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Estimating the probability distributions of radioactive concrete in the 
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A B S T R A C T   

The undesirable legacy of radioactive concrete (blue concrete) in post-war dwellings contributes to increased 
indoor radon levels and health threats to occupants. Despite continuous decontamination efforts, blue concrete 
still remains in the Swedish building stock due to low traceability as the consequence of lacking systematic 
documentation in technical descriptions and drawings and resource-demanding large-scaled radiation screening. 
The paper aims to explore the predictive inference potential of learning Bayesian networks for evaluating the 
presence probability of blue concrete. By integrating blue concrete records from indoor radon measurements, 
pre-demolition audit inventories, and building registers, it is possible to estimate buildings with high proba
bilities of containing blue concrete and encode the dependent relationships between variables. The findings show 
that blue concrete is estimated to be present in more than 30% of existing buildings, more than the current expert 
assumptions of 18–20%. The probability of detecting blue concrete depends on the distance to historical blue 
concrete manufacturing plants, building class, and construction year, but it is independent of floor area and 
basements. Multifamily houses and buildings built between 1960 and 1968 or nearby manufacturing plants are 
more likely to contain blue concrete. Despite heuristic, the data-driven approach offers an overview of the extent 
and the probability distribution of blue concrete-prone buildings in the regional building stock. The paper 
contributes to method development for pattern identification for hazardous building materials, i.e., blue con
crete, and the trained models can be used for risk-based inspection planning before renovation and selective 
demolition.   

1. Introduction 

Existing buildings containing numerous hazardous materials cause 
health concerns for occupants and demolition workers (Kim & Yu, 
2014). Blue concrete, a type of radioactive aerated concrete material, is 
one of the prominent examples associated with increased levels of in
door radon and heavy metals in buildings (Clavensjö & Åkerblom, 
2020). The legacy of blue concrete in the Swedish building stock dates to 
the massive housing production between 1941 and 1975 across the 
country (Hall & Vidén, 2005). The alum shale, with high uranium and 
relatively low thorium contents, was used as fuel for lime firing and 
producing aerated concrete elements (Jelinek & Eliasson, 2015). As the 
uranium decays, the alum slate-based blue concrete and the ballast 
uranium-rich granite release 50–200 Bq/m2h radon gas and emanate 
gamma radiation with radium. The radium content in blue concrete is 

13–30 times more than ordinary concrete and releases 20–25 times more 
radon gas, making blue concrete a health hazard to be reckoned with in 
the indoor environment (Clavensjö & Åkerblom, 2020). Statistical re
sults from radon measurement records show that an average radon level 
is 63,1% higher in Swedish buildings built with blue concrete than with 
ordinary concrete, depending on the amount of radium the lightweight 
concrete contains and the extent of usage in construction (Khan et al., 
2021). The results from the early ELIB study (Sedin & Hjelte, 2004) also 
confirmed the increase of radon concentration by 10% in single-family 
houses and 20% in multifamily houses built with blue concrete. The 
presence of blue concrete in combination with ground source radon can 
further contribute to extreme indoor radon concentrations of more than 
1000 Bq/m3 if the ventilation system is poor (Clavensjö & Åkerblom, 
2020). 

Due to its lightweight characteristic and material availability, blue 
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concrete was used extensively as reinforced and non-structural compo
nents in post-war dwellings. Blue concrete can be detected in walls and 
floor elements in single-family houses, external walls, and non-load- 
bearing partitions in multifamily houses (Clavensjö & Åkerblom, 
2020). Even though the production and the use of blue concrete in 
construction had ceased for nearly half a century, it is estimated that 
blue concrete still exists in 6–7% of the existing building stock. Nowa
days, blue concrete is investigated with a gamma radiation detection 
device if the results from the indoor radon measurements are above the 
reference level of 200 Bq/m3. Buildings suspected of blue concrete are 
also obliged to conduct indoor radon measurements to ensure the radon 
concentrations are within the acceptable interval (Swedish Radiation 
Safety Authority, 2013). Otherwise, the blue concrete inspection will be 
carried out in the pre-demolition audits before major renovation or 
demolition due to the requirement of tremendous efforts for decon
tamination (Swedish National Board of Housing Building and Planning, 
2010a, Swedish National Board of Housing Building and Planning, 
2010b). In regard to this, risk-based inspection in predictive mainte
nance offers a cost-efficient alternative in the early identification and 
screening of blue concrete for large building stock (Bouabdallaoui, 
Lafhaj, Yim, Ducoulombier, & Bennadji, 2021). 

The low availability of blue concrete registers is another barrier to 
tracing their presence in buildings. Currently, the information on blue 
concrete-containing components scatters among municipalities’ data
bases and does not systematically connect with building registers. The 
geophysical flight measurement map of uranium also provides a hint of 
blue concrete, yet it cannot be used to ascertain blue concrete at the 
individual building level due to the mixed signals from ground radon 
(Jelinek & Eliasson, 2015). Nevertheless, the knowledge gap on the 
presence of blue concrete can be overcome by developing a data-driven 
approach for risk-based inspection. By coupling blue concrete records 
from past pre-demolition audit inventories and indoor radon measure
ments with the national building registers, it is possible to improve the 
traceability of specific hazardous materials on a regional or national 
scale and verify experienced-based expert assumptions (Wu, Sandels, 

Mjörnell, Mangold, & Johansson, 2022). 
Learning Bayesian networks are one of the prediction methods with 

multifaceted benefits for building stock analyses. Developed from Bayes’ 
Theorem, Bayesian networks are statistical learning tools widely used in 
building and environmental engineering disciplines to evaluate and 
ratiocinate uncertainty in risk assessments (Chen & Zhang, 2021). State- 
of-the-art literature ascertains Bayesian networks’ applications in 
disaster risk analysis for building damage prediction under earthquakes 
(Chen & Zhang, 2021), fire hazard analysis in urban buildings (Liu, Lu, 
Xia, Li, & Zhang, 2017), uncertainty quantification in building inspec
tion and diagnosis (Pereira et al., 2021), and probabilistic performance 
evaluation for building status (Bortolini & Forcada, 2020), etc. The 
modeling approach is reported to be effective for inferences despite 
incomplete information in building stock evaluation (Carbonari et al., 
2019), which makes it a suitable instrument for pattern identification. 
Compared to other data-driven methods, i.e., machine learning or deep 
learning, Bayesian networks produce prediction outcomes with higher 
interpretability concerning descriptive, predictive, and prescriptive di
mensions (Chen & Zhang, 2021). The probabilistic graphical models 
offer a descriptive overview of multivariate correlation with less 
demanding requirements for feature selection. The conditional proba
bility distributions can be transformed into causal networks for diag
nostic purposes by unfolding the rationality of the learned models and 
the causal relationships among input factors. Moreover, the networks 
trained on the sample population can be effectively transferred to 
perform probabilistic inference on the entire population. Considering 
these advantages and the previously mentioned data limitation, 
Bayesian networks are chosen in the study to predict the presence 
probability of blue concrete in the context of building stock. 

