
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Improved distinguishers for HC-128

Stankovski, Paul; Ruj, Sushmita; Hell, Martin; Johansson, Thomas

Published in:
Designs, Codes and Cryptography

DOI:
10.1007/s10623-011-9550-9

2012

Link to publication

Citation for published version (APA):
Stankovski, P., Ruj, S., Hell, M., & Johansson, T. (2012). Improved distinguishers for HC-128. Designs, Codes
and Cryptography, 63(2), 225-240. https://doi.org/10.1007/s10623-011-9550-9

Total number of authors:
4

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1007/s10623-011-9550-9
https://portal.research.lu.se/en/publications/d2c3a077-edaa-4cde-80e2-dafca9ec4ae9
https://doi.org/10.1007/s10623-011-9550-9

Improved Distinguishers for HC-128?

Paul Stankovski1, Sushmita Ruj2, Martin Hell1, and Thomas Johansson1

1 Deptartment of Electrical and Information Technology,
Lund University, P.O. Box 118, 221 00 Lund, Sweden

2 School of Electrical Engineering and Computer Science,
University of Ottawa, Ottawa Ontario K1N6N5, Canada

Abstract. HC-128 is an eSTREAM final portfolio stream cipher. Sev-
eral authors have investigated its security and, in particular, distinguish-
ing attacks have been considered. Still, no one has been able to provide a
distinguisher stronger than the one presented by Wu in the original HC-
128 paper. In this paper we first argue that the keystream requirement
in Wu’s original attack is underestimated by a factor of almost 28. Our
revised analysis shows that the keystream complexity of Wu’s original
attack is 2160.471 32-bit keystream blocks. We then go on to investigate
two new types of distinguishers on HC-128. One of them, a distinguisher
counting the number of zeros in created blocks of bits, gives a biased dis-
tribution that requires 2143.537 such constructed block samples (2152.537

32-bit keystream blocks). For fairness, the same metric is used to com-
pare our attack to Wu’s, and our improvement is significant compared to
Wu’s original result. Furthermore, the vector-based methodology used is
general and can be applied to any cryptographic primitive that reveals
a suitable probability distribution.

Keywords: stream cipher, HC-128, cryptanalysis, distinguisher

1 Introduction

HC-128 [13] is a stream cipher selected for the eSTREAM [5] final port-
folio [4]. Being in the Profile 1 category it is suitable for fast encryption
in software. In fact, in most reported results HC-128 is the fastest stream
cipher in the eSTREAM final portfolio. As one example, on a Pentium M
processor, the speed of HC-128 reaches 3.05 cycles/byte [13]. This makes
HC-128 a very interesting target for cryptanalysis.

HC-128 was proposed in 2006 and there have been very few crypt-
analytic results on the cipher. In the design paper [13], Wu constructed
a distinguisher based on the least significant bit of the 32-bit keystream
words. According to our revised analysis, 2160.471 keystream words are
required to distinguish the output of the cipher from a random sequence.
? The final publication is available at springerlink.com

Subsequent results should be compared to this figure. To the best of our
knowledge there is still no distinguisher presenting better performance
than the one originally proposed by Wu. Maitra et al. [9] showed that
the “least significant bit”-based distinguisher constructed by Wu can be
generalized to work for any one bit of the complete 32-bit word. However,
the bias of the other bits is smaller than that of the least significant bit.
Thus, they present several new distinguishers, all of which are weaker
than Wu’s distinguisher.

Dunkelman [3] observed that keystream bits would leak information
of the secret state. However, this observation has not yet been exploited
in designing a distinguisher, and it was argued by Wu [12] that it cannot
be used for cryptanalysis at all. The initialization step was analyzed by
Liu and Qui in [8]. They showed that the key can be recovered if the
internal state of the cipher is known. In [10], Paul et al. showed that it was
possible to construct one state array with knowledge of the other array
and 2048 keystream words. The time complexity for this reconstruction
is 242. While not saying much about the security of HC-128, those results
give more insight into the algorithm itself, possibly providing a foundation
for future attacks.

Differential fault analysis of HC-128 was performed in [7]. It was shown
that by injecting faults into the state, without control over the location
or value of the fault, it is possible to recover the internal state.

1.1 Contributions of This Paper

In this paper, we consider distinguishers for the HC-128 keystream. First
we argue that the result given by Wu is not correct. The amount of
keystream needed is almost a factor of 28 higher than originally claimed.
Then we give two new distinguishing attacks, both improving the attack
given by Wu. First we generalize Wu’s original distinguisher, which only
considered the least significant bit of the keystream words, to consider
several bits simultaneously. This gives a very slight improvement, about
a factor of 2. A more significant improvement is achieved by looking at
long vectors of the least significant bit of the keystream words. It is shown
that this attack succeeds with high probability if 2152.537 keystream words
are known.

While the attack complexities of the distinguishing attacks in this pa-
per exceeds that of an exhaustive key search, we still believe that this
paper presents a significant contribution. As HC-128 is in the final eS-
TREAM portfolio, additional understanding of the security of this stream
cipher is important. It is clear that considering words instead of a single

bit in Wu’s original distinguisher does not worsen the attack, but the
exact improvement has previously been an open question. This question
is resolved in our paper. Moreover, by treating the information from the
keystream differently, we are able to significantly improve the keystream
complexity of the attack. Our new attack is the first attack requiring
less keystream than Wu’s original attack, presented in 2006. It is possible
that these new ideas can lead to even better attacks, perhaps reducing
the keystream complexity to a number below 2128.

