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Populärvetenskaplig sammanfattning på svenska

Kristallina joniska material är en absolut nödvändighet i industriell kemi. Deras an-
vädningsområden är många. Exempelvis, så används materialet ceriumdioxid (CeO2)
både i självrengörande ungnar och i bilars avgasrör för att rengöra avgaser. Material
som titandioxid (TiO2) har sett anvädningsområden inom solcellsindustrin. Så kalla-
de granater (ej att förväxla med det explosiva vapnet) används i flera lasrar.

Gemensamt för samtliga användningsområden, är att de är nära sammanflätade med
hur elektronerna beter sig i dessa material. För att få en korrekt förståelse för hur
elektroner rör sig och interagerar i ett material, så krävs kvantmekanik. Ett problem
som direkt uppstår, när man vill tillämpa kvantmekanik på kristallina material, är att
sådana material är, ur ett kvantmekaniskt perspektiv, enorma. En enskild kristall, kan
innehålla så mycket som uppmot Avogradros tal med atomer (1023). Kvantmekaniska
beräkningar är väldigt krävande, även de mest approximativa metoderna som finns
tillgängliga idag är begränsade till runt 10 000 atomer. För den typ av metoder som
som har använts i denna avhandling, som generellt sett kallas för vågfunktionsteori,
kan man i runda slängar säga att begränsningen ligger någonstans runt 100 atomer,
beroende på var i det periodiska systemet man befinner sig och vad för egenskaper
som undersöks.

Metoder inom vågfunktionsteorin har den attraktiva fördelen gentemont mer approx-
imativa metoder, att de kan sägas följa en strikt noggrannhetsordning. Med andra ord,
så kan man alltid förbättra sina resultat, genom att kliva upp ett steg längs noggrann-
hetsordningen. Självfallet följer det, att desto högre upp längs noggrannhetsordningen
en metod befinner sig, desto dyrare är den. Därmed är det inte alltid givet, att man
har råd att kliva upp tillräckligt många steg, för att nå önskad noggrannhet. Av den
orsaken så måste man introducera någon form av kompromiss i sin beräkningmodell
för kristaller – för att beskriva elektronstrukturen mer noggrannt, så krävs det att mer
approximativa modeller används för att beskriva atomstrukteren. Modeller av detta
slag kallas antingen, något ålderdomligt, för en inbäddning på svenska, eller för en
embedding, från det motsvarande engelska ordet.

Syftet med den här avhandlingen har varit att utvecka en inbäddningsmodell för
kristallina joniska material. Detta realiserades genom att utveckla en datorkod, kallad
SCEPIC, som kan generera så kallade ab-initio modellpotentialer. En del av arbetet
som ingått i den här avhandling har även syftat till att utvärdera denna metod och ge
förslag till andra forskare på hur man bäst tillämpar den.
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Popular scientific summary

Materials of ionic crystals are ubiquitous in industrial chemistry. For example, mate-
rials such as cerium dioixde (CeO2) are used in both self-cleaning ovens and to clean
exhaust fumes from cars. Other materials, such as titanium dioixde (TiO2) has been
used in the solar-cell industry. So-called garnets are used in several lasers.

In common for all of these areas of application, is that they are dependant on the mo-
tion of the electrons in these materials. In order to understand how electrons behave
and interact, quantum mechanics is required. A major problem that immediately
arises when applying quantum mechanics to crystalline materials, is that crystals are,
from a quantum mechanical perspective, enormous. One single crystal can contain
as many as Avogradro’s number of atoms (1023). Quantum mechanical calculation
are very demanding, with even the most approximate methods available today being
limited to around 10 000 atoms. The type of methods used in this thesis, generally
known as wavefunction theory, are roughly limited to around 100 atoms, depending
a bit on what part of the periodic table that is explored and what type of property that
is studied.

Methods that fall within wavefunction theory have the advantage against more ap-
proximate methods that they follow a fairly strict ladder of increasing accuracy. In
other words, the predicted results can, in principle, be improved by choosing methods
from higher up on the ladder. Of course, the higher up on the ladder a method is,
the more computationally expensive it is. It is therefore not necessarily affordable to
move enough steps on the ladder, such that the desired accuracy can be reached. For
that reason, there needs to be some form om compromise when modelling crystals
– in order to improve the description of the electronic structure, the atomic struc-
ture has to become more approximate. Models of that kind are usually referred to as
embedding methods.

The purpose of this thesis has been to develop an embedding method for crystalline
ionic materials. This was achieved by developing a computer code called SCEPIC,
that generates so-called ab-inito model potentials. As a part of this thesis work, this
method was evaluated in order to provide guidance to other researchers on how to
best apply this method.
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Chapter 1

Electronic structure theory – an
overview

Chemistry is, arguably, the physics of the electrons. Most chemical phenomena are
directly related to the motion of electrons in molecules or solids. For instance, in
spectroscopy, we are interested in understanding the interaction of electrons with
light. Chemical reactions are driven by the rearrangement of electrons. The proper
description of electrons requires quantum mechanics, which lead to the development
of Quantum Chemistry (QC). The goal of QC is then to describe the electronic
structure in molecules and solids as accurately as possible.

Electronic structure calculations are many-body problems, such problems are difficult
to solve in an accurate fashion. For this reason, many different electronic structure
methods have been developed – all of them with various strengths and weaknesses. As
a rule-of-thumb, the more accurate a method is, the harder it is to control and more
expensive it is to compute.

This chapter will provide an overview of some of the most common electronic struc-
ture methods in use. I will try to make connections to the ultimate goal of this thesis,
namely, the connection between the most powerful methods available in QC with
solid materials.

1.1 Hartree-Fock theory

Before starting this chapter with a discussion on Hartree-Fock (HF) theory, some
basic concepts from second quantisation will be introduced. This is due to the fact
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that the language of second quantisation gives highly compact expressions for post
HF methods and one can find it desirable to express HF theory in the same language
as, for example, the configuration interaction (CI) method. Since the purpose of this
text is not to be a complete overview of second quantisation, the interested reader is
instead deferred to Refs 1,2 for more comprehensive discussions on the topic.

In second quantisation, an arbitrary wave function composed of a set of M spin-
orbitals is represented by an occupation-number vector (ONV)

|k⟩ = |k1, k2, . . . , kM ⟩ (1.1)

where kP is one if the spin-orbital is occupied by an electron, and zero if it is not.
In conventional QC, each ONV is a one-to-one map to a so-called Slater determi-
nant (SD)³, which additionally contains information about the spatial structure used
to represent the wavefunction¹, i.e., the basis set, which will be discussed further in
Chapter 2. For a set of orthonormal spin-orbitals (ψk), ONV’s fulfil the orthonor-
mality condition,

⟨k|m⟩ = δk,m (1.2)

i.e., the overlap between two non-identical ONV’s is strictly zero. Before contin-
uing with second quantisation, I will just mention that an SD for M electrons is
constructed from the spin-orbitals as

Ψ =
1√
M !

∣∣∣∣∣∣∣∣∣
ψ1(r1) ψ2(r1) . . . ψM (r1)
ψ1(r2) ψ2(r2) . . . ψM (r2)

...
...

...
...

ψ1(rM ) ψ2(rM ) . . . ψM (rM )

∣∣∣∣∣∣∣∣∣ (1.3)

where ri corresponds to the coordinates for electron i. In computer codes, the equa-
tions are generally implemented in terms of the SD’s or spin-adapted linear combi-
nations of SD’s (so-called configuration state functions (CSF))¹,². From the point-
of-view of writing equations, however, second quantisation is more convenient, for
which reason most theoretical work in QC is generally done using this formulation.

The power of second quantisation in wave function theory primarily comes from the
use of creation and annihilation operators, which give compact representations of the
complicated correlated wave function methods discussed in Sections 1.2.2 and 1.3. A
creation operator, â†p, acts on an unoccupied orbital by placing an electron into it.
In contrast, an annihilation operator, âq, acts on an occupied orbital by removing
an electron from it. An excitation operator from spin-orbital q to spin-orbital p can
therefore be represented by Êpq = â†pâq.
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For a molecular system, the Hamiltonian operator, Ĥ , is given by

Ĥ =
∑
pq

hpqâ
†
pâq +

1

2

∑
pq,rs

Vpq,rsâ
†
pâ

†
qârâs + Vnuc (1.4)

where hpq represent one-electron contributions to the energy and Vpq,rs represent
the Coulombic two-electron interactions. Vnuc represents the Coulombic interac-
tions between the nuclei, which in the clamped-nuclei, or Born-Oppenheimer (BO),
approximation, only contains a classical repulsive term and is a scalar for a given set
of nuclear coordinates. In the equation above and the following text, indices p, q, r, s
refer to arbitrary orbitals, while i, j refer to occupied orbitals.

In HF theory⁴,⁵, the molecular state is represented as a single ONV, which will be
denoted here as |ΨHF⟩. The total energy of an HF state, EHF, is obtained in the
usual way in quantum mechanics, i.e.,EHF = ⟨ΨHF|Ĥ|ΨHF⟩. The nuclear repulsion
energy is, as stated above, a simple scalar in conventional calculations. The remaining
part of the energy can be decomposed into two different parts, i) the one-electron
energy EHF

1 and ii) the two-electron energy EHF
2 . For the one-electron energy in HF

theory
EHF

1 =
∑
pq

hpq ⟨ΨHF|â†pâq|ΨHF⟩ (1.5)

which, given the orthonormality condition in Eq. 1.2, results in that only combina-
tions where p = q are non-zero. This implies that the only orbitals that contribute to
the one-electron energy are the occupied orbitals, thus

EHF
1 =

∑
i

hii (1.6)

Similarly, when resolving the two-electron contribution to the total energy,

EHF
2 =

1

2

∑
pq,rs

Vpq,rs ⟨ΨHF|â†pâ†qârâs|ΨHF⟩ (1.7)

the only possible solutions are that if r = p, then s = q; alternatively, if r = q, then
s = p. Thus only occupied orbitals contribute to the two-electron energy and a more
compact expression can be written

EHF
2 =

1

2

∑
i ̸=j

(Vij,ij − Vij,ji) (1.8)

where the first term is the classical Coulombic repulsion between two electrons and
the second the exchange interaction. The (possibly) unexpected negative sign be-
tween the two terms is a consequence of commutation rules in second quantisation.
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Since neither EHF
1 nor EHF

2 include any contributions from the unoccupied orbitals,
HF calculations are invariant to their shape. This has major implications for the de-
sign and evaluation of basis sets used to describe the spatial part of the wavefunction
(Chapter 2). One downside to this approach is that we do not, in general, know
the wavefunction in advance. Instead, we have to construct a first guess, that is iter-
ated (by so-called orbital rotations) until a more satisfactory solution can be found⁴,⁵.
Such iterations are usually called self-consistent field (SCF) iterations, for which rea-
son both abbreviations HF and SCF are often used interchangeably for Hartree-Fock
theory.

Today, the two most common ways of using HF is in the form of restricted HF (RHF)
for closed-shell systems and unrestricted HF (UHF) for open-shell systems. The main
difference is that in the case of RHF, the spatial part of both α and β electrons are
identical, whereas in UHF these are optimised independently of each other. While
UHF makes it possible to mimic open-shell states with HF theory, it is worth noting
here that a single SD is, in general, not a true eigenfunction of the spin operator,
which can cause problems when modelling open-shell systems, such as most metals.
A closed-shell determinant is always a true spin eigenfunction, therefore the wave-
function in RHF always has proper spin-symmetry. True spin eigenfunctions can be
obtained by, as stated above, making appropriate linear combinations of SD’s into
CSF, which is rarely done for HF theory but a very common practice for multicon-
figurational self-consistent field (MCSCF) theory, which will be discussed more in
Section 1.3.

As implied by the two-electron part in Eq. 1.4, the scaling of a properly implemented
HF code should, for a system containing N basis functions, be maximum O(N4),
which is affordable for most molecular systems on most standard computers today.
Unfortunately, the restriction that only occupied orbitals contribute to the energy
puts a too severe a constraint for many properties of chemical interest. The classi-
cal example for this is bond-dissociation, usually exemplified by the H2 molecule,
though other important cases relate to, for instance UV-VIS spectroscopy or conical
intersections, where transitions between electronic states are of interest¹,².

1.2 Post Hartree-Fock methods

Given that HF is insufficient to describe all of chemical space accurately, more pow-
erful methods are required. Since the wave function obtained from an HF calculation
is, for many conventional chemical systems fairly accurate, most methods in so-called
wavefunction theory (WFT) generally use HF as a starting point and devising meth-
ods for adding the missing part of the exact energy, the so-called correlation energy,
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Ecorr,
Eexact = EHF + Ecorr (1.9)

Methods for computing the correlation energy generally comes in two different forms,
perturbative or variational. In a nutshell, perturbative approaches are faster but more
approximative than variational methods.

1.2.1 Rayleigh-Schrödinger Perturbation theory

Rayleigh-Schrödinger perturbation theory is one of the most commonly employed
ways in QC to approximate solutions to many-body systems. It is based on the as-
sumption that if a “good enough” so-called zeroth order approximation can be ob-
tained, then adding a perturbative term to the Hamiltonian,

Ĥ = Ĥ0 + λĤ1 (1.10)

will result in a better approximation. Ĥ0 is the zeroth-order Hamiltonian, λ is a
parameter controlling the strength of the perturbation, with 0 ≤ λ ≤ 1 and Ĥ1 is
the perturbative term. While many forms of Ĥ1 can be imagined, the only widely
used formulation in QC is Møller-Plesset perturbation theory (MP)⁶.

The perturbed solutions are arrived at by expanding both the energy and the wave-
function in series of λ as

|Ψ⟩ = |0⟩+ λ |1⟩+ λ2 |2⟩+ . . .

E = E0 + λE1 + λ2E2 + . . .
(1.11)

In conventional QC, |0⟩ should be understood to be an optimised HF state, |ΨHF⟩;
the alternative formulation is solely for reasons of brevity. E1 and E2 here should
not be confused with EHF

1 and EHF
2 discussed in Section 1.1. On insertion of these

expressions in the Schrödinger equation, the following set of expression are obtained
up to second order

E0 = ⟨0|Ĥ0|0⟩
E1 = ⟨0|Ĥ1|0⟩
E2 = ⟨0|Ĥ1|1⟩

(1.12)

which gives the curious, although very useful, result that the first-order correction
depend only on the zeroth-order wave function and that the second-order correction
requires only that the first-order wavefunction is computed. To compare the last
equation with Eq. 1.9, E0+E1 is simply the HF energy, EHF, (note that these terms
only depend on the HF state) and the correlation energy, Ecorr, is equal to E2.
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The convenience of these results is arguably the main reason for the prevalence of
second-order perturbation theory. While not necessarily obvious from the equations
above, second-order perturbation theory essentially tries to approximate single and
double excitations from the reference wavefunction; third-order perturbation theory
then approximates triple excitations and so-on and so-forth. Thus, unlike HF theory,
this means that MPn results additionally depend on the shape of the virtual orbitals.
Unfortunately, second-order perturbation theory is not always a good enough ap-
proximation and at higher orders the calculation is not much more computationally
efficient than using the methods described in the following section.

1.2.2 Configuration Interaction and Coupled-cluster theory

Noting that in HF theory, only the subset of spin-orbitals that are occupied actually
contribute, the most straightforward way to improve upon the results is to devise
methods where unoccupied orbitals are included into the calculations. In second
quantisation, the starting point is then to take an optimised HF state, |ΨHF⟩, and
use creation and annihilation operators to generate “excited” SD’s and compute the
contribution from these.

