtering. Accordingly, the proposed frequency-do f plot such plot
should show an increasing trend. MR3 states that the fb should not depend on the
specific shape of the input. We recall that the fb is defined as the frequency below
which do f < 0.5 and above which do f > 0.5. Accordingly, the trend of the degree

16 We remark that the dnl characterises the whole test, hence there is no added information in plotting
all of the frequency-amplitude components. Conversely, the inclusion of all of them is likely to make
the plot difficult to interpret.
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of filtering values for the different shapes should cross the 0.5 value around the
same frequency. If said properties are not verified by some frequency-amplitude
components, the associated tests should be inspected for possible faults in the testing
process. Furthermore, if it is not possible to identify the fb (because all of the do f
values are above or below 0.5), it implies that the frequency range [ fmin, fmax] does
not include the actual closed-loop bandwidth. This means that only one between
the tracking and filtering behaviour is being tested. This is apparently a fault in the
testing process that requires re-adjustment of the [ fmin, fmax] range and repetition of
the process.

6. Empirical Evaluation

In this section, we empirically evaluate the proposed testing approach. We aim at
evaluating the approach effectiveness in generating and identifying test cases that
violate the linearity assumptions made during the control algorithm design. Further-
more, we want to evaluate its ability to provide insights about the specific non-linear
phenomena limiting the control algorithm design scope, as well as its general ap-
plicability to different CPSs. Accordingly, we define the following three research
questions (RQ).
RQ1: The objective of our approach is to generate test inputs that lead the sys-
tem close to the applicability boundaries of control theory. In our approach, the
test case generation (Step 2) does not include iterations and directly generates test
cases through random sampling. Therefore, we ask whether our approach is able to
directly generate test cases that cover the area around the applicability bounds of
control theory—where “directly” refers to the fact that, after Step 1, the test case
generation does not involve an iterative approach.
RQ2: Our approach is based on the qualitative characterisation of the input space
proposed in Figure 5. Given the qualitative nature of the characterisation we devel-
oped metamorphic relations that capture its relevant properties in our tests. Accord-
ingly, we ask if said properties actually apply and if their verification can be used
to identify the non-linearities limiting the design scope of the SUT.
RQ3: Our approach aims at being system-agnostic and applicable to different types
of control-based CPSs. Practically, we mean that it should be able to identify appli-
cability boundaries of control theory independently of the specific SUT. For this rea-
sons, we ask whether our approach is effective independently of the specific sources
of the non-linear behaviour in the SUT.

This section is structured as follows: we first present and motivate the case of
studies. Afterwards we present the results of the testing campaign. We then use
the results to answer our research questions: for each question we first present our
answering methodology and then discuss it using the tests results. We conclude the
this empirical evaluation with a general discussion on the results, on the threats to
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validity, and the code and data availability.

6.1 Systems Under Testing
To answer our research questions, we apply our testing approach to the simulation
models of two CPSs. We aim at covering the two most common types of algo-
rithms found in traditional control theory: PID control and state-feedback [Åstrom
and Murray, 2008; Desborough and Miller, 2002]. Accordingly we chose a drone
controlled with PIDs and a DC servo (a continuous current motor) controlled with
state-feedback. We implement the drone model using Python17 and the DC servo
using Sumulink18.

We base our drone model on the Crazyflie drone developed by Bitcraze19 that
is completely open-source. This gives us full access to the source code, as well
as software and design documentation. We use this information to develop a de-
tailed Python model of the physics (based on the models used at control-design
time [Greiff, 2017]) and of the control software (based on the source code20 and the
design documentation [Greiff, 2017]). We choose this SUT as we can have complete
knowledge about the system design and it allows us to evaluate our testing approach
using the very same information available during the CPS development. The con-
trol layer of the drone includes three separate control loops for the three directions:
among those we select the altitude control—i.e. the control along the vertical di-
rection. We chose the altitude control as, differently from the other control loops, it
allows for quantification of the non-linear phenomena ground truth (that we lever-
age in the answer to RQ1). Despite being a small drone (size of 6×6cm), we note
that the Crazyflie implements control algorithms that are used also in larger drone
applications [Mueller et al., 2016].

The model of the DC servo is based on laboratory hardware used for educational
purposes at Lund University. The control layer of a DC servo receives from the
user a desired angular position of the motor axis (the input reference r). On the
base of such information and of the motor axis position measurements (the output
y) it generates a voltage signal to be fed to the motor in order to make it move
(the actuation signal). Our simulation model executes the very same C code that is
run on the microcontroller used in the physical implementation of the CPS. Whilst
being based on a CPS used for educational purposes, the considered DC servo is
analogous to electrical motors found in common industrial applications like the joint
of a robot or the steering axis of an autonomous car. We chose this SUT because
electrical motors can expose, depending on the specific application, different types
of non-linearities that can affect the behaviour of the control algorithm. This allows
us to develop different but still practically relevant versions of the DC servo where

17 https://www.python.org/
18 https://se.mathworks.com/products/simulink.html
19 https://www.bitcraze.io/
20 https://github.com/bitcraze/crazyflie-firmware

182

https://www.python.org/
https://se.mathworks.com/products/simulink.html
https://www.bitcraze.io/
https://github.com/bitcraze/crazyflie-firmware


6 Empirical Evaluation

we manually inject the common non-linearities. We retrieve a list of non-linearities
from the “Discontinuities” folder of the Simulink library:

• Saturation represents the limitation of variables in the system: it generally
affects actuators (that have limited capacity) and sensors (that can have a
limited range of values that can be read).

