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The best that most of us can hope to achieve in physics is simply to
misunderstand at a deeper level.

— Wolfgang Pauli
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Populärvetenskaplig sammanfattning

Tids̊aldern vi just nu lever i kallas ofta informationstids̊aldern tack vare använd-
andet av datorer för att utföra beräkningar och internet för att dela informa-
tion. Därför är möjligheten att använda energi för att skapa just information en
grundpelare för v̊art moderna samhälle. Men är den motsatta processen möjlig?
Kan man använda information som energikälla? Svaret p̊a den fr̊agan är ja, men
det kräver att man har kontroll över sm̊a system som är starkt p̊averkade av
fluktuationer fr̊an omgivningen. I mitt arbete har jag genomfört s̊adana pro-
cesser med kvantprickar - ett system som inte tidigare använts till det syftet.
Framförallt har jag varit intresserad av att undersöka hur processen fluktuerar
och vad fluktuationerna kan säga om den fysik som ligger bakom.

Energi fr̊an information? - Fysikern James Clerk Maxwell introducerade
1867 sitt tankeexperiment ”Maxwells demon.” Han föreställde sig en tv̊adelad
kammare fylld med en gas. I mitten av kammaren finns en dörr som kan öppnas
eller stängas. Vi vet att om gasen bara l̊ats vara s̊a kommer dess temperatur vara
densamma p̊a b̊ada sidor om dörren. Enkelt uttryckt betyder det att det kommer
finnas ungefär lika m̊anga varma (snabba) gaspartiklar som kalla (l̊angsamma)
överallt. Vill vi skapa en temperaturskillnad mellan de b̊ada sidorna behöver
vi tillföra energi till gasen: detta är hur ett kylsk̊ap fungerar. Här tänkte sig
Maxwell istället att om det fanns en varelse (demonen) som kunde mäta has-
tigheten p̊a enskilda gaspartiklar när de närmar sig dörren kan den sen välja
att bara släppa in varma partiklar till den ena sidan och kalla partiklar till den
andra. P̊a s̊a sätt kan demonen skapa en temperaturskillnad utan att tillföra
n̊agon energi. Det verkar som att informationen demonen f̊ar om partiklarna
har fyllt samma roll! Självklart kommer den här energin inte fr̊an ingenstans,
utan en verklig Maxwells demon skulle kräva energi för att utföra de nödvändiga
beräkningarna. Eftersom informationen till slut m̊aste raderas fungerar den som
ett slags bränsle.

Sm̊a system och fluktuationer - För att utföra verkliga experiment med
Maxwells demon m̊aste man kunna läsa av och kontrollera väldigt sm̊a system.
S̊a sm̊a att de blir starkt utsatta för fluktuationer fr̊an omgivningen. Ett stort
system skulle kunna liknas vid en tung vikt som släpps fr̊an en höjd. P̊a sin väg
mot marken kommer den ta samma väg varje g̊ang man släpper den. Om man
istället släpper ett litet löv fr̊an samma höjd s̊a kommer den precis som vikten
n̊a marken till slut. Skillnaden är att lövet kan p̊averkas av sm̊a rörelser i luften
och kommer förmodligen aldrig ta exakt samma väg. P̊a samma sätt fungerar
ett litet termodynamiskt system: även om man driver det p̊a samma sätt mellan
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tv̊a punkter kommer mängden energi som krävs för att göra det variera.

Kvantprickar - fällor för elektroner I den här avhandlingen har jag använt
mig av s̊a kallade kvantprickar för att skapa sm̊a termodynamiska system. Kvant-
prickar är ytterst sm̊a bitar av halvledarmaterial. I mitt fall finns kvantprickarna
i nanotr̊adar vars diameter är tiotusen g̊anger mindre än ett h̊arstr̊as. Eftersom
de är s̊a sm̊a kan bara ett visst antal elektroner f̊a plats eftersom de har sam-
ma laddning och därför stöter bort varandra. Vill man trycka in fler elektroner
behöver man tillföra energi med hjälp av ett elektriskt fält. Detta gör att man
precist kan kontrollera antalet elektroner i en prick. Det g̊ar ocks̊a att ställa in
kvantpricken s̊a att antalet elektroner fluktuerar. Man kan i det fallet inte känna
till det exakta antalet utan att mäta p̊a kvantpricken. En s̊adan mätning ger en
allts̊a ny information som kan användas som informationsbränsle.
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Chapter 1

Introduction

Thermodynamics is an enduring field of study first developed during the indus-
trial revolution in order to build more efficient steam engines. In such large-scale
systems, a description based around averages is sufficient and led to great in-
sights about the nature of energy, heat flow and dissipation. Later, it became
clear that for small systems with large fluctuations, such a description is lack-
ing. As technology progressed and machines moved from being room-sized to
our modern nanoscale machines, the development of stochastic thermodynamics
was necessary. Stochastic thermodynamics moves beyond the description of fluc-
tuations as mere noise, instead studying how they follow their own physical laws
which effectively functions as extensions of the well-known laws of thermody-
namics. One important consequence of a system’s fluctuations is that by gaining
information about the system through measurement, it is possible to use feed-
back in order to extract work when it would seemingly violate the classical laws
of thermodynamics. As such, there is an intriguing interplay between informa-
tion and thermodynamics which lies at the core of this thesis. Specifically, this
thesis aims to experimentally investigate the fluctuations in information-driven
thermodynamic processes using quantum dot systems embedded in semicon-
ductor nanowires.

Possibly the most important concept in stochastic thermodynamics is the ap-
plication of thermodynamic quantities to individual trajectories of how single-
particle systems evolve over time [1, 2]. Using these definitions, it was pos-
sible to derive fluctuation theorems that relate fluctuations between trajectories
to the underlying physics of the system itself [3–8]. Experimentally, results
from stochastic thermodynamics have been validated since the early 2000s for a
number of systems including single molecules [9, 10], colloidal particles [11–13],
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single-electron boxes [14, 15] and quantum dots [16–18].

The connection between information and thermodynamics was first established
by Maxwell in 1867, in his famous Maxwell’s demon thought experiment [19]
where he argues that by measuring on the individual particles of a gas, it would
be possible to violate the second law of thermodynamics. Later on, it was
understood that by including the thermodynamic cost of processing the inform-
ation gained in the measurement, the second law was restored [20, 21]. How-
ever, the concept of using information to extract work was an intriguing one,
so theoretical work continued. Eventually, the fluctuation theorems developed
in stochastic thermodynamics were generalized to account for the effect of in-
formation and feedback [22–24]. Due to the need to both measure and control
single-particle systems, no experimental implementations were done until tech-
nology had matured in the 2010s, but the concept has since been demonstrated
with colloidal particles [25, 26], single-electron boxes [27, 28] and DNA-pulling
experiments [29]. Most of the experimental work done so far has focused on
achieving high information-to-work conversion efficiency. Only very recently
have the fluctuations in inormation-to-work conversion processes been studied
experimentally, which includes the work in this thesis.

The systems studied in this thesis are single electrons in semiconductor quantum
dots. If a piece of semiconductor is very short in one dimension, electrons will be
confined in that direction. If they are confined in all three spatial dimensions,
a quantum dot is formed. Due to Coulomb interactions, a quantum dot can be
loaded with a discrete, well-defined number of electrons. Furthermore, the dens-
ity of states of zero-dimensional semiconductor systems means that the electrons
in a quantum dot take on discrete energy levels. As such, quantum dots provide
an excellent model system for stochastic thermodynamics. The quantum dots
used in this thesis were formed in semiconductor nanowires, which are rods of
material less than 100 nm in diameter. The nanowires allow for fully material-
defined quantum dots to be formed, since electrons will already be confined in
two dimensions due to the shape of the nanowire. The final degree of confine-
ment comes in the shape of polytype engineering, where a bandgap mismatch
between two crystal phases create potential barriers [30–32] for electrons.

The work in the thesis is collected in the four papers I-IV. The development of
devices with such nanowire quantum dot systems is described in Paper I. Then,
Papers II, III, and IV all consist of experimental studies of information thermo-
dynamics, with a focus on fluctuations and dissipation. The rest of the thesis
is structured as follows: in Chapter 2, the main concepts of stochastic thermo-
dynamics are introduced, following a brief description of traditional thermody-
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namics. In addition, the connection between thermodynamics and information
is described. In particular, the Szilard engine thought experiment is described in
detail. Chapter 3 introduces the systems and methods used in the thesis work.
Using the constant interaction model, characteristics of both single and double
quantum dot systems are explained. The chapter then moves into the specific
material system and fabrication methods used for the devices (while giving a
summary of Paper I). Finally, the very important charge sensing technique is
described. In Chapter 4, the thermodynamic concepts introduced in Chapter 2
are connected and applied to the device architecture described in Chapter 3.
Following that, Papers II, III, and IV (which all used the same device) are
summarized. Concluding the thesis is Chapter 5 which functions as a summary
as well as an outlook over possible future directions.
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Chapter 2

Thermodynamics

This chapter introduces the thermodynamic concepts that lie at the heart of the
work in this thesis. First, the laws of classical thermodynamics for macroscopic
systems are presented. Then, a description of those concepts are explained
in terms of statistical mechanics which brings the chapter closer to a micro-
scopic picture. From there, an introduction to stochastic thermodynamics on
the trajectory level is given, together with some important results. The effect
of information and feedback on thermodynamic systems concludes the chapter.

1 From classical to stochastic thermodynamics

1.1 The laws of thermodynamics

Traditional thermodynamics is a phenomenological theory which was developed
in order to understand and improve heat engines. As such, it considers mac-
roscopic systems containing a very large number of particles. Furthermore, it
only deals with systems at or near equilibrium. Nevertheless, it is an excellent
starting point for describing heat, work, and temperature. The theory revolves
around the laws of thermodynamics, which will be briefly reviewed in the fol-
lowing. A more complete picture can be found in, for instance, the textbook by
Kondepudi and Prigogine [33].

The internal energy U of a closed system can be changed either by a work
contribution W from some external parameter or by exchanging heat Q with a
heat reservoir. U is known as a state function which characterizes the state itself.
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On the other hand, Q and W depend on the way the system reached its state
and are called path functions. However, the total energy must be conserved, so
that for small changes

dU = dW + dQ. (2.1)

Equation (2.1) expresses the first law. Note that the first law only describes what
happens to the energy in any given process, but does not address which processes
are possible. To describe this, the concept of entropy is introduced. The entropy,
S, of a system is a state function that broadly speaking characterizes the degree
of its disorder. The second law states that the entropy of a closed system can
never decrease, i.e.

dS ≥ 0. (2.2)

If the system is in contact with a heat reservoir (which maintains equilibrium
even when exchanging heat), it is the entropy of the combined system Stot that
can not decrease:

dStot = dS + dSr ≥ 0, (2.3)

where the subscript r indicates the reservoir. For the reservoir itself, its tem-
perature T is the proportionality constant between its energy and entropy so
that dEr = TdSr. Since a heat reservoir only exchanges energy through heat,
we further get dQr = TdSr and finally (noting that dQr = −dQ)

dS ≥ dQ

T
. (2.4)

For a reversible process, equality is achieved in equation (2.4). Another import-
ant consequence of the second law requires the introduction of an additional
state function: the Helmholtz free energy F = U −TS. Then, for a process that
takes the system from one equilibrium state to another, ∆F = ∆U−T∆S. Com-
bining this with equations (2.1) and (2.4), yields an inequality for the amount
of work needed to perform the transition:

W ≥ ∆F, (2.5)

where equality again indicates a reversible process. If ∆F ≤ 0, equation (2.5)
provides a bound for the amount of work that can be extracted in the process.
The discussion of the second law ends here with a final formulation which is very
important in the context of this thesis, namely the Kelvin-Planck statement: ”It
is impossible to construct a device which operates on a cycle and produces no
other effect than the production of work and the transfer of heat from a single
body”. Such a device would be a perpetual motion machine, which is thus for-
bidden by the second law of thermodynamics.
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There are two further laws, which are included here for completeness but not
extensively discussed in the thesis. First is the third law, which states that there
is a temperature of absolute zero where the entropy of a perfect crystal will also
be zero. Finally, the sometimes included zeroth law of thermodynamics states
that if one system is in equilibrium with two others, those two systems must
also be in equilibrium with each other.

1.2 The statistical mechanics picture

In order to understand the thermodynamics of small systems, it is helpful to
first consider macroscopic systems through a microscopic lens. A macroscopic
system consists of a number of microscopic states i with energy levels Ui and
probability distribution pi so that

∑
i pi = 1. Any function of the system can

now be given as an ensemble average of the corresponding microstate function.
For example, the internal energy is:

U = ⟨U⟩ =
∑

i

Uipi. (2.6)

For a small change in energy dU ,

dU =
∑

i

(dUipi + Uidpi). (2.7)

Identifying
∑

i dUipi as a work contribution dW (the energy levels are moved)
and

∑
i Uidpi as a heat contribution dQ (occupation probability is changed by

jumping between microstates with different energy), the first law is re-obtained.

As an example distribution, we look again at a system coupled to a heat reser-
voir. In that case, its (equilibrium) distribution is known as the canonical dis-
tribution:

pi = exp

[
− 1

kBT
(Ui − F )

]
, (2.8)

where F is the Helmholtz free energy and kB is Boltzmann’s constant.
In this framework, entropy is defined by the Gibbs entropy :

S = −kB
∑

i

pi ln pi, (2.9)

which in combination with the above definition of dQ can reproduce the relation
dS = dQ/T for systems near equilibrium in contact with a thermal reservoir.
In addition, using the canonical distribution of equation (2.8), the standard ex-
pression for the Helmholtz free energy F = U − TS can also be acquired.
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Figure 2.1: An example of a distribution of the work needed to lift and then lower an electronic energy level in contact
with a reservoir. On average it requires some work ⟨W ⟩, but in individual trajectories the work may take on
values higher or lower (and sometimes work is even extracted). In this particular example, the energy level is an
electronic state in a quantum dot in an InAs nanowire. The level is manipulated by an external gate voltage.

1.3 Trajectory thermodynamics

As seen in section 1.2, the laws of thermodynamics arise from ensemble averages
of microstates. However, there is an underlying assumption that the deviations
from the average are small, which is true for most macroscopic systems. But
what if the system is so small that such fluctuations can no longer be neglected?
An extreme of such a system would be individual microscopic particles but also
holds true for systems like molecular motors or Brownian motion particles. One
important consequence of the fluctuations is that thermodynamic quantities do
not take on single values, but are stochastic quantities which follow a distribu-
tion (for an example, see Figure 2.1). This section gives a brief introduction
to concepts of stochastic dynamics on the level of individual trajectories, and
more exhaustive descriptions can be found in reviews such as those written by
Jarzynski [1] and Seifert [2].

Consider a system with microstates i described by some probability distribu-
tion pi. A trajectory is defined as the evolution of the system over time, here
denoted x(t, λ), where λ is some external control parameter which drives the
system. During the trajectory, the control parameter can shift both the energy
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of a state as well as the probability distribution. The energy of the system at
any given time is then simply the energy of the individual microstate the system
holds at that instant, i.e. U = Ui(λ(t)). For a trajectory x between times t0
and tf , the energy difference only depends on the state at the beginning and
end, ∆U(x) = Ui(tf ) − Ui(t0). For the sake of simplicity, any quantity will
be assumed to be given at the trajectory level in the rest of this section, so
that ∆U(x) = ∆U . The first law of thermodynamics must still hold for each
trajectory:

∆U = W + Q. (2.10)

How are work W and heat Q then defined on the trajectory level? Keep in
mind that the trajectory is defined both by which state it is in and how those
states evolve over time. Any trajectory will then contain a number of ”jumps”
at times t1, t2, . . . , tN . Work is defined by how much the energy of the states
are shifted by the control parameter while the system is in that state.

W = [EUi1(t1) − Ui0(t0)]+[Ui,2(t2) − Ui1(t1)]+. . .+[Uif (tf ) − UiN (tN )] (2.11)

where the subscript iN indicates the state of the system after the Nth jump.
Heat, on the other hand arises from jumps between states of different energy.
Summing over all the jumps throughout the trajectory gives

Q =
N∑

j=1

[Uij(tj) − Uij−1(tj)] . (2.12)

As outlined above, there is no issue describing quantities like energy, work and
heat on a trajectory level but what about entropy? Previously it has been
related to the disorder of an ensemble, but that clearly is not possible in this
case. Instead, the stochastic entropy is related to the likelihood of finding the
system in state i [34]:

S = Si(λ(t)) = −kB ln pi(t), (2.13)

and for the entropy change over a trajectory

∆S = kB ln
p0(t0)

pf (tf )
. (2.14)

Note that ∆S can be non-negative even if the system does not change its state.
In addition to this stochastic entropy change of the system, there is also the
entropy change in the environment ∆Senv. For a system coupled to a heat
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reservoir which is given heat Qr over the trajectory, ∆Senv = Qr/T . The total
entropy produced over the trajectory is thus given by

∆Stot(x) =
Qr(x)

T
+ kB ln

p0(t0)

pf (tf )
. (2.15)

In contrast to the macroscopic case, this quantity can take on any sign. However,
on average ⟨∆Stot⟩ ≥ 0, restoring the second law of thermodynamics. In the
same way, the second law formulation of Equation (2.5) is given by ⟨W ⟩ ≥ ∆F .

2 Fluctuation theorems

As described above, the second law of thermodynamics is closely related to
the idea of reversibility. Traditionally, irreversible processes are described by
inequalities such as Equation (2.5), with equalities being reserved for revers-
ible ones. However, stochastic thermodynamics allows for the construction of
stronger statements by taking into account fluctuations. For a system in contact
with a heat reservoir that is driven from a point where it is in equilibrium to
a point where it is not necessarily in equilibrium, Jarzynski managed to derive
the Jarzynski equality (JE) [3]:

exp

(
− ∆F

kBT

)
=

〈
exp

(
− W

kBT

)〉
. (2.16)

Note that ∆F here is the difference in free energy between the two corresponding
equilibrium states, while W is the work done to the system in a non-equilibrium
process. The implication is that by performing an ensemble of non-equilibrium
measurements, one can extract information about equilibrium quantities which
is a key result in stochastic thermodynamics. Through Jensen’s inequality, the
JE also implies the second law bound ⟨W ⟩ ≥ ∆F . Furthermore, for slowly driven
systems near equilibrium, the distribution of W is Gaussian. In those cases, the
Jarzynski equality implies a fluctuation-dissipation relation (FDR) [3, 35]:

Wdiss =
σ2
W

2kBT
, (2.17)

where Wdiss is the work dissipated in the process given by Wdiss = W − ∆F .
Since the JE involves an average over trajectories, it is known as an integral
fluctuation theorem (IFT) of which there exists a wider class.

In addition to IFTs, there is another type of fluctuation theorem known as
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detailed fluctuation theorems which relates probabilities in processes to prob-
abilities in their corresponding backward processes. For every trajectory that
evolves from t = 0 to t = τ with control parameter λ(t), a backward process
takes the system in the opposite direction using the time-reversed control para-
meter λB(τ − t). If both the forward and backward processes are initially at
equilibrium, the Crooks fluctuation theorem [5, 6] says that

P (W )

PB(−W )
= exp

(
W − ∆F

kBT

)
, (2.18)

where P (W ) and PB(−W ) are the work distributions in the forward and back-
ward process, respectively. For a reversible process, P (W ) = PB(−W ). Further-
more, one can consider time-symmetric processes ones where λ(t) = λB(τ − t)
and the initial state is equivalent to the final state. For such processes, obviously
the two work distributions are identical as well.

The JE and CFT are two important examples of fluctuation theorems that
relate work and free energy, expanding upon the second law of thermody-
namics in small systems. They were first demonstrated experimentally in the
early 2000s and have since been applied to a variety of systems, such as DNA
hairpins [9, 10], single electron boxes [14], mechanical resonators [36, 37] and
colloidal particles [13]. Note that they both belong to larger classes of rela-
tions which relate different thermodynamic quantities, such as entropy produc-
tion [38, 39].

3 Thermodynamic uncertainty relations

Recall how stochastic thermodynamic quantities take on a distribution that can
be experimentally accessible by recording a great number of individual traject-
ories. For an arbitrary quantity ϕ, this distribution can be characterized by its
mean ⟨ϕ⟩ and its variance σ2

ϕ. In 2015, Barato and Seifert showed that the ratio
of these are bounded by the average entropy produced ⟨∆S⟩ [40]:

σ2
ϕ

⟨ϕ⟩2 ≥ 2kB
⟨∆S⟩ . (2.19)

Since Equation (3) constitutes a trade-off between thermodynamic precision and
thermodynamic cost (entropy production), it has come to be called a thermody-
namic uncertainty relation (TUR). It provides the possibility to infer thermo-
dynamic quantities by studying fluctuating currents in nanoscale systems [41].
As an example of applications, using the TUR allowed for derivation of a tighter
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bound for the efficiencies of molecular motors than what was provided by the
second law of thermodynamics [42]. The TUR gained much attention in the
theory community and was applied to a number of other systems such as heat
engines [43] and Brownian clocks [44]. Note that the TUR in Equation (3) was
derived for quite limited conditions. This may not always be a downside. For
example, due to its dependency on classical physics, it has been proposed that
it can be used as an indicator for quantum effects in systems [45]. However, due
to the constraints there is also a significant ongoing effort to develop new TURs
and expand their applicability [46]. Notably, it has been generalized to both
periodically driven systems [47, 48] as well as systems driven in finite time [49].

Crucially, the above mentioned TURs do not apply to systems with broken
time-reversal symmetry such as ones with magnetic hysteresis or, especially in-
teresting in the context of this thesis, processes involving measurement and
feedback. In these cases, TURs need to be derived that take into account ther-
modynamic quantities both in a forward trajectory as well as a time-reversed
trajectory. The TUR then provides bounds for this ”symmetrized” quantity.
For example, the following TUR was derived for measurement-feedback scen-
arios [50]:

σ2
ϕ + σ2

ϕ,B

(⟨ϕ⟩ + ⟨ϕ⟩B)2
≥ 1

exp
(
⟨∆SI⟩+⟨∆SI⟩B

2kB

)
− 1

, (2.20)

where the subscript B corresponds to quantities in the time-reversed process.
In addition, a term I to account for the information gained in the measurement
step needs to be added to the entropy production term so that ∆SI = ∆S + I.
That is due to the deep link between information and thermodynamics which
will be explored in more detail in the upcoming Section 4.

While TURs have already been studied quite extensively in theory, there are few
experimental studies. Pietzonka et al. illustrated the finite time-generalization
of the TUR using a colloidal particle in an optical trap [49]. A similar platform
was used by Paneru et al. to implement a feedback system which showed the
expected violation of both equation and a number of generalized versions [51].
They were, however not able to test equation 2.20 experimentally. Finally, Pal
et al. used nuclear magnetic resonance to test a number of TURs [52].
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4 Thermodynamics and information

4.1 Maxwell’s demon

It is not obvious that there would be a link between information and thermody-
namics. The first such link came in the form of a thought experiment by James
Maxwell in order to demonstrate that the second law of thermodynamics is only
a statistical principle [19]. The thought experiment is sketched in Figure 2.2.
He imagined two boxes, A and B, filled with a gas and connected by a shutter
that can be opened or closed. Then, an intelligent being (later named Maxwell’s
demon) would measure the velocity of molecules approaching the shutter. If the
molecule came from the A side and was slower than the average molecule in B,
the demon would open the shutter and let it through. Likewise, if it came from
B and was faster than the average molecule in A it would go through. Thus,
A would eventually contain a hotter gas than B despite no work having been
performed on the system. Thus, by the demon gaining information about the
system, the second law of thermodynamics is seemingly violated.

Figure 2.2: Schematic of Maxwell’s demon. Here, blue dots represent slow particles and red dots represent fast particles.
The demon measures the velocity as the approach the shutter and then decides whether to let the particle
through. In the end, it has created a temperature gradient.

4.2 Szilard’s engine

In 1929, the link between information and thermodynamics was quantified by
Leo Szilard [53]. He conceived of a heat engine using a single-molecule gas and
a Maxwell’s demon. The engine operation is illustrated in Figure 2.3. First,
the molecule is placed into a box with volume V , coupled to a heat reservoir at
temperature T . Then, a partition is introduced in the middle of the box and
the demon measures on which side of the partition the molecule is located. The
demon then replaces the partition with a piston with some load connected to it.
As the gas expands, it performs some work W = kBT ln 2 on the piston until it
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Figure 2.3: Szilard’s implementation of Maxwell’s demon uses a single particle gas (red dot) in a box. It introduces a
partition and measures which side of the partition the particle resides. It then replaces the partition with a
piston and allows the gas to expand.

has reached the end of the box after which it is removed. During the expansion,
the heat bath supplies the gas with the energy Q = W . The system is now reset
to its initial stage and the cycle can begin anew. Work has now been extracted
from a single heat bath in a cyclical engine, indicating a violation of the Kelvin
statement of the second law.

4.3 Landauer erasure and the exorcism of Maxwell’s demon

While Szilard understood that memory was important to explain Maxwell’s de-
mon, it was not until the work of Landauer its significance was understood.
When making the measurement, a bit of information is stored physically in the
demon’s memory in some way. As work is being extracted, this bit of inform-
ation is erased from the memory. According to Landauer’s principle, such an
erasure of memory is necessarily accompanied by dissipation of energy and at
least a kB ln 2 increase of entropy in the environment [20, 21]. Thus, thanks
to Landauer’s principle, Maxwell’s demon is in fact not violating the second
law of thermodynamics. Landauer’s original proof actually assumed the second
law to hold, but the same result has later been derived without such assump-
tions [54, 55]. kBT ln 2, the mininum energy dissipated during the memory
erasure, is known as the Landauer limit. It is by extension also the bound for
how much energy can be extracted from one bit of information in an engine such
as Szilard’s.

4.4 Generalizing the second law with information

Since the introduction of information and feedback can seemingly violate bounds
set by traditional thermodynamics, it was necessary to generalize many of the
relations described in the previous sections. For a feedback protocol with a
single measurement of the state x, where the applied control parameter λ de-
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pends on the measurement outcome y, the information content gained by the
measurement is given by

I = ln
P (x, y)

P (x)P (y)
, (2.21)

which averages to the mutual information between x and y over many traject-
ories. In cases where there are two possible measurement outcomes and no
measurement error, I = ln 2, representing one bit of information. Sagawa and
Ueda showed that in measurement-feedback scenarios such as these, the Jarzyn-
ski equality can be generalized to [22]

〈
exp

(
−W − ∆F

kBT
− I

)〉
= 1. (2.22)

Just like the Jarzynski equality leads to the second law relation of Equation (2.5),
Equation (2.22) implies that

⟨W ⟩ ≥ ∆F − kBT ⟨I⟩, (2.23)

which shows how the inclusion of information weakens the second law for the
system. For the Szilard engine in absence of measurement error, ⟨I⟩ = ln 2 and
∆F = 0, giving the same bound as Landauer’s principle.

Equation (2.23) provides a bound for the maximum work that can be extrac-
ted from the information gained in a measurement. There are other ways to
quantify the information which also have their own corresponding second law-
like inequalities on the form of Equation (2.23) [56].

4.5 Experimental implementations of information thermodynam-
ics

Recently, advances in nanotechnology have allowed for experimental realizations
of the concepts described above. Landauer’s principle was first verified in 2012
by Bérut et al. [57]. They used a colloidal particle trapped in a double-well
potential, with the location of the particle encoding a bit of information. Meas-
uring the dissipated heat when that bit of information is erased, they found it
approaches the Landauer limit of kBT ln 2. Since then, Landauer erasure has
been implemented in other colloidal particle setups [58, 59], but also with other
platforms like nanomagnetic memory bits [60, 61], superconducting flux logic
cells [62] and optomechanical resonators [63].

The first Maxwell’s demon-type process was realized by Toyabe et al. in 2010 [25],

15



by using measurements of a particle’s location in a staircase-shaped potential to
apply feedback which allowed the particle to climb the staircase and gain more
free energy than the work that was done to it. Furthermore, Szilard-type engines
that can quantifiably extract work from a single bit of information have been
implemented using a single-electron box [27, 64] and a colloidal particle [26].
Other implementations include an autonomous Maxwell’s demon, where the de-
mon itself takes the form of an on-chip single-electron box [28] and DNA-pulling
experiments [29].
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Chapter 3

Systems and methods

In this chapter, the electronic transport properties of quantum dot systems are
described. For the work in this thesis, the two main systems used are single
quantum dots (SQDs) and serial-coupled double quantum dots (DQDs). The
quantum confinement and Coulomb blockade effects are introduced in more
detail as well as how they lead to the electronic transport characteristics of
those two systems. This is done in the framework of the constant interaction
(CI) model [65] and following mainly Refs. [66, 67] in the SQD case and Ref. [68]
in the DQD case.

1 Single quantum dots

There are two main effects contributing to the energy spectrum of QDs: the
quantum confinement effect and the Coulomb blockade effect. First, the con-
finement will be briefly considered. In a fully three-dimensional structure, the
electrons can be treated as free electrons and interactions with the crystal struc-
ture are taken into account by using an effective mass instead of the free electron
mass. Here, the possible energies for the electrons take on a continuum struc-
ture. However, because of wave-particle duality, there is a wavelength associated
with the electrons known as the de Broglie wavelength λdB. If one of the dimen-
sions of the crystal is shorter than λdB, the electrons are not free to move in that
direction and the energy spectrum is modified [69]. In this way, 2D structures,
1D structures and finally 0D structures (QDs) can be formed depending on in
how many dimensions the crystal is smaller than λdB. In a 0D structure, the
energy spectrum is then fully discrete with single-particle energy levels ϵi.
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Figure 3.1: a) Schematic of the QD system. One QD is tunnel coupled (illustrated by the arrows) to a source reservoir and
a drain reservoir. There is also a plunger gate nearby in order to manipulate the energy levels of the QD. b)
Equivalent circuit diagram in the CI model. The tunnel couplings are represented by a capacitance in parallel
with a resistance and the QD is capacitively coupled to the gate.

The Coulomb blockade effect can qualitatively be understood as the electrons in
the QD repelling other electrons, making them unable to enter. Thus, for more
electrons to be added, they need to overcome this electrostatic potential. This
effect is present in any small enough conductor and is the foundation for metallic
devices such as the single electron box and the single electron transistor. In this
section, the CI model [65] will be used to derive the energy needed to add an
electron to a QD, following Refs. [66, 67].

A simple SQD system similar to the ones that have been studied experimentally
in this thesis is illustrated in Figure 3.1, together with an equivalent circuit dia-
gram. The QD is coupled by tunnel barriers to the source and drain electrodes
and capacitively coupled to a gate electrode. The CI model makes two key
assumptions. The first is that Coulomb interactions between electrons inside
and outside the QD is parametrized only by the QD self-capactitance CΣ. The
second is that the discrete energy levels arising from quantum confinement are
independent on the number of electrons on the QD. First, the electrostatic part
of the total energy will be derived. For a system of m conductors, the charge
on conductor i is given by

Qi =
m∑

j=0

CijVj , (3.1)

where Cij is the capacitance between conductors i and j, and Vj is the elec-
trostatic potential of conductor j. Letting the QD have index 0 and noting its
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self-capacitance can be written as a a sum of its capacitances to the electrodes
CΣ = C00 = Σj ̸=0C0j , the electrostatic potential of the QD is

V0 =
1

CΣ


Q0 −

m∑

j=1

C0jVj


 . (3.2)

From here, the total electrostatic energy of a QD charged with N electrons is
found by integrating V0 over Q0 from 0 to −eN , where e is the elementary
charge, yielding

U(N) =
e2N2

2CΣ
+ eN

m∑

j=1

C0j

CΣ
Vj . (3.3)

The total energy of the QD also includes the single-particle energies ϵi that arise
from quantum confinement. In the CI model, these are N -independent and can
thus be added to the electrostatic energy like so:

E(N) =
N∑

i=1

ϵi +
e2N2

2CΣ
+ eN

m∑

j=1

C0j

CΣ
Vj . (3.4)

It is now convenient to introduce the lever arm αj = −C0j

CΣ
. It is a parameter

that is used to translate the voltage applied to a surrounding electrode to a shift
in electrochemical potential of the QD. The electrochemical potential µ(N) is a
measure of how large the change of energy is when adding the Nth electron to
the QD and is thus given by

µ(N) = E(N) − E(N − 1) = ϵN +
e2

CΣ

(
N − 1

2

)
− e

m∑

j=1

αjVj . (3.5)

This derivation comes to an end with the addition energy, which is the change
in µ when the Nth electron is added. That is,

Eadd(N) = µ(N) − µ(N − 1) = E∆(N) + EC , (3.6)

where E∆ is the level spacing of the single-particle energies (ϵN − ϵN−1) and EC

is the charging energy due to Coulomb interactions ( e2

CΣ
).

The quantized nature of the electrochemical potential in gives rise to the inter-
esting transport properties of QDs. Applying a bias voltage between the source
and drain electrodes should allow electrons to move from one to the other via
the QD. However, if there is no energy level within the bias window (as in Fig-
ure 3.2a) the electron will be prohibited from entering the QD and there will
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Figure 3.2: Energy diagrams for electron transport through a SQD. In a), there is no QD energy level inside the bias
window and transport is blocked. In b), one of the levels has been shifted into the bias window and is now
available for transport.

be no transport. This is known as the Coulomb blockade effect. According to
equation 3.5, the chemical potential can be shifted by applying a gate voltage.
Once an energy level has been shifted into the bias window (as in Figure 3.2b),
transport can occur.

It is now important to note the two necessary conditions to observe the well-
defined single-electron tunneling. First, the tunnel resistances Rs and Rd must
both be larger than the quantum resistance h

e2
where h is Planck’s constant.

This is because in order for the electron wave function to be localized on the
QD, the uncertainty in energy has to be smaller than EC [65]. The second con-
dition is that the thermal energy kBT where kB is Boltzmann’s constant and T
is the temperature must be smaller than EC in order to avoid thermal smearing.

If both the bias voltage Vb between source and drain and the gate voltage Vg

are swept while monitoring the current I through the device, a charge-stability
diagram like the illustration in Figure 3.3 can be constructed. This diagram is
a useful tool for characterizing QDs, allowing one to extract parameters such as
EC , E∆, Cg and αg as well as perform excited state spectroscopy.

If the bias voltage is applied symmetrically, the chemical potential of source and
drain are given by µS = µ0+eVb

2 and µD = µ0−eVb
2 respectively, where µ0 is the

chemical potential of both source and drain without the applied Vb. This gives
the following conditions for the system to be in the Coulomb blockade regime,
where an energy level of the QD is not within the bias window:

µN < µ0 −
eVb

2

µN+1 > µ0 + −eVb

2





for Vb > 0 and
µN < µ0 +

eVb

2

µN+1 > µ0 −
eVb

2





forVb < 0.
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Figure 3.3: Charge stability diagram for a SQD. The white regions indicate that transport is blocked because no energy
level is within the bias window. In light areas, one energy level is within the window and in the dark areas
the excited state has also entered the window. The difference between blue and red means current flows in
opposite directions. Along the edges of the diamonds, one energy level is exactly aligned with either the source
or drain edge, which is illustrated in points 1-5.

Taking the edge cases of these inequalities and substituting into equation 3.5
gives the relation between Vb and Vg. In the case Vb > 0, it is given by

Vg =
1

eαg

[
ϵN + EC

(
N − 1

2

)
− µ0 +

eVb

2
(1 − αS + αD)

]
, (3.7)

Vg =
1

eαg

[
ϵN+1 + EC

(
N +

1

2

)
− µ0 −

eVb

2
(1 + αS − αD)

]
, (3.8)

and similar for the Vb < 0 case. These lines define the diamond-shaped regions
of no current and well-defined charge state in Figure 3.3, known as Coulomb
diamonds. The slope of the lines depend on the lever arms for each of the
electrodes αS , αD and αG. For simplicity, Figure 3.3 shows the diagram of a
QD with symmetric tunnel barriers (αS = αD). In that case, the slopes are
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simply given by ± 1
2eαg

. For an asymmetric QD, the Coulomb diamonds would
be slanted in some direction depending on which tunnel coupling is stronger.
The two lines defined by equations 3.7-3.8 intersect when Vb = eEadd(N + 1),
allowing one to extract the addition energy. Along the Vg-axis, the distance
between corners of the Coulomb diamonds is given by ∆Vg = 1

eαg
Eadd(N + 1).

The first large Coulomb blockade region in Figure 3.3 corresponds to when the
QD is completely depleted of electrons. The subsequent Coulomb diamonds vary
in size because of degenerate energy levels. The ∆E-term in Eadd will only con-
tribute when a new energy level ϵi starts being filled. In a spin-degenerate system
like in Figure 3.3, two electrons will be able to occupy each level so only the char-
ging energy needs to be overcome to add every second electron. The distance
between corners along the Vg-axis in a small diamond is ∆Vg = 1

eαg
EC = e

Cg
,

giving the gate capacitance.

In the light coloured areas, exactly one energy level is within the bias win-
dow. The charge state shuffles between N and N + 1 and a current can run
through the device. For sufficiently large biases, more than one energy level can
enter the window and a larger current can flow. This is represented by the dark
coloured areas in Figure 3.3.

2 Double quantum dots

By introducing a tunnel barrier between two quantum dots each coupled to a
reservoir (as illustrated in Figure 3.4a)), a serial-coupled double quantum dot
(DQD) is formed. To transport an electron from source to drain, it needs to
move between the two QDs. This means there needs to be an energy level
from each QD in the bias window, otherwise transport is blocked. Figure 3.4b)
shows the equivalent circuit diagram for a typical DQD system. Compared to
the SQD case, there are now two gate voltages (to give independent control of
each QD) Vgl and Vgr. These are coupled to the corresponding QD with the
capacitances Cgl,L and Cgr,R. However, there will also exist a cross-coupling to
the other QD which is represented by the capacitances Cgr,L and Cgl,R. The
interdot coupling is represented by the additional capacitance Cm. Because of
this coupling capacitance, the charge state of one QD is not independent of
the charge state of the other. The following discussion on the electrochemical
potential is again based on the constant interaction model and follows Ref. [68]

To start with, the linear transport regime (Vb = 0) is considered. In addition,
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Figure 3.4: a) Schematic of the DQD system. The QDs are coupled in series so that each dot is coupled to one reservoir
and to the other dot. Each QD has its own designated plunger gate to manipulate the energy levels. b)
Equivalent circuit diagram in the CI model.

the cross-coupling capacitances Cgl,R and Cgr,L are assumed to be negligible.
For simplicity, the gate capacitances Cgl,L and Cgr,R are from now on referred
to as Cgl and Cgr, respectively. Then, the electrostatic energy of a DQD system
with N electrons on the left dot and M on the right dot is given by

U(N,M) =
1

2
N2EC,L +

1

2
N2EC,R + NMEC,m + f(Vgl, Vgr),

f(VgL, VgR) =
1

e
[CglVgl(NEC,L + MEC,m) + CgrVgr(NEC,m + MEC,R)] (3.9)

+
1

e2

[
1

2
C2
glV

2
glEC,L +

1

2
C2
grV

2
grEC,R + CglVglCgrVgrEC,m

]
,

where EC,L(R) is the charging energy of the left (right) QD and EC,m is the
coupling energy, that is the energy change in one QD when an electron is added
to the other. In terms of capacitances these are written the same way as SQD
charging energies, but with a factor to account for the coupling:

EC,L(R) =
e2

CL(R)


 1

1 − C2
m

CL(R)CR(L)


 , (3.10)

EC,m =
e2

Cm

(
1

CLCR
C2

m
− 1

)
. (3.11)

In equations 3.10-3.11, CL(R) refers to the self-capacitance of the left (right)
dot which, again, is the sum of all capacitances to that dot. With two QDs,
the chemical potential µL(N,M) is the energy needed to add the Nth to the
left QD while the electron number on the right dot stays M and vice versa for
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µR(N,M). Adding the single-particle energy levels to the electrostatic energy
from equation 3.9 to get the total energy E(N,M) like in Section 1, they are
written as

µL(N,M) = E(N,M) − E(N − 1,M) =

(
N − 1

2
EC,L

)
+ MEC,m (3.12)

− 1

e
(CglVglEC,L + CgrVgrEC,m) + ϵL,N ,

µR(N,M) = E(N,M) − E(N,M − 1) =

(
M − 1

2
ECR

)
+ NECm (3.13)

− 1

e
(CglVglEC,m + CgrVgrEC,R) + ϵR,M .

The addition energy is again defined as the change in chemical potential when
an electron is added and thus given by

Eadd,L = µL(N + 1,M) − µL(N,M) = EC,L + ∆E,L, (3.14)

Eadd,R = µR(N,M + 1) − µR(N,M) = EC,R + ∆E,R. (3.15)

Just like outlined in Section 1 for the SQD case, the stability diagram is an
important characterization tool for DQDs. However, since there are now three
voltages to vary (Vgl,Vgr and Vb), the bias voltage is typically set to a constant
value. To start with, the linear response regime is again considered. As long
as no energy levels in either QD is aligned with either the chemical potential in
the source and drain or in each other, the charge state of the DQD is stable.

The shape of the stable regions in the Vgl-Vgr plane depends the strength of
the coupling between the QDs [68]. Figure 3.5a)-c) illustrate the borders of the
charge state for three different cases. In the case where Cm = 0 and the two QDs
are uncoupled, the stable charge regions are simply square like in Figure 3.5a).
Crossing from one square to another means an electron is either added to or re-
moved from one of the QDs. The other limit is shown in Figure 3.5b) and occurs
when the coupling capacitance is the dominating term in the self-capacitance
sum. Here, the coupling between the two QDs is so strong that the DQD be-
haves like one QD with charge N + M . Sweeping only one of the gate voltages
would here simply show the characteristic Coulomb oscillations of a SQD.

Finally, in the intermediate coupling regime, the charge stability diagram be-
comes a honeycomb lattice like the one in Figure 3.5c). There are lines of three
different slopes which each correspond to a different type of charging event,
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Figure 3.5: Charge stability diagram for a DQD. in three different regimes. In a), there is no interdot coupling and adding
a dot to the left dot has no effect on the electrostatics of the right dot and vice versa. In b), the interdot
coupling is very strong and the DQD features are entirely lost, the system instead acts a large SQD. In c)
there is intermediate coupling and the corners from a) have split into triple points, leading to hexagonal charge
states. Three distinct slopes can be seen, corresponding to transition between QDs (d), the left lead (e) and
the right lead (f).

as illustrated in Figure 3.5d)-f). Two of the slopes correspond to a charging
event involving either the source or the drain, shown in Figure 3.5e)-f). The
third slope indicates an electron being transported between the two QDs, see
Figure 3.5d). These slopes can be used to extract the lever arms αgl/r,L/r [70]
which here is the conversion factor between the gate indicated by lower case and
a shift in chemical potential on the QD indicated by upper case. Using the fact
that each charging line corresponds to the chemical potential of one QD stays
constant, the slopes sL/R =

dVgr

dVgl
can be determined to be

sL/R = −
αgl/r,R/L

αgr/l,L/R
. (3.16)
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Figure 3.6: Zoomed in honeycomb in charge stability diagram, marking the voltages needed to characterize the DQD.

Likewise, using the fact that along the charge reconfiguration line, both chemical
potentials shift an equal amount, the slope of that line is

sm =
αgl,L − αgl,R

αgr,R − αgr,L
. (3.17)

In the corner of each hexagon, the three lines intersect. At these points, called
triple points, the chemical potentials throughout the whole system are aligned.
The triple points are the only points where an electron can move unobstructed
between the two leads.

Figure 3.6 shows a closer look at one honeycomb cell. Much like for a SQD, the
dimensions of the blockaded regions can be used to extract important paramet-
ers of the DQD. Using the notation from Figure 3.6, the voltage range spanning
two charging lines and the separation between charging lines due to the interdot
coupling are [68]

∆Vgl/r =
e

Cgl/r

(
1 +

∆E,L/R

EC,L/R

)
, (3.18)

∆V m
gl/r =

eCm

Cgl/rCR/L

(
1 +

∆E,L/R

EC,m

)
, (3.19)

respectively.

In order to fully characterize the DQD system, it is not sufficient to study
the linear response regime. It is necessary to apply a bias voltage and study
the finite bias regime. With a bias window opened, a current can flow through
the device if each QD has an energy level in the right configuration within the
window. This causes the triple points of the stability diagram to grow into tri-
angular areas, called finite bias triangles, illustrated in Figure 3.7a). The size
of the triangles depend on the size of the bias window. If Vb is applied to the
source (left) and the drain (right) is kept grounded, i.e. µS = −eVb and µD = 0,
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Figure 3.7: a) The charge stability diagram for a DQD with an applied bias. The triple points have expanded to finite
bias triangles, where current can flow. b) Closer look at a pair of bias triangles, where features due to excited
states are visible. Here, a darker colour means a higher current. c) Energy diagrams corresponding to the
letters around the triangle’s edges in b). The excited states are shown in red.

the triangles are bounded by −eVb ≥ µL, µL ≥ µR and µR ≥ 0. In Figure 3.7b),
δVgl/r is given by

δVgl/r =
eVb

αgl/r,L/R
, (3.20)

allowing for the extraction of lever arms (and thus, capacitances) of the system.
Using equations 3.16-3.17, the lever arms between QD and opposite plunger
gate voltage can be derived as [70]

αgl,R = −sRαgr,R, (3.21)

αgr,L =
sm − sR
sm − sL

αgr,R. (3.22)

Equations 3.20-3.22 together with equations 3.14-3.15 allows for the extraction
of all relevant parameters such as addition energies, coupling energy, and gate-
and self-capacitances of the QDs.
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Again in analogy with the SQD case, the finite bias regime can be used to
perform excited state spectroscopy [68, 71]. Within the finite bias triangle, the
current is generally not constant, but instead depends on how many excited
states are available for transport in the bias window and their alignment. Fig-
ure 3.7b)-c) shows a schematic of a pair of bias triangles where one excited state
per QD is relevant. The ground states are labeled µ0(1, 0) and µ0(0, 1) with
excited states µ1(1, 0) and µ1(0, 1). The current will always peak when two QD
states are exactly aligned, since it allows for elastic electron tunneling. One such
peak is found at the bottom of the triangle, along the charge reconfiguration
line where the two ground states are always aligned. Starting at the bottom
left of the triangle and moving up along the source charging line, µ0(0, 1) is
pulled down and the two states are misaligned. The current decreases, but is
not completely suppressed because inelastic tunneling is still allowed. Eventu-
ally, the levels have been pulled down enough so that µ1(0, 1) is aligned with
µ0(1, 0) and another elastic tunneling peak appears. Moving from the peak to
the top of the triangle, only inelastic tunneling is possible, but there is now an
extra state available for transport so the current is higher than on the other
side. When going from the top of the triangle along the drain charging line,
eventually µ1(1, 0) is pulled into the bias window. It is not aligned with any
other energy level, so there is no peak but the current is again increased due to
a higher number of channels.

Up until this point, only sequential tunneling events have been considered to
contribute to transport. That is, events where electrons first enter and then
leave the QDs one by one. However, if the tunneling rate is fast enough that the
time scale is smaller than the time scale of Heisenberg’s uncertainty relation, an
electron can move to a virtual, energetically unfavourable, state for this short
amount of time. This process is known as cotunneling and allows for transport
to occur even when sequential tunneling is suppressed by the Coulomb blockade
effect [72–74]. In the DQD charge stability diagram, this shows up as current
around the charging lines [75]. Either an electron cotunnels from source to the
right QD or from the left QD to the drain.

3 Forming quantum dot systems in nanowires (Pa-
per I)

This chapter introduces ways to practically form quantum dots suitable for
performing transport experiments. Both the approaches of forming QDs with
electrostatic gating as well as directly with materials are considered and com-
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pared before introducing the materials approach specifically used in this work:
the polytype-defined QDs. Section 3.3 then describes the experimental work
which led to Paper I.

3.1 Gate-defined vs. material-defined quantum dots

The two main approaches for creating confinement in all spatial dimensions and
thus forming a quantum dot are electrostatic gating and forming them with
materials. In truth, both approaches include materials-engineering, but for sim-
plicity ’material-defined’ here means the QDs are fully formed by the materials.

In the gate-defined approach, you start with electrons already confined in at least
one dimensions and use gates electrodes to deplete certain regions of electrons.
Commonly, the starting point is a two-dimensional electron gas (2DEG) formed
at the interface of epitaxially grown semiconductor heterostructures, such as
AlGaAs/GaAs [71, 76, 77]. By fabricating electrodes on top, the 2DEG can be
shaped into a one-dimensional structure or a QD. More recently, gate-defined
QDs using bilayer graphene as the starting point have also been developed [78].
It is also possible to use a one-dimensional structure like a carbon nanotube [79]
or a semiconductor nanowire [80] as the starting point. Tunnel barriers are
formed in the structure by depleting small sections of the wire of electrons us-
ing a nearby gate electrode. The advantage of the gate-defined approach is it
allows for very tunable QD systems since each tunnel coupling can be tuned by
varying a gate voltage. However, the shape and size of the QDs are susceptible
to external noise and not well-defined. In addition, much tuning may be needed
to properly form the system.

In a material-defined system, no external gating is required to form the QD.
These can further be divided into QDs which require top-down processing to
form and QDs that can be formed completely bottom-up. The first type usually
involves some form etching. One example is using semiconductor heterostruc-
tures to introduce barriers before etching them into mesas to form circular, so
called vertical, QDs [81, 82]. Another involves patterning graphene into nano-
structures [83, 84]. The bottom-up approach means using growth methods to
form the dots. The first examples of this variant used molecular beam epitaxy
to form self-assembled dots directly on top of a substrate [85, 86]. Advances in
nanowire growth techniques allows for atomically sharp material interfaces in
the wires [87]. This enables one to, for example, introduce a short segment of a
different material with a higher bandgap to form a tunnel barrier. Introducing
several such barriers will form QD systems [88]. The QD systems used in this

29



ZB ZB ZBWZ WZ

Conduction band edge

Figure 3.8: Schematic of a polytype-defined quantum dot. The two wurtzite segments introduce a hard barrier for the
electrons at the conduction band edge, leading to confinement inbetween them.

work instead introduces a segment with a different crystal structure (but the
same material) and is explained in more detail in section 3.2.

3.2 Polytype-defined double quantum dots in InAs nanowires

The double quantum dots used in this thesis were formed in InAs nanowires.
InAs has two primary polytypes, defined by how the atomic bilayers stack along
the nanowire length [89]. The two polytypes have a relative conduction band
offset of around 125 meV, meaning WZ segments would function as tunnel bar-
riers for electrons in the ZB phase as shown in Figure 3.8 [30, 32]. The shallow
barrier height means the WZ segments can be made several tens of nanometers
long while still allowing tunneling. In a DQD system, this is appealing because
the individual QDs can be spaced out more which allows for easier processing
of nearby plunger gates as well as smaller cross-capacitances.

The InAs wires here studied were grown using metal organic vapor phase epitaxy
(MOVPE). The process uses Au nanoparticles deposited on an InAs substrate to
catalyze nanowire growth using trimethyl indium and arsine as precursor gases.
By varying the ratio of In precursor to As precursor, the crystal phase of the
nanowire can be switched with atomic layer precision during growth [31]. By
making the fraction of As precursor smaller, WZ segments are obtained.

Since the polytype structures can be hard to tell apart using simple charac-
terization techniques a shell of GaSb was grown on top of the InAs. Because of
differences in surface energy between ZB and WZ, GaSb can be grown selectively
only on ZB parts of the nanowire [90]. This meant that the 20nm GaSb shell
was not grown on the WZ tunnel barriers, allowing for very easy identification
by scanning electron microscopy (SEM). A cross section-sketch of the nanowire
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Figure 3.9: a) Cross-section of a polytype-defined DQD, marking the different WZ and ZB sections as well as the GaSb
marker layer. b) SEM image of an actual wire deposited to a substrate. The GaSb shell can clearly be seen,
indicating where the tunnel barrier are located.

DQD structure as well as one such SEM image is shown in Figure 3.9 [91].

3.3 Polytype-defined double quantum dots: transport experi-
ments

In order to characterize the DQD, transport experiments need to be performed [91].
To do that, lead electrodes and gate electrodes needed to manipulate the elec-
tronic states in the device were fabricated. First, nanowires were transferred
from the growth substrate to a Si chip and a suitable nanowire was found using
SEM. Then, the electron beam lithography (EBL) resist PMMA 950 A5 was
spincoated over the entire chip. Next, the shape and position of the electrodes
were defined using EBL. The sections of PMMA hit with the electron beam
are broken down into smaller polymers which can be dissolved by a developer.
Before the actual metal for the electrodes could be deposited, three steps were
taken: the GaSb shell was etched away using MF-319 developer, resist residue
was removed by oxygen plasma ashing, and the wire’s native oxide was etched
with buffered oxide etchant. One 25 nm layer of Ni to improve the contact qual-
ity and one 75 nm layer of Au were deposited using metal evaporation. Finally,
the PMMA was dissolved in acetone, lifting off any metal deposited on top. The
GaSb etch step could also be done as the very last step. Figure 3.10 shows an
SEM image of the final device before (Figure 3.10a)) and after (Figure 3.10b))
the GaSb shell was removed, illustrating how well-aligned the plunger gates
(PG1 and PG2) are to the two QDs.
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Figure 3.10: SEM images of a DQD device before (a)) and after (b)) etching of the GaSb shell. Both gate and contact
electrodes have been patterned with high precision.

The transport measurements were performed in a dilution refrigerator at an
electronic temperature of ∼50mK in order to prevent thermal smearing of the
Coulomb blockade. Applying a 1 mV bias voltage and sweeping the voltage of
PG1 and PG2 reveals a charge-stability diagram showing most of the features
discussed in Section 2, see Figure 3.11. The honeycomb lattice of charge states
are clearly visible, marked by the finite bias triangles. Inside the triangles, the
excited states can be identified by looking at variations in the current. In the
case studied in Figure 3.11, the level spacings were determined to be 400 µeV
and 80 µeV.

In this device, the tunnel couplings and electron number can not be tuned in-
dependently of one another. Figure 3.12a)-b) show the charge stability diagram
for higher plunger gate voltages, i.e. the QDs are filled with more electrons.
In Figure 3.12, the honeycomb structure is still clearly visible, but the current
through the device is higher. Also, the current appears along the charging lines,
which is a sign of cotunneling occuring. Both of these features indicate an in-
creased tunnel coupling. In Figure 3.12b), the tunnel coupling is sufficiently
strong that the charge stability diagram looks closer to the SQD case, as was
described in Section 2. The tunnel coupling increasing can be attributed to two
factors. First, as higher energy states are occupied, the effective tunnel barrier
height (from energy level to top of barrier) is decreased. In addition, the wave
functions of the high energy electrons will penetrate further into the barrier,
decreasing the effective barrier width. In principle, additional gates like the
three seen on the opposite site of the plunger gates in Figure 3.10 can be used
to tune the tunnel barrier. However, for QDs of this size (< 100 nm in length),
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bers. Inset: Measurement around a pair of finite bias triangles, showing features arising from excited states.

the cross-capacitive coupling to the dots is large enough that trying to do so
will also significantly effect the electron number.
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4 Charge detection and counting experiments

This section introduces the charge detection technique, which is used to measure
changes in the charge state of quantum dots in real time. This allows for the
study of the tunnelling of individual electrons, which is a necessary tool for the
studying the thermodynamics of single particles. The chapter begins with an
overview of different charge detection techniques and their potential, and then
introduces in more detail the charge detection scheme used in this work.

4.1 Charge sensing: an overview

Changes in the charge state of a quantum dot was first measured in the early
1990s [92, 93]. A system whose conductance is very sensitive to variations in the
electrostatic environment, such as a quantum point contact (QPC) was coupled
capacitively to a QD which could be controlled by a gate voltage. When the
gate voltage was varied, the Coulomb peaks in the QD were accompanied by a
sharp change in the detector QPC conductance. Since passing a Coulomb peak
means an additional electron is now loaded into the QD, measuring the current
through the detector gives a measure of the charge state. The QPC technique
is still widely used for charge detection in top-gate defined QD systems because
it is easy to integrate, requiring just one extra gate to be fabricated [94]. Com-
monly, single-electron transistors (SETs) [95] or another QD [96] are also used
as the detector. Then, the very steep change in conductance in the Coulomb
oscillations are used as the operation point.

One of the most powerful features of charge sensing is the ability to witness
individual tunneling events in real time [97]. If the measurement bandwidth is
sufficiently large, so that measurement of the charge detector current is faster
than the rate of charging events in the QD, each individual charging event will
be seen as an abrupt change in the detector current as opposed to the time-
averaged measurement described above. This technique opens up the door for
feedback schemes [27], probing of electron tunneling rates [98] and single-shot
spin readout, among others [94].

4.2 Integrated DQD system and sensor and tunnel rate meas-
urement

In this work, a DQD system with a third sensor QD all contained within the
same InAs nanowire is studied. The nanowire is grown in the same way de-
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Figure 3.13: SEM image of the type of device used for experiments involving charge detection. The voltages Vg1, Vg2

and Vgd each control one QD. By measuring the current through the detector QD Id, the charge state of
the DQD can be read out.

scribed in Section 3.2 and a final device is shown in Figure 3.13. There are
now three contact electrodes: one for the DQD, one for the sensor QD, and one
common to both. Each QD has its own plunger gate to control their energy
levels, labeled Vg1, Vg2 and Vgd. In order to increase the coupling between DQD
and sensor, a metallic strip is fabricated between them. The coupler is coupled
asymmetrically to the DQD in order to differentiate between charging events on
the left dot and the right dot.

To demonstrate first the time-averaged charge detection, a 1.5 mV bias voltage
is applied across the detector QD. The two contacts of the DQD are made sure
to be held at the same potential. Figure 3.14a) shows a sweep of Vgd, revealing
a Coulomb peak. Because of cross-coupling, changing Vgd may effect the charge
state of the DQD, which can be seen as the jump in current in Figure 3.14.
Likewise, sweeping Vg1/g2 can influence the setpoint of the detector. For this
reason, when applying Vg1/g2, Vgd is also shifted by some compensation factor in
order to make sure it stays in the sensitive region over the entire measurement
range. Figure 3.14b) shows the DQD charge stability diagram, measured with
the charge detector current. The characteristic honeycomb structure is marked
by a sudden change in the current, allowing the features to be seen even with
no DQD bias applied.

By going to low electron numbers, the tunneling rates can be slowed down
enough to be detected in real time. Then, with no bias voltage, the random
(thermal) fluctuations of charge can be measured. Tuning the system to stay
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Figure 3.14: a) Sweeping the detector gate voltage shows a Coulomb peak in the detector current. The red dot indicates
the most gate-sensitive point which was chosen as the setpoint for detection. b) Monitoring the the detector
current while sweeping the DQD gates measures the charge stability diagram, where regions of different charge
is bounded by sharp jumps in current.

along one of the charging lines means one of the QDs can exchange electrons
with one of the leads, but changes in the other QD are inaccessible. Here, there
is an equal chance of having an excess electron either in or out of the QD. Fig-
ure 3.15 shows a time trace of the detector current at one such point. Here,
the two different charge states are clearly differentiable by the step in current.
Because of how the detector’s operation point was chosen, the higher current
indicates the excess electron is in the QD.

The tunnel-in rate Γin and tunnel-out rate Γout can be determined from the
waiting times τin and τout indicated in Figure 3.15. The tunnel events are in-
dependent and follow a Poissonian distribution [99], therefore the waiting times
are exponentially distributed:

P (τin/out) = Γin/oute
−τin/outΓin/out , (3.23)

where P (τin/out) is the relative probability of observing a waiting time τin/out.
Consequently, the rates can simply be estimated as the inverse mean of the
waiting times, provided the measurement time is sufficiently long compared to
the waiting times. When moving the DQD energy level away from the chemical
potential in the lead, one of the tunnel rates will increase while the other will
drop to almost zero. In order to see enough tunneling events in this regime, the
measurement time then needs to be increased. In order to avoid this restriction,
a feedback scheme [17], described in Figure 3.16a) is used.

An Arduino DUE microcontroller is added to the setup. It monitors the de-
tector current and determines whether it is above or below a certain threshold.
Depending on what the Arduino measures, it can use its built-in digital-to-
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Figure 3.15: Example trace where there is equal probability to find the electron in (high current) or out (low current). The
waiting times τin/out are indicated as the time spent in one state before the next tunneling event.

analog converter to either add a positive or negative feedback voltage to the
DQD plunger gate voltage. If the original setpoint, where there is an equal
chance of finding the electron in or out, is called E0, then the new energy level
is E0 + αV+/− where the subscript indicates the sign of the feedback voltage
and α is the conversion factor between voltage and energy. To measure Γin,
initially V− is applied to make sure an electron on the QD tunnels out. Once
it tunnels out, the feedback voltage is swiftly switched to V+. As soon as an
electron tunnels back in, the feedback is once again flipped to V−. This cycle
of preparing an empty state for an electron to tunnel into at V+ is repeated
for the entire measurement duration. By varying the amplitude of V+, Γin can
be determined over the entire energy range E0 − αV+ to E0αV+. The opposite
scheme can be performed to determine Γout. Both rates as a function of energy
for an example charge transition is shown in Figure 3.16b).

In Figure 3.16b), the saturated value for Γout is roughly twice the saturated
value of Γin. This indicates that the energy level is two-fold spin degenerate
and initially half-filled. When tunneling in, only an electron with the opposite
spin is allowed to enter the dot. When an electron later tunnels out, either of
the two electrons occupying the energy level can exit. If instead the level was
initially empty, the relationship between Γin and Γout would be reversed. Since
the degeneracy clearly influences the tunnelling dynamics, understanding the
degeneracy of the system is necessary for most experiments.

4.3 Detector back-action

Before moving on to the information thermodynamics experiments, it is import-
ant to consider one potential limitation of the charge detection measurements,
namely detector back-action. Back-action is the effect the measurement has on
the system itself. A single electron in a quantum dot is a very sensitive sys-
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Figure 3.16: a) Illustration of the measurement scheme to determine tunneling rates. Empty or filled states are prepared
by driving the level between two points a certain distance away from the energy at which there is an equal
probability of finding the electron either in our out once there is a tunneling event. b) Measured tunnel-in
rate and tunnel-out rate for a range of energies. Because of two-fold spin degeneracy, Γout reaches about
twice the value of Γin. The rates are fitted to be proportional to a Fermi function with a superimposed linear
dependence to account for the gate voltage affecting the tunnel coupling.

tem, and too much back-action would be detrimental to any experiments. It is
important to both understand its mechanisms as well as suppressing its effects.
For that reason, back-action has been studied in a variety of detector types in-
cluding quantum point contacts [100, 101], single electron transistors [102], and
graphene nanoribbons [103]. Back-action is a complex process that may arise in
several different ways. Three different mechanisms in particular were identified
as possible causes of back-action in the system used in the thesis. They are
sketched in Figure 3.17.

The first mechanism is called photon-assisted tunneling (PAT) [104–106] shown
in Figure 3.17a), which comes about when the energy dissipated in the detector
generates photons (or possibly phonons) that lead to inelastic tunneling in the
QD under study. Running a current through the detector means the occupa-
tion of the detector QD will rapidly fluctuate. Due to the capacitive coupling
between detector and the studied QD, these fluctuations effectively modulate
the studied QD’s energy levels by a time-dependent electric field with frequency
f . Then, electrons can exchange photons of energy hf with this external field,
where h is Planck’s constant, leading to tunnel events that would otherwise be
energetically forbidden to occur.

The second mechanism is illustrated in Figure 3.17b), and is also due to the
capacitive coupling between the two QDs. Instead of considering the high-
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Figure 3.17: Sketches of three potential back-action mechanisms. The blue bars indicate the Fermi energy of the leads,
while horizontal lines are discrete energy levels inside the QDs. For simplicity’s sake, only the detector QD
and QD2 are sketched here. a) Photon assisted tunneling. The power dissipated in the detector generates a
photon which excites an electron to the QD. b) Gating of the QD by the detector. In this example, the n = 0
state (top panel) on QD2 corresponds to a blockaded state in the detector and no current can run through
it. When an electron enters the QD (bottom panel), the current starts running and the average occupation
of the detector is lower. This is turn gates QD2, which changes the energy. The dashed line indicates the
corresponding energy level from the top panel. c) Charge carrier injection into QD2. In this case, the current
generates holes in the QDs’ shared lead which can then be injected into QD2, leading to a tunneling-out
event.

frequency shaking of energy levels, one can consider the average detector oc-
cupation ⟨ndet⟩. The magnitude of ⟨ndet⟩ is related to how much the energy
levels of the measured QD are effectively gated by the detector. Naturally, since
measuring a tunneling event requires a change in the detector current, it also
requires a change in ⟨ndet⟩. If this change is large, it means that every tunneling
event in the QD also comes with a significant change in energy. This can be seen
in Figure 3.18, which shows the tunneling rates for a QD1 transition measured
using the feedback scheme outlined in section 4.2. Here, the detector is oper-
ated in a regime such as the one in Figure 3.19, where the bias voltage is small
enough that the n = 0 state puts the detector QD close to Coulomb blockade
and ⟨ndet⟩ ≈ 0, whereas the n = 1 state puts the detector close to its current
peak where ⟨ndet⟩ ≈ −0.5. Marking the Fermi energy for the two tunneling rates
(i.e. where they reach half of their saturated value) in Figure 3.18 makes it clear
that the two rates are shifted in energy, as the they do not coincide. This shift of
more than kBT is attributed to the mismatch in gating between the two states
of the detector. In contrast, the tunnel rates previously shown in Figure 3.16
were measured with a detector setpoint such that both states were represented
by a current relatively close to the middle of a Coulomb peak where the relative
change in ⟨ndet⟩ is smaller and subsequently the shift was suppressed.
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Figure 3.18: Tunnel rates for a QD1 charge transition at 100 mK measured using the same protocol as Figure 3.16, but
using a low detector bias such that there is a large change in the average detector occupation when a tunneling
event occurs. This leads to the apparent shift in energy between the tunneling rates, here indicated by the
separation of their Fermi energies (dashed lines) by 1.6kBT .

Finally, the third source of back-action identified is the direct injection of charge
carriers into QD2 from its shared lead with the detector QD, as sketched in Fig-
ure 3.17c). Ballistic transport has been demonstrated in InAs nanowires over
several hundred nm [107], which is on the same order of the distance between
those two QDs. That makes the possibility of charge carrier injection a clear
concern when studying transitions involving QD2.

In order to determine the device’s suitability for experiments on information
thermodynamics, measurements of back-action effects were carried out. The
three main questions to be addressed by these measurements were: is there any
noticeable back-action, is the back-action different for the two QDs of the DQD,
and can the effects of back-action be minimized? Since back-action would affect
the tunneling characteristics of the systems, the simplest way to investigate it
is to measure the tunneling rates using various setpoints on the detector. Note
that for these measurements, the main goal was to spot tunneling events oc-
cur where they would not be energetically likely without back-action. For this
reason, the measurements were carried out at base temperature (to minimize
thermally driven events) and without the feedback scheme described in the pre-
vious section (since the point of that scheme was to provide better statistics in
the regimes of saturated tunnel rates, where back-action will in any case not
be as noticeable). Finally, in contrast to Figure 3.13, the two leftmost leads
were grounded with the current measured through the middle lead and the bias
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Figure 3.19: The middle panel shows the low-bias Coulomb peak used for charge detection. The orange and blue circles
show possible detector setpoints. Here, the circles with same colour represent the n = 0 (empty circles) and
n = 1 (filled circles) for the given setpoint. The panels to the left show tunnel rates measured using the
detector set to a region with positive transconductance. In the right panels, they are instead measured with a
negative transconductance setpoint. The top corner panels show tunnel rates for a charge transition involving
QD2, with an energy diagram sketched in the top middle panel. The red X indicates that QD1 is in Coulomb
blockade during the measurement. Also marked is an electron tunneling event which corresponds to the long
tail in Γin from the top left panel. Finally, the bottom panels show the corresponding measurements for a
QD1 charge transition.

applied to the rightmost lead.

First, QD2 (the closest one to the detector) was investigated at low (Vb = 0.15
mV) detector bias. Two different setpoints in the same Coulomb peak were
used. The first is on the left side of the peak where there is a positive transcon-
ductance (PT). In this case, the n = 0 state in QD2 corresponds to a high
detector current. The second setpoint was on the opposite side, with a negative
transconductance (NT) and where a high current indicates that QD2 is in the
n = 1 state. The top corner panels in Figure 3.19 show the measured tunnel
rates in this regime. A logarithmic y-axis is used to highlight the small tunnel-
ing rates where the effects of back-action should be most noticeable. The most
obvious feature here is the long tail in Γin going to a few Hz in the PT case. Such
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a feature does not appear in the corresponding QD1 measurement (bottom left
panel), indicating that it may arise from QD2’s shared lead with the detector.
However, it is not fully consistent with the charge carrier injection picture, since
in this particular configuration, the electrons hop away from QD2 as they move
through the detector QD and you would then not expect an increase in Γin for
high energies. It is possible that this tail arises from PAT, which would explain
why there is no tail in Γout (since the current generating the photons is turned
off while the system is in the n = 1 state). However, that does not explain
the lack of a corresponding tail in Γout at the PT setpoint (upper right panel).
Clearly, the exact mechanism of this back-action effect is not trivial, and further
measurements may be needed to fully understand it.

That same tail is not measured for any setpoint when studying QD1, which
is further away from the detector, as seen in the bottom panels of Figure 3.19.
This is also consistent with the feedback measurement from Figure 3.18. It
appears that for QD1, the gating back-action mechanism is the main potential
issue. While it is difficult to estimate the size of the shift from the measurements
presented in Figure 3.19 due to the limited statistics for the saturated rates, one
can still see that the effect is there when studying the crossover rate where
Γin = Γout. Depending on if the NT or PT setpoint is used, the crossover rate
is different which strongly indicates that the rates are again shifted in energy
and that the shift depends on which QD state corresponds to a higher ⟨ndet⟩.
Furthermore, Figure 3.20a) shows that at elevated temperatures the relative
difference between the cross-over rate is decreased, indicating that the effect is
suppressed. As hinted earlier, the effect can be further suppressed by increasing
the bias of the detector to get less of a relative difference in ⟨ndet⟩. This is also
supported by the data in Figure 3.20b) which shows the same type of measure-
ment as in Figure 3.20a) (albeit for a different charge transition), but at Vb = 1
mV with the Coulomb peak shown in Figure 3.20c). Here, there is no clear
temperature dependence which indicates that the shift is already sufficiently
small even at low temperatures. Also, there is no clear contrast between the NT
and PT setpoints which is expected if ⟨ndet⟩ is close to constant in the two cases.

Finally, in order to verify that the back-action effects can be minimized at
elevated temperatures, it is important that the temperature of the electronic
reservoir follows the bath temperature (set by the cryostat temperature Tcryo).
In that case, the energy gained during tunneling events arises from thermal ex-
citations rather than from the energy dissipated during detector operation. To
measure the electronic temperature Te, it is first noted that the tunnel rates
follow a detailed balance condition Γin/Γout = exp(−E/kBTe) as verfied in Fig-
ure 3.20d). By fitting the logarithm of the rates’ ratio, it is possible to extract
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Te, which was done for various cryostat temperatures between the base temper-
ature and 150 mK, shown in Figure 3.20e). The saturation noticeable at around
50 mK is the typical electronic temperature saturation in this cryostat. Above
that, the electronic temperature closesly follows the cryostat temperature, indic-
ating that the tunneling rates are indeed dominated by the bath temperature. In
conclusion, it is possible to to avoid the effects of detector back-action if charge
transitions on QD1 are studied, with a high enough detector bias at elevated
cryostat temperatures. These conditions are all fulfilled in the rest of the work
presented in Chapter 4.
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Figure 3.20: a) The tunnel rate at which Γin = Γout for a QD1 charge transition plotted against the cryostat temperature
for Vb = 0.15 mV and for both a negative transconductance setpoint (orange diamonds) and a positive
transconductance setpoint (blue squares). b) The same measurement as in a), but for Vb = 1 mV. Note
that a different charge transition was used. The dashed lines corresponds to the average crossing rate for
the negative transconductance setpoint (orange) and the positive transconductance setpoint (blue). c) The
Coulomb peak (Vb = 1 mV) used for the measurements in b) and onwards. The circles indicate the current
level that at the n = 0 (empty) and n = 1 (filled) states. d) The logarithm of the ratio of the rates at
100 mK for the negative transconductance setpoint has a linear dependence on energy, as expected for a
system that follows detailed balance. e) The electronic temperature Te extracted from the detailed balance
condition with Vb = 1 mV. The dashed line indicates when the electronic temperature is equal to the cryostat
temperature.
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Chapter 4

Information Thermodynamics
with Quantum Dots

This chapter presents the bulk of results in this thesis and functions as a sum-
mary of Papers II-IV. Since the papers all use the same device and similar
measurements, the chapter begins by explaining how to define thermodynamic
quantities on the trajectory level for the specific system used in the thesis. Then,
an explanation of how to operate the device as a Szilard engine is given. Finally,
Papers II-IV are summarized.

1 Thermodynamic quantities

This section serves to connect back to the thermodynamic quantities introduced
in Chapter 2. This builds on work done in the group of Jukka Pekola [14, 15, 27],
which also used an electronic (but in their case, metallic) system. As a reminder,
the device contains three quantum dots and is shown in Figure 4.1a). By placing
the middle quantum dot in Coulomb blockade, the very basic system sketched
in Figure 4.1b) is obtained experimentally. It is simply one electronic energy
level coupled to a Fermionic reservoir. In all papers, this system is operated
around a point where one extra electron can enter or leave the energy level.
Thus, the system has two possible states: n = 0, or n = 1. In addition, the
energy of these two states are Un = nE where E is the energy of the electronic
level measured from the reservoir Fermi energy. This energy can be driven by a
time-dependent gate voltage ∆V1(t) (the difference in voltage from the starting
point) which acts as the control parameter. Then, E(t) = Ei −α∆V1(t), with α
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Figure 4.1: a) SEM image of the device used in Papers II-IV. There are three quantum dots (QD1 coloured in blue, QD2
coloured in red and the detector QD coloured in purple). Each QD has a dedicated plunger gate voltage and
a bias is applied to run a current through the detector. b) Sketch of the system as the device is operated.
A spin-degenerate energy level in QD1 is coupled to a thermal reservoir with Fermi energy EF . Initially the
system is set so that there is an equal chance of an extra electron being on the QD, which occurs when the
energy level is offset from EF by kBT ln 2.

the lever arm as outlined in Chapter 3 and Ei the energy at the starting point.

1.1 Work and heat

A trajectory is fully described by the time evolution of n(t) (which is monitored
by the charge detector) and E(t) (which is known from the applied gate voltage).
An example trajectory for a process where the energy level is quickly raised
before slowly being lowered is shown in Figure 4.2. All relevant thermodynamic
quantities can be determined from studying those two. For a trajectory between
times t = 0 and t = τ , the energy difference is simply ∆U = (n(τ)−n(0))E0. In
general, what’s been of interest for this thesis is how much work Wex is extracted
from the system and how much heat Qr is deposited in the reservoir. Since no
work is done when moving an unoccupied energy level, Wex is determined by
summing up the change in E while n = 1, or on integral form:

Wex = −
∫ τ

0
n(t)Ėlev(t). (4.1)

The third panel of Figure 4.2 shows how the work is accumulated during the
duration of the trajectory. Whenever an electron tunnels into the reservoir
(i.e. when the system state goes from n = 1 to n = 0), E worth of heat is
deposited. The total heat Qr for the trajectory is obtained by summing over all
the individual jumps, or similarly to equation 4.1:

Qr = −
∫ τ

0
ṅ(t)E(t)dt, (4.2)
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Figure 4.2: A trajectory is defined by the time evolution of n(t) (top panel) and E(t) (second panel). The third and
fourth panel shows how extracted work and heat deposited to the reservoir accumulates during the trajectory.

which is shown for the example trajectory in the bottom panel of Figure 4.2.

1.2 The effect of spin degeneracy

Before moving on to how the entropy production over a trajectory is determined,
it is instructive to first consider the probabilities p1 and p0 = 1−p1 as functions
of energy. For a non-degenerate energy level, p1(E) would simply follow the
Fermi-Dirac distribution of the reservoir. However, as outlined in Chapter 3,
the energy level is spin-degenerate. In that case, the distributions depend on
the initial occupation of the energy level. If the level is initially occupied, p1 is
given by

p1(E) =
1

1 + 1
2 exp −E

kBT

, (4.3)

which corresponds to a shift of −kBT ln 2. If it is initially unoccupied, it is
instead given by

p1(E) =
1

1 + 2 exp −E
kBT

, (4.4)

corresponding to a shift of +kBT ln 2. Both configurations have been used in
this thesis. The initial setpoint for all further experiments is when p1 = 0.5,
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meaning E0 = ±kBT ln 2.

Spin degeneracy is the cause of one further nuance of the system. So far, only
the states n = 0 and n = 1 have been considered. Spin allows for one more
degree of freedom in the state which represents the energy level being occupied
by one electron. In the case where the energy level is initially empty, the n = 1
can be split up into the ↑ and ↓ states, with p↑ = p↓ = 0.5p1. For the other
configuration, the split occurs for the n = 0 state.

1.3 Entropy production

Recall that that the change in total entropy ∆Stot has two components: one
due to heat flow to the environment ∆Senv and one to account for the entropy
change of the system itself, ∆Ssys. Since the heat Qr can be determined for
every trajectory, so can ∆Senv which is simply

∆Senv =
Qr

T
(4.5)

as usual. Following Chapter 2, the entropy change of the system is

∆Ssys = kB ln
pn(0)(0)

pn(τ)(τ)
. (4.6)

Here, the nuances of spin degeneracy begin to play a role. Every process studied
in the thesis is cyclical, meaning E(τ) = E(0) = E0. If the system was non-
degenerate, each state would be equally likely at both t = 0 and t = τ and
∆Ssys = 0 for every trajectory. However, since one of the states can be split
up into the two spin states, there are actually three states that don’t all have
the same probability. For trajectories where n(0) = n(τ), ∆Ssys is obviously
still zero. On the other hand, if n is different at each end of the trajectory,
∆Ssys = ±kB ln 2. Recalling that the difference in internal energy over the
trajectory is ∆E = (n(τ)−n(0))E0, one can use the first law of thermodynamics
to identify the total entropy production as

∆Stot = −Wex

T
. (4.7)

1.4 Determining the lever arm

From the above sections, it is clear that to fully describe the trajectories it is
necessary to have information about the time evolution of the quantum dot en-
ergy level E(t). In order to know that, one must know the lever arm α between
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Figure 4.3: Illustrations of different ways to determine the lever arm α. a) DQD charge stability diagram taken with the
detector signal at detector bias Vb = 0.5 mV. The size of the finite bias triangles can be used to determine
the lever arm for all pairs of QD and plunger gate. b) The tunnel rates follow detailed balance given by
Γin/Γout = 0.5 exp(α∆Vg1/kBT ). Plotted are both the ratio of the tunnel rates as well as a linear
fit to their logarithm. For higher energy offsets, the lowest tunnel rate will be overestimated due the finite
measurement length. For that reason, the fit is taken between the two dashed lines. c) Performing roughly
1000 trajectories of the energy level being driven while recording the QD occupation allows for the construction
of ⟨n(E)⟩ = ⟨n(−α∆Vg1)⟩. The data is then fitted to the equilibrium probability distribution to obtain α.

the applied gate voltage and the energy level shift. Over the course of the ex-
periments performed in this thesis, three methods of determining α have been
used, summarized in Figure 4.3. Before moving on to summarizing the remain-
ing papers, these three methods will be briefly reviewed.

The first method is the one described in section 2 of Chapter 3. Sweeping
both plunger gates of the DQD while applying a bias voltage allows for the
construction of a charge stability diagram with finite bias triangles. α can then
be determined from the size of the triangles. Notably, the experiments need to
be run in a regime where the current in the finite bias triangles is too low to be
measured. Therefore, the charge stability diagram needs to be constructed with
the charge detection signal as in Figure 4.3a).

The second method involves measuring the tunnel rates for a charge state trans-
ition, like in section 4.2 of Chapter 3. That is in any case a necessary step in
order to theoretically describe the system. The tunnel rates obey a detailed bal-
ance condition so that Γin/Γout = 0.5 exp(−E/kBT ) = 0.5 exp(α∆Vg1/kBT ).
Depending on the initial occupation of the spin-degenerate level, the pre-factor
may also be 2. Performing a linear fit of ln Γin/Γout as in Figure 4.3b) allows
for the extraction of α in terms of kBT .

Finally, the most time consuming method is to perform many sufficiently slow
drives of E(t) and fit the average population ⟨n(∆Vg1)⟩ to the equilibrium pop-
ulation probabilities given by equation (4.3) or (4.4). This fit (shown in Fig-
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Figure 4.4: Sketch of the Szilard engine operation. There are two possible drives, depending on which state is measured
at the start. The single arrows in the second step indicate a fast quench while the stacked arrows in step three
mean the level is slowly driven down. At the end, the system has returned to its initial state.

ure 4.3c)) again allows for the determination of α in terms of kBT .

2 Experimentally realized Szilard engine

In both Paper II and Paper IV, the device is operated as a Szilard engine.
This section explains how the conceptual single-particle gas engine introduced
by Szilard is translated into one that is experimentally realizable with quantum
dots. An overview is given in Figure 4.4.

The system is originally set so that the level has a probability p1 = 0.5 of being
occupied by an extra electron. As outlined in the previous section, this occurs
when the level is offset from the reservoir Fermi energy by Ei = kBT ln 2. A
measurement of the occupation n thus gives one bit of information which will be
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used as the engine’s fuel. Measuring n is analogous to measuring on which side
of the box the particle is located in Szilard’s original thought experiment. The
outcome of the measurement determines which type of feedback will be applied
to the system. Practically, this is done by routing the detector current to an
Arduino DUE microcontroller which compares it to a predetermined threshold.
If the current is below the threshold, the system is judged to be in the n = 0
state and the microcontroller’s analog output is used to perform the drive shown
in Figure 4.2. First, E is quickly driven to Ei+∆E0. At higher energies p0 → 1,
almost locking the system in the n = 0 state. Since the level is unoccupied, this
drive can be performed at no work cost. The step of letting the gas do expansion
work is realized by slowly lowering E back to the initial point. During this step,
electrons can tunnel back and forth between the quantum dot and the reservoir,
letting n fluctuate and extracting work Wex as in equation (4.1). As long as
there is no measurement error, Wex ≥ 0 for every trajectory. In the case where
initially n = 1, another feedback process is applied where E is first quickly
lowered and then slowly driven up.

3 Work fluctuation-dissipation relation (Paper II)

Since n(t) is a fluctuating quantity, so is the extracted work Wex. The aim of
Paper II was to study the fluctuations in the Szilard engine’s work output, and in
particular connect them to dissipation through the work fluctuation-dissipation
relation (FDR). In general, the FDR holds for slowly driven systems where the
work distribution is Gaussian and is expressed as

Wdiss =
σ2
W

2kBT
, (4.8)

where Wdiss is the dissipated work and σ2
W is the work distribution’s variance.

Before moving to the FDR for the Szilard engine, consider a process where no
information is involved. Such a process was realized in Paper II and shown in
Figure 4.5. It consists of simply raising the energy level and then lowering it
back to its starting point. Recall that for a thermodynamic process, the free
energy difference provides a bound for the maximum (on average) extractable
work, i.e.

⟨Wex⟩ ≤ ∆F. (4.9)

For any finite driving speed, equality in Equation 4.9 will not be achieved
and some work will be dissipated. The dissipated work can be written as
Wdiss = ∆F − ⟨Wex⟩. For the simple drive from Figure 4.5, ∆F = 0 and
Wdiss = −⟨Wex⟩ = ⟨W ⟩.
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Figure 4.5: Example of a drive which only achieves some dissipation on average. The top panel shows the output of the
detector during the drive and the bottom panel shows the drive itself. It consists of simply driving the energy
level down by 2.5kBT before driving it up to its initial position.

To test Equation (4.8) experimentally, many trajectories of performing the pro-
cess were recorded for a variety of different total driving times τ . This allowed
for the construction of work distributions shown in Figure 4.6. In those figures,
both ∆F = 0 and ⟨W ⟩ are marked. Clearly, as the drive is slowed down, two
things happen. First, the work distribution becomes sharper, meaning fewer
fluctuations. Second, the average work moves closer to 0, indicating lower dis-
sipation. The two sides of Equation (4.8) are plotted against each other in
Figure 4.7a) and the experimental data does indeed follow the diagonal that
indicates equality in the FDR as expected.

Moving on to the Szilard engine, first remember that for a process with meas-
urement and feedback, Equation 4.9 can be violated. Instead, as outlined in
Chapter 2, the bound from the second law can be generalized to

⟨Wex⟩ ≤ ∆F + kBT ⟨I⟩, (4.10)

by taking into account the information gained in the measurement. For a Szilard
engine with two possible initial system states x = 0, 1 and two possible feedback
protocols denoted by y = 0, 1, I is a measure of the information given by

I = ln
P (x, y)

P (x)P (y)
. (4.11)

Here, P (x, y) indicates a probability distribution over initial system state and
applied protocol. Over many trajectories, I averages to the mutual information
⟨I⟩ between x and y. In the experiment, there is a measurement error rate of
around 2%, which affects the measured I. However, in Paper II, the data is
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Figure 4.6: Example work distributions for the protocol shown in Figure 4.5. From left to right, the total drive time
increases from 0.5 s to 4s. The average work dissipated is indicated by the orange dashed line. The blacked
dotted line is shown at 0 to help guide the eye. For longer drives, less work is dissipated while the distribution
also is sharper, in accordance with theoretical simulations shown in purple.

selected to only include successful trajectories. This was done in order to be
able to focus only on the shape of a single-peak work distribution. In that case,
I = ln 2 for every trajectory and the bound in Equation (4.10) simplifies to the
Landauer limit ⟨Wex⟩ ≤ kBT ln 2 (keeping in mind that ∆F = 0). Similarly to
the case where no information was used, the dissipated work can then be defined
as Wdiss = kBT ln 2 − ⟨Wex⟩.

Distributions of extracted work were constructed (see Figure 4.8) for Szilard
engine implementations with different ramp times τ . For the very fastest drives,
the distribution is not Gaussian and there is a big peak near Wex = 0 which
correspond to trajectories where there was not enough time for any electron
tunneling to occur. For slower drives, on the other hand, the distribution moves
away from 0 and takes on a more Gaussian shape which gets sharper as the
drive time is increased. As the drive is slowed down, the average work ⟨Wex⟩
is closer to the Landauer limit, which indicates less dissipation. Figure 4.7b)
shows that for fast drives, Equation (4.8) is not obeyed (unsurprisingly since
the work distribution is not Gaussian). On the other hand, slower drives stick
to the diagonal indicating equality.

The main result of Paper II is summarized in Figure 4.9. It shows both sides
of Equation (4.8) plotted against each other for all the different realizations of
the experiment. Purple diamonds correspond to quantities from the Szilard en-
gine case while blue points (the different shape indicate a different amplitude
was used for the driving) correspond to the protocol where no information was
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Figure 4.7: The two quantities in the work fluctuation-dissipation relation plotted against each other for a) the dissipative
drive and b)the Szilard engine. The orange line indicates equality in the relation. The empty purple diamonds
are corresponding theoretical simulations.

used. If you take into account the information content when considering the
dissipated work, the FDR is clearly valid for slowly driven Szilard engines just
like for processes without feedback.
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Figure 4.8: Distributions of extracted work for the Szilard engine. In the left panel, the total drive time was 0.25 s, resulting
in a non-Gaussian distribution. For the slower drives in the middle (2 s) and right panels (5 s), the distribution
tends to a Gaussian and sharpens up as the mean (dashed orange line) moves closer to the Landauer limit
(dotted black line).

Figure 4.9: The work fluctuation-dissipation relation quantities plotted against each other for all tested protocols. There
is a clear tendency to follow the equality line given by the orange diagonal.
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4 Optimal driving protocols (Paper III)

Paper III continues on the same track as Paper II, namely experimental stud-
ies of dissipation in thermodynamic processes involving information. It is clear
that one way to minimize dissipation is to simply perform the drive slowly over
a long time. After all, an infinitely slow drive would correspond to a reversible,
dissipation-less process. In most practical situations, long timescales are not
preferable. One option to performing a slower drive is to change the shape of
the drive itself. This alternative is explored in Paper III.

The paper uses the same device as described in earlier sections, but this time
it is not operated as a Szilard engine. Instead, the opposite process is used:
information erasure. Note however that the same arguments hold for the drive
shape in a Szilard engine. The erasure process is as follows: first, the energy
level E is set in a high-entropy state so that p0 = 0.5. It is then driven up in
energy by the drive amplitude EA for a time τ . During the drive, p0 increases
and the system is left in a lower-entropy state. It is then quickly brought back
down in order to reset the energetics of the system. A measurement of the state
immediately after the drive (before it has time to thermalize to equilibrium)
would yield less information than a measurement before the drive. In the limit
where EA is high, p0(τ) → 1 and the information contained in the system at
the start is completely erased.

As described in Chapter 2, such an erasure of information can not be done
without some dissipation. In fact, the average heat dissipated is bounded by
the Landauer limit:

⟨∆Qr⟩ ≥ −kBT∆Ssys. (4.12)

In Paper III, this dissipation was measured for two different drive shapes: the
naive linear drive and a, in theory, drive with minimal dissipation called a
geodesic drive. The idea behind the geodesic drive is to find a shape in which
the dissipation occurs uniformly over the trajectory. Intuitively, it makes sense
that a minimally dissipative protocol would involve driving slowly while many
tunneling events occur (i.e. near the start) and then speeding up to avoid high-
energy heat exchange with the reservoir, as shown in Figure 4.10. The exact
shape of the drive depends on EA, with there being a larger deviation from the
linear case for large amplitudes.

Experimentally, many trajectories were recorded for both geodesic and linear
drives with EA between 2.6kBT and 10.4kBT . For every case, two different
drive times were used. In the fast driving case the full drive happened in τ = 70
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Figure 4.10: Comparison between the linear and geodesic drives used in Paper III. In the left panel, the drives are shown
for a drive amplitude of EA = 5.2kBT and in the right it is 10.4kBT . The larger the amplitude is, the
bigger is the deviation between the two shapes.

ms while in the slow driving case the system was driven for τ = 1 s. The heat
for each trajectory was determined using equation (4.2). Having full knowledge
of the system during the trajectory also allows for the determination of the av-
erage heat dissipated over time. An example for EA = 10.4kBT is shown in
Figure 4.11. As intended, the geodesic drive yields a more uniform dissipation
rate than the linear (which spikes early). Note that for even slower drives, the
rate is expected to be even more uniform.

In order to compare the performance of each drive shape, two metrics were con-
sidered. First was obviously the average heat dissipated ∆Qr, which is plotted
in the right-hand panels of Figure 4.12. These plots show the advantage of the
geodesic drive for large drive amplitudes. As the amplitude is increased, the
linear drive starts linearly dissipating more heat while the geodesic drive’s dis-
sipation saturates. However, less dissipation is not enough if the intended result
of the process (i.e. the erasure of information) is not achieved. To quantify the
quality of the erasure, the left plots of Figure 4.12 show the percentage of tra-
jectories where n = 0 in the end. For perfectly erased information, that quantity
would reach 100%. In the slow driving regime, there is no real difference in the
erasure quality, meaning the geodesic drive is clearly an improvement over its
linear counterpart. However, if τ is short, the erasure quality is slightly better
with the linear protocol. The reason for this is the system is driven so quickly
near the end that there is not enough time for it to reach equilibrium. If one
were to include some extra time for equilibration after the protocol, the two
would again reach similar quality. Thus, in the fast driving regime, there is
trade-off between erasure quality, dissipation, and time.
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Figure 4.11: Comparisons between the dissipation rates for the two different drive shapes in the fast driving case (left)
and the slow driving case (right). The linear drive tends to give a spike in the dissipation rate early on in the
drive, whereas the geodesic drive has a more uniform dissipation rate.

Figure 4.12: Summary of the main results in Paper III. The left panels shows the average population left in the QD after
the drive as functions of the drive amplitude, giving a measure of how well the erasure protocol worked. In the
slow driving regime, there is no appreciable difference between the two drive shapes. For fast driving, there is
a slight decrease when using the geodesic drive. The right panels show the average dissipated heat. For both
driving speeds when increasing EA,the dissipation eventually increases close to linearly with the linear drive
while it starts to saturate with the geodesic drive.
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5 Thermodynamic uncertainty relations for feedback
processes (Paper IV)

Finally, Paper IV deals mainly with the new class of cost-precision trade-off
relations known as thermodynamic uncertainty relations (TURs), specifically in
the context of the Szilard engine. Recall from Chapter 2 that for systems out
of equilibrium, the signal-to-noise ratio of their observables are constrained by
their entropy production. For a system that extracts work Wex, the TUR can
be expressed as:

⟨Wex⟩2
σ2
W

≤ ⟨∆Stot⟩
2kB

, (4.13)

with the constraint that the entropy produced ⟨∆S⟩ is positive. As seen be-
fore, for the quantum dot Szilard engine ∆Stot = −Wex/T < 0 as long as the
engine extracts work, so Equation (4.13) does not provide a meaningful bound.
However, it is also possible to run the engine with parameters (for example,
a high measurement error rate) such that the extracted work is negative. In
that case, the Szilard engine actually violates the TUR as seen in Figure 4.13.
This is due to the inherent time-reversal asymmetry of measurement-feedback
scenarios. To introduce a time-reversed trajectory, one would need to pick a
feedback to apply beforehand. However, in the forward trajectory, the feed-
back applied depends on the state of the system at t = 0 which would corres-
pond to the end of the backward trajectory. Thus, the probability distributions
P (Wex,∆S) ̸= P (−Wex,−∆S) whereas the equality is a necessary condition for
Equation (4.13) to hold.

As outlined in Chapter 2, a newer class of TURs has recently been developed
which work for systems with broken time-reversal symmetry. In Paper IV, the
one studied is on the form

(⟨Wex⟩ + ⟨Wex⟩B)2

σ2
W + σ2

WB

≤ 2

[
csch2f

(⟨∆SI⟩ + ⟨∆SI⟩B
4kB

)]−1

, (4.14)

where f(x) is the inverse function of xtanh(x) and the B subscript means it is a
quantity from a backward experiment. ∆SI is the entropy production modified
by an information quantifier which may also depend on the backward exper-
iment. There is some choice in the design of the backward experiment, and
Paper IV illustrates how the choice of backward experiment gives one access to
different information quantifiers and different TUR bounds. In addition, any
information quantifier can be used in a generalized second law-like inequality on
the form of Equation (4.10).
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Figure 4.13: The quantities from three different TURs plotted against each other for a Szilard engine operated with a
variety of parameters. The green markers show the TUR in Equation (4.13) being clearly violated. The
orange and blue markers are from a rearranged version of Equation (4.14) so that the left-hand side is the
same as in Equation (4.13). The difference between the two is that they use different backward experiments
and information quantifiers. In both cases, they stay close to or above the line which indicates TUR equality.

In Paper IV, two different backward experiments were implemented. Import-
antly, the probability distributions of the backward experiment must follow a
detailed fluctuation theorem which was used in the derivation of Equation (4.14):

PB(−Wex,−∆SI)

P (Wex,∆SI)
= e

−∆SI
kB . (4.15)

In Figure 4.14, it is shown that the two tested backward experiments do indeed
satisfy the fluctuation theorem above with their respective information quanti-
fier. The first backward experiment tested is called the mutual information (MI)
experiment and was performed as follows: first pick a feedback protocol y = 0, 1
and implement it in reverse, so that the slow ramp happens first and the fast
quench happens last. Then measure the state of the system immediately after
the quench and record it as x = 0, 1, which corresponds to the initial state in
the forward experiment. This is repeated so that every forward trajectory has
a corresponding backward trajectory with the same y. The information quanti-
fier in this case is the quantity I, introduced in Equation (4.11) which averages
to the mutual information between x and y in the forward experiment. Note
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Figure 4.14: After integrating out the extracted work, both the MI (left) and IE (right) backward experiments yield
probability distributions of ∆SI that follow the fluctuation theorem in Equation (4.15), which is shown by
the diagonal line.

that for a backward trajectory, IB = −I is assigned. As shown earlier, this
information quantifier provides the second law-like bound of Equation (4.10)
which corresponds to the maximum work can that can be extracted using the
information from the measurement.

The second backward experiments consists of exactly the same drive as the MI
experiment. However, after the drive, the trajectory is discarded unless x = y,
allowing for some form of feedback to be included in the construction of PB.
One can also include an analogue of measurement error rate by introducing a
random variable in the decision to discard the trajectory. In this case, the fluc-
tuation theorem in Equation (4.15) is satisfied with ∆SI = ∆S − ⟨E⟩ where E
is an information quantifier that corresponds to how much entropy production
can be inferred if one had access only to the measurement outcomes y:

E(y) = ln
P (y)

PS(y)
, (4.16)

where PS(y) is the probability that a trajectory makes it through the post-
selection process. Due to the nature of ⟨E⟩, this backward experiment is called
the inferable entropy (IE) experiment.

In order to compare the two backward experiments and their respective TURs,
two parameters of the Szilard engine operation were varied: the error rate ε
(which was implemented by generating a random number in the Arduino script)
and how far the energy level is driven after in the y = 1 protocol ∆E1. Fig-
ure 4.13 shows that in contrast to the basic TUR, the generalized TUR is not
violated for either backwards experiment. Note that Equation (4.14) was re-
arranged so that the left hand side was identical to the one in the basic TUR.
Figure 4.15 shows the same data but plotted as functions of the varied paramet-
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Figure 4.15: Top panels: shows the same TUR quantities as Figure 4.13, but plotted against the error rate with constant
drive amplitudes (left) and against the drive amplitude ∆E1 with a constant error rate and ∆E0 (right).
The inset in the left panel is a zoom-in for small values, showing that when ε = 0.5, all three TURs coincide.
Bottom panels: shows the extracted work is bounded by the information quantifiers in a second law-like
inequality.

ers instead, showing how the two different backwards experiments lead to qual-
itatively different TUR bounds. Not surprisingly, when the error rate ε = 0.5
the basic TUR is also satisfied. For that error rate, the engine is just driven
randomly and there effectively is no feedback. In addition, the bottom panels
illustrate how the extracted work is in all cases bounded by the two information
quantifiers.
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Chapter 5

Summary and outlook

The interplay between thermodynamics and information is an intriguing subject
with a long history that has only quite recently reached the level of experiments.
In particular for the process of extracting work from information, the experi-
mental work so far has mainly been concerned with proof-of-concept or reaching
high efficiencies. In contrast, the aim of this thesis was to investigate the fluctu-
ations and dissipation involved in information-based processes. In doing so, the
thesis work also expanded the experimentally available platforms in the field to
include quantum dots formed in semiconductor nanowires.

The first work done for the thesis was establishing the formation of serial double
quantum dots (DQD) in InAs nanowires through bandgap engineering. A se-
lectively grown GaSb shell was used to locate the quantum dots using simple
imaging techniques, allowing for well-aligned electrical contacts and gates. With
DC characterization, it was possible to obtain textbook-like charge stability dia-
grams, indicating a high degree of control of the DQD charge state. In order to
perform real-time measurements of electron tunneling, charge sensing was used.
The charge sensing element was a third quantum dot, leading to the somewhat
novel device architecture of a system and its detector all integrated in the same
nanowire.

The nanowire device was used to experimentally set up the very basic system of a
single controllable energy level coupled to a fermionic reservoir, Using the device,
a Szilard engine was implemented and work was extracted using information as
fuel. This was done in order to investigate the fluctuations in the Szilard engine.
First, it was demonstrated that the work fluctuation dissipation relation holds if
one takes into account the information gained in a measurement. Then, the new

65



class of thermodynamic uncertainty relations which present tradeoffs between
the precision of processes and their associated entropy production was tested.
Depending on how a corresponding backward Szilard engine protocol was con-
structed, it was possible to define different information quantifiers which came
with their own uncertainty relations, fluctuation theorems and second law-like
inequalities. Finally, it was shown that by constructing a protocol that dis-
tributes its dissipation uniformly along its drive it is possible to minimize the
total dissipation. In practice, it was tested for the erasure of information but
the same concept can be used to develop optimal drives for the inverse process
which is Szilard engine operation.

While this thesis has already shown the range of thermodynamics that can
be probed using the quantum dot system, it is still possible to gain even more
knowledge using a similar or even the same setup. For instance, the back-action
effects described in Chapter 3 for one of the quantum dots are not yet fully
understood. However, further measurements and theoretical descriptions could
unveil new opportunities to probe non-equilibrium electronic distributions. If
one can minimize the back-action effects in both dots (or use a slightly different
device architecture), it would be possible to experimentally implement an engine
that uses information and feedback to generate a current against a bias. This
was first suggested by Averin et al. using single-electron transistors [108], but a
version using a double quantum dot engine was proposed by Annby-Andersson
et al. in 2020 [109].

The quantum dot system used in this thesis is also a good starting point for
experimental investigations of quantum thermodynamics. Quantum thermody-
namics and specifically its connection to quantum information is a relatively
new field which is growing rapidly together with the development of quantum
technology and computing. For systems in which quantum effects such as co-
herence is generated, many of the thermodynamic relations mentioned in this
thesis need to be altered. One example is the fluctuation-dissipation relation
studied in Paper II, which in the presence of quantum signatures turns from an
equality to an inequality [110]. The double quantum dot allows for the coherent
coupling of two discrete energy levels which is a key ingredient for such stud-
ies. However, the charge sensing is presently too slow to notice any quantum
effects. One way to increase the detection speed is to couple the charge sensing
element to a microwave resonator [111, 112]. Work has in fact already be-
gun to couple such resonators to the same type of quantum dot systems in InAs
nanowires [113, 114], hopefully further opening up the frontier towards quantum
thermodynamics.
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