As the first study investigating the applicability of Bayesian networks 
for in situ building material prediction, the paper aims to explore the 
following aspects: (i) characterizing the presence of blue concrete and 
containing components in various building classes and describing its 
correlations with measured indoor radon levels, (ii) constructing and 
transforming Bayesian networks to causal graphical models to untangle 

Fig. 1. Study outline for the predictive inference of blue concrete.  
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relationships between factors, and (iii) estimating the extent of building 
stock with a high probability of containing blue concrete by applying 
predictive inference to regional building registers. Developing the pre
dictive method for hazardous material risk evaluation, in terms of 
probability estimation and causality inference, can facilitate environ
mental inspection and remediation planning (Kim, Hamann, Sotiralis, 
Ventikos, & Straub, 2018). The prerequisite of developing the integrated 
approach is built upon a rather homogeneous building stock where 
buildings were constructed with similar dimensions, typologies, mor
phologies, and construction features (Lucchi, Exner, & D’Alonzo, 2018). 
The residential stocks in Sweden built between 1945 and 1975 conform 
to this requirement, and the systematic-built housings can be catego
rized into building types based on building characteristics (Björk, Kall
stenius, & Reppen, 2013). The study outcomes can be used as decision 
support when pinpointing buildings with high intervention priorities for 
blue concrete decontamination. 

2. Material and methodology 

2.1. Study design 

The process of constructing Bayesian network models for blue con
crete prediction and inference to the Swedish building stock comprises 
four parts, depicted in Fig. 1 below. 

The first part of the study concerns data collection, where building- 
generic data, i.e., building registers, and building-specific data, i.e., 

indoor radon measurements and pre-demolition audit inventories, were 
compiled. Afterward, the collected data underwent several preprocess
ing steps, including data integration, cleaning, discretization, and node 
selection before modeling. The third part involves constructing two 
types of networks – structural leaning and parameter learning – and 
verifying model performance with various scoring metrics. Then 
network analytics and causal inference were conducted to evaluate the 
developed Bayesian network models and improve the interpretation of 
the results. Lastly, the models were applied to the regional building 
dataset from the five municipalities to query the probabilistic distribu
tions of the remaining blue concrete. 

2.2. Material 

The input data in the study constitute building-specific material data 
and national building registers in Sweden. Integrating the inspection 
records of blue concrete (target variable) and the national building 
registers (predictive variables or label instances) formed the foundation 
of the blue concrete dataset, described in Appendix A. 

2.2.1. Data sources and compilation 
The information on blue concrete was assembled from two data 

sources – the municipality indoor radon measurements and the pre- 
demolition audit inventories – for buildings built between 1930 and 
1980. The municipality’s indoor radon measurements contain yearly 
average indoor radon levels from trace film measurements and the 
occurrence of suspected blue concrete in buildings by radiation scanning 
vehicles, while the pre-demolition audit inventories offer more detailed 
information on blue concrete components. Compiling these accessible 
datasets enables us to analyze the presence of blue concrete at building 
and component levels. In the study, open indoor radon datasets from 
Gävle and Umeå municipalities in Sweden were retrieved from the 
Swedish data portal maintained by the Agency of Digital Government 
(DIGG, 2022). Houses built with blue concrete were mapped in early 
state initiatives of scanning radiation from vehicles in the Swedish 
municipalities (Statens offentliga utredningar från 
Näringsdepartementet, 2001; Statens offentliga utredningar, 1983). 
These datasets include 2,831 blue concrete inspection records for mainly 
residential buildings. Simultaneously, detection records of blue concrete 
components were assembled from pre-demolition audit inventories from 
renovation and demolition projects in major Swedish cities, Gothen
burg, Stockholm, and Malmö, whose metropolitan regions comprise 
48% of the heated floor area and around 35% of the total number of 
buildings in the Swedish multifamily housing stock (Björk et al., 2013). 
325 observations from various building classes containing blue concrete 
in different components were retrieved from pre-demolition inventories. 
The geographical locations of the municipalities, historical blue con
crete manufacturing plants, radioactive rock, and regions with alum 
slates are illustrated in Fig. 2. It is worth noticing that the five munici
palities in the study are not directly situated on radioactive rock or re
gions with alum slates. 

The national building dataset was compiled from the Swedish Energy 
Performance Certificates (EPCs), the municipality cadastral register, and 
the building taxation register to present the entire building stock. These 
registered data comprise comprehensive information on building usage, 
i.e., building category and types, and building parameters, i.e., con
struction year, floor area, number of basements and floors, etc. 
Furthermore, the collected blue concrete data from inspection records 
and radon measurements indicated blue concrete was merged and 
matched with the building registers using the national real estate index 
and address as matching keys in FME (Feature Manipulation Engine) 
from Safe Software. Considering the substantial construction period of 
blue concrete, a subset of the buildings built between 1930 and 1980 
was selected for predictive inference. In total, 2,424 observations 
remain for subsequent data analysis and learning Bayesian Networks 
modeling. 

Fig. 2. Geographical map of areas with the presence of radioactive rock 
(brown) and regions with alum slate (dark green), adapted from the report by 
the Geological Survey of Sweden (Jelinek & Eliasson, 2015). The location of the 
five municipalities with blue concrete records (blue) and historical blue con
crete manufacturing plants (red) are annotated. 
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2.2.2. Statistical description of the observed buildings 
Clustering buildings with similar characteristics is critical to parti

tion building stock into comparative and representative typologies 
(Lucchi et al., 2018). Data stratification is crucial for applying inference 
from analytical results to other instances with similar data profiles 
accurately. According to primary usage and building dimensions, the 
building stock can be categorized into residential and non-residential 
buildings. Then based on the municipality building usage code, resi
dential buildings are categorized into single-family and multifamily 
houses. Non-residential buildings are more complex to be generalized to 
a specific genre. School buildings in Sweden are built and operated by 
municipalities and thus have rather similar technical details on a 
regional basis, while the rest of the building classes, such as commercial 
buildings, office buildings, and industrial buildings, are categorized as 
other buildings. To address the sample representation, floor areas were 
retrieved from the latest building taxation data to compare the regional 
building stock from the five municipalities and the national building 
stock. The statistic shows that the five municipalities’ living areas 
represent 8% of the entire single-family houses, 31% of multifamily 
houses, and 16% of office buildings. School buildings are exempted from 
taxation and are left out of the building taxation registers. 