• Quantization is the effect of the finite precision in the analog-to-digital con-
version of the sensors signals.

• Pulse-Width-Modulation is a common technique used for digital-to-analog
conversion, it can distort the actuation signals.

• Coulomb Friction: friction is always found in physical models, it is however
hard to model and non-linear and for this reasons often neglected or approxi-
mated.

• Dead-Zone and Backlash are always found in mechanical gearing as they are
caused by the play between the different cogs.21

We add to the list a quadratic friction model as it is a very common source of non-
linear behaviour in practice—e.g. aerodynamic drag in a car or drone.22 Among
said sources of non-linearity, we consider saturation, quantization, and pulse-width-
modulation to be always present as they are part of the interface between the cyber
and physical part of the system. Differently, we introduce one by one the quadratic
friction, the coulomb friction, the dead-zone and the backlash. We obtain therefore
the following five versions of the DC servo according to the included non-linearities:

DC1 saturation (on actuation and sensor), quantization, pulse-width-modulation.

DC2 saturation (on actuation and sensor), quantization, pulse-width-modulation,
and Coulomb friction.

DC3 saturation (on actuation and sensor), quantization, pulse-width-modulation,
and quadratic friction.

DC4 saturation (on actuation and sensor), quantization, pulse-width-modulation,
and dead-zone.

DC5 saturation (on actuation and sensor), quantization, pulse-width-modulation,
and backlash.

To summarise we apply our approach to six different SUTs: the altitude control of
the drone and the five different versions of the DC servo.

21 Among the blocks listed in the Discontinuities folder we excluded the “rate limiter” as it is just a
special case of saturation, and the relay as it is a very simple and old control approach, used only for
non-critical systems.

22 Quadratic friction was possibly not included among the standard blocks as it is easily implemented
with other blocks.
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Table 1. Chosen values for the testing approach required input for the altitude con-
trol of the drone and for the DC servo.

SUT fmin fmax Amax ∆A
Crazyflie Drone 0.1Hz 2Hz 6m 0.05m
DC servo (all versions) 0.005Hz 3Hz 2π rad 0.015rad

6.2 Testing Settings
In this subsection we present the settings needed for the application of our testing
methodology to the chosen SUTs. We first report on the required input (defined in
Section 5.2) and the manual evaluation of the number of input repetitions needed to
evaluate the dnl (defined in Section 4.2).
Selection of Required Input: We summarise in Table 1 the values chosen for the
required input of our testing approach. We chose those values on the base of domain-
knowledge of the SUT. Concerning the frequency range, both systems should be
able to track the reference within a time span of the order of seconds. Accordingly,
we place the expected closed-loop bandwidth around 1Hz. To give an intuition, this
corresponds to taking around 2s to track a unit change in the reference value: 1m
for the drone and 1rad for the DC servo. For the drone we choose in the frequency
range [0.1Hz,2Hz]. For the DC servo, we do not have a clear estimate from the
documentation. Hence, we chose a broader range [0.005Hz,3Hz].

Concerning the maximum amplitude, we reason on the largest inputs that we can
expect in practice for our SUTs. The Crazyflie is expected to mostly fly in indoor
environments. We chose a maximum amplitude in the reference variations of 6m,
corresponding to a large room.23 The DC servo, is supposed to track desired angular
positions. Hence, we limited the reference amplitude changes to one full rotation of
the motor axis, 2π rad.

Concerning the amplitude resolution, we reason on which variations of the input
amplitude can cause a change in the behaviour of the SUT. For the drone this is in
the order of centimetres: for example, asking the drone to reach 1.01m or 1m should
not show a (significantly) different behaviour. Accordingly, we chose δA = 5cm for
the Crazyflie. The DC servo is expected to react to reference changes in the order
of degrees. Since such devices are expected to be rather precise we chose a range
smaller than the desired precision. More precisely, we chose one 400th of a rotation
for the DC servo (less than one degree) δA = 0.015rad.

Finally, for the implementation of the testing approach, we have to set the non-
linear threshold. The dnlth threshold is connected to the maximum relative deviation
from the reference that we can accept. We take a conservative approach and accept
up to 15% of relative deviation. This means that we identify tests with more than
15% deviation to be trivially out of scope and therefore not interesting in terms of

23 For example, the Crazyflie has been used for performing automated inventorying of supermar-
kets [Greiff et al., 2021].
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Table 2. dnl of the preliminary tests computed using different numbers of periods
for each SUTs. For the Crazyflie we can see that the value stabilizes when using
five periods, hence that is the number of periods that we use in the implementation
of our approach. For each of the DC servo versions the value detects the non-linear
behaviour after six repetitions, hence we use seven to allow for some margin.

