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Popular summary in English

This thesis is concerned with stochastic optimization methods. In the fields
of Artificial intelligence and Machine learning, it is common that one wants to
estimate parameters in a statistical model in order to make predictions. One
then uses a cost function that penalizes predictions that are far away from
the true value, and minimize this with respect to the statistical parameters.
An example is artificial neural networks that often have a very complicated
structure and are difficult to minimize efficiently. Usual optimization methods
are not suitable for these as they are too computationally demanding and one
then uses stochastic optimization methods, as these are less costly and faster to
use. Although they have proven to work well for such problems, they are often
sensitive to the choice of step size/learning rate. If it is chosen too small it will
take too long for it to find a good minimum, and if it is chosen too large it may
blow up. In this thesis, we investigate different methods for stabilizing stochastic
optimization schemes. More precisely, we look at methods for solving differential
equations numerically, that have been shown to have good stability properties,
and make use of them in the context of stochastic optimization algorithms.
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Populärvetenskaplig sammanfattning p̊a svenska

Den här uppsatsen handlar om stokastiska optimerings metoder. Inom omr̊adena
Artificiell intelligens och Maskininlärning är det vanligt att man vill skatta pa-
rametrar i en statistisk modell för att kunna göra prediktioner. Man använder
sig d̊a av en kostnadsfunktion som bestraffar prediktioner som ligger l̊angt ifr̊an
det riktiga värdet och minimerar denna med avseende p̊a de statistiska paramet-
rarna. Ett exempel p̊a detta är artificiella neurala nätverk, som ofta är väldigt
komplexa och sv̊ara att minimera effektivt. Vanliga optimeringsmetoder är d̊a
inte lämpliga eftersom de är för beräkningsmässigt krävande och man använder
sig istället av s̊a kallade stokastiska optimerings metoder, som är mindre kost-
samma och snabbare att använda. Även om dessa har visat sig fungera bra för
dylika problem, är de ofta känsliga för valet av steglängd. Väljs den för liten tar
det en evighet att hitta minimat till kostnadsfunktionen och väljs den för stor
kan algoritmen explodera. I den här uppsatsen undersöks olika metoder för att
stabilisera stokastiska optimeringsalgoritmer. Mer exakt tittar vi p̊a metoder för
att lösa differentialekvationer numeriskt, som har visat sig ha väldigt bra stabili-
tetsegenskaper och omformulerar dessa som stokastiska optimeringsalgoritmer.

vi



Convergence and Stability
Analysis of Stochastic
Optimization Algorithms.

1





Chapter 1

Introduction

The research presented in this thesis is concerned with stochastic optimization
methods. Stochastic optimization methods are often used in the field of ma-
chine learning in order to estimate the parameters in a statistical model, e.g., a
regression- or a classification model. A typical example is the stochastic gradient
descent method (SGD), which is a randomized version of the gradient descent
algorithm. Using the SGD has shown to have several advantages; it is less com-
putationally costly compared to the traditional algorithms such as the gradient
descent or Newton’s method; another advantage is that the randomness allows
the iterates to escape local saddle points in the non-convex case, see [4, 5]. The
latter is an important property, as many machine learning problems are indeed
non-convex. Perhaps most notable are deep neural networks, for which evidence
suggest that saddle points at which the value of the cost function is high, appear
more frequently than shallow local minima, compare [6]. Yet another benefit
is the following: the objective function used in machine learning problems is
typically based on the sample data set. In practice, the latter often contains
data that is similar and do not add much to the information in the gradient
update. Here, stochastic algorithms that only make use of a subset of the data
tend to use information more efficiently, see for example Sec. 3.3 in [7].

Despite its advantages, the step size often needs to be carefully tuned; if it
is chosen too small it can take a long time before an acceptable value of the
objective function is reached; if it is chosen too large the method may blow
up. Here, the need for stabilized methods that are less sensitive to the choice
of step size enter the picture. In the field of numerical analysis for differential
equations, methods that allow for larger step sizes have long been used. Let
F : Rd → R. Then the gradient descent algorithm can be viewed as an explicit
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Euler discretization of the gradient flow equation

w′ = −∇F (w),

w(0) = w0.
(1.1)

When solving an initial value problem we want to find the solution over a certain
time period, while in the optimization case we want to solve it over an infinite
time interval to find an equilibrium solution w∗, which by definition satisfies

∇F (w∗) = 0,

i.e, a stationary point. There is a severe step size restriction on the explicit Euler
scheme, and this can be remedied by using other schemes with larger stability
region. In this thesis, we investigate how methods with good stability properties,
that have proven to work well for solving differential equations numerically, work
when they are applied in the context of stochastic optimization problems.

The thesis is arranged as follows; the second chapter gives an introduction to
supervised learning and risk minimization in general. Although the research
presented in the papers of the thesis is not mainly concerned with this, it is im-
portant to have an understanding of the underlying problems that the presented
optimization algorithms aim to solve.

Chapter 3 gives a brief introduction to time stepping methods and stability of
numerical methods. The concept of stability of a numerical method is one of
the core concepts of the thesis. In connection with this, we also give a short
introduction to Runge–Kutta Chebyshev methods, with which the second paper
in the thesis is concerned. In Chapter 4, we go through some of the most common
optimization methods and what their advantages are. We also treat stochastic
optimization methods, and mention some of the most common results and their
proof strategies.

In Chapter 5, we summarize the research done so far in the project and its
conclusions, and consider some possible paths for future research.
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Chapter 2

Supervised learning and risk
minimization

One of the main applications of stochastic optimization methods is to minimize
an objective function F that takes the form of a sum

F (w) =
1

N

NX
i=1

Fi(w),

in order to estimate a statistical parameter w. The hope is that the objective
function is a good approximation of an expected value that one does not have
at hand. In this chapter, we discuss when this is the case, and under what con-
ditions. Although the research presented in this thesis is not mainly concerned
with this topic, it plays an important role in the theory of machine learning
problems, and is important for understanding the background to the problems
that the thesis is concerned with.

2.1 Supervised learning

In a supervised learning problem, we have some measurements {(xi, yi)}n
i=1,

where xi are called features and yi labels. The task is to predict the label yi for
a given feature xi by finding a prediction function h such that h(x) is not too
far from y for any feature-label pair (x, y) that could be produced. The precise
meaning of “not too far” will be made clear later on. In image classification,
each xi could correspond to an image and the yi to the class of that particular
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image. In linear regression, xi would be the independent variable and yi the
dependent. Regardless of what the underlying problem is or from where the
data emanates, before we set out and gather the data for the experiment, we
do not know what the actual value of either the features or the corresponding
labels will be. Thus, it is not unreasonable to think of the feature-label pairs
as independent, identically distributed random vectors {(Xi, Yi)}N

i=1, defined on
a probability space (Ω, A, P), where X takes values in the feature space and Y
in the space of all labels. In the field of statistical inference, one would refer
to {(Xi, Yi)}N

i=1 as a random sample (compare with [8, Definition 5.1.1]). If we
for example were to classify the images of the famous MNIST dataset [9], where
each feature is a 28 × 28-pixel image of a handwritten digit between 0 and 9, we
could have

X : (Ω, A, P) → R28×28,

Y : (Ω, A, P) → {0, . . . , 9}.

2.2 Empirical risk minimization

The question now is how to determine a good prediction function h. Suppose
that we have some class of measurable functions H = {h(·, w)}w∈Θ, that we
restrict ourselves to. Here w is a parameter and Θ the parameter space. The
set of functions H could for example be all functions of the form h(x, w) = ax+b,
with w = (a, b), or all convolutional neural networks with a certain structure.
Our question in the following will be, how do we know if a certain function
h(·, w) from the chosen class H is a good candidate. The common way to
measure this is to introduce a loss function ℓ that gives us a penalty if h(x, w)
is not equal to the true value of y - the farther away, the larger the penalty. In
a linear regression problem we could for example use the square loss function
ℓ(y, h(x, w)) = (y − h(x, w))2, where h(x, w) = ax + b as above. We then seek
to minimize the risk functional

R(w) =

Z
Ω

ℓ (h(X(ω), w), Y (ω)) P(dω). (2.1)

Rather than working with the integral in the abstract probability space, it is
often more convenient to work with the measure P(X,Y ) induced by P in the
feature-label space, i.e. P(X,Y )(A) = P ({ω : (X(ω), Y (ω)) ∈ A}), where A is a
Borel set, compare [10, p. 10]. This allows us to talk about the joint-, marginal-
and conditional distributions of (X, Y ). In the MNIST example, (2.1) would
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become

R(w) =

Z
R28×28×{0,...,9}

ℓ (h(x, w), y) PX,Y (dx × dy).

The rationale for this procedure is that choosing a function h(·, w) ∈ H that
gives a low value for the risk functional will give us a low loss ℓ(h(x, w), y)
on average. The problem is that in most cases, the joint distribution PX,Y is
unknown to us. We can however obtain a random sample {(Xi, Yi)}N

i=1 and
hence what we can minimize is the empirical risk functional

RN (w) =
1

N

NX
i=1

ℓ (h(Xi, w), Yi) . (2.2)

Minimizing (2.2) rather than (2.1) is sometimes referred to as the principle of
empirical risk minimization, see [11, p. 32]. We note that the minimizer w∗ of
(2.2) is an estimator, i.e. a function of the random sample {(Xi, Yi)}N

i=1 (com-
pare with [8, Definition 7.1.1] and the discussion that follows). In general, w∗
could be non-measurable and/or set-valued. In this discussion, we for simplicity
assume that it is a random variable, i.e. single-valued and measurable. There
are several ways to deal with non-measurability (see for example [12, 4.4] and
the discussion on the outer expectation in [13]) and set-valued random variables
(see [14, 14.91]), but this is outside the scope of this thesis.

2.3 Generalization error

An important concept in machine learning is that of generalization. Assume
that there is w0 in the parameter space Θ such that R(w0) = infw∈Θ R(w) and
let w∗ be a minimizer of (2.2). Suppose that we want to estimate w0 by finding
w∗. Can we guarantee that R(w∗) will get closer to R(w0) in some sense -either
in probability or almost surely- if we increase the number of samples?

Closely following [12], the difference R(w∗) − R(w0) can be split up as follows

R(w∗) − R(w0) =R(w∗) − RN (w∗)| {z }
T1

+ RN (w∗) − RN (w0)| {z }
T2

+

RN (w0) − R(w0)| {z }
T3

.

The second term T2 is less than or equal to 0 since w∗ is a minimizer of RN (w).

7



According to the law of large numbers, we have for a fixed w that

lim
N→∞

1

N

NX
i=1

ℓ (h(Xi, w), Yi) =

Z
ℓ (h(X(ω), w)), Y (ω)) dP(ω),

in probability or almost surely (depending on whether we use the strong- or
weak law of large numbers). The parameter w0, being the minimizer of R(w), is
independent of the random sample and is thus a deterministic quantity. Thus,
we can conclude that T3 converges to 0. (Again, at this point we keep the
discussion general, so we are not specifying the mode of convergence).

We now turn our attention to the first term T1. The problem is that w∗ is
not fixed as it depends on the random variables {(Xi, Yi)}N

i=1. Therefore, we
need a uniform bound on the difference R(w)−RN (w) so that we can guarantee
beforehand that the difference will not be too large, independent of what sample
we get and what distribution they have. The common approach to ensure this
is to restrict the functions that we consider to various function classes for which
uniform convergence holds, see [11]. Under certain conditions on the class H it
is for example possible to say that RN converges uniformly, almost surely, to R,
i.e.

P
�n

ω : lim
N→∞

sup
w∈Θ

|R(w) − RN (w)| ≠ 0
o�

= 0,

compare [11, Thm. 3.5]. In machine learning, one often considers classes of
prediction functions H with finite VC-dimension. Intuitively, one can say that
these are classes of functions that do not overfit the data. Suppose that the
functions are also bounded, in the sense that there are constants A and B such
that A ≤ h(x) ≤ B holds for all h ∈ H. Then it holds for a class H of finite
VC-dimension v that

P
�n

ω : sup
w∈Θ

|R(w) − RN (w)| > ϵ
o�

≤ 4 exp

�
N

 
v

�
ln(2N

v ) + 1
�

N
− ϵ2

B − A

! �
,

(2.3)

when N > v
2 , compare (3.10) and Thm. 3.3 in [15]. That is, RN converges

uniformly in probability to R. If we look at how the constant on the right-
hand side of (2.3) behaves, we see that for a fixed VC-dimension v, we have
uniform convergence in w as the number of samples N is increased. We also see
that for a fixed number of samples, N , the gap between R(w) and RN (w) can
increase if we use a function class with larger VC-dimension v. For other classes
of functions, such as the set of unbounded, non-negative functions, there are
similar bounds on the gap between the empirical risk and the risk functional,
compare [15, Ch. 3.7], but this is not the focus of this thesis.
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Chapter 3

Time integration

The optimization methods that are proposed in the papers of this thesis are
based on numerical schemes for time-integration. In this chapter we therefore
give a brief overview of the corresponding time-integration schemes, as well as
some of the most relevant concepts from the field.

3.1 Explicit Euler

The goal of time integration methods is to approximate the solution to the
problem

w′(t) = f(t, w(t)), t ∈ [t0, T ],

w(t0) = w0,
(3.1)

where f : [t0, T ] × Rd → R.

The most simple method is perhaps explicit Euler’s method. We start with
choosing a grid of time points {tk}K

k=0 defined by tk+1 = tk + K · h, with
h = T −t0

K , where h is the step size. Using the knowledge that w(t0) = w0, we
define a sequence of approximations {wk}K

k=0 iteratively, where each wk ≈ w(tk),
by approximating the left-hand side of (3.1) with a forward difference approx-
imation

w(t + h) − w(t)

h
≈ f(t, w(t))

which gives the recursion

wk+1 = wk + hf(tk, wk). (3.2)

9



Suppose that we at time point tk actually have the exact value of w(tk) at hand.
An important question that arises is how far the approximation wk+1 will be
to w(tk+1), if we make use of (3.2). Assuming that the solution w is twice
continuously differentiable, we get by Taylor expansion that

w(tk+1) = w(tk + h) = w(tk) + h · w′(tk) +
h2

2
· w′′(θk)

= w(tk) + h · f(tk, w(tk)) +
h2

2
· w′′(θk), θk ∈ [tk, tk+1].

(3.3)

Hence we see that if supθk∈[tk,tk+1]
∥w′′(θk)∥ is bounded, the local error defined

by rk = w(tk+1) − (w(tk) + h · f(tk, w(tk))) satisfies

∥rk∥ ≤ C · h2, C > 0,

which tends to 0 as h tends to 0. A method that satisfies this property is referred
to as a consistent method. In this case, as the local error is O(h2), we say that
the order of consistency of the method is 1.

Another quantity of interest is the global error, given by ek = w(tk)−wk. While
the local error measures the error made in one step, the global error measures
the accumulated error at time tk. With starting point in the local error (3.3),
we add and subtract wk+1 to both sides which yields the equation

w(tk+1) − wk+1 = w(tk) − wk + h · (f(tk, w(tk)) − f(tk, wk)) + w′′(θk) · h2

2
.

If we assume that f is Lipschitz continuous with Lipschitz constant L, we get
the following bound on the global error

∥ek+1∥ ≤ (1 + hL) ∥ek∥ + C · h2.

It can be shown by induction, along with the fact that 1 + x ≤ ex for x ≥ 0, [16,
p. 6] that the global error satisfies

∥ek∥ ≤ c

L

�
e(T −t0)L − 1

�
h. (3.4)

This also means that the explicit Euler method is convergent ; the maximum er-
ror tends to 0 as the step size tends to 0, and this holds for any initial value prob-
lem (3.1) for which the function f on the left-hand side is Lipschitz-continuous
and whose solution is twice continuously differentiable, with bounded second
derivative. The error constant in (3.4) is not very good for practical purposes;
it is however possible to obtain sharper error bounds, see [16].
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3.2 Implicit Euler

Instead of evaluating the function on the right-hand side of (3.1) at time tk+1

one obtains the implicit Euler update

wk+1 = wk + hf(tk+1, wk+1). (3.5)

This can be rewritten on the form

wk+1 = Rf wk, (3.6)

where Rf = (I + hf)−1 is the resolvent of f . In order to investigate the order
of consistency, we consider the difference

rk+1 = w(tk+1) − w(tk) − hf(tk+1, w(tk+1)).

Following [16, Chap. 1.4], we expand the first term in Taylor series around tk

and exchange the last for w′(tk+1). This yields

rk+1 = w(tk) + hw′(tk) +
h2

2
w′′(tk) + O(h3) − w(tk) − hw′(tk+1).

We proceed with expanding the last term in Taylor series around tk which gives

rk+1 = w(tk) + w′(tk)h +
h2

2
w′′(tk) + O(h3) − w(tk)

− h

�
w′(tk) + hw′′(tk) + O(h2)

�
.

From this we see that

rk+1 = w(tk+1) − w(tk) − hf(tk+1, w(tk+1)) = −h2

2
w′′(tk) + O(h3). (3.7)

We see that the local error is O(h2), and hence the implicit Euler scheme is
consistent of order 1.

As in the explicit Euler case, it is possible to show that the global error ek =
w(tk) − wk satisfies a bound similar to (3.4). See e.g. [16, 17]. The advantage
of using the implicit Euler method over the explicit Euler method is that it is
more stable and allows for larger step sizes. It is however more computationally
costly in general compared to explicit methods, as one needs to solve an implicit
equation in order to obtain the next iterate in each step.

11



3.3 Runge–Kutta methods

The starting point of Runge–Kutta methods is the observation that the problem
(3.1) equivalently can be written as an integral equation

w(t) = w0 +

Z t

0
f(s, w(s))ds.

The relation between the solution to (3.1) at time tk and tk+1 can thus be
expressed as

w(tk+1) = w(tk) +

Z tk+1

tk

f(s, w(s))ds. (3.8)

Given an approximation wk ≈ w(tk), we can in order to obtain an approximation
for the function value at tk+1, use a quadrature formula and approximate the
integral on the right-hand side of (3.8), i.e.

wk+1 = wk + h

sX
i=0

bif(tk,i, wk,i). (3.9)

Here tk,i ∈ [tk, tk+1] and the coefficients bi are weights from the quadrature rule.
As we do not have the function w(t) at hand, we need approximations wk,i to
the points w(tk,i). In Runge–Kutta methods, the intermediate stages wk,i are
computed in a recursive fashion according to the rule

wk,i = wk + h

sX
j=1

ai,jf(t + hcj , wk,j). (3.10)

If ai,j = 0 for j ≥ i, the method is explicit, otherwise implicit. The coefficients
ai,j , bi, cj , in (3.9) and (3.10) are chosen such that the local and global error
satisfies certain order conditions. A common assumption is that ci =

Ps
j=1 ai,j ,

see [18]. For consistency of order 1, which is used in Paper ii, we need to impose
the condition that

Ps
i=1 bi = 1,see Section II.1.1 of [19].

3.4 Stability

Consider the initial value problem

w′(t) = f(w(t)), t ≥ t0,

w(t0) = w0,
(3.11)
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where f : Rd → R. For simplicity, we consider autonomous systems in this
section. We say that w∗ is an equilibrium solution if f(w∗) = 0, i.e. it is constant
in time. It is said to be a stable equilibrium solution, if for any ε > 0, there
is a δ > 0 such that ∥w(t0) − w∗∥ < δ implies that ∥w(t) − w∗∥ < ε, for all
t ≥ t0. That is, any small perturbation of the equilibrium solution will remain
in an ε−neighborhood of w∗ at any time t ≥ t0. If it holds that addition
limt→∞∥w(t) − w∗∥ = 0, the solution is said to be asymptotically stable.