Furthermore, by stratifying data with building classes, an overview 
of numerical building parameters for each building class was obtained, 
which could be helpful for understanding the data structure and iden
tifying data noise or outliers. As shown in Table 1, blue concrete and the 
typical components containing blue concrete are detected in 14% of 
single-family houses, 53% of multifamily houses, 25% of school build
ings, and 49% of other buildings in the building stock 1930–1980. The 
average construction years of these buildings are from the 60s, corre
sponding to the historical timeline of the construction peak in Sweden. 
Besides, the average floor areas are distinctive between building classes, 
which could be indicative of variable discretization. Overall, the average 
values of building parameters from residential and non-residential 
buildings agree with the existing knowledge of the building stock 
(Björk et al., 2013) and thus can be assumed to be representative of the 
uninspected building stocks built in the same period. 

2.3. Methodology 

The method section starts with a description of the theoretical 
background of risk-based inspection and Bayesian networks. Then a 
sequential workflow – data preprocessing, Bayesian network modeling, 
and predictive inference – adopted in the study were illustrated. 

2.3.1. Theoretical background 
Decision support tools, such as statistical learning models, facilitate 

the identification of renovation and maintenance strategies to enhance 
the conservation state of buildings (Bortolini & Forcada, 2020). These 
data-driven models provide the scientific basis to evaluate potential 
technical solutions according to the input data from historical records. 
Nevertheless, modeling hazardous materials on an urban scale involves 
uncertainties concerning empirical data quality, i.e., completeness, 
consistency, and accuracy (Wu, 2022; Wu, Mjörnell, Mangold, Sandels, 
& Johansson, 2021). The uncertainty relates to the building inspections 
and diagnosis of the building status and elements inherent to the 
subjectivity of surveyors (Pereira et al., 2021). Therefore, former 
research has tried to address the uncertainties by engaging risk-based 
inspections with Bayesian networks in civil engineering disciplines 
(Carbonari et al., 2019; Kim et al., 2018; Liu et al., 2017). The developed 
probability models for defects or hazard detection are used to prioritize 
inspections to achieve optimal planning of time and resources. 

2.3.1.1. Risk-based inspections. Risk-based inspections refer to the pro
cesses of developing a scheme of inspection to evaluate the probability 
and consequences of defects (Kim et al., 2018). It involves qualitative 
and quantitative assessment of the likelihood of failure and the conse
quence of failure (Kim et al., 2018). Compared to traditional rule-based 
or condition-based inspections, risk-based inspections are more efficient 
in specifying the inspection scope for particular parts with higher risk 
(Kim et al., 2018). Risk-based inspections enable us to bring forward a 
risk-based building retrofit planning framework that is economical and 
feasible (Carbonari et al., 2019). A specific example is the adoption of 
the SOBANE strategy (screening, observation, analysis, expertise) in the 
building sector for risk management (Lucchi, 2016): (i) screening the 
performance hotspots; (ii) observing the detecting causative factors 
associated with presenting and potential risk; (iii) analyzing and quan
tifying the environmental risks with field investigations and measure
ments; (iv) expertizing guidelines for solutions prioritization and 
implementation for conservation or renovation. Identifying uncertain 
factors affecting building conditions and their relationships can support 
decision-making from holistic and realistic perspectives (Bortolini & 
Forcada, 2020). Bayesian networks are one of the quantitative tech
niques for forecasting the probability of failure in risk-based inspections 
when information is limited, accessible, or incomplete (Bortolini & 
Forcada, 2020). 

2.3.1.2. Bayesian networks. Bayesian network is a probabilistic graph
ical model that factorizes the joint distribution of variables and repre
sents their interdependent relationships (Chen & Zhang, 2021; Liu et al., 
2017). The probabilities of variables are non-static with the addition of 
new observations; thus, the models are useful for predictive analytics 
and inference to identify the effects and strength of relationships be
tween variables (QuantumBlack, 2020). In Bayesian networks, the in
formation is structured in the format of Directed Acyclic Graphs (DAGs) 
to describe dependencies (edges) between connecting input factors 
(nodes) (Chen & Zhang, 2021). The joint probability distribution of all 
factors of the Bayesian networks can be denoted in Eq. (1), where a set of 
factors is represented as V = {Xi | i = 1, 2, …, N} and the set of parent 
factors of the ith node represented as Pr(Xi) (Chen & Zhang, 2021). N 
signifies the total number of factors over a set of terms of the conditional 
distribution function of Xi. 

P(X1,X2,…,Xn) = ΠN
i=1P(Xi|Pr(X1) ) (1) 

Probabilistic or causal inferences are performed by updating the 
posterior probabilities of target nodes with evidence from input nodes 
under the given circumstances, as shown in Eq. (2). The posterior 
probability of target variable P(T|E) with given evidence can be calcu
lated by aggregating the joint probability of T and E and the prior 
probability of E. 

Table 1 
Value distribution and mean values of building parameters from the data subset 
of buildings with blue concrete records constructed between 1930 and 1980 
based on building classes (N = 2,424).  