Arguably, the most straightforward way is to employ a linear parametrisation of the
molecular state, as is done in CI theory⁷,

|ΨCI⟩ = (1 + Ĉ) |ΨHF⟩ (1.13)

with
Ĉ =

∑
ia

cai â
†
aai +

1

4

∑
ijab

cabij â
†
aâ

†
bajai + . . . (1.14)

where cai , c
ab
ij , . . ., the so-called excitation amplitudes, become the new parameters

to solve for. Alternatively, an exponential parametrisation can be used, as in coupled
cluster (CC) theory⁸,⁹,

|ΨCC⟩ = exp(Ĉ) |ΨHF⟩ (1.15)

Regardless of the parametrisation form, the obvious thing to note, is that in order to
compute the exact energy, the full set of excitation amplitudes should be computed.
Unfortunately, the scaling for evaluating the excitation amplitudes increases severely
for each term used, with the full method usually only applicable for up to around
20 spin-orbitals, which is far too few for most chemical systems. In most practical
calculations then, truncated versions has to be used with, doubles (D) being the most
common truncation level, giving methods such as CISD or CCSD. If we compare
this with the perturbative approach discussed in Section 1.2.1 (specifcally, MP2), the
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contributions from single and double excitations are targeted in a direct fashion with
CISD and CCSD, instead of approximately. At truncated levels, the CC formula-
tion arguably outperforms the CI formulation; the most straightforward reason being
that truncated CC is size-consistent, unlike truncated CI, and includes higher order
corrections¹.

1.3 Multiconfigurational Quantum Chemistry

The methods described in the previous section work very well when the original HF
state is a qualitatively correct description of the wavefunction. While this is true for
a very large class of compounds, some systems, such as open-shell systems, which are
frequently encountered among the d-block and f-block metals, are in general not sat-
isfactorily described by a single SD¹,². For systems where HF is insufficient, the most
straightforward solution within WFT is a class of methods called MCSCF theory.

When a single SD is insufficient to describe the wavefunction, it is common to de-
compose the correlation energy into two different contributions, dynamical and static.
The dynamical correlation is, essentially, the same as the correlation that is missing
from an HF calculation. It is primarily described by a large amount of small excita-
tions, predominately up to doubles; usually, it is easily recovered by MP, CI or CC
theories directly. The static part is associated with the insufficient reference wavefunc-
tion employed in HF theory and is recovered by allowing the reference wavefunction
to be described by multiple SD’s with large coefficients. Section 6.2 will devote some
more effort to discuss dynamical and static correlation.

In a nutshell, MCSCF methods combine the basic CI ansatz with orbital rotations;
the wavefunction is parametrised as a linear combination of some SD’s, |Ψi⟩, as

|ΨMCSCF⟩ =
∑
i

ci |Ψi⟩ (1.16)

where both the molecular orbitals (MO) coefficients used to expand the SD’s and
the CI coefficients are variationally optimised. It should also be stressed that in
many codes, the SD’s are pre-contracted into a set of CSF’s, such that the basis func-
tions used to expand the MCSCF wavefunction are true eigenfunctions of the spin-
operator¹,².

For the same reasons that full-CI is rarely used, for MCSCF calculations to be practi-
cally feasible, there must be some way to constrain the number of SD’s included in the
calculation. This was realised by introducing the complete-active-space self-consistent
field (CASSCF) approach¹⁰; instead of simply partitioning the MO space into occu-
pied and virtual orbitals a third subspace is introduced, called the active orbitals. All
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possible SD’s associated with a full-CI calculation on the active orbitals are used to
construct the wavefunction, with the intention that the resulting wavefunction should
cover most, if not all, of the static correlation. Since the number of active space orbitals
is usually only a very small subset of the complete orbital space, the selection of an ap-
propriate active space becomes a primary focus in MCSCF calculations. The selection
of appropriate active spaces is not straightforward and is the topic for a large part of
the discussion on Ni:MgO in Paper I and Chapter 6 of this thesis. Realising that the
CASSCF approach becomes limited, when there is a need for a very large number of
orbitals to be included into the active space, as can be speculated to frequently occur
for solids, alternative approaches such as the restricted-active-space (RAS) approach¹¹,
the generalised-active-space (GAS) approach¹², stochastic CAS¹³ and density matrix
renormalisation group (DMRG) theory¹⁴,¹⁵,¹⁶ have been developed. These methods
are more approximate than CASSCF, but the gain from increasing the active space
size often outweighs this deficiency.

As stated above, an MCSCF wavefunction only recovers the static part of the correla-
tion energy and is therefore in general not a good enough approximation to the true
solution. Dynamical correlation needs to be accounted for in some fashion, in direct
analogy to how the methods in Section 1.2 improves upon the HF results. In the
early days of MCSCF theory, this was done by extending CI theory to multireference
configuration interaction (MRCI); while this method is powerful, it has poor scaling
with basis set size and truncated versions are size-inconsistent¹,². Equivalently to MP
theory for HF, perturbative approaches like the one discussed in Section 1.2.1 have
been developed on top of MCSCF theory. This is the most common approach today
to account for dynamical correlation in MCSCF calculations and is generally done
in the form of complete-active-space perturbation theory (CASPT)¹⁷ or n-electron
valence perturbation theory (NEVPT)¹⁸, usually truncated to second order¹⁹. CC
theories for multireference systems do exist²⁰; for various reasons, they have not yet
become routinely employed by the QC community.

1.4 Density functional theory

An alternative formulation for QC is density functional theory (DFT), which, instead
of considering an explicit wavefunction, formulates the energy directly as a functional
of the spatial electron density. This is motivated on the basis of the Hohenberg-Kohn
theorem²¹, which states that the ground state energy of an electronic system can by
computed by some universal functional of the electron density. From a computational
point-of-view, this has the advantage that, unlike anN -particle wavefunction, which
is a function of 3N spatial variables, the electron density is a function of only 3 spatial
variables, a significant reduction in complexity. The major problem with DFT is that
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the universal functional is not known. Modern DFT therefore generally relies on
approximations, most frequently in the form of Kohn-Sham DFT (KSDFT)²².

Since this is not a thesis on all aspects of DFT, I will not provide any derivations of
the set of equations that I will discuss here, the interested reader is referred to Ref. 23.
In general, we are interested in some functional, F , of the electron density, ρ(r), that
we can decompose as

F [ρ(r)] = T [ρ(r)] + J [ρ(r)] + Encl[ρ(r)] (1.17)

where T [ρ(r)] is the kinetic energy of the electrons, J [ρ(r)] is the classical part of
the Coulomb interaction and Encl[ρ(r)] all the remaining non-classical terms – the
so-called self-interaction correction, exchange and Coulomb correlation. Of these,
only J [ρ(r)] is known. Kohn and Sham approached this problem by introducing a
non-interacting reference system, that has the same electron density as the interacting
system and is represented by an SD²². This choice was motivated on the basis that
a single SD can be said to represent non-interacting electrons²³. Additionally, the
kinetic energy of a system represented by an SD has a known form, which we will call
TS [ρ(r)]. Using an SD therefore allows the recovery of a large portion of the kinetic
energy in the interacting system (though not all of it). Much like in HF theory, the
shape of the orbitals spanning the SD is not known in advance, for which reason SCF-
like equations are used when working with KSDFT²²,²³. In the end, F in KSDFT
can be said to take the form

FKS[ρ(r)] = TS [ρ(r)] + J [ρ(r)] + EXC [ρ(r)] (1.18)

where
EXC [ρ(r)] = (T [ρ(r)]− TS [ρ(r)]) + Encl[ρ(r)] (1.19)

is the KSDFT exchange-correlation energy, which covers both the missing portion of
the kinetic energy of the electrons, as well as the non-classical terms. Since the exact
form of EXC is unknown, there exists an extremely large number of different DFT
functionals, as exemplified by the LibXC library – an attempt at making a standardised
library of DFT functionals – which in 2017 contained 400 different functionals²⁴.

Further, the parametrisation of DFT functionals is not straightforward. Some groups
have focused on using fitting parameters to reproduce certain properties, obtained
either from experimental data or from high level WFT, while others attempt to con-
struct functionals based on certain known constraints²⁵. There have also been some
attempts at defining a Jacob’s ladder for improving accuracy with DFT functionals,
i.e., selecting a functional from a higher level on the ladder should give better results
than using one from a lower level²⁶. In practice, neither selecting a more rigorously
motivated functional, nor one on a higher rung of the Jacob’s ladder, does in general
improve the results for all properties of interest²⁷.
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Given these issues, why is DFT so popular in both the molecular and solid-state QC
communities? Simply put, KSDFT provides a fast way to include electron correlation
into the calculations, with a complexity scaling is either better than of HF (non-hybrid
functionals, i.e., without HF exchange) or close to it (hybrid functionals, i.e., includ-
ing HF exchange) and accuracy that is usually sufficient ground state properties²⁵,²⁸.
For excited states and strongly correlated systems, however, KSDFT fails much in
the same way as standard HF does and a multiconfigurational approach becomes
mandatory. Attempts at combining the strengths of KSDFT with those of multicon-
figurational theory have been made, with two examples being multiconfigurational
pair-density functional theory (MCPDFT)²⁹ and multiconfigurational short-range
DFT (MC-srDFT)³⁰. While promising in many aspects, neither approach solves the
underlying issue of KSDFT that the results are still dependent on the functional of
choice, for which reason the work in this thesis has refrained from using these meth-
ods.

1.5 Wavefunction theory in the solid state

Clearly, as suggested by Section 1.2, from WFT there exists several different methods
which can be used to describe the electronic structure of a solid. While this might seem
daunting to any one embarking on their first exploration of QC, the big advantage of
WFT is that they follow a fairly strict hierarchy of increasing accuracy. As argued in
the previous section, this is not true for KSDFT.

Take a crystal which we might assume is represented well by a single SD, MgO, for
instance, which (in the ground state) is a closed-shell compound. In this case, we
can use HF to compute a zeroth-order wavefunction and then, in principle, choose
freely between PT, CI or CC in order to improve upon the results. Similarly, if the
crystal is open-shell in nature, i.e., magnetite (Fe3O4), we can start with an MCSCF
wavefunction and then use CASPT2 to recover the missing parts of the correlation
energy.

Of course, the previous paragraph should be taken with some scepticism. Solids are
very large systems, which in combination with the poor scaling of WFT methods
generally makes it impossible to directly compute, say, the CCSD energy of MgO.
For open-shell crystals, the active space demands will be far greater than those of
molecules, simply due to the number of particles that needs to be modelled. Lets
take a real example – the Cr2 dimer, which has long served as a standard test case
for new electronic structure methods³¹,³²,³³,³⁴. Due to the complicated nature of the
bonding in this molecule, as much as 22 orbitals is in general necessary to get a good
description of the Cr2 dissociation curve with multiconfigurational theory³¹,³²,³³,³⁴.
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If we now imagine that we extend this to a chromium trimer, Cr3, and make the
assumption that we still need 11 orbitals per chromium, that would give us an active
space of 33 orbitals – far beyond the capabilities of CASSCF. Instead some of the
alternative approaches mentioned in Section 1.3 becomes necessary. Of these meth-
ods, only RAS and GAS are able to (as of writing this thesis) account for dynamical
correlation in an efficient way (RASPT2³⁵, GASPT2³⁶). On the other hand, these
methods can be criticised by the fact that the user has to make decisions on in which
active space which orbital should be placed into, as well as what type of excitations to
include in the calculation. DMRG does, in principle, not have such problems and can
be used with both CASPT2³⁷ and NEVPT2³². The accuracy and the computational
cost of a DMRG calculation is, however, determined by a parameter known as the
maximum bond dimension (them-value) and unfortunately, both DMRG-CASPT2
and DMRG-NEVPT2 suffer from the fact that for large active spaces, a very large
m-value is required for accurate perturbative corrections³⁸. To the best of my knowl-
edge, the stochastic methods has not yet been extended to include correlation beyond
that captured by the active space itself. What should become apparent from this dis-
cussion – dealing with a three metal atom system such as Cr3, is very complicated
with multiconfigurational theory. Now imagine a solid such as magnetite, where a
single unit-cell contains 32 metal atoms – any direct application of multiconfigura-
tional theory to magnetite is clearly out of the question. Not to mention the fact that
it is in general difficult to implement such methods with so-called periodic boundary
conditions (PBC), which will be discussed further in Chapter 4.

Some compromise between the accuracy of the electronic structure method and the
model of the crystal itself is therefore necessary in order to enable WFT to be success-
fully applied to the solid state. Enabling such a compromise, in particular for MCSCF
methods and ionic crystals, has been the goal of this thesis, with Chapters 4, 5 and 6
being devoted to discussions on this topic.
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Chapter 2

Atomic basis sets

Having discussed electronic structure methods in the previous chapter, I will in this
chapter discuss basis sets. Basis sets are required in QC methods to approximate the
spatial part of the wavefunction. Many different types of basis sets exist, with two
common choices being Gaussian-type orbitals (GTOs) and plane-waves (PW). An
in-depth discussion on the many different strengths and weaknesses of different types
of basis sets would constitute a fairly large work on its own. For that reason, this
chapter will be devoted to GTOs, which was the type of basis set used in this thesis.

GTO-type basis sets do not appear out of thin air, they have to be developed in some
fashion. For this reason, there are many technical caveats that a user will need to be
aware of when working with such basis sets. This chapter will discuss some of these
aspects, in hope that any user of GTOs will be able to utilise such basis sets in a correct
fashion after reading this work, or at the very least find appropriate sources to learn
more from.

2.1 All-electron basis sets

When constructing a basis set based on GTOs, a shell-structure similar to that of
atomic orbitals is usually followed¹,². Taking C as an example, a minimal basis set
for a GTO basis set would have two s-functions describing the 1s and 2s orbitals, and
one p-function describing the set of three 2p orbitals. In principle, there is nothing
wrong with constructing a basis set, where each GTO appears only once, i.e., there
is one GTO that describes the 1s orbital and a second that describes the 2s orbital
and so-on, for all occupied shells of the atom. Such a basis set would be compu-
tationally efficient, as it would only use a minimal number of functions. It is well-
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known, however, that such minimal basis sets are insufficient, as they lack the neces-
sary mathematical flexibility to give even a qualitatively correct description of chem-
ical bonds¹,². A generally applicable basis set requires far more functions, than the
atomic shell structure would suggest. This rapidly leads to basis set sizes which would
be computationally unfeasible, unless the GTOs are contracted into fewer functions,
so-called contracted Gaussian-type orbitals (cGTOs). When working with cGTOs,
the underlying, uncontracted, GTOs are frequently known as primitive Gaussian-
type orbitals (pGTOs). In the following, ψi should be interpreted as cGTOs and ϕi
as pGTOs.

The result is basis functions on the type of

ψi =
∑
k

ckϕk (2.1)

where ck are the contraction coefficients, which are conventionally precomputed and
tabulated for later use. Each pGTO, is an exponential function, ϕk ∝ exp(−ζkr2),
with exponents ζk (exact form for the radial part is given in Eq. 5.5). Therefore, when
designing a new basis set, both primitive exponents ζk and contraction coefficients
ck have to be determined in some fashion. Obviously, the cGTO basis set can never
be more accurate than the pGTO basis set from which it was contracted, for which
reason coefficients ck are, usually, chosen to minimise the truncation error with respect
to some desired properties². Additionally, there are more than one way to design
the contraction scheme, e.g., so-called generally contracted basis sets or segmented
basis sets and more. An excellent overview of some common contractions schemes
is provided in Ref. 2. This work has primarily focused on generally contracted basis
sets of the Atomic Natural Orbital (ANO) type³⁹, which will be the focus of the
remainder of this text.

Unlike other basis set types, in an ANO type basis set, each cGTO contains contri-
bution from every pGTO for a given angular momentum. For instance, all s-type
pGTOs contribute to all s-type cGTOs, all p-type pGTOs contribute to all p-type
cGTOs, etc. The result is that the orbitals are very atomic like and clearly separable
into core, semicore, valence and correlating orbitals³⁹, which is not true for all types
of basis sets⁴⁰. This is a particularly attractive feature for MCSCF methods, where a
careful selection of orbitals is of high importance. The contraction coefficients ck of
an ANO basis set are determined using some correlated wave function method, e.g.
MRCI or CASPT2, to describe some atomic state²,³⁹. This generates a bias towards
the specific atomic state used to construct the basis set, for which reason modern ANO
basis sets are, in general, constructed by averaging over several electronic states²,⁴¹. As
discussed in Paper III in this thesis, the selection of states has a large impact on the
capability of the basis set to accurately describe a given property.
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Before leaving this section, I would like to make a personal criticism of the name
all-electron basis sets. While it is true that, when using say ANO-RCC or cc-pVxZ
type basis sets, all electrons of the atoms in the system are included at the SCF level,
they are rarely included in the correlation step. This simply due to the fact that post-
SCF methods scale poorly with the number of electrons that are included. Core
orbitals are therefore usually “frozen”, meaning the the correlation step is, in fact,
not all-electron. Basis sets used for WFT are usually designed with this in mind and
include no correlating functions for the core orbitals². For this reason, whenever
using basis sets for WFT, the original publication on the basis sets should be carefully
consulted, such that all orbitals that lack correlating functions are frozen when using,
say, CASPT2. An example of this would be, the 1s orbital in Al with the ANO-
RCC or ANO-R basis sets. Any properties which rely on an accurate treatment of
core electron effects, such as core-hole spectroscopy or nuclear-magnetic resonance
spectroscopy, should therefore not use conventional basis sets⁴⁰. Rather, specially
designed basis sets are required to study such properties.