It is possible to show that w∗ is an asymptotically stable equilibrium solution if
and only if all the eigenvalues of the Jacobian of f at w∗ have negative real part,
see [20, Thm. 1.2.5]. If we assume that the Jacobian at w∗ is diagonalizable,
then the linearized system

w′(t) = Jf (w∗)w(t), t ≥ t0,

w(t0) = w0,
(3.12)

is equivalent to a d−dimensional system of equations

x′(t) = Λx(t), t ≥ t0,

x(0) = x0,

where Λ is a diagonal matrix, with the eigenvalues of Jf (w∗) on the diagonal.
We thus have d linear equations, all of the form

y′(t) = λy(t), λ ∈ C, t ≥ t0,

y(0) = y0.
(3.13)

Equation 3.13 is known as the linear test equation. Since we have |y(t)| =
eRe(λ)t|y0| for equation 3.13, we see that y∗ = 0 is asymptotically stable if and
only if Re(λ) < 0.

For a numerical method that produces a sequence of approximations {yk}k≥0

to the solution to (3.13), it would be desirable that it mimicked this behavior;
i.e. it should satisfy

lim
k→∞

yk = 0, (3.14)

when applied to equation 3.13 with Re(λ) < 0.

If we apply the explicit Euler method from Section 3.1 to (3.13), we obtain the
difference equation

yn+1 = R(z)yn,

13



where R(z) = 1+z, and z = hλ. The function R(z) is referred to as the stability
function of the method. For the values z ∈ C such that |R(z)| < 1 (the stability
domain of the method), (3.14) holds as we have that |yn+1| < |R(z)||yn|. In the
case of the explicit Euler method, we require that |1 + z| < 1. If λ ∈ R− (the
negative real line including 0), the step size restriction becomes h < − 2

λ .

For the implicit Euler method from Section 3.2, the stability function is given
by R(z) = (1 − z)−1. The stability region is thus {z ∈ C : |1 − z| > 1}. For the
implicit Euler method it holds that C− = {z ∈ C : Re(z) < 0} is contained in
the stability region. A method that satisfies this, is said to be A-stable, see [21,
Def. 3.3]. In particular, the negative real line R−, is included in the stability
region of an A-stable method.

For the Runge–Kutta methods introduced in Section 3.3, applying (3.9) and
(3.10) to (3.13), gives the update yn+1 = R(z)yn, where R(z) = 1 + zbt(I −
zA)−1 · 1, where 1 = (1, . . . , 1) ∈ Rs and

A =


a1,1 a1,2 . . . a1,s

a2,1 a2,2 . . . a2,s
...

...
. . .

...
as,1 as,2 . . . as,s

 .

Hence the stability domain S = {z ∈ C : |R(z)| < 1} of a Runge–Kutta method
depends on the coefficient matrix A and the vector b.

The larger part of the negative real axis the stability domain contains, the larger
step size it allows for. Following [19], we define the real stability boundary of
a method, βR > 0, as the largest number such that [−βR, 0] ⊂ S̄. Here S̄
denotes the closure of the stability domain. For any explicit s-stage Runge–
Kutta method, it holds that βR ≤ 2s2, compare [19, Thm. 1.1]. There is a
class of Runge–Kutta methods whose real stability boundary satisfies βR = 2s2.
These are knows as Runge–Kutta–Chebyshev methods. (For brevity, we will refer
to these as RKC methods). The stability function of such a method is given by

Rs(z) = Ts

�
1 +

z

s2

�
, (3.15)

where s is the number of stages of the method and Ts is the s-th Chebyshev
polynomial, defined by the recurrence relation

T0(x) = 1,

T1(x) = x,

Tn+1(x) = 2xTn(x) − Tn−1(x).

14
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Figure 3.1: Stability region of a RKC method with 5 stages. We see that there are points z on the negative real axis for
which |R(z)| = 1.

In Figure 3.1, we see the stability region for a RKC method with s = 5 stages.
A problem with RKC methods, is that there will be points z ∈ (−βR, 0) such
that |R(z)| = 1. This means that a small error due to numerical inaccuracy
could cause the iterates to end up outside of the stability domain. A remedy
for this, see [19, V.1], is to introduce a damping factor. Instead of using the
stability polynomials in (3.15), one uses a damped version of these;

Rs(z) =
Ts (ω0 + ω1z)

Ts (ω0)
, ω1 =

Ts (ω0)

T ′
s (ω0)

,

where ω0 > 1 is a parameter. With ω0 = 1 + ε
s2 , for ε > 0, the real stability

boundary then becomes βR = 2ω0T ′
s(ω0)

Ts(ω0)
≈

�
2 − 4

3ε
�

s2, see [19]. For small ε > 0
it is a slight reduction compared to that of the un-damped method, but instead
we gain some margin around the critical points. See Figure 3.1 for an illustration
of the stability region of a damped RKC-method with 5 stages.
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Figure 3.2: Stability region of a damped RKC method with 5 stages. The damping parameter ε = 0.05.
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Chapter 4

Optimization

The principle of empirical risk minimization, described in Chapter 2, tells us that
we can minimize the empirical risk functional (2.2), instead of the risk functional
(2.1). Thus, we have transformed the problem from that of finding the minimum
of the unknown function (2.1), to an unconstrained optimization problem with
the empirical risk functional (2.2) as the objective function. In this chapter,
we will describe various common optimization methods for approximating the
solution to such problems.

4.1 Gradient descent

Let F : Rd → R be a continuously differentiable function such that its derivative
is Lipschitz-continuous with Lipschitz constant L. Further, assume that F is
bounded below by some number F∗. Suppose that we want to find a solution to
the problem

w∗ = arg min
w∈Rd

F (w). (4.1)

A common algorithm for approximating the solution w∗, is the gradient descent
method. We start by choosing an initial iterate w1. A sequence of approxima-
tions {wk}k≥1 is then produced by letting

wk+1 = wk − αk∇F (wk), (4.2)
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for αk > 0. We note that (4.2) corresponds to the explicit Euler method in
Chapter 3. By the Lipschitz continuity of the gradient of F , it holds that

F (wk+1) ≤ F (wk) + ⟨∇F (wk), wk+1 − wk⟩ +
L

2
∥wk+1 − wk∥22, (4.3)

compare Lemma 1.2.3 [22]. This is sometimes referred to as L-smoothness. If
we use (4.2) in this expression, we obtain

F (wk+1) ≤ F (wk) − αk

�
1 − Lαk

2

�
∥∇F (wk)∥22. (4.4)

Assuming that αk < 2
L , the term 1 − Lαk

2 is positive and hence we see that the
function value F (wk) decreases with each iteration. By differentiating φ(α) =

−α + Lα2

2 , we find that the maximum decrease we can achieve in an iteration
is when we take αk = 1

L . Let us now suppose for simplicity that αk = 1
L . Then

(4.4) becomes

1

2L
∥∇F (wk)∥22 ≤ F (wk) − F (wk+1).

By summing up from 1 to K we see that

1

2L

KX
k=0

∥∇F (wk)∥22 ≤ F (w0) − F (wK+1) ≤ F (w0) − F∗,

where F∗ is the lower bound of (4.1). If we let K tend to ∞ in the sum above,
we see that the sum it is finite, since the right-hand side is independent of K.
Thus, we can conclude that

lim
k→∞

∥∇F (wk)∥2 = 0,

i.e. we reach a stationary point of F in the limit.

It turns out that we can say more about the local convergence under further
assumptions. Closely following [22, 1.2.3], we assume that

1. The Hessian ∇2F of F is Lipschitz continuous with Lipschitz constant M .

2. There is a local minimum w∗ at which the Hessian is positive definite, with
the smallest eigenvalue l > 0 and largest eigenvalue L > 0.

3. The initial iterate w0 is close enough to w∗ in the sense that

∥w0 − w∗∥2 <
2l

M
. (4.5)
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Then we can ensure that ∥wk+1 −w∗∥2 < ∥wk −w∗∥2. To see this, we start with
noting that

∇F (wk) = ∇F (wk) − ∇F (w∗) =

Z 1

0
∇2F (w∗ + t(wk − w∗))(wk − w∗)dt

=: Gk(wk − w∗).

By adding subtracting w∗ from both sides of (4.2) we get the recurrence relation

wk+1 − w∗ = (I − αkGk) (wk − w∗).

Using the Lipschitz continuity of ∇2F , it is possible to show [22, Cor. 1.2.2,
Thm. 1.2.4] that if ∥wk − w∗∥2 < 2l

M , then

∥I − αkGk∥2 < 1.

From this, and the fact that ∥wk+1 − w∗∥2 ≤ ∥I − αkGk∥2∥wk − w∗∥2, we see
that the sequence {wk}k≥0 converges to w∗. One can prove [22, Thm. 1.2.4]
that for the optimal choice of step size

αk =
2

l + L
, ∀k ≥ 1, (4.6)

one obtains a linear convergence rate, in the sense that

∥wk − w∗∥ ≤ 2lL∥w0 − w∗∥
2l − L∥w0 − w∗∥

�
1 − 2l

L + 3l

�k

.

This result is tells us that even for a non-convex function, as long as it is suffi-
ciently smooth, and we start close enough to a local minimum, we will converge
to that minimum linearly, given that the step size is chosen according to the
theorem. See Thm. 1.2.4. in [22] for details. One issue with this is that it might
be hard in practice to estimate the constants l, L and M . Therefore, it is diffi-
cult to estimate the right-hand side of (4.6) and ensure that the convergence is
linear. Furthermore, the local minimum w∗ is not known beforehand, and it is
not feasible to choose the initial iterate w0 according to (4.5). Therefore, it is
clear that this result, although interesting and informative in its own right, is
purely theoretical.

4.2 Proximal point method

In the previous section, we noted that the update (4.2) could be seen as an ex-
plicit Euler discretization of the gradient flow equation (1.1). Another common
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option is to instead use the implicit Euler scheme as discretization; instead of
evaluating ∇F at wk, we choose to evaluate it at wk+1, which gives the update

wk+1 = wk − αk∇F (wk+1). (4.7)

In the optimization setting, the update is often seen in the form

wk+1 = proxF,αk
(wk) = arg min

w∈Rd

�
F (w) +

1

2αk
∥w − wk∥22

	
, (4.8)

and is known as the proximal point method. For differentiable F , the equivalence
of (4.7) and (4.8) can be seen by differentiating the expression F (w) + 1

2αk
∥w −

wk∥22.

Another way to look at (4.8), at least for convex functions, is as a generalization
of orthogonal projection. If we let C be a convex set, then the indicator function

IC(w) =

(
0 , w ∈ C,

∞, w /∈ C,

is a convex function, and we have that

proxIC ,αk
(wk) = arg min

w∈Rd

�
IC(w) +

1

2αk
∥w − wk∥22

	
,

which is the orthogonal projection of wk onto C.

4.3 Stochastic gradient descent

For machine learning problems, the function F in (4.1) is often of the form

F (w) =
1

N

NX
i=1

ℓ(h(xi, w), yi), (4.9)

where ℓ is a loss function, h(·, w) is a prediction function and {(xi, yi)}N
i=1 is

a sample of feature-label pairs. In Chapter 2, we adopted the point of view
that the objective function depended on a random sample. Now, we are instead
concerned with the problem of minimizing (4.9) with respect to w, once we
have obtained the sample {(xi, yi)}N

i=1. Hence, the objective function (4.9), is a
deterministic function.

For each of the functions in the sum of (4.9), we need to evaluate the gradient
if we want to compute ∇F (w). Hence, the gradient update (4.2) can be very
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computationally expensive for a large number of samples N . A solution to this
is the stochastic gradient descent method which, instead of computing the full
gradient at each iteration, computes an approximation ∇f(wk, ξk) and uses this
in the update:

wk+1 = wk − αk∇f(wk, ξk). (4.10)

Here {ξk}k≥1 is a sequence of i.i.d random variables and could for example denote
the act of choosing a batch, i.e. a random subset of indices Bk ⊂ {1, . . . , N}. In
this case, we would get

∇f(wk, ξk) =
1

|Bk|
X
i∈Bk

ℓ(h(xi, w), yi). (4.11)

In the following, we will by Eξk
[·] denote the expectation taken with respect

to ξk given the sequence ξk−1, . . . , ξ1. Note that as wk only depends on ξj for
j < k, wk is independent of ξk, by the assumption that the sequence {ξk}k≥1 is
independent.

There are several strategies for showing convergence of the stochastic gradient
descent method. In this section, we will closely follow the approach in [7]. We
start with looking at the results in the non-convex case, and we assume that
there exists some global lower bound F∗ such that

F∗ ≤ F (w), ∀w ∈ Rd. (4.12)

Another common assumption, which we will also make, is that F has Lipschitz
continuous gradients. Then we can use the bound (4.3) from Section 4.1. We
can then insert

wk+1 − wk = −αk∇f(wk, ξk),

into inequality (4.3), to get that

F (wk+1) − F (wk) ≤ −αk⟨∇F (wk), ∇f(wk, ξk)⟩ +
Lα2

k

2
∥∇f(wk, ξk)∥22.

If the stochastic gradient is an unbiased estimate of ∇F (w), i.e.

Eξ[∇f(w, ξ)] = ∇F (w), (4.13)

we get, after taking the expectation w.r.t. ξk and using that wk is independent
of ξk,

Eξk
[F (wk+1)] − F (wk) ≤ −αk∥∇F (wk)∥22 +

Lα2
k

2
Eξk

�
∥∇f(wk, ξk)∥22

�
. (4.14)
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A common assumption on stochastic optimization algorithms is that they satisfy
Eξk

�
∥∇f(wk, ξk)∥22

�
≤ M , for some constant M > 0. It was however shown

in [23], that this is not satisfied for strongly convex functions on unbounded
domains. Hence, as in [7], we make the following, weaker assumption that

Eξk

�
∥∇f(wk, ξk)∥22

�
≤ M + MG∥∇F (wk)∥22, ∀k ≥ 1, (4.15)

for some constants M, MG > 0. If we now insert (4.15) into (4.14), we get

Eξk
[F (wk+1)] − F (wk) ≤ −αk

�
1 − αkLMG

2

�
∥∇F (wk)∥22 +

LMα2
k

2
.

Here we see that if we impose the step size restriction αk ≤ 1
LMG

, the term�
1 − αkLMG

2

�
> 1

2 . Thus, for a step size that satisfies this, the previous bound

becomes

Eξk
[F (wk+1)] − F (wk) ≤ −αk

2
∥∇F (wk)∥22 +

LMα2
k

2
.

We now take the expectation with respect to the joint distribution of all the
variables ξj , i.e. E[·] = Eξ1Eξ2 . . . Eξk

[·], for j ≤ k,

E [F (wk+1)] − E [F (wk)] ≤ −αk

2
E

�
∥∇F (wk)∥22

�
+

LM

2
α2

k. (4.16)

If we rearrange the terms and sum from 1 to K, we arrive at the inequality

KX
k=1

αkE
�
∥∇F (wk)∥22

�
≤ 2 (F (w1) − E [F (wK+1)]) + LM

KX
k=1

α2
k.

Here we have used the fact that E [F (w1)] = F (w1) since w1 is deterministic.
The left-hand side of the previous inequality can be bounded from below by as
follows,

min
1≤k≤K

E
�
∥∇F (wk)∥22

� KX
k=1

αk ≤
KX

k=1

αkE
�
∥∇F (wk)∥22

�
. (4.17)

After dividing both sides by
PK

k=1 αk we then get

min
1≤k≤K

E
�
∥∇F (wk)∥22

�
≤

�
2 (F (w1) − F∗) + LM

PK
k=1 α2

k

�
PK

k=1 αk

, (4.18)
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where we have used (4.12) in order to bound −E [F (wK+1)] by −F∗. From (4.18)
we see that the sequence�

min
1≤k≤K

E
�
∥∇F (wk)∥22

� 	
K≥1

(4.19)

converges to 0, if we require that

∞X
k=1

αk = ∞ and
∞X

k=1

α2
k < ∞. (4.20)

With the additional regularity assumptions that ∥∇F (w)∥22 is differentiable, we
can also say that

lim
k→∞

E
�
∥∇F (wk)∥22

�
= 0,

although not with a rate, compare Cor. 4.12 in [7].

We now look at a proof strategy for the convex case. A common assumption
is that the objective function is strongly convex with convexity constant c > 0,
i.e.

F (w′) − F (w) ≥ ⟨∇F (w), w′ − w⟩ +
c

2
∥w′ − w∥22, w, w′ ∈ Rd.

It is proved in [7, (4.12)] that

2c (F (w) − F (w∗)) ≤ ∥∇F (w)∥22, (4.21)

where w∗ is the unique global minimum of F . The fact that such a minimum
exists follows from (4.12), the continuity of F along with the strong convexity
[24, Cor. 11.17]. Inserting (4.21) into inequality (4.16), we get

E [F (wk+1)] − F (wk) ≤ −cαk (E [F (wk)] − F (w∗)) +
LM

2
α2

k.

Here we can subtract F (w∗) and add F (wk) from both sides, which yields the
recurrence inequality

E [F (wk+1)] − F (w∗) ≤ (1 − cαk) (E [F (wk)] − F (w∗)) +
LM

2
α2

k. (4.22)

Using an induction argument as in [7, Thm. 4.7], we can use (4.22) to show
that with αk = β

k+γ , where β > 1
c and γ > 0, we have

E [F (wk) − F (w∗)] ≤ ν

k + γ
, (4.23)
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and where

ν = max

�
LMβ2

2(cβ − 1)
, (1 + γ) (F (w1) − F (w∗))

�
.

The constant ν is chosen such that we can perform the base- and induction step
of the proof, as in [7].

The decreasing step size in (4.20) and (4.23) is needed for convergence. If we
use a fixed step size, the bound (4.18) becomes

min
1≤k≤K

E
�
∥∇F (wk)∥22∥

�
≤ 2 (F (w1) − F∗)

αK
+

LM

2
α. (4.24)

Letting the number of iterations K tend to infinity, the first term on the right-
hand side tends to 0, while the second is unaffected. Thus, the sequence (4.19)
stays bounded, but it does not converge to 0. This is sometimes referred to as
a noise-ball around a stationary point. Similarly, we can use (4.22) with a fixed
step size, to show that the sequence {F (wk)}k≥1 converges to a bounded region
around the minimum F (w∗), see [7, Thm. 4.6]. Indeed, by subtracting LMα

2c
from both sides of (4.22), we get the bound

E [F (wk+1)] − F (w∗) − LMα

2c
≤ (1 − cα)

�
E [F (wk)] − F (w∗) − LMα

2c

�
.

If the constant step size α < 2
c this will be a contraction, and we find that

E [F (wk+1) − F (w∗)] ≤ LMα

2c
+ (1 − cα)k

�
E

�
F (w1) − F (w∗) − LMα

2c

��
,

(4.25)

from which we conclude that E [F (wk+1) − F (w∗)] is bounded by LMα
2c as k

tends to infinity. A potential strategy is to start a scheme with a constant step
size until we are close to the bounded region around the stationary point, and
then use a decreasing step size to obtain convergence.