Building 
parameters 

Building classes  

Residential building Non-residential building  

Single- 
family house 

Multifamily 
house 

School 
building 

Other 
building  

n = 1,841 n = 312 n = 101 n = 170 
Construction 

year 
1930–1980 
(1963) 

1930–1980 
(1960) 

1933–1980 
(1965) 

1930–1980 
(1961) 

Floor area (m2) 40–640 
(190) 

232–38,230 
(2188) 

70–48,462 
(2935) 

100–111,097 
(8057) 

Number of 
floors 

1–3(2) 1–14(3) 1–7(2) 1–26(4) 

Number of 
basements 

0–1(1) 0–2+(1) 0–2+(1) 0–2+(2) 

Number of 
stairwells 

0–1(0) 0–19(2) 0–9(1) 0–8(2) 

Number of 
apartments 

0–8(1) 0–341(23) 0–2(0) 0–376(10) 

Blue concrete 
detected 

257 (14%) 165 (53%) 25 (25%) 83 (49%)  
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P(T|E) =
P(T,E)

P(E)
(2) 

Bayesian network learning is two-fold, depending on the expert 
knowledge of relationships between target and predictive variables. In 
the case of unknown causal relationships, structural learning can be 
applied to construct reasonable DAGs from the given data based on 
conditional independence tests of factors (Chen & Zhang, 2021). By 
screening the optimal DAGs, a data-driven graph and directions of edges 
close to reality can be generated. On the other hand, parameter learning is 
used to identify the conditional probability distribution of nodes in 
predefined DAGs. The learning process leverages the maximum likeli
hood estimation to fit the data. Yet, the risk of overfitting exists, and the 
trade-off between overfitting and fitting by imposing prior distribution 
should be considered (Gao et al., 2019). The direction of and joint 
probability distribution of blue concrete remains unclear. Thus, struc
tural learning will be applied as the first step to creating DAGs, followed 
by computing a conditional probability table (CPT) for each node using 
parameter learning. Then predictive inference of blue concrete in un
known building stock can be performed based on the trained and eval
uated Bayesian network models. 

2.3.2. Data preprocessing 
Since the blue concrete inspection records were collected from 

multiple sources, data cleaning, including terminology harmonization 
and missing value imputation, was performed to create a coherent, 
machine-readable dataset. Concerning the different levels of details 
from building-specific data, the subset of the pre-demolition audit in
ventories was retrieved to analyze the frequent presence of blue 
concrete-containing components in the building stock, including the 
wall, floor, façade, ventilation shaft, others, and unspecific. Others are, 
for example, roof or fire cell prohibition walls in the attic. A few 
buildings were detected with multiple blue concrete-containing com
ponents and labeled as multiclassification observations. Afterward, 
missing values of building parameters from registers, such as floor area, 

number of floors, and basements, were constructed by examining their 
Google Street View images, plan drawings and inventory reports. As the 
geographical location of manufacturing plants is shown to be relevant to 
the spatial distribution of hazardous building materials in a previous 
study (Wilk, Krówczyńska, & Zagajewski, 2019), the average distance to 
blue concrete manufacturing factories was computed between the city 
center of the municipality where the observed building is situated and 
the historical locations of the factories as an additional feature. 

After that, preliminary node selection is performed to remove 
redundant features in a dataset to prevent bias and improve classifica
tion accuracy. Node selection criteria are based on expert knowledge 
(Rönnqvist, 2021) and literature (Boverket, 2013; Clavensjö & Åker
blom, 2020) regarding the potential causal factors of the presence of 
blue concrete, including geographical attributes and building charac
teristics. Then binning technique was applied to the factors to generate 
three to five discrete intervals containing similar numbers of observa
tions. The data discretization of splitting continuous variables into data 
subgroups is a prerequisite, as the Bayesian network algorithms are only 
compatible with discrete variables. An overview of available data 
amount and representation for selected factors are presented in Table 2. 

2.3.3. Bayesian network modeling 
The Bayesian network modeling was facilitated by Python Bayesian 

libraries that contain extensive pipelines for Bayesian network learning 
and inference (Ankan & Panda, 2015). Structural learning was per
formed in the first part of model development to explore unknown re
lationships or dependencies between factors for DAG (pattern) creation. 
Various structure learning algorithms were investigated in search of the 
best DAG fitting to the given data, including Exhaustive Search, Hill- 
Climb Search, Tree Search (Chow-Liu), PC (Constraint-based esti
mator), and Max-Min Hill-Climb. Taking score-based search strategies, 
for instance, the Exhaustive Search is suitable for small networks with 
less than five nodes but challenging to identify the ideal structure due to 
lacking local optimization. In contrast, the other heuristic search 
approach Hill-Climb Search, can handle more nodes by executing a 
greedy local search iteratively until a local maximum is found (Taske
sen, 2022). On the other hand, the Tree Search algorithm can operate on 
massive datasets involving complicated uncertainties among various 
interdependent feature sets (Taskesen, 2022). Another way is to use 
constraint-based structural learning, such as the PC estimator, to iden
tify independencies in the dataset using hypotheses (Ankan & Panda, 
2015). The hybrid method combining score-based and constraint-based 
structure learning algorithm Min-Max Hill-Climb estimates the graph 
skeleton with PC and then orients the edges using hill-climb search. 

Based on the variable dependencies of the networks, three scoring 
functions were employed to evaluate the probabilistic models’ perfor
mance. K2 metric assumes a uniform prior distribution on the values of a 
node for each possible instantiation of its parent nodes and one to the 
count of every state, which makes it tend to choose simplified networks 
(Borgelt & Kruse, 2001). On the other hand, BDethe u metric (Bayesian 
Dirichlet equivalent uniform prior) uses observed N uniform samples of 
each variable as pseudo-counts and is sensitive to parameter settings. In 
comparison, Bayesian Information Criteria (BIC) score is a relatively 
robust scoring metric and is reported to outperform the BDeu metric in 
empirical studies (Liu, Malone, & Yuan, 2012). As defined in Eq. (3), the 
BIC metric regulates model complexity by introducing a penalty under 
the maximum likelihood estimation (Ankan & Panda, 2015). This metric 
describes how well a model captured the underlying structure of the 
data and was used for model selection, of which a lower BIC value im
plies lower penalty terms and hence is preferable. 

BIC = log(n)k − 2log(L̂) (3)  

n = the number of the data points
k = the number of free parameters to be estimated
L̂ = the maximized value of the likelihood function of the model 

Table 2 
Data discretization for the buildings built between 1930 and 1980 with blue 
concrete inspection records.  