2.2 A note on relativistic and nuclear effects

For heavier elements, it is well known that effects originating in Einstein’s theory
of special relativity must be taken into account for a proper description of the elec-
tronic structure in atoms⁴². Conventional QC was, however, formulated in a non-
relativistic framework, with most computational chemistry codes being written under
the assumption that relativity was not of any major importance. For that reason, most
electronic structure codes treat relativistic effects as a correction, rather than direct
and generally divide relativistic effects into two distinct effects, scalar relativistic and
spin-orbit coupling (SOC).

Since this is not a thesis on relativistic QC, I will not dwell much longer on the
specifics of these effects. Rather, I will make the comment that when modelling heav-
ier elements with an all-electron basis set, that basis set must be designed with relativis-
tic effects in mind². If we take two ANO-type basis sets, ANO-L and ANO-RCC,
one major distinction between these two basis sets is that the former is intended for
non-relativistic calculations, while the latter is intended for scalar relativistic calcula-
tions (specifically, with the Dougles-Kroll-Hess (DKH) Hamiltonian⁴³,⁴⁴,⁴⁵). Using
ANO-L with scalar relativistic effects and ANO-RCC without them does, therefore,
introduce potential errors in calculations based on such combinations. The same can
be said for whether the basis set was designed using a point-charge model for the
nucleus, or a Gaussian model⁴⁶. In general, the Gaussian model is slightly advanta-
geous, for which reason newer basis sets, such as the ANO-R basis set⁴⁶ (the topic
of Paper III), was designed to be used with a Gaussian model for the nuclei (in ad-
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dition to accounting for scalar-relativistic effects via the exact two-component (X2C)
Hamiltonian⁴⁷,⁴⁸,⁴⁹).

Spin-orbit coupling either has to be accounted for directly by a so-called four-comp-
onent approach⁵⁰ or perturbatively via, for instance, the state interaction method of
Malm-qvist⁵¹. The former approach is more exact and should be used for very heavy
elements, such as the actinides⁵², though it is very hard to pinpoint between which
atoms (and for which properties) four-component approaches become mandatory.
Nonetheless, in this work, SOC was modelled perturbatively (Papers I and III). From
the point-of-view of perturbative SOC, there is nothing strictly wrong with using non-
relativistic basis sets. Given that most elements where SOC is non-negligible are heavy
elements, however, scalar relativistic basis sets are almost always more appropriate
when modeling SOC.

2.3 The correct basis set for the correct electronic structure
method

Let us revisit a statement in Section 1.1; the HF energy is only dependent on the
occupied orbitals. On the other hand, post-HF methods also depend on the virtual
orbitals (Section 1.2). Clearly, the demands on the basis sets used in a HF (or DFT
calculation, for that matter) is very different from those of, say, CASPT2.

This also affects the development of the basis sets themselves. A general guideline
to follow when selecting basis sets is to always go back to the original source and
determine what type of method was used in the parametrisation. If it was based on
some correlated WFT, then, if the basis set was appropriately designed, any correlated
WFT method can be used with it². On the other hand, if the basis set was designed
using some DFT functional (or HF), it is ill advised to use it with correlated WFT².
Basis sets designed for correlated WFT, however, are in general safe to use with DFT,
but such basis sets are frequently unnecessarily large and inefficient with DFT⁴⁰. Such
considerations were the underlying reason for primarily relying on correlated WFT
in Paper III, where the ANO-R basis set (designed with CASPT2) was evaluated.

2.4 All-electron basis sets for solids

As stated in Section 2.1, modern ANO basis sets are typically obtained by averaging
over several different atomic states⁴¹. This averaging generally leads to basis sets that
are able to treat atomic properties derived from the included states with fairly con-
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sistent accuracy. Before continuing with a discussion on basis sets, I would just like
to make a comment on my nomenclature. In chemistry, it is common to use nota-
tion on either the form of Mn+ or M(n) (with roman numerals in the latter case) for
ionic states and oxidation states respectively. These concepts are highly intermixed,
as a consequence, these two notations are often used interchangeably. I will make an
attempt in this thesis to be strict, by using Mn+ when I really mean that n electrons
have been ionised away, while I will use M(n) to refer to a formal oxidation state.
While I am under impression that using M(-n) (still with roman numerals) for an-
ionic oxidation states is less common in chemistry than for cationic oxidation states,
I will use this nomenclature in this text to be as internally consistent as possible.

Returning to a general discussion on oxidation states; in molecular systems, atoms
frequently appear in oxidation states that are close to neutral. For example, in NO2,
it would be more accurate to say that the molecular state is derived from the N(0) and
O(0) states, rather than N(IV) and O(-II). While it can be argued that in molecular
MgO, the oxidation states are Mg(II) and O(-II), this is in fact not a particularly
accurate representation. The oxidation states are probably closer to Mg(I) and O(-I),
with a large degree of covalency in the bond. Thus, constructing basis set from atomic
states is generally not a too bad approximation for the chemistry of the s-block and
p-block elements.

In solids, particularly those where the bonds are predominantly ionic, this is not nec-
essarily true. This is due to the Madelung potential – the electrostatic potential from
the surrounding ions makes higher oxidation states more stable. Crystalline MgO is
therefore fairly well represented by Mg(II) and O(-II), unlike its molecular counter-
part.

So what does this mean for the ANO-type basis sets? Lets start with a discussion of
cationic states, exemplified by Fe. Fe is one of many metals that have several stable
oxidation states⁵³, with the two most common being Fe(II) and Fe(III). For instance,
in magnetite (Fe2O3), there is a mixture of Fe(II) and Fe(III) ions. In conventional
ANO type basis sets, however, only the first cationic state (Fe+) is generally included
in the averaging⁴⁶,⁵⁴. Given the fact that each successive ionisation step further con-
tracts the ions, this is sufficient. This is clearly evidenced by Table 2.1, where the first
three ionisation potentials (IP) of Fe are very well described by extended multistate
CASPT2 (XMS-CASPT2). Of course, it should be noted that these oxidations states
are all derived from the valence orbitals (4s3d); higher oxidation states, like a hypo-
thetical Fe9+, would start to ionise semicore orbitals, which should be assumed to be
less well described by standard basis sets. We might therefore presume, that the typical
construction of ANO basis sets for cations in typical oxidation states work reasonably
well for solids.
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Table 2.1: Ionisation potentials of Fe (First IP with respect to neutral Fe (5D(s2d6)). The 4s3d4d orbitals were
kept active, with the 1s2s2p3s orbitals frozen. ANO-RCC-VQZP was used as basis set. Experimental
values from NIST55.

Fe+ (6D(s1d6)) Fe2+ (5D(d6)) Fe3+(6S(d5))
1st IP 2nd IP 3rd IP

XMS-CASPT2 7.77 16.3 30.3
Experiment 7.90 16.2 30.7

Anionic states, on the other hand, are far more complicated. Oxygen is famously
usually referred to as O(-II) in ionic solids, with O(-I) being extremely rare. For this
reason, we might speculate that we want to include O2− in the averaging. Gaseous
O2−, is, however, an unbound state. In fact, there is no experimental evidence for
any gas phase anions in oxidation states larger than -I. Unbound states are resonance
states, such states require a time-dependent formalism, therefore typical QC methods
can not describe them properly⁵⁶. In an ionic solid, however, the O2− state might be
speculated to be stabilised by the external field from the surrounding system. Intro-
ducing an external field might then lead to the possibility of using MRCI or CASPT2
to generate a basis set for O(-II).

But lets make a thought experiment, O2− is stable in the gas phase and we use it
in the construction of an ANO-type basis set with CASPT2. The effect of this, as
compared to only including O− would, presumably, be to generate a basis set that
is even more diffuse. In compact systems, such as solids, diffuse functions have long
been realised to produce linear dependencies, resulting in unstable convergence pat-
terns⁵⁷,⁵⁸. Therefore, some effort has been put into redesigning molecular basis sets
for calculations in the solid state, with a typical effect being that the basis sets becomes
far less diffuse⁵⁷,⁵⁸. So even if we were to include a gaseous O2−, it might not actually
be of any use at all.

Further, it should be stated that basis sets resulting from typical ANO design are
very large. This might not matter too much for molecules, but for the solid state it
quickly results in calculations that are computationally unfeasible. If we now find it
desirable to use all-electron ANO-type basis sets for solids, which this thesis argues
that it is given their natural connection to MCSCF theory, some redesigning will
become necessary.

One could, for instance, generate ANO basis sets using similar type of fields as when
designing AIMP (see Section 5.4). The downside of this approach is the same as when
designing AIMPs: it is quite likely that the basis sets become material specific and
possibly even specific to a given polymorph. In that case, it becomes very hard to
diagnose how good the basis set is.
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Chapter 3

Chemical bonds in Quantum
Chemistry

In the previous chapters, the basics of QC, namely electronic structure methods and
basis sets, were addressed. This chapter will address a more fundamental chemical
concept, namely, chemical bonds. This is necessary as the type of chemical bonds
in a system will impact the way it is approximated in so-called embedding methods,
which is the primary topic of this thesis.

It could be argued that I should discuss embedding methods more thoroughly before
discussing chemical bonds. From my point of view, however, some basic recap of
chemical bonds becomes necessary for a discussion on embedding methods. For that
reason, I defer a discussion on embedding methods to Chapter 4. Further, I will
discuss some ways of diagnosing chemical bonds using QC. As I will point out in the
text, QC can never provide absolute answers in this context, but such diagnostics are
particularly useful when assessing if an embedding strategy is reliable or not.

3.1 Chemical bonding – considerations for embedded cluster
methods

As most students of science, irrespective of field of discipline, will know, the bond
between atoms is usually subdivided into different classes. Normally, chemical bonds
can be discussed in terms of three extremes; ionic, covalent and metallic. As standard
QC methods can describe all of these without any modifications to the Hamiltonian,
the fundamental interaction in all three is electrostatic. The main divisor is where the
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a) NaCl b) O2

Figure 3.1: Hartree-Fock electron density differences for a) NaCl and b) O2. The total electron density of the
atoms have been subtracted from the total molecular electron densities. Yellow isosurface corre-
sponds to increase in electron density on forming chemical bonds, with blue isosurfaces represent-
ing where the electron density decreased. Isosurface level 0.01 e/a3

0.

electron density localises in the system.

In ionic systems, the electron density localises fully around the atoms. In covalent
systems, a non-negligible portion of the density is along an axis connecting two dif-
ferent atoms, slightly polarised towards the more electronegative species. In metallic
systems, some part of the electron density is localised in between atoms, but the no-
tion of directionality along any axis is lost; the (valence) electron density essentially
becomes delocalised. Figure 3.1 shows differential density plots of an ionic molecule
(NaCl) and a covalent molecule (O2); these show how the electron density is either
localised around the anionic species in NaCl and in the middle of the bond in O2.
No visualisation is given for a metallic system, as the density is completely delocalised.
Clearly, creating a single approximative method that can deal with all of these different
extremes on an equal footing is a non-trivial task. Some advances towards uniformed
approaches have been made, for instance in the form of density-functional embedding
theory (DFET)⁵⁹ and density matrix embedding theory (DMET)⁶⁰.

For the purpose of this thesis, we will stick with only ionic and covalent materials
in the remaining discussion. For ionic systems, the QM–embedding border should
then be able to reproduce the charge localisation around the individual ions, while for
covalent systems, the density must be allowed to polarise in a similar fashion as if a real
chemical bond was in place. Obviously, ionic systems will be easier to approximate
and are therefore more suitable when starting to develop new embedding strategies,
as was the object of this doctoral thesis. As will be discussed in the next two chapters,
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this was realised in the form the AIMP embedding strategy.

3.2 Measuring embedding quality via computational diagnos-
tics of chemical bonding

While frequently hard to accept for chemists, in quantum mechanics, there is no op-
erator which can directly compute the charge of an atom in a molecular or crystalline
system. Since there is no operator, atomic charges are not observables. For this rea-
son, when diagnosing the nature of the chemical bonds in a particular system, indirect
routes has to be taken and no definitive answer on the atomic charges or bond orders
can be given. Whenever atomic charges from QC calculations are discussed, they
are either taken from features directly connected to the wavefunction, i.e. Mulliken
charges⁶¹, or from features of the spatial electron density, i.e. Bader charges⁶².

While QC can not provide absolute answers in terms of atomic charges, the different
approximations for atomic charges, as well as similar concepts such as bond order, can
be used as diagnostic tools when evaluating embedding methods. This simply due to
the fact that, if we take MgO with, say, the Perdew-Burke-Ernzerhof (PBE) DFT
functional, it should not matter if we make a periodic calculation or an embedded
cluster calculation. If the embedding is good enough, then the PBE derived charges
and bond orders should converge to the same numbers, assuming the same basis set
was used in both sets of calculations. For this reason, in Papers I and II, Mulliken
charges, along with other related diagnostics, were used to diagnose the quality of the
embedded clusters discussed therein. This choice was primarily due to the practicality
of using Mulliken charges and that there are related diagnostics for bond indices and
atomic valencies, which will be discussed below.

Most discussions and equations surrounding the used diagnostics are already provided
in Paper I, for which reason I will condense the discussion here. The local properties
of the electronic structure that were used to assess the quality of embedding in Papers
I and II are all derived from the population matrix, P, which is computed asP = DS
(D, S are the density and overlap matrices, respectively¹). The properties discussed
in Papers I and II, namely Mulliken charges⁶¹, Wiberg bond-indices⁶³, covalencies⁶⁴
and total valencies⁶⁵ are all derived from norms of the population matrix. As such,
they are independent of any arbitrary rotations and are fairly robust with respect to
differences in codes. They are fast to compute and therefore provide quick insight
into whether the embedding is good or not, depending on how much they deviate
from PBC calculations (see Papers I and II).

Additionally, as discussed in Paper II, the spatial electronic density can be compared.

23



While there certainly are arguments for this approach being more robust than compar-
ing local properties⁶⁶, it is far trickier to make accurate comparisons between different
codes, as will frequently be the case when comparing periodic calculations and em-
bedded cluster calculations. For instance, one problem when comparing CP2K and
Molcas, as was done in this thesis work, is that the core density is treated in an ap-
proximated fashion in CP2K⁶⁷. Within the core region, it is impossible to get the two
codes to match and it must therefore be removed. Further, when working with DFT,
the spatial electron density is sensitive to the integration grid, which might addition-
ally introduce numerical noise when comparing different codes⁶⁸,⁶⁹. This would not
be a problem with, for instance, HF; unfortunately, HF becomes very expensive with
periodic boundary conditions⁷⁰, for which reason PBE was used in Paper II.
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Chapter 4

Periodic boundary conditions and
embedded cluster models of crystals

Chapters 1–3 provide an overview of all basic concepts, necessary to understand em-
bedding methods in electronic structure theory. In this chapter, I will start to address
how these concepts relate to the solid state and the computational model that I have
been developing.

This chapter will also provide an overview of the problems related to the size of crys-
tals and discuss some problems related to the “standard” approach when studying
ionic crystals with QC today. Thereafter, the two methods connected to the SCEPIC
program, namely the general purpose electrostatic embedding (GPEE) method and
AIMPs, will be discussed and I will argue why such a combination is sufficient, when
working with ionic materials. As a part of this discussion, I will provide a general set
of guidelines when modelling ionic crystals using this combination of methods.