Evaluation of the Required Number of Input Iterations for dnl Computation
# Periods 1 2 3 4 5 6 7 8 9 10
Drone 0.12 0.26 0.36 0.40 0.39 0.41 0.47 0.54 0.56 0.54
DC1 0.05 0.10 0.09 0.09 0.08 0.50 0.45 0.42 0.37 0.30
DC2 0.05 0.10 0.09 0.08 0.07 0.54 0.49 0.47 0.43 0.36
DC3 0.01 0.02 0.03 0.01 0.02 0.25 0.24 0.24 0.25 0.24
DC4 0.05 0.10 0.09 0.09 0.07 0.49 0.45 0.44 0.41 0.35
DC5 0.05 0.11 0.10 0.09 0.07 0.49 0.45 0.42 0.38 0.32

stress testing. For example, in the drone case study, this means that we are interested
in tests that deviate of up to 15cm when the drone is expected to hover at 1m of
height. Accordingly, we set dnlth = 0.15.

Setting of Number of Input Iterations: In order to apply our testing approach to
the CPSs, we need to define the number of input repetitions needed to compute the
dnl (Section 4.2). For the sake of efficiency, we want to select the smallest number
of repetitions (i.e., shorter tests) that gives sufficient accuracy in the dnl computa-
tion. To evaluate this trade-off, we performed a preliminary experiment, in which
we manually run a single long test with large amplitude and scaling coefficients
such that the SUT exposes non-linear behaviour. We detect non-linear behaviour by
visually inspecting that the output does not follow the input reference. We use 10 in-
put repetitions and compute the dnl using different trace lengths that correspond to
different numbers of input periods. We then evaluate after how many input periods
the dnl converges to a value that detects the non-linear behaviour (i.e. it is higher
than the chosen dnlth). As this evaluation is different for the different SUT, we run
it for each of them before implementing our testing approach.

In order to bring the SUT out of their design scope, we run tests with the max-
imum amplitude and frequencies defined by the required input (Table 1). For the
Crazyflie, a sinusoidal shape proved sufficient to cause non-linear behaviour. Dif-
ferently, the DC servo showed linear behaviour for such test with sinusoidal input.
Hence we resorted to a more complex (in terms of frequency components) shape to
bring the SUT out of its design scope. Specifically, a steps shape caused non-linear
behaviour.

We report in Table 2 the dnl values obtained for each of the SUTs using different
numbers of periods. For the Crazyflie, the dnl value exceeds the threshold already
using two periods. We chose however to use 5 periods as the value increases until
then. For the DC servo we observe a similar pattern in each version of the case of
study. The dnl is below the threshold when using 5 or less periods and then suddenly
increases to a higher (and constant) value above the threshold for 6 or more periods.
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Table 3. Number of tests executed for each SUT in Step 1 (sinusoidal upper-
bounding of the non-linear threshold) and 3 (execution of the test-set generated at
Step 2).

Number of Executed Tests
Approach Step Step 1 Step 3 Total
Crazyflie Drone 112 1012 1124
DC1 12 5100 5112
DC2 (Coulomb Friction) 12 5010 5022
DC3 (Quadratic Friction) 12 5100 5112
DC4 (Dead-Zone) 12 5100 5112
DC5 (Backlash) 12 5100 5112

To allow for some margin we chose to use 7 periods in our tests.

6.3 Output of the Testing Campaign
We now present the results of applying our testing approach to the SUTs. We first
discuss the number of executed tests. Afterwards, we use Figures from 10 to 13
to report the results of the testing process. For each SUT we report two sets of
figures. The figures are directly related to the execution of Step 3 of the approach
(Section 5.2).24 Such figures report the the dnl and do f observed in the tests.
Number of Tests: In Table 3 we report the number of tests executed for each SUT.
The table reports the number of tests executed respectively for Step 1 and Step 3
(Step 2 does not require the execution of test cases). We note that the difference
between Crazyflie and DC servo in the test-set size is caused by two factors. First
the DC servo has wider ranges and higher resolution selected in the required input.
Second, the execution of Step 1 reduces the number of tests needed to cover the
input space of the drone altitude control. We note that the execution of the first
step for the DC servo required a much smaller number of tests compared to the
Crazyflie. This is due to the fact that, within the frequency-amplitude range defined
in the required input, almost none of the sinusoidal test cases showed non-linear
behaviour (as noted also in the evaluation of the number of iterations needed for the
dnl computation). For this reason the binary search converged quickly to a value
close to Amax. Since this happened equivalently for the different versions of the DC
servo, the obtained sizes for the different test-sets (corresponding to the number of
tests executed in Step 3) are the same. The only exception among the versions of the
DC servo is DC2, for which Step 1 excluded part of the amplitude values at high
frequencies.
Figures on dnl: This set of figures reports the measured dnl for each test. Figure 10
reports the dnl results for the Crazyflie, and Figure 12 reports the dnl results for

24 In this subsection we only describe the figures. We analyse the validity of the MRs in the answers to
the RQs.
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Figure 10. Degree of non-linearity of Crazyflie test cases divided by shapes. For
each test the main component is plotted on the frequency-amplitude plane. Each
point is coloured according to to the measured dnl: green corresponds to dnl = 0
and red corresponds to dnl = dnlth or greater.