Node Factor Data representation [nominal / 
ordinal] 

N [NA 
%] 

X1 Construction year year [1930–1955, 1955–1960, 
1960–1968, 1968–1974, 
1974–1980] 

2424 
(0%) 

X2 Floor area m2 [0–150, 150–220, 220–360, 
360–1500, over 1500] 

1150 
(53%) 

X3 Building class Nominal [Single-family house, 
Multifamily house, School building, 
Other building] 

2424 
(0%) 

X4 Average distance (to 
manufacturing plants)* 

km [0–300, 300–600, over 600] 2424 
(0%) 

X5 Basements Count [no basement, at least one 
basement] 

756 
(69%) 

X6 Number of floors Count [1, 2, 3, 4–6, over 6] 724 
(69%) 

X7 Number of stairwells Count [0, 1, 2, 3, over 4] 607 
(75%) 

X8 Number of apartments Count [0, 1–2, 2–10, 10–30, over 
30] 

587 
(76%) 

T Blue concrete Nominal [positive, negative, NA] 2424 
(0%) 

* Historical blue concrete manufacturing factories in Sweden and their operating 
period are Borensberg (1936–1968), Yxhult N:a (1929–1959), Yxhult K (1966-), 
Yxhult S:a (1947–1975), Falköping (1930–1974), Uddagården (1955–1974), 
Grönhögen at Öland (1943–1972), and Skövde/Durox (1925–1968) according 
to the Swedish Radiation Protection Authority (Clavensjö & Åkerblom, 2020). 
The average distances were computed between the city center of the munici
pality where observed building and manufacturing plants were situated and then 
categorized into three distance groups. 
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Subsequently, parameter learning was carried out to estimate con
ditional probabilities distributions (CPDs) of individual variables. The 
type of parameter learning adopted in the study is Bayesian Parameter 
Estimation, which leverages existing prior CPDs (or pseudo-state counts) 
to the observed data to update the posterior. This method can overcome 
the risk of overfitting the data if the observed samples are not repre
sentative of the actual distribution or complete that occurs with 
Maximum Likelihood Estimation (Taskesen, 2022). In Bayesian Parameter 
Estimation, priors are usually set to be a constant value in every iteration 
to have equiprobable states, and then computed CPDs were related to 
the selected DAGs to construct Bayesian networks. 

Furthermore, three types of network analytics were performed to 
gain a more holistic understanding of models’ behavior under different 
circumstances. Prediction analysis was used to investigate the predictive 
performance of the Bayesian networks assuming various extents of ev
idence (Chen & Zhang, 2021). Given different data availability of vari
ables in the building databases, three levels of evidence are considered: 
(i) Scenario I: X1-X3 (Construction year, Floor Area, Building class); (ii) 
Scenario II: X1-X6 (Construction year, Floor area, Building class, Dis
tance to manufacture plants, Basements, Number of floors); (iii) Sce
nario III: full evidence X1-X8 (Construction year, Floor area, Building 
class, Distance to manufacture plants, Basements, Number of floors, 
Number of stairwells, Number of apartments). Scenario I is a baseline 
model containing variables available in all sorts of registers for any 
buildings in Sweden, including municipality cadastral registers, building 
taxation registers, and EPCs. Scenario II adds extra information on the 
geographical distances to blue concrete manufacturing plants and the 
number of floors and basements that are often available in pre- 
demolition audit inventories or plan drawings from building permit 
documents. Extensive information in scenario III can be retrieved from 
EPC, encompassing around 92% of multifamily houses (including 
commercial use), 25% of single-family houses, and most school build
ings (Johansson, Olofsson, & Mangold, 2017). 

The diagnosis analysis features backward reasoning to identify the 
most influential factor associated with the potential presence of blue 
concrete (Chen & Zhang, 2021). Derived from the Bayesian theorem, 
diagnosis analysis compares the changes in posterior probabilities for 
different factors by updating the state of the blue concrete detection in a 
stepwise manner. Lastly, sensitivity analysis was performed to uncover 
the factors contributing to the substantial variation of model outputs 
through changing intervals of discrete variables (Chen & Zhang, 2021). 
By measuring the sensitivity of the input nodes in the detection of blue 
concrete, susceptible factors can be highlighted for risk abatement be
forehand. The results from these network analytics help to build a ho
listic understanding of the model uncertainty given various variables, 
identification of critical factors in the Bayesian networks, and sanity 

check for validity of test assumptions. 
Proceeding with causal inference, the Bayesian networks were 

transformed into causal networks to identify conditional independencies 
using d-separation algorithms (Pearl & Dechter, 2013). The invariance 
of the structure of the models and the relationships between nodes was 
tested when intervention (do-operation) occurred (Barr, 2018). After 
that, the backdoor adjustment formula shown in Eq. (4) was applied to 
estimate the causal influence of X on Y given certain circumstances (W). 

P(Y|do(X) ) =
∑

w
P(Y|X,W) P(W) (4)  

2.3.4. Probabilistic inference 
The probabilistic inference leverages the encoded probability dis

tribution of the Bayesian network models to predict the presence pat
terns of blue concrete in regional buildings. By fitting the trained models 
to the building registers of the five municipalities, i.e., Stockholm, 
Gothenburg, Malmö, Gävle, and Umeå, the models perform queries with 
hard evidence to estimate the buildings potentially containing blue 
concrete in the regional building stock built between 1930 and 1980. 
Registers of the buildings constructed during this period were retrieved 
and processed as input data following the same procedure described in 
Sections 2.3.2 and 2.3.3. The same variable binning intervals were 
applied to ensure model transferability to the regional building dataset. 
Estimations were made by exploiting the generic Bayesian networks to 
gain an overview of the probabilistic distribution of the residual blue 
concrete in existing buildings. Also, data representativeness was assured 
through training the Bayesian networks on the observations from the 
population of the exact geographical locations. Afterward, the results of 
the probabilistic inference from different Bayesian models were 
compared to evaluate the generalizability and scalability of the 
approach. 

3. Results 

The presence of blue concrete and its components in buildings were 
investigated through statistics and data analysis. Afterward, Bayesian 
networks were developed and evaluated with probabilistic graphical 
models, network analytics, and causal inference. The last part concerns 
applying the Bayesian networks models to the blue concrete buildings 
with unknown blue concrete status in the regional building stock using 
probabilistic inference. 