4.1 Unit-cells and supercells

This text will primarily discuss so-called crystalline materials. Thus, it is appropriate
to introduce some common nomenclature used in crystallography and computational
solid state physics and chemistry, namely unit-cells and supercells, which will be the
topic of this section. The introduction given here will be very brief, with more exten-
sive discussions in this topics in, for example, Refs. 53,71,72.

In crystalline materials, the constituent atoms are regularly ordered and follow a
repeating pattern (i.e,. they are translationally symmetric). An example of a two-
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Figure 4.1: Examples of a two dimensional crystal made out of blue and red atoms. The black square marks
one possible choice of unit-cell in this material, with the dashed square outlining a 2× 2 supercell
based on that unit-cell.

dimensional crystalline material is given in Figure 4.1.

Due to the large degree of order in a crystal, the atomic structure of a crystal is usually
discussed in terms of unit-cells. A unit-cell, as marked by a block box in Figure 4.1,
is a three dimensional box filled with atoms such that, if the box is repeated in space
along the three vectors spanning the box, it will build up the atomic structure of the
entire crystal. It is easy to get the impression that a crystal will always assume the
same shape as the unit-cell, for instance, that a material with a cubic unit-cell will
always appear as a cube, if put under a magnifying glass. This is a misconception; the
choice of unit-cell is seldom unique for a given crystal and by making different cuts
through the unit-cell, different types of surfaces can be created, giving many crystals a
less regular shape, than implied by the unit-cell concept⁵³,⁷². Not to mention the fact
that defects are ubiquitous in real crystals⁵³,⁷¹,⁷², meaning that the idea of a perfectly
ordered crystal is an idealised picture. Nonetheless, for the purpose of modelling bulk
material where surface effects and the presence of minor defects are usually of minor
importance, the unit-cell concept has proven extremely useful⁷¹.

An arbitrary unit-cell can be taken as the combination of a set of three vectors de-
scribing the size and shape of the unit-cell, along with a set of coordinates for the
atoms placed in the unit-cell. Often, these vectors are labelled as a, b and c (with
magnitudes a, b and c). Translating any atom inside of the unit-cell by any inte-
ger multiplicative of these vectors will generate all translationally symmetric atoms.
In more mathematical terms, if we let r be some position inside the unit-cell, and
R = kaa + kbb + kcc (ka, kb and kc, any integer), then if there is an atom posi-
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tioned at r, there will also be an atom positioned at r +R and these two atoms are
symmetry equivalent.

Using this, so-called supercells can be constructed, which are simply an extension of
the unit-cell concept. In essence, a supercell is made from several unit-cells; often,
they are labelled by ka × kb × kc, representing the number of times a unit-cell has
been repeated along a given unit-cell vector (a, b or c). In the two-dimensional case
in Figure 4.1, a 2× 2 supercell has been outlined in dashed lines. The purpose of su-
percells in computational solid-state chemistry frequently appears when it is desirable
to model, for instance, dopants, as will be discussed in Section 4.3.

4.2 Scaling problem of crystals

Lets discuss what I would like to call the “scaling problem” in solid state chemistry.
Take a typical crystalline material, such as the common rock-salt, NaCl, that many
people enjoy seasoning their food with. Each crystal of NaCl can be viewed as a
nanoparticle, with dimensions of, at the very least, 100 nm. If we approximate the
crystal as a perfect cube, the number of atoms in the crystal can easily be estimated. A
single (crystallographic) unit-cell of NaCl contains four Na and four Cl, with a unit-
cell dimension of 5.64 Å, or 0.564 nm. Each cubic crystal of NaCl with sides of 100
nm would then corresponding to approximately a 177× 177× 177 NaCl supercell,
this leads to a total number of 44 361 864 atoms in a single crystal.

If we now want to make a standard QC calculation on this crystal, using a minimal
basis set (3s1p per Na and 3s2p per Cl), this would result in a basis set containing
332 713 980 basis functions. Noting that current limitations on most standard super-
computers are somewhere in the range of 2000 basis functions (when working with
correlated wavefunction theory), modelling something as simple as a NaCl crystal in
a direct fashion is clearly impossible.

One natural question to ask, is if it is truly necessary to use QC to model the full
crystal, or if some alternative models or approximations can be invoked. Two different
approaches to model crystals are in existence, one based on the periodicity of the
atomic structure in a crystal and the latter based on dividing the interactions in the
crystal into short-range and long-range and treating these at different levels of theory.
The latter way of approximating a crystal is usually referred to as an embedding. Since
the main part of the thesis work has been on embedding methods, a brief discussion
on PBC will be given in Section 4.3, before continuing on with a discussion on the
embedding method that was used here in the remainder of the chapter.
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4.3 Periodic boundary conditions

As any student of solid state physics already knows; one smart way of circumventing
the scaling problem for crystalline material is to utilise the translationally symmetric
nature of the crystal. Rather than describing the crystal directly, PBC are imposed on
the calculation. In this way, the spatial basis set required to describe NaCl with a min-
imal basis is reduced to just 120 basis functions. Increasing the basis set to quadruple
zeta level (6s5p3d2f1g for both Na and Cl) would result in 472 basis functions, which
is easily manageable on today’s computers. Some increase in computational compared
to vacuum calculations should be expected, due to the introduction of so-called k-
vectors⁷¹,⁷³, which may be on the order of hundreds for metallic system, but only on
the order of tens for ionic systems. A proper introduction to k-vectors (also called
k-space) is very important for a deeper understanding of PBC, however, such a dis-
cussion would be out-of-scope for this thesis. For the remainder of this text, it is
sufficient to simply accept it as a given fact that k-space encodes information about
the electronic structure in the entire crystal.

The basis for the use of PBC in computational solid state physics and chemistry lies
in Bloch’s theorem. This theorem is described in detail in many standard textbooks
on solid state theory⁷¹,⁷³. Here, only the basic idea will be given. Basically, for
an ideal crystal, the electronic potential, V (r), is translationally symmetric, just like
the atomic structure of the crystal, i.e., V (r + R) = V (r). Bloch’s theorem then
states that, the solutions to the Schrödinger equation can be taken as ψ(k, r+R) =
exp(ikR)ψ(k, r). Therefore, if the solution to the Schrödinger equation is known
in one unit-cell, it can easily be obtained for the full crystal.

While PBC is a fantastic approximation in many cases and has been successfully ap-
plied for many properties²⁸, there are some caveats associated with it. In particular,
when the unit-cell is very small. The first and most trivial is in the case of sparse
dopants (atom percent of around 1 %); for instance Cu-doped NaCl. Should only a
single crystallographic NaCl unit-cell be used, then one Na is substituted for one Cu;
this would correspond to a doping level of 12.5 %. Therefore, a supercell approach is
required. Lets take a 2 × 2 × 2 repetition of NaCl; in this case, there would be 64
atoms in total in the cell and the dopant level is decreased to around 1.5 %. Using a
2 × 2 × 2 supercell should supposedly then give a doping level which is acceptable
(though arguably, the Cu-dopants will be too regularly ordered). Still, when working
with all-electron GTO type basis set, a lot of thought has to be spent on the basis set
size when using a 2× 2× 2 supercell.

Using a quadruple zeta contraction level on all atoms (Cu, 7s6p4d3f2g1h) of the
2×2×2 supercell would require 3812 basis functions, which is clearly unfeasible (for
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correleated wavefunction theory) on most standard computers. A common technique
that can be employed when working with GTOs basis sets is to use different contrac-
tion levels on different atoms, depending on their estimated importance. In the cur-
rent example, one might speculate that a double zeta contraction is good enough for
the NaCl host (4s3p1d for both Na and Cl), and that a quadruple zeta basis set is only
required on Cu. Using a combination of double zeta on the host and quadruple zeta
on Cu gives a total of 1229 basis functions in a 2× 2× 2 supercell; such a calculation
would be expensive, but manageable. Ideally, when using mixed contraction levels,
the results should be carefully checked to be converged with respect to increasing the
basis set. Such studies are unfortunately rarely done, as the original motivation for
mixing the contraction level is that using larger basis sets is too expensive.

Ignoring the problem of basis sets size, there is an additional problem when it comes to
using PBC. It is in general not a trivial task to take a correlated wavefunction method
and adopt it to PBC, for which reason mainly DFT is used for such studies. The
combination of DFT and PBC has been successful for a large range of properties²⁸,
and it is not the intention of this text to claim that such a combination is never
motivated. But for many compounds that contain either d-metals or f-metals, the
accuracy of standard DFT functionals are limited. A typical example would be in the
technologically important reducible oxides TiO2 and CeO2 ⁷⁴.

Oxygen vacancies are ubiquitous in TiO2 and CeO2 ⁷⁴; as a consequence there is a
mixture of M(III)/M(IV) ions in any real crystal of these materials, where the M(III)
ions have localised unpaired electrons. Standard, non-hybrid, functionals can not de-
scribe this phenomenon properly, for which reason they are frequently studied with
under the paradigm of DFT+U ⁷⁵, where a so-called Hubbard U parameter is added
to the calculation to enforce electron localisation into the Ti d-levels or the Ce f-levels.
While there are some self-consistent procedures for obtaining the best value of U ⁷⁶,
most often, it is treated as an input parameter with a fixed value. When used in this
way, there is no unique best choice of U for a given material, or DFT functional for
that matter⁷⁷. Take two examples with the PBE functional for CeO2; the bulk elec-
tronic structure is best described with a value of around 5.5 eV⁷⁸ whereas values of
around 2–3 eV are more appropriate for surface thermochemical properties⁷⁹,⁸⁰. Us-
ing hybrid functional does ensure proper localisation of the unpaired electrons, but
the usual drawbacks of DFT still apply, i.e., which hybrid functional should be cho-
sen (e.g., PBE0, HSE06, TPSSh, SCANh, etc.) with some publications noting that
sometimes it is better to use non-default degrees of HF exchange in the hybrid func-
tionals⁸¹,⁸²,⁸³,⁸⁴. Moving beyond both standard and hybrid DFT functionals, into the
realm of more accurate and parameter free WFT, holds the promise of eliminating
such issues from consideration.
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4.4 Embedding considerations

The question is then, if it is too complicated to implement PBC with most WFT
methods and we at the same time require a good quality basis set to describe whatever
physicochemical phenomena we are interested in, how do we deal with it? Coming
back to the example of sparse dopants in a crystal, the first question we should ask
ourselves is if it is truly necessary to describe the full crystal with quantum mechan-
ics? Noting that the main two-body terms in the QC Hamiltonian are electrostatic
in nature, either as a classical Coulomb interaction or as the quantum mechanical
exchange interaction, there are the terms that have to be analysed.

In systems of localised charges, such as ionic systems or covalent systems, the HF ex-
change term has long been realised to decay fairly rapidly, leading to the development
of screened hybrid DFT functionals⁸⁵. Supposedly then, we should be able to ignore
long-range exchange interaction, when studying local properties in ionic or covalent
crystals. Short-range exchange interaction, however, serves as a repulsive barrier be-
tween atoms, for which reason it should not be neglected⁸⁶. The importance of the
Madelung potential in the crystal should not be understated and it should be ap-
proximated in some fashion⁷¹,⁸⁷. One simple idea for modelling crystals is then to
replace atoms far from the central region with, for instance, classical point-charges.
Using classical point-charges instead of explicit atoms greatly reduces the computa-
tional effort since i) such integrals are inexpensive to compute and ii) they only effect
the one-electron Hamiltoninan, thus they do not impact the cost of SCF iterations or
correlated calculations. Of course, two questions still remain, one is how big do we
need the quantum region to be? This question is the topic of Paper II. The second is of
a more technical nature, if we expose an electron density, which by definition carries
a negative charge, to a positive point-charge to model a cation, this point-charge will
correspond to a singularity in the Coulomb potential, leading to an artificial “leak-
age” of electron density into the point-charge region. Thus, there needs to be some
repulsive wall to remove this singularity.

Obviously, the repulsive potential should fulfil, at the very least, two criteria. This first
and fairly obvious criteria is that the potential must prevent the electron density from
spreading out into the point-charge region. The second, is that the influence from
the potential should be such that atoms on the border of the quantum cluster have
the same properties as if the entire material was described in an exact fashion. While
the first criteria is usually fairly easy to achieve, indeed, simply replacing any positive
point-charges with basis-less effective core potentials (ECP) is sufficient (the so-called
capped ECP approach), the second criteria is the source of a lot of headache. The main
problem being that depending on the type of chemical bonds in the system, different
strategies needs to be employed. For instance, in a truly ionic system, it is most likely
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sufficient that the potential prevents the electron density from leaking, as evidenced
by the historic success of capped ECP⁸⁸,⁸⁹ and embedded AIMP studies⁹⁰,⁹¹,⁹². In
more covalent systems, however, the directional chemical bonds between the quantum
cluster and the embedding region must be mimicked somehow⁹³, which is a non-
trivial task.

The history of embedding is very long, there are probably several thousands of ar-
ticles on various aspects of the embedding schemes. As such, it is impossible for
this thesis work to give proper citation to all relevant articles and provide a com-
prehensive discussion about all different methods that are in existence. Therefore,
in addition to already provided references, the interested reader is referred to, e.g.,
Refs. 94,95,96,97,98,99,100,101 and references therein for a more thorough overview
of different embedding schemes for solids.

4.5 General purpose electrostatic embedding

Before mentioning more details of the AIMP embedding strategy, the question of
the Madelung potential resulting from the crystalline field must be addressed. This
potential is nothing more than the result from the classical Coulomb potential created
from all the ions in the crystal. In atomic units, the classical electrostatic potential at
some ion j in a crystal reads as

V (rj) =
∑
i ̸=j

qi
|ri − rj |

(4.1)

where qi and ri are, respectively, the charge and position of ion i. As discussed in Paper
I, this summation can, in principle be solved directly, but suffers from convergence
issues due to the r−1 dependency and the fact that in an ionic crystal, the charges will
be of alternating signs. Therefore, strategies such as Ewald summation¹⁰² or Evjens
method¹⁰³ are usually invoked to enforce convergence of this series.

In the work related to this thesis, a different approach was used, namely the GPEE
method of P. Sushko and I. V. Abarenkov⁸⁷,¹⁰⁴. The basis for this method is to replace
the, in principle infinite, sum in Eq. 4.1 with a summation over a discrete set of point-
charges. Additionally, these point-charges are constructed in such a way, that they
cancel multipole moments of arbitrary order over the unit-cell. The details of this
method are discussed at length in Refs 87,104, for which reason most details will be
omitted here.

The important realisation of this method was that the higher order multipole mo-
ments over a unit-cell can be placed in tetrahedra situated at the corners of the unit-
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cell. The mth multipole moment of the unit-cell, Q0 can be computed as

Q0(m1,m2,m3) =

Nuc∑
i

qix
m1
i ym2

i zm3
i (4.2)

where xi, yi, zi are the internal co-ordinates of the ions in the unit-cell and Nuc

the number of ions in the unit-cell. mi are integers noting the multipole moments
along the different unit-cell vectors, constrained such that for multipole of orderm =
m1 +m2 +m3.

Using this, the multipole moments over the unit-cell can be eliminated by requiring
that point-charges are placed in a tetrahedron such that the following equation is
solved ∑

n

qnx
m1
n ym2

n zm3
n = Q0(m1,m2,m3) (4.3)

where the summation n is over the number of positions in the tetrahedron. The
positions of point-charges intended to cancel the mth multipole moment are always
taken such that |xn|+|yn|+|zn| = m in the internal co-ordinates of the tetrahedron,
under the constraint that xn, yn and zn are integers.

Once a modified unit-cell has been obtained via the GPEE method, the modified
unit-cell is repeated in space, along the unit-cell vectors to construct an overall elec-
troneutral superstructure. Since the modified unit-cell is electroneutral and the re-
sulting superstructure has a finite size, the sum in Eq. 4.1 is regularised such that it
becomes absolutely convergent with increasing size of the superstructure.

The GPEE method was originally implemented in Molcas under the name EmbQ.
As a part of this thesis work, the method was reimplemented in the SCEPIC program
system. For most cases, the two different versions of the code should behave identi-
cal, the main difference in the SCEPIC implementation is that it was intentionally
designed to work with AIMPs and has more features for automatic replacement of
classical point-charges with AIMPs.