It is possible to control the size of the bound in (4.25) and (4.24), by choosing
the constant step size α small enough. A classical choice is to take α = 1/

√
K,

so that the step size depends on the number of iterations. If we plug this value
of α into (4.24), we see that we will have achieved an error of size O(1/

√
K)

after K iterations in the non-convex case.
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Chapter 5

Research and Outlook

In this chapter, we summarize the results from Paper i and Paper ii and link
them to the concepts introduced in the previous chapters of the thesis. We
discuss the implications of the research, and touch on some possible paths for
future studies.

5.1 Summary and Conclusions

In Section 4.2 of Chapter 4, we introduced the proximal point method and noted
that it can be viewed as the implicit Euler scheme from Section 3.2 in Chapter
3, applied to the gradient flow equation.

ẇ(t) = −∇F (w(t)), t ≥ 0,

w(0) = w0.

In Paper i, we show convergence for a stochastic proximal point method for
convex functions. The analysis in Chapter 3 and 4 was done on Rd for simplicity,
but in Paper i, the analysis is performed in a general Hilbert space setting.
Suppose that H is a real Hilbert space and F : H → R a strongly convex
function. We are interested in finding the unique solution w∗ to the problem

w∗ = arg min
w∈H

F (w). (5.1)

Let (Ω, F , P) be a probability space and {ξk}k≥1 be a sequence of jointly inde-
pendent random variables on Ω.
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The stochastic proximal point method seeks to approximate the solution to the
problem (5.1) by producing a sequence of iterates {wk}k≥1 according to the
update rule

wk+1 = wk − αk∇f(wk+1, ξk), (5.2)

where {αk}k≥1 is a step size sequence, i.e. αk > 0 for every k ≥ 1. In Paper i
we assume that the random functions f(·, ξ) are unbiased estimates of F (·), i.e.,
that Eξ [f(w, ξ)] = F (w). Although the stochastic proximal point algorithm is
not new, it has not been analyzed in the infinite dimensional framework to a
large degree before. A few exceptions to this are [25], where a weak type of
convergence for maximal monotone operators is proved and [26], where norm
convergence at a rate, but with a rather strong global Lipschitz condition on the
objective function is proved. Under the assumption that the gradient of f(·, ξ)
satisfy a local Lipschitz condition, and that it is µξ-strongly convex for a positive
random variable µξ (see Paper i for details), we get sublinear convergence in
expectation to the solution, i.e.

E
�
∥wk − w∗∥2

�
≤ C

k
,

for some constant C and where w∗ is defined by (5.1). The research in Paper i,
generalizes that in [27] and extends it to an infinite dimensional setting. This
result is new in that it provides a convergence rate for the scheme (5.2) in the
infinite dimensional setting. In many cases, a closed form solution of (5.2), to
obtain wk+1, can be found, and then the stochastic proximal method provides a
more stable alternative to the SGD, at essentially the same computational cost,
see [2, Sec. 5].

Although the proximal point method has very good stability properties, it can
be computationally costly to compute the implicit update (5.1) in the cases when
there is no closed form solution at hand. An alternative in these cases, is to use
explicit methods with larger stability regions. As noted in Section 3.4 of Chapter
3, an example class of methods that are optimal in the sense that they maximize
the real stability boundary, are Runge–Kutta Chebyshev methods. Although
well-known in the time-stepping community, the utility of these methods for
solving optimization problems have not been extensively studied. A notable
exception is [28], in which a deterministic optimization method that is based on
Runge–Kutta Chebyshev methods is proposed.

In Paper ii, we propose a stochastic optimization algorithm –the Stochastic
Runge–Kutta Chebyshev descent method (abbreviated as SRKCD)– based on
the Runge–Kutta Chebshev methods introduced in Section 3.4 of Chapter 3
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for approximating the solution to (5.1). The analysis is performed in a finite
dimensional setting on Rd for simplicity. It can likely be extended to the infinite
dimensional setting in the framework of monotone operators as in [29] by for
example making use of Lemma 2.1 in [30] or Lemma 2.1 in [31], under suitable
assumptions. We obtain convergence guarantees in expectation at a sublinear
rate, see Thm. 2.6 in Paper ii. Under slightly stricter regularity assumptions,
we obtain convergence in expectation to a stationary point, see Thm. 2.10 in
Paper ii. Although not explicitly stated in the article, we obtain convergence
at a rate for the sequence {min1≤k≤K E

�
∥∇F (wk)∥22

�
}K≥1, i.e.

min
1≤k≤K

E
�
∥∇F (wk)∥22

�
= O

�
1

log(K)

�
, (5.3)

in the non-convex case. This follows from (4.17) in Section 4.3 in Chapter 4,
(2.10) in Thm. 2.8 in Paper ii, along with the fact that

AK =
KX

k=1

β

k + γ
≥

Z K+1

1

β

x + γ
dx = β (log(K + 1 + γ) − log(1 + γ)) . (5.4)

The argument is essentially the same as that in Section 4.3 in Chapter 4 and is
therefore omitted here.

Something else worth noting is that although we prove convergence in expect-
ation in Thm. 2.1 and and Thm. 2.6 in Paper ii, a standard result in prob-
ability theory states that this implies convergence in probability, compare [32,
Prop. 3.1.5]. Thus, we can for example use (5.3), to say that

P
�n

ω : min
1≤k≤K

∥∇F (wk)∥22 > ε
o�

= O
�

1

log(K)

�
. (5.5)

Note however that the error constant inversely proportional to ε, see [32, Prop. 3.1.5].
From (5.5) we can also conclude that the sequence

min
1≤k≤K

∥∇F (wk)∥22 (5.6)

converges almost surely to 0, i.e. the set where (5.6) fails to converge has measure
0. To see this, we note that (5.6) is a decreasing sequence in K almost surely.
Thus, we can appeal to [33, Thm. 1 Sec. 2.10.3], which states that a sequence
of random variables {ζk}k≥1 converges almost surely to a random variable ζ, if
and only if

lim
n→∞

P
�n

ω ∈ Ω : sup
k≥n

|ζk(ω) − ζ(ω)| ≥ ε
o�

= 0,
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for every ε > 0, to conclude that (5.6) converges almost surely.

It is relatively common to show convergence of the type (5.3), see e.g. [7,
Thm. 4.10] (and keep in mind (4.17) in Section 4.3 in Chapter 4). Here, we
see that it follows that (5.6) actually converges almost surely, although not with
a convergence rate. It is a weaker result than that in e.g. [34], [35] or [36],
where it is shown that every converging subsequence of {wk}k≥1 converges al-
most surely to a point in the set {w : ∇F (w) = 0}. The later can likely be
shown for the algorithms in Paper i and Paper ii as well, but then a different
proof strategy is probably needed.

Methods with large stability region are particularly useful for stiff problems.
See [37] for a discussion on this. For a convex quadratic optimization problem,
this essentially corresponds to having one very large eigenvalue, that puts a
severe step-size restriction on the gradient update. In Paper ii, we saw that the
use of SRKCD allowed for a much larger step size than SGD for such problems.

5.2 Outlook

In this section, we discuss possible paths for future research, based on the con-
clusions from the papers in the thesis.

5.2.1 Other stabilized schemes

The stochastic proximal iteration in Paper i and the SRKCD in Paper ii, are two
examples of schemes that are “stabilized” versions of the SGD. Another option
for stabilizing schemes, is to take into account information about the gradient
when choosing the step size. Consider the stochastic gradient update

wk+1 = wk − αk∇f(wk, ξ), (5.7)

which was discussed in Section 4.3. If the stochastic gradient ∇f(wk, ξ) is very
large, then we will take a large step in that direction. A large step in a “bad”
direction could make us end up at an iterate very far from a local minimum which
could delay the convergence considerably. A way to remedy this is to rescale
the step size in order to compensate for having a large gradient in the update.
This is sometimes referred to as gradient clipping, compare [6, Sec. 10.11.1].
Recently, a stochastic optimization scheme based on the tamed Euler scheme
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was proposed in [30]. Instead of (5.7), one considers the update

wk+1 = wk − αk∇f(wk, ξ)

1 + αk∥∇f(wk, ξ)∥ . (5.8)

Large gradients are compensated for, by the gradient in the denominator. With
a decreasing step size, such as αk = β

k , for some β > 0, the longer we let the
algorithm run, the smaller αk becomes and the smaller the rescaling becomes.
The tamed Euler scheme (5.8) has shown to work very well, see [30]. Another
possibility is to apply the rescaling term component-wise, compare Sec. 10.11.1
in [6] and Sec. 3.3 in [38]. The idea of element-wise rescaling was made use of
in the popular Adam algorithm, proposed in [39]. The component-wise version
of (5.8) would take the form

(wk+1)i = (wk)i −
αk

∂f(wk,ξk)
∂xi

1 + αk

���∂f(wk,ξk)
∂xi

��� . (5.9)

Here (w)i denotes the i:th component of the vector w. It can be shown that the
tamed Euler scheme is a second order perturbation of the SGD, see [30]. This
means that we can write (5.9) as

(wk+1)i = (wk)i − αk
∂f(wk, ξ)

∂xi
+ α2

khk

�
∂f(wk, ξk)

∂xi

�
, (5.10)

where hk(x) = x|x|
1+αk|x| , i.e.

x − αkhk(x) =
x

1 + αk|x| . (5.11)

An ansatz for further studies is to consider the scheme (5.10) for more general
functions hk. This would allow for using a broad class of stabilizing methods,
from which the most optimal could be chosen for the given optimization problem
that one is presented with.

We will now prove convergence of a generalized version of (5.10). We will go
through the proof, and impose assumptions on the functions hk(x), “as we go”
by looking at the properties of hk for the tamed Euler scheme and generalizing
these. The assumptions that we make on the objective function F is that it
has a Lipschitz continuous gradient and that it is bounded below, i.e. there is a
F∗ ∈ R such that

F (w) ≥ F∗,
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for all w ∈ Rd.

The full update (5.10) can be written on the form

wk+1 = wk − αk∇f(wk, ξk) + α2
kHk(∇f(wk, ξk)), (5.12)

where Hk : Rd → Rd applies hk element-wise to the gradient and {ξk}k≥1 is a
sequence of i.i.d. random variables.

Assuming that ∇F is Lipschitz continuous, we can plug (5.12) into (4.3) from
Section 4.1 in Chapter 4. This yields

F (wk+1) − F (wk) ≤ − αk⟨∇F (wk), ∇f(wk, ξk)⟩
+ α2

k⟨∇F (wk), Hk (∇f(wk, ξk))⟩

+
Lα2

k

2
∥∇f(wk, ξk) − αkHk (∇f(wk, ξk))∥22.

(5.13)

Assuming that ∇f(w, ξ) is an unbiased estimator of ∇F (w), we find that

Eξk
[F (wk+1)] − F (wk) ≤ − αk∥∇F (wk)∥22

+ α2
k⟨∇F (wk), Eξk

[Hk (∇f(wk, ξk))]⟩

+
Lα2

k

2
Eξk

�
∥∇f(wk, ξk) − αkHk (∇f(wk, ξk))∥22

�
,

(5.14)

where we have used the fact that Eξk
[∇f(wk, ξk)] = ∇F (wk), on the first term

on the right-hand side. For the component-wise tamed Euler scheme, it holds
for the last term on the right-hand side of (5.14) that

Eξk

�
∥∇f(wk, ξk) − αkHk (∇f(wk, ξk))∥22

�
≤ Eξk

�
∥∇f(wk, ξk)∥22

�
, (5.15)

by (5.11) and since
�

x
1+αk|x|

�2
≤ x2. Hence, we impose this as a condition on

the function Hk, i.e. (x − αkhk(x))2 ≤ x2 for every k.

We now turn our attention to the second term on the right-hand side of (5.14),

α2
k⟨Eξk

[∇f(wk, ξk)] , Eξk
[Hk (∇f(wk, ξk))]⟩. (5.16)

We can write this out in terms of the partial derivatives:

α2
k

dX
i=1

Eξk
[Xi] · Eξk

[hk (Xi)] ,
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where Xi := ∂f(wk,ξk)
∂xi

. We can at this point make use of Chebyshev’s second
inequality, see e.g. [40] or [8, Thm. 4.7.9], which states that if ϕ and ψ are two
increasing functions, it holds that

Eξk
[ϕ (Xi)] Eξk

[ψ (Xi)] ≤ Eξk
[ϕ (Xi) ψ (Xi)] . (5.17)

If we thus require that hk(x) is increasing for every k ≥ 1 (as it is for the
component-wise tamed Euler scheme (5.9)), we can use (5.17), with ϕ(x) = x
and ψ(x) = hk(x), to obtain that

Eξk
[Xi] Eξk

[hk (Xi)] ≤ Eξk
[Xihk(Xi)] .

With hk(x) = x|x|
1+αk|x| , we have that xhk(x) ≤ |x|3. If we enforce this as a

condition on the functions hk(x), it thus holds that

α2
k⟨Eξk

[∇f(wk, ξk)] , Eξk
[Hk (∇f(wk, ξk))]⟩ ≤ α2

kEξk

�
∥∇f(wk, ξk)∥32

�
. (5.18)

By inserting (5.15) and (5.18) into (5.14), we thus get

Eξk
[F (wk+1)] − F (wk) ≤ − αk∥∇F (wk)∥22 + α2

kEξk

�
∥∇f(wk, ξk)∥32

�
+

Lα2
k

2
Eξk

�
∥∇f(wk, ξk)∥22

�
.

(5.19)

If we further assume that we can bound the second- and third moments of the
stochastic gradient 1

Eξk

�
∥∇f(wk, ξk)∥22

�
≤ σ2,

Eξk

�
∥∇f(wk, ξk)∥32

�
≤ κ, κ > 0,

(5.20)

we get by inserting (5.20) into (5.19), the bound

Eξk
[F (wk+1)] − F (wk) ≤ − αk∥∇F (wk)∥22 +

�
κ +

Lσ2

2

�
α2

k.

Taking the full expectation with respect to all {ξk}k≥1, and summing up from
1 to K as in Chapter 4, Section 4.3, we get

KX
k=1

αkE
�
∥∇F (wk)∥22

�
≤F (w1) − F∗ +

KX
k=1

α2
k

�
κ +

Lσ2

2

�
. (5.21)

1We can compare this to the bound 4.15 in Section 4.3 of Chapter 4. As we are considering
non-convex objective functions in the discussion here, it is not a contradictory assumption in
this case.
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Here we have used that E [F (w1)] = F (w1) and that E [F (wK+1)] ≥ F∗. We
can now use the tricks introduced in Section 4.3 Chapter 4 on (5.21). With a
decreasing step size such as αk = β

k , for some β > 0, we get that

E
�

min
1≤k≤K

∥∇F (wk)∥22
�

= O
�

1

log(K)

�
,

where we have used an argument similar to (5.4) along with (4.17). With a fixed
step size, we get a bound similar to that of (4.24). If we let the step size depend
on the number of iterations, i.e. α = 1√

K
, we get that

E
�

min
1≤k≤K

∥∇F (wk)∥22
�

= O
�

1√
K

�
.

Determining which functions hk are good candidates in (5.10) is a topic of future
research. Some examples of candidate functions are hk(x) = x−g(x), where g(x)
is a function with sigmoid shape satisfying g(x) = 0, such as g(x) = arctan(x)
or g(x) = 1

1+e−x − 1
2 . As noted above, the assumption (5.20) is slightly stronger

than the usual assumptions. It is the bound (5.18), that makes this necessary.
An alternative could be to note that for (5.9), we have for αk > 1

B′ where B′ is
some constant strictly greater than 0, that

xhk(x) =
|x|3

1 + αk|x| ≤ |x|3
αk|x| ≤ B′x2.

On the other hand, for αk small enough, the scheme (5.10), behaves essentially
like SGD since αkhk(x) will be small. Based on these observations, one could
thus imagine splitting the analysis into two cases, depending on whether αk > 1

B′

or not.

A different approach could be to analyze the scheme presented above, in the
framework of monotone operators in the infinite dimension, as in [30] and Pa-
per i. This would likely require an a priori bound similar to Lemma 2 in Paper i
and [30, Lemma 4.1] in order to show that the difference ∥wk+1−w∗∥ is bounded
by something like Ck∥wk−w∗∥+Dα2

k, where 0 < Ck < 1 and D is some constant.

5.2.2 Almost sure convergence

Another option that could be investigated further is the almost sure convergence
of the schemes analyzed in Paper i and Paper ii. Almost sure convergence of
the classical SGD scheme has been done in for example [35, 36, 41, 42] and more
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recently [34]. Very roughly, one can say that the main idea is to construct a
stochastic process which is an interpolation of the sequence {wk}k≥1, shift this
in time and then make use of the Arzela–Ascoli theorem along with martingale
techniques to conclude that the sequence {wk}k≥1 converges to a stationary
point of the gradient flow, see [35, 41, 43]. The assumptions and strategies vary,
but one of the main assumptions is that supk∥wk∥ < ∞, which does not always
hold, see [44]. Recently, [34] showed that it does hold for SGD under some
additional assumptions, such as Lipschitz continuity of the objective function
and that the gradient is bounded.

5.2.3 Avoidance analysis

Convergence to an equilibrium point does not guarantee that the point is a
local minimum, but in [34] it is shown that the probability that the stochastic
gradient descent scheme converges to a saddle-point manifold is 0. A possible
path for further research is to perform such an analysis for the schemes in Paper
1 and Paper 2.

5.2.4 Extension to the online framework

In Section 4.3 of Chapter 4, we noted that the objective function in machine
learning problems often take the form

F (w) =
1

K

KX
i=1

ℓ(h(xi, w), yi), (5.22)

where ℓ is a loss function, h(·, w) a prediction function and {xi, yi}K
i=1 are

samples. The minimization of the function (5.22) is based on the assumption
that we have the whole data set at hand when we start the optimization proced-
ure. There are cases when one might want to perform the optimization procedure
and update the prediction based on the parameter w, as new data is obtained.
This gives rise to a class of algorithms known as online algorithms. It is common
to phrase the problem in the following way; at time k we receive a sample xk

and based on this we choose an iterate wk with which we predict h(xk, wk). The
true label yk of xk is then revealed, and we suffer the loss ℓ(h(wk, xk), yk), i.e.
ℓ(h(wk, xk), yk) gives a measurement on how far the prediction h(wk, xk) was
from the label yk. The goal of the algorithm is to incur a low average loss

1

K

KX
k=1

ℓ(h(wk, xk), yk) (5.23)
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and we can evaluate its performance by considering the average regret

RK

K
=

1

K

KX
k=1

ℓ(h(wk, xk), yk) − 1

K

KX
k=1

ℓ(h(w∗, xk), yk), (5.24)

where w∗ is the parameter that minimizes (5.22). Essentially, this measures
how much the average loss differs from the loss, if we stop after K iterations
and then find the argument that minimizes (5.22). Suppose that our sequence
of predictions {wk}k≥1 is defined by

wk+1 = wk − αk∇ℓ(h(wk, xk), yk), (5.25)

where the gradient is taken with respect to w. We then have the following result
due to Zinkevic [45]. Assume that the gradients are differentiable and uniformly
bounded in the sense that ∥∇ℓ(h(w, xk), yk)∥22 ≤ B1 for some constant B1 > 0,
and that the iterates satisfy ∥wk − w∗∥22 ≤ B2, where B2 > 0. If we choose the
step size αk = k−1/2, we have the following bound for the average regret,

RK

K
≤ B1

2
√

K
+

�
1√
K

− 1

2K

�
B2. (5.26)

What (5.26) is saying is that if the average loss (5.23) is larger than

min
w

1

K

KX
k=1

ℓ(h(w∗, xk), yk), (5.27)

after K iterations, then we have a bound on the difference, and we know that as
we increase the number of iterations - or data points - this gap will decrease. In
practice, the optimal parameter w∗ that minimizes (5.27) is usually not known,
and the performance of the online algorithm can be evaluated by looking at the
behavior of (5.23).