3.1. Characterization of blue concrete in buildings 

To determine the impact magnitude of blue concrete on the indoor 
radon levels, the radon level distribution for buildings detected with and 

Fig. 3. Normalized density distribution of annual average radon levels (left) and logarithm radon levels (right) grouped by buildings with (N = 398) or without (N =
1,808) blue concrete detection for probability estimation. 
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without blue concrete was explored. The normalized density distribu
tion in Fig. 3 estimates the probability of annual average and logarithm 
radon levels of the blue concrete dataset. The radon levels appear to be 
non-symmetric distributed with long tails in both subgroups, where 
approximately 180 Bq/m3 marks the significant probability change. 
Buildings built without blue concrete are highly likely to be measured 
with a radon level below 100 Bq/m3, whereas 200 Bq/m3 or above is 
expected in buildings containing blue concrete. Further transforming 
the radon level to a logarithmic scale, the distributional discrepancy 
between the blue concrete subgroups is evidential and normally 
distributed. Accordingly, it is affirmative that blue concrete is closely 
associated with a higher radon level in buildings. The quantile distri
bution of the violin plots in Fig. 4 displays a more detailed spread of the 
logarithmic values by building classes. Despite various shapes, the blue 
concrete subgroups were found to have higher median values across 
building classes. 

Table 3 characterizes the presence of blue concrete and its compo
nents in relation to radon. Blue concrete is present in several building 
parts, and the detection frequency of the containing components varies 
between building classes. Around 18% of buildings in the blue concrete 
dataset contain blue concrete, and they were found most frequently in 
interior walls, building facades, floor or foundation construction, and 
others, i.e., ventilation shafts. Blue concrete inspections conducted in 
pre-demolition audit inventory are less common for single-family 
houses, and thus the data is insufficient. Nevertheless, for complex or 
large-scale buildings, it was found frequently in walls and facades in 

multifamily houses and walls and floors or foundations in school 
buildings. Blue concrete was detected in several parts of other buildings, 
such as wall construction. Concerning the radon levels, the variance 
between average radon levels in residential dwellings was four times 
higher in single-family houses and almost doubled in multifamily 
houses. In school buildings, the average radon levels in blue concrete 
and non-blue concrete detected buildings were within acceptable levels, 
and the difference was minor. On the contrary, the radon level in other 
buildings is generally higher than the rest of the subgroups, and the 
variance level shows a similar pattern to multifamily houses. 

Furthermore, the relationships between blue concrete, building ty
pology, and indoor radon were investigated to identify predictive fea
tures. To untangle the interaction between variables, Pearson 
correlation matrixes in the heatmap were plotted in Fig. 5. The 
computed point-biserial correlation indicates coefficients and signifi
cance level between blue concrete and predictive variables for each 
building class. The average distance between observed buildings and 
historical blue concrete manufacturing plants has the foremost negative 
correlation to the presence of blue concrete in residential buildings, and 
the results are statistically significant. Construction year, floor area, 
basements, and the number of apartments and stairwells are also in
dicators for blue concrete in multifamily houses. Surprisingly, base
ments have opposite effects, reported a positive correlation to blue 
concrete in single-family houses and a negative in multifamily houses. 
Single-family houses built with basements show a slightly higher radon 
level (≈ 9% increase) than those without, whereas reverse situations 

Fig. 4. Quartile distribution of the logarithmic radon level between buildings with and without blue concrete detection among building classes.  

Table 3 
Characterization of blue concrete and its components concerning annual average indoor radon levels in different building classes. The data count, arithmetic mean, and 
confidence interval (CI) of the radon levels (Bq/m3) were computed for the blue concrete detection and non-detection buildings (N = 2,424, of which NBlue concrete =

2,206 and NABlue concrete = 218).  

Blue concrete component Single-family house Multifamily house School building Other building Total  

N Bq/m3 N Bq/m3 N Bq/m3 N Bq/m3 N Bq/m3 

Walls – – 19 223 ± 58 3 98 ± 17 9 266 ± 264 31 223 ± 83 
Fasade – – 3 260 ± 0 – – 4 100 ± 20 7 169 ± 65 
Floor/foundation – – – – 2 106 ± 0 2 305 ± 149 4 206 ± 192 
Others – – – – – – 4 90 ± 39 4 90 ± 39 
Unspecific 252 377 ± 46 106 215 ± 47 2 140 ± 20 3 277 ± 264 363 328 ± 34 
Detection 252 377 ± 46 128 218 ± 26 5 115 ± 23 13 289 ± 191 398 319 ± 31 
Non-detection 1,579 91 ± 7 135 119 ± 15 53 70 ± 12 41 161 ± 60 1,808 94 ± 6 
Total 1,831 130 ± 9 263 167 ± 16 58 73 ± 11 54 192 ± 65 2,206 135 ± 8 

*The highest acceptable annual average indoor radon level is 200 Bq/m3 in Sweden. 
** Confidence interval = sample mean ± margin of error (standard error). 
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were observed in multifamily houses (≈ 30% decrease) and school 
buildings (≈ 6% decrease). The variation in radon levels may be due to 
the connectivity between basements and ground floors, where base
ments can become an open path for ground radon leakage in single- 
family houses. Yet, the basements in multifamily houses are usually 
not directly linked with other spaces. As for school buildings, the 
number of floors and floor area correlates positively to blue concrete. 
However, no variables are significantly associated with blue concrete in 
other buildings. 

Appendix B compiles the hierarchical clustering of radon levels by 
potential variables. Data sufficiency was considered when computing 
the mean values and confidence intervals of radon levels to evaluate the 
validity of the results. The radon concentration at level 1 is regarded as a 
baseline when investigating the combined impacts of building parame
ters in each building class, i.e., basements and ventilation types. The 
results show that exhaust and balanced ventilation lower radon con
centrations by around 17% and 36% compared to natural ventilation in 
multifamily houses. Similar trends were also observed in single-family 
houses, schools, and other buildings, but more data are required to 
validate the tendency. Essentially, buildings containing blue concrete 
were measured with significantly higher radon concentrations that can 
hardly be compensated by implementing ventilation measures. 

Buildings prone to high radon risk were outlined: single-family houses 
built with basements and blue concrete, multifamily houses built 
without basements but with blue concrete, and other buildings. The 
confidence intervals for single-family houses detected with blue con
crete and other buildings are large, suggesting a higher uncertainty in 
representing the population mean. 

3.2. Learning Bayesian networks for blue concrete 

The Bayesian networks for blue concrete were constructed using 
structural learning and parameter learning, then evaluated with several 
scoring functions to find the optimal hyperparameter combination. 
Network analytics were performed to test the robustness of models and 
identify crucial variables in the prediction. Finally, causal inference was 
applied to the networks to configure relationships between variables and 
improve interpretability. 

3.2.1. Probabilistic graphical models 
In search for the optimal combination and number of nodes, exten

sive Bayesian models were constructed and trained on four structural 
learning algorithms, including Hill-climb Search (hc), Tree Search (ts), 
Constraint-based estimator (PC), and Max-Min Hill-climb Search (mmhc). 