0.5 1 1.5 2
0

0.5

1

Frequency Hz

do
f

do f Steps

0.5 1 1.5 2
0

0.5

1

Frequency Hz

do f Ramp

0.5 1 1.5 2
0

0.5

1

Frequency Hz

do f Trapezoidal

0.5 1 1.5 2
0

0.5

1

Frequency Hz

do f Triangular

Figure 11. The figure reports the do f for all of the frequency-amplitude compo-
nents for the tests that show linear behaviour (identified with dnl < dnlth). The do f
is reported as the vertical coordinate of each point and it is plotted over the fre-
quency of the point (the horizontal coordinate). The plots are also used to identify
the closed-loop bandwidth according to the tests made with different shapes: all of
them cross the 0.5 threshold (highlighted by the red dashed line) giving a bandwidth
fb ≈ 0.6Hz.
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Figure 12. Evaluation of the dnl for the tests with different shapes (the columns)
on the different versions of the DC servo (the rows). For each test we scatter plot the
frequency-amplitude main component and colour it according to the measured dnl.
The colour gradient has the same interpretation in every plot and goes from green
that corresponds to dnl = 0 to red that corresponds to dnl = dnlth.
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Figure 13. The figure reports the do f for all of the frequency-amplitude compo-
nents for the tests that show linear behaviour (identified with dnl < dnlth). The tests
are separated in different plots according to the considered version of the DC servo
(the rows) and the shape used in the test (the columns). In each plot the do f is re-
ported as the vertical coordinate of each point and it is plotted over the frequency of
the point (the horizontal coordinate).
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the different DC servo versions (where the rows correspond to the different ver-
sions of the SUT). Since MR1 (i.e., the MR that concerns the dnl) discusses tests
with the same shape, we separate these plots by shape. Specifically, each column
reports the tests made with a given shape. As suggested in the approach descrip-
tion, we scatter plot the main frequency-amplitude component of each test on the
frequency-amplitude plane. Like in Figure 7, we use logarithmic scale on both axes
for readability. For each point, the colour gradient corresponds to the dnl measured
in the test. Green corresponds to dnl = 0 (linear tests within the design scope) and
red corresponds to dnl ≥ 0.15 (non-linear tests outside of the design scope). Ac-
cordingly, the colour gradient between green and red highlights the stress tests.
Figures on do f : This set of figures reports the do f measured for all the frequency-
amplitude points of the linear tests (i.e., the ones for which dnl < dnlth). For the
Crazyflie this is Figure 11, and for the DC servo this is Figure 12 (where again the
rows correspond to the different versions of the SUT). Since both MR2 and MR3
(i.e., the MRs that concern the do f ) discuss tests with the same shape, we separate
these plots by shape (corresponding again to the different columns). Since, MR2
and MR3 do not concern the amplitude, we plot the do f (the vertical coordinate) of
each point as function of its frequency only (the horizontal coordinate). Differently
from the previous figure, we use here linear scale on both axes. In order to ease the
identification of the closed-loop bandwidth fb, we highlight with a red dashed line
the 0.5 threshold for the do f .

6.4 RQ1 – Test Generation Effectiveness

Answering Methodology: To answer this question, we evaluate the ground truth
occurrence of the different non-linear phenomena in the performed tests. If the test-
ing approach is effective, it will generate test cases where non-linear phenomena
appear to various degrees and affect the system performance.
Results: In our case of studies, to identify the non-linear phenomena ground truth,
we can leverage our detailed knowledge of the SUTs, and the fact that we manually
introduce (for the DC servo) the non-linear components. We now discuss, when
possible, how we use such knowledge to quantify the non-linear phenomena in our
SUTs.

In the case of the Crazyflie altitude control, we identify as non-linear phenomena
the saturation of the actuators (i.e. the electric motors have a constrained power
range) and the fact that the motors cannot generate negative force (the propellers
cannot generate a force that pulls the drone down, hence downward movement is
achieved only through gravity force). Both phenomena can be detected when the
voltage signal sent to to the motors reaches its upper or lower limit. Accordingly, for
a given test, we quantify the occurrence of non-linear phenomena as the percentage
of time during the test that the actuators are saturated.

In the case of the different DC servo, we identify as non-linear phenomena the
saturation (of both actuators and sensors), the pulse-width-modulation, the quan-
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Figure 14. This figure reports the occurrence of the different non-linear phenom-
ena in our tests. For each phenomenon we report on all of the SUTs that apply.
Because of the different nature of the phenomena they have different ranges of val-
ues. However, we are only interested in the definition of a value that is zero when
the model is behaving linearly and that increases when the behaviour differs further
from the linear model. We are not interested in the comparison between the different
phenomena.

tisation and the injected non-linearities. For what concerns the non-linearities that
are always included, we can quantify the saturation (of both actuators and sensors)
in the same way as for the Crazyflie. Differently, quantization and pulse-width-
modulation affect every sensor reading and actuation in the control loop. Hence it is
not possible to distinguish tests in which they appear more than others. Concerning
instead the non-linearities injected in separate instances of the SUT, we quantify
them as the deviation from how the model would have behaved in their absence.
For example, when we inject the non-linear models of the friction, we can compare
them to the friction value we would have obtained with a linear model. Accord-
ingly, in every time instant we measure the difference between the two values. We
then average such values over the whole test and obtain a metric for how much the
non-linearity has appeared over the whole test.25