4.6 Ionic crystals with ab-initio model potentials

Once an electrostatic embedding has been obtained via the GPEE method, the em-
bedding AIMP strategy becomes a natural extension to introduce a repulsive barrier,
necessary to prevent electron leakage. This is trivially introduced by replacing point-
charges close to the QM region with AIMPs. The underlying theory of AIMPs will
be discussed in the next chapter, here, I will only detail how to construct a compu-
tational model, suitable for AIMP embedding. For the purpose of this discussion,
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the most important point to take from the next chapter is that AIMPs introduce ex-
change repulsion between the QM region and the embedding environment, which
then becomes the model for the repulsive barrier. Some additional details are dis-
cussed in Section 5.5, I therefore strongly advise consulting both these sections before
embarking on any embedded AIMP studies.

In Papers I and II, it is shown that at distances beyond roughly 6 Å from the border
of the QM region, there is no difference in the embedding potential between using
AIMPs or classical point-charges. On the other hand, the cost of increasing the AIMP
further is in general not that expensive, for which reason I would recommend to
increase this distance to at least 10–15 Å, purely as a precaution. Such an approach
was used to model MgO, CaO and CaF2 in Papers I and II. The actual superstructure
of one of the MgO clusters used is visualised in Figure 4.2, where, when going from left
to right, the QM representation is first given, followed by the QM region along with
surrounding AIMPs and finally the remaining classical point charges are visualised.

Figure 4.2: Embedding superstructure used to model MgO. From left to right, the QM representation is first
given, followed by the QM region along with surrounding AIMPs and finally the remaining classical
point charges are visualised.

For the materials that were studied in Papers I and II, the question of the necessary
size of the QM region was addressed. The easiest way to express the recommended
size is that 1) all elements of the material should be present in the QM region, i.e.,
no single element in a given material should be represented solely as AIMPs and 2)
there should be at least one QM atom layer in between the actual ion or cluster of
interest and the AIMP region. The second criterion could be expressed as, if we want
to study the local properties of Ni in Ni-doped MgO, as was done in Paper I, then
the smallest QM region we might be interested in would be NiO10−

6 , since we want
the bonds between Ni and O to be present. Figure 4.3 illustrates the convergence of
the local properties discussed in Section 3.2 for MgO, which clearly demonstrate the
second criterion. Since the entire NiO10−

6 region should ideally be well described, one
layer of Mg2+-ions should be added, resulting in a total QM region of NiO6Mg26+18 .
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Additionally, the introduction of the Mg2+-layer ensures that all elements of material
are present in the QM region.

Figure 4.3: Convergence of local properties (computed with PBE) with increasing sizes of MgO clusters. Thresh-
olds are taken as the difference in local properties from periodic calculations using 2 × 2 × 2 and
3x3x3 supercells of MgO.
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Chapter 5

Model potentials and the SCEPIC
program

In the previous chapter, I discussed the embedding model used in this thesis to mimic
ionic crystals. This was realised in the form of ab-initio model potentials. In this
chapter, I will discuss the underlying theory of using ab-initio model potentials for
embedding ionic crystals.

I will start with was is arguably a detour – AIMPs were first invented as a type of
ECP, for which reason I will start the disscuion in this chapter on their usage as
ECPs. Thereafter, I will move on to describe group-function theory (GFT)¹⁰⁵, which
is the theoretical justification for the embedded AIMP approach. Finally, I will address
the implementation of the AIMP parametrisation routine in the SCEPIC program,
written as a part of this thesis work.

5.1 Model potentials as effective core potentials

In chemistry, it is a well-known phenomenon that many properties of molecules and
solids are primarily described by the so-called valence electrons. Core electrons do
not contribute to, for-instance, chemical bonding and valence spectroscopy⁸⁶. The
need to describe core electrons with all-electron basis sets in the wavefunction op-
timisation (discussed in Section 2.1), might be considered to unnecessarily increase
the computational cost in certain instances, since they are anyway (usually) frozen in
the correlation step. In heavier elements, which are of frequent interest in solid-state
chemistry, the “inert” core electrons vastly outnumber the valence electrons. Take
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Ce as an example, the neutral species has 58 electrons. Depending a bit on the pur-
pose of the basis sets, either the 4f5s5p5d6s orbitals are kept in the correlation step
(ANO-RCC, ANO-R, cc-pVxZ)⁴⁶,¹⁰⁶,¹⁰⁷, with the 4s4p4d orbitals sometimes added
(cc-pwCVxZ)¹⁰⁷. If the larger set is used, only 29 electrons are correlated, exactly
half of the total number of electrons. The realisation that explicit treatment of core
electrons is unnecessary in many applications, sparked the development of several dif-
ferent approaches for approximating the core electrons. Here, primary focus will be
given to AIMPs⁸⁶, since they have been the primary topic of research in this thesis.
Other, alternative approaches worth mentioning are pseudopotentials (PPs)¹⁰⁸ and
projector-augmented waves (PAWs)¹⁰⁹.

To get a conceptual understanding of AIMPs, it is useful to once again start from the
atomic orbital shell structure. Taking Al as an example; the electron configuration
is 1s22s22p63s23p1. Conventional chemistry would take the 1s orbital to be the core
orbital, 2s2p as the semicore orbitals (i.e., they are generally not frozen in correlated
WFT) and the 3s3p as valence orbitals. Obviously, only treating the 3s3p orbitals,
i.e., the valence orbitals, explicitly would be more efficient than describing the full set
of orbitals. One way of realising this, as introduced by Huzinaga-Cantu¹¹⁰,¹¹¹, is to
freeze the core orbitals (based on some atomic HF calculation) and project them out
of the explicit calculation.

This can easily be achieved by simply adding a projection operator to the Hamilto-
nian, p̂ =

∑
k βk |ψk⟩ ⟨ψk|, where the summation runs over the frozen orbitals. The

projection constants, βk, need to be determined in some fashion; the conventional
approach in AIMP studies is to set βk to be 2ϵk, where ϵk are the one-electron canon-
ical molecular orbital energies from HF calculations on the atomic ground state⁸⁶.
A strength with the AIMP approach is that the effect from the core-orbitals is not
completely neglected and results are frequently equivalent to conventional frozen-core
calculations⁸⁶. Obviously, when using AIMPs as ECPs, the number of frozen orbitals
should be equivalent to those in a conventional frozen-core calculation. Coming back
to the example of Al, this would imply that only the 1s orbital can be safely frozen in
correlated calculations⁴⁶,¹¹²; clearly, significant improvements in computational effi-
ciency is only realised for heavier elements or for materials that contain a very large
number of Al atoms, such as Al2O3.

In addition to projecting the orbitals from the calculations, the electrostatic interac-
tion between the core region and the electron in the system is simplified by describing
the nucleus and the core electrons as a charge distribution in the form of a contracted
series of s-type Gaussians as

V̂ AIMP
coul (r) =

∑
k cke

−αkr
2

r
, (5.1)
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where the exponentsαk and contraction coefficients ck are fitted such that they mimic
the original charge distribution of the SCF calculation.

The exchange interaction between the core electrons and valence electrons is likewise
approximated as

V̂ AIMP
exch =

∑
l

l∑
m=−l

∑
ab

|ψalm⟩Al;ab ⟨ψblm| , (5.2)

where |ψalm⟩ = |ϕa⟩ |ϑ(l,m)⟩; |ϕa⟩ corresponds to the radial primitive basis and
|ϑ(l,m)⟩ the spherical harmonics. Al;ab is related to the exact exchange operator,
V̂exch, via

A = S−1KS−1, (5.3)

where S is the overlap matrix and K has elements Kab = ⟨ψalm| V̂exch |ψblm⟩. The
fact that AIMPs directly model exchange interaction is important for the upcoming
discussion on embedding AIMPs.

5.2 Embedding model potentials

If only the deepest core orbitals, such as the 1s orbtial in Al, can be safely frozen in
correlated wavefunction calculations, what is then the reason for discussing model
potentials for embedded ionic systems, where the number of ions can number up to
several hundreds? The first part of the answer to that question is of a technical nature,
since AIMPs effectively are just a set of frozen orbitals, they can be used to represent a
frozen SCF state by including both core and valence orbitals in the AIMP. Under the
assumption that this frozen state is only weakly perturbed by the presence of other
ions, AIMPs can be used to describe an effective frozen environment surrounding a
much smaller region, as described by GFT¹⁰⁵.

Since GFT was described in a generalised way in Paper I, I will only provide a short
summary for a hypothetical system of two particles, A and B. According to GFT,
if the electrons of the two particles are only weakly interacting, then the total state
of the system containing both particles A and B, |Φtotal⟩, can be partitioned into an
antisymmetric tensor product of the wavefunctions of the two particles

|Φtotal⟩ = NÂ
(
|ΦA⟩ ⊗ |ΦB⟩

)
(5.4)

whereN is a normalisation factor and Â is an anti symmetrisation operator. Further,
if the two states form an orthogonal set, then it is possible to optimise the wavefunc-
tions independently of each other. Simply by expanding the two group states in their
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own sets of molecular orbitals, {|ϕAa ⟩}, that additionally are mutually orthogonal, i.e.
⟨ϕAa |ϕBb ⟩ = 0, ensures that the states are orthogonal. In practical calculations, the or-
thogonality condition is ensured by introducing something called orthogonalisation
functions (discussed further in Paper I), in general, they are simply the outermost
functions of each angular momentum shell frozen by the AIMP. For example, in an
AIMP representing Mg2+, the 2s and 2p functions are used. Generally, orthogonal-
isation functions are only placed on the AIMPs that directly border the QM region,
in order to reduce the computational cost.

The GFT theorem lies at the heart of the AIMP embedding strategy. Under the
assumption that in an ionic crystal, the individual atoms only interact weakly, em-
bedding AIMPs are optimised, for instance via the SCEPIC program written by me.
The embedding AIMPs then represent a group state in GFT, which is inserted into
embedded cluster calculations. Since an AIMP retains an approximate description of
exchange interaction, it is superior to a pure classical point-charge embedding as it
provides a natural barrier between the quantum region and the surrounding⁸⁶.

Historically, embedding AIMPs were always derived from HF calculations. In essence,
this means that one assumes that a frozen HF state for the host material is a good
approximation. Nothing prevents AIMPs to be based on other SCF-type methods,
such as KSDFT, for which reason the implementation in SCEPIC also allows for the
usage of KSDFT when optimising AIMPs. As speculated in Paper I, this is sometimes
advantageous.

In principle, extensions towards methods such as CC or CASPT2 might be advan-
tageous to make the host state explicitly correlated. Currently, this is prevented by
a fairly straightforward point, the projection constants (βk above) are, traditionally,
taken from one-electron MO energies. Neither CC nor CASPT2 provide a straight-
forward and unique way to compute MO energies, for which reason I have not con-
tinued on such a task at the present.

5.3 The SCEPIC program

In order to design AIMPs for embedded cluster calculations, there must be some com-
puter code to carry out the necessary parameterisation. Historically, this was achieved
via the makeaimp program⁸⁶,⁹⁰, by requesting the authors to perform the parametri-
sation. As a result, many published studies have been hard to reproduce (see, e.g.,
Ref. 113), since the used AIMPs were not always made publicly available. In order to
parametrise an AIMP, a crystalline field, representing the Madelung potential, must
be specified. At the start of this project, this field was computed by the EmbQ pro-
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gram⁸⁷,¹⁰⁴, which was ported to MOLCAS 7.0¹¹².

Realising that working with different codes written using different programming stan-
dards and by different authors made the AIMP parametrisation procedure fairly com-
plicated, a major undertaking of this thesis became the rewriting of these codes into
a more user friendly version. This was realised in the form of the SCEPIC program.

SCEPIC is a collection of Julia functions, released as open-source under the Academic
Free Licence 3.0, written from scratch by me. It implements a reduced set of the func-
tionality of the makeaimp program (only those directly related to AIMP parametri-
sation) and is a full re-implementation of EmbQ. The choice of a modern language
like Julia, was due to my (potentially naive) belief, that using a modern language will
facilitate future development of the AIMP embedding method. The original codes
were written in FORTRAN77 (makeaimp) and Fortran90 (EmbQ); for that reason,
the execution of these codes might be faster, than their corresponding implementa-
tions in SCEPIC. High performance is, however, not a main issue for SCEPIC: i)
in each iteration, SCEPIC generally takes less than 0.1 s to generate a set of AIMP
coefficients and exponents (see next section) and ii) the generation of a point-charge
embedding takes a few minutes – but this is only done once. The next section will
discuss the AIMP parametrisation in more detail and specify the necessary equations
to solve.

5.4 Parametrisation of embedding AIMPs with SCEPIC

In order to parametrise a set of AIMPs for embedded cluster calculations, self-consistent
embedded ion (SCEI) iterations are traditionally used. Taking MgO as an example,
one embedding field for a Mg2+-ion and one embedding field for a O2−-ion is made;
the embedding field consists of AIMPs and point-charges and should reproduce the
Madelung potential of crystalline MgO. SCF calculations are then performed on the
two ions (in parallel) and the resulting wavefunctions are used to derive new AIMPs, as
illustrated in Figure 5.1. Two points worth mentioning is that in order to parametrise
a set of embedding AIMPs, there must be some starting AIMPs provided for the SCEI
iterations. In SCEPIC, these are derived from gas phase calculations on the ions, if no
starting guess is provided. Further, SCEI iterations are not variational⁸⁶,⁹⁰, for which
reason only energy stabilisation is targeted.

For the terms required to construct an AIMP, the projection and exchange operators
are taken directly from the resulting (spherically averaged) orbitals. The Coulumbic
term is fitted such that the s-type Gaussian in Eq. 5.1 gives the same radial distribution
as the frozen orbitals, with the charge corresponding to the total charge of the ion,
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i.e., the sum of the electronic and nuclear charges of the AIMP.

Therefore, the object of the SCEPIC program itself is fairly simple i) call some wave-
function solver (in the current implementation, MOLCAS or OpenMolcas), ii) spher-
ically average the occupied orbital shells and iii) fit a set of s-type Gaussians to mimic
the radial distribution of the orbitals. Objects i) and ii) are simply a matter of “book-
keeping”, while iii) requires some algebra. Note that in the following equations, ζk
refers to the exponents of a typical pGTO, while αk refers to the primitive Gaussians
used to expand the AIMP charge density (Eqs. 2.1 and 5.1, respectively).

Mg

AIMPs

Point-charges

O2-

AIMPs

Point-charges

Mg2+

AIMPs

Point-charges

O2-

AIMPs

Point-charges

3. Derive new AIMPs

2. Compute wavefunctions + energies

1. Embed ions in point-charges and starting set of AIMPs

Iterate 2 and 3

until convergence

Figure 5.1: Illustration of self-consistent embedded ion iterations for MgO.

First, we take the typical radial part of a pGTO,

Rk(r) =
2(2ζk)

3/4

π1/4

√
2l

(2l + 1)!!
(
√
2ζkr)

l exp(−ζkr2) (5.5)

For a set of occupied atomic orbitals represented by cGTOs, the radial distribution,
or density, can then be obtained as

ρ(r) = r2
∑
i

ni

∣∣∣∣∣∑
k

ci,kRk(r)

∣∣∣∣∣
2

(5.6)
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with ni being the occupation number and ci,k the contraction coefficients. Using
this density, we can numerically compute some Coulomb integrals, Icoul

m , on a ra-
dial grid with points, rm. Since AIMPs approximate spherical symmetry⁸⁶, rm, is a
scalar, denoting the distance of the grid point from the nucleus. Some decision has
to be made on some cutoffs, in order to ensure numerical stability. In SCEPIC, the
same procedure as proposed in the makeaimp program is used⁸⁶,⁹⁰. Only integrals
larger than a certain threshold (10−4) are retained in SCEPIC, these are then further
weighted by some factor wm = 1.0

N elecrm
, with N elec being the number of electrons

frozen by the AIMP. The weight factors are normalised by nm = Npoints∑
m wm

∗wm, with
Npoints being the number of points retained in the fitting.