The paper is organized as follows. In Section 2 we describe distinguish-
ing attacks and hypothesis testing. This provides the necessary tools to
determine the complexity of our attack. In Section 3 we give an overview
of HC-128 and then, in Section 4, we present Wu’s original distinguish-
ing attack and argue that the keystream complexity is underestimated
by a factor of almost 28 due to dependencies. Then in Section 5 we give
our first new distinguisher based on the idea of considering words instead
of bits as was done in the original attack. This distinguisher generalize
the efforts of Maitra et al. [9], showing that it is possible to construct
a (slightly) more efficient distinguisher in this way. In Section 6 we give
our second distinguisher based on the idea of considering a large vector
of the least significant bit, thereby extracting more information from the
keystream. The paper is concluded in Section 7.

2 Preliminaries

In this paper we will consider distinguishing attacks on the keystream
generator HC-128. A distinguisher in this case is an algorithm that takes
a sequence of n samples as input and outputs either “HC-128” or “RAN-
DOM”. The algorithm uses the n input samples to perform a hypothesis
test. Knowing the two distributions corresponding to HC-128 and ran-
dom, the algorithm determines which distribution is most likely, given the
n samples. The optimal hypothesis test is given by the Neyman-Pearson
lemma.

Lemma 1 (Neyman-Pearson). Let X1, X2, . . . , Xn be drawn iid (in-
dependent identically distributed) according to mass function PX . Con-
sider the decision problem corresponding to the hypotheses PX = P0 vs.
PX = P1. For T ≥ 0 define a region

An(T) =
{
P0[x1, x2, . . . , xn]
P1[x1, x2, . . . , xn]

> T

}
. (1)

Let α = Pn
0 [Ac

n(T)], where c denotes complement, and β = Pn
1 [An(T)] be

the error probabilities corresponding to the decision region An. Let Bn be
any other decision region with associated error probabilities α∗ and β∗. If
α∗ ≤ α, then β∗ ≥ β.

Assuming that all samples are independent, (1) is equivalent to

An(T) =

{
n∑

i=1

log
(
P0[xi]
P1[xi]

)
> log T

}
.

The most important measurement of the power of a distinguisher in
this setting is the number of samples that is required for it to make a
correct decision with probability significantly larger than 1/2. We start
by defining the relative entropy between two distributions.

Definition 1. The relative entropy between two probability distributions
P0 and P1 over the same domain X is defined as

D (P0‖P1) =
∑
x∈X

P0[x] log
P0[x]
P1[x]

. (2)

The relative entropy is sometimes also referred to as information diver-
gence or Kullback-Leibler distance.

In a hypothesis test we observe a collection of independent and iden-
tically distributed samples drawn from a distribution PX . This will give
us two possible hypotheses, the null hypothesis H0 and the alternate hy-
pothesis H1:

H0 : PX = P0,

H1 : PX = P1.

There are two types of errors associated with our hypotheses. We can
reject the null hypothesis when it is in fact true, a type I error. The
probability of this error is denoted α. The other alternative is that we
accept the null hypothesis when the alternate hypothesis is true, a type
II error. The probability of this error is denoted β.

No general expression for the error probabilities α and β exists. Thus,
we know how to perform the optimal test using the Neyman-Pearson
lemma, but we do not know the performance of the test (in the general
case). However, there exist asymptotic expressions for the error probabil-
ities.

The relative entropy is related to the asymptotic error probabilities
through Stein’s lemma. Stein’s lemma states that if we fix the error prob-
ability α then β decreases so that

lim
n→∞

log β
n

= −D(P0‖P1). (3)

The value of α does not affect the exponential rate at which β decreases.
According to (3) we can asymptotically write

β ≈ 2−nD(P0‖P1). (4)

When the number of samples used in the hypothesis test approaches

n ≈ 1
D(P0‖P1)

, (5)

we reach the point at which the error probability starts to decrease ex-
ponentially. In this paper we will use (5) as a measure of the number of
samples that are needed in our distinguishing attack. However, we empha-
size that in a practical scenario we would actually need a small multiple
of this number. Still, as we are comparing our attack to previous attacks,
if we use (5) for all attacks, the comparison is indeed fair. Other ways of
estimating the number of samples needed in the distinguisher exist, and
we refer to [1, 2, 6] for a more detailed treatment.

3 Brief Description of HC-128

In this section we give a brief description of HC-128. The size of the key K
is 128 bits and the initialization vector IV used is also 128 bits. According
to the proposal, a keystream of length up to 264 bits per key/IV pair can
be generated.

3.1 Notations

We use the same notations as in [13]. Let x and y be 32-bit integers.
Then,

+ : x+ y means x+ y mod 232,
� : x� y means x− y mod 512,
⊕ : bit-wise exclusive OR,
|| : concatenation,
� : Right shift, x � n means x right shifted by n

bits,
� : Left shift, x� n means x left shifted by n bits,
≫ : Right shift with rotation, x≫ n means

((x� n)⊕ (x� (32− n)), where 0 ≤ n < 32,
≪ : Left shift with rotation, x≪ n means

((x� n)⊕ (x� (32− n)), where 0 ≤ n < 32.