Fig. 5. Pearson correlation matrix based on point-biserial correlation indicating coefficients and significance level between blue concrete and predictive variables for 
each building class. 
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Then the Bayesian information criteria (BIC) was employed as the scoring 
function to evaluate the individual model’s performance and the 
average performance for the given input node sets. High individual 
scores signify the fit between models and the underlying data patterns, 
whereas average scores indicate critical node sets. The BIC metric bal
ances the model complexity, i.e., the number of nodes, and the predic
tion performance, meanwhile preventing the risk of overfitting. The 
results of the three top models, with the highest average and individual 
scores, from model training, are described in Appendix C and summa
rized below:  

• Model 1.1: 

P(Floor area, Building class, Basement, Blue concrete) = Pr (Building 
class | Blue concrete) Pr (Floor area | Building class) Pr (Floor area | 
Basement) Pr (Building class | Basement).  

• Model 2.1: 

P(Construction year, Building class, Basement, Blue concrete) = Pr 
(Building class | Blue concrete) Pr (Basement | Construction year) Pr 
(Blue concrete | Construction year) Pr (Building class | Basement).  

• Model 3.1: 

P(Floor area, Average distance, Blue concrete) = Pr (Blue concrete | 

Fig. 6. Bayesian networks for the selected models.  
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Average distance) Pr (Average distance | Floor area). 
The edges to these models were built subsequently as DAG skeletons 

to compute conditional probabilities distributions (CPDs) in parameter 
learning. Bayesian parameter estimator, a more conservative parameter 
learning using the existing prior CPDs and updating according to pseudo 
state counts before normalization, was adopted to model the networks’ 
probabilistic relationships (or edge weights). The basic K2 prior and a 
more sensitive BDeu prior (Bayesian Dirichlet equivalent uniform prior) 
were tested to assess the variance between CPDs. Then the CPDs were 
related to the DAG skeletons for each model to construct Bayesian net
works, presented in Fig. 6. 

To summarize, the likelihood of detecting blue concrete is estimated 
to be 36% among the observed buildings. Based on the CPDs in Model 
1.1, the probabilities of containing blue concrete in multifamily houses 
(53–58%) and other buildings (19–28%) are much higher than in single- 
family houses or school buildings, regardless of the existence of base
ments. Model 2.1 further shows that roughly 60% of buildings built 
between 1960 and 1968 are more likely to contain blue concrete than in 
other construction periods. The least probability of detecting blue con
crete was observed in buildings constructed between 1975 and 1980 
(12%). Also, buildings situated over 600 km away from blue concrete 
plants are found rarely contain blue concrete, according to Model 3.1. 
The results are reasonable considering the coherency between the his
torical blue concrete timeline and their detection in residential buildings 
in literature. The period of 1960–1975 corresponds to the Million Pro
gramme in Sweden, when large numbers of public housing were built in 
a short time, the same decades during which blue concrete was 
frequently used in construction. The geographical differences in the blue 
concrete detection likelihood also explain the local production and 
usage in nearby regions. 

3.2.2. Network analytics 
In search of edge patterns in various DAGs, the models were evalu

ated with incrementing evidence, and the top-scoring results from the 
predictive analysis are summarized in Appendix C. Scenario I was con
structed based on the key evidence identified in models 1.1 and 2.1, 
including construction year, floor area, building class, and blue con
crete. Then additional factors, the average distance from model 3.1, 
were appended to Scenario II together with basements and the number 
of floors. Scenario III is the most comprehensive with all the evidence, 
including the number of stairwells and apartments. The finding shows 
that models’ performance improves progressively with the increase of 
evidence; in this case, Scenario III is preferred. From the constructed 
DAGs, dependencies were observed recurrently between blue concrete 
and construction year or average distance, as well as building class and 
floor area. The results are coherent with the correlation matrixes in 
Fig. 5, and thus the developed networks are considered valid. 

Furthermore, the diagnosis analysis identified dominant nodes to 
blue concrete by computing BIC scores under different combinations of 
parent nodes to ascertain the degree of changes in the posterior proba
bility distribution, presented in Table 4. The findings show that “average 
distance to blue concrete manufacturing plants” is the most significant 
factor, followed by combined factors of “average distance and building 
class”, “average distance and construction year”, and “average distance 
and floor area”. For the individual factor, “number of apartments” and 
“number of stairwells” are also somehow influential in blue concrete 
detection. Again, the outcomes agree with the results in the previous 
predictive analysis. Building class, ranking the second critical individual 
factor in the diagnosis analysis, data should be stratified accordingly in 
modeling Bayesian networks for blue concrete. 

The last part of network analytics deals with model robustness, 
where the extent to which conditional dependencies are affected by 
changes in the dataset structure is evaluated. The sensitivity analysis 
was performed on the subsets partitioning by building classes and var
iable rebinning. The networks with the highest score are illustrated in 
Appendix D. Overall, the bayesian network for school buildings fits the 
data subset better than other building classes with a higher BIC score. 
The average distance to blue concrete manufacturing plants is found to 
be a common contributing factor to the presence of blue concrete across 
building classes. The optimal DAGs tailored for each building class are 
presented below: 

PSingle-family house (Construction year, Average distance, Basement, 
Blue concrete) = Pr (Blue concrete | Average distance) Pr (Basement | 
Average distance) Pr (Construction year | Basement). 

PMultifamily house (Floor area, Average distance, Blue concrete) = Pr 
(Average distance | Blue concrete) Pr (Floor area | Average distance). 

PSchool building (Floor area, Average distance, Blue concrete) = Pr 
(Average distance | Blue concrete) Pr (Floor area | Blue concrete). 

POther building (Construction year, Floor area, Average distance, Number 
of stairwells, Blue concrete) = Pr (Average distance | Blue concrete) Pr 
(Number of stairwells | Average distance) Pr (Floor area | Number of stair
wells) Pr (Construction year | Floor area). 

3.2.3. Causal inference 
Prior to transforming Model 1.1–3.1 into causal network models, the 

factor independencies were computed, presented in Table 5. Causal 
model 1.1 shows that blue concrete is independent of the basement and 
floor area, but dependent on the combined factors of basement and 
building class. Causal model 2.1 aligns with the partial results from 
Causal model 1.1 that blue concrete is independent of the basement, but 
dependent on the construction year. Construction year, on the other 
hand, is independent of building class but rather dependent on the 
combined factors of the basement and blue concrete. Causal model 3.1 
also agrees with the results from causal models 1.1 and 2.1 and indicates 
that blue concrete is independent of floor area but dependent on the 
average distance to the historical blue concrete manufacturing plants. 