Now, the object is to ensure that the AIMP Coulomb operator (Eq. 5.1) reproduces
this set of integrals. This can be done using basic linear algebra, by noting that∑

k

ck exp(−αkr
2
m) ≈ Zcore + Icoul

m (5.7)

where the left-hand side is simply Eq. 5.1 and the right-hand side the ionic point-
charge potential. Both the exponents αk and the coefficients ck are unkowns at the
start of the SCEI iterations. In SCEPIC, the exponents of the underlying s-type GTO
basis set are used as a starting guess. These are then varied by making small alterations,
in SCEPIC, this is generally done in step size corresponding to 1 % of the exponent
size, i.e., if the exponent is 100.0, it is varied by ±1.0. Each time the exponents are
varied, the set of coefficients ck are determined by recasing Eq. 5.7 into matrix form
and diagonalising.

5.5 Some key points of embedding AIMPs

This chapter will end by stating some key points, important to any user who wants
to model ionic solids with AIMPs. Some important points were already mentioned
in Section 4.6, thus, parts of this section will be repetitious, if this thesis is read in
full. First and foremost, when running SCEI iterations, some crystalline field must
be specified. Take TiO2 which has three common polymorphs; rutile, anatase and
brookite. The crystalline field, or Madelung potential, in all of these three materials
is different. It is therefore not guaranteed, that a set of AIMPs parametrised for rutile
will be suitable for usage in anatase or brookite. Similarly, in materials where the
same element appears in several Wyckoff positions, each position requires a unique
set of AIMPs. To the best of my knowledge, no extensive test of the transferability of
AIMPs has been made.

41



On the other hand, this could also be argued to be a strength of the AIMP approach.
In contrast to the similar capped ECP model⁸⁸,⁸⁹, where pseudopotentials are taken
from some ECP-type basis set intended for molecular calculations, the embedding
AIMPs are directly parametrised for a given material. Further, the capped ECP model
can only be used to replace cations, whereas AIMPs can be used to represent anions.

One very important point is that the improvement from using an AIMP is fairly short
ranged; around 6–8 Å surrounding the QM cluster is sufficient. The remaining part
of the Madelung potential should (for the sake of efficiency) be represented by clas-
sical point-charges (for instance, from the GPEE model, Section 4.5). This leads to a
potential problem with AIMPs; an embedding AIMP represent a set of frozen elec-
trons, only integer charges are therefore natural to represent with AIMPs. This can
be problematic if it expected that a reduced charge might be more representative of
the electrostatic potential (for instance, ±1.8 e in MgO¹¹⁴). From the little practi-
cal experience I have, I can only say the following, that if the guidelines for AIMP
embedding advocated by me are followed (Section 4.6), the effect of only scaling the
classical point-charge region is minor. Taking the electron excitation energy for MgO,
which I will discuss more in-depth in Section 6.5.1, as an example. With CASSCF I
obtained a value of 13.071 eV, when using HF-based AIMPs and a point-charge field
derived from ±2.0 e charges. If the classical point-charges are scaled to ±1.8 e, the
excitation energy remains virtually unchanged at 13.067 eV. Such small differences is
on the same order as typical “chemical accuracy”, essentially, there is no impact from
scaling the classical point-charges. Clearly, when working with AIMP embedding,
the proper target for improving the model is the AIMPs themselves.
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Chapter 6

Practical aspects on the usage of
multiconfigurational theory

In this final chapter of the thesis, I will provide an overview of the usage of multi-
configurational methods in QC. These methods are generally not usable as “black-
boxes”, they are multidimensional, with several potential minima that can spoil the
calculations. The proper usage of methods which fall within this category therefore
requires a strong understanding of both the underlying theory, as well as the particu-
lar specifics of the software that is being used. As such, this chapter will address some
of the underlying, sometimes hidden, problems that might occur when working with
multiconfigurational theory.

I will make an overview of different ways that has been discussed in the literature for
selecting the so-called active spaces. These methods are often a good starting point
for any new user of multiconfigurational methods, but have certain problems that I
will address in this chapter. Further, I discuss the method I usually work with when
selecting active spaces, which I hope can be of use to new users of multiconfigurational
quantum chemistry.

Since this is a thesis on combining multiconfigurational quantum chemistry with
ionic solids, the final discussions in this chapter is devoted to this combination. The
discussion is based on my own experiences, either directly when modelling ionic
crystals with AIMPs, or derived by taking into consideration related inorganic com-
pounds. Some of it will be speculative and I make no claim that my thoughts on
active spaces for ionic solids should be taken as absolutes.

The thoughts and comments in this chapter guided the results obtained in Papers I,
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Iv and v. Some of the text here presents slight improvements on the procedure used
to obtain the results in those papers. After all, it seems as if it is only after a project is
finished, that you truly understand how you should address it. The emphasis in this
chapter will most likely be somewhat biased towards the implementations of these
methods in the MOLCAS and OpenMolcas packages¹¹⁵,¹¹⁶,¹¹⁷, as these were the
electronic structure codes used in this thesis.

6.1 On Active Spaces

When reading papers on the usage of MCSCF theory, it is easy to get the impression
that the selection of active space is something trivial. In reality, unless the system
under study is particularly simple, choosing an appropriate active space is usually the
most time consuming part. By my own estimation, I would say that more than 70 %
of the total time spent on projects has been related to the selection of the active space.
Sometimes due to problems related to “guiding” the convergence to the desired active
space. Other times, due to the simple fact that what might look like an appropriate
active space, is insufficient when used with PT2 for dynamical correlation. This chap-
ter will discuss some of the common pitfalls when using MCSCF and provide some
suggestions on how to simplify the active space selection process. In truth, however,
only by either improving the dynamical correlation step, or by making methods for
targeting larger active spaces more feasible, will provide an ultimate solution to all of
these problems.

6.2 Static and dynamical correlation

The success of multiconfigurational theory lies in the separation of electron correlation
effects into two distinct parts, so-called static correlation and dynamical correlation.
But to be perfectly clear, this separation is solely for reasons of practicality, as the
mathematical tool for describing both is by including more electronic configurations
in the wavefunction. In general though, static correlation require a higher degree
of accuracy to be appropriately accounted for, whereas dynamical correlation can be
treated in a more approximate fashion¹,². Static correlation arises when multiple elec-
tronic configurations carry equal, or at the very least substantial, weight in a full-CI
wavefunction. In such cases, the underlying assumption of HF theory, namely that
a single SD is sufficient, breaks down and a multiconfigurational solution becomes
mandatory. Dynamical correlation is instead an effect which describes the missing
portion of electron-electron repulsion effects, which are only treated as a mean-field
in HF theory. Such electron-electron repulsion effects are in correlated wavefunction
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theory usually modelled as very large number of double (or higher) low weight exci-
tations from the set of occupied orbitals into the virtual orbital space, obtainable via
methods such as PT, CC or CI, for example.

Therefore, in multiconfigurational theory the usual task is first to select an appropriate
reference wavefunction, with the CASSCF method being the historically most utilised
method. Once an appropriate wavefunction has been selected, however, dynamical
correlation has to be included. Here, CASPT2 is most likely the most commonly
used method.

It is frequently a relatively trivial task to select an active space which will include
the electron configurations with the largest weights, as these usually only involves
quite few orbitals. At the very least for molecular systems. When treating dynami-
cal correlation with PT2, however, it must be kept in mind that PT2 is only able to
approximate up to double excitations. This is often the dominant portion of dynam-
ical correlation, but in cases where higher excitations are of qualitative importance,
all orbitals between which higher excitations are important have to be included into
the active space to provide qualitatively correct results. Arguably then, using methods
that also approximate triple excitations better, such as PT3, might yield better results
than CASPT2 with smaller active spaces. Better methods for incorporating additional
excitations than PT, such as MRCI or MRCC, could also be useful. As of writing this
text, such methods are not yet readily available, at the very least when working with
systems containing basis functions in the range of 1000–2000, for which reason the
remainder of this chapter will focus on strategies when working with CASPT2 for
dynamical correlation.

6.3 Overview of different approaches for active space selec-
tions

The art of selecting active spaces is hardly something new to this thesis work. Many
different approaches can be found in the literature, ranging from approaches based on
“chemical considerations” to attempts on more automatic ways, based either on MP2
natural occupation numbers or orbital entanglement calculations. This section will
provide a small overview and some criticism of ways of selecting active spaces that are
sometimes found in the literature.
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6.3.1 Chemical considerations

Here, the selection of active orbitals is based on what is, arguably, chemical criteria.
This approach is closest to the approach that I usually employ. In fact, it would be
fair to say that “my” approach is derivative of the approach discussed in this section.
Therefore, many details for selecting orbitals based on this approach will be reiterated
in Section 6.4. Much like the approach I advocate, the active space selection process
discussed here is intended to first be carried out in a small basis set, before expanding
the wavefunction into a larger basis set for production calculations.

Selecting active spaces by this approach arguably evolved out of Björn Roos’ group,
with Refs. 2,118 providing more detailed overviews. The idea is fairly simple, prelim-
inary calculations are made in a small basis set, usually of VDZP quality, since this
generates more chemical virtual orbitals. For different groups of atoms, orbitals are
selected based on a predefined rule. As an example, (taken from Ref. 118), for second
row elements, the 2s and 2p orbitals should be active for elements Li–C, while for el-
ements N–F it is sufficient to only include the 2p orbitals. Similar rules can be found
for all elements all the way down to the actinides. Thus, this approach gives a fairly
impressive start for any new user of multiconfigurational quantum chemistry.

So what is wrong with this approach? In Sections 6.4.3 and 6.4.4, I give some small
overview of a few calculations on one excited state of Be and the electron affinity (EA)
of Cl. For these two atoms, the approach discussed in Refs. 2,118 would suggest that I
should only include the 3s3p orbitals of Be and only the 3p orbitals of Cl. What I find,
however, is that in both cases, there is fairly strong angular correlation (to be discussed
in Section 6.4.1), meaning that the 3d orbitals are important for quantitatively good
results. This set of orbitals would be completely missed if the approach here is followed
in absurdum.

To be fair, however, the approach in Refs. 2,118 are mainly targeting molecular sys-
tems, where my own experience indicates that such angular correlation is of less im-
portance than in an atom, which is the target of Sections 6.4.3 and 6.4.4. Lets take an
example of a crystalline calculation where this approach fails then. For lanthanides,
Refs. 2,118 suggest that the most important orbitals are the 4f5d6s orbitals. Some
preliminary calculations that I have done on Ce-doped YVO4 (Ce:YVO4), however,
suggests that, at the very least for a formal Ce(III), the 5p-orbitals are non-negligible.
Table 6.1 gives two set of computed spectra of the 4f15d0 → 4f05d1 excitations in
Ce:YVO4, modelled with a minimal QM region of only CeO8 in an AIMP and point-
charge embedding. The difference between including the 5p-orbitals or not is quite
dramatic for the 2B2 state in the 4f05d1-manifold, which is lowered from a predicted
excitation energy of 8.25 eV to 3.59 eV. Noting that the lowest excited state measured
experimentally is around 3 eV¹¹⁹, this is a clear improvement. For this reason, my
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opinion is that the guidelines provided by Refs. 2,118 should primarily be taken as
a starting point, with a large degree of scepticism for elements with in high valence
states (such as Ce(III) here) and for excited states.

Table 6.1: Ce:YVO4 state energies as computed using different active spaces and ANO-RCC-VQZP basis set. Ac-
tive space orbitals are taken from Ce. States ordered according to the 5p4f5d active space. Energies
are in units of eV.

State 4f5d 5p4f5d
4f15d0-manifold

1 B2 0.00 0.00
1 A1 0.02 0.00
1 E 0.31 0.13
2 E 0.31 0.26
3 E 0.43 0.27
A2 0.15 0.38
4 E 0.49 0.42

4f05d1-manifold
2 B2 8.25 3.59
5 E 4.93 4.92
6 E 5.11 5.13
2 A1 5.31 5.46
B1 7.47 7.46

6.3.2 Natural orbitals

Another approach is to make a preliminary calculation using a single-reference method,
e.g. MP2, and select orbitals based on the natural occupation numbers. Typically,
natural orbitals with occupation number in the range of 1.98 – 0.02 should be added
to the active space².

Using MP2 natural orbitals seemingly works very well when a sensible reference wave-
function can be obtained, in which case my manually selected orbitals for Be and Cl
(discussed in the previous section and Sections 6.4.3 and 6.4.4) and the orbitals pre-
dicted by MP2 correspond to the same active space. This would be 3s3p3d for Be
(excited state calculation) and 3p3d for Cl (electron affinity calculation). Note that
my ground state calculation for Be (Section 6.4.3) suggest that 3s3p is good enough for
the ground state and that the 3d orbitals are only important for the excited state. For
the ground state of Be and Cl, MP2 natural orbitals do indeed suggest active spaces
of 3s3p and 3p (Table 6.2), respectively, the same orbitals that the rules given in the
previous section would suggest. With Cl, it is trivial to also make a ground state MP2
calculation of Cl−; when doing so, MP2 does, in fact, predict that the 3d-orbitals
should be added to the active space. On the other hand, making an excited state HF
wavefunction for Be is non-trivial and even if it would be straightforward to do so,
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MP2 is likely to diverge, making it very hard, if not impossible, to generate a reliable
set of MP2 natural orbitals when studying excited states.

Table 6.2: Table of MP2 natural occupation numbers for Be and Cl.

Species MP2 natural occ. num.
3s 3p 3d

Be 1.95 0.02 0.00
Cl 1.99 1.67 0.00

Cl− 1.99 1.96 0.02

MP2 is, however, not the only possible choice of natural orbitals. Natural orbitals
can be derived from either CC, CASPT2 or, in the case of open-shells, from unre-
stricted HF or DFT. For closed-shells with restricted HF or DFT, natural orbitals are
undefined since all orbitals either have occupation number 2 or 0. Since unrestricted
HF or DFT do not explicitly correlate orbitals, these methods might unfortunately
miss some important contributions, for which reason I would advocate the use of
wavefunction methods when computing natural orbitals. In the case of excited states,
CC or CASPT2 are most likely better choices than MP2 (albeit, significantly more
expensive to obtain), while DFT can be more efficient in the case of large molecular
or crystalline systems. One general problem that I find with using natural orbitals, to
be discussed in the next paragraph, is expected to be fairly similar for all methods.

Using natural orbitals can provide a promising alternative to the more manual selec-
tion in the previous section. But if the system starts to become large, some manual
guidance is most likely going to be required anyway. Take the lytic polysaccharide
monooxygenase (LPMO) enzyme studies in Paper Iv, here there is both a transition
metal (Cu) and several aromatic rings in the QM region. Without a doubt, MP2
natural orbitals will suggest a large number of orbitals from both parts of the system,
making the calculation unfeasible. On the other hand, the targeted property (singlet–
triplet energy gap) in Paper Iv can be considered to be mostly located at the Cu, with
the orbitals on the aromatic rings being fairly unperturbed by the spin state. In this
case, there is very little reason to expect that adding more orbitals from the surround-
ing cluster will significantly alter the predicted singlet–triplet energy gap, despite what
their MP2 occupation numbers might indicate. For this reason, using MP2 as a start
might be considered to be overshooting the problem. But then again, perhaps the
MP2 natural orbitals are easier to identify, than manually inspecting all orbitals? I
can not provide any clear conclusion here other than stating that in future studies I
am more likely to start adding MP2 (or CASPT2 for excited states) natural orbitals
to my active space selection routine, simply due to the convenience of having some
starting natural occupation numbers.
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For generating preliminary CASPT2 natural orbitals, I would suggest following the
rules discussed in Section 6.3.1, truncating the number of active orbitals to the smallest
possible to get a reasonable starting wavefunction. Taking two examples from my
own papers, for the LPMO enzyme in Paper Iv, or for Ni-doped MgO in Paper I, my
preliminary suggestion would be to select the d-orbitals for Cu and Ni, respectively.
After obtaining a set of CASPT2 natural orbitals, a manual selection can be done. If
it is possible to include all orbitals of importance (occupation numbers 1.98 – 0.02),
then do so. Else, select orbitals that seem to be more localised in the region of the
system that is of interest.