Extending the SRKCD algorithm to the online-framework could also be a dir-
ection for future studies. Finding a strategy for choosing the number of stages
in the algorithm, that is optimal with respect to the computational cost and
efficiency, is a potential course for forthcoming research as well.
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Abstract
We consider a stochastic version of the proximal point algorithm for convex opti-
mization problems posed on a Hilbert space. A typical application of this is super-
vised learning. While the method is not new, it has not been extensively analyzed 
in this form. Indeed, most related results are con�ned to the �nite-dimensional set-
ting, where error bounds could depend on the dimension of the space. On the other 
hand, the few existing results in the in�nite-dimensional setting only prove very 
weak types of convergence, owing to weak assumptions on the problem. In particu-
lar, there are no results that show strong convergence with a rate. In this article, we 
bridge these two worlds by assuming more regularity of the optimization problem, 
which allows us to prove convergence with an (optimal) sub-linear rate also in an 
in�nite-dimensional setting. In particular, we assume that the objective function is 
the expected value of a family of convex di�erentiable functions. While we require 
that the full objective function is strongly convex, we do not assume that its constitu-
ent parts are so. Further, we require that the gradient satis�es a weak local Lipschitz 
continuity property, where the Lipschitz constant may grow polynomially given cer-
tain guarantees on the variance and higher moments near the minimum. We illus-
trate these results by discretizing a concrete in�nite-dimensional classi�cation prob-
lem with varying degrees of accuracy.
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1  Introduction

We consider convex optimization problems of the form

where H is a real Hilbert space and

The main applications we have in mind are supervised learning tasks. In such a 
problem, a set of data samples �����

��� with corresponding labels �����
��� is given, as 

well as a classi�er h depending on the parameters w. The goal is to �nd w such that 
���� ��� � �� for all � � ��� � � �� . This is done by minimizing

where � is a given loss function. We refer to, e.g., Bottou et�al. [9] for an overview. 
In order to reduce the computational costs, it has been proved to be useful to split F 
into a collection of functions f of the type

where �� is a random subset of ��� � � �� , referred to as a batch. In particular, the 
case of ���� � � is interesting for applications, as it corresponds to a separation of 
the data into single samples.

A commonly used method for such problems is the stochastic gradient method 
(SGD), given by the iteration

where �� � � denotes a step size, ������� is a family of jointly independent random 
variables and � denotes the Gâteaux derivative with respect to the �rst variable. The 
idea is that in each step we choose a random part � ��� �� of F and go in the direction 
of the negative gradient of this function. SGD corresponds to a stochastic version of 
the explicit (forward) Euler scheme applied to the gradient �ow

This di�erential equation is frequently sti�, which means that the method often suf-
fers from stability issues.

The restatement of the problem as a gradient �ow suggests that we could avoid such 
stability problems by instead considering a stochastic version of implicit (backward) 
Euler, given by

(1)�� � ��������������

���� � ���� ��� ����

(2)���� � �
�

��

���
������ ���� ����

� ��� �� � �
����

�

����

������ ���� ����

���� � �� � ���� ���� ����

�� � �������

���� � �� � ���� ������ ����
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In the deterministic setting, this method has a long history under the name proximal 
point method, because it is equivalent to

where

The proximal point method has been studied extensively in the in�nite dimensional 
but deterministic case, beginning with the work of Rockafellar�[28]. Several conver-
gence results and connections to other methods such as the Douglas�Rachford split-
ting are collected in Eckstein and Bertsekas�[13], see also Güler�[17]. In the strongly 
convex case, the main convergence analysis idea is to observe that the gradient is 
strongly monotone. Then the resolvent �� � ������ is a strict contraction, and the 
Banach �xed point theorem shows that ������� converges to �� in norm.

Following Ryu and Boyd�[32], we will refer to the stochastic version as stochastic 
proximal iteration (SPI). We note that the computational cost of one SPI step is in 
general much higher than for SGD, and indeed often infeasible. However, in many 
special cases a clever reformulation can result in very similar costs. If so, then SPI 
should be preferred over SGD, as it will converge more reliably. We provide such an 
example in Sect.�5.

The main goal of this paper is to prove sub-linear convergence of the type

in an in�nite-dimensional setting, i.e. where ������� and �� are elements in a Hil-
bert space H. As shown in e.g.�[1, 26], this is optimal in the sense that we cannot 
expect a better asymptotic rate even in the �nite-dimensional case.

Most previous convergence results in this setting only provide guarantees for 
convergence, without an explicit error bound. The convergence is usually also in 
a rather weak norm. This is mainly due to weak assumptions on the involved func-
tions and operators. Overall, little work has been done to consider SPI in an in�-
nite dimensional space. A few exceptions are given by Bianchi [7], where maximal 
monotone operators �� � � � �� are considered and weak ergodic convergence 
and norm convergence is proved. In Rosasco et�al. [30], the authors work with an 
in�nite dimensional setting and an implicit-explicit splitting where �� is decom-
posed in a regular and an irregular part. The regular part is considered explicitly but 
with a stochastic approximation while the irregular part is used in a deterministic 
proximal step. They prove both ������ � ������ and �� � �� in H as � � � . 
Without further assumptions, neither of these approaches yield convergence rates.

In the �nite-dimensional case, stronger assumptions are typically made, with bet-
ter convergence guarantees as a result. Nevertheless, for the SPI scheme in particu-
lar, we are only aware of the unpublished manuscript�[32], which suggests ��� con-
vergence in �� . Based on�[32], the implicit method has also been considered in a few 
other works: In Patrascu and Necoara [24], a SPI method with additional constraints 

���� � ���������

�
����� � �

�
�� � ����

�
� �����������

���������� � �� � ���������

�
�
��� � �����

� �
�
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on the domain was studied. A slightly more general setting that includes the SPI has 
been considered in Davis and Drusvyatskiy [12]. Toulis and Airoldi and Toulis et�al. 
studied such an implicit scheme in [35�37]. Finally, very recently and during the 
preparation of this work, [20] was published, wherein both SGD and proximal meth-
ods for composite problems are analyzed in a common framework based on bounded 
gradients. This is a generalization of the basic setting in a di�erent direction than 
our work.

Whenever using an implicit scheme, it is essential to solve the appearing implicit 
equation e�ectively. This can be impeded by large batches for the stochastic approx-
imation of F. On the other hand, a larger batch improves the accuracy of the approx-
imation of the function. In Toulis et�al. [39, 40] and Ryu and Yin [33], a compro-
mise was found by solving several implicit problems on small batches and taking the 
average of these results. This corresponds to a sum splitting. Furthermore, implicit-
explicit splittings can be found in Patrascu and Irofti [23], Ryu and Yin [33], Salim 
et�al. [34], Bianchi and Hachem [8] and Bertsekas [6]. A few more related schemes 
have been considered in Asi and Duchi [2, 3] and Toulis et�al. [38]. More informa-
tion about the complexity of solving these kinds of implicit equations and the cor-
responding implementation can be found in Fagan and Iyengar [16] and Tran et�al. 
in�[40].

Our aim is to bridge the gap between the �strong �nite-dimensional� and �weak 
in�nite-dimensional� settings, by extending the approach of� [32] to the in�nite-
dimensional case. We also further extend the results by allowing for more general 
Lipschitz conditions on �� ��� �� , provided that su�cient guarantees can be made on 
the integrability near the minimum �� . In particular, we make the less restrictive 
assumption that for every function � ��� �� and every ball of radius � � � around the 
origin there is a Lipschitz constant ����� that grows polynomially with R. We also 
weaken the standard assumption of strong convexity and only demand that the func-
tions are strongly convex for some realizations.

We note that if F is only convex then there might be multiple local minima, and 
proving convergence in norm is in general not possible. On the other hand, if every 
� ��� �� is strongly convex then parts of the analysis can be simpli�ed. The assump-
tions made in this article are thus situated between these two extremes, where it is 
still possible to prove convergence results similar to the strongly convex case but 
under milder assumptions.

These strong convergence results can then be applied to, e.g., the setting where 
there is an original in�nite-dimensional optimization problem which is subsequently 
discretized into a series of �nite-dimensional problems. Given a reasonable discre-
tization, each of those problems will then satisfy the same convergence guarantees.

Our analysis closely follows the �nite-dimensional approach�[32]. However, sev-
eral arguments no longer work in the in�nite-dimensional case (such as the unit ball 
being compact, or a linear operator having a minimal eigenvalue) and we �x those. 
Additionally, we simplify several of the remaining arguments, provide many omit-
ted, but critical, details and extend the results to more general operators.

A brief outline of the paper is as follows. The main assumptions that we make are 
stated in Sect.�2, as well as the main theorem. Then we prove a number of prelimi-
nary results in Sect.�3, before we can tackle the main proof in Sect.�4. In Sect.�5 we 
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describe a numerical experiment that illustrates our results, and then we summarize 
our �ndings in Sect.�6.

2 � Assumptions and�main theorem

Let ��� �� �� be a complete probability space and let ������� be a family of jointly 
independent random variables on � . Each realization of �� corresponds to a di�er-
ent batch. Let ��� ��� ��� � � �� be a real Hilbert space and ���� ��� ���� � � � ��� � its dual. 
Since H is a Hilbert space, there exists an isometric isomorphism � � �� � � such 
that ��� � � � �� with ��� � � � ��� �� . Furthermore, the dual pairing is denoted by 
���� �� � ����� for �� � �� and � � � . It satis�es

We denote the space of linear bounded operators mapping H into H by ���� . For 
a symmetric operator S, we say that it is positive if ���� �� � � for all � � � . It is 
called strictly positive if ���� �� � � for all � � � such that � � �.

For the function � ��� �� � � � � � ���� �� , we use � , as in �� ��� �� , to denote 
di�erentiation with respect to the �rst variable. When we present an argument that 
holds almost surely, we will frequently omit � from the notation and simply write 
f(u) rather than � ��� �� . Given a random variable X on � , we denote the expectation 
with respect to � by ���� . We use sub-indices, such as in ����� , to denote expecta-
tions with respect to the probability distribution of the random variable �.

We consider the stochastic proximal iteration (SPI) scheme given by

for minimizing

where f and F ful�ll the following assumption.
For the family of jointly independent random variables ������� , we are interested 

in the total expectation

Since the random variables ������� are jointly independent, and �� only depends on 
�� , � � � � � , this expectation coincides with the expectation with respect to the joint 
probability distribution of ��� � � ���� . In the rest of the paper, it often occurs that 
a statement does not involve an expectation but contains a random variable. Where 
it does not cause any confusion, such a statement is assumed to hold almost surely 
even if this is not explicitly stated.

Assumption 1  For a random variable � on � , let the function 
� ��� �� � � � � � ���� �� be given such that � � � ��� ����� is measurable for 

������ �� � ��� �� ��� ���� �� � ����� ��� �� � � �� �� � ���

(3)���� � �� � ����� ������ ��� �� �� �� � �� �� ��

���� � ���� ��� ����

��
�
�����

�� ���

�
���

�
� ���

�
�����

�
��

�
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every � � �  and such that � ��� �� is convex, lower semi-continuous and proper 
almost surely. Additionally, � ��� �� ful�lls the following conditions:

�	 The expectation ��
�
� ��� ��

�
�� � �� � is lower semi-continuous and proper.

�	 The function � ��� �� is Gâteaux di�erentiable almost surely on a non-empty 
common domain � � �� � � � , i.e. for all for all �� � � � � �� � the inequality 
���� ��� � �� � � � ��� ���

� �� ���� � ��� �� �� �
�

 is ful�lled almost surely.

�	 There exists � � � such that 
�
��

�
� �� �� � � � � � � �

� �

�� � � �

�� � � � .

�	 For every � � � there exists �� ��� � � � � such that 

almost surely for all �� � � � � �� � with ���� ��� � �  . Furthermore, there exists a 
polynomial � � � � � of degree � � � �  such that � ���� � ����  almost surely.

�	 There exist a random variable � � � � � ��� � such that the image is symmetric 
and a random variable � � � � � ��� ��  such that �� �� � � � � � � and 
�� ��

�
� � � � � � �  . Moreover, 

 is ful�lled almost surely for all �� � � � � �� �.

An immediate result of Assumption� 1, is that the gradient �� ��� �� is maximal 
monotone almost surely, see� [27, Theorem� A]. As a consequence, the resolvent 
(proximal operator)

is well-de�ned almost surely, see Lemma�1 for more details. Further, each resolvent 
maps into � � �� � , and as a consequence every iterate �� � � � �� � . Finally, we may 
interchange expectation and di�erentiation so that �� ��� � � � ��� �� � ���  . Note that 
this means that the approximation �� ��� �� is an unbiased estimate of the full gra-
dient ��  . In our case, this property can be shown via a straightforward argument 
based on dominated convergence similar to�[32, Lemma 6], but we note that it also 
holds in more general settings�[21, 29].

Remark 1 The idea behind the operators � � is that each � ��� �� is is allowed to be 
only convex rather than strongly convex. However, they should be strongly convex 
for some realizations, such that � ��� �� is strongly convex in expectation. By assump-
tion, F is lower semi-continuous, proper and strongly convex, so there is a minimum 
�� of (1) (c.f.�[4, Proposition�1.4]) which is unique due to the strong convexity.

Remark 2 Note that the local Lipschitz constant of Assumption�1 is a generalization 
compared to [32] and other existing literature. Instead of asking for one Lipschitz 
constant � � that is valid on the entire domain, we only ask for a Lipschitz constant 
����� that depends on the norm of the input elements �� � � ���� � . This means in 

��� ��� �� � � � ��� ��� � � � � � ����� � ��

� �� ��� � � � � � ��� � �� � � � � � �� � �� � ��� � � �� � � � � � � � � �

� � �� � � � � � � ��� ��� ��
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particular that ����� may tend to in�nity as � � �  . In the coming analysis we han-
dle this by applying an a priori bound (Lemma�2) that shows that the solution is 
bounded and thus R is bounded too.

While the properness of F needs to be veri�ed by application-speci�c means, the 
lower semi-continuity can be guaranteed on a more general level in di�erent ways. If, 
e.g., it is additionally known that ��

�
��� ��� � ��� � �

�
� ��  then one can employ Fatou�s 

lemma ([22, Theorem�2.3.6]) as in [32, Lemma 5], or slightly modify�[5, Corollary 9.4].
We note that from a function analytic point of view, we are dealing with bounded 

rather than unbounded operators ��  . However, also operators that are traditionally 
seen as unbounded �t into the framework, given that the space H is chosen prop-
erly. For example, the functional � ��� � �

�
� ��� ��  corresponding to �� � ��  , the 

negative Laplacian, is unbounded on � � � �  . But if we instead choose � � ��
�  , then 

�� � ���  and ��  is bounded and Lipschitz continuous. In this case, the splitting of 
F(w) into � ��� �� � is less obvious than in our main application, but e.g. (randomized) 
domain decomposition as in �[25] is a natural idea. In each step, an elliptic problem 
then has to be solved (to apply � ), but this can often be done very e�ciently.

Our main theorem states that we have sub-linear convergence of the iterates �� to 
�� in expectation:

Theorem�1  Let Assumption�1 be ful�lled and let ������� be a family of jointly inde-
pendent random variables on � . Then the scheme�(3) converges sub-linearly if the 
step sizes ful�ll � � � �

�
 with � � �

�
 . In particular, the error bound

is ful�lled, where C depends on ��� � �� � , �  , �  , �  , �  and m.

When � � � , there is a L such that ����� � � almost surely for all R and we have 
the explicit bound

For details on the error constant when � � � , we refer the reader to the proof, which 
is given in Sect.�4. We note that there is no upper bound on the step size � � , as would 
be the case for an explicit method like SGD. There is still a lower bound, but this is 
not as critical. Similarly to the �nite-dimensional case (see e.g.�[32, Theorem�15]), 
the method still converges if the assumption � � �

�
 is not ful�lled, albeit at a slower 

rate � ���� � � with � � � . This follows from a straightforward extension of Lemma�10 
and the above theorem, but we omit these details for brevity. Moreover, we note that 
the exponential terms in the error constant are an artifact of the proof. They are not 
observed in practice and could likely be removed by the use of more re�ned alge-
braic inequalities.

�� ��

�
�� � � � � �� �

� �
�

� �
�
�
�
�
� � � � � � � � �

� �� � �

�� � �

�
�
�
�
� � � �� �

�

� � � � � � � � � � �
� ���

���

� �
�

� �
� �
�
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���
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�

�
�

49



188	 M.�Eisenmann et al.

1 3

The main idea of the proof is to acquire a contraction property of the form

where � � � � and D are certain constants depending on the data. Inevitably, � � � � 
as � � �  , but because of the chosen step size sequence this happens slowly enough 
to still guarantee the optimal rate. To reach this point, we �rst show two things: 
First, an a priori bound of the form �� ��

�
�� � � � � ��

�
� �  , i.e. unlike the SGD, the 

SPI is always stable regardless of how large the step size is. Secondly, that the resol-
vents � � �� are contractive with

Similarly to�[32], we do the latter by approximating the functions � ��� �� by convex 
quadratic functions �� ��� � � for which the property is easier to verify, and then estab-
lishing a relation between the approximated and the true contraction factors. The 
series of lemmas in the next section is devoted to this preparatory work.

3 � Preliminaries

First, let us show that the scheme is in fact well-de�ned, in the sense that every iter-
ate is measurable if the random variables ������� are.

Lemma 1  Let Assumption�1 be ful�lled. Further, let ������� be a family of jointly 
independent random variables. Then for every � � � there exists a unique mapping 
���� � � � � � �� � that ful�lls (3) and is measurable with respect to the � -algebra 
generated by ��� � � ��.

Proof We de�ne the mapping

For almost all � � �  , the mapping � ��� � � ����  is lower semi-continuous, proper and 
convex. Thus, by [27, Theorem�A] �� ��� � � ����  is maximal monotone. By [4, Theo-
rem�2.2], this shows that the operator ��� � � � �� ��� � � ���� � � � �� � � � �  is surjec-
tive. Note that the two previously cited results are stated for multi-valued operators. 
As we are in a more regular setting, the sub-di�erential of � ��� � � ����  only consists 
of a single element at each point. Therefore, it is possible to apply these multi-val-
ued results also in our setting and interpret the appearing operators as single-valued. 
Furthermore, due to the monotonicity of �� ��� � � ����  it follows that for �� � � � � �� �

�� ��

�
�� � � � � �� �

� � � �� ��

�
�� � �� � � � �� �

� � �
� � �

��
�
�� � �� � � � � �� � �� �

� � � �� � � �� �

� � � � � � � � � � � � � � � � � � � � � � � � � � �� � ��� � � � � ��� � �
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which implies

This veri�es that � � � � ��� ��� � � � � ��  is injective. As we have proved that the operator 
is both injective and surjective, it is, in particular, bijective. Therefore, there exists a 
unique element ���� ���  such that

We can now apply [14, Lemma� 2.1.4] or [15, Lemma�  4.3] and obtain that 
� � ���� ���  is measurable. 	�  �

Proving that the scheme is always stable is relatively straightforward, as 
shown in the next lemma. With some extra e�ort, we also get stability in stronger 
norms, i.e. we can bound not only ��

�
�� � �� � � � ��

�
 but also higher moments 

��

�
�� � �� � � � �� � �

 , � � � . This will be important since we only have the weaker 
local Lipschitz continuity stated in Assumption�1 rather than global Lipschitz con-
tinuity. The idea of the proof stems from a standard technique mostly applied in 
the �eld of evolution equations in a variational framework, compare for example 
[31, Lemma�8.6]. The main di�culty is to incorporate the stochastic gradient in the 
presentation.