25 We note that this approach can give very different value ranges according to the specific phenomenon
considered. For example the input variation caused by the play found between cogs, i.e. the backlash
or the dead-zone, will be much smaller than the friction variation caused by the use of a quadratic
model instead of linear. However, for what concerns the answer to RQ1, we are only interested in
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Figure 15. This figure reports the ground-truth of the actuator saturation in the
Crazyflie altitude control tests. The figure shows, on the frequency-amplitude plane,
one point for each test corresponding to the main component of the input sequence.
For each point, the colour gradient shows the ground truth occurrence of actuator
saturation: green corresponds to no actuator saturation (0% of test time) and red
corresponds to complete saturation (100% of test time).

We report the measured ground truth for the different non-linear phenomena
occurrence in Figure 14. The plots use the box plot convention to highlight the
minimum and maximum values as well as the quartiles of the appearance of the
non-linear phenomena over the different tests. We complement this quantification
showing the same data in the frequency-amplitude plane. Analogously to the dnl
plots we use the frequency-amplitude coordinates of the main component of the
test and the colour gradient for the non-linearities. For the Crazyflie we have the
actuator saturation in Figure 15. For the different DC servos, in Figure 16 the dif-
ferent columns correspond to the non-linear phenomena (the actuator and sensor
saturations, and the injected non-linearity). Since the third column corresponds to
the injected non-linearity, the colour gradient has different definitions in the differ-
ent rows. In any case, in each plot, green corresponds to absence of the non-linear
phenomenon and red to high presence.

Using said figures we now discuss the ability of the approach to expose the dif-
ferent non-linear phenomena. For what concerns the actuator saturation, the top left
box plot in Figure 14 shows that our tests cover the full range of saturation percent-
ages for each of our SUTs. This shows that our testing approach is able to generate
test cases that trigger the saturation of actuators to any degree. Equivalently, Fig-

the definition of a value that is zero when the model is behaving linearly and that increases when the
behaviour differs further from the linear model, hence there is no need to normalise the data.
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Figure 16. Evaluation of the non-linear phenomena ground truth for the different
DC servo. The columns correspond to the non-linearities: the first two show the ac-
tuator and sensor saturation time percentages (green is 0% and red is 100%). The
rightmost column shows the detection of the injected non-linearity in the friction
(second and third rows) or in the actuation (fourth and fifth rows). The first row cor-
responds to the DC servo without injected non-linearity, hence the plot is empty. The
colour gradient represents the detection of non-linear behaviour: green corresponds
to zero values and red to the higher ones.
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ure 15 for the Crazyflie and the left-most column of Figure 16 for the DC servo
show that our tests cover the full scale of the colour gradient. Furthermore, from the
latter plots, we can highlight that, by covering different amplitudes and frequencies,
the approach is covering the transition areas of the frequency-amplitude plot where
the actuator saturations start to appear.

When looking at the sensor saturation, which concerns only the DC servos, the
top-right box plot in Figure 14 shows that our tests almost cover the full range of
saturation percentages for each DC servo version. Our tests miss only values above
90%. The central column of Figure 16 shows that said tests appear for the lower
frequencies and higher amplitudes. This is a consequence of the choice of Amax
which is equal to the sensor saturation value. Accordingly, only the input sequences
with the highest amplitude values can push the sensor to reach its maximum value.
Such values are reached only for lower frequencies, while at higher frequencies
the filtering action (which reduces the amount of input signal that is found in the
output) prevents the saturation from happening. Therefore, thanks to the frequency
coverage, we can note that our approach is still effective at triggering the saturation
of the sensors, despite the limiting choice of Amax.

Lastly, we look at the other non-linear phenomena that we inject in the differ-
ent versions of the DC servo, shown in the lower box plots in Figure 14 and in the
right-most column of Figure 16. We observe that the coulomb friction and the input
dead-zone are present in all tests to a high degree.This is to be expected since said
non-linearities affect every movement in the DC servo and will therefore always
appear. Differently, the quadratic friction is successfully exposed to a variety of de-
grees (Figure 14). Furthermore, in Figure 16 we can see that this variety is achieved
mostly by the coverage of the frequency axis (since the colour gradient changes
mostly when moving horizontally rather than vertically). Intuitively, friction is a
phenomenon associated to the rate of change of the system, which is associated to
the frequency axis.26 Finally, the backlash appears in most tests exception made for
the lower frequencies (Figure 16). In fact, the backlash affects the changes of direc-
tion of the input: apparently, for slowly changing signals (low frequencies), there
are fewer changes of direction.

To summarise, our experiments show that the tests generated by our testing ap-
proach effectively trigger the non-linearities present in the SUT. The saturation and
quadratic friction non-linearities are exposed to various degrees. Coulomb Friction,
dead-zone, and backlash are instead easily involved in every execution of the SUT.
By leveraging the proposed frequency-amplitude characterisation of the input space
and the test case parametrisation, we observe that the test case generation can be
made with random sampling and achieves good coverage of the non-linear phe-

26 The quadratic friction is exposed the most around 0.2Hz, and 0.3Hz which from Figure13 we can see
it is the closed-loop bandwidth of the system: at this frequency the system is behaving the “fastest”
which causes the friction to be the largest and hence the difference between quadratic and linear is
maximised (we recall that friction is function of the speed of motion). Beyond the fb, the input is
filtered and the non-linearity is exposed less.
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nomena also without an iterative (search) approach.