6.3.3 Automatic approaches

A fairly recent addition the active space selections is the automated approach of Stein
and Reiher¹²⁰. This approach is based on orbital entanglement measurement from
a preliminary DMRG calculation. In this preliminary DMRG calculation, as many
orbitals as possible are included into the active space, using a lowm-value. The wave-
function is allowed to partially converge, after which an orbital entanglement mea-
surement is performed. Based on some threshold, for which suggestions are provided
in Ref. 120, the active space is reduced until it becomes computationally feasible, be
it that is becomes so small that CASSCF can be used or that RASSCF or DMRG is
still needed.

While I personally like the approach, it suffers from one big drawback for crystalline
systems, the preliminary DMRG calculation to measure the entanglement will most
likely contain too many orbitals if done in a naive way, forcing the user to anyway
make a selection of some subset of orbitals. Take the LPMO system from Paper Iv as
an example again. Lets make a naive assumption of the LPMO backbone and ignore
the active (O, O2, OH) part. The backbone contains one Cu, one O, 14 C, five N
and 19 H. We can probably ignore any orbitals originating from H in the backbone,
but that still leaves us with 21 atoms to consider. From the occupied part, we can
imagine that we want to include at the very least the orbitals suggested from Refs.
2,118; 10 d-orbitals for Cu (double shell) and three 2p-orbitals from each O, C and N.
This gives 70 orbitals, without even starting to consider more virtual orbitals than the
double shell on Cu. Clearly, this is a road to nowhere, if followed in absurdum. The
automated approach will therefore still require that a preliminary selection of orbitals
is made, for instance based on more stringent manual selection or more arbitrarily
by some energy criterion from HF one electron energies. Even if this is done, my
suspicion is that it will suffer from the same drawback as discussed in the end of
the previous section; orbitals which are relatively unchanged between the singlet and
triplet spin states will become included in the active space.
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It should also be pointed out that, in principle, the approach of Stein and Reiher
could (in some future, hypothetical, implementation of the method) be based on,
say, CASPT2, instead of DMRG. Following the discussion in the last paragraph of
Section 6.3.2, once the preliminary CASPT2 calculation has been done, the CASPT2
natural orbitals that are most entangled could then be added to the active space, as ap-
propriate. Such a solution would essentially combine the three approaches discussed
in this section.

6.4 Selecting an active space – How I work with multiconfig-
urational theory

This section will address more directly thoughts and concepts that I find useful to
follow when selecting active spaces manually. Though I would like to stress that, in
my future work, I am quite likely to extend on this approach, on the basis of the
discussions in the previous section. Still, as I believe that for large systems, such as
crystals, some manual selection will always be required, I hope that the discussion in
this section can be used as guidelines for how to truncate an active space based on,
say MP2 or CASPT2 natural orbitals. In the end of the section, I will demonstrate
two practical examples of calculations on the Be atom and the Cl anion.

6.4.1 Correlating pairs of orbitals

The most common strategy employed by me when selecting active spaces, at least
when studying ground state phenomena, is to think in terms of “correlating pairs” of
orbitals. The origin for such a strategy comes from the concepts of radial and angular
correlation¹; these are two aspects of dynamical correlation. I find it simplest to think
in terms of s-type orbitals when conceptualising these two phenomena.

Starting with an ns-orbital that is doubly occupied in HF theory, this orbital will
usually be too contracted and the two electrons ending up too close to each other.
By adding an (n+ 1)s-orbital into the active space, which contains an additional ra-
dial node compared to the ns-orbital, the probability of finding the two electrons at
different distances from the atomic nucleus is increased. This is an example of radial
correlation. The correlation effects between a doubly occupied bonding orbital and an
unoccupied antibonding orbitals is also an example of radial correlation, such as the
σg-orbital and the σ∗u-orbital in the H2 molecule at the equilibrium geometry, with
the probability of finding the two electrons at different positions along the internu-
clear axis increasing. At the same time, it should be stressed that along the dissociation
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curve of H2, the nature of the correlation between the σg and the σ∗u orbitals changes
from dynamical near the equilibrium, to static as the dissociation limit is approach.

Angular correlation, on the other hand, arises when the active space is augmented
by adding orbitals of higher angular momentum; usually, for an orbital of angular
momentum l, a set of (l+ 1) orbitals are added. Taking our example of an s-orbital,
a set of p-orbitals would be added. This has the effect of increasing the probability
of finding the two electrons in the s orbital on opposite sides of the atom. Likewise,
a σ orbital can be correlated with a π orbital, increasing the probability of finding
electrons on opposite sides of the intermolecular axis.

One useful guideline for correlating pairs of orbitals is that, most of the time, the sum
of their natural occupation numbers is equal to two¹,². Thus, if some preliminary
natural orbitals have been obtained, yet the shape of the orbitals is still unclear, my
bet would be on checking the natural occupation numbers.

Frequently, my experience with MCSCF calculations have suggested that radial cor-
relation is more important to include into the active space than angular correlation,
when dealing with molecular systems. It would, however, be folly to suggest that in-
cluding angular correlation in the active space is always negligible. This will be clearly
demonstrated in Sections 6.4.3 and 6.4.4.

6.4.2 Basis set considerations – start small then go big

Textbooks often give the impression that the proper way of choosing an active space
is to first make an HF calculation on the targeted system and then select the orbitals
around the HOMO-LUMO level to put into the active space. While nice in theory,
such an approach suffers from some problems for larger systems. The first is due to
the “undefinitiveness” of the virtual orbitals. While occupied HF orbitals are usually
chemically sensible, virtual orbitals will only be so due to mere chance, as they are
not optimised (see Section 1.1). As most quantum chemists who have ever inspected
the virtual orbitals from a calculation with a basis set that contains a large amount
of diffuse function will know, the shape of virtual orbitals are usually nonsensical.
All multiconfigurational results in Papers I, Iv and v were obtained by the procedure
described in this section.

When making a selection of virtual orbitals to include in the active space, I find that
it is usually better to make preliminary calculations with a small basis set. While I
argued in Paper v to use specially designed contraction levels, at least when working
with ANO-type basis sets, I have slightly altered my strategy since. Today, I would
make the case that one should always start by using a double zeta contraction with
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polarisation functions (VDZP) when making a preliminary HF calculation and follow
that by localising the virtual orbitals. This simply due to the fact that a typical VDZP
basis set will contain all necessary orbitals for both radial and angular correlation, so
it requires less tedious handywork with setting the basis set contraction levels.

Many schemes for localising orbitals exists and I will make no claim that any is truly
superior to another. As a personal preference, however, I like the “improved virtual
orbital” strategy of Widmark (IVO keyword in Molcas)¹¹². With IVO, virtual or-
bitals from a preliminary HF, or possibly a minimal CAS, calculation are localised by
diagonalising the one-electron Hamiltonian within the virtual orbital subspace, while
maintaining orthogonality with the occupied orbitals. The resulting virtual orbitals
are very compact and are usually chemically meaningful.

Once the targeted active space has been obtained by the means described above and
converged with a small basis set, e.g. VDZP, the basis set should be expanded to
obtain good results with CASPT2. In the ideal world, it would always be possible
to expanded the basis set to (at the very least) VQZP quality on all atoms. For most
typically studied systems, it is fairly unlikely that larger basis sets that VQZP will
substantially improve the results when working with CASPT2. When dealing with
crystals, this is typically not achievable and some compromise has to be made. Based
on the discussions in Paper III and some practical experiences that are not published,
I would make the argument that the basis set should at the very least be of VTZP
quality when working with CASPT2. Using VDZP basis sets on some atoms that are
very remote from the part of the system that is of interest – say a dopant in a crystal
– might be permissible.

6.4.3 A case study of starting orbitals on Be

In this section, we will discuss how starting orbitals might influence the outcome of
a CASSCF calculation, as well as how the active orbitals are chosen. For our test
case, we will look at the Be 1S(2s2) and Be 1P (2s12p1) states. The results are based
on a minimal active space made from either the Be 2s2p3s orbitals or the Be 2s2p3d
orbitals, using ANO-RCC-VDZP as a basis set. Since we are interested in four states
(when accounting for the triply degenerate 1P state), the calculations discussed in
this section are based on a state-average CASSCF (SAV-CASSCF) solution over four
roots. No symmetry will be used here, for the very simple reason that if symmetry
were to be used, some of the errors here might be solved automatically. This section
wants to focus on giving some hints at what to do when such a simple solution might
not be feasible.

We will start by discussing solutions for the 2s2p3s active space. When working with
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CASSCF we need a set of starting orbitals. Commonly, these are taken from an HF
solution of the ground state. Alternatively, semi-empirical orbitals can be used, for
instance those generated by the GuessOrb program in Molcas¹¹². We will start with
discussing the difference between GuessOrb and HF when making SAV-CASSCF
calculation, without any manual inspection of the orbitals. In other words, we make
the assumption that with both sets of starting orbitals, the orbitals will initially be
ordered as typical atomic orbitals, 1s2s2p3s3p etc. In Table 6.3, it is clear that we
get two very different solutions when using either GuessOrb or HF with an naive
selection of the active space. Both solutions show a clear symmetry split in the excited
1P (2s12p1)-state and the differences in total energies between the two approach are
on the order of 0.1Eh, which is far beyond reasonable. So what happened? Analysing
the composition of the active orbitals after convergence for the two solutions reveals
the answer. In both cases, the 3s orbital was not included in the active space after
convergence. Instead, a single 3d orbital was picked up during the SAV-CASSCF
iterations. Since for an atom, the 3d-orbitals are part of a five-fold degenerate set, this
leads to symmetry breaking.

Obviously, a naive approach to selecting active orbitals with CASSCF is prone to dan-
ger. If we now instead make a manual selection of the desired active space, by either
inspecting atomic orbital coefficients or by visualising the orbitals, both the GuessOrb
and HF set of starting orbitals converge to the exact same solution. Alternatively, we
can take the first set of “failed” results as a guide to selecting the active space; instead
of assuming that the 3s-orbital is a good addition to the active space, we attempt to
naively take the full set of 3d-orbitals. As illustrated in Table 6.3, this also solved the
symmetry breaking problem. Two more effects are also clearly visible from adding the
3d-orbitals, i) the energy of the ground state is nearly unchanged and ii) the energy of
the excited state is drastically lowered. Therefore, it seems as if angular correlation is
non-negligible and that the 3d-orbitals should be included in the active space. Impor-
tantly, results obtained with either the GuessOrb orbitals or the HF orbitals converge
to the same solution, once the active orbitals had been selected in a sensible way. It is
therefore up to the user to decide which approach works best for a given problem.

It should be emphasised that this example is very simple, in the sense that the symme-
try of an atom allows a simple diagnostic of what went wrong with the initial solution,
as well as manual inspection of orbitals to add to the active space. For molecular or
crystalline systems, such a luxury is rarely present. Instead, very careful analysis of the
obtained solution – convergence patterns, CI coefficients, orbital cofficients, atomic
charges – has to be performed, ideally along with testing a few different active spaces.
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Table 6.3: Table of total energies for the first four singlet roots of Be. Note that roots 2–4 are supposed to
be degenerate in a proper solution. SE stands for semi-empirical starting orbitals, generated by
GuessOrb. HF indicates that orbitals obtained from a converged HF solution on the ground-state
was used as starting orbitals. Active space orbitals are given in the headers. Naive means that the
results were obtained by assuming that the order of the orbitals was correct without any inspection.
Manual means that the orbitals were visualised and selected by hand. Large is identical to naive,
except that the number of orbitals were larger.

CASSCF root SE 2s2p3s (naive) SE 2s2p3s (manual) SE 2s2p3d HF 2s2p3s (naive) HF 2s2p3s (manual) HF 2s2p3d
Root 1 −14.56735989 −14.61662380 -14.61526090 -14.61522721 −14.61662380 -14.61526090
Root 2 −14.26634626 −14.36849575 -14.38588222 -14.37560679 −14.36849575 -14.38588222
Root 3 −14.26615077 -14.36849575 -14.38588222 -14.37085881 −14.36849575 -14.38588222
Root 4 −14.26610371 −14.36849575 -14.38588222 -14.37022138 −14.36849575 -14.38588222

6.4.4 A CASPT2 case study on the electron affinity of Cl

In this section, a practical example of using CASPT2 to compute the EA of Cl will be
discussed, a major undertaking in Paper III. The aim is to highlight how results might
change by using different settings and that the selection of active space is not necessar-
ily obvious. When Cl binds an additional electron to form Cl−, the electronic state
changes from a 2P (3p5) state to a 1S(3p6) state. Using “conventional” arguments for
active spaces, the 3s orbital will be kept outside the active space and only be correlated
with CASPT2². Four different active spaces will be evaluated. The first will only in-
clude the three 3p orbitals, i.e., a “valence” active space. It should be stressed that for
the anionic state, this gives a singlet (6,6) active space and therefore the wavefunction
contains only a single configuration and is equivalent to an HF calculation, followed
by CASPT2. Ideally, this should be identical to an MP2 calculation, though due to
minor differences in the reference Hamiltonian, this is rarely the case. The second
active space is based on the shell structure of atomic orbitals and includes, in addition
to the 3p orbitals, the 4s orbital. The third active space was designed to include radial
correlation directly and therefore also correlates the 3p orbitals with the 4p orbitals,
excluding the 4s orbital. The final active space instead considers angular correlation
directly, thus the 3p orbitals and the 3d orbitals are included in the active space. These
active spaces will be referred to as AS-I, AS-II, AS-III and AS-IV, respectively (tabu-
lated in Table 6.4). In addition, two different settings for frozen orbitals will be used;
in the first, the 1s2s2p orbitals will be frozen, as was the recommendation when the
ANO-RCC basis set was developed. In the second, only the 1s2s orbitals are frozen,
which is a more “modern” definition of the Cl core orbitals, used for instance in the
development of the ANO-R basis set. The reference value of 3.61 eV was taken from
Ref. 121.

In order to deal with the degenerate 2P (3p5) state, all energies were obtained by
SAV-CASSCF followed by the XMS-CASPT2 method. No IPEA shift was used to
obtain the results presented herein. ANO-RCC-VQZP was used as basis set, with
the second-order Douglas-Kroll-Hess scalar-relativistic Hamiltonian (DKH2), since
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ANO-RCC was developed to be used with DKH2.

Table 6.4: Table summarsing the active space nomenclature used in this Section.

Active space Active orbitals
AS-I 3p
AS-II 3p4s
AS-III 3p4p
AS-IV 3p3d

In general, the results in Table 6.5 indicates the following; using AS-I and AS-II with
1s2s2p frozen core gives no marked changes in results, all predicting an EA of around
3.35 eV, which would correspond to an error of about 0.26 eV. Unexpectedly, with AS-
III the prediction was worsened by around 0.1 eV, with respect to AS-I and AS-II. This
is in contrast to the CASSCF results, from which one might expect that AS-III should
outperform AS-I and AS-II. AS-IV comes closest to the experimental value, with a
predicted EA of 3.48 eV. This would fit with both the EA’s obtained with CASSCF
as well as the CASSCF natural orbital occupation numbers given in Table 6.6, which
indicate that the 3d orbitals carry a larger electron density than either the 4s or 4p
orbitals. Though many might argue that the occupation number for the d-orbitals
(c:a 0.02) is so small that these orbitals can safely be excluded. On the other hand,
the occupation numbers suggest that the 4p orbitals should be more important than
the 4s, yet the results worsened by adding these orbitals. This experience shows the
importance of evaluating multiple active spaces before reaching a final conclusion.