Lemma 2  Let Assumption�1 be ful�lled, and suppose that 
� �

��� � �
� � �  . Then there 

exists a constant � � � depending only on ��� � �� � , 
� �

��� � �
� and �  , such that

for all � � �.

Proof Within the proof, we abbreviate the function � ��� �� � by ��  , � � � . First, we 
consider the case � � � . Recall the identity � � � �� �� � �

�

�
� � � � � � � � � � � � � � � �

�
 , 

�� � � �  . We write the scheme as

subtract � � ��� � ��
� � from both sides, multiply by two and test it with ���� � ��  to 

obtain

�
�
��� � � � �� ��� � � ����

�
� �

�
��� � � � �� ��� � � ����

�
�� � � � � � � � � � � �

���
�
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�
� �

�
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�
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For the right-hand side, we have by Young�s inequality that

Together with the monotonicity condition, it then follows that

Since �� � ��  is independent of �� and ��� ��� � ��
� �� � �� �� � � � �  , taking the 

expectation ��� thus leads to the following bound:

Repeating this argument, we obtain that

In order to �nd the higher moment bound, we recall (4). We then follow a similar 
idea as in [10, Lemma�3.1], where we multiply this inequality with ����� � �� ��  
and use the identity � � � ��� � �

�

�
�� � � � �� � � � �� � � � �

�
 for �� � � � . It then follows 

that

Applying Young�s inequality to the �rst and fourth term of the previous row then 
implies that

����� � �� �� � ��� � �� �� � ����� � ����

� �� ����� ���
��� � � ��� ���

� �� ���� � �� �

� � � � �� �� ����
� �� ���� � �� � �

� �� � ���� � ��
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(4)� ���� � �� � � � � �� � �� � � � � �
� � �� ���
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(5)��
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Summing up from � � � to k and taking the expectation �� , yields

We then apply the discrete Grönwall inequality for sums (see, e.g., [11]) which 
shows that

For the next higher bound ��

�
�� � �� � � � ��

�
 , we recall that

which we can multiply with ����� � �� ��  in order to follow the same strategy as 
before. Following this approach, we �nd bounds for ��

�
�� � �� � � � �� � �

 recursively 
for all � � � . 	�  �

Remark 3 In particular, Lemma�2 implies that there exists a constant D depending 
on ��� � �� � , 

� �
��� � �

� and �  such that
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for all � � � �  and � � � . Further, comparing (5)

to the corresponding bound for the SGD

indicates that the SPI has a smaller a priori bound than the SGD. This bound plays a 
crucial part in the error constant in the convergence proof of Theorem�1. In practice 
one would expect the terms ���

�
��� �� � � �� ���

�
 to be signi�cantly smaller than 

��

�
������ � � �����

�
 if the variance of �� ��� �� � is small. Note that since we assume that 

we have an unbiased estimate, the variance is given by 
���

�
� �� ��� �� � � �

�
� � ���

�
�� ��� �� �

�
� � � ���

�
� �� ��� �� � � �

�
.

Following Ryu and Boyd [32], we now introduce the function 
�� ��� � � � � � � � ���� ��  given by

where � � � � � �� � is a �xed parameter. This mapping is a convex approximation of 
f. Furthermore, we de�ne the function �� ��� � � � � � � � ���� ��  given by

Their gradients � �� ��� � � � � � � � � �  and � �� ��� � � � � � �� � � � � � �  can be 
stated as

almost surely. In the following lemma, we collect some standard properties of these 
operators.

Lemma 3  The function �� ��� � � de�ned in (7) is convex almost surely, i.e., it ful�lls 
�� ��� � � � �� ��� � � � �� �� ��� � �� � � ��  for all �� � � � � �� � almost surely. As a conse-
quence, the gradient � �� ��� � � is monotone almost surely.

Proof In the following proof, let us omit � for simplicity and let �� � � � � �� � be 
given. Due to the monotonicity property of ��  stated in Assumption�1, it follows 
that

��

�
�� � �� � � � �� �
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For the function ��  we can write

All further derivatives are zero. Thus, we can use a Taylor expansion around v to 
write

It then follows that

By [41, Proposition 25.10], it follows that ���  is monotone. 	�  �

The following lemma demonstrates that the resolvents � �� ��  and certain pertur-
bations of them are well-de�ned. Furthermore, we will provide a more explicit 
formula for such resolvents. A comparable result is mentioned in [32, page�10], 
we include a proof for the sake of completeness.

Lemma 4  Let Assumption�1 be ful�lled and let �� ��� � � be de�ned as in (6). Then the 
operator

is well-de�ned. If a function � ��� �� � � � � � ���� ��  is Gâteaux di�erentiable 
with the common domain � � �� � � � � �� � , lower semi-continuous, convex and 
proper almost surely, then

is well-de�ned.

If there exist � � � � � �� � � � � � �  and � � � � � � �  such that 
�� ��� �� � � � � � � � then the resolvent can be represented by

� ��� � � ��� � � �� ���� � � � � �
�
�

�� �� � ��� � � �� �

�� ��� � � �� � � � � �� �� � �� � � � � � � �
�
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Proof For simplicity, let us omit � again. In order to prove that � ��  and � �� ��  are well-
de�ned, we can apply [27, Theorem� A] and [4, Theorem� 2.2] analogously to the 
argumentation in the proof of Lemma�1.

Assuming that �� ��� � �� � �  , we �nd an explicit representation for � �� ��  . To this 
end, for � � �  , consider

Then it follows that

Rearranging the terms, yields

	�  �

Next, we will show that the contraction factors of � � �� and � �� ��  are related. For 
this, we need the following basic identities and some stronger inequalities that 
hold for symmetric positive operators on H. These results are fairly standard and 
similar statements can be found in [32, Lemma�9 and Lemma�10]. For the sake 
of completeness, we provide an alternative proof that is better adapted to our 
notation.

Lemma 5  Let Assumption�1 be satis�ed and let �� ��� � � and �� ��� � � be given as in (6) 
and (7), respectively. Then the identities

are ful�lled almost surely.

Proof By the de�nition of � � �� , we have that

from which the �rst claim follows immediately. The second identity then follows 
from

	�  �

As a consequence of Lemma�5 we have the following basic inequalities:

Lemma 6  Let Assumption�1 be satis�ed. It then follows that

� � � �� �� � ��� � �� � � � �� �� � �� � � � � �� � �

� � � � � �� �� � ��� �� � � � � � � ���� � ��� �� � � � �� � � �� �

� �� �� � � � � � � � ��� �� �
� � ��� �� � � � �� � � ��

�
�

��� �� � �� � � � � � � � � �� ��� �� �� �� � �� � � � � � � �� � � � � �� �� �� � �� � � �

� � �� � ��� �� � �� � � � � � � � ��� ��� � ��� � �� � � �

�� �� �� � �� � � � � � � �� � � � �� �� �� � �� � � � � ��� �� � �� � � � � � �� �� �� � �� � � � �

�� � �� � � �� � ��� ��� ��� � �
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almost surely for every � � � � �� � . Additionally, if for � � � the bound 
��� � ��� ��� ��� � �  holds true almost surely, then

is ful�lled almost surely.

Proof In order to shorten the notation, we omit the � in the following proof and let 
u be in � � �� � . For the �rst inequality, we note that since ��  is monotone, we have

Thus, by the �rst identity in Lemma�5, it follows that

But by the Cauchy-Schwarz inequality, we also have

which in combination with the previous inequality proves the �rst claim.
The second inequality follows from the �rst part of this lemma. Because

both u and � � �  are in a ball of radius R. Thus, we obtain

Lemma 7  Let �� � � ��� � be symmetric operators. Then the following holds:

�	 If Q is invertible and S and � �� are strictly positive, then �� � � � �� � � ��  . If S 
is only positive, then �� � � � �� � � �� .

�	 If Q is a positive and contractive operator, i.e. ���� � ���  for all � � � , then 
it follows that ���� � � ���� ��  for all � � �.

�	 If Q is a strongly positive invertible operator, such that there exists � � � with 
���� �� � � ��� �  for all � � � , then ���� � � ���  for all � � � and �� �� ���� � � �

�
.

Proof We start by expressing �� � � � ��  in terms of � �� and S, similar to the Sher-
man-Morrison-Woodbury formula for matrices�[18]. First observe that the operator 
�� � � �� � � �� � ��� � by e.g.�[19, Lemma 2A.1]. Then, since

���� �� � �� � � �� � � � ��� � ��� � � � � ��� ��� ��� � ��� �

��� �� � �� � � � ���� � � � � �� � ��

��� � � � � � � � � � � � � �� � � � � � � � � � � � � � � � � � � � � �� � � � � � � � � � � � � �

� � ��� �� � � � ��� � � � � � �

� � � � � � �� � � � � �� � � � � � � � � � �

���� ���� � � � � �� � ��� ���� � � �� � � � ���

�� � �� � �� � � � �� � ��� � ��� ���� � � � ����

���� �� � � � �� � � � ��� �� � � ��� ��� � � � �� � �� �� �

� � ��� �� � � � � � � � ��� ��� ��� �� � �
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and

we �nd that

Since � �� is symmetric, we see that �� � � � �� � � ��  if and only if �
�
� � � �� �

� ��  
is strictly positive. But this is true, as we see from the change of variables 
� � � � � � �� � � �� �  . Because then

for any � � � , � � � , since S and � �� are strictly positive. If S is only positive, it fol-
lows analogously that 

�
�
�
� � � �� �

� ��
�� �

�
� � .

In order to prove the second statement, we use the fact that there exists a unique 
symmetric and positive square root � �� � � ��� � such that � � � �� � � �� �  . Since 
�� � � ��� � �� ��� � � � � ��� � �� ��

�
� � � �

�
� � � � �� �� � ��  , also � ���  is contractive. Thus, 

it follows that

Now, we prove the third statement. First we notice that ���� �� � � ��� �  and 
���� �� � �������  imply that ���� � � ���  for all � � � . Substituting � � � �� �  , 
then shows ��� � � �� �� �� , which proves the �nal claim. 	�  �

The previous lemma now allows us to extend [32, Theorem�10], which we have 
reformulated and restructured to match our setting. It relates the contraction fac-
tors of the true and approximated operators.

Lemma 8  Let Assumption�1 be ful�lled and let �� ��� � � be given as in (6). Then

holds for every �� � � �.

�
� �� � � �� �

�
� � � �� �
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Proof For better readability, we once again omit � where there is no risk of con-
fusion. For �� � � � � �� � with � � �  and � � � , we approximate the function �� ��� � � 
de�ned in (7) by

where

As we can write

�� �  is well-de�ned. The derivative is given by � �� � ��� � � � � � � � � � ,

This function ��� �  is an interpolation between the points

Furthermore, since � �� � �� �
� � � � �� �� � �� �� � �

��  , it follows that

and therefore

Applying Lemma�5, we �nd that
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This shows that

Using the explicit representation of � �� � �� �
 from Lemma�4, it follows that

Therefore, we have

since

means that we can apply Lemma� 7. Thus, this shows that � � � � � � � �� �
�  and 

� � � � ��� � �� � �� � �� �
�  . Further, we can state an explicit representation for � ��  using 

Lemma�4 given by

For � � ���
���� �

 with ��� � � , we obtain using Lemma�7
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Finally, as ��

�
� � �� ��� �� � �

� � �� �

�
 is �nite, we can apply the dominated convergence theorem 

to obtain that

	�  �

After having established a connection between the contraction properties of 
� � �� and � �� ��  , the next step is to provide a concrete result for the contraction factor 
of � �� ��  . Applying Lemma�4, we can express this resolvent in terms of � � , which 
is easier to handle due to its linearity. The following lemma extends [32, Theo-
rem� 11]. As we are in an in�nite dimensional setting, we can no longer argue 
using the smallest eigenvalue of an operator. This proof instead uses the convex-
ity parameters directly. Moreover, we provide an explicit, non-asymptotic, bound 
for the contraction constant.

Lemma 9  Let Assumption�1 be satis�ed and let �� ��� � � be given as in (6). Then for 
�� � � � and � � �,

is ful�lled. Furthermore, it follows that

Proof Due to the explicit representation of � � �� ��  stated in Lemma�4, we �nd that

for �� � � � . As � � �  does not depend on � , it follows that

Thus, we have reduced the problem to a question about �how contractive� the resol-
vent of � � is in expectation. We note that for any � � � , we have

Due to Lemma�7 it follows that
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The right-hand-side bound is a � � �� �
� �

� �� -function with respect to �  or even a 
� � ���-function if � � � � . By a second-order expansion in a Taylor series we can 
therefore conclude that

Combining these results, we obtain

	�  �

Finally, the proof of the main theorem relies on iterating the step-wise bounds aris-
ing from the contraction properties of the resolvents which we just established. This 
leads to certain products of the contraction factors. The following algebraic inequalities 
show that these are bounded in the desired way. While this type of result has been stated 
previously for �rst-order polynomials in 1/j (see e.g.�[24, Theorem�14]), we prove here 
a particular version for second-order polynomials that matches the approximation of 
the contraction factor stated in Lemma�9.

Lemma 10  Let � � � � � � �  , � � � and � � � satisfy � �� � �  and � � � � � �
�  . Then the 

following inequalities are satis�ed: 

	 (i)	
� �

���

�
� � � �

�
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� ���
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	 (ii)	
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� �
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�

�
�

� � ���
�� � �� �� �

Proof The proof relies on the trivial inequality � � � � � � for � � �� and the follow-
ing two basic inequalities involving (generalized) harmonic numbers

The �rst one follows quickly by treating the sum as a lower Riemann sum approxi-
mating the integral � � ��

� � �� � �  . The second one can be proved analogously by 
approximating the integral � � ��

� � � �� � �  with an upper ( � � � ) or lower ( � � � ) Rie-
mann sum.

The condition � � � � � �
�  implies that all the factors in the product (i) are positive. 

We therefore have that � � � � � �

�
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� ���
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from which the �rst claim follows directly. For the second claim, we similarly have

where the latter sum can be bounded by

The �nal inequality is where we needed � �� � �  , in order to have something better 
than ��� in the sum. 	�  �

4 � Proof of�main theorem

Using the lemmas presented in the previous section, we are now in a position to 
prove Theorem�1. Compared to the earlier results in the literature, we can provide 
a more general result with respect to the Lipschitz condition. More precisely, with 
the help of our a priori bound from Lemma�2, we can exchange the global Lip-
schitz condition by a local Lipschitz condition.

Proof of Theorem�1 Given the sequence of mutually independent random variables 
�� , we abbreviate the random functions �� � � ��� �� � and � � � � �� � ���  , � � � . Then the 
scheme can be written as � � �� � � � �

�  . If � � �
� � � �  , we would essentially only have 

to invoke Lemmas�8 and 9 to �nish the proof. But due to the stochasticity, this does 
not hold, so we need to be more careful.

We begin by adding and subtracting the term � � �
� and �nd that
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By Lemmas�8 and 9 the expectation ��� of the �rst term on the right-hand side is 
bounded by � � � ��� � � �� � � �

� � �� � �� � � � � ��  while by Lemma� 6 the last term is 
bounded in expectation by � �

� � �  . The second term is the problematic one. We add 
and subtract both �� and �� in order to �nd terms that we can control:

In order to bound �� and � �  , we �rst need to apply the a priori bound from Lemma�2. 
This will also enable us to utilize the local Lipschitz condition. First, we notice that 
due to Lemma�6, we �nd that

is bounded for � � � �  . As � �  is a contraction, we also obtain

Thus, there exists a random variable �� such that

and �� ��
�
�� is bounded for � � � �  . For �� , we then obtain that

where we used the fact that � �  is contractive in the last step. Taking the expectation, 
we then have by Hölder�s inequality that
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As P is a polynomial of at most order � � � �  , the expression only contains terms � �
� 

where the exponent j is at most 
�

� �

� � ��

�
� � � � � � � � �  . Hence �� � is bounded, and in 

view of Lemma�2 we get that

where � � � �  is a constant depending only on ���� , ��� � �� � , �  and �  . For � �  , we 
add and subtract � � ��� � ��

� � to get

Since �� � ��  is independent of � � �� � ��
� � , it follows that

Using the Cauchy-Schwarz inequality and Lemma�6, we �nd that

where � � � ������ � �� �� �� ��
� �� � � � and

Just as for �� , we therefore get by Lemma�2 that

where � � � �  is a constant depending only on ���� , ��� � �� � , �  and � .
Summarising, we now have
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with �� � �
�
� � ��� � � �� � � �

�

� �� �  and � � � � � � � � � �  . Recursively applying the 
above bound yields

Applying Lemma�10 (i) and (ii) with � � �� �  , � � � , � � � ���  and � � � � � � � �  then 
shows that

and

Thus, we �nally arrive at

where C depends on �� ��  , � �� � ���  , �  , �  and �  . 	�  �

Remark 4 The above proof is complicated mainly due to the stochasticity and due 
to the lack of strong convexity. We consider brie�y the simpler, deterministic, full-
batch, case with

where F is strongly convex with convexity constant �  . Then it can easily be shown 
that

This means that

i.e. the resolvent is a strict contraction. Since �� �� � � � �  , it follows that 
� � � � �� � �� � � � � �  so a simple iterative argument shows that

Using �� � �� � �� � � � �� � � � � �  , choosing � � � � ��  and applying Lemma� 10 
then shows that
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for appropriately chosen �  . In particular, these arguments do not require the Lip-
schitz continuity of ��  , which is needed in the stochastic case to handle the terms 
arising due to �� �� � � �� � � .

5 � Numerical experiments

In order to illustrate our results, we set up a numerical experiment along the lines given 
in the introduction. In the following, let � � � � ��� ��  be the Lebesgue space of square 
integrable functions equipped with the usual inner product and norm. Further, let 
� �

� � �  for � � � , � � �� � �
�

�
�

�
 and � � � , � �

�
�
�

�
� �� � � �  be elements from two 

di�erent classes within the space H. In particular, we choose each � �
�  to be a polynomial 

of degree 4 and each � �
�  to be a trigonometric function with bounded frequency for 

� � �� � � � . The polynomial coe�cients and the frequencies were randomly chosen.
We want to classify these functions as either polynomial or trigonometric. To 

do this, we set up an a�ne (SVM-like) classi�er by choosing the loss function 
���� �� � �� �� � � ��� � and the prediction function ����� ��� � � � � �� � � � �  with 
��� �� � � � ��� �� � �  . Without � , this would be linear, but by including � we can 
allow for a constant bias term and thereby make it a�ne. We also add a regularization 
term �

�
����  (not including the bias), such that the minimization objective is

where � � �� � � � � � � �
� � �� � if � �

�
�
�

�
 and � � � � � � � � � � �

� � � � if � �
�

�
�

�
 , similar to Eq.�(2). 

In one step of SPI, we use the function

with a random variable � � � � ��� � � ��  . Since we cannot do computations 
directly in the in�nite-dimensional space, we discretize all the functions using N 
equidistant points in [0,�1], omitting the endpoints. For each N, this gives us an opti-
mization problem on � �  , which approximates the problem on H.