Furthermore, adjustment sets and do-operations were performed on 

Table 4 
Local BIC scores were calculated using various variables as blue concrete parent 
nodes.  

Variable 
importance 

Conditional dependency Score Difference 

Baseline Pr (Blue concrete | None) − 359 0 
1 Pr (Blue concrete | Average distance) − 160 199 
2 Pr (Blue concrete | Average distance, 

Building class) 
− 162 197 

3 Pr (Blue concrete | Average distance, 
Construction year) 

− 180 179 

4 Pr (Blue concrete | Average distance, 
Floor area) 

− 194 165 

5 Pr (Blue concrete | Building class) − 313 46 
6 Pr (Blue concrete | Number of 

apartments) 
− 313 46 

7 Pr (Blue concrete | Floor area) − 316 43 
8 Pr (Blue concrete | Average distance, 

Building class, Construction year) 
− 318 41 

9 Pr (Blue concrete | Building class, 
Construction year) 

− 329 30 

10 Pr (Blue concrete | Number of stairwells) − 329 30  

Table 5 
Independencies between factors in the Bayesian network models.  

Independencies 

Causal model 1.1 (Basement ⊥ Blue concrete) 
(Blue concrete ⊥ Basement) 
(Blue concrete ⊥ Floor area | Basement, Building class) 
(Floor area ⊥ Blue concrete | Basement, Building class) 

Causal model 2.1 (Basement ⊥ Blue concrete | Construction year) 
(Blue concrete ⊥ Basement | Construction year) 
(Construction year ⊥ Building class | Basement, Blue concrete) 
(Building class ⊥ Construction year | Basement, Blue concrete) 

Causal model 3.1 (Blue concrete ⊥ Floor area | Average distance) 
(Floor area ⊥ Blue concrete | Average distance)  
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the causal models. The existence of active front door and backdoors 
paths in each model was ascertained to determine possible adjustment 
sets for path blocking. Afterward, do-operation was conducted on the 
adjusted inference and translated observational distributions (proba
bilities without the do-operator) into interventional distribution (prob
abilities with the do-operator). Fig. 7 displays causal inference results 
for different models and the probability distributions of blue concrete in 
non-adjustment, adjustment without do-operation, and adjustment with 
do-operation. The findings show that floor area, in causal models 1.1 
and 3.1, and basement, in causal model 2.1, are not the parameters 
indicating the occurrence of blue concrete. However, building class is 
pinpointed as the indicator for blue concrete based on the change of 
posterior probabilities of the target variables. 

3.3. Probabilistic inference in the regional building database 

Around 115,996 buildings built between 1930 and 1980 from the 
regional building database were employed as input data to the trained 
network models. The approximate inference was queried based on the 
Bayesian hierarchical models with the evidence of blue concrete for 
different variables as examples. The inference results of individual 
models and the model averages are illustrated in Table 6, of which the 
joint probabilistic distribution of the queried variables sums to 100% 
and the disjoint probabilistic distribution of each evidence state also 
adds to 100%. Overall, blue concrete is estimated to be present in 33.7% 
of the regional building stock. Multifamily houses had the highest risk of 
containing blue concrete than other buildings and single-family houses, 
while school buildings are ranked the lowest risk. It is estimated that 
19.7% of multifamily houses, 8.6% of other buildings, 4.1% of single- 

Fig. 7. Causal Bayesian network models 1.1–3.1.  
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family houses, and 3.4% of school buildings in the regional buildings 
were built with blue concrete. In terms of construction year, buildings 
built between 1960 and 1968 are most likely to be detected with blue 
concrete, followed by 1955–1960. On the other hand, buildings 

constructed between 1930 and 1955 or 1968–1975 are less likely to 
contain blue concrete, and the least risky group is the period 
1975–1980. The joint distribution of the Bayesian hierarchical model 
also indicates that 15.6% of buildings built during 1960–1968, 7.6% of 

Table 6 
Bayesian hierarchical modeling for the probabilistic distributions of blue concrete in the regional building stock conditioned on different variables: (6a) Blue concrete, 
(6b) Building class, (6c) Construction year, (6d) Basement, (6e) Floor area, (6f) Average distance to blue concrete plants.  

Table 6a. Probabilistic distribution of blue concrete. 

Blue concrete Model 1.1 Model 2.1 Model 3.1 Average 

0  63.0%  64.9%  70.9%  66.3% 
1  37.0%  35.1%  29.1%  33.7%  

Table 6b. Probabilistic distribution of building class. 

Joint distribution  Model 1.1 Model 2.1 Model 3.1 Average 

Building class Evidence Joint Disjoint Joint Disjoint Joint Disjoint Joint Disjoint 

Single-family house Blue concrete (0)  28.3%  44.6%  28.8%  45.0% –  28.6%  44.8% 
Blue concrete (1)  4.1%  12.1%  4.1%  12.1% –  4.1%  12.1% 

Multifamily house Blue concrete (0)  16.7%  26.7%  16.7%  25.1% –  16.7%  25.9% 
Blue concrete (1)  19.7%  54.1%  19.6%  54.5% –  19.7%  54.3% 

School building Blue concrete (0)  9.7%  14.5%  9.6%  15.1% –  9.7%  14.8% 
Blue concrete (1)  3.5%  9.3%  3.3%  9.0% –  3.4%  9.2% 

Other building Blue concrete (0)  9.0%  14.1%  9.6%  14.8% –  9.3%  14.5% 
Blue concrete (1)  9.0%  24.5%  8.2%  24.4% –  8.6%  24.5%  

Table 6c. Probabilistic distribution of construction year. 

Joint distribution Model 1.1 Model 2.1 Model 3.1 Average 

Construction year Evidence Joint Disjoint Joint Disjoint Joint Disjoint Joint Disjoint 

1930–1955 Blue concrete (0) –  16.3%  25.4% –  16.3%  25.4% 
Blue concrete (1) –  4.8%  14.0% –  4.8%  14.0% 

1955–1960 Blue concrete (0) –  11.6%  17.3% –  11.6%  17.3% 
Blue concrete (1) –