Can we find an answer as to why the results with AS-III was worse than the others,
despite that both the CASSCF EA and the occupation numbers suggest otherwise?
As it turns out, the answer lies in the frozen core using with CASPT2. By additionally
correlating the 2p orbitals at the CASPT2 level, the EA predicted by AS-III reaches
3.36 eV, on par with AS-I and AS-II, regardless of frozen core. No major change was
observed for AS-IV by changing the frozen core. This small experiment shows then
that the balance between correlation treated at the SCF level and the PT2 level needs
to be considered carefully. It should also be stressed, that the choice of frozen core or-
bitals should always be based on what type of correlation effects where included in the
design of the basis set⁴⁶. In principle, this means that correlating the 2p-orbitals with
ANO-RCC is inadvisable. Though I have frequently found that for light elements,
H–Cl, correlating too many core orbitals does not seem to introduce any obvious
errors when using ANO-type basis sets.
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Table 6.5: Computed EAs for Cl using different active spaces and methods. All EAs are given in units of eV.
Orbitals in paranthesis following CASPT2 denotes the frozen core. Values in paranthesis after EAs
denoted difference with respect to reference value of 3.61 eV¹²¹

Active Space CASSCF CASPT2 (1s2s2p) CASPT2 (1s2s)
AS-I 2.56 (-1.05) 3.36 (-0.25) 3.35 (-0.26)
AS-II 2.58 (-1.03) 3.37 (-0.24) 3.35 (-0.26)
AS-III 3.01 (-0.60) 3.24 (-0.37) 3.36 (-0.25)
AS-IV 3.19 (-0.42) 3.48 (-0.13) 3.46 (-0.15)

Table 6.6: CASSCF natural occupation numbers for the netural 2P (3p5) and anionic 1S(3p6) states of Cl. Corr.
(short for correlating) is used as a collective name for the different virtual orbitals added into the
active spaces, as given in Table 6.4. ** denotes that there are no correlating orbitals in AS-I.

Orbital AS-I AS-II AS-III AS-IV
2P (3p5)

3p 1.667 1.666 1.661 1.640
Corr. ** 0.001 0.006 0.016

1S(3p6)
3p 2.000 1.999 1.987 1.966

Corr. ** 0.002 0.013 0.021

On the flip side, it would be a reasonable view that all of the predicted EA’s are “good
enough” as they are qualitatively correct and gives errors that, for most test cases, are
less than 0.3 eV. So why worry? Unfortunately, in the correct assignment of spectra,
particularly for d-metals or f-metals, the density of excited states is very high, with very
small differences in energy. One example of this would be Ni-doped MgO, which was
studied in Paper I, where the difference between the first excited 1Eg state and the
first excited 3T1g states is around 0.2 eV. The ability to influence the CASPT2 results
by around 0.2 eV by choosing different active spaces and frozen core (as in the case
of Cl−) will therefore impact the predicted state ordering, which, depending on the
topic, may or may not be of crucial importance.

6.5 Active Space suggestions for various kinds of metal oxides

In this section, I will discuss the selection of active spaces for various kinds of metal
oxides. While I would expect similar considerations to be true of related types of ionic
materials, such as other metal chalcogenides in general or metal halides, i.e., materials
with anions that gives significant degrees of either σ-donation or π-donation, I will
strictly speak of metal oxides, as that is the type of materials I have mostly worked
with. The section will start with a discussion on “simpler” materials, i.e., where the
metal is either an s-metal (alkaline metal, alkaline earth metal) or a p-metal (any metal
from the p-block); the discussion will be examplified by the band gap of MgO. It
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should be mentioned that CaF2, an s-metal halide, was studied in Paper I using the
methods discussed for MgO. From there, some discussions on non-doped d-metal
oxides and f-metal oxides will be given. Such a discussion will primarily be speculative
and advisory for anyone wanting to attempt AIMP studies of such metal oxides, as
the results I myself have achieved this far in that subject are minor and not yet ready
for peer-reviewing. The section will conclude by discussions on active spaces for low-
concentration dopants in a host metal oxide material. The section will conclude by
some suggestions for how to select active spaces surface reactions.

6.5.1 Electronic excitations in MgO

Lets start by making a revisit to electron excitations MgO, which was studied in Paper
I. As argued in Paper I, this is the most straightforwards way with multiconfigurational
theory to study what solid state physicists usually refer to as the band gap. It is es-
sentially the energy required to remove on electron from the oxygen 2p-orbitals (or
band) and place it into the magnesium 3s-orbitals (or band). Therefore, the band
gap was modelled as a charge transfer excitation in Paper I, using a Mg-centered clus-
ter, [MgO6Mg32]26+. Since the second layer of Mg are border atoms in this cluster,
no orbitals were included from this layer. From the oxygen surrounding the central
Mg, 6 p-orbitals were included, those which could interact with the central Mg in
a σ-donating fashion. On the central Mg, both the 3s orbital and 3p orbitals were
included. In the end, this lead to an active space of 12 electrons in 10 orbitals, or
a (12,10) active space in short. As was observed in Paper I, using HF-based AIMPs
resulted in a band gap of around 10 eV with CASPT2 (13 eV with CASSCF), whereas
with PBE-based AIMPs the predicted band gap was lowered to 7.5 eV, which is very
close to the experimental value of around 7.8 eV. In Paper I, this result was speculated
to be due to an intrinsically better description of the AIMPs by basing them on PBE,
rather than HF.

One obvious criticism of the [MgO6Mg32]26+ cluster is that it, by design, targets a lo-
calised description of the excited state. In such a picture, one Mg(II) becomes reduced
to Mg(I), with the remaining hole in the occupied orbitals becoming delocalised over
the surrounding oxygen ions. On the other hand, in the case of s-metal/p-metal ox-
ides, such as MgO, it might be more appropriate with a delocalised description of
the electronic structure. This is certainly the picture I get from standard textbooks on
solid state chemistry and physics⁷¹,⁷²,⁷³. Therefore, the supposed failure of HF-based
AIMPs to describe the band gap in MgO might have been related to the construction
of the cluster, rather than the AIMPs themselves. In order to verify this, some alter-
native cluster should be tested, specifically designed to be more accommodating of a
delocalised description of the excited state.
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One fairly “straightforward” model for a more delocalised electronic structure would
be a Mg32O32-cube (identical to a 2x2x2 supercell), where the active space would be
localised in the inner Mg4O4-cube, with the remaining ions constituting the border
between the central region and the embedding. Such a cluster fulfils the cluster con-
struction criteria discussed in Papers I and II and outlined in Section 4.6. Using the
same logic for the active space as in Paper I, all three p-orbitals of the four central
oxygens should be included in the active space (they all point towards one central Mg
each, making room for σ-donation) as well as one s-orbital and three p-orbitals per
Mg. In total, the active space would then be (24,28), which is far beyond the capa-
bilities of any modern supercomputer. Therefore, either RASSCF or DMRG would
have to be used instead of CASSCF. One the other hand, a smaller active space where
only one s-orbital per Mg is considered would result in a (24,16) active space; this is
perfectly reasonable with CASSCF.

At this point, I will unfortunately not be able to provide a conclusion as to whether
a delocalised description is better. Attempts at stabilising a (24,16) active space in a
Mg32O32-cube turned out to be more challenging than I thought. For reasons of
brevity, I will not discuss the (embarrassingly) long list of failed tests that lead to the
(preliminary) end result I present here. Only by using a smaller (24,13) active space
(only one s-type orbital, delocalised over all of the four central Mg) and making a state-
average calculation over 13 roots (the ground state and twelve one-electron excitations,
one from each p-orbital) could I find an active space that was somewhat reminiscent of
what I was targeting. If I used (24,16), the resulting wavefunction became symmetry
broken, with three of the Mg s-orbitals replaced by radially correlating orbitals from
the O 3p-orbitals during the CASSCF iterations. Possibly, adding more roots to the
SAV-CASSCF calculation could stabilise the inclusion of four Mg s-orbitals, but I did
not test that route. Sadly, the computational burdens of MS-CASPT2 on the (24,13)
active space turned out to be too severe, even for the largest computer (in terms of both
disk space and memory) available to me, already at the level of ANO-RCC-VDZP as
a basis set. Therefore I can give no conclusion as to the effect of constructing a more
delocalised active space at the CASPT2 level-of-theory. The only preliminary insight
I can give is that the CASSCF excitation energy (using HF-based AIMPs) dropped
from 13.1 eV, with the cluster from Paper I, to 12.8 eV with the cubic cluster. Since this
is only a marginal improvement with respect to the experimental gap of 7.8 eV and
since the used active space is, in my own opinion, doubtful, more tests are necessary
to decisively determine if a delocalised picture might be better. At this point, I will
keep my recommendation from Paper I, i.e., that it might sometimes be advisable to
test DFT-based AIMPs.
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6.5.2 d-metal oxides and f-metal oxides

Oxides of d-metals and f-metals are known to be very interesting compounds, e.g.
TiO2 or CeO2 ⁷⁴, which has a wide array of industrial applications. Unlike ionised
s-metals and p-metals, there are many d-metal oxides and f-metal oxides where the
d- or f-orbitals are partially filled. One example of this for FeO, where we would
expect the Fe(II)-ions to have a d6-configuration. In this case, all d-orbitals of any Fe
included in the QM region has to be added to the active space. Otherwise, the open-
shell nature of the material will be inappropriately described. Including all d-orbitals
will rapidly lead to active spaces which are too large to handle, if the guidelines for
AIMP embedding given in this thesis are followed. It is certainly possible to construct
clusters where there are two d-metals in the QM region, but since no more than that
can be included, the border with the AIMPs will be dangerously close to the transition
metals.

On the other hand, in certain metal oxides, such as TiO2 or CeO2, the Ti(IV)/Ce(IV)-
ions have a d0/f0-configuration, i.e., all valence electrons have been ionised away. In
such materials, it is potentially safe to exclude orbitals on Ti or Ce that are far away
from the cluster centre, making it easier to approach the guidelines for AIMP embed-
ding. This statement should, however, be verified by very careful calculations before
taken as an absolute. As a suggestion, either to myself in the future or to someone
else reading this text, the oxygen vacancy formation energy in these materials might
be a relevant property to evaluate this statement on.

It should additionally be stressed that all orbitals from the anions that provide signif-
icant σ-donation or π-donation should be included into the active space for d-metal
oxides. As a rule-of-thumb, there should be one orbital from the anions per d-orbital
and these orbitals should be symmetry paired¹²². For f-metal oxides, it is less straight-
forward how to deal with the active space, as the f-orbitals themselves do not partake
in any chemical bonding¹¹⁸.

6.5.3 d-metal dopants and f-metal dopants

Frequently, we are interested in studying materials that have been doped by some d-
metal or f-metal, e.g., Ce-doped YVO4, which is used as a laser. In this case, the
selection of cluster model and active space is a bit more straightforward than when
studying a pure material. The most sensible centre of the entire superstructure (QM
region, AIMP region and point-charges) is on the dopant itself, with no real reason to
test alternatives. Similarly, we should expect the active space to be primarily derived
from orbitals on the dopant.
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As argued in Ref 118, f-orbitals rarely partake in chemical bonding, for which reason
a preliminary assumption that no orbitals from the surrounding crystals are necessary
when studying doping by f-elements can be made. This is not necessarily true for
d-orbitals, for which reason a sensible choice would be to include some orbitals from
the crystal. Ideally, there should be at least five crystal orbitals of the same symmetry
as the dopant d-orbitals¹²². Further, in the case that the host material contains open-
shell species, the orbitals that are necessary to describe this has to be included in
the active space. Other typical considerations for active spaces, such as a double-
shell set of d-orbitals for 3d-elements (Paper I) and f-orbitals for 4f-elements¹²³ for
elements with at least half-filled shells should be followed. Based on the discussions
in Section 6.3.2, I would suggest making “minimal” CASPT2 calculations using such
active spaces, compute the CASPT2 natural orbitals and based on their occupation
numbers, determine if the solution is satisfactory, or increase the active space.

6.5.4 Reactions on surfaces

In heterogeneous catalysis, chemical reactions take place on the surface of a solid, often
crystalline, material. Selecting active spaces for reactions is generally non-trivial, as the
active space should be stable over the entire part of the potential energy surface (PES)
that spans the reaction, starting from the reactant state to the final product. But in
order to study the reaction, the PES has to be mapped out in some fashion, using
any of the available routines for locating transition states. Since analytical gradients
for methods such as CASPT2 are not generally available yet (at least, in Molcas) and
are very expensive to compute, using a cheaper method such as DFT to map out the
PES can be used as an alternative. Of course, some bias towards the used functional
might be introduced, but there are few sensible alternatives to this approach today, in
my opinion. Even if analytical gradients with CASPT2 were to be affordable, I would
probably still recommend starting with a DFT generated PES, due to the active space
selection process.

To construct the active space, my suggestion would be to start by selecting some or-
bitals for the transition state (TS). Once a satisfactory solution has been found for the
TS, use the TS wavefunction as input for the remaining points along the PES. Such
a starting guess is more likely to be stable over the entire PES, than for instance an
active space that was initially constructed for either reactant or product. Of course,
one could imagine that an appropriate active space would be a superposition of the
reactant and product active spaces – that might, however, be very complicated to
construct.

My recommendation to anyone attempting surface studies with AIMPs is then to first
map out the PES, using periodic DFT with your functional of choice. After that, em-
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bed the resulting structures in an AIMP and point-charge embedding. Construct an
active space for the transition state, after which it should be verified that the solution
is stable over the entire PES.

6.6 Final comments on multiconfigurational theory

In this chapter, some thoughts and comments on the usage of multiconfigurational
theory – in particular, the combination of CASSCF with CASPT2 – have been out-
lined. The examples presented in Sections 6.4.3 and 6.4.4 are intended to provide
some food for tought about simple and common mistakes that might occur when us-
ing multiconfigurational theory. In this particular case, however, the studied systems
are highly symmetric (since they are atoms) and have a fairly limited set of possible ac-
tive spaces. This is not true for molecular and crystalline systems, where the symmetry
might be lower or completely nonexistant and the number of potential active spaces
are far too many to study in a systematic way. When dealing with such systems, extra
care has to be taken; the used active space(s) must always be critically scrutinised with
emphasis on convergence patterns and properties of the resulting wavefunction.
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Chapter 7

Summary and conclusions

This thesis work has been devoted to enabling multiconfigurational methods to be ap-
plied to problems in the solid state, in particular when the host materials is crystalline
and ionic. To achieve this, the combination of two methods, GPEE and AIMPs,
were used, which together gives a robust description of a crystalline environment.
Some improvements on these methods were made as a part of this thesis work, with
the major achievement being the creation of a user-friendly freely available program,
SCEPIC, that allows the construction of AIMPs for any arbitrary ionic crystal. Fur-
ther, this thesis work was (to the best of my knowledge) the first time that DFT-based
AIMPs were ever used; in Paper I, this was shown to be quite useful when modelling
pure materials. For very local properties, such as the spectra of dopants, is is, arguably,
better to use HF-based AIMPs.

This thesis work was also the first time that systematic studies were made on the nec-
essary size of the quantum region when using an AIMP embedding. Based on the
discussions in Papers I and II, the following guidelines are proposed (stated in Chap-
ter 4): 1) all elements of the material should be present in the QM region, i.e., no
single element in a given material should be represented solely as AIMPs and 2) there
should be at least one QM atom layer in between the actual ion or cluster of interest
and the AIMP region. Further, the AIMP layer surrounding the QM cluster should
be at the very least 6–8 Å, 10–15 Å can be used as a more conservative choice; the
classical point-charges should ensure that 1) the Madelung potential is converged and
2) higher-order multipole moments are cancelled. If these criteria are fulfilled, the
embedding strategy proposed in this work is robust for any ionic solid.

Paper III assessed the quality of the recently proposed ANO-R basis set. The results
show that for many properties, ANO-R is of similar quality as the preceding ANO-
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RCC basis set. Anionic states are, however, ill reproduced using the standard ANO-R
contraction levels, for which reason the other studies in this thesis work have not
used this basis set. As argued in Chapter 2, however, some time should properly be
devoted to make a separate ANO-type basis set for ionic solids. This is necessary both
to address the interaction between the ions and the external field of the crystal, as well
as that smaller basis sets than ANO-R or ANO-RCC are desirable in order to model
solids.

Papers Iv and v are, arguably, a bit of a sidetrack from directly targeting ionic solids.
They do, however, together, fulfil two important steps for my personal development
as a user of multiconfigurational theory. In Paper Iv, I began the development of
how I approach active spaces, which was later discussed in Paper v and Chapter 6 of
this thesis. Further, Paper Iv serves as a good reminder for the fact that KSDFT is
unreliable for multiconfigurational systems.
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