For the implementation, we make use of the following computational idea, which 
makes SPI essentially as fast as SGD. Di�erentiating the chosen � and h shows that the 
scheme is given by the iteration

where � � � � � � �

� ������� � � � � � � �� � � � � � � � � �
 . This is equivalent to

�� � �� � � � �� � � �� � �� ��
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Inserting the expression for ��� �����  in the de�nition of � �  , we obtain that

We thus only need to solve one scalar-valued equation. This is at most twice as 
expensive as SGD, since the equation solving is essentially free and the only addi-
tional costly term is �� � � � � � (the term �� � � � � � of course has to be computed also 
in SGD). By storing the scalar result, the extra cost will be essentially zero if the 
same sample is revisited. We note that extending this approach to larger batch-sizes 
is straightforward. If the batch size is B, then one has to solve a B-dimensional 
equation.

Using this idea, we implemented the method in Python and tested it on a series 
of di�erent discretizations. We took � � ����  , i.e. 500 functions of each type, 
� � ������  time steps and discretization parameters � � ��� � � � for � � �� � � �� to 
approximate the in�nite dimensional space � � ��� ��  . We used � � �� ��  and the initial 
step size � � �� �  , since in this case it can be shown that � � �  . There is no closed-
form expression for the exact minimum �� , so instead we ran SPI with 10M time 
steps and used the resulting reference solution as an approximation to �� . Further, 
we approximated the expectation �� by running the experiment 100 times and aver-
aging the resulting errors. In order to compensate for the vectors becoming longer as 

� � �� �
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�
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Fig. 1   Approximated errors �� � � ��� � � � � ��
� � for the SPI method, measured in RMS-norm, for discre-

tizations with varying number of grid points N. Statistics were only computed at every 100 time steps, 
this is why the plot starts at � � ���  . The 1/k-convergence is clearly seen by comparing to the uppermost 
solid black reference line
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N increases, we measure the errors in the RMS-norm � � � � � � � � �� �
�

� � � . As 
� � �  , this tends to the � �  norm.

Figure�1 shows the resulting approximated errors �� �� ��� � � � � ��
� � . As expected, 

we observe convergence proportional to ��� for all N. The error constants do vary 
to a certain extent, but they are reasonably similar. As the problem approaches the 
in�nite-dimensional case, they vary less. In order to decrease the computational 
requirements, we only compute statistics at every 100 time steps, this is why the plot 
starts at � � ��� .

In contrast, redoing the same experiment but with the explicit SGD method 
instead results in Fig.�2. We note that except for � � ���  and � � ���  , the method 
seemingly does not converge at all. This is partially explained by the fact that the 
Lipschitz constant grows with N (at least for the coarsest discretizations, for which 
we could estimate it), such that we get closer to the stability boundary. The main 
reason, however, is because of rare �bad� paths. In those, the method initially takes a 
large step in the wrong direction. Theoretically, it will eventually recover from this. 
In practice, it does not, due to the �nite computational budget. Even when such bad 
paths are omitted from the results and � ���� �� convergence is observed, the errors 
are much larger than in Fig.�1. Many more steps would be necessary to reach the 
same accuracy as SPI. Since our implementations are certainly not optimal in any 
sense, we do not show a comparison of computational times here. They are, how-
ever, very similar, meaning that SPI is more e�cient than SGD for this problem.
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Fig. 2   Approximated errors �� � � ��� � � � � ��
� � for the SGD method, measured in RMS-norm, for discre-

tizations with varying number of grid points N. Statistics were only computed at every 100 time steps, 
this is why the plot starts at � � ���  . Except for � � ���  and � � ���  , the method does not converge at 
all. Even when it does, the errors are much larger than in Fig.�1
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6 � Conclusions

We have rigorously proved convergence with an optimal rate for the stochastic prox-
imal iteration method in a general Hilbert space. This improves the analysis situ-
ation in two ways. Firstly, by providing an extension of similar results in a �nite-
dimensional setting to the in�nite-dimensional case, as well as extending these to 
more general operators. Secondly, by improving on similar in�nite-dimensional 
results that only achieve convergence, without any error bounds. The latter improve-
ment comes at the cost of stronger assumptions on the cost functional. Global Lip-
schitz continuity of the gradient is, admittedly, a rather strong assumption. However, 
as we have demonstrated, this can be replaced by local Lipschitz continuity where 
the maximal growth of the Lipschitz constant is determined by higher moments of 
the gradient applied to the minimum. This is a weaker condition. Finally, we have 
seen that the theoretical results are applicable also in practice, as demonstrated by 
the numerical results in the previous section.
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a b s t r a c t

We introduce a family of stochastic optimization methods based on the Runge�Kutta�
Chebyshev (RKC) schemes. The RKC methods are explicit methods originally designed for
solving stiff ordinary differential equations by ensuring that their stability regions are of
maximal size. In the optimization context, this allows for larger step sizes (learning rates)
and better robustness compared to e.g. the popular stochastic gradient descent method.
Our main contribution is a convergence proof for essentially all stochastic Runge�
Kutta optimization methods. This shows convergence in expectation with an optimal
sublinear rate under standard assumptions of strong convexity and Lipschitz-continuous
gradients. For non-convex objectives, we get convergence to zero in expectation of the
gradients. The proof requires certain natural conditions on the Runge�Kutta coefficients,
and we further demonstrate that the RKC schemes satisfy these. Finally, we illustrate
the improved stability properties of the methods in practice by performing numerical
experiments on both a small-scale test example and on a problem arising from an image
classification application in machine learning.
' 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this article we consider the optimization problem

min
w

F(w)

where F is differentiable. Such problems frequently arise in many contexts, e.g. for training neural networks in the
currently popular subject of machine learning. We focus on the large-scale case where computing r F(w) is expensive,
and assume that cheap stochastic approximations to r F(w) are available.

At a (local) minimum w� , it holds that r F(w� ) D 0, and such a stationary point of the gradient may be found by
evolving the gradient flow

Pw(t ) D �r F(w(t ))

over the pseudo-time t 2 T0; 1 ). The benefit of this reformulation is that many optimization methods for the original
problem may now be stated as time-stepping methods for the gradient flow. We recognize e.g. the explicit Euler method
with varying step sizes � k

wkC1 D wk � � kr F(wk)
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as the gradient descent (GD) method. The popular stochastic gradient descent (SGD) [1] method uses the same formula
but with the approximation g(� k; wk) instead of r F(wk), where � k is a random variable that determines which parts of F
to use. SGD is therefore a perturbed version of explicit Euler.

As was observed already in [2], the gradient flows arising from neural networks tend to be stiff. As a consequence,
explicit methods suffer from severe step size restrictions. This is particularly inconvenient when one wants to reach a
stationary state, which typically requires evolving the system for a long time. While it is difficult to quantify exactly how
the stochasticity introduced in methods like SGD affects this, they suffer from similar step size restrictions.

A way to avoid such step size restrictions would be to instead use methods with better stability properties, such as
A-stable methods. This, however, requires that the method is implicit. One such method would be implicit Euler, which,
when applied to the gradient flow is equivalent to the proximal point method in the context of optimization [3,4]. While
this can be applied in certain cases when F has a specific structure that allows the arising nonlinear equation systems to
be solved efficiently, in general (usually) this is not feasible.

An alternative, which to our knowledge has only been considered to a very small extent in the optimization community,
is the use of explicit stabilized schemes. These are constructed such that their stability regions are maximized. Thus, there
will still be a step size restriction, but of a more benign type. A large class of such methods are the Runge�Kutta�Chebyshev
methods [5], see also [6] for an overview and further references. They are explicit Runge�Kutta methods, i.e. of the form

wk;i D wk � � k

i� 1X

jD1

ai;jr F(wk;j ); i D 1; : : : ; s;

wkC1 D wk � � k

sX

iD1

bir F(wk;i );

where the coefficients ai;j and bi have been chosen in a very specific way such that the stability region extends as far into
the left half-plane as possible. The tradeoff compared to GD is that such a scheme with s stages requires s times as many
gradient evaluations. However, it still pays off, because the stability region grows as s2. An optimization method called
the Runge�Kutta�Chebyshev descent (RKCD) based on this idea has recently been investigated in [7]. However, only for
the case where r F can be computed exactly and for a rather restrictive class of problems. In this article, we propose a
stochastic version of such a scheme which we call the stochastic Runge�Kutta�Chebyshev descent (SRKCD). Compared to
e.g. SGD, it has superior stability properties.

There are of course other advanced methods that can be applied to the problem, and there is a rather large number
of papers on the subject. We refer to [8] for a general overview. Here, we mention for example accelerated gradient-
type methods such as the SGD with momentum [9,10], the stochastic heavy ball method [11] and Nesterov's accelerated
gradient method [12]. These do not use only the approximate gradient at the current iteration wk but modify this gradient
using other gradient information acquired in previous steps. A different class of methods are the adaptive learning rate
methods, containing e.g. AdaGrad [13], AdaDelta [14], Adam [15], RMSprop [16] and AdaMax [15]. These are typically
formulated as adapting the step size � k based on a constantly updated model of the local cost landscape, acquired
from gradient information computed in previous iterations. However, since most of them adjust the step size for each
component of wk separately, they could in a certain sense be seen as instead modifying the approximation g(� k; wk) like
the accelerated gradient methods.

In contrast to this, the method we propose simply uses the available gradient information without modifications and
allows each step to be longer. Just like SGD may be extended to e.g. SGD with momentum, one might also consider SRKCD
with momentum, provided that further analysis on the properties of this combined method is performed.

The main contribution of this article is a rigorous proof of convergence for a general Runge�Kutta method, under weak
assumptions on its coefficients and standard assumptions on the optimization problem and the approximations g(� ; w ).
We emphasize that while the proof applies to SRKCD, it is more widely applicable. We consider two settings. First, the
usual strongly convex setting, wherein we can prove optimal convergence orders of the type O(1=k). Secondly, the fully
non-convex setting where we show that the squared norm of r F(wk) goes to zero in expectation. This is also essentially
optimal. In both cases, the results are direct extensions of similar results for SGD.

We note that nonlinear stability analysis is a very complex topic with few generally applicable results, and that the
stability region of a method only refers to the setting of linear problems. For these reasons, it is not possible to use
the available information on the RKC stability regions to tailor the general convergence proof further for SRKCD. The
benefits of the improved stability properties in SRKCD are therefore not directly illustrated by the convergence proof.
For this reason, we also perform numerical experiments which demonstrate that in practice they are present also in the
stochastic non-linear and non-convex setting.

The outline of the paper is as follows. Section 2 contains the main error analysis for the general Runge�Kutta methods.
It begins by formalizing the notation and assumptions on the problem, then presents preliminary results in Sections 2.1
and 2.2. The actual convergence proofs are presented in Sections 2.3 (convex case) and 2.4 (nonconvex case). Then we
study the SRKCD method specifically in Section 3 and discuss its properties. The numerical experiments follow in Section 4
and we sum up some conclusions in Section 5. Finally, the Appendix contains a few results on Chebyshev polynomials
which are needed but which are otherwise not of interest here.

2

76



T. Stillfjord and M. Williamson Journal of Computational and Applied Mathematics 417 (2023) 114575

2. General Runge�Kutta error analysis

Let us first fix the notation and specify our assumptions on the underlying problem. We denote by k � k the usual
Euclidean norm on Rd and by h�; �i the corresponding inner product hu; vi D vTu. Let . 
 ; F ; P/ denote a complete
probability space. For a random variable � on 
 , we consider the functions f (� ; �) V
 � Rd ! R and the main objective
function F VRd ! R,

F(w) D E� [f (� ; w )] :

Here, E� [�] denotes the expectation with respect to the probability distribution of � . We note that we have not specified
the target space of the random variable � , because its properties does not matter for our analysis. However, if ! 2 

then � (! ) should be interpreted as a specific selection of the problem data, in machine learning terminology known as a
batch. A typical situation would be to have an objective function of the form

F(w) D
1

N

NX

jD1

f (j; w ):

Then a specific realization of � (! ) could be a single j, corresponding to a single data sample. Alternatively, in the common
mini-batch setting, a realization of � (! ) could be a B� � f 1; : : : ; Ng, corresponding to a small subset of the data.

We approximate r F(w) by g(� ; w ), where g(� (�); �) V
 � Rd ! Rd is integrable. In the above typical situation, we
would usually have either g(� ; w ) D r f (� ; w ), where � (! ) 2 f 1; : : : ; Ng (single sample) or g(� ; w ) D 1

jB� j

P
j2B�

r f (j; w )

with B� (! ) � f 1; : : : ; Ng (mini-batch).
In general, we consider a sequence of jointly independent random variables f � kg1

kD1 on the probability space . 
 ; F ; P/ ,
with the idea that step k of the method will depend on a realization of � k. For such a sequence we define the total
expectation Ek[X] of a random variable X by

Ek[X] D E� 1

�
E� 2

�
: : : E� k� 1 [X]

��
:

As the variables � k are jointly independent, this coincides with the expectation of X with respect to the joint probability
distribution of ( � 1; : : : ; � k).

The following assumptions on the full problem are standard:

Assumption 1. F VRd ! R is continuously differentiable and r F is Lipschitz continuous with Lipschitz constant L > 0:

kr F(u) � r F(v)k � Lku � vk; 8u; v 2 Rd:

Assumption 2. F is strongly convex with convexity constant c > 0. That is,

F(u) � F(v) C hr F(v); v � ui C
c

2
kv � uk2; 8u; v 2 Rd:

We also make standard assumptions on the approximation g. The first is that it is Lipschitz-continuous with respect
to the second argument:

Assumption 3. The function g is Lipschitz continuous with respect to the second argument with (for simplicity) the
same Lipschitz constant L > 0 as r F:

kg(� ; u) � g(� ; v )k � Lku � vk; a:s: 8u; v 2 Rd:

Next, we assume that g is a reasonable approximation to r F in the following sense, following [8]:

Assumption 4. There exist scalars � G � � > 0, M � 0 and MG � � 2 such that the gradient r F and its approximation
g satisfy the following conditions for all w 2 Rd:

(i) hr F(w); E� Tg(� ; w )Ui � � kr F(w)k2,
(ii) kE� [g(� ; w )] k � � Gkr F(w)k and

(iii) E�
�
kg(� ; w )k2

�
� M C MGkr F(w)k2.

Assumption 4(i) and (ii) are fulfilled by assumption with � D � G D 1 if we are considering (e.g.) the previously
described single sample case. The third item puts a weak limit on the variance, which means that the approximation to
the gradient is not too noisy.

Remark 2.1. We note that the statements ``for all w 2 Rd '' in the above assumptions could be replaced by ``for all
wk '', where wk are the method iterates, i.e. the assumptions only need to hold where the method is actually evaluated.
However, this is not helpful in practice, since the iterates are not known a priori.
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Finally, we make a general assumption on the numerical optimization method. As shown in the previous section, this
will be satisfied in particular for the SRKCD method.

Assumption 5. Given a sequence of step sizes f � kgk2N, such that � k > 0 for all k and an initial condition w1 2 Rd, the
optimization method is of the form

wk;i D wk � � k

i� 1X

jD1

ai;jg(� k; wk;j ); i D 1; : : : ; s;

wkC1 D wk � � k

sX

iD1

big(� k; wk;i ):

For brevity, denote asC1;i VDbi , i D 1; : : : ; s, and set wk;sC1 VDwkC1. With this notation, the coefficients ai;j satisfy

(i)
P s

iD1 asC1;i D 1,

(ii)
P i� 1

jD1 jai;j j � 1; i D 1; : : : ; s C 1.

We note that item (i) would be satisfied for any Runge�Kutta method which is of order 1 when applied to Pw D �r F(w).
Further, we note that asC1;i D bi and wk;sC1 D wkC1 means that the stage update formula coincides with the updating
formula for wkC1. This makes the following induction proofs less cumbersome.

2.1. Preliminary results

In the following lemma, we list some consequences of the basic assumptions.

Lemma 2.1. Under Assumptions 1 and 2, there exists a unique w� 2 Rd such that

F(w� ) D min
w2Rd

F(w)

and r F(w� ) D 0. Further, it follows that

F(u) � F(v) �


r F(v); u � v

�
C

L

2
ku � vk2 (1)

for all u ; v 2 Rd. Finally, the difference F(w) � F(w� ) is bounded by

2c .F(w) � F(w� )/ � kr F(w)k2: (2)

Proof. The existence of a unique minimizer in this benign situation is well-known, see e.g. [17, Corollary 11.17]. The first
inequality follows directly from a first-order expansion in Taylor series and Assumption 1. For the final inequality, see
e.g. [8, Appendix B]. �

2.2. Bound on kwkC1 � wkk

First, we consider what the method does in one step and bound kwkC1 � wkk D kwk;sC1 � wk;1k. To this end, we now
define a sequence of polynomials Pn(� ), n D 0; : : : ; s, by

P0(� ) D 0; P1(� ) D �;

Pn(� ) D � C � L

nX

iD1

janC1;i jPi� 1(� ); where 2 � n � s:

Note that the sequence depends on s, but for brevity we do not add an extra index to indicate this.

Lemma 2.2. Let Assumptions3 and 5 be satisfied. Then for a fixed s, it holds thatkwk;nC1 � wkk � Pn(� k)kg(� k; wk)k for all
n � s.

Proof. We prove the statement by induction over n. In the case n D 1 it follows immediately from the definition that

kwk;2 � wkk D kwk;2 � wk;1k D ja2;1 j� kkg(� k; wk)k:

4
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Since ja2;1 j � 1 by Assumption 5(ii), the base case is satisfied. Assume that the claim holds for all i � n with n < s. Then,
using Assumption 3 and the induction assumption

kwk;nC1 � wkk

D








 � � k

nX

iD1

anC1;ig(� k; wk) � � k

nX

iD1

anC1;i
�
g(� k; wk;i ) � g(� k; wk)

�









� � k

nX

iD1

janC1;i jkg(� k; wk)k C � k

nX

iD1

janC1;i jkg(� k; wk;i ) � g(� k; wk)k

� � k

nX

iD1

janC1;i jkg(� k; wk)k C � kL

nX

iD1

janC1;i jkwk;i � wkk

� � k

nX

iD1

janC1;i jkg(� k; wk)k C � kL

nX

iD1

janC1;i jPi� 1(� k)kg(� k; wk)k

� Pn(� k)kg(� k; wk)k;

where we used Assumption 5(ii) in the last step. This concludes the inductive step. �

Lemma 2.3. Under Assumption 5, it holds for 2 � n � s that

Pn(� ) D � C �
n� 1X

iD1

(� L)icn;i

where the cn;i are constants not depending on � or L. Further, cn;i � 1 for 2 � n � s and 1 � i � n � 1.