6.5 RQ2 – Relevance of Metamorphic Relations

Answering Methodology: We discuss this RQ separately for the different MRs.
For each MR we visually inspect the output of our testing process (Figures from 10
to 13). We then identify tests for which the MRs do not apply and discuss the causes.
For the MRs to be practically relevant, the test cases that do not fulfil them should
highlight phenomena that limit the SUT design scope.

MR1 states that the dnl should increase when moving to the right or up in the
frequency-amplitude plane. Practically, this corresponds to the colour gradient tran-
sitioning from green to red for increasing amplitudes and frequencies in Figure 10
for the Crazyflie, and Figure 12 for the different DC servo. MR2 states that higher
frequency content should correspond to higher degree of filtering. Practically, this
corresponds to an increasing do f for increasing frequencies in Figures 11 for the
Crazyflie and Figure 13 for the different DC servo. In the same figures we can also
evaluate MR3. To fulfil MR3, the frequency at which the do f becomes larger than
0.5 (i.e., it crosses the red dashed threshold) has to be similar across the different
shapes.

Results – MR1: For the Crazyflie (Figure 10), we observe that MR1 seems to hold
for lower frequencies over the different shapes. However, for frequencies higher
than 1Hz, in the tests with Steps and Triangular shapes, we observe more tests
showing linear behaviour (i.e. green points). This happens despite our non-linear
phenomena ground-truth in Figure 15 shows that the actuators are fully saturated in
that frequency range. This is due to the filtering action that mitigates the response
of the control-loop and allows it to retain non-linear behaviour and preventing the
non-linearity from introducing new frequency content in the output. This statement
can be further verified by observing in Figure 11 that the inputs in the frequency
range above 1Hz show all a do f close to 1.

Concerning the DC servo (Figure 12), we observe a similar pattern as the one
for the Crazyflie for the tests based on the Steps shape (as well as some of the high-
frequency ramp tests). We then note that across the shapes, exception made for the
trapezoidal tests, also tests at the lower frequencies and higher amplitudes (top-left
of the plots) expose higher dnl, and do not comply with MR1. By comparing with
the ground truth of Figure 16, we can observe that this is due to the combination of
saturation of the sensor values and the actuator (first and second column).

Among the DC servo tests, it is notable that almost all of the ramp tests show
non-linear behaviour, despite the ground truth (Figure 16) not detecting a specific
non-linear phenomenon. The likely reason for this discrepancy with the other shapes
is that the ramp is the shape with the highest number of main frequency compo-
nents. By manually inspecting the individual tests we observe that they do show
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an undesired behaviour but we could not root cause it.27 However, we recall that
in the system there are other non-linear phenomena that could not be quantified
(pulse-width-modulation and quantisation). Hence we can suppose that such tests
fail because of said phenomena, or a combination of the different phenomena. On
the other hand, we note that for lower amplitudes and frequencies some ramp tests
expose a lower dnl. This still supports a partial validity of MR1.

To conclude, our tests results show that MR1 does not always hold. Especially
for higher frequencies, the filtering behaviour can increase the robustness of the con-
trol algorithm to non-linearities. This remarks the qualitative nature of the proposed
characterisation and specifically of Figure 5.

Results – MR2: In order to verify if MR2 applies to our tests results, we look at
Figures 11 for the Crazyflie and 13 for the DC servo. We observe that in general the
do f shows an increasing value for increasing frequencies, hence fulfilling the MR.
The exceptions are some ramp tests that show an high do f for low frequency (with
respect to the general behaviour of the tests). This happens for both the Crazyflie
and the DC servo. Furthermore, also some steps tests on the DC servo injected with
quadratic friction show a similar anomaly. Upon manual inspection, we observe that
those tests are characterised by large inputs that cause saturations (of both sensors
and actuators) to occur. However, in those tests, the output does not follow the
reference (hence the high do f ) but neither exposes new frequency components. For
this reason, those test do not have a high dnl and were not excluded by the analysis.
This exposes a limitation of the dnl metric to highlighting test that push the system
outside of the control design scope. However, our results show that the verification
of MR2 serves as sanity check to compensate for this limitation of the degree of
non-linearity. In fact, the verification of MR2 highlights test cases in which the low
frequency components (i.e., frequencies below the bandwidth) are not tracked.

Results – MR3: To evaluate MR3 we look again at Figures 11 for the Crazyflie
and 13 for the DC servo. We observe that, for each of the SUTs, the crossing of
the 0.5 threshold happens around the same frequency independently of the specific
input shape considered. This suggests that MR3 generally holds in control-based
CPSs and that it can be used to sanity check the results of the testing process.

