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Abstract

Recent industrial interest in producing smaller volumes of products in shorter time
frames, in contrast to mass production in previous decades, motivated the introduc-
tion of human–robot collaboration (HRC) in industrial settings, as an attempt to
increase flexibility in manufacturing applications by incorporating human intelli-
gence and dexterity to these processes. This thesis presents methods for improving
the involvement of human operators in industrial settings where robots are present,
with a particular focus on kinesthetic teaching, i.e., manually guiding the robot to
define or correct its motion, since it can facilitate non-expert robot programming.

To increase flexibility in the manufacturing industry implies a loss of a fixed
structure of the industrial environment, which increases the uncertainties in the
shared workspace between humans and robots. Two methods have been proposed in
this thesis to mitigate such uncertainty. First, null-space motion was used to increase
the accuracy of kinesthetic teaching by reducing the joint static friction, or stiction,
without altering the execution of the robotic task. This was possible since robots
used in HRC, i.e., collaborative robots, are often designed with additional degrees
of freedom (DOFs) for a greater dexterity. Second, to perform effective corrections
of the motion of the robot through kinesthetic teaching in partially-unknown indus-
trial environments, a fast identification of the source of robot–environment contact
is necessary. Fast contact detection and classification methods in literature were
evaluated, extended, and modified to use them in kinesthetic teaching applications
for an assembly task. For this, collaborative robots that are made compliant with
respect to their external forces/torques (as an active safety mechanism) were used,
and only embedded sensors of the robot were considered.

Moreover, safety is a major concern when robotic motion occurs in an inherently
uncertain scenario, especially if humans are present. Therefore, an online variation
of the compliant behavior of the robot during its manual guidance by a human op-
erator was proposed to avoid undesired parts of the workspace of the robot. The
proposed method used safety control barrier functions (SCBFs) that considered the
rigid-body dynamics of the robot, and the method’s stability was guaranteed using a
passivity-based energy-storage formulation that includes a strict Lyapunov function.

All presented methods were tested experimentally on a real collaborative robot.
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1
Introduction

Robots were largely adopted in industry during the second half of the twentieth cen-
tury, as they were deemed as the machinery needed to automatize mass production.
These industrial robots could reproduce repetitive tasks with high speed and accu-
racy, thus increasing the productivity of an industry whose goal at the time was to
manufacture large amounts of identical products in their assembly lines [Kurfess,
2005, Ch. 1]. Human workers were then displaced out of such industrial environ-
ments, characterized by being rigid and structured to facilitate mass production.

However, recent trends in the manufacturing industry indicate a shift from mass
production to mass customization [Schou et al., 2013], where smaller volumes of
products are manufactured during shorter time frames. The intelligence and dex-
terity of human operators can be useful to increase the manufacturing flexibility
required in this novel scenario [Cencen et al., 2018]. Thereby, the robots that were
once used to replace human labor are currently starting to be seen as direct collabo-
rators to humans in an industrial working structure that can best exploit the different
and complementary aptitudes of humans and robots [IFR, 2018b]. Moreover, the
robot manufacturing industry has addressed this trend by developing collaborative
robots, also known as cobots, in recent years. The lightweight and compliant design
of collaborative robots makes them better suited to share their workspace with hu-
man operators than traditional industrial robots [IFR, 2020]. There is an increasing
interest in the use of collaborative robots, especially by Small and Medium-sized
Enterprises (SMEs), since these robots are economically more viable than tradi-
tional industrial robots [Cencen et al., 2018; Suomalainen et al., 2022], thus provid-
ing an economically-viable entry-point to robotic automation [IFR, 2020], which
historically has been restricted to large companies, since they could finance its high
capital cost [IFR, 2018a].

An interesting way that humans and robots can collaborate in a manufactur-
ing task is through physical Human–Robot Interaction (pHRI), i.e., by manually
guiding the robot [Hirzinger, 1986]. This method is known as kinesthetic teach-
ing [Argall et al., 2009; Akgun et al., 2012; Wrede et al., 2013; Karayiannidis et
al., 2014] and consists in leading-through the robot to program a robot trajectory,
or to reprogram a segment of a pre-existing trajectory, allowing a human operator

9



Chapter 1. Introduction

to easily modify the robot’s motion to adapt it to a manufacturing process whose
requirements have changed online. Kinesthetic teaching is the most common ap-
proach for introducing human demonstrations in manufacturing applications, since
it facilitates non-expert robot programming [Ravichandar et al., 2020] by assuming
that a human can perform the manufacturing task efficiently [Suomalainen et al.,
2022]. However, it is still a resource-intensive design activity to enable humans and
robots to effectively and efficiently share a workspace [Cencen et al., 2018], which
hinders the advantages that the adoption of collaborative robots by industry can
provide to meet the current demand for flexibility of the industry.

1.1 Problem Formulation

The previously described circumstances have motivated the research presented in
this thesis, whose objective is to improve the involvement of human operators in
industrial environments where robots are present through kinesthetic teaching ap-
plications (an application example is shown in Fig. 1.1), to increase the flexibility
of the manufacturing industry. Two main research questions have arisen from this
research problem:

1. How to reduce the uncertainty in pHRI occurring in such dynamic collabora-
tive industrial environments to achieve an effective human manual guidance
of the robot?

2. How to increase the necessary safety during human manual guidance of the
robot?

The first research question has been addressed in this thesis by

• Decreasing the uncertainty of the necessary force that a human should apply
to the robot, to improve the accuracy of kinesthetic teaching.

• Quickly detecting robot–environment contacts and distinguishing their
source.

and the second research question has been addressed by

• Adapting the behavior of the robot with respect to the external forces/torques
applied from its environment to avoid undesired collisions.

1.2 Background and Motivation

For an accurate application of kinesthetic teaching, human operators should be com-
fortable with the necessary amount of force/torque needed to be applied to the robot.
A source of uncertainty, or dispersion, in the relationship between the force/torque
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1.2 Background and Motivation

applied to a robot and its displacement is joint static friction, or stiction [Haug et al.,
1986], which can be observed in joints with zero velocity and which is caused by
interactions between the asperities of the surfaces in contact in a robot joint [Bitten-
court and Gunnarsson, 2012; Bagge Carlson et al., 2015]. Joint stiction is a prevalent
issue in collaborative robots, since these robots are often designed with additional
degrees of freedom (DOFs) to increase their dexterity [Crowe, 2022]. This leads to
the possibility that, in the absence of singularities, a robot trajectory generated for a
robot with 7 or more DOFs can allow its end-effector or attached tool to reach any
pose (position and orientation) in its task frame by only moving 6 of its joints, thus
leaving the additional robot joints stationary. Previously, several methods that used
joint torque feedforward to compensate friction in robot joints were proposed, e.g.,
using iterative learning control [Norrlöf and Gunnarsson, 2020]. Another method
for friction reduction, called dithering [Ipri and Asada, 1995], consisted in using
high-frequency zero-mean signal as feedforward torque, and was proposed to re-
duce the uncertainties caused by joint stiction for force estimation [Linderoth et al.,
2013]. However, dithering may cause vibration of the robot and wear of its motors
and joints if the amplitude of the dithering signal is too high. To avoid these issues,
an alternative method to dithering for reducing joint friction-torque dispersion to
facilitate the teaching process for redundant collaborative robots was proposed in
Paper I [Salt Ducaju et al., 2021]. The proposed method exploited joint redundancy
and consisted in adding joint motion in the null-space of the task frame, i.e., a linear
combination of joint angular velocities that causes no change in the velocity of the
end-effector of the robot [Sadeghian et al., 2013], to ensure that no joint remains
still during the trajectory execution, thus suppressing stiction.

Moreover, one of the main challenges that comes from the desire in the man-
ufacturing industry to increase its flexibility is having to deal with partially un-
known industrial environments, where humans and robots can effectively cooperate
[Jaberzadeh Ansari and Karayiannidis, 2017], but where unexpected collisions with
the environment may also occur. Then, for an effective kinesthetic teaching in such
partially unknown environments, it is necessary to detect in a quick and accurate
manner if a contact has occurred between the robot and its environment, and also
to distinguish if this contact has been caused by voluntary human cooperation or by
an accidental collision with an obstacle to identify the source of robot–environment
contact. External force/torque measurements or estimates [Haddadin et al., 2017]
are often used for this purpose, and there are two main sets of methods, namely
analyzing the frequency response of these signals or using machine learning (ML)
[Cioffi et al., 2020], where the faster detection and classification of frequency re-
sponse analysis can be advantageous compared to ML-proposals. In Paper II [Salt
Ducaju et al., 2022b], a method to quickly detect contacts and distinguish if they
have been caused by voluntary human cooperation or by accidental collisions was
proposed for an assembly task using collaborative robots. The method proposed in
Paper II [Salt Ducaju et al., 2022b] included necessary modifications and exten-
sions to previous proposals to detect and classify contacts in any direction for a
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Chapter 1. Introduction

Figure 1.1 Example of the use of kinesthetic teaching for a collaborative assembly
task. The image shows a human operator manually guiding a Franka Emika Panda
robot [Franka Emika, 2019] mounted on a table to perform a cylinder insertion (peg-
in-hole).

collaborative assembly task relying only on embedded sensors of a collaborative
robot. A Cartesian impedance controller [Hogan, 1985], which establishes a mass-
spring-damper relationship between the Cartesian pose variation from its reference
and the Cartesian force in terms of the end-effector of the robot [Albu-Schäffer and
Hirzinger, 2002], was used to achieve a compliant behavior of the robot.

Compliant controllers for robots, such as the one used in Paper II [Salt Ducaju
et al., 2022b], have gained increasing popularity in parallel to the appearance and
proliferation of collaborative robots, even though initially proposed some decades
earlier [Hogan, 1985; Kazerooni et al., 1986]. These types of controllers improve
safety in contact-rich environments, which is a key concern when operating in these
partially unknown environments, and they also allow physical human cooperation
with the robot. However, the workspace shared by a human operator guiding a robot
during a kinesthetic teaching task may not be entirely available, e.g., other robots,
operators, or sensitive equipment may also be sharing this workspace. Artificial po-
tential field (APF) methods have been used in the past for robot obstacle avoidance
[Khatib, 1985], but safety control barrier functions (SCBFs) have in recent years be-
come a popular alternative to APF-based methods, since they only modify a robot
controller when needed, in a minimally-invasive manner, and provide formal guar-
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1.3 Publications

antees for obstacle avoidance by enforcing the forward invariance of a safe set of
states of the robot [Ames et al., 2019]. In Paper III [Salt Ducaju et al., 2022a], a
method to further improve safety in kinesthetic teaching was proposed, and it con-
sisted in varying the robot compliant behavior using SCBFs to avoid that a human
operator could guide the robot to an unsafe position. To guarantee adherence to the
safety constraints, the rigid-body dynamics of the robot was explicitly considered
in the method to formulate the SCBF.

1.3 Publications

This thesis is based on the following publications:

Paper I
Salt Ducaju, J. M., B. Olofsson, A. Robertsson, and R. Johansson (2021). “Joint

stiction avoidance with null-space motion in real-time model predictive con-
trol for redundant collaborative robots”. In: IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN). Aug. 8–12. Vancou-
ver, Canada (Virtual), pp. 307–314.

Paper II
Salt Ducaju, J. M., B. Olofsson, A. Robertsson, and R. Johansson (2022). “Fast con-

tact detection and classification for kinesthetic teaching in robots using only em-
bedded sensors”. In: IEEE International Conference on Robot and Human In-
teractive Communication (RO-MAN). Aug. 29–Sep. 2. Naples, Italy, pp. 1138–
1145.

Paper III
Salt Ducaju, J. M., B. Olofsson, A. Robertsson, and R. Johansson (2022). “Robot

Cartesian compliance variation for safe kinesthetic teaching using safety control
barrier functions”. In: IEEE International Conference on Automation Science
and Engineering (CASE). Aug. 20–24. Mexico City, Mexico, pp. 2259–2266.

An overview of the notation used in each of these publications is presented
in Appendix A. Moreover, the following publications, where the author has made
contributions, were decided not to be part of the present thesis:

Salt Ducaju, J. M., J. J. Salt Llobregat, Á. Cuenca, and M. Tomizuka (2021).
“Autonomous ground vehicle lane-keeping LPV model-based control: dual-rate
state estimation and comparison of different real-time control strategies”. Sen-
sors 21:4, p. 1531.

Salt Ducaju, J. M., C. Tang, M. Tomizuka, and C.-Y. Chan (2020). “Application
specific system identification for model-based control in self-driving cars”. In:
IEEE Intelligent Vehicles Symposium (IV). Oct. 19–Nov. 13, pp. 384–390.
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Chapter 1. Introduction

1.4 Thesis Outline

This thesis consists of three papers. In Paper I, null-space motion is used to reduce
the friction-torque dispersion of the joint of a redundant collaborative robot to aid
a human collaborator in predicting the force/torque necessary to move the robot,
thus facilitating kinesthetic teaching. An experimental evaluation of the proposed
method for a trajectory generated online using model predictive control [Ghazaei
Ardakani et al., 2019] was included in this paper.

In Paper II, fast contact detection and classification methods based on the
frequency-response analysis of the estimated external force [Kouris et al., 2016;
Kouris et al., 2018] were experimentally evaluated, and necessary modifications
and extensions were proposed for kinesthetic teaching applications in an assembly
task when only using sensors conventionally embedded in commercial collaborative
robots and using robot compliant control.

In Paper III, safety control barrier functions [Ames et al., 2019] have been used
to online modify the Cartesian compliant behavior of a robot to avoid that an opera-
tor could guide the end-effector of the robot to an unsafe position, in the context of
safe kinesthetic teaching. A passivity-based energy-storage formulation [Ferraguti
et al., 2013] has been modified to include a strict Lyapunov function and was used
to ensure the stability of the proposed method.

1.5 Contributions

The main contributions of this thesis are:

• The proposal and experimental evaluation of a method to facilitate kinesthetic
teaching in redundant robots by the use of null-space motion.

• The experimental evaluation of fast contact detection and classification meth-
ods for compliant robots using only data from embedded sensors and the
proposal of necessary modifications and extensions to use these methods for
kinesthetic teaching applications in an assembly task.

• The proposal and experimental evaluation of a method to modify the com-
pliant behavior of a robot (while ensuring its strict stability) to avoid unsafe
situations during kinesthetic teaching using safety control barrier functions.

1.6 Discussion and Future Research

Motivated by recent trends in the manufacturing industry, the relevance of human–
robot collaboration (HRC) in industrial environments has increased in the last
decades. This thesis focused on kinesthetic teaching, which is a topic of HRC that
considers using human manual guidance of robots to exploit the intelligence and
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dexterity that human operators can provide to the manufacturing industry processes.
Several contributions have been made for research problems in this area regarding
kinesthetic teaching: to facilitate physical interaction with robots for human oper-
ators (Paper I), to increase the application scope of kinesthetic teaching (Paper II),
and to ensure safety in a shared workspace (Paper III).

Nevertheless, the involvement of human operators through kinesthetic teaching
applications in industry can be further improved in several research directions utiliz-
ing both well-established and novel concepts in the robotics and automatic control
fields. First, the tendency of collaborative robot manufacturers to purposefully de-
sign robots with redundant DOFs with respect to a task in Cartesian space of their
end-effector to increase their dexterity can be exploited further than our proposal
(Paper I) of using joint redundancy to reduce joint-torque dispersion. It could be
promising to use these additional DOFs of the robot to increase the safety of hu-
man operators using SCBFs, while simultaneously facilitating human collaboration
by increasing the manipulability of the robot. Additionally, well-grounded control
strategies such as Model Predictive Control (MPC) [Mayne et al., 2000] that allow a
longer-horizon prediction of the behavior of the robot and the human operator could
be considered to improve safety in their shared workspace and to further facilitate
kinesthetic teaching from the perspective of the operator.

1.7 Conclusion

The research presented in this thesis aimed to improve the involvement of human
operators in industrial environments using kinesthetic teaching with robots. Differ-
ent methods, focused on reducing the uncertainty in pHRI and on increasing safety
during human guidance, were proposed to achieve this goal. First, the addition of
null-space motion to robot trajectories showed to reduce uncertainty in the force
needed for human guidance caused by joint static friction, thus facilitating kines-
thetic teaching. The structural vibrations and possible wear of the robot compo-
nents caused using other state-of-the-art methods, such as dithering, was avoided in
the proposed method, although the application scope of the proposed method was
limited to redundant manipulators. Second, necessary modifications and extensions
were proposed in this thesis to state-of-the-art methods to achieve fast contact detec-
tion and classification in any contact direction for kinesthetic teaching applications.
The proposed method provided an accurate distinction between voluntary human
cooperation and accidental collisions with stiff and static obstacles in a collabo-
rative assembly task with collaborative robots. Third, using safety control barrier
functions to online modify the Cartesian compliant behavior of a robot provided
a stable and effective method for improving safety in kinesthetic teaching applica-
tions. This proposed method was able to avoid that a human operator could guide a
robotic manipulator to an undesired part of the workspace of the robot.
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Paper I

Joint Stiction Avoidance with Null-Space
Motion in Real-Time Model Predictive

Control for Redundant Collaborative Robots

Julian M. Salt Ducaju Björn Olofsson

Anders Robertsson Rolf Johansson

Abstract

Model Predictive Control (MPC) is an efficient point-to-point trajectory-
generation method for robots that can be used in situations that occur under
time constraints. The motion plan can be recalculated online to increase the
accuracy of the trajectory when getting close to the goal position. safety con-
trol barrier functions have implemented this strategy in a Franka Emika Panda
robot, a redundant collaborative robot, by extending previous research that was
performed on a 6-DOFs robot. We have also used null-space motion to en-
sure a continuous movement of all joints during the entire trajectory execution
as an approach to avoid joint stiction and allow accurate kinesthetic teaching.
As is conventional for collaborative and industrial robots, the Panda robot is
equipped with an internal controller, which allows to send position and veloc-
ity references directly to the robot. Therefore, null-space motion can be added
directly to the MPC-generated velocity references. The observed trajectory de-
viation caused by discretization approximations of the Jacobian matrix when
implementing null-space motion has been corrected experimentally using sen-
sor feedback for the real-time velocity-reference recalculation and by perform-
ing a fast sampling of the null-space vector. Null-space motion has been exper-
imentally seen to contribute to reducing the friction torque dispersion present
in static joints.

© 2021 IEEE. Reprinted, with permission, from 2021 IEEE International Confer-
ence on Robot and Human Interactive Communication (RO-MAN), August 8-12,
Virtual, pp. 307–314.

21



Paper I. Joint Stiction Avoidance with Null-Space Motion in Real-Time Model
Predictive Control for Redundant Collaborative Robots
1. Introduction

Trajectory generation is a well-studied problem in the robotics field. It consists of
defining the path and the course of motion as a function of time. An overview of the
many ways for doing this task is provided in [Kröger, 2010]. In an industrial setting,
it is common to aim for performing a task in the shortest time possible to increase
productivity. To this purpose, the robot should perform the given task under time
constraints, making it convenient to formulate the problem as an optimal control
problem, which provides a performance metric by means of an objective function
[LaValle, 2006].

Model Predictive Control (MPC) [Mayne et al., 2000; Maciejowski, 2002] is
a well-grounded option for trajectory generation in robotic applications, since its
formulation can include a final-state constraint to be satisfied at the end of its pre-
diction horizon while respecting states’ and inputs’ limits during the motion. MPC
uses a model of the robot to predict the future states and outputs based on the solu-
tion’s choice of the input sequence. In the presence of an internal controller with a
short time constant considering the robot dynamics, position or velocity references
can be used directly making a complex dynamic model not necessary in the MPC.
Therefore, a purely kinematic model can be used.

Moreover, online MPC trajectory recalculation can be performed to increase the
resolution of the computed trajectory by setting a fixed final time while keeping the
number of discretization points of the MPC prediction horizon constant. Then, the
continuous-time prediction horizon of the MPC problem will shrink, successively
causing a reduction of the sampling period every time the trajectory is recalculated
online [Ghazaei Ardakani et al., 2019].

Figure 1. Franka Emika Panda robot used in the experiments.

In the context of robot trajectory reprogramming, it is convenient that a human
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operator guides the robot through direct interaction [Capurso et al., 2017], which is
known as kinesthetic teaching [Wrede et al., 2013] or lead-through programming
(LTP), throughout the entire trajectory or parts of it. For an operator to be able to
teach the robot, it is necessary to apply force on the robot end-effector or links. In
this situation, the human operator should be comfortable with the physical interac-
tion with the robot. Thus, it is important to be familiar with the force/torque required
for leading the robot. Furthermore, the online MPC trajectory recalculation scheme
is useful in the presence of human-robot interaction (HRI) since, after the human
intervention is over, it can still be possible to reach the robot’s goal pose without
violating the problem’s fixed-time constraint.

Therefore, the necessary force should not vary greatly between different human
interventions. In order to ensure that the force that the operator needs to apply is
always similar, joint stiction should be avoided. Joint static friction, or stiction, oc-
curs when a joint has zero velocity and it becomes locked and constrained against
relative motion [Haug et al., 1986]. This phenomenon is caused by the interactions
between the asperities of the surface in contact in a robot joint, such as gears, bear-
ings, and shafts [Bittencourt and Gunnarsson, 2012].

Dithering has been proven as a successful method to reduce these uncertainties
[Linderoth et al., 2013]. However, it may cause vibration of the robot if the torque
feedforward signal’s amplitude is too high. Another option to avoid stiction, only
available for robots that have more than 6 degrees of freedom (DOF), is to use null-
space motion [Sadeghian et al., 2013]. Null-space motion is a linear combination of
joint angular velocities in an over-actuated robot that causes no change in the end-
effector’s pose (Jb = 0 with b ̸= 0, being J the Jacobian and b the null-space vector)
[Siciliano and Khatib, 2016]. It has previously been used in kinesthetic teaching to
modify the robot’s configuration without altering the end-effector’s pose [Wahrburg
et al., 2016]. However, it can also be added to the trajectory reference to ensure that
no joint remains still during the trajectory execution.

A trajectory generated for a 7 (or more) DOF robot may not necessarily involve
varying the angular position of all of its joints, since it is a redundant system and it
might be able to reach any end-effector’s goal pose by only moving 6 of its joints.
However, there could be an unexpected robot response if the operator tries to move a
stationary joint since the force/torque required will be difficult to predict because of
joint stiction [Haug et al., 1986]. The method that we propose to avoid joint stiction
consists of adding null-space motion to an MPC-generated trajectory reference.

The purpose of this paper is to experimentally analyze the effects of adding null-
space motion to an MPC-generated point-to-point trajectory reference to evaluate
the possible advantages and drawbacks of this method. Moreover, HRI, facilitated
by the addition of null-space motion, would allow the operator to locally modify
the robot’s path, which could be relevant in this context since the trajectory refer-
ence is generated considering only an initial and a final point. The implementation
has been performed on the Panda robot by Franka Emika [Franka Emika, 2019], a
collaborative robot [Colgate et al., 1996], which can be seen in Fig. 1.
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Furthermore, in previous research [Ghazaei Ardakani et al., 2019], an open-loop
strategy was implemented for the online trajectory recalculation where the initial
state of the robot used to solve the MPC problem was estimated using the previous
MPC solution. However, the addition of null-space motion to the MPC-generated
reference may increase the error in the initial state estimation at every trajectory
recalculation period, or metaperiod, and this error will accumulate at every online
recalculation. For this reason, it is also a goal of this paper to evaluate the influence
of joint angular position sensor feedback in the estimation of the initial state of
the robot at the beginning of every metaperiod when adding null-space motion to
an MPC-generated trajectory reference. The use of sensor feedback is referred to
as the closed-loop strategy, as opposed to the previously used open-loop strategy
[Ghazaei Ardakani et al., 2019].

This paper is outlined as follows: Sec. 2 presents the method for solving the
problem that is being considered. Section 3 explains the experimental setup and the
experiments performed, and presents the results obtained. Finally, conclusions are
drawn in Sec. 4.

2. Methods

In this section, we introduce the MPC formulation used for trajectory generation
and explain a strategy to add null-space motion to it. The goal of the trajectory-
generation formulation used is that the robot reaches a final configuration under a
time constraint. Additionally, we outline a hybrid dual-mode controller that would
allow to switch between an MPC-based trajectory-following controller with null-
space motion, and an admittance controller for human interaction.

2.1 Trajectory Generation Using MPC
The motion plan generated by MPC consists of a sequence of joint angular velocity
references, since the robot’s internal controller takes care of applying the necessary
torques to each of the joints. Therefore, the optimization problem can be formulated
in the joint space of the robot, using the robot’s joint configuration q ∈R7 since the
robot has 7 joints, instead of formulating the problem in terms of the robot end-
effector pose, ξ ∈ SE(3), which is composed by the end-effector’s position and
orientation.

The initial and final joint configurations, q0 and qF , of the problem are obtained
from the initial and desired end-effector poses, ξ0 and ξF , respectively, by means of
inverse kinematics [Corke, 2013]:

q = K −1(ξ ) (1)

Since this problem considers a 7 DOF robot, there will be an infinite number of
solutions. Therefore, redundancy can be conveniently exploited to meet additional
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constraints on the kinematic control problem in order to obtain greater manipula-
bility in terms of manipulator configurations, interaction with the environment, and
null-space motion.

Moreover, since the robot is equipped with an internal controller that allows a
velocity-reference control mode and we assume good tracking performance without
exceeding the torque limits [Bäuml et al., 2010], the MPC does not need to use
a complex nonlinear robot dynamic model where the torque is the input, and a
simpler kinematic linear model is considered where the motion is defined in terms
of position, velocity, and other higher-order time derivatives of position [Ghazaei,
2016]. Also, the internal controller reduces the effect of dynamic coupling between
joints by means of torque feedforward.

Then, as in previous research [Ghazaei Ardakani et al., 2019], the continuous-
time model chosen can be constructed by multiple decoupled chains of integrators.
Thus, the continuous-time state vector, xc ∈ R21, is composed by the angular posi-
tion, qi, velocity, q̇i, and acceleration, q̈i, of each of the robot joints i = 1, . . . ,7:

xc =
[
q1 q̇1 q̈1 . . . q7 q̇7 q̈7

]T (2)

The continuous-time linear model can thus be written as:

ẋc(t) = Acxc(t)+Bcuc(t) (3)
yc(t) = Ccxc(t) (4)

with
Ac = blkdiag([Ãc, . . . , Ãc]), Bc = blkdiag([B̃c, . . . , B̃c])

and Cc = I21, where I21 is the identity matrix in R21x21, blkdiag(·) forms a block
diagonal matrix from the given list of matrices, Ac ∈ R21x21, Bc ∈ R21x7, and

Ãc =

0 1 0
0 0 1
0 0 0

 , B̃c =
[
0 0 1

]T
The continuous-time input is the angular jerk of the joints, uc =

...q ∈ R7.
For the choice of sampling period, h, to discretize the continuous-time linear

system, a sampling period different from the one of the controlled system was cho-
sen for the discretization of the kinematics in the optimization. Then, a linear in-
terpolation of the calculated input sequence is used to provide references at the
sampling rate of the robot [Ghazaei Ardakani et al., 2019]. This justifies the use
of a predictive first-order-hold (FOH) sampling method [Åström and Wittenmark,
2013]:

xk+1 = Φxk +
1
h

Γ1uk+1 +

(
Γ− 1

h
Γ1

)
uk (5)

yk = Cxk (6)
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with

Φ = blkdiag([Φ̃, . . . ,Φ̃]), Γ1 = blkdiag([Γ̃1, . . . , Γ̃1]),

Γ = blkdiag([Γ̃, . . . , Γ̃])

where Φ ∈ R21x21, Γ1,Γ ∈ R21x7, and:

Φ̃ =

1 h h2/2
0 1 h
0 0 1


Γ̃ =

[
h3/6 h2/2 h

]T
Γ̃1 =

[
h4/24 h3/6 h2/2

]T
C = Cc

As developed in previous research [Ghazaei Ardakani et al., 2019], the discrete-
time model obtained from the FOH sampling method (5), (6) can be rewritten in the
standard form by using a new discrete state variable, ζ ∈ R21:

ζk+1 = Aζk +Buk (7)
yk = Cζk +Duk (8)

where

A = Φ, B = Γ+
1
h
(Φ− I21)Γ1, D =

Γ1

h
Since yk = xk because of (6) and C = I21, we can from (8) obtain the relation:

xk =Cζk +Duk (9)

It should be mentioned that the input u is the discretized counterpart of uc, and
the discrete controlled variable x is the discretized counterpart of xc. On the contrary,
the discrete-time state ζ is not a discretized version of any variable found in the
continuous-time state-space system formulation (3), (4).

Moreover, the quadratic cost function chosen for solving this problem at time
step k is:

Vk(Uk) =
k+H

∑
j=k+1

xT
j Qx j +

k+H−1

∑
j=k

uT
j Ru j (10)

where Uk = [uk, . . . ,uk+H−1] ∈ R7xH is the input signal sequence over the control
horizon of H steps that minimizes the cost function over the MPC prediction hori-
zon of H steps at every metaperiod, and Q ∈R21x21 and R ∈R7x7 are positive semi-
definite weight matrices that penalize the controlled variables and inputs, respec-
tively.
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This optimization problem is subject to the discrete-time model of the system
(7), (9). Additionally, a hard constraint on the value of the discrete-time final con-
trolled variables is used to ensure that the robot reaches the desired configuration at
the end of the trajectory:

xk+H = xgoal (11)

In addition, a set of linear constraints must be included to bound the admissible
range of the inputs and controlled variables:

F [uT
k , . . . ,u

T
k+H−1]

T ≤ f (12)

G[xT
k+1, . . . ,x

T
k+H ]

T ≤ g (13)

The choice of the cost function as convex, as well as a linear model and convex
constraint sets, makes the whole problem convex, which is beneficial for the com-
putation of the problem since if a solution exists, it is the globally optimal [Boyd
et al., 2004].

Finally, this convex problem is solved at every trajectory recalculation period,
or metaperiod. The sampling period, h, used in the discretization is equal to:

h =
TF − tk

H
(14)

where H is the number of discrete steps in the prediction horizon, TF is the final time
where the goal state must be reached, and tk is the time when the robot starts using
the newly recalculated trajectory reference. As mentioned earlier, the continuous-
time prediction horizon of the problem will shrink since, as time goes by, tk will
increase while the final time TF and H are constant, thus increasing the resolution
of the computed trajectory as the goal state, xgoal, is approached.

2.2 Null-Space Motion Addition to the Reference Trajectory
The manipulator’s Jacobian matrix, J(q) ∈ R6x7, maps the joint angular velocities,
q̇, to the end-effector’s twist, γ = [ωT,vT]T ∈ R6, with v and ω denoting the linear
and angular velocity of the end-effector, respectively:

γ = J(q)q̇ (15)

Therefore, null-space motion is constructed by using the null-space vector of this
Jacobian matrix:

q̇ = J†(q)γ +N(q)q̇a (16)

where the matrix N(q)= I7−J†(q)J(q)∈R7x7 projects the additional arbitrary joint
angular velocity, q̇a, into the null space so that it is independent of the end-effector
Cartesian motion [Corke, 2013].

The first term of (16) is the relationship between the joint velocity q̇ and the
end-effector’s twist γ by means of the manipulator Jacobian (15), and superscript †
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denotes the Moore-Penrose pseudoinverse matrix given by J† = (JTJ)−1JT [Ben-
Israel and Greville, 2003]. This term is shared for both 6 and 7 DOF robots, although
in the case of 6 DOFs, the Jacobian is a square matrix. However, the second term of
(16) is the null-space motion, which only appears in redundant manipulators. The
null-space motion unitary vector is calculated as:

q̇nsu =
N(q)q̇a

∥N(q)q̇a∥
(17)

Also, since the Jacobian matrix is particular for each robot configuration, this vector
should be sampled in real-time.

The null-space unitary vector given in (17) has to be scaled before being in-
cluded with the MPC-generated angular velocity references. A sinusoidal signal has
been chosen to smoothly transition between positive and negative scaling values to
avoid reaching any joint limit. Its frequency depends on the length of the trajectory
execution, to make sure that the first and last velocity references sent are equal to 0.
Additionally, α ∈ R is a constant used to scale its amplitude:

q̇NS = q̇nsuα sin
(

2πt
TF

)
(18)

Then, null-space motion is calculated at each robot sampling instant and added
to the velocity references calculated by the optimization to avoid joint stiction:

q̇ref = q̇MPC + q̇NS (19)

where q̇ref is the velocity references sent to the robot, q̇MPC is the linearly interpo-
lated velocity reference sequence calculated by the MPC, and q̇NS is the null-space
motion component obtained from (18).

Moreover, the controlled-variable constraint (13) should consider the superpo-
sition of the null-space motion on the MPC solution to avoid any possible constraint
violation. Therefore, when solving the MPC optimization the joint-velocity range
should be reduced for every joint in a proportional way to the maximum possible
joint-velocity component corresponding to the added null-space motion. With this
approach, it is guaranteed that the joint-velocity limits are fulfilled. Also, the joint-
acceleration range should be conservative to never exceed the joints’ torque limits
[Bäuml et al., 2010].

Finally, joint angular position sensor feedback can be used to reduce the mis-
match between the estimation of the initial state used for the online optimization-
problem calculation at every metaperiod and its real value caused by the addition of
null-space motion to the MPC-generated trajectory. Therefore, a closed-loop form
of the problem is proposed to obtain a more accurate estimation of the initial state
to be used in the MPC. However, data samples from the robot’s sensors cannot be
directly used as the initial state, since there is a planned computational delay that
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accounts for the time required to solve the optimization problem in the MPC. There-
fore, in order to provide a precise initial state estimation it is necessary to use the
system’s model described by (7) and (9) to estimate the state evolution between the
sampling time of the sensor feedback and the time where the new trajectory velocity
references are deployed to the system.

2.3 Human-Robot Interaction (HRI)
Even though the main focus of this research is to analyze the effects of a method that
facilitates HRI by reducing joint stiction, we also provide an illustrative example
of one possible way that a human operator can interact with the robot. Then, we
outline a hybrid dual-mode controller where the robot receives commands from the
MPC-generated trajectory that includes null-space motion (19), or from human-
robot interaction, but never from both sources simultaneously, as summarized in
Algorithm 1.

Since human input is, in this scenario, a path correction to the previously gen-
erated MPC trajectory reference, admittance control [Wahrburg et al., 2016] is a
suitable strategy for the human-interaction control mode. Another common human-
robot interaction control strategy such as compliance control [Hogan, 1985] is less
appropriate for this application since its virtual spring component would try to bring
the robot closer to the MPC reference rather than allowing the human to freely op-
erate the robot.

If a joint-torque interface is available, a simple way to implement admittance
control is to supply the robot with joint torque commands. For this, the rigid-body
dynamics of the robot is used [Siciliano and Khatib, 2016]:

M(q)q̈+C(q, q̇)q̇+g(q)+ τfric = τmot (20)

where M(q) ∈ R7x7 is the generalized inertia matrix, C(q, q̇) ∈ R7x7 describes the
Coriolis and centripetal forces effects, g(q) ∈ R7x1 captures the gravity-induced
torques, and τfric ∈ R7x1 and τmot ∈ R7x1 represent the friction and motor torques,
respectively.

Then, if the admittance controller is active (Algorithm 1, Line 2), it will send
commanding torques to joint motors that are equal to the sensed external joint
torques, τext ∈ R7x1:

τmot = τext (21)

where part of the commanded joint torque is used for robot motion, but a fraction of
the commanded joint torque is used to overcome joint friction, as seen in Eq. (20).

Friction is present in any element that involves relative motion in robot mech-
anisms. All friction models have in common a significant change of friction mag-
nitude in the zero-velocity vicinity, as shown in Fig. 2, which is the major concern
of friction compensation [Cai and Song, 1993; Karnopp, 1985; Freidovich et al.,
2009; Shiriaev et al., 2003]. For this reason, avoiding joint stiction is helpful for
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the human operator that interacts with the robot to predict beforehand the necessary
force that he/she should apply to the robot to achieve the desired displacement.

Figure 2. Joint friction as a function of joint angular velocity.

Finally, a switching mechanism between both control modes (Algorithm 1,
Line 1), trajectory following with null-space motion addition and admittance con-
trol, based on external torque sensor feedback, can be either automatic, following a
collision detection and classification method (a summary of different strategies can
be found in [Cioffi et al., 2020]), or manually determined by the human operator.

Algorithm 1 Hybrid Dual-Mode Controller
1: if human is interacting with robot then
2: HRI mode: Send τext (21) as command to the robot’s torque-reference inter-

face.
3: else
4: Trajectory-following mode: Send q̇ref (19) as command to the robot’s

velocity-reference interface.
5: end if

3. Experiments and Results

The experiments presented in this section evaluated the performance of the addition
of null-space motion onto an MPC-generated trajectory.

3.1 Implementation and Experimental Setup
The robot used in the experiments is the Franka Emika Panda [Franka Emika, 2019],
a 7-DOF robotic arm. In addition to the joint velocity interface, the robot’s internal
controller also allows the operator to send joint position and torque commands. The
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Panda robot has a sampling rate of 1 kHz, and therefore, references should be sent
to it every 1 ms. A photo of the robot used is shown in Fig. 1.

This collaborative robot, or cobot [Colgate et al., 1996], is designed to share its
workspace with humans in a safe manner, and it allows the human operator to set
different maximum external-torque thresholds for each of the control modes so that
if an accidental collision between the robot and the operator happened, the robot
would perform a security shutdown.

As for the design choices for trajectory generation, the MPC prediction horizon
was chosen to be equal to H = 25 as a trade-off between trajectory resolution and
real-time computational cost, and the recalculation metaperiod was equal to 0.1 s.
Also, the weighting matrix Q penalized the joint velocity and acceleration, but not
the joint angular position, since there was no specific desired position between the
initial and the final states [Ghazaei Ardakani et al., 2019], and since a hard con-
straint (11) was imposed on the final joint position, Q = blkdiag([Q̃, . . . , Q̃]) where
Q̃ = diag(

[
0 1 1

]
). Additionally, the input was less penalized than the states,

R = 0.001 I7.
The first experiment presented analyzed the detrimental effects of slowing the

sampling rate of the null-space vector of the Jacobian matrix. Then, the second ex-
periment showed the suitability of using sensor feedback when adding null-space
motion to MPC-generated trajectory references. Moreover, the third experiment fo-
cused on the results obtained for a closed-loop, fast null-space sampling approach
where one of the joints would have remained static if null-space motion had not been
included. Finally, the last experiment evaluated the dispersion of friction torque as
a function of the joint angular velocity.

3.2 Experiment 1: Analysis of the effects of the null-space
sampling rate on the trajectory accuracy

This experiment studied the effects of null-space discretization by performing the
same trajectory in different runs, the only difference being that each run was per-
formed at a different sampling rate of the null-space vector of the Jacobian matrix
(1, 2, 5, and 10 ms). Since the null-space vector depends on the robot’s configura-
tion, a slower null-space sampling increases the difference between the null-space
vector that is used for the velocity reference and the actual null-space vector.

The robot’s initial configuration, randomly chosen, was, in radians:

q0 =
[
0 −0.79 0.0 −2.36 0.0 1.57 0.0

]
(22)

Moreover, the trajectory lasted 10 s, enough time to clearly see the detrimental
effects of a slower sampling rate of the null-space vector. Also, the trajectory con-
sisted only of null-space motion, and the unitary null-space vector was scaled by a
sinusoidal wave of frequency equal to 1 Hz and an amplitude constant, α , equal to 3
in (18). Therefore, at the end of the trajectory, the end-effector should ideally have
the same pose as the initial one. Furthermore, an open-loop strategy was used for
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this experiment in an attempt to isolate the effects of having an insufficient sampling
frequency of the null-space vector.

The temporal evolution of the robot’s pose has been analyzed using
Figs. 3 and 4. Figure 3 shows the temporal evolution of the end-effector’s Cartesian
coordinates and Fig. 4 the temporal evolution of the end-effector’s orientation, by
means of the Euler rotation angles (ZYX) from the robot base coordinate refer-
ence system to the end-effector’s coordinate reference system. It can be observed
how slowing the sampling rate caused the robot to drift from the desired constant
end-effector’s Cartesian pose.

Figure 3. Experiment 1 — End-effector’s position with respect to base frame.

Consequently, the null-space vector should be updated at the fastest update rate
available, which in this case was the robot’s sampling frequency (1 kHz). How-
ever, varying the null-space velocity references in intervals of 1 ms still introduced
a slight deviation from the planned trajectory, as seen in Figs. 3 and 4. For this
reason, the next experiment considered a closed-loop approach to compensate the
disturbances introduced by the approximate null-space motion.

3.3 Experiment 2: Comparison of the open-loop and the
closed-loop strategies

Sensor feedback from joint position sensors can be used when updating the initial
state estimation for online optimization in the MPC to account for the degrading
effects of low-rate null-space sampling observed in the previous experiment. To
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Figure 4. Experiment 1 — End-effector’s orientation with respect to base frame.

show the benefits of using sensor feedback, it was necessary to compare the results
of the implementation of null-space motion in the closed-loop MPC strategy versus
the open-loop MPC strategy.

Several reference trajectories with different initial and goal robot configurations
were used for this experiment. Additionally, each of them was executed five times.
These trajectories combined null-space motion and MPC-generated trajectory refer-
ences. Also, the null-space vector was sampled every ms and the sinusoidal scaling
function’s period was equal to the length of the trajectory.

The results of Experiment 2 are presented in Table 1, which shows the mean
and standard deviation of the end-effector’s Cartesian position error at the end of
the trajectory. The following expression was used for calculating this error:

e =
√

(xG− xF)2 +(yG− yF)2 +(zG− zF)2 (23)

where the subindex G refers to the goal position and the subindex F refers to the
final position end-effector coordinate of the corresponding trial.

Table 1. End-effector’s Final Cartesian Position Errors [mm]

CL - NS CL OL - NS OL
Mean 1.43 0.48 5.97 1.18

Std. Dev. 0.78 0.25 0.39 0.11
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In Table 1, CL and OL refer to the closed-loop and the open-loop implemen-
tations, respectively, and NS to the runs that included null-space motion. Several
assertions can be made based on Table 1. First, when no null-space motion was
added, the closed-loop strategy provided a more precise final Cartesian position,
since there was a better initial state estimation at each MPC trajectory recalcula-
tion. Also, in both open-loop and closed-loop scenarios, including null-space mo-
tion was detrimental to the final state precision of the trajectory. Finally, using an
open-loop strategy caused a greater total final Cartesian position error and therefore,
if possible, a closed-loop scheme should be used to implement null-space motion.

3.4 Experiment 3: Null-space motion integration with
closed-loop MPC in a trajectory that would have left one
joint static

Once the two previous sets of experiments had shown the suitability of sampling
the null-space vector as fast as possible and using a closed-loop control strategy
to compensate for the degrading effects of adding null-space motion to an MPC-
generated trajectory reference, the results for the closed-loop controller in one of
the trajectories of Experiment 2 were analyzed.

Figure 5 shows how the addition of null-space motion modified the total velocity
references (19). It can be seen that Joint 3 was not used in the MPC-generated
trajectory, but it was desired to have it continuously moving to avoid its stiction,
thus justifying the addition of null-space motion to the trajectory.

Figures 6 and 7 show the temporal evolution of the end-effector’s position in
Cartesian coordinates and the temporal evolution of the end-effector’s orientation
parameterized in the Euler rotation angles (ZYX) between the robot’s base frame
and the end-effector’s frame, respectively. Even though the velocity references were
different, null-space motion was properly implemented in the MPC trajectory gen-
eration since the temporal evolution of the end-effector pose was very similar in
both trials, and it only showed slight deviations in the y-position in Fig. 6 and in the
x-axis rotation in Fig. 7, which were compensated before the motion was finished.
Therefore, joint stiction in Joint 3 was addressed by adding null-space motion, while
still being able to perform an accurate trajectory under the task time constraints.

3.5 Experiment 4: Friction torque dispersion
The final experiment evaluated the dispersion of the friction torque in a joint as
a function of its angular velocity. For this purpose, the torque-based admittance
controller in Sec. 2.3 was implemented, so that the commanded torque to each of
the joints was equal to their sensed external torque signals. Also, the friction torque
for all joints was estimated by rewriting Eq. (20) as:

τ̂fric = τ̂ext− (M(q̂) ˆ̈q+C(q̂, ˆ̇q) ˆ̇q+g(q̂)) (24)
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Figure 5. Experiment 3 — Joint angular commanded velocities’ evolution.
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Figure 6. Experiment 3 — End-effector’s position with respect to base frame.
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Figure 7. Experiment 3 — End-effector’s orientation with respect to base frame.

where the superscript ˆ denotes a variable that has been estimated using joint posi-
tion or torque sensor data.

Then, the experiment consisted of a human operator leading-through the robot
for 15 s using this torque-based admittance controller. Figure 8 shows the results
in terms of the standard deviation, σ , of the estimated friction torque of a joint in
Eq. (24) with respect to its angular velocity.

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05
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Figure 8. Experiment 4 — Standard deviation of the friction torque as a function
of angular velocity of Joint 3.

The choice of joint and its angular-velocity range, shown in Fig. 8, was related to
the experiment presented in Sec. 3.4, since the motion of Joint 3 was generated only
by null-space motion and had the same angular velocity range, as seen in Fig. 5.

It can be seen that the standard deviation of the friction torque was greater when
the angular velocity of the joint was close to zero: σ(τ̂fric) = 0.13 Nm in the vicinity
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of zero velocity compared to an average value of σ(τ̂fric) = 0.03 Nm in the rest of
the angular velocity range analyzed. Therefore, adding null-space motion to a static
joint can contribute to reducing the friction torque dispersion.

4. Conclusion

We have proposed the addition of null-space motion to an MPC fixed-time point-
to-point online trajectory generation method in order to facilitate kinesthetic teach-
ing in a redundant robot. This approach allows a continuous motion of all joints
throughout the trajectory execution, even if the MPC-generated trajectory does not
include them in its planning, so that joint stiction is suppressed and a human op-
erator can predict the force/torque necessary to move the robot. A reduction of the
friction-torque dispersion has been experimentally observed as a consequence of
adding null-space motion in a static joint.

The discrete-time control of null-space motion has been observed to be sensitive
to discretization approximations of the Jacobian matrix. The experiments performed
have justified the extension of a previously studied open-loop scheme [Ghazaei Ar-
dakani et al., 2019] to a closed-loop scheme and a fast Jacobian matrix sampling
to correct these slight degrading effects on the trajectory execution performance,
thus allowing the addition of null-space motion to the trajectory without causing a
significant loss of final-state accuracy.

An additional benefit of the presented closed-loop strategy is that, if human
intervention takes place during the trajectory execution, the trajectory can be recal-
culated online once human intervention is concluded using an accurate estimation
of the initial state in the MPC problem.
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Fast Contact Detection and Classification for
Kinesthetic Teaching in Robots using only

Embedded Sensors
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Abstract

Collaborative robots have been designed to perform tasks where human coop-
eration may occur. Additionally, undesired collisions can happen in the robot’s
environment. A contact classifier may be needed if robot trajectory recalcula-
tion is to be activated depending on the source of robot–environment contact.
For this reason, we have evaluated a fast contact detection and classification
method and we propose necessary modifications and extensions so that it is
able to detect a contact in any direction and distinguish if it has been caused
by voluntary human cooperation or by accidental collision with a static ob-
stacle for kinesthetic teaching applications. Robot compliance control is used
for trajectory following as an active strategy to ensure safety of the robot and
its environment. Only sensor data that are conventionally available in com-
mercial collaborative robots, such as joint-torque sensors and joint-position
encoders/resolvers, are used in our method. Moreover, fast contact detection
is ensured by using the frequency content of the estimated external forces,
whereas external force direction and sense relative to the robot’s motion is
used to classify its source. Our method has been experimentally proven to be
successful in a collaborative assembly task for a number of different experi-
mentally recorded trajectories and with the intervention of different operators.

© 2022 IEEE. Reprinted, with permission, from 2022 IEEE International Con-
ference on Robot and Human Interactive Communication (RO-MAN), August 29-
September 2, Naples, Italy, pp. 1138–1145.
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1. Introduction

Physical Human–Robot Interaction (pHRI) has become a research topic of major
interest during the later years in the robotics community [Villani et al., 2018]. The
reason behind this is allowing robots to safely work in partially unknown environ-
ments where humans and robots can cooperate. One way that human operators can
cooperate with the robot is through direct interaction, known as kinesthetic teaching
[Wrede et al., 2013], which is useful for robot trajectory reprogramming [Karlsson
et al., 2017]. Consequently, collaborative robots have increased in popularity since
their lightweight, compliant design is especially convenient when robots share their
workspace with humans.

As part of the desire of increasing the flexibility and versatility of robots, it is
common to find applications (e.g., collaborative assembly [Sadrfaridpour and Wang,
2018]) where human cooperation is not the only contact that the robots may expe-
rience with their environment, and where unexpected collisions with obstacles may
also occur. For this reason, it is essential that robots are capable of quickly distin-
guishing if a contact has occurred, and if so, whether it has been caused by human
cooperation (defined as intentional) or by an obstacle collision (defined as acciden-
tal). Therefore, contact detection and classification, while the robot behaves in a
compliant way with respect to its environment, is a key concern in these applica-
tions.

1.1 Previous Research
As summarized in [Cioffi et al., 2020], there are two main sets of methods, which
are primarily based on external force/torque estimation, being used to detect and
classify contacts: using machine-learning approaches [Golz et al., 2015; Popov et
al., 2017; Briquet-Kerestedjian et al., 2019; Cioffi et al., 2020], or analyzing their
frequency content [Geravand et al., 2013; Kouris et al., 2016; Kouris et al., 2018].
In such scenarios, a fast detection and classification is essential since a successful
robot trajectory reprogramming should depend on it [Karlsson et al., 2017; Wrede
et al., 2013; Haddadin et al., 2008].

Machine-learning approaches have shown to provide promising results for con-
tact detection and classification, but their fast execution may be challenging. In
[Golz et al., 2015], the authors used the entire contact event to extract features
that allow to discriminate between intended and unintended contacts. An exten-
sive classification approach was presented in [Popov et al., 2017], but it cannot run
in real-time. In [Briquet-Kerestedjian et al., 2019], the authors were able to classify
a detected contact in a minimum of 160 ms. Finally, an online classification method
using machine learning was proposed in [Cioffi et al., 2020], but it is operator de-
pendent and needs the joint load-torque signals of a previous, uncollided, execution
of the trajectory.

In contrast, frequency-response analysis methods can achieve a faster detection
and classification: in [Geravand et al., 2013], the authors detected contacts in less
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than 50 ms, and the authors of [Kouris et al., 2016; Kouris et al., 2018] detected
and classified contacts in a single force direction in less than 10 ms. However,
frequency-based methods come with their own challenges, one of the more sig-
nificant being the difficulty of tuning their thresholds and cut-off frequencies. In
[Geravand et al., 2013], six different thresholding parameters per joint were needed
to classify the contact situation based on filtered motor-current signals, which, un-
fortunately, are not available in some robot controller interfaces.

Moreover, these frequency-based contact-detection and classification methods
are based on the premise that human voluntary cooperation with the robot presents
forces with a lower rate of change than accidental collisions, and therefore, their
frequency characteristics can be differentiated: cooperation will present lower fre-
quency components than the accidental collisions. To sustain this assumption, the
authors in [Kouris et al., 2016] and [Kouris et al., 2018] presented experimental data
for one force direction recorded from an external force sensor mounted between the
robot’s flange and a handle.

1.2 Problem Formulation
In this paper, we address the problem of fast contact-detection and classification
for kinesthetic teaching applications in collaborative robots relying only on avail-
able information provided by its embedded sensors, which in most cases are the
joint motor encoders/resolvers that are able to provide joint angular positions (and
joint angular velocity and possibly acceleration by differentiation), and the joint-
torque sensors that are used to measure the joint applied torques. These variables
are then used to estimate the external forces/torques applied to the robot. We refer to
[Haddadin et al., 2017] for a summary of different methods to obtain these external
forces/torques, and especially for the justification of the generalized momentum ob-
server that was used in our experiments. Moreover, robot compliant control is used
to ensure safety in a contact-rich environment and to allow human cooperation.

To solve the problem addressed in this paper, while ensuring fast contact detec-
tion, we evaluated the use of frequency-response analysis of the estimated external
force and the benefits of comparing the robot Cartesian motion and its sensed ex-
ternal force. The method should allow a fast detection and to distinguish between
human cooperation and accidental collisions in any contact direction for a collab-
orative assembly task using data only from robot embedded sensors. To evaluate
this method, several experiments were performed, using the Panda robot by Franka
Emika [Franka Emika, 2019] with a peg-in-hole setup as seen in Fig. 2.

1.3 Outline
The paper is organized as follows: Sec. 2 presents the method for solving the prob-
lem described in Sec. 1. Section 3 explains the experiments performed. Then, Sec. 4
presents the results obtained. Finally, a discussion is included in Sec. 5 and conclu-
sions are drawn in Sec. 6.
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2. Method

First, we introduce the robot compliance controller used. Then, we evaluate the use
of frequency-based contact detection and classification for our problem. Finally, we
propose modifications and extensions to ensure contact detection in any direction
and classification between human cooperation and obstacle collision for a collabo-
rative assembly task.

2.1 Torque-Based Cartesian Impedance Control
External forces may be applied to the robot at any moment while executing a de-
sired trajectory. Therefore, the robot must behave in a compliant way toward these
forces to avoid any harm of both the robot and the colliding object. Also, a compli-
ant robot behavior allows direct human cooperation without the need of switching
to a dedicated admittance controller. The aim of a Cartesian impedance controller
[Hogan, 1985] is to establish a mass-damper-spring relationship between the Carte-
sian pose variation from its reference, ∆ξ , and the Cartesian force, F [Albu-Schäffer
and Hirzinger, 2002]:

F = Iξ̈ +Bξ̇ +K∆ξ (1)

where I, B, and K are the virtual inertia, damping, and stiffness matrices, respec-
tively. Further, ∆ξ =

[
∆pT ∆εT

]T, where the translation variations in the Cartesian
pose are calculated with ∆p = pd− p̂, and the rotation variations are calculated with
∆Q = Q̂−1Qd , ∆ε being the vector part of the unit-quaternion representation of the
rotation variation with respect to the base frame, ∆Q. Here, ξ̂ =

[
p̂T Q̂T

]T is
the estimated Cartesian pose of the robot end-effector computed from joint angle
measurements, and ξd =

[
pT

d QT
d

]T is the reference Cartesian pose of the robot
end-effector.

With F from Eq. (1), the task torque is calculated as:

τtask = JT(q)F (2)

where J(q) is the Jacobian relative to the base frame of the robot and q are the
sensed joint angular positions. Finally, the contribution from Coriolis and cen-
tripetal forces, C(q, q̇), is added to the task torque to obtain the reference torque:

τref = τtask +C(q, q̇)q̇ (3)

where q̇ represents the sensed joint angular velocities. The gravitational-forces term
does not appear in Eq. (3) since the robot’s internal controller takes care of the
gravity compensation.

2.2 Frequency-Based Contact Detection and Classification
Previous research on frequency-based contact detection and classification is based
on the idea that the frequency characteristics of motor currents or external force
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acting on the robot in an accidental collision situation are different from the ones
obtained while a human is cooperating with the robot [Geravand et al., 2013; Kouris
et al., 2016; Kouris et al., 2018]. For a sliding time window, if the p–norm of the
discrete Fourier transform of the force signal over a given frequency interval is
greater than a user-defined force threshold, Fth, then it is considered that the contact
should be classified an accidental obstacle collision [Kouris et al., 2016; Kouris et
al., 2018]. If not, then it is classified as interference from human cooperation.

Figure 1 illustrates the L∞-norm of the frequency content of the force signal in
the frequency range between ωmin and ωmax using a sliding window of N samples at
every time step, as suggested in [Kouris et al., 2016], but using the joint-torque sen-
sors embedded in the robot to estimate the external force. This frequency range has
an upper limit determined by the Nyquist frequency (ωmax ≤ 1/2h) and a lower limit
determined by the measurement duration (ωmin ≥ 1/Nh), with h being the sample
period. Moreover, the Cartesian impedance control parameters used are the same as
in Sec. 3.1.
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Figure 1. Temporal evolution of the L∞-norm of the frequency content for all three
force directions: FX , FY , and FZ , in a collaborative assembly task (peg-in-hole).
The frequency range used is ω ∈ [10,100] Hz, and the temporal sliding window is
N = 500 samples long.

In the trajectory used for Fig. 1, the robot transitions from free, undisturbed
motion (white background), to obstacle collision (red background), and then to hu-
man cooperation (green background). The obstacle collision, which occurs along
the Z-direction, can be distinguishable from the free motion when analyzing the
frequency content that belongs to FZ . However, human cooperation also causes
an identifiable spike in this same force direction later in the trajectory. Therefore,
when the experiments are performed for a robot with compliant behavior using the
joint-torque sensors embedded in the robot instead of external force sensors, the
distinction of frequency content between accidental collisions and cooperation be-
comes uncertain, which motivates the proposal of modifications and extensions to
the method.
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2.3 Contact Detection
From the analysis of Fig. 1, it can be concluded that force-thresholding can be use-
ful for contact detection, but extra variables are needed for classifying the contact if
only joint-torque sensors are used. Thus, our proposal consists of a decoupled pro-
cess between contact detection and classification. For contact detection, the method
presented in [Kouris et al., 2016; Kouris et al., 2018] was extended to all three force
directions. Therefore, the proposed detection process consists of evaluating if

F̂ i
ω > Fth (4)

for i ∈ {X ,Y,Z}, where Fth is the selected frequency-based threshold valid for any
direction i for each time step, and F̂ i

ω is equal to the L∞-norm of the discrete Fourier
transform of the external sensed force along direction i in the frequency range be-
tween ωmin and ωmax using a sliding window of N samples.

The contact-detection method, which is called at each time step, has been sum-
marized in Algorithm 1. If the robot is moving in free motion (STATE = FREE),
the condition (4) is evaluated in all directions (Algorithm 1, Line 2). If this con-
dition is true, a contact is detected, and the classifier takes care of evaluating if
the contact is accidental or if a human operator is collaborating with the robot
(Algorithm 1, Line 5; detailed in Algorithm 2). The contact classifier uses the sys-
tem’s state at the exact time of the contact, which is obtained (in Algorithm 1, Line
4) by performing a backwards search in the external force signal from the contact-
detection time along the contact’s direction (determined in Algorithm 1, Line 3).

Algorithm 1 Contact Detection
1: if STATE == FREE then
2: if Check contact == TRUE then
3: Get contact direction
4: Get contact time
5: STATE← Contact Classifier (Algorithm 2)
6: end if
7: else if STATE == COLL then
8: Get contact direction
9: if Check new contact direction == TRUE then

10: Get contact time
11: STATE← Contact Classifier (Algorithm 2)
12: end if
13: Update active collision directions
14: else if STATE == COOP then
15: if Check cooperation stopped == TRUE then
16: STATE← FREE
17: end if
18: end if
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Moreover, while an accidental collision is occurring (STATE = COLL), an ad-
ditional contact could be detected (whose source can be human cooperation) if the
force threshold is violated again along any direction, with the exception of the direc-
tions that previously experienced the accidental collision (Algorithm 1, Line 9). The
contact-detection algorithm will update the active collision directions if a collision
along a new direction is detected or if the value of a previously collided direction
has stopped violating the threshold (Algorithm 1, Line 13).

Furthermore, when a contact has been labelled as human cooperation
(STATE = COOP), the contact-detection algorithm will only determine that the
cooperation has stopped if the forces along all three directions are below the force
threshold, Fth (Algorithm 1, Line 15).

2.4 Contact Classification
In contrast with contact detection, the frequency content of the estimated external
force is not enough to classify the contact event when only using embedded sensors
(as indicated in Fig. 1). Therefore, to properly categorize the contact in a kinesthetic
teaching application, knowledge of the performed robot motion can be used.

Our classifier algorithm is based on two assumptions:

• Assumption A1: An accidental collision of the robot end-effector or attached
tool with a static obstacle must occur in the direction of the movement and
with the opposite sense from the one of the motion.

• Assumption A2: Human cooperation should have less dominant external
force components in the direction of the robot’s motion because of the typical
spatial layout and interaction of a human operator and a robotic manipulator
in kinesthetic teaching.

These two ideas are used to formulate an algorithm next, along with the explanation
of the steps of the classifier algorithm.

The contact classifier will be activated once contact has been detected. The
contact-classifying algorithm has been summarized in Algorithm 2. The first step is
to analyze if, for any of the external forces sensed that have trespassed their thresh-
old (where inequality (4) holds), the force is being applied in the same sense as the
motion at the moment that this force signal started rising (Algorithm 2, Line 1). If
this is the case, it is straightforward to affirm that human cooperation is occurring
(A1):

sign
(

˙̂F i
ext

˙̂
ξ

i
)
> 0 (5)

only when F̂ i
ω > Fth, i∈ {X ,Y,Z}, Fth being the selected frequency-based threshold,

and ˙̂
ξ being the time derivative of the estimated Cartesian pose of the robot end-

effector. The time derivative of the estimated external force along direction i, ˙̂F i
ext,
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is preferred compared to the estimated external force along direction i, F̂ i

ext, since
the time step where this condition is evaluated is when the force signal starts rising.

The second step is, if the inequality (5) is not true for any of the detected con-
tact directions, to perform a new test that evaluates the direction of the external
force vector relative to the Cartesian velocity vector (Algorithm 2, Line 4). The rea-
son for this is that compared to intuitive human cooperation for kinesthetic teaching,
the largest external force components in accidental collisions must come from di-
rections where the robot’s velocity is the highest (A2):

||⃗u ˙̂Fext
⊘ u⃗ ˙̂

ξ
||2 < γ (6)

where u⃗ j represents a unitary vector of variable j, γ is the threshold coefficient, and
|| · ||2 is the L2-norm. Also, ⊘ represents the Hadamard division: C jk = A jk/B jk if
C = A⊘B. The smaller the threshold coefficient γ is, the closer the external force
will be when compared to the Cartesian velocity. If the inequality (6) is evaluated
as true, the contact is classified as accidental collision.

Moreover, the inequality (6) is equivalent to evaluating if the unitary external
force vector is contained in the ellipsoid defined by the robot’s unitary Cartesian
velocity vector:

x2

a2 +
y2

b2 +
z2

c2 < 1 (7)

where [x,y,z] = u⃗ ˙̂Fext
and [a,b,c] = γ u⃗ ˙̂

ξ
.

Furthermore, unitary vectors have been chosen to avoid having a dependence on
the trajectory or on the applied force magnitude, since the classification should be
trajectory-independent and also human-operator independent. Therefore, the algo-
rithm only relies on the external force-vector direction with respect to the tangential
direction of the motion.

Algorithm 2 Contact Classification
1: if A1 == TRUE then
2: STATE← COOP
3: else
4: if A2 == TRUE then
5: STATE← COLL
6: else
7: STATE← COOP
8: end if
9: end if

3. Experiments

The goal of the experiments was to obtain realistic data of a collaborative assembly
task where human operators were instructed to cooperate intuitively with the robot
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to evaluate the contact detection and classification method for kinesthetic teaching
applications proposed in Sec. 2.

3.1 Experimental Platform
The experiments were performed using the Panda robot by Franka Emika [Franka
Emika, 2019] mounted onto a table; the robot was able to record with a sample
frequency of 1 kHz (sample period h = 1 ms), using the setup shown in Fig. 2.
As mentioned earlier, we only used data from embedded sensors to estimate the
variables of interest, ξ̂ and F̂ext, which were used for selecting and evaluating the
threshold parameters for contact detection, Fth, and contact classification, γ . The
end-effector Cartesian pose was obtained by applying forward kinematics, K , to
the joint angular-position readings provided by the joint encoders [Corke, 2013]:

ξ̂ = K (q) (8)

Moreover, the estimate of the external forces was obtained from the external joint-
torques, which were estimated based on the generalized momentum observer for
the Panda robot that was introduced in [Haddadin et al., 2017], by using the Jaco-
bian relative to the base frame of the robot in an inverse way compared to the one
presented in Eq. (2):

F̂ext = J†(q)τ̂ext (9)

where the superscript † denotes the Moore-Penrose pseudoinverse.
Furthermore, the Cartesian impedance control parameters (K, B, and I) of

Eq. (1) were chosen to be as follows:

• The stiffness K was equal to 150 [N/m] for the translational degrees of free-
dom and equals to 10 [N/rad] for the rotational degrees of freedom.

• The damping B was equal to 2
√

K.

• The inertia I was equal to 0.

The relationship between the Cartesian position variation and the task force will,
with these parameters, behave along all degrees of freedom as a first-order system
with a time constant equal to 2/

√
K [Lawrence, 1988]. This way, we ensured sta-

bility of the system and proper following of the trajectory reference (overdamped
behavior).

3.2 Experimental Procedure
A cylinder insertion, or peg-in-hole, was the collaborative assembly task chosen for
the experiments, as shown in Fig. 2. The reason for the selection of this task was
that it presents a high amount of interaction with the environment: the hole where
the piston must be inserted was narrow in comparison to the piston, and also the
piston must make a vertical descent to avoid contacts. Therefore, the probability of
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an accidental collision was high if the reference trajectory was not accurate or if the
controller introduced uncertainty in the motion. Furthermore, it is an application
where the aid of a human operator can be valuable and it did not require a high level
of skill for the operator.

Figure 2. Setup for the collaborative assembly task (peg-in-hole) used for the ex-
periments. Figure 2-A (top) shows an accidental collision scenario, and Fig. 2-B
(bottom) shows a human cooperation event. The unitary vector of external forces
(white) and the unitary vector of Cartesian velocity (blue) were used in the contact-
classification algorithm proposed in Sec. 2.4. A video of the experiments can be
found at [Experiments video 2022].

The trajectories used range from almost-ideal trajectories, where the robot could
complete the insertion task and the only collisions were with the borders of the
hole of the box, to failed trajectories where the robot collided with the side of the
box and the robot was not able to overcome this collision and insert the piston
in the hole without human intervention. Other trajectories used were flawed with
manifest collisions with the top of the box, and depending on the nature of the
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trajectory, the robot might be able to find its way to the hole with no human input.
All trajectories were recorded several times using different initial poses to avoid a
trajectory-dependent contact detection and classification.

The desired trajectory of Cartesian poses, ξd(t), were recorded before the exper-
iments by leading through the robot and recording the Cartesian pose of the robot
end-effector. These trajectories served as the reference for the Cartesian impedance
controller of Eq. (1). The reference trajectory was solely time-dependent and did
not rely on the robot’s current pose, since ideally, the contact-detection and classifi-
cation algorithm should be implemented in a time-constrained scenario.

Additionally, regarding human cooperation, to test the validity of the assump-
tions proposed in Sec. 2.4 for a kinesthetic teaching application, the operators were
instructed to cooperate in an intuitive manner with the robot to either help the robot
with its cylinder insertion task or to push/pull the robot out of its trajectory to avoid
colliding with the box. Moreover, since human cooperation in a kinesthetic teach-
ing application may occur at different points of the trajectory in each of the runs,
some of the human interventions occurred while the piston was in collision with
the box and others while the robot was in free motion. Also, for the sake of data
completeness, the operators were also instructed to vary the location of contact with
the robot so that the human-cooperation events took place throughout all the links
of the robot and not only at a location close to the robot end-effector.

Furthermore, as commented in previous research, human–robot cooperation
may be very operator-dependent [Geravand et al., 2013; Briquet-Kerestedjian et al.,
2019; Cioffi et al., 2020]. Therefore, a total of four different operators (including
three external participants) individually manipulated the robot during the recording
of the experiments to test the sensitivity and robustness of the classification. Also,
the operators had different experience levels with robot manipulation to analyze the
role of this variable for the contact-classification method proposed.

4. Results

The total amount of data that were recorded included 266 contact events. These col-
lision events were divided into 148 accidental obstacle collisions and 118 voluntary
human cooperation events. In total, 28 accidental collisions and 28 human coopera-
tion events (from a single human operator) were used for the parameter tuning, and
the remaining contact events were used for the method’s evaluation.

4.1 Tuning and Evaluation of the Method
First, for contact detection, the force threshold parameter has been assigned a value
of Fth = 0.85 N, for all Cartesian directions. This value of the force-detection thresh-
old allowed that all contacts recorded in the evaluation experiments were detected,
and that no contact-detection false positive was detected. The frequency range used
for detection was ω ∈ [10,100] Hz.
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Accidental collisions were detected within 71 ms on average, with a standard
deviation of 31 ms. On the contrary, voluntary human-cooperation events were de-
tected within 133 ms on average, with a standard deviation of 66 ms. Thus, the
capacity of this method to detect contacts fast can be confirmed.

Additionally, the contact-classification threshold parameter was chosen to have
a value of γ = 6.2. This value should be chosen conservatively high, since it is
preferred to misclassify human cooperation events than accidental collisions. This
idea will be further developed in Sec. 5.

The results for the evaluation of the classification method are shown in
Tables 1 and 2. Table 1 displays the confusion matrix for all evaluation experiments
performed. It can be seen how 93.3% of the accidental collisions were correctly
classified (specificity), whereas for the cooperation events, 88.9% of them were
correctly classified (sensitivity).

Table 1. Confusion Matrix for Evaluation Experiments

Classified as
Collision Cooperation

Collision 112 (93.3%) 8 (6.7%)
Cooperation 10 (11.1%) 80 (88.9%)

Moreover, Table 2 breaks down the recorded cooperation events of Table 1 into
the four different operators involved in the evaluation experiments. As commented
before, the success rate of the contact classifier varied depending on the human op-
erator. For the method proposed, the sensitivity ranged from 85.2% to 96.2%. There-
fore, the sensitivity achieved using this method was still high for the human oper-
ator with the lowest classification rate. Furthermore, the sensitivity of the method
for experienced operators (Operators 1 and 2 in Table 2) was on average 91% with
a standard deviation of 5.3%, which is higher than the sensitivity of the method for
inexperienced operators (Operators 3 and 4 in Table 2), which was equal to 86.4%
with a standard deviation of 1.2%.

Table 2. Detail of Confusion Matrix for each Human Operator

Cooperation classified as
Collision Cooperation

Operator 1 1 (3.8%) 25 (96.2%)
Operator 2 3 (14.3%) 18 (85.7%)
Operator 3 4 (14.8%) 23 (85.2%)
Operator 4 2 (12.5%) 14 (87.5%)
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4.2 Contact Detection and Classification Example
Figure 1 provides an example of the data extracted for one trajectory execution. The
robot was initialized in free motion. It can be seen that at t = 2.616 s, a contact
was detected along the Z-direction. The contact was detected 87 ms after the ex-
ternal force signal along the Z-direction starts rising. Once contact was detected,
the contact-classifying part of the algorithm analyzed the force sense along the
Z-direction and compared it to the motion component along this direction using
condition (5). Since their signs were opposite, it cannot be determined that the
contact was a human-cooperation event. Then, the inequality (6) was used. Since
||⃗u ˙̂Fext

⊘ u⃗ ˙̂
ξ
||2 = 2.97 < 6.2 = γ , it can be concluded that the contact was an acci-

dental collision.
Moreover, at t = 4.290 s, a new contact was detected along the Y -direction

just 85 ms after this new contact occurred. Now, by evaluating condition (5) at
the contact time, it was seen that both the force component along the Y -direction
and the motion along this direction share the same sign and therefore it is con-
cluded that the contact belongs to the human cooperation category. Furthermore, if
the inequality (6) had been evaluated in this situation, the contact would also have
been labelled as a human cooperation, since ||⃗u ˙̂Fext

⊘ u⃗ ˙̂
ξ
||2 = 41.84 > 6.2 = γ .

Finally, no false positives occurred for contact detection for the entire trajectory
shown in Fig. 1, since, for the accidental collision, no force violated the thresh-
old along the X and Y -directions and no force violated the threshold along the
Z-direction once the value was lower than this threshold. Also, for the human-
cooperation segment, the force was at all times above the force threshold for some
of the three Cartesian directions after t = 4.290 s.

5. Discussion

In the event that only embedded sensors are available and the external force signal
is estimated using the generalized momentum observer [Haddadin et al., 2017],
which is currently implemented in commercial collaborative robots such as the
Franka Emika Panda [Franka Emika, 2019] and the KUKA LBR product family
[Bischoff et al., 2010], the assumption, considered in [Geravand et al., 2013; Kouris
et al., 2016; Kouris et al., 2018], that the frequency content of the estimated force
is easily distinguishable between voluntary human cooperation and accidental col-
lisions with static obstacles is not certain anymore in a collaborative assembly task.
However, we have experimentally demonstrated that the frequency content of the
external force signal can still be used for contact detection in this application. Nev-
ertheless, additional sensor information, provided by the embedded joint-position
sensors, regarding the robot’s motion prior to the detected contact, can be used to
classify the contact.

Moreover, several aspects of the implementation of the proposed method allow
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freedom to the designer for their selection, and this also has several consequences.
First, there is a trade-off between the contact-detection time, defined as the time
between the contact occurs and when it is detected, and the force threshold param-
eter Fth: if shorter detection times are desired, more false positives in the contact
detection will occur since Fth would be smaller. Using only embedded joint-torque
sensors causes longer detection times when compared to previous research that in-
cluded this same force threshold parameter but used external force/torque sensors
for a single force-direction detection [Kouris et al., 2016], [Kouris et al., 2018].
Nevertheless, the force-threshold parameter value used in our experiments has been
proven able to provide faster response times for all three force directions than al-
ternative machine-learning methods [Golz et al., 2015; Popov et al., 2017; Briquet-
Kerestedjian et al., 2019], while presenting no false positives in contact detection.

Second, the contact classifier’s threshold parameter, γ , can be varied depending
on the desired ratio between the sensitivity (percentage of human cooperation events
correctly classified) and the specificity (percentage of accidental collisions correctly
classified), since it is not possible to obtain a threshold parameter that allows no
ambiguity in the classifier part. Here, specificity must be prioritized to avoid false
positives in human cooperation. This is because the proposed method is aimed to be
used in a collaborative assembly task where the presence of accidental collisions is
expected, and if human cooperation is detected, the cooperation event can be used
for trajectory reprogramming using kinesthetic teaching [Karlsson et al., 2017].

Third, the method proposed solely requires tuning of two thresholding parame-
ters (Fth and γ) to achieve a proper contact detection and classification along all three
force directions, compared to the 6 parameters per joint used for tuning the method
in [Geravand et al., 2013] and to the single parameter needed in [Kouris et al., 2016;
Kouris et al., 2018] for a single force direction. Also, as discussed in [Kouris et al.,
2016], the choice of the virtual inertia, damping, and mass of Eq. (1) will have
an effect on the sensed external force signal, and therefore, the two thresholding
parameters used in our proposed method must be varied if the desired impedance
behavior of the robot is different from the one described using the values defined in
Sec. 3.1.

The proposed method was not tested to detect transitions between acciden-
tal collision to free motion, or from cooperation to accidental collision since
we were not interested in these situations in the experimental application used
for evaluation. First, the peg-in-hole application would not have the accidental-
collision to free-motion situation, since when the piston impacts the cylinder,
it would not stop its impact without human intervention. Second, for this ap-
plication, a human intervention for kinesthetic teaching would not end up in a
purposeful direct transition to an obstacle collision. Also, the proposed method
can detect human-cooperation events while an accidental collision with an ob-
stacle is occurring, whereas this transition has not been tested by machine-
learning methods [Golz et al., 2015; Popov et al., 2017; Briquet-Kerestedjian et
al., 2019; Cioffi et al., 2020] or by the previously-proposed frequency-based meth-
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ods [Geravand et al., 2013; Kouris et al., 2016; Kouris et al., 2018]. This feature is
especially relevant for applications that use kinesthetic teaching for corrective
trajectory demonstration [Karlsson et al., 2017].

In addition, the proposed method’s accuracy (percentage of total contacts cor-
rectly classified) outperformed other methods previously presented (91.4% for the
proposed method, 86.3% for the method in [Cioffi et al., 2020], 89.5% for the
method in [Popov et al., 2017], and 81.9% for the method in [Briquet-Kerestedjian
et al., 2019]). The method presented in [Golz et al., 2015] provides the highest accu-
racy, 97.8%, but only one human operator was used for gathering experimental data.
Also, the proposed method’s accuracy (91.4%) was higher than the accuracy ob-
tained when using the same relevant variables (⃗u ˙̂Fext

and u⃗ ˙̂
ξ

) as parameter estimates
in Fisher’s Linear Discriminant [Fisher, 1938] for contact classification (83.3%).

Moreover, our method is novel compared to the methods in [Cioffi et al., 2020;
Golz et al., 2015; Popov et al., 2017; Briquet-Kerestedjian et al., 2019] in that it
has been designed for kinesthetic teaching applications, where a human operator
can lead-through the robot for trajectory reprogramming [Karlsson et al., 2017]:
the robot’s compliant behavior, contrary to the stiffer robot behavior in [Cioffi et
al., 2020; Golz et al., 2015; Popov et al., 2017; Briquet-Kerestedjian et al., 2019],
allows lead-through without controller switching (as well as providing safety for
both the robot and its environment), and also the method is able to classify a human-
cooperation event happening while an accidental collision is occurring.

Furthermore, the proposed method, although its evaluation involved only four
participants, can be considered robust with respect to different operators since the
standard deviation between operators of the sensitivity was equal to 4.4 percentage
points, which was lower than in other methods (10.1 percentage points in [Cioffi
et al., 2020], where four operators were involved, and 7.3 percentage points in
[Briquet-Kerestedjian et al., 2019], where three operators were involved). Also, the
difference in accuracy between trained and untrained operators was lower than in
[Briquet-Kerestedjian et al., 2019], being 4.6 percentage points (91% and 86.4%, re-
spectively) the difference in our method compared to 14.6 percentage points (86.4%
and 71.9%, respectively) in [Briquet-Kerestedjian et al., 2019], which showed the
validity of the assumptions for the intuitive human cooperation in kinesthetic teach-
ing that were included in Sec. 2.4 for both trained and untrained operators in a
collaborative assembly task. Thus, the proposed method can be used by different
operators for kinesthetic teaching in these tasks without the need for retuning.

6. Conclusion

Fast contact detection and classification based on the frequency-response analysis
of the estimated external force signals was evaluated, and necessary modifications
and extensions to detect and classify a contact in any direction for kinesthetic teach-
ing applications were proposed. Cartesian impedance control was used to allow safe
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human cooperation. The only sensors used for obtaining the external force estimate
were sensors that are conventionally embedded in commercial collaborative robots
and whose values were easily attainable: joint-torque sensors and joint-position en-
coders/resolvers.

The proposed modified method was proven to provide accurate results for both
accidental collision with stiff and static obstacles and voluntary human cooperation
in a collaborative assembly task. In addition, the method is trajectory-independent,
and was tested for a meaningful number of different operators, showing interesting
results for both trained and untrained operators.
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Robot Cartesian Compliance Variation for
Safe Kinesthetic Teaching using Safety

Control Barrier Functions
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Abstract

Kinesthetic teaching allows human operators to reprogram part of a robot’s tra-
jectory by manually guiding the robot. To allow kinesthetic teaching, and also
to avoid any harm to both the robot and its environment, Cartesian impedance
control is here used for trajectory following. In this paper, we present an online
method to modify the compliant behavior of a robot toward its environment,
so that undesired parts of the robot’s workspace are avoided during kinesthetic
teaching. The stability of the method is guaranteed by a well-known passivity-
based energy-storage formulation that has been modified to include a strict
Lyapunov function, i.e., its time derivative is a globally negative-definite func-
tion. Safety Control Barrier Functions (SCBFs) that consider the rigid-body
dynamics of the robot are formulated as inequality constraints of a quadratic
optimization (QP) problem to ensure forward invariance of the robot’s states
in a safe set. An experimental evaluation using a Franka Emika Panda robot is
provided.

© 2022 IEEE. Reprinted, with permission, from 2022 IEEE International Confer-
ence on Automation Science and Engineering (CASE), August 20-24, Mexico City,
Mexico, pp. 2259–2266.
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1. Introduction

Physical Human–Robot Interaction (pHRI) has become a popular topic in the
robotics community, since it addresses the recent trend in the manufacturing in-
dustry to replace mass production for mass customization [Schou et al., 2013]. As
part of this change of paradigm, human operators have become direct collaborators
in robotic tasks, and robots that are compliant toward their environment have gained
relevance.

An interesting application of human collaboration in robotics is to reprogram
part of the robot’s trajectory [Karlsson et al., 2017] by manually guiding the
robot, which is known as kinesthetic teaching [Schou et al., 2013]. However, the
workspace that humans and robots share may not be entirely available, e.g., if an-
other robot arm is occupying part of the workspace, or if there is sensitive equip-
ment in the workspace. Then, the robot’s compliant behavior toward its environment
should be modified so that the human operator cannot guide the robot to unsafe sit-
uations. In addition, the compliance variations must be done in such a way that the
stability of the robot’s controller is ensured. Passivity-based energy storage has been
used previously to provide a stable variation of the impedance parameters of a robot
[Ferraguti et al., 2013; Landi et al., 2018].

Moreover, Safety Control Barrier Functions (SCBFs) have gained attention in
recent years [Ames et al., 2019; Wang et al., 2017; Landi et al., 2019; Ferraguti et
al., 2020; Rauscher et al., 2016; Singletary et al., 2021], because they provide more
formal guarantees for obstacle avoidance than the artificial potential-field methods
used in the past for this purpose [Khatib, 1985]. Safety control barrier functions
provide safety by enforcing forward invariance of a set, i.e., SCBFs ensure that a
system does not leave a safe set [Ames et al., 2019]. They can be formulated as
inequality constraints of a quadratic optimization (QP) problem to modify the input
to the system [Ames et al., 2019; Wang et al., 2017]. Additionally, SCBFs have been
used to perform a minimally-invasive modification of the robot’s behavior to avoid
safety threats, such as obstacle collisions [Landi et al., 2019; Ferraguti et al., 2020;
Rauscher et al., 2016; Singletary et al., 2021].

In this paper, we address the problem of safe kinesthetic teaching by modify-
ing the Cartesian compliant behavior of a robot with respect to its environment
in a strictly stable manner, such that we can ensure that the robot’s end-effector
avoids undesired parts of its workspace. Safety control barrier functions that con-
sider the rigid-body dynamics of the robot are used as inequality constraints of a
quadratic optimization problem to online modify the robot’s compliance behavior
in a minimally-invasive way, so that the human operator can still manipulate the
robot while avoiding any safety threat.

The paper is organized as follows: Sec. 2 introduces relevant mathematical con-
cepts that are used in our method. Then, Sec. 3 presents the method for solving
the described problem. Section 4 explains the experiments performed, and Sec. 5
presents the results obtained. Finally, a discussion is included in Sec. 6 and conclu-
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sions are drawn in Sec. 7.

2. Mathematical Background

In this section, we discuss two relevant mathematical concepts. First, SCBFs for safe
set forward invariance. Second, passivity-based energy storage for stable variation
of the robot compliant behavior with respect to its environment.

2.1 Safety Control Barrier Functions (SCBFs)
Consider a nonlinear control-affine system:

ẋ = f (x)+g(x)u (1)

that has closed-loop system dynamics with a state-feedback controller k according
to

ẋ = fcl(x, t) = f (x)+g(x)k(x, t) (2)

Moreover, define a safe set C , with boundary ∂C and interior Int(C ), as [Ames
et al., 2019]

C = {x ∈ Rn | h(x)≥ 0} (3)
∂C = {x ∈ Rn | h(x) = 0} (4)

Int(C ) = {x ∈ Rn | h(x)> 0} (5)

For C to be forward invariant [Ames et al., 2019],

sup
u∈U

[L f h(x)+Lgh(x)u]≥−κ(h(x)) (6)

for all x ∈ D , being h the SCBF, h : D −→ R with C ⊆ D ⊂ Rn, κ an extended
class-K∞ function (strictly monotonically increasing), L f h(x) = (∂h/∂x) f (x), and
Lgh(x) = (∂h/∂x)g(x). Also, the authors in [Wang et al., 2017] highlight the pos-
sibility of choosing κ(h) = γhZ (γ > 0) for any positive odd integer Z.

Furthermore, a quadratic optimization (QP) problem can be formulated to min-
imize the difference between the input to the system, u, and the nominal state-
feedback controller in (2), kd , while using SCBFs to formulate an inequality con-
straint that allows obstacle avoidance [Ames et al., 2019]:

k(x, t) =arg minu∈Rm
1
2

∣∣∣∣u− kd(x, t)
∣∣∣∣2

2

s.t. ḣ(x, t,u)≥−κ(h(x, t)) (7)
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2.2 Passivity-Based Energy Storage
Energy storage has previously been used to handle stiffness variations in robots
[Ferraguti et al., 2013; Landi et al., 2018]. This formulation is based on the idea
of keeping the energy introduced to the system lower that the energy dissipated by
the system. The energy dissipated by the system’s damping is stored in an energy
reservoir with state z(t) ∈ R and dynamics

ż =
ϕ

z
PD−

σ

z
PK (8)

where PD and PK represent the dissipated power due to damping and the power
caused by the stiffness variation, respectively. Also, the parameter ϕ ∈ {0,1} con-
trols the storage of dissipated energy and disables the storage if the energy stored is
higher than an upper bound T̄ , and the parameter σ ∈ {ϕ,1} controls the injection
or extraction of energy from the storage. The energy stored is

T (z) =
1
2

z2 (9)

and its time derivative is
Ṫ (z) = zż = ϕPD−σPK (10)

A lower bound δ is used for the minimum amount of energy stored. In addition, to
avoid singularities, z(t = 0) > 0 with T (z(0)) ≥ δ . Then, the authors in [Ferraguti
et al., 2013; Landi et al., 2018] showed that the system is passive with respect to
the pair (Fext, ξ̇ ) if T (t)≥ δ , where Fext ∈ R6 is the external force and ξ ∈ SE(3)
is the end-effector pose of the robot.

3. Method

We aim to formulate a state-feedback controller (2) that allows safe kinesthetic
teaching. Here, the nominal state-feedback controller, kd , represents the robot’s de-
sired Cartesian compliant behavior. Then, the robot’s compliant behavior is modi-
fied by a quadratic optimization problem (7) to ensure that the robot’s states stay in
a safe set.

3.1 Robot System
The rigid-body dynamics of the robot can be written in the joint space of the robot,
q ∈ Rn, as [Siciliano and Khatib, 2016]

M(q)q̈+C(q, q̇)q̇+G(q) = τ + τ
ext (11)

where M(q) ∈ Rn×n is the generalized inertia matrix, C(q, q̇) ∈ Rn×n describes
the Coriolis and centripetal forces effects, G(q) ∈ Rn captures the gravity-induced
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torques, and τ ∈Rn represents the input torques, n being the number of joints of the
robot. Finally, τext ∈ Rn represents the external torques.

The rigid-body equation of the robot can be written in terms of its end-effector
pose, ξ , which is composed by the end-effector’s position and orientation:

Mξ (q)ξ̈ +Cξ (q, q̇)ξ̇ +Gξ (q) = F +Fext (12)

where F ∈R6 is the input force, and, for a fully-actuated robot (n = 6), Mξ ∈R6×6,
Cξ ∈ R6×6, and Gξ ∈ R6 are equal to

Mξ = J−T(q)M(q)J−1(q) (13)

Cξ = J−T(q)(C(q, q̇)−M(q)J−1(q)J̇(q))J−1(q) (14)

Gξ = J−T(q)G(q) (15)

assuming that the Jacobian relative to the base frame of the robot, J(q) ∈R6×6, has
full rank [Khatib, 1987].

By applying partial feedback linearization [Khalil, 2014, Ch. 9], we can write
the input, u ∈ R6, to the system as the gravity-compensated force:

u = F +Fext−Gξ (q) (16)

Then, by choosing the state vector as x = [ξ T, ξ̇ T]T ∈ R12, the linearized system is

ẋ = A(q, q̇)x+B(q)u (17)

where

A =

[
06 I6
06 −M−1

ξ
(q)Cξ (q, q̇)

]
, B =

[
06

M−1
ξ

(q)

]
(18)

LEMMA 3.1
Mξ (q) is invertible since J(q) is also invertible. 2

Proof. We know that M(q) is invertible because M(q) is a symmetric positive-
definite matrix (M(q)∈ Sn

++) [Siciliano and Khatib, 2016]. Then, it can be obtained
from (13) that

M−1
ξ

(q) = (J−T(q)M(q)J−1(q))−1 = J(q)M−1(q)JT(q) (19)

which holds since we have assumed that J(q) has full rank to formulate the rigid-
body equation (12). 2
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3.2 Cost Function
The nominal state-feedback controller (2), kd ∈ R6, should achieve the robot’s
desired Cartesian compliant behavior. A Cartesian impedance controller [Hogan,
1985] is used to establish a mass-spring-damper relationship between the Cartesian
pose variation from its reference, ∆ξ = ξd − ξ , ξd being the Cartesian reference,
and the external Cartesian force, Fext:

Fext = Mξ (q)ξ̈ +(D+Cξ (q, q̇))ξ̇ −K∆ξ (20)

where D and K are the virtual damping and stiffness matrices, respectively. The
virtual inertia is chosen equal to the robot inertia, Mξ (q), to avoid inertia shaping
[Ott, 2008, Ch. 3.2], so that the input force F does not require feedback from the
external forces and is equal to

F = K∆ξ −Dξ̇ +Gξ (q) (21)

Therefore, the gravity-compensated nominal state-feedback controller is

kd = K∆ξ −Dξ̇ +Fext (22)

and we can formulate a new cost function analogous to the cost function in (7),

L(ξ , ξ̇ ,u,Fext) =
1
2

∣∣∣∣u−K∆ξ +Dξ̇ −Fext∣∣∣∣2
2 (23)

Then, the cost function (23) can be expressed in terms of the states and inputs
of the system, assuming that ξ̇d = 0, (x− xd) =

[
−∆ξ T, ξ̇ T

]T
:

L(x,u,Fext) =
1
2

∣∣∣∣u+ [K, D
]
(x− xd)−Fext∣∣∣∣2

2 (24)

3.3 Inequality Constraint
A safety function can be formulated to ensure that the safety distance is always
greater or equal than the current distance to the obstacles subtracted by the distance
needed to brake the system into a full stop with constant and instantaneous accel-
eration [Wang et al., 2017; Ferraguti et al., 2020]. For our problem, each of these
three elements can be formulated as:

• The safety distance Ds is a constant parameter that can be formulated as

Ds = rrb + ro (25)

where rrb and ro are the radii of two protective spheres around the robot end-
effector and an obstacle that represents the undesired part of the workspace,
respectively.
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• The current distance ||∆ρ|| is defined using the difference between the robot
end-effector position and the obstacle’s position,

∆ρ = ρ−ρo (26)

where ρ =
[
ξx, ξy, ξz

]T is the robot’s position vector and ρo =[
ξo,x, ξo,y, ξo,z

]T is the position of the obstacle. The parameters in ρo
are constant parameters, since we are considering a static (or semi-static)
obstacle.

• The distance needed to brake the robot to full stop is slightly more elaborated.
For a constant acceleration, abr > 0, the total distance between a final position
ρF and an initial position ρ0 after an elapsed time t of an object that starts at
ρ0 with relative velocity vrel < 0 is

||ρF−ρ0||=−vrelt−
1
2

abrt2 (27)

and since the time to brake to full stop is t =−vrel/abr, the braking distance
is equal to

||ρF−ρ0||=
v2

rel
2abr

(28)

vrel being the velocity prior to braking in the direction of the obstacle,

vrel =
∆ρT

||∆ρ||
v (29)

where v =
[
ξ̇x, ξ̇y, ξ̇z

]T
. Also, abr is a parameter defined by the user that

other authors commonly define as the maximum braking ability of the robot
[Wang et al., 2017; Ferraguti et al., 2020]. However, one could decide to
choose a smaller value to have even larger margins.

Finally, the safety function is formulated as

Ds ≥ ||∆ρ||−
v2

rel
2abr

(30)

so the SCBF candidate h : Rn −→ R is

h(x) =
√

2abr(||∆ρ||−Ds)+
∆ρT

||∆ρ||
v (31)

In addition, we know that

d(||∆ρ||)
dt

= vrel =
∆ρT

||∆ρ||
v (32)
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and from the system’s model (17), (18),

d(∆ρ)

dt
= v (33)

dv
dt

=−Φv+Γ
[
I3, 03

]
u (34)

where

Φ =
(

M−1
ξ

(q)Cξ (q, q̇)
)
[1:3,1:3]

∈ R3×3 (35)

Γ =
(

M−1
ξ

(q)
)
[1:3,1:3]

∈ R3×3 (36)

are submatrices composed by the first three rows and columns of their original ma-
trices (Matlab notation). Then, considering that

d
(√

2abr(||∆ρ||−Ds)
)

dt
=

abr√
2abr(||∆ρ||−Ds)

d(||∆ρ||)
dt

(37)

and
d
(

∆ρT

||∆ρ||v
)

dt
=

d
(

∆ρT

||∆ρ||

)
dt

v+
∆ρT

||∆ρ||
dv
dt

(38)

with
d
(

∆ρT

||∆ρ||

)
dt

v =
(

vT

||∆ρ||
− ∆ρTv∆ρT

||∆ρ||3

)
v (39)

the time derivative of h(x) in (31) is equal to

dh(x)
dt

=
abr∆ρTv

||∆ρ||
√

2abr(||∆ρ||−Ds)
+

∆ρTΓ
[
I3, 03

]
u

||∆ρ||

−∆ρTΦv
||∆ρ||

+
||v||2

||∆ρ||
− (∆ρTv)2

||∆ρ||3
(40)

Therefore, to fulfill the condition (6) that ensures that the safe set is forward
invariant, we must satisfy the inequality constraint

abr∆ρTv

||∆ρ||
√

2abr(||∆ρ||−Ds)
+

∆ρTΓ
[
I3, 03

]
u

||∆ρ||

−∆ρTΦv
||∆ρ||

+
||v||2

||∆ρ||
− (∆ρTv)2

||∆ρ||3
+ γhZ ≥ 0 (41)

which can be rewritten as
ACBFu≤ bCBF (42)
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where

ACBF = −∆ρ
T

Γ
[
I3, 03

]
(43)

bCBF =
abr∆ρTv√

2abr(||∆ρ||−Ds)
+ ||v||2− (∆ρTv)2

||∆ρ||2

+||∆ρ||γhZ−∆ρ
T

Φv (44)

3.4 Discrete-Time QP Problem Implementation
The discrete-time implementation of the nominal state-feedback controller in (22)
allows to obtain the input at time-step i by using the robot state (xi) and the estimated
external force (F̂ext

i ) at the same time-step. Therefore, the only free variable of the
cost function in (24) is ui,

L(ui) =
1
2

∣∣∣∣ui +
[
K, D

]
(xi− xd,i)− F̂ext

i
∣∣∣∣2

2 (45)

The cost function in (45) can be reduced (by eliminating its constant terms) to a
standard Quadratic Program (QP) problem:

Lr(ui) =
1
2

uT
i Qui + cTui (46)

where Q= I6 and cT =
[
K, D

]
(xi−xd,i)− F̂ext

i . It is trivial to see that the quadratic
term of the cost function in (46) is positive definite, Q ∈ Sn

++.
Moreover, similar to the cost function (46), ACBF and bCBF of the SCBF-based

inequality constraint (42) only depend on xi and therefore they can be treated as
constants at each time-step for this problem. Therefore, analogous to (7), the QP
problem to online modify the robot’s compliant behavior at each time-step i is

ki =arg minui∈R6 Lr(ui)

s.t. ACBFui ≤ bCBF (47)

3.5 Varying the Compliant Behavior of the System
If the inequality constraint (42) of the QP problem is active, the cost function (46)
will not be equal to zero (Lr(u)> 0). In this case, since u ̸= kd −Gξ (q), the rela-
tionship between the Cartesian pose variation from its reference and the external
Cartesian force (20) is modified,

Fext = Mξ (q)ξ̈ +(D+Cξ (q, q̇))ξ̇ −K∆ξ −∆u (48)

Then, the additional force ∆u can used to vary the stiffness and damping parameters,

K′(t) = K +∆K(t) (49)
D′(t) = D+∆D(t) (50)
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where K′,D′ ∈ Sn

++, and
∆u = ∆K∆ξ −∆Dξ̇ (51)

To vary the Cartesian compliance parameters in a stable manner, we first show
that, using an approach based on [Santibáñez and Kelly, 1997], the nominal state-
feedback controller (22) is stable.

LEMMA 3.2
The time-varying Lyapunov function

V (x, t) =
1
2

ξ̇
TMξ (q)ξ̇ +

1
2

∆ξ
TK∆ξ −α∆ξ

TMξ (q)ξ̇ (52)

where x =
[
∆ξ T, ξ̇ T

]T
, shows the global asymptotic stability of the nominal state-

feedback controller kd in (22) for α > 0 satisfying

min

(√
λm,K

λM,Mξ

,
2λm,K

λM,D
,

λm,D

2(λM,Mξ
+ kC||∆ξ ||)

)
> α (53)

where λm,Π and λM,Π are the smallest and largest eigenvalues of a matrix Π, re-
spectively, and kC is a positive constant such that for all x,y,z ∈Rn [Santibáñez and
Kelly, 1997]

||Cξ (x,y)z|| ≤ kC||y||||z|| (54)
2

Proof. See Appendix A. 2

Then, since Mξ (q), K, D ∈ Sn
++, a passive map from the external force Fext to

the velocity ξ̇ is guaranteed,

V̇ < ξ̇
TFext− 1

2
[
ξ̇ −α∆ξ

]T
D
[
ξ̇ −α∆ξ

]
< ξ̇

TFext (55)

where the passivity condition valid for passive environments is

V (t)−V (0)<
∫ t

0
ξ̇

T(τ)Fext(τ)dτ (56)

However, the additional force ∆u (51) produces extra energy, which can break
the passivity of the system if the additional energy that is injected into the system
causes a positive variation of the stiffness, K̇′(t) > 0. Defining H as a Lyapunov
function that is equivalent to considering (52) with time-varying K′(t) and D′(t), its
time derivative is

Ḣ < ξ̇
TFext−PD +PK (57)
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where

PD =
1
2
[
ξ̇ −α∆ξ

]T
D′
[
ξ̇ −α∆ξ

]
(58)

PK =
1
2

∆ξ
TK̇′∆ξ (59)

Then, a storage function for the system can be defined as

W = H +T (60)

where T is the energy stored in a reservoir (9), as in [Ferraguti et al., 2013; Landi
et al., 2018]. The time derivative of W is equal to

Ẇ = Ḣ + Ṫ < ξ̇
TFext− (1−ϕ)PD +(1−σ)PK (61)

Choosing, as in [Landi et al., 2018], that σ = 1 when K̇′(t)> 0,

Ẇ < ξ̇
TFext (62)

Therefore, analogous to (56), the passivity condition valid for passive environments
is

W (t)−W (0)<
∫ t

0
ξ̇

T(τ)Fext(τ)dτ (63)

Moreover, enough stored energy in the reservoir is needed to ensure passivity. We
can use the following metric for an arbitrary time interval

[
ts, t f

]
to ensure that

the storage does not get empty [Ferraguti et al., 2013; Landi et al., 2018],

T (t f ) = T (ts)+
∫ t f

ts
PDdτ−

∫ t f

ts
PKdτ ≥ δ (64)

which gives

T (ts)−δ ≥−
∫ t f

ts
PDdτ +

∫ t f

ts
PKdτ (65)

The energy needed to increase the stiffness is equal to∫ t f

ts
PKdτ =

1
2

∆ξ
T

∆K∆ξ (66)

whereas the energy that we can inject into the reservoir in the time interval [ts, t f ] is∫ t f

ts
PDdτ =

η

2
[
ξ̇ −α∆ξ

]T
D′
[
ξ̇ −α∆ξ

]
(67)

with η = t f − ts being the duration of the time interval [ts, t f ]. Therefore, as
long as K′(t),D′(t) ∈ Sn

++ and (51) is satisfied, the virtual damping coefficient,
D′ = D+∆D(t), can be increased with ∆D(t) ≥ 0 to ensure that the energy stor-
age does not get empty, (65), if the stiffness variation is too high.
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4. Experiments

In this section, we present the experiments performed to evaluate the proposed
method for a kinesthetic teaching application.

4.1 Application Scenario
The application scenario that motivated the experiments regards automatic quality-
assurance processes in the food-packaging industry using images recorded from a
camera mounted onto the end-effector of a robot [Kakani et al., 2020; Zhu et al.,
2021]. Since the distance needed between the camera mounted on the robot and the
food item for a correct food-quality analysis is unknown, and varies for different
types of food, the trajectory of the robot has to be varied. Then, for each type of
food, a human operator can be used to manually guide the robot arbitrarily close
to the food item for robot trajectory reprogramming, while ensuring that a collision
between the end-effector and the food item does not occur, so that neither of the two
is damaged.

4.2 Experimental Setup
The performed experiments consisted of a robot motion in which, during the robot’s
trajectory execution, a human operator manually guided the robot to bring it arbi-
trarily close to the object of interest, here, an egg. The experiment was performed
using the Panda robot by Franka Emika [Franka Emika, 2019] mounted on a table
(see Fig. 1). This robot had seven rotational joints, but since the formulation for the
proposed method was focused on fully-actuated non-redundant robots, we locked
the last joint (θ7 = −π/2 rad), and then the robot used six degrees of freedom,
n = 6.

Moreover, the initial impedance parameters used were:

• The initial virtual stiffness K was equal to 250 [N/m] for the translational
degrees of freedom and equaled to 10 [N/rad] for the rotational degrees of
freedom.

• The initial virtual damping D was equal to 2
√

K for all degrees of freedom.

Furthermore, the choice of additional parameters used for the inequality con-
straint of the quadratic optimization problem (47) were: γ =1, Z=3, Ds =0.05 m,
and abr = 10 m/s2 (abr was chosen conservatively, since its maximum value was
configuration-dependent). Note that γ must be a positive number and Z must be a
positive odd integer to guarantee safety [Wang et al., 2017]. Also, a new quadratic
optimization problem was solved every 1 ms, since the sampling rate of the robot
was 1 kHz.
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Figure 1. Setup for the kinesthetic teaching task described in Sec. 4.2. A Franka
Emika Panda robot is mounted on a table. The blue piece allows to attach a camera
to the robot’s end effector. The human operator is manually guiding the robot and
displacing it away from its original trajectory and arbitrarily close to the object of
interest, here, an egg.

5. Results

In this section, we evaluate the results obtained from the experiments described
in Sec. 4. First, Fig. 2 shows a 3D representation of the path ρ(t) traversed by
the robot. It can be seen how the external force generated by the human operator
displaced the robot from its unperturbed path ρun(t), where no external force acted
on the robot. The robot was able to avoid the undesired parts of its workspace even
when the operator was manually guiding the robot, which was ensured by solving
the quadratic optimization problem in (47) at each time-step.

Moreover, Fig. 3 shows the temporal evolution of the safety control barrier func-
tion h. It can be seen how the robot end-effector stayed inside the forward-invariant
safe set (3), h(x) ≥ 0, throughout the entire trajectory, thus confirming that unde-
sired parts of the robot’s workspace were avoided using the proposed method.

Furthermore, as mentioned in Sec. 3.5, the solution of the quadratic optimiza-
tion problem (47) was used to online modify the impedance parameters of the
Cartesian compliance controller to avoid undesired parts of the robot’s workspace.
Figure 4 shows the temporal variation of the external force, as well as the stable
temporal variation of the virtual stiffness during the trajectory segment where the
inequality constraint of the QP optimization problem (47) was active (t = 2.658 s
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Figure 2. 3D plot of the path ρ(t) traversed by the robot’s end-effector. The op-
erator displaced the robot from its unperturbed path ρun(t). The plotted sphere is
centered at the obstacle (egg) at ρo, and its radius is equal to Ds.
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Figure 3. Temporal variation of the SCBF, h(x) in (31), throughout the experiment.

72



6 Discussion

to t = 3.575 s). Then, Fig. 5 shows the temporal variation of the joint input torques
τ , which were commanded to the robot to achieve the virtual stiffness variation
seen in Fig. 4. Figure 5 also shows the unmodified input torques τun that would
be commanded for a constant virtual stiffness, K′ = K in (49). It can be seen, in
both Figs. 4 and 5, how the nominal controller of the robot was only modified when
needed in a minimally-invasive fashion. Therefore, when the SCBF-based inequal-
ity constraint (47) was not active, i.e., before t = 2.658 s and after t = 3.575 s, the
desired compliant behavior of the robot, K′ = K and D′ = D, was achieved. Ad-
ditionally, in this experiment, the virtual stiffness K′ in (49) was modified while
leaving the virtual damping constant D′ = D in (50).
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-60
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Figure 4. Temporal variation of the external force and the virtual stiffness through-
out the experiment.

6. Discussion

In this paper, we have proposed a method to modify the Cartesian compliance pa-
rameters of a robot to avoid that human operators manually guide a robot to unde-
sired parts of its workspace in the context of safe kinesthetic teaching. The proposed
method modifies a nominal controller, whose goal is to achieve the desired compli-

73



Paper III. Robot Cartesian Compliance Variation for Safe Kinesthetic Teaching
using Safety Control Barrier Functions

0 1 2 3 4 5

-15

-10

-5

0

0 1 2 3 4 5

-30

-20

-10

0

0 1 2 3 4 5

-15

-10

-5

0

0 1 2 3 4 5

0

10

20

30

40

0 1 2 3 4 5

-4

-2

0

2

0 1 2 3 4 5

-15

-10

-5

0

Figure 5. Temporal variation of the input torques τ j, compared to the unmodi-
fied (i.e., without SCBF-based compliance variation) input torques τ

j
un for each joint

j ∈ {1, . . . ,6}, throughout the experiment.

ant behavior of the robot, using an SCBF as an inequality constraint of a QP problem
to ensure forward invariance of the safe set of robot states.

Prior to the formulation of SCBF-based methods, artificial potential fields have
been used for robot obstacle avoidance [Khatib, 1985]. However, SCBFs have re-
cently gained popularity, since they ensure formal guarantees for obstacle avoid-
ance. Also, while potential fields do not emphasize optimality [Liu and Tomizuka,
2016], SCBFs are minimally invasive and only modify the nominal controller be-
havior if needed [Ames et al., 2019], as illustrated in Sec. 5. In addition, the
main appeal of artificial potential fields is the low computational loads needed,
but fast problem-solving is also guaranteed for our method, since the proposed QP
problem (47) is a convex problem with positive definite quadratic term, Q ∈ Sn

++:
using a convex optimization solver such as CVXGEN [Mattingley and Boyd, 2012]
with C++ to solve (47) took on average 5.2 µs with an standard deviation of 3.1 µs
using a single PC (Intel Xeon CPU E3-1245, 3.7 GHz, 4 cores, 64-bit).

Moreover, several authors have formulated SCBFs as inequality constraints of a
QP problem for obstacle avoidance in robot manipulators [Landi et al., 2019; Fer-
raguti et al., 2020; Rauscher et al., 2016; Singletary et al., 2021]. However, it is a
novelty of our proposed method to explicitly take the rigid-body dynamics of the
robot into consideration: [Landi et al., 2019] and [Ferraguti et al., 2020] considered
the robot kinematics, [Rauscher et al., 2016] included a simplified version of the dy-
namics that neglects the Coriolis and centripetal forces, and [Singletary et al., 2021]
performed a purely kinematic implementation of a SCBF but guarantees safety at
the level of dynamics by incorporating kinetic energy to the SCBF. The benefit of
considering the robot dynamics when formulating our SCBF is that adherence to the
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constraints can be guaranteed [Rauscher et al., 2016], as illustrated by the experi-
ments performed (see Fig. 3). In contrast, SCBF-based constraint violations may
occur for a kinematic formulation depending on the choice of the optimization pa-
rameters, as illustrated in [Singletary et al., 2021]. Also, slight constraint violations
were observed in [Rauscher et al., 2016] for a simplified-dynamics formulation.

Furthermore, an additional benefit of using an explicit formulation of the dy-
namic model of the robot is that it allows to quantify the additional Cartesian force,
∆u in (48), required to modify the nominal state-feedback controller kd to ensure
safety. It is a novelty of the proposed method to calculate the required variation of
the Cartesian compliant behavior of the system (as shown in Fig. 4) that is neces-
sary to achieve this additional force (49)–(51), so that SCBF-based constraints are
satisfied. This is relevant for kinesthetic teaching applications, e.g., in the scenario
shown in Sec. 4, since it indicates the changes in the robot’s compliant behavior
toward external force that human operators would feel when manually guiding the
robot. Another example of a kinesthetic teaching scenario where our method may
be relevant is for avoiding potential collisions occurring when an operator guides a
robot with a sensitive object grasped in its end-effector.

Finally, previous works [Landi et al., 2019; Ferraguti et al., 2020; Rauscher et
al., 2016; Singletary et al., 2021] where a robot nominal controller was modified
using SCBFs focused on the stability guarantees of the nominal controller. In ad-
dition, we provided global asymptotic stability guarantees of convergence to the
robot’s desired state for the modified controller obtained from the QP problem. We
used a passivity-based energy-storage formulation to ensure that the variation of the
Cartesian compliance parameters determined by the proposed method is stable. This
formulation has previously been used for a robot puncturing task through a three-
layers box that simulated the varying stiffness of a human body [Ferraguti et al.,
2013], and also to allow stable robot controller-switching between position control
and compliance control [Landi et al., 2018]. Therefore, its use in showing stability
for SCBF-based modifications of a nominal controller is novel. In addition, our con-
tribution to this energy-storage formulation, as presented in Lemma 3.2 (Sec. 3.5)
and its proof (Appendix A), is to replace the nonstrict Lyapunov function used in
[Ferraguti et al., 2013; Landi et al., 2018] by a Lyapunov function with strictly neg-
ative time-derivative to ensure the strict stability of our method. As a trade-off, the
power available to fill the energy storage, PD in (58), is smaller for our method.

7. Conclusion

Safety control barrier functions have been used to online modify the Cartesian com-
pliant behavior of a robot in a strictly stable manner (global asymptotic stability), so
as to avoid that human operators manually guide a robot’s end-effector to undesired
parts of its workspace in the context of safe kinesthetic teaching. The rigid-body
dynamics of the robot is considered in our method to guarantee adherence to the
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safety constraints. The proposed method has been successfully evaluated through
experiments using a Franka Emika Panda robot for a kinesthetic teaching applica-
tion.
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A. Proof of Lemma 3.2

It is noted in [Santibáñez and Kelly, 1997] that the time-varying Lyapunov function

V1(ξ ,∆ξ , t) =
1
2

ξ̇
TMξ (q)ξ̇ +

1
2

∆ξ
TK∆ξ (68)

that is often used to show the stability of a Cartesian impedance controller [Ott,
2008, Ch. 3], such as the nominal state-feedback controller kd (22), is a nonstrict
Lyapunov function, i.e., its time derivative is a globally negative-semidefinite func-
tion. Then, the authors in [Santibáñez and Kelly, 1997] have proposed the following
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alternative Lyapunov candidate to obtain a globally negative-definite time derivative
[Santibáñez and Kelly, 1997]:

V2(x, t) =
1
2

ξ̇
TMξ (q)ξ̇ +

1
2

∆ξ
TK∆ξ −α f (∆ξ )TMξ (q)ξ̇ (69)

where
f (∆ξ ) =

1
1+ ||∆ξ ||

∆ξ (70)

and α > 0 must satisfy

min

(√
λm,K

λM,Mξ

,
2λm,K

λM,D
,

λm,D

2(kC +2λM,Mξ
)

)
> α (71)

However, using a scaling factor f (∆ξ ) in the cross-term of the Lya-
punov candidate function can cause slow convergence to the equilibrium point,[
∆ξ T, ξ̇ T

]
= 0 ∈ R2n. Therefore, we present a solution based on the work by

[Santibáñez and Kelly, 1997], but removing the scaling factor f (∆ξ ):

V (x, t) =
1
2

ξ̇
TMξ (q)ξ̇ +

1
2

∆ξ
TK∆ξ −α∆ξ

TMξ (q)ξ̇ (72)

The Lyapunov candidate (72) is equivalent to

V (x) =
1
2
[
ξ̇ −α∆ξ

]T
Mξ (q)

[
ξ̇ −α∆ξ

]
+

1
2

∆ξ
T [K−α2Mξ (q)

]
∆ξ (73)

Therefore, the Lyapunov candidate is strictly positive (V (x ̸= 0)> 0 and
V (x = 0) = 0) for

α <

√
λm,K

λM,Mξ

(74)

which ensures K−α2Mξ (q)> 0.
Moreover, the time-derivative of the Lyapunov candidate (72) is equal to

V̇ (x) = −α∆ξ
T [Ṁξ (q)−Cξ (q, q̇)

]
ξ̇ +αξ̇

TMξ (q)ξ̇

−ξ̇
TDξ̇ −α∆ξ

TK∆ξ +α∆ξ
TDξ̇ (75)

Considering that the matrix Ṁξ (q)− 2Cξ (q, q̇) is skew symmetric [Ott, 2008, Ch.
2]:

V̇ (x) = −α∆ξ
TCξ (q, q̇)ξ̇ +αξ̇

TMξ (q)ξ̇

−ξ̇
TDξ̇ −α∆ξ

TK∆ξ +α∆ξ
TDξ̇ (76)
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Then, defining the upper bound on certain terms:

−ξ̇
TDξ̇ ≤ −1

2
ξ̇

TDξ̇ − 1
2

λm,D
∣∣∣∣ξ̇ ∣∣∣∣2 (77)

αξ̇
TMξ (q)ξ̇ ≤ αλM,Mξ

∣∣∣∣ξ̇ ∣∣∣∣2 (78)

−α∆ξ
TCξ (q, q̇)ξ̇ ≤ αkC

∣∣∣∣∆ξ
∣∣∣∣∣∣∣∣ξ̇ ∣∣∣∣2 (79)

it follows that

V̇ (x) ≤ −1
2
[
ξ̇ −α∆ξ

]T
D
[
ξ̇ −α∆ξ

]
+

1
2

α
2
∆ξ

TD∆ξ

−1
2

λm,D
∣∣∣∣ξ̇ ∣∣∣∣2−α∆ξ

TK∆ξ

+αkC
∣∣∣∣∆ξ

∣∣∣∣∣∣∣∣ξ̇ ∣∣∣∣2 +αλM,Mξ

∣∣∣∣ξ̇ ∣∣∣∣2 (80)

which can be rewritten as

V̇ (x) ≤ −1
2
[
ξ̇ −α∆ξ

]T
D
[
ξ̇ −α∆ξ

]
+α∆ξ

T [α

2 D−K
]

∆ξ − 1
2

λm,D
∣∣∣∣ξ̇ ∣∣∣∣2

+αkC
∣∣∣∣∆ξ

∣∣∣∣∣∣∣∣ξ̇ ∣∣∣∣2 +αλM,Mξ

∣∣∣∣ξ̇ ∣∣∣∣2 (81)

It can be ensured that the term

α∆ξ
T [α

2 D−K
]

∆ξ (82)

is strictly negative for

α <
2λm,K

λM,D
(83)

and that the term

−1
2

λm,D
∣∣∣∣ξ̇ ∣∣∣∣2 +αkC

∣∣∣∣∆ξ
∣∣∣∣∣∣∣∣ξ̇ ∣∣∣∣2 +αλM,Mξ

∣∣∣∣ξ̇ ∣∣∣∣2 (84)

is strictly negative for

α <
λm,D

2(λM,Mξ
+ kC||∆ξ ||)

(85)

Therefore, if α > 0 satisfies (53)

min

(√
λm,K

λM,Mξ

,
2λm,K

λM,D
,

λm,D

2(λM,Mξ
+ kC||∆ξ ||)

)
> α (86)

the Lyapunov candidate function V (x) is strictly positive (V (x ̸= 0) > 0 and
V (x = 0) = 0) and its time-derivative is strictly negative (V̇ (x)< 0).
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A
Notation Overview

Some symbols have been used with different meanings in each of the papers in-
cluded in this thesis. This section shows the symbols that have been used differently,
and also their meaning for each of the papers.

Table A.1 Lowercase Latin letters used differently in each of the papers included
in this thesis.

Symbol Meaning
Paper I Paper II Paper III

a - - Acceleration

c - -
Linear term of
cost function

g Gravity-induced torque - -
h Sample period Barrier function

k Discrete-time step -
State-feedback

controller

x
State vector - State vector

X-coordinate

y
Output vector - -

Y-coordinate

z
- - Reservoir state

Z-coordinate
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Table A.2 Uppercase Latin letters used differently in each of the papers included
in this thesis.

Symbol Meaning
Paper I Paper II Paper III

A State matrix - State matrix

B Input matrix
Virtual damping

matrix Input matrix

C Coriolis and centripetal forces matrix
Output matrix - -

D Feedforward matrix -
Virtual damping

matrix
F - Cartesian force vector
G - - Gravity vector

H
Number of control

horizon steps - Lyapunov function

I Identity matrix Virtual inertia matrix Identity matrix

L
- Norm Cost function
- - Lie derivative

N
Null-space

projection matrix Number of samples -

Q
State weighting

function -
Quadratic term of

cost function
T Time horizon - Stored energy
V Cost function - Lyapunov function
Z - Z-coordinate Odd constant
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Table A.3 Lowercase Greek letters used differently in each of the papers included
in this thesis.

Symbol Meaning
Paper I Paper II Paper III

α
Amplitude of

sinusoidal signal - -

γ End-effector twist
Threshold
coefficient Positive constant

ζ
Discrete-state

variable - -

η - - Sample time
ρ - - Position vector

σ Standard deviation -
Parameters controlling

injection/extraction
of stored energy

ω
End-effector

angular velocity Frequency -
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