Proof. Once again, we employ induction. For n D 2, we have

P2(� ) D � C � L(ja3;1 j� );

which is on the stated form with c2;1 D ja3;1 j, and by Assumption 5(ii), c2;1 � 1. That is, the claim is valid for n D 2.
Assume that Pm can be written on the stated form for all m � n and that all the constants cm;i are bounded by 1. Then
inserting this in the definition of PnC1 shows that

PnC1 D � C � 2L

nC1X

iD2

janC2;i j C � 3L2
nC1X

iD3

janC2;i jci� 1;1

C � 4L3
nC1X

iD4

janC2;i jci� 1;2 C � � � C � nC1Ln janC2;nC1 jcn;n� 1:

That is, we can write PnC1 on the desired form by taking cnC1;1 D
P nC1

iD2 janC2;i j and cnC1;j D
P nC1

iDjC1 janC2;i jci� 1;j� 1 for
j D 2; : : : ; n. By Assumption 5(ii),

cnC1;1 D
nC1X

iD2

janC2;i j �
nC1X

iD1

janC2;i j � 1:

Similarly, since all the ci� i;j� 1 are bounded by 1 by the induction assumption,

cnC1;j D
nC1X

iDjC1

janC2;i jci� 1;j� 1 �
nC1X

iD1

janC2;i j � 1:

for j D 2; : : : ; n. This concludes the induction step. �

We can now bound the difference F(wkC1) � F(wk) by using (1) from Lemma 2.1 to write

F(wkC1) � F(wk) �


r F(wk); wkC1 � wk

�
C

L

2
kwkC1 � wkk2: (3)
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For the first term on the right-hand side, we add and subtract terms to get


r F(wk); wkC1 � wk

�

D
D
r F(wk); � � k

sX

iD1

big(� k; wk) � � k

sX

iD1

bi (g(� k; wk;i ) � g(� k; wk))
E

� � � k

sX

iD1

bi



r F(wk); g(� k; wk)

�
C � kL

sX

iD1

jbi jkr F(wk)kkwk;i � wkk:

We now use Lemma 2.2 and Young's inequality ab � a2

4 C b2 with a D � k

p
Lkr F(wk)k and b D

p
Lkwk;i � wkk to bound

the last sum in the previous expression

sX

iD1

� kLjbi jkr F(wk)kkwk;i � wkk

�
� 2

k L

4

sX

iD1

jbi jkr F(wk)k2 C L

sX

iD1

jbi jkwk;i � wkk2

�
� 2

k L

4

sX

iD1

jbi jkr F(wk)k2 C L

sX

iD1

jbi jPi� 1(� k)2kg(� k; wk)k2:

In total, by using Lemma 2.2 also on the last term of (3), we get

F(wkC1) � F(wk)

� � � k

sX

iD1

bi



r F(wk); g(� k; wk)

�
C

� 2
k L

4

sX

iD1

jbi jkr F(wk)k2

C L

sX

iD1

jbi jPi� 1(� k)2kg(� k; wk)k2 C
L

2
Ps(� k)2kg(� k; wk)k2:

Taking expectations with respect to the distribution of � k (recall that wk does not depend on � k) leads to

E� k [F(wkC1) � F(wk)]

� � � k

sX

iD1

bi



r F(wk); E� k [g(� k; wk)]

�
C

� 2
k L

4

sX

iD1

jbi jkr F(wk)k2

C L

 
sX

iD1

jbi jPi� 1(� k)2 C
1

2
Ps(� k)2

!

E� k

�
kg(� k; wk)k2

�
:

(4)

By Assumption 4 we have that

E� k

�
kg(� k; wk)k2

�
� M C MGkr F(wk)k2;

and applying this to the last term of (4) gives

E� k [F(wkC1) � F(wk)]

� � � k� kr F(wk)k2 C
� 2

k L

4

sX

iD1

jbi jkr F(wk)k2

C L

 
sX

iD1

jbi jPi� 1(� k)2 C
1

2
Ps(� k)2

!
�
M C MGkr F(wk)k2

�
:

(5)

Here we have also used Assumption 4(i) and Assumption 5(i) on the first term on the right-hand side of (4) to obtain the
� � k� kr F(wk)k2-term in (5). Reordering the terms, we find

E� k [F(wkC1)] � F(wk)

� Q(� k)kr F(wk)k2 C LM
� sX

iD1

jbi jPi� 1(� k)2 C
1

2
Ps(� k)2

�
: (6)

with

Q(� k) D � � k� C LMG

sX

iD1

jbi jPi� 1(� k)2 C
LMG

2
Ps(� k)2 C

1

4
� 2

k L

sX

iD1

jbi j:

6
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Since P0(� k) D 0 and the smallest power of � k in Pi (� k)2 for i D 1; : : : ; s is � 2
k , we can choose � k > 0 small enough

that

Q(� k) < �
� k�

2
: (7)

This means that the first term in (6) is negative, and we can estimate it by using the strong convexity property

�kr F(wk)k2 � � 2c
�
F(wk) � F(w� )

�

from (2) in Lemma 2.1. Adding and subtracting F(w� ), rearranging and taking total expectations on both sides thus leads
to

Ek[F(wkC1) � F(w� )] � .1 � � k� c/ Ek[F(wk) � F(w� )]

C LM
� sX

iD1

jbi jPi� 1(� k)2 C
1

2
Ps(� k)2

�
: (8)

This means that the next error is the previous error multiplied by a factor which is strictly less than one, plus two terms
that are small. Hence it will tend to zero as k ! 1 , as we show formally in the next section.

Remark 2.2. Let us elaborate on the choice of � k in (7). We can make the choice because the negative term is multiplied
with � k while the positive terms are all multiplied with higher powers of � k, meaning that for a sufficiently small � k the
negative term will dominate. To make this more concrete, suppose that � k � 1

Lm for an integer m � 2. Then by Lemma 2.3,

Pi (� k)2 � � 2
k

�
1 C

1

m
C

1

m2
C � � � C

1

ms� 1

� 2

D � 2
k

m2

(m � 1)2
� 4� 2

k

for every i D 1; : : : ; s. Thus, since
P s

iD1 jbi j � 1 by Assumption 5,

Q(� k) � � � k� C � 2
k

�
4LMG C 4

LMG

2
C

L

4

�

� � � k� C L� 2
k (6MG C

1

4
)

� � � k� C � k

6MG C 1
4

m
:

This is bounded by � � k �
2 and thereby satisfies (7) if

m �
12MG C 1

2

�
:

We can guarantee this by choosing m large enough, and a moderately small m is sufficient unless the estimator of the
gradient is very bad (small � ) or the variance of the data is very large (large MG). In a typical situation, both of these
constants can be set to 1, which leads to a step size restriction of � k � 2

25L . We note that this argument could be further
refined to improve the bound, since the current estimations of Pi (� k)2 are quite crude. For example, clearly P1(� k)2 D � 2

k .

2.3. Convergence proof

Theorem 2.1. Let Assumptions1� 5 be satisfied. Further assume that the scheme is run with the step size� k D �
kC
 , where


 > 0, � > 1
c� and � 1 satisfies (7). Then with

� D max

8
<

:

LM
� P s

iD1 jbi jPi� 1(� )2 C 1
2 Ps(� )2

�

�� c � 1
; (
 C 1) .F(w1) � F(w� )/

9
=

;
;

it holds that

Ek[F(wk) � F(w� )] �
�

k C 

; (9)

for k D 1; 2; : : :.

Remark 2.3. The error constant � can be bounded by a constant which is independent of s by using Assumption 5(ii).
However, for some methods bi decreases rapidly with increasing i (such as the SRKCD methods). In that case, such an
estimation would be rather crude. We therefore keep these terms in the statement and leave it to the reader to insert
their specific coefficients.
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Proof of Theorem 2.1. We prove this using induction, inspired by [8, Theorem 4.7]. Let us abbreviate Ok D k C 
 . For the
base case we note that it follows from the definition of � that

Ek[F(w1) � F(w� )] D .
 C 1/
F(w1) � F(w� )


 C 1
�

�

 C 1

;

since w1 is not chosen randomly. For the induction step we assume that (9) holds for some k. Using (8) we then have

Ek[F(wkC1) � F(w� )] � .1 � � k� c/
�
Ok

C LM
� sX

iD1

jbi jPi� 1(� k)2 C
1

2
Ps(� k)2

�
:

(10)

Using that � k D �
Ok

and adding and subtracting �
Ok2 , we find that the right-hand side of (10) equals S1 C S2 where

S1 D
� Ok � 1

Ok2

�
� and S2 D �

�
�� c � 1

Ok2

�
� C LM

� sX

iD1

jbi jPi� 1

� �
Ok

� 2

C
1

2
Ps

� �
Ok

� 2
�

:

By the inequality Ok2 �
�
Ok � 1

��
Ok C 1

�
we directly have that

S1 �
�

Ok C 1
:

To bound S2, we first note that the polynomials Pi (� )
� are increasing on the positive real axis since all the coefficients of

Pi (� ) are non-negative. It thus holds that

OkPi

� �
Ok

�
� Pi (� ):

By the definition of � , this yields

LM
� sX

iD1

jbi jPi� 1

� �
Ok

� 2

C
1

2
Ps

� �
Ok

� 2�
�

�
�� c � 1

Ok2

�
�:

Thus S2 � 0. In conclusion, S1 C S2 � �
OkC1

, so the bound (9) holds for all k � 1. �

2.4. Nonconvex setting

Without any convexity assumption, it is typically impossible to prove convergence with a certain speed. But we may
still prove convergence. The following section is an adaptation of similar arguments in [8] to the Runge�Kutta setting.
Since we do not know a priori that there is a unique minimum w� or even a lower bound on F, we make the following
assumption:

Assumption 6. The sequence of iterates fwkgk2N is contained in an open set over which F is bounded from below by Finf .

Theorem 2.2. Let Assumption 1 and Assumptions 3� 6 be satisfied. Further, let the step-size sequencef � kgk� 1 satisfyP 1
kD1 � 2

k < 1 and
P 1

kD1 � k D 1 , where � k > 0 for all k and � 1 satisfies (7). Then the following bound holds:

lim
K!1

1

AK

KX

kD1

� kEk

�
kr F(wk)k2

�
D 0;

where AK D
P K

kD1 � k.

Remark 2.4. This means that lim inf k!1 Ek

�
kr F(wk)k2

�
D 0, i.e. wk tends to a (local) minimum of F in a weak sense.

But we do not get any further information on how fast this convergence is.

Proof of Theorem 2.2. If � 1 satisfies (7) then so does every � k, k � 1, and by taking total expectations in (6) we find that

Ek[F(wkC1)] � Ek[F(wk)] � �
1

2
� k� Ek

�
kr F(wk)k2

�

C LM
� sX

iD1

jbi jPi� 1(� k)2 C
1

2
Ps(� k)2

�
:

8
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By the independence of the f � kg1
kD1 and the fact that wk is independent of � K for K > k we have that EK [F(wk)] D Ek[F(wk)]

for K � k. Using this, we obtain a telescopic sum on the left-hand side when we sum over K terms. Along with the fact
that

Finf � EK [F(w1)] � EK [F(wKC1)] � EK [F(w1)]

and rearranging the terms we thus get

1

2
�

KX

kD1

� kEK

�
kr F(wk)k2

�
� EK [F(w1)] � Finf

C
KX

kD1

� sX

iD1

jbi jPi� 1(� k)2 C
L

2
Ps(� k)2

�
M :

(11)

By assumption, we have
P 1

kD1 � 2
k < 1 , which means that also

P 1
kD1 � i

k < 1 for any integer i > 2. But Pj (� ) is a
polynomial in � of degree j without a constant term, see e.g. Lemma 2.3. Hence

Pj (� k)2 D
2jX

iD2

Ci � i
k;

where Ci are certain constants. This immediately shows that the terms on the second line of (11) are finite, and thus we
can conclude that

lim
K!1

KX

kD1

� kEk

�
kr F(wk)k2

�
< 1 :

By assumption,
P 1

kD1 � k D 1 , and (recalling AK D
P K

kD1 � k) hence

lim
K!1

1

AK

KX

kD1

� kEk

�
kr F(wk)k2

�
D 0: �

We may replace the lim inf in Remark 2.4 by a strong limit, if we also assume that F is twice differentiable. We state
this result for completeness, but omit the proof since it is very similar to that of [8, Corollary 4.12].

Theorem 2.3. Let Assumption 1 and Assumptions 3� 6 be satisfied, and let f � kgk� 1 be a step-size sequence as in Theorem2.2.
If we also assume that F is twice differentiable it holds that

lim
k!1

Ek

�
kr F(wk)k2

�
D 0:

3. Specific SRKCD analysis

The first-order RKC method with s stages applied to the gradient flow Pw D �r F(w) with constant time step � is
defined by

wk;1 D wk;
wk;2 D wk � Q� 1� r F(wk);

wk;jC1 D (1 � � j )wk;j C � jwk;j� 1 � Q� j � r F(wk;j ); j D 2; : : : ; s;
wkC1 D wk;sC1;

(12)

see e.g. [6, Section V.1]. Here, wk;j denotes the jth internal stage, and r F(wk;j ) is the corresponding stage derivative. The
scalars Q� j and � j are the method-specific coefficients. They are defined via Chebyshev polynomials Tj as

Q� 1 D
! 1

T1(! 0)
; Q� j D

2! 1Tj� 1(! 0)

Tj (! 0)
and � j D �

Tj� 2(! 0)

Tj (! 0)

where ! 0 D 1C �
s2 and ! 1 D Ts(! 0 )

T0
s(! 0 )

. There is thus a single design parameter, ! 0, which is given in terms of � . Setting � D 0
results in the original, un-damped, RKC methods. Instead setting � > 0 introduces extra numerical damping and makes
sure that the stability region never degenerates into a single point on the negative real axis. In our numerical experiments,
we use the value � D 0:01. We note that we write Q� j rather than simply � j to be consistent with [6], where � j would be
the quantity 1 � � j and an extra term (1 � � j � � j )wk appears. In our first-order setting, � j C � j D 1, and this term cancels.
Similarly, the variables ! 0 and ! 1 indicate scalars and should not be confused with elements of the probability space 
 .

Approximating the gradient r F(wk) by g(� k; wk) in step k and using the step size � k now gives us the method we call
SRKCD:

wk;1 D wk;
wk;2 D wk � Q� 1� kg(� k; wk);

wk;jC1 D (1 � � j )wk;j C � jwk;j� 1 � Q� j � kg(� k; wk;j ); j D 2; : : : ; s;
wkC1 D wk;sC1:

(13)

9
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The method is formulated as a three-term recursion in order to preserve its stability properties under round-off error
perturbations. This is similar to how computing the Chebyshev polynomials directly in a naive way quickly leads to a
complete loss of precision, whereas evaluating them via a three-term recursion is backwards stable. In order to apply
the analysis in the previous section, however, we need to state the method on the standard Runge�Kutta form. This, and
verifying Assumption 5, is what the rest of the section is concerned with. Since the SRKCD method has precisely the same
coefficients as the RKC method for the full problem Pw D �r F(w), we will consider the RKC formulation for brevity. We
will also dispense with the subscript k in � k, since the varying step size does not matter for the reformulation.

We start by noting that by Lemmas A.1 and A.2 (in the appendix), both Ts(! 0) and T0
s(! 0) are positive for s � 1. Hence,

! 1 > 0. Lemma A.1 also shows that Tj (! 0) � 1 for any j, which directly implies that Q� 1 > 0, Q� j > 0 and � j < 0 for every
j 2 N. We collect these inequalities in a lemma for later reference:

Lemma 3.1. With ! 0 D 1 C �
s2 chosen as above with � � 0, it holds for every j 2 N that Q� 1 > 0, Q� j > 0 and � j < 0.

3.1. One-stage update

We first derive an alternative expression for the update wk;jC1 � wk;j , i.e. what happens from one stage to the next.

Lemma 3.2. The iterates defined by (12) satisfy

wk;jC1 � wk;j D � �
jX

iD1

(� 1) jCi

 
jY

`DiC1

� `

!

Q� ir F(wk;i ) (14)

for j D 2; : : : ; s.

Proof. The proof is by induction. For the base case j D 1, we have using (14) that

wk;2 � wk;1 D � � Q� 1r F(wk;1);

which corresponds to the first update of (12). Assume that the identity holds for some j with 2 � j � s � 1. According
to (12), we then have

wk;jC2 � wk;jC1 D � � jC1(wk;jC1 � wk;j ) � Q� jC1� r F(wk;jC1):

We plug in (14) instead of wk;jC1 � wk;j and find that the right-hand-side equals

� � jC1

 

� �
jX

iD1

(� 1) jCi

 
jY

`DiC1

� `

!

Q� ir F(wk;i )

!

� Q� jC1� r F(wk;jC1):

Because the product does not depend on i, we can move the � jC1 into it. We can also extend the sum to incorporate the
final gradient term, since i D j C 1 makes the product equal 1. This leaves us with

wk;jC2 � wk;jC1 D � �
jX

iD1

(� 1) iCjC1

 
jC1Y

`DiC1

� `

!

Q� ir F(wk;i ) � Q� jC1� r F(wk;jC1)

D � �
jC1X

iD1

(� 1) iCjC1

 
jC1Y

`DiC1

� `

!

Q� ir F(wk;i ):

The identity (14) thus holds also for j C 1 and the proof is complete. �

3.2. Full update

Next, we consider the ``full'' stage updates wkC1 � wk.

Lemma 3.3. For 1 � i � s C 1, the iterates of the RKC method(12) satisfy

wk;i D wk � �
i� 1X

jD1

ai;jr F(wk;j );

where

ai;j D
i� 1X

nDj

(� 1)nCj

0

@
nY

`DjC1

� `

1

A Q� j : (15)

10

84



T. Stillfjord and M. Williamson Journal of Computational and Applied Mathematics 417 (2023) 114575

In particular,

wkC1 D wk � �
sX

iD1

bir F(wk;i );

where bi D asC1;i . Additionally, every a i;j > 0.

Proof. The particular form of wk;i follows from (14) in the preceding section since wk D wk;1 implies that

wk;i � wk D
i� 1X

nD1

wk;nC1 � wk;n D � �
i� 1X

nD1

nX

jD1

(� 1)nCj

0

@
nY

`DjC1

� `

1

A Q� jr F(wk;j� 1):

Interchanging the order of summation gives

wk;i � wk D � �
i� 1X

jD1

0

@
i� 1X

nDj

(� 1)nCj

0

@
nY

`DjC1

� `

1

A Q� j

1

A r F(wk;j� 1);

where we recognize the coefficients ai;j . The expression for wkC1 follows by setting i D s C 1.
For the final assertion, we note that each of the terms

(� 1)nCj

0

@
nY

`DjC1

� `

1

A Q� j

in the sum (15) is positive, since they are the product of 2 n negative factors: nC j from ( � 1)nCj and n � j from the product.
Since it is a sum of positive terms, the coefficient ai;j is therefore also positive. �

3.3. Convergence

We can now transfer these properties to the SRKCD method and prove that it converges.

Lemma 3.4. The SRKCD method(13) satisfies Assumption5.

Proof. The methods (12) and (13) share the same coefficients. By recalling that wk;1 D wk and replacing r F with g(� k; �),
Lemma 3.3 proves that the method is given on the desired form.

One of the basic Runge�Kutta order conditions requires that
P s

iD1 bi D 1. This can be easily verified by inserting the
exact solution into the scheme and expanding in Taylor series, see e.g. [18, Section II.1]. Since the corresponding RKC
methods are designed to be of order 1 regardless of which s is chosen, part (i) of Assumption 5 is fulfilled.

For part (ii) , we note that by (15) in Lemma 3.3 we have

nX

iD1

anC1;i D
nX

iD1

nX

jDi

(� 1) jCi

 
jY

`DiC1

� `

!

Q� i

D
n� 1X

iD1

nX

jDi

(� 1) jCi

 
jY

`DiC1

� `

!

Q� i C Q� n

D
n� 1X

iD1

an;i C
n� 1X

iD1

(� 1)nCi

 
nY

`DiC1

� l

!