To summarize, we observe that MR1 does not always hold but it enables the
detection of test cases that are associated to the appearance of specific non-linear
phenomena that characterise the SUT. MR2 holds in the majority of our tests. When
it does not hold, our tests show that it can be used to complement the dnl metric to
detecting test cases that push the system outside of the design scope. Finally, MR3
seems to be the one that holds more consistently across SUTs and input shapes.
Therefore is can be used as a sanity check of the testing process.

27 Root causing is outside of the scope of this work.
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6 Empirical Evaluation

6.6 RQ3 – Generality to Different Non-Linearities

Answering Methodology: To answer RQ3, we assess if the different non-linear
phenomena alter the effectiveness of the approach (RQ1) and the validity of the
MRs (RQ2). Leveraging the different non-linearities that characterise our SUTs, we
evaluate how the answers to RQ1 and RQ2 change across them.
Results: Concerning the first RQ, for all our six case of studies the approach has
been able to generate test cases that expose the specific non-linearities (Figure 14).
More specifically, saturations and quadratic friction are exposed to various degrees,
while the remaining non-linearities are always exposed. The sensor saturation was
detected in only a smaller number of test cases (for all the versions of the DC servo).
However, this is possibly a consequence of the choice of the input parameter Amax.
In fact, this bound on the amplitude is equal to the sensor saturation value, and the
generated test inputs do not go beyond it.28 The input and friction non-linearities
are instead easily triggered in every test. However, not being associated with a high
dnl, they do not impair the design scope of the control algorithm.29

Concerning the second RQ, the considerations are different for the different
MRs. MR1 shows different validity and gives different types of insights across the
SUTs. For the actuator saturation of the Crazyflie, MR1 is is violated because of
the robustness introduced by the filtering action. Such robustness appears also in
the DC servo case of studies, although to a smaller degree. For the DC servo, the
sensor saturation invalidates the MR: in fact dnl increases for lower frequencies
(e.g., going from 0.1Hz to 0.01Hz in Figure 12). Differently, the verification of
both MR2 (as complement to the dnl) and MR3 (as sanity check) does not show
significant differences across each of our SUTs. Most notably, the ramp tests that
do not satisfy MR2 appeared similarly across all of the SUTs.

To summarise, in our case of studies, the stress test case generation effectiveness
(RQ1) and the validity of MR2 and MR3 do not show significant dependence on the
specific non-linearity. The verification of the MR1 instead, shows some differences
related to the specific design bounds of the different SUTs. Specifically, it highlights
the high-frequency robustness to saturations of the Crazyflie and the issues with
sensor saturation for low frequency in the DC servo. This is desirable as it helps
identifying the relevant phenomena for the given SUT.

6.7 Discussion
Our experiments show that the proposed testing approach is able to generate stress
test cases for individual control-loops of control-based CPS. More specifically, how
they falsify the design assumptions associated with the linearisation of the physics

28 Testing with values that explicitly go beyond what the sensor saturation would belong to the domain
of robustness testing (intended as testing with injected faults in the inputs) rather than stress testing.

29 Such non-linearities (coulomb friction, dead-zone and backlash) can still impair other types of system
performance, e.g., the accuracy of the reference tracking.
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models (RQ1). Furthermore, we observed effectiveness independently of the spe-
cific non-linear phenomena that characterise the system (RQ3).

In practical scenarios, the non-linear phenomena ground truth is generally not
available (i.e., Figures 15 and 16). For our tests cases, we showed that the dnl and
MR1 can be used to highlight the test cases where specific non-linear phenomena
limit the design scope of the control algorithm (RQ2-MR1). On the other hand,
our tests also showed a limitation of the dnl. When the non-linear phenomena do
not introduce new frequency components, the dnl can still take small values. Such
tests are however detected using MR2 (RQ2-MR2). In fact this MR is invalidated
(and hence highlights) the test cases where the filtering behaviour appears at low
frequencies (where we would expect instead tracking).

Concerning the test case generation, we can note that the proposed rules of
thumb for the approach required input generate a high number of test cases (Ta-
ble 3). This can be a limiting factor when considering that we are testing only one
control-loop of a CPS. In practice, not as many tests are needed and similar consid-
erations can be made on the SUT with fewer frequency-amplitude points in Figures
from 10 to 13. We leave to future work the challenge of minimising the number of
test cases needed to stress test a control-loop. The problem of minimising the test
cases can be in fact seen as a testing coverage or stopping criterion problem in the
frequency-amplitude plane. In this work we focus on the test-case-generation side
of the problem.

6.8 Limitations and Threats to Validity
We discuss the limitations of our work in terms of external and internal validity.
Concerning the external validity, we discuss the generalisability of our observations
to other CPSs. While we used a total of six case of studies (and based them on
the common non-linearities that are highlighted in Simulink), it can be argued that
five of them are based on the same physical process. However, our case of studies
cover the standard control algorithms that are found in the vase majority of CPS
applications, namely, PID control and state feedback [Åstrom and Murray, 2008;
Desborough and Miller, 2002]. Furthermore, they are based on common applica-
tions of CPS. Drones are nowadays a well-established and wide-spread application,
and DC servos are similarly found in common applications like autonomous cars
and robots.

Concerning the internal validity, we discuss limitations of our research method-
ology. It can be noted that we based significant part of the RQs discussion on our
own understanding of what are the non-linear phenomena that affect our SUTs.
However, we developed our simulation models from scratch on the base of the ac-
tual physical systems (both available to us). The development from scratch gives us
confidence on our complete understanding of the behaviour systems. The access to
the physical system allowed us to relate to the actual implementation of the CPS
when uncertain on the model design choices (e.g., the specific quantisation of the
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sensors and the parameters of the control algorithms).
Finally, it can be noted that we used visual inspection to evaluate our MRs.

While this allows only for a qualitative evaluation and not a quantitative one, it
also enabled the intuitive leveraging of the frequency-amplitude plane representa-
tion. Such representation helped the association of the physical phenomena to the
features of the input (e.g. the quadratic friction affecting more the fast-changing in-
puts). This enabled a deeper understanding of how the non-linear phenomena can
limit the design scope of the CPS under test.

6.9 Data Availability
In two git repositories we provide the code of the SUT models and the code imple-
menting the testing approach:

• Crazyflie: https://doi.org/10.5281/zenodo.7274113,

• DC servo: https://doi.org/10.5281/zenodo.7274107.

The repositories come with instructions to reproduce all of the experiments. Since
the tests take some time to execute (around 3 days on a 2017 MacBook Pro, with
2.3GHz Dual-Core Intel Core i5 processor), we provide the test output traces that
can be used to obtain the figures of the paper.

• Crazyflie: https://archive.control.lth.se/attic/claudio/cfdat
a_nlmax015.zip,

• DC servo: https://archive.control.lth.se/attic/claudio/dcSer
vo_test_data_7periods.zip.

7. Conclusion

In this paper we have defined the problem of stress testing control-based CPS. For
CPS developed with the use of control theory, we have highlighted the different
types of assumptions that the control engineers make during the design of the CPS
control-layer software. Once the CPS is implemented, such assumptions are not
always valid. Accordingly, they can limit the set of scenarios in which the SUT
is able to fulfil its requirements. To help the engineers identify said scenarios, we
have developed a testing approach that pushes the system at the validity boundaries
of the linearity design assumptions (i.e. the design assumption needed by control
engineers to use linearised versions of the physical models). We provided a qual-
itative characterisation of the CPS control-layer input-space and proposed a novel
test-case parametrisation. Leveraging our test-case parametrisation we use the qual-
itative characterisation to generate and identify stress test cases, and to define meta-
morphic relations describing the expected CPS behaviour. We applied the proposed
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approach to six case studies and evaluated output of the testing process. Our re-
sults show that our testing approach effectively generates test cases that falsify the
linearity design assumption and push the SUT at the bounds of its design scope. Fur-
thermore, the metamorphic relations highlight relevant test cases for the definition
of the CPS design scope and for sanity check of the testing process.
Future Work: One of the contributions of this work is to open a new perspective
on the testing of control-based CPS, i.e., the stress testing driven by the control
design assumptions. In future work we plan to extend this testing approach to the
testing of other assumptions not considered here: more specifically, the neglecting
of the control-mode changes and of the interaction between different control-loops.
Furthermore, another important research direction is the testing of the combined
falsification of the different assumptions. For example, exploring the testing of how
the falsification of the linearised model combined with the falsification of the mode
changes can affect the design scope of the SUT.
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Computers are becoming smaller and more pervasive in the 21st century. Fur-
thermore, we expect them to perform more and more critical tasks. For example,
we expect the onboard computer of an aircraft to take care of most of the flight:
take-off and landing included. Or we expect our car to drive itself: for now only in
simple situations like the highway, but soon we will give it full control also in more
complex situations like urban driving. We therefore find ourselves, on a daily basis,
consciously or unconsciously, trusting a computer with our lives. But how do we
really know that these computers will do the right thing every time?

The answer might seem surprisingly simplistic, but we just test them many many
times! Once we have tested enough in a controlled environment, and we feel con-
fident that the computer will be able to consistently operate in a safe way, then we
give it the green light to head out in the chaotic outside world. However, this is
apparently an imperfect process that does not always work successfully: take as an
example the recent crashes of the Boeing 737 Max. It is therefore of prime impor-
tance that when we perform these tests we are as rigorous as possible so that we
detect and remove all of the possible faults.

In this work we improved the methods and tools that we have available to test
systems that are controlled by a computer. Meaning those systems in which we ex-
pect a computer to measure what is going on around itself and take quick executive
decisions on what to do. The testing methods and tools are what we use to decide
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things like: how many times do we need to test the system? Which tests should we
execute? Are the tests’ results good or bad?

In this thesis we improved several aspects of this testing process. We improved
how we can decide how many tests we need to run by formulating the question
of the number of tests as a mathematical optimisation problem. We empirically
investigated in which ways the environment in which we perform the testing can
impact the effectiveness of the process. We developed a method to generate test
cases that pushes the system to its performance limits, so that we can investigate
what are the ranges in which the system can operate safely.

So, next time you will get on your car to go to the gym, or get on a plane for your
next vacation, you can think of all the work that has been put, not only in making
sure that it works, but also in making sure that it will always work. And hopefully,
you can feel a little more confident that the computers taking decisions on how to
drive the car or fly the plane have been thoroughly tested and they will make the
right decisions for your safety.
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