Two tables, denoted P and Q, make up the internal state of HC-128.
Each of the tables contain 512 32-bit elements, or words. The keystream
is denoted by s and the 32-bit keystream word generated at the ith step is
denoted si. Thus s = s0||s1||s2|| The following six functions are used
in HC-128.

f1(x) = (x≫ 7)⊕ (x≫ 18)⊕ (x� 3)
f2(x) = (x≫ 17)⊕ (x≫ 19)⊕ (x� 10)
g1(x, y, z) = ((x≫ 10)⊕ (z≫ 23)) + (y≫ 8)
g2(x, y, z) = ((x≪ 10)⊕ (z≪ 23)) + (y≪ 8)
h1(x) = Q[x0] +Q[256 + x2]
h2(x) = P [x0] + P [256 + x2]

where x = x3||x2||x1||x0, x is a 32-bit word and the xi represent a byte
each, x0 being the least significant byte of the word and x3 being the
most significant byte. The functions f1(x) and f2(x) are only used in
the initialization of the cipher. As our analysis is independent of the
initialization it will not be detailed here. Instead we refer to [13] for a
description.

3.2 The Keystream Generation Algorithm

The keystream generation algorithm is the subject of our analysis. At each
step, one element of a table is updated and one 32-bit keystream word
is generated. One table is used to generate 512 consecutive keystream
words. That table is then updated during the following 512 steps. The
keystream generation algorithm of HC-128 is given in Fig. 1.

4 Original Distinguishing Attack by Wu

In the HC-128 design paper, a distinguishing attack was given based
on the least significant bit of the keystream word si. At the ith step,
if (i mod 1024) < 512, the table P is updated as

P [i mod 512] += g1(P [i� 3], P [i� 10], P [i� 511]).

Also, si = h1(P [i � 12]) ⊕ P [i mod 512]. For 10 ≤ (i mod 1024) < 511,
this feedback function can be written alternatively as

si ⊕ h1(zi) = (si−1024 ⊕ h′1(zi−1024)) + (6)
g1(si−3 ⊕ h1(zi−3), si−10 ⊕ h1(zi−10), si−1023 ⊕ h′1(zi−1023)).

Algorithm 1 – HC-128 Keystream Generation

Input: initialized tables P and Q, each containing 512 32-bit words.
Output: 32-bit keystream words si for i = 0, 1,

i = 0;
repeat (until enough keystream bits are generated) {

j = i mod 512;
if ((i mod 1024) < 512) {

P [j] += g1(P [j � 3], P [j � 10], P [j � 511]);
si = h1(P [j � 12])⊕ P [j];

} else {
Q[j] += g2(Q[j � 3], Q[j � 10], Q[j � 511]);
si = h2(Q[j � 12])⊕Q[j];

}
i += 1;

}

Fig. 1. HC-128 keystream generation.

h1(x) and h′1(x) indicate two different functions because they refer to
different S-boxes; zj denotes the P [j � 12] at the jth step.

As shown in [13], for the least significant bit, this equation reduces to

[si]0 ⊕ [si−3]10 ⊕ [si−10]8 ⊕ [si−1023]23 ⊕ [si−1024]0

= [h1(zi)]0 ⊕ [h1(zi−3)]10 ⊕ [h1(zi−10)]8 ⊕ [h′1(zi−1023)]23 ⊕ [h′1(zi−1024)]0,

where [a]i represents the ith least significant bit of a. Looking at two
different time instances i and j where 1024×γ+10 ≤ i, j < 1024×γ+511
we can write

[si]0 ⊕ [si−3]10 ⊕ [si−10]8 ⊕ [si−1023]23 ⊕ [si−1024]0

=[sj]0 ⊕ [sj−3]10 ⊕ [sj−10]8 ⊕ [sj−1023]23 ⊕ [sj−1024]0,
(7)

which holds if and only if

[h1(zi)]0⊕ [h1(zi−3)]10⊕ [h1(zi−10)]8⊕ [h′1(zi−1023)]23⊕ [h′1(zi−1024)]0 (8)
= [h1(zj)]0⊕ [h1(zj−3)]10⊕ [h1(zj−10)]8⊕ [h′1(zj−1023)]23⊕ [h′1(zj−1024)]0.

We call these expressions ti and tj , respectively, so that

ti = [h1(zi)]0⊕ [h1(zi−3)]10⊕ [h1(zi−10)]8⊕ [h′1(zi−1023)]23⊕ [h′1(zi−1024)]0.

Equation (8) can be approximated as

H(a1) = H(a2), (9)

where H denotes a random secret 80-to-1-bit S-box, a1 and a2 are two
80-bit random inputs,

a1 = zi||zi−3||zi−10||zi−1023||zi−1024,

a2 = zj ||zj−3||zj−10||zj−1023||zj−1024,

where z indicates the concatenation of the least significant byte and the
second most significant byte of z, i.e., z = x0||x2. The following theorem,
from [13], shows the bias of (9).

Theorem 1. Let H be an m-to-n-bit S-box and all those n-bit elements
are randomly generated, where m ≥ n. Let a1 and a2 be two m-bit random
inputs to H. Then H(a1) = H(a2) with probability 2−m + 2−n − 2−m−n.

Thus, (9) holds with probability 1
2 + ε = 1

2 + 2−81. Approximating the
number of samples needed in a distinguisher by 4ε−2, Wu concludes that
2164 such equations are needed. Since it is possible to obtain

(
501
2

)
≈

217 pairs for each 512-word keystream chunk, the number of keystream

words needed are concluded to be 2156, a factor of (501
2)

501 ≈ 28 less. This
is however not correct. Let us explain why. The distinguisher considers
two different cases, one when the output is from the cipher (HC-128) and
the other one when the output is truly random and bits are independent.
When we consider the random case, a block contains 512 truly random
bits. These give rise to 501 truly random values ti, where 10 ≤ i <
511. But when we then create 217 samples as ti ⊕ tj , 10 ≤ i, j < 511,
these are no longer independent, and counting these samples will have
a larger variance compared to independent samples. So in order to keep
the samples independent, we can only use 501 samples and the number
of required keystream words is thus still 2164 in Wu’s attack.

Wu claims that the keystream complexity of his distinguisher can be
lowered by a factor of almost 28 using his dependent sampling technique.
Our simulations3 suggest otherwise. They clearly show that this kind of
dependent sampling can be much less efficient. The consequence of this is
that more samples need to be used with Wu’s sampling method. In this
sense, the dependent samples are not ”high quality”, they contain less
information than the independent ones.
3 The keystream requirement of the 2-vector distinguisher defined in Section 6 was

measured for both independent and dependent samples using Eq. (1) with T = 1
and a false negative rate of 0.01. The main difference to Wu’s attack is that an 8–
to–1 S-box was sampled instead of an 80–to–1 S-box. Dependent sampling lowered
the keystream requirement by a factor of about 23, as opposed to the 28 suggested
by Wu. It is not immediately clear how these observations translate to the 80–to–1
S-box case.

When it comes to assessing the efficiency level of Wu’s dependent
sampling, this is not a trivial task. It is unclear how much the keystream
complexity can be lowered using this technique. Wu himself provides nei-
ther analytical nor simulation results to back his assumption of perfect
efficiency. His analysis remains correct for the standard setting of linear
sampling, however, so this is what we will assume henceforth.

This being said, our simulations do show that some improvement gain
in keystream requirement can result from using dependent sampling. Our
simulations further suggest that the vector approach detailed in Section 6
improves the result of Wu’s distinguisher in this regard as well. Sampling
all
(
501
3

)
triplets for the 3-vector distinguisher is more keystream-efficient

than sampling all
(
501
2

)
pairs for the 2-vector case. The approach is triv-

ially generalized into sampling all
(
501
250

)
250-sets for the 250-vector distin-

guisher.

To conclude, we continue the analysis and comparison of our attacks
to Wu’s using only independent samples for both attacks. As we are using
the relative entropy measure in this paper, we give the corresponding
figure using this metric also for Wu’s attack. This allows us to make a fair
comparison between our results and Wu’s attack. With p = 1

2 + 2−81 we
getD(P0||P1) = 2−160.471 giving a distinguisher requiring 2160.471 samples.
According to the arguments given above this also corresponds to 2160.471

keystream words. For comparison, our best distinguisher (in Section 6)
will be shown to have both a computational and keystream complexity
of 2152.537.

5 A New Word-Based Distinguisher

Wu’s distinguisher considered the least significant bit of each keystream
word. We now construct a word-based distinguisher, in which we con-
sider the w least significant bits together. Since the least significant bit
is included in the w least significant bits, we know that the attack can
never get worse by including more bits. The main question that we aim
to answer here is exactly how much better the word-based distinguisher
is.

We use [si]<w> to denote the w least significant bits of [si] and
[si]<w+b> to denote bits b, b+1, . . . , b+w−1 of [si]. For the least significant

w bits 0, 1, 2, . . . , w − 1, equation (6) can be written as

[si]<w> ⊕ [si−3]<w+10> ⊕ [si−10]<w+8> ⊕ (10)
[si−1023]<w+23> ⊕ [si−1024]<w>

= [h1(zi)]<w> ⊕ [h1(zi−3)]<w+10> ⊕ [h1(zi−10)]<w+8> ⊕
[h′1(zi−1023)]<w+23> ⊕ [h′1(zi − 1024)]<w> + carry.

We write this as [ti]<w> = Hw(ai) + carry. The carry contribution comes
from the approximation of ‘+’ by ⊕, and this part will be discussed in
Section 5.1 below. The main goal is to find the distribution of [ti]<w> ⊕
[tj]<w>, where i and j are chosen as in (7). Once this is known we can
use the relative entropy to determine the number of samples needed in
the distinguisher.

Approximate Hw(ai) as a 80-to-w-bit S-box and use Theorem 1 to
show that

Pr(Hw(ai)⊕Hw(aj) = 0) =

2−80 + 2−w − 2−(80+w) =
1

2w
(1 +

2w − 1
280

),

Pr(Hw(ai)⊕Hw(aj) = u|u 6= 0) =
1

2w − 1
(1− (2−80 + 2−w − 2−(80+w))) =

1
2w

(1− 1
280

).

Let

pl =
∑

u,v∈{0,1}n
Pr([ti]<w> ⊕ [tj]<w> = u|Hw(ai)⊕Hw(aj) = v),

where l = u⊕ v. Thus, we have
∑

l∈{0,1}w
pl = 1.

To show how to compute the distribution of [ti]<w> ⊕ [tj]<w> we
consider two cases separately, namely when the least significant bit of l is
0 and 1 respectively. We let T(w,i,j) and H(w,i,j) denote [ti]<w> ⊕ [tj]<w>

and Hw(ai)⊕Hw(aj), respectively.

Case 1: The least significant bit (LSB) of l is 1.

In this case we can write

Pr(T(w,i,j) = l)

=
∑

q∈{0,1}w
Pr(T(w,i,j) = l|H(w,i,j) = q) Pr(H(w,i,j) = q)

=
1

2w
(1− 1

280
)

∑
q∈{0,1}w\{0}w

Pr(T(w,i,j) = l|H(w,i,j) = q)

=
1

2w
(1− 1

280
).

The last equation follows from Pr(T(w,i,j) = l|H(w,i,j) = 0) = 0. We see
that the probability is always the same when the LSB of l is 1.

Case 2: The LSB of l is 0.

Pr(T(w,i,j) = l)

=
∑

q∈{0,1}w
Pr(T(w,i,j) = l|H(w,i,j) = q) Pr(H(w,i,j) = q)

= Pr(T(w,i,j) = l|H(w,i,j) = 0) Pr(H(w,i,j) = 0)

+
∑

q∈{0,1}w\{0}w
Pr(T(w,i,j) = l|H(w,i,j) = q) Pr(H(w,i,j) = q)

=
1

2w
(1 +

2w − 1
280

)pl +
1

2w
(1− pl)(1−

1
280

)

=
1

2w
(1 +

1
280

(pl2w − 1)).

Finding Pr(T(w,i,j) = l) in this case reduces to finding pl.

5.1 The Effect of Carry Bits in the Linear Approximation

We now analyze the influence of the carry introduced in (10). When only
the least significant bit is considered there is no influence of any carry.
In our case, this analysis is needed in order to compute pl when w > 1.
First we note that there are two ‘+’ in (6) that are approximated by ⊕.
Linear approximations of modulo 2w additions of k integers was studied
by Staffelbach and Meier [11]. Maitra et al. [9] extended this idea to ap-
proximate the feedback functions g1 and g2 by replacing the two ‘+’ with
⊕ operators. However they considered the effect of the approximation on
only one bit. We extend this idea to words of several bits.

Let X,Y, Z be three w-bit integers and let A = (X+Y +Z) mod 2w

and B = X ⊕ Y ⊕ Z. We consider the carries that are produced in each
bit position of A ⊕ B. Let C = A ⊕ B, so that Ci represents the carry
generated at the ith least significant bit due to the linear approximation.
The least significant bit of A will always be equal to the least significant
bit of B, because there are no carries that affect this bit position. We
consider the carries from the w least significant bits and give a recursive
formula for the distribution of the w least significant carry bits.

We denote the probability Pr(A⊕B = s) by pi
k, where i is the integer

representation of s and k is the number of bits under consideration, s =
sk−1sk−2 · · · s1s0. As a starting point, it is easy to see that Pr(A ⊕ B =
00) = p0

2 = 1
2 , Pr(A ⊕ B = 01) = p1

2 = 0, Pr(A ⊕ B = 10) = p2
2 = 1

2
and Pr(A ⊕ B = 11) = p3

2 = 0. Now, suppose we know the distribution
of A⊕B for the k least significant bits, then we can find the distribution
of A ⊕ B for the k + 1 least significant bits. Note that Pr(A ⊕ B =
sk0sk−2sk−3 · · · s0) = 1

2 Pr(A⊕B = 0sk−2sk−3 · · · s0), since the carry value
at position (k − 1) does not affect the carry value at position k. Hence,
pi

k+1 = 1
2p

i
k for 0 ≤ i < 2k−1, when bit (k − 1) is zero and pi

k+1 = 1
2p

i−2k

k

for 2k ≤ i < 3 ·2k−1. If the carry bit at position k−1 is 1, then the Table 1
lists the possible carry bit values at position k. We see that pi

k+1 = 1
4p

i
k

Table 1. The values of carry bits at position k.

Xk Yk Zk Ck−1 Ck

0 0 0 1 0
0 0 1 1 1
0 1 0 1 1
0 1 1 1 1
1 0 0 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 1 0

for 2k−1 ≤ i < 2k and pi
k+1 = 3

4p
i−2k

k for 3 · 2k−1 ≤ i < 2k+1.

We can now give a recursive formula for generating carries and thus
for approximating the ‘+’ by ⊕ operators. Starting out with the basic
case Pr(A ⊕ B = 00) = p0

2 = 1
2 , Pr(A ⊕ B = 01) = p1

2 = 0, Pr(A ⊕ B =
10) = p2

2 = 1
2 , Pr(A⊕B = 11) = p3

2 = 0, the carry generated for the least

k + 1 significant bits is given by

pi
k+1 =

1
2p

i
k 0 ≤ i < 2k−1,

1
4p

i
k 2k−1 ≤ i < 2k,

1
2p

i−2k

k 2k ≤ i < 3 · 2k−1,
3
4p

i−2k

k 3 · 2k−1 ≤ i < 2k+1.

As an example, for word size w = 3 we have Pr(A ⊕ B = 000) = 1
4 ,

Pr(A ⊕ B = 001) = 0, Pr(A ⊕ B = 010) = 1
8 , Pr(A ⊕ B = 011) = 0,

Pr(A ⊕ B = 100) = 1
4 , Pr(A ⊕ B = 101) = 0, Pr(A ⊕ B = 110) = 3

8 ,
Pr(A⊕B = 111) = 0.

Utilizing this recursive expression we have computed the distribution
of [ti]<w> ⊕ [tj]<w> for 1 ≤ w ≤ 18. The inverse of the relative entropy
between the cipher distribution and the uniform distribution is given in
Table 2. This corresponds to the number of samples needed in the dis-
tinguisher. Note that the original attack by Wu corresponds to word size
1. It is clear that the attack is improved, though the gain is small. Still,
this settles the open problem of determining the advantage of considering
a word-based distinguisher for HC-128. We can note that when the least
significant two bits are considered then the required number of samples
is same as that for w = 1. This is consistent with the result of Maitra et
al. [9] who stated that the second least significant bit does not affect the
bias in any way.

When implementing the word-based distinguisher in practice, one may
use 2w counters. From all keystream words, compute the w-bit result
according to (10) and increase the corresponding counter. When finished
counting, perform the hypothesis test on the resulting distribution (the
counter values) to see if the HC-128 or the ideal probability distribution
yields the closest fit.

6 A New Vector-Based Distinguisher

In [13] Wu found a bias in ti,

ti = [si]0 ⊕ [si−3]10 ⊕ [si−10]8 ⊕ [si−1023]23 ⊕ [si−1024]0, (11)

by considering pairs (ti, tj), i 6= j, and xoring them to form ti ⊕ tj . We
now extend this idea to binary vectors of length n with 2 ≤ n ≤ 501.
Take n consecutive ti’s and form the vector

(ti, ti+1, . . . , ti+n−1) .

Table 2. Word size and number of samples (32-bit keystream words) required by the
distinguisher.

Word size Samples Word size Samples

1 2160.471 10 2160.002

2 2160.471 11 2159.940

3 2160.449 12 2159.878

4 2160.396 13 2159.818

5 2160.331 14 2159.758

6 2160.264 15 2159.700

7 2160.198 16 2159.642

8 2160.131 17 2159.585

9 2160.066 18 2159.529

Consider the weight w =
∑n−1

k=0 ti+k of such vectors. We will study weight
probability distributions W to show that HC-128 behavior is less than
ideal. That is, we want to find P (W = w) for all values of 0 ≤ w ≤ n,
both for the cipher and the ideal case. Once this is done, we can assert
the efficiency of our distinguisher by comparing the two distributions.

We will first go through the conceptual structure of our problem and
state the ideal weight probability distribution in Section 6.1. We will then
show how to calculate the cipher’s weight probability distribution for a
simplified case in Section 6.2. We then construct the full weight prob-
ability distribution for the cipher by learning how to combine different
weight probability distributions. This is covered in Section 6.3, where we
also derive the resulting distinguisher performance.

6.1 The Ideal Vector Weight Probability Distribution

Each bit ti in the vector is derived from several lookups into the same
table Q (or P). Recall the expression

ti = [h1(zi)]0⊕ [h1(zi−3)]10⊕ [h1(zi−10)]8⊕ [h′1(zi−1023)]23⊕ [h′1(zi−1024)]0.

Table Q (or P) contains 512 32-bit words, and lookup into Q (P) is
divided into the upper and lower half according to function h1 (h2). Note
that h1 and h′1 denote lookup into different tables, and note also that we
only use one bit from each 32-bit lookup value for ti so that the table bit

positions differ for each application of h1. Thus, ti is essentially derived by
xoring lookups from ten different lookup tables of size 256 (with binary
entries). One may view ti as the result of xoring the output of ten different
(non-invertible) 8-to-1-bit S-boxes. The conceptual composition of ti is
illustrated in Fig. 2.

ti = [h1(zi)]
0 ⊕ [h1(zi−3)]10 ⊕ [h1(zi−10)]8 ⊕ [h′1(zi−1023)]23 ⊕ [h′1(zi−1024)]0

⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕
⊕ ⊕ ⊕ ⊕ ⊕

Fig. 2. The conceptual anatomy of ti.

HC-128 reuses the same tables with fixed values during several con-
secutive time instances, so ti and tj with i 6= j are pairwise dependent
for this period of time. But we first consider the ideal case, in which fresh
8-to-1-bit tables are used for every time instance, so that ti and tj with
i 6= j are independent.

Let Wideal denote a stochastic variable that returns the weight of a
vector produced according to the above stated conditions. Every vector
is equally likely in the ideal case, so the resulting vector weight probability
distribution is combinatorially determined by

Pr(Wideal = w) =
(
n

w

)
2−n.

6.2 The Cipher’s Vector Weight Probability Distribution

Calculating the weight probability distribution of the cipher is much more
complicated. We now reuse the same tables, so ti and tj with i 6= j are
pairwise dependent. We begin by simplifying this case by assuming that
only one 8-to-1-bit table is used to produce each vector bit ti.

At first glance, deriving this probability distribution for vector lengths
n approaching 500 is no walk in the park. We will first show how this dis-
tribution can be recursively determined for the simplified case with one
table. We hope that this algorithm will clearly illustrate how the proba-
bilities are derived. The recursiveness is an impediment as n approaches

500, of course, so we also show how to compute the same distribution
more efficiently using dynamic programming.

With the recursive approach, one would hope that full knowledge of
the weight distribution for vectors of length k would be easily deduced
from the distribution for vectors of length k−1. This is, however, not the
case. A vector of length k and weight w can be derived from a vector of
length k − 1 with

a) weight w if
i) a zero is read from a previously opened table entry, or
ii) a zero is read from a new table entry, or

b) weight w − 1 if
i) a one is read from a previously opened table entry, or
ii) a one is read from a new table entry.

We use the variables a0 and a1 to keep track of the number of opened
table entries of each sort. The recursive algorithm is given in Fig. 3 in
pseudocode resembling C.

Algorithm 2 – CipherDistribution (Recursive)

Input: maximum depth n (vector length), current depth d, current probability
pr, probability distribution container p of length n + 1, weight w, number of
opened table slots with zeros a0, number of opened table slots with ones a1.
Output: probability distribution p.
Initial recursion parameters: p zeroized, (d, pr, w, a0, a1) = (0, 1, 0, 0, 0).

if (d == n) {
p[w] += pr;
return;

}
CipherDistribution(p, n, d + 1, pr · a0

256
, w, a0, a1); /* old 0 with prob

a0
256 */

CipherDistribution(p, n, d + 1, pr · a1
256

, w + 1, a0, a1); /* old 1 with prob
a1
256 */

if (a0 + a1 < 256) { /* table not exhausted */

/* new 0 with prob
256−(a0+a1)

512 */

CipherDistribution(p, n, d + 1, pr · 256−(a0+a1)
512

, w, a0 + 1, a1);
/* new 1 with prob

256−(a0+a1)
512 */

CipherDistribution(p, n, d + 1, pr · 256−(a0+a1)
512

, w + 1, a0, a1 + 1);
}

Fig. 3. Cipher distribution calculation (recursive) for one table.

When translating the recursive algorithm into a dynamic program-
ming variant, we use an intermediate storage for all probabilities for vec-
tors of length k−1 to deduce the corresponding probabilities for a vector

of length k. Consider the tuple (w, a0, a1), for which w indicates weight
and the a’s indicate how many table entries of each sort that have been
opened. The intermediate storage contains one probability for each such
tuple, so it is necessary to be able to translate a tuple into an index in
the temporary storage and vice versa. This translation is performed by
the functions getTuple and getIndex in the algorithm detailed in Fig. 4.

Algorithm 3 – CipherDistribution (Dynamic Programming)

Input: vector length n.
Output: probability distribution distr.

m = 2572

2
(n + 1); /* max num probability entries at depth n */

p = (1, 0, . . . , 0); /* length m */

q = (0, 0, . . . , 0); /* length m */

for (d = 0; d < n; d++) { /* depth d */

md = 2572

2
(d + 1); /* max num probability entries at depth d */

for (e = 0; e < md; e++) { /* entry index e */

(w, a0, a1) = getTuple(d, e);
q[getIndex(d + 1, (w, a0, a1))] += p[e] · a0

256
; /* old 0 with prob

a0
256 */

q[getIndex(d + 1, (w + 1, a0, a1))] += p[e] · a1
256

; /* old 1 with prob
a1
256 */

if (a0 + a1 < 256) { /* table not exhausted */

/* new 0 with prob
256−(a0+a1)

512 */

q[getIndex(d + 1, (w, a0 + 1, a1))] += p[e] · 256−(a0+a1)
512

;
/* new 1 with prob

256−(a0+a1)
512 */

q[getIndex(d + 1, (w + 1, a0, a1 + 1))] += p[e] · 256−(a0+a1)
512

;
}

}
p↔ q; /* swap p and q */

q = (0, 0, . . . , 0); /* clear q */

}
distr = (0, 0, . . . , 0); /* length n + 1 */

for (e = 0; e < m; e++) {
(w, a0, a1) = getTuple(m, e);
distr[w] += p[e];

}

Fig. 4. Cipher distribution calculation (dynamic programming) for one table.

For HC-128 one may note that an upper bound on the memory re-
quirement of a dynamic programming implementation is given by

2572(n+ 1) · L

bytes of memory, where L denotes the size of the number type that is
being used for storing the probabilities4. The computational complexity5

is bounded by

2572

2

n∑
k=0

(k + 1) =
2572(n+ 1)(n+ 2)

4

instructions involving multiple precision multiplications. This algorithm
dominates the experiment, both in terms of memory requirements and
computational complexity. Reaching the HC-128 limit for n = 501 is
feasible with a reasonable computer and a healthy measure of patience.

Now that we can obtain the weight probability distribution of the
cipher for a single S-box (table), we need to learn how to derive the
corresponding distribution for the xor of all ten S-boxes.

6.3 Xoring Weight Probability Distributions

Our simplification so far is that we assume only one S-box. How do we find
the corresponding weight probability distribution when we are xoring the
output of two S-boxes? Algorithm XorDistributions in Fig. 5 shows how
to combine two distributions. Given two different S-boxes, potentially
with different weight probability distributions, we still know precisely
what to expect from their xored output in terms of vector weight.

The algorithm works as follows. Consider vectors v1 and v2 with
weights i and j, respectively. If k ones are overlapping, the xored vector
v1⊕ v2 will contain i+ j− 2k ones. The algorithm sums the probabilities

over all possible tuple values (i, j, k). The binomial expression
(i

k)(
n−i
j−k)

(n
j)

in

the algorithm states the probability of a k-bit overlap given two vectors
of weight i and j.

Using this algorithm we can easily and successively deduce the prob-
ability distributions for the resulting vector weight over, in turn, 2, 4, 8
and 10 tables.

Last but not least, we need to compare the ideal and the biased proba-
bility distributions. We do this by using the divergence measure according
to (2). For various vector lengths n and number of S-boxes, the required

4 64-bit data types do not provide sufficient precision to measure differences in prob-
ability distributions when considering the full 10-table case.

5 More general upper bound formulas for memory and computational complexity for

vectors of size N derived from a table of size T are given by T2NL
2

and T2N2

4
,

respectively. These formulas do leave some room for improvement.

Algorithm 4 – XorDistributions

Input: vector length n, probability distributions p and q (n + 1 values each).
Output: probability distribution r.

r = (0, 0, 0, . . . , 0); /* length n + 1 */

for (i = 0; i < n + 1; i++) {
for (j = 0; j < n + 1; j++) {

for (k = max(0, i + j − n); k < min(i, j) + 1; k++) {
/* vector v1 with weight i,

* vector v2 with weight j,

* k ones overlapping =⇒ v1 ⊕ v2 has weight i + j − 2k */

r[i + j − 2k] += p[i] · q[j] · (i
k)(n−i

j−k)
(n

j)
;

}
}

}
return r;

Fig. 5. Xoring two weight probability distributions p and q.

number of samples for our distinguisher are presented in Table 3. Note the
reappearance of the value 2160.471 for n = 2 over 10 S-boxes that was de-
rived in Section 5 and also corresponds to Wu’s attack. As a verification,
the case n = 10 over one S-box was also simulated to ensure correctness.
The simulation results matched the theoretical findings.

Table 3. Number of samples required for various vector lengths n and number of
S-boxes.

vector length n
2 10 50 100 250 501

S-boxes

1 216.471 211.009 26.380 24.517 22.232 20.665

2 232.471 226.979 222.213 220.199 217.549 215.544

4 264.471 258.979 254.213 252.198 249.545 247.537

8 2128.471 2122.979 2118.213 2116.198 2113.545 2111.537

10 2160.471 2154.979 2150.213 2148.198 2145.545 2143.537

Using this analysis, the actual distinguishing attack on HC-128 would
proceed as follows. Instantiate n+1 counters, one for each possible vector
weight. From all keystream words, compute the n-bit vector samples by
repeatedly applying (11). Based on the resulting vector weight, increase
the corresponding counter. When finished counting, perform the hypoth-

esis test on the resulting distribution (the counter values) to see if the
HC-128 or the ideal probability distribution yields the closest fit.

Our best result for the full HC-128 with 10 S-boxes is a requirement
of 2143.537 samples for n = 501. Each sample is derived from the least
significant bits of n keystream words, so the total complexity is no more
than 2152.537 keystream words.

The reader may further note that the time units used here corre-
spond to very simple operations involving only xor and shifts of keystream
words. These operations are much cheaper than the initializations con-
sidered in a brute-force search. One key initialization takes about 27300
clock cycles [13], involving both a key expansion and 1024 table updates.
For comparison, one single key initialization corresponds to processing
about 210 keystream words using our simple operations.

7 Conclusion

We have presented two new distinguishing attacks on the eSTREAM
portfolio stream cipher HC-128. Both techniques use the underlying idea
of using more information from the keystream than obtained from a sim-
ple xor of the least significant bit. The first idea is based on looking at
several bits in the keystream words simultaneously. This gives a slight
improvement over the original attack. The second technique puts bits in
a long vector and considers the distribution of the weight of this vec-
tor. Using non-trivial techniques we are able to compute the distribution
of the vector weight and we show that the corresponding distinguishing
attack requires 2152.537 keystream words. This is the most efficient distin-
guishing result known for HC-128. It exploits more information than any
other distinguisher, and it is an open problem if it is possible to improve
this result even further.

Acknowledgements
This work was sponsored in part by the Swedish Research Council (Veten-
skapsr̊adet) under grant 621-2006-5249.

References

1. Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear cryptanal-
ysis? In: Advances in Cryptology—ASIACRYPT 2004, Lecture Notes in Computer
Science, vol. 3329, pp. 432–450. Springer-Verlag (2004)

2. Cover, T., Thomas, J.A.: Elements of Information Theory. Wiley series in Telecom-
munication. Wiley (1991)

3. Dunkelman, O.: Phorum5: ECRYPT forum, post ’A small observation on HC-128’.
Available at http://www.ecrypt.eu.org/stream/phorum/read.php?1,1143. Last ac-
cessed on July 3, 2011

4. ECRYPT: D.SYM.3 – The eSTREAM Portfolio 2009 Annual Update, ICT-2007-
216676. Available at http://www.ecrypt.eu.org/stream/D.SYM.3-v1.1.pdf. Last ac-
cessed on January 14, 2011

5. ECRYPT: eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932. Avail-
able at http://www.ecrypt.eu.org/stream/. Last accessed on January 14, 2011

6. Hell, M., Johansson, T., Brynielsson, L.: An overview of distinguishing attacks on
stream ciphers. Cryptography and Communications 1(1), 71–94 (2008)

7. Kircanski, A., Youssef, A.M.: Differential fault analysis of HC-128. In: Africacrypt
2010, Lecture Notes in Computer Science, vol. 6055, pp. 360–377. Springer (2010)

8. Liu, Y., Qin, T.: The key and IV setup of the stream ciphers HC-256 and HC-128.
In: International Conference on Networks Security, Wireless Communications and
Trusted Computing, pp. 430–433 (2009)

9. Maitra, S., Paul, G., Raizada, S., Sen, S., Sengupta, R.: Some observations on
HC-128. Designs, Codes and Cryptography pp. 1–15 (2010)

10. Paul, G., Maitra, S., Raizada, S.: A Combinatorial Analysis of HC-128. Cryptology
ePrint Archive: Report 2010/387

11. Staffelbach, O., Meier, W.: Cryptographic significance of the carry for ciphers based
on integer addition. In: A. Menezes, S.A. Vanstone (eds.) CRYPTO, Lecture Notes
in Computer Science, vol. 537, pp. 601–614. Springer (1990)

12. Wu, H.: Phorum5: ECRYPT forum, post ’Re: A small observation on HC-128’.
Available at http://www.ecrypt.eu.org/stream/phorum/read.php?1,1143. Last ac-
cessed on July 3, 2011

13. Wu, H.: The Stream Cipher HC-128. In: New Stream Cipher Designs, Lecture
Notes in Computer Science, vol. 4986, pp. 39–47. Springer-Verlag (2008)