Q� i C Q� n:

By Lemma 3.1, the Q� i -terms are positive, while the � l-terms are negative. Each of the terms in the middle sum is thus the
product of an even number of negative factors and is therefore positive. From this fact, we conclude that

P n
iD1 anC1;i >P n� 1

iD1 an;i . Since the coefficients an;i are positive by Lemma 3.3 we immediately get also
P n

iD1 janC1;i j >
P n� 1

iD1 jan;i j. The
sum

P n� 1
iD1 jan;i j is thus strictly increasing with n, and bounded from above by

P s
iD1 jasC1;i j D

P s
iD1 asC1;i D 1. �

Corollary 3.1. If Assumptions 1� 4 are satisfied, then SRKCD converges as stated in Theorem2.1. If instead Assumptions 1, 3,
4 and 6 are satisfied, SRKCD converges as stated in Theorem2.2.

Proof. By Lemma 3.4, Assumption 5 is satisfied. We can therefore apply either Theorem 2.1 or Theorem 2.2. �
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3.4. Linearization

We note that Corollary 3.1 does not use the properties of the scheme that makes it an RKC-type method. This is both
because we apply it to a nonlinear problem, and because of the stochastic modification. In the rest of this subsection, we
will elaborate on this matter.

Consider the full, nonlinear problem Pw D �r F(w) and suppose that F is twice continuously differentiable. Let z(t ) be
a second, arbitrary solution with Pz D �r F(z), such that w(t ) D z(t ) C y(t ). A linearization around z is then

Py D �r 2F(z(t ))y; (16)

where r 2F(z(t )) is the Hessian at z(t ). If we further take an equilibrium solution z(t ) � w� , we get an autonomous linear
initial value problem Py D Ay D �r 2F(w� )y. Under Assumption 2, the matrix A has negative eigenvalues, which means
that the exact solution y(t ) tends to zero as t grows.

If we now apply a Runge�Kutta method and approximate y(tk) by yk, then the stability of the scheme is governed by
the eigenvalues of A. This is easily seen by diagonalizing A and doing a change of variables. In particular, if R is the stability
function of the Runge�Kutta scheme and � k is the temporal step size, then

jR(� k� j )j � 1

should hold for every eigenvalue � j of A. With strict inequality, we do not only have stability but that yk tends to zero
just like the exact solution. By considering the situation in somewhat more detail, one can prove that in fact

G(ykC1) � G(0) � max
j

R(� k� j )
2
�
G(yk) � G(0)

�
;

where G(y) D yTr 2F(w� )y with the minimum y� D 0. This is [7, Proposition 1], which considers the (slightly) more
general situation G(y) D yTAy � bTy with a constant vector b.

We can now utilize information on the stability functions R. For gradient descent, corresponding to the explicit Euler
method, stability is guaranteed for step sizes � k such that j1 C � k� j j � 1 for all j, which implies that � k � min j

� 2
� j

. The

RKC methods, on the other hand, are constructed such that their stability regions fz 2 C j jR(z)j � 1gcover as much as
possible of the negative real line. With s stages, the stability limit will instead be roughly 1 � k � min j

� 2s2

� j
, which allows

much larger steps than for normal gradient descent. If the linearized system (16) is a reasonably good approximation of
the full nonlinear problem Pw D �r F(w), then we can expect the same behaviour when applying the methods to the full
problem.

If we instead apply SGD to the linearized system, we get the iteration

ykC1 D yk � � kr g(� k; w � )yk

D
kY

iD1

�
I � � kr g(� i ; w � )

�
y1:

This indicates that the scheme would be stable if kI � � kr g(� i ; w � )k � 1 for every i, i.e. j1 C � k� i
j j � 1 for all i and j, where

� i
j now denotes the eigenvalues of the matrix r g(� i ; w � ). Similarly, for SRKCD we get the stability condition jR(� k� i

j )j � 1
for all i and j, which allows a step size which is roughly s2 larger.

However, in practice this condition is likely both too restrictive and impractical. It is too restrictive because the
maximal eigenvalues � i

max D max j � i
j typically vary significantly with i, see Fig. 1 for an example. The likelihood that the

corresponding ``worst'' r g(� i ; w � ) is chosen often enough to be the dominating factor in terms of stability is very small.
That is, with high probability, many of the steps could be significantly larger without issue. It is impractical, because
there is no clear relation between the eigenvalues of r g(� i ; w � ) and those of r 2F(w� ), meaning that any known overall
statistics about the data cannot be used. Further, there is no way to a priori find out which g(� i ; �) will be chosen such
that the above issue could be alleviated.

For these reasons, we find it unlikely that one could find a proof of convergence of SRKCD with a stability condition
that is reasonably sharp and illustrates the benefit of the scheme. Nevertheless, since the RKC methods have stability
regions that are roughly s2 times larger than that of the explicit Euler method, we expect to be able to take roughly s2

times larger steps with SRKCD instead of SGD.

4. Numerical experiments

In order to investigate the behaviour of the SRKCD method in practice, we have performed numerical experiments on a
simple academic test example and on a more complex optimization problem arising in a supervised learning application.
The different setups are described in the following subsections.

1 The exact value depends on the damping parameter � . For small � it is approximately min j
� (2� 4=3� )s2

� j
, see [6, Section V.1].
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Fig. 1. Here we see the distribution of the largest eigenvalues of r g(� i ; w � ) for an optimization problem arising from using a convolutional neural
network for image classification. The data set with 60000 images is split into non-overlapping batches of 32 images each, and each � i corresponds
to one such batch. Each bar indicates how many such batches have a maximal eigenvalue in the specific range. The mean is � D 1379:94 and the
standard deviation � D 548:78.

We have implemented the method in Tensorflow with Keras by observing that (13) can be alternatively expressed as
SGD with a very specific momentum term that changes with each stage, and where the same batch of data is used in s
consecutive steps. The same idea could equally well be applied in other common machine learning frameworks such as
PyTorch. However, we note that it is only valid for relatively small values of s; for large s the three-term recursion (13)
is needed to avoid catastrophic round-off error accumulation. We write the momentum equations as

uk;jC1 D � juk;j � ` jg(� k; wk;j );
wk;jC1 D wk;j C uk;jC1; (17)

i.e. wk;jC1 � wk;j D uk;jC1. But according to (13) we have

wk;jC1 � wk;j D � � j (wk;j � wk;j� 1) � Q� j � kg(� k; wk;j );

so we see that the two formulations (17) and (13) are equivalent if we set

� j D
�

� � j ; 2 � s;
0; j D 1;

and ` j D Q� j � k:

The main expected benefit of SRKCD is improved stability properties, and this is what we will focus on in the numerical
experiments. First, however, we illustrate Corollary 3.1.

4.1. Convergence with small-scale quadratic convex problem

Let us consider the cost functional

F(w) D
1

N

NX

iD1

f (xi ; w ) D
1

N

NX

iD1

dX

jD1

(xi
j )

2w2
j

d
;

where d 2 N and w 2 Rd are the optimization parameters and each xi 2 Rd is a known data vector. We take N D 1000 and
d D 50. The vectors xi were sampled randomly from normal distributions with standard deviation 1 and means 1 C 10i

d .
This means that

r F(w) D Aw;

where A is a diagonal matrix with the diagonal entries

� j D Aj;j D
2

Nd

NX

iD1

(xi
j )

2:

We note that f � jgd
jD1 are also the eigenvalues of A. The system is diagonal by design for simplicity, but any system Pw D Aw

with a diagonalizable matrix A can be transformed into this form with the eigenvalues preserved. Thus this choice implies
no loss of generality.

Since r F is linear, we see that Assumptions 1 and 2 are satisfied, with c D � min VDmin i � i and L D � max VDmax i � i .
With our particular choice of data, one realization resulted in � min D 0:0791 and � max D 4:704.
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Fig. 2. Loglog plot of the loss for the SRKCD-scheme with 3 stages, run for 20 epochs with a batch-size of 32. Here all the assumptions in Theorem 2.1
are satisfied and we see that we get sublinear convergence.

Further, we approximate r F using a batch size of 32, i.e.

g(� ; w ) D
1

jB� j

X

i2B�

r f (i; w )

where B� � f 1; : : : ; Ngwith jB� j D 32. Similarly to r F, this means that we can write the approximation as

g(� ; w ) D QA(� )w;

where QA(� ) is a diagonal matrix with the diagonal entries

Q� j (� ) D QA(� )j;j D
2

jB� jd

X

i2B�

(xi
j )

2:

Thus g(� ; �) is Lipschitz continuous, and since Q� j (� ) � N
jB� j � j , Assumption 3 is satisfied. This inequality also shows

that Assumption 4(iii) is satisfied with M D 0 and MG � N2=322. Finally, a straightforward calculation shows that
Assumption 4(i) and (ii) holds with � D � G D 1.

We now choose � D 1
c � 12:65 according to the condition in Theorem 2.1. The above bound for MG is based on

estimating the partial sums with the full sums, which in general leads to a large overestimation. By stochastic sampling
we determined that MG D 2 constitutes a more representative, sharper, bound, and we therefore use this value below for
determining the initial step size � 1. This step size must satisfy (7), so we solve the equation

Q

�
�


 C 1

�
C

�
2(
 C 1)

D 0;

which gives us 
 � 178 and � 1 � 0:07.
We apply the SRKCD with s D 3 stages to this problem with the parameters stated above and run it for 20 epochs,

corresponding to 640 iterations. The loss F(wk) � F(w� ) D F(wk) is plotted in Fig. 2, and as expected we observe (at least)
sublinear convergence.

The assumptions on the step size given in Theorem 2.1 are sufficient but not necessary. In particular, we expect that
the good stability properties of RKC will allow us to use larger step sizes. In Fig. 3 we see the result of the same experiment
but where the chosen parameters do not satisfy the assumptions in Theorem 2.1. Here we have chosen 
 D 1 and � D 4,
which results in � 1 D 2. This is significantly larger than in the previous experiment, but we see that we still get similar
sublinear convergence.

4.2. Stability with small-scale quadratic convex problem

As seen in the previous section, often the variance-related quantity MG is not explicitly known. Thus, even in the
case of SGD where the condition (7) reduces to � � �

LMG
, it is not obvious how to best choose the initial step size; some

trial-and-error and parameter sweeps is required. If a step size is chosen too large during this process, there will be issues
with stability. A method with good stability properties such as SRKCD will be less affected by this, and could work well
also in the case of badly estimated parameters.

We continue to investigate the setting described in the previous section and use the same data. To better illustrate
the stability properties of the methods, from now on we only use fixed step sizes � rather than the previous sequences
� k. Stability is only an issue for large step sizes, so with a decreasing step size we will always have stability eventually.
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Fig. 3. Loglog plot of the loss for the SRKCD-scheme with 3 stages, run for 20 epochs with a batch-size of 32. Here the initial step size is larger
than allowed for in Theorem 2.1 but we still get sublinear convergence. Here � D 4 and 
 D 1.

Fig. 4. SGD with batch size 1000, i.e. GD, (left) and SGD with batch size 32 (right) when applied to the problem described in Section 4.1. Note the
different scales on the y-axes and that different number of iterations were used.

However, typically even a small number of unstable steps in the initial phase will lead to an extremely large F(wk) that
will take an unfeasibly large number of steps to recover from.

Since the system is diagonal, stability is determined by the eigenvalues as discussed in Section 3.4. In particular, if we
use r F instead of stochastic approximations g(� ; �), then for stability we must have � k � 2

� max
D 2

L . Further, the optimal

step size which minimizes max j jR(h� j )j is � D 2
� min C� max

, see e.g. [7].
We ran 15 iterations of GD and 3 epochs of SGD with a batch size of 32 and with different step sizes between 0 and

2=L D 0:4251. We use more iterations for SGD simply because the GD iterations are more expensive. The final values F(w)
are plotted in Fig. 4. For GD, we can clearly observe the optimal step size choice 2

� min C� max
D 0:4181. Closer to � D 2=L, the

values start to increase again and larger step sizes will lead to instability and divergence. Interestingly, the picture is very
similar for SGD. In this case, the step size limit is very slightly smaller than � D 2=L and we can observe some wiggles
in the curve due to the stochastic approximations. But the optimal step size choice stays at almost the same position.

In Fig. 5, we repeat the experiment with a batch size 32 but now with the SRKCD methods with different s. For each
s, we try step sizes � 2 (0; bR

L ) where bR is the maximal value such that ( � bR; 0) is included in the stability region for the

corresponding RKC method. It can be shown that bR D 2! 0T0
s(! 0 )

Ts(! 0 ) [6, p. 425].
The first thing to note is that as expected, the stability regions are much larger than for SGD. For larger s, they do not

quite reach bR=L in this stochastic setting, but the differences are extremely small. Secondly, we note that all the methods
exhibit a characteristic ``dip'' at a relatively small step size. This is similar to the optimal step size dip at 2

� min C� max
for

SGD. However, since the stability function of the corresponding RKC method has s zeroes instead of only one, there are
also many other choices of larger � which yield comparable performance. Indeed, while SGD performs quite well in the
interval � 2 (0:3; 0:42), SRKCD with s D 5 performs roughly equally well for all � 2 (0:5; 10:2).

We note that these plots cannot be used for efficiency comparisons, since the latter method has used 5 times as many
evaluations of g(� ; �) as SGD. Nevertheless, it is clear that the improved RKC stability properties makes SRKCD more robust.
If, e.g. the values of � min and � max were not known, then selecting a good step size for SGD is difficult. For SRKCD, the
choice almost does not matter.
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Fig. 5. SRKCD with batch size 32 for various values of s when applied to the problem described in Section 4.1. In each case, 3 epochs were run.

4.3. Convolutional neural network

Next, we consider also an example arising from a real-world problem, namely the classification of images by
convolutional neural networks. Such a problem can also be stated on the form min w F(w), where F now depends on
the collection of images, the network structure, and the loss function used to penalize mis-classifications. We refer to
e.g. [8] for details. For this particular experiment, we set up a simple convolutional neural network consisting of one
convolutional layer with a kernel size of 32 � 32 upon which we stack two fully connected dense layers with 128 and
10 neurons each. The activation function is ReLu for the first dense layer and softmax for the output layer and we use a
crossentropy loss function. We train this network on the MNIST dataset [19] using both the SGD and the SRKCD algorithm
with various step sizes and number of stages s.

While a single training sequence is not so expensive, repeating it many times like in the previous section quickly
becomes very time-consuming. Instead of illustrating the behaviour of the methods over a whole interval � 2 (0; a) for
some a, we therefore settle for trying to pin down the practical stability boundary. We recall that since this problem is
nonlinear, we cannot expect the stability properties to behave as nicely as in the previous experiment. This problem is
also larger, but we still use a batch size of 32. As a consequence, the variance is larger than in the previous experiment,
i.e. every realization is noisier. To alleviate this, we run each step size 5 times and take the average.

Fig. 6 shows the final averaged loss values F(wk) after 1000 iterations for SGD and SRKCD with s D 3; 4; 5, for 10 step
sizes close to the stability limit. The loss function F saturates around 2.4 which means that for such values the methods
are unstable. Smaller values do not rule out that the methods could diverge in further iterations, but typically it rather
indicates that we simply did not yet use enough iterations to decrease the loss further. Thus we can observe that for
SGD, the practical stability limit is at around � D 0:35. For SRKCD with s D 3, we instead estimate it to about � D 1:9.
For s D 4 and s D 5, we get about � D 2:8 and � D 3:9. Clearly these are very rough estimates, but as expected the
stability properties of SRKCD are superior also in the nonlinear case. We note that e.g. 1 :9 < 32 � 0:35 D 3:15, i.e. the
s2-scaling of the stability regions is not preserved for nonlinear problems. However, this is just one example and other
types of problems might behave differently. Fully understanding the general nonlinear setting is a significant research
undertaking.

5. Conclusions

We have introduced and analysed the stochastic Runge�Kutta�Chebyshev descent (SRKCD) method by showing
convergence in expectation to a unique minimum for a strongly convex objective function, and to a stationary point
under certain regularity assumptions in the nonconvex case. While we have focused on the SRKCD methods because
they exhibit the particular stability properties that were our original motivation, the proof is more general and applies
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Fig. 6. SGD and SRKCD with batch size 32 for various values of s when applied to the problem described in Section 4.2. In each case, 1000 iterations
were run and the average final value of F(wk) over 5 paths is plotted versus the step size � .

to essentially any Runge�Kutta method. Other such methods may have properties that are of interest in this setting, this
remains an open interesting research question.

As we have seen from the numerical experiments, the stability properties of the SRKCD methods are superior to SGD.
This remains true also for nonlinear and nonconvex problems. We aim to investigate the efficiency of SRKCD in more
detail, and also to compare it more extensively to other popular optimization methods. A key point to take into account
here is of course that one iteration of SRKCD requires s approximative gradient evaluations, while most similar methods
such as SGD require only one. In the usual setting of stiff ODEs, this is outweighed by being able to take much longer steps.
In the current optimization context where it is not necessarily ideal to take the largest possible step, it is no longer as
clear. We have, nevertheless, seen from the numerical experiment in Section 4.2 that we can expect the SRKCD methods
to be more robust in the sense that more step size choices give reasonable results in the absence of good model parameter
estimates.

Finally, we note that in this stochastic setting one must use a decreasing step size sequence to actually reach a local
minimum. With a fixed step size, we will only reach a neighbourhood of the minimum, whose size depends on the step
size and on the variance of the approximative gradients. But with a very small step size, the better stability properties
of SRKCD are irrelevant. These methods are therefore best employed in the initial phase where larger step sizes can and
should be used, and where the convergence towards the minimum is rapid. We think that a hybrid method which utilizes
SRKCD with decreasing values of s, eventually becoming SGD at s D 1, could be ideal.
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Appendix. Auxiliary results

In this appendix, we collect a few results that are important to our analysis but which are not of great interest on their
own.

A.1. Chebyshev polynomials

The Chebyshev polynomials are given by

T0(x) D 1; T1(x) D x;
Tn(x) D 2xTn� 1(x) � Tn� 2(x); n � 2:

17

91



T. Stillfjord and M. Williamson Journal of Computational and Applied Mathematics 417 (2023) 114575

Lemma A.1. For fixed x � 1 it holds that T n(x) � Tn� 1(x) for n � 1. As a consequence, Tn(x) � 1 for all n � 0 if x � 1.

Proof. We prove the lemma by induction. The statement is clearly true for n D 1. Assume that it is true for n D k, i.e.
Tk(x) � Tk� 1(x) � 0 for x � 1. Then

TkC1(x) D 2xTk(x) � Tk� 1(x)
� 2Tk(x) � Tk� 1(x)
D Tk(x) C .Tk(x) � Tk� 1(x)/ � Tk(x):

The fact that Tn(x) � 1 then follows directly from T0(x) D 1. �

The RKC-update also depends on the derivatives of the Chebyshev polynomials so we also prove the same result for
these:

Lemma A.2. For fixed x � 1 it holds that T 0
n(x) � T0

n� 1(x) for n � 1. Further, T0
n(x) � 4 for n � 2 if x � 1.

Proof. From the definition of Tn, we find the following recursive formula for the derivatives T0
n(x):

T0
0(x) D 0; T0

1(x) D 1;
T0

n(x) D 2Tn� 1(x) C 2xT0
n� 1(x) � T0

n� 2(x); n � 2:

Now we can use induction again like in the previous Lemma. We clearly have T0
1(x) � T0

0(x). Assuming that T0
n(x) � T0

n� 1(x)
holds we get

T0
nC1(x) D 2Tn(x) C 2xT0

n(x) � T0
n� 1(x)

� T0
n(x) C

�
T0

n(x) � T0
n� 1(x)

�
� T0

n(x);

where we used Tn(x) � 1 from Lemma A.1 in the first inequality. The final statement follows directly from the fact that
T0

2(x) D 4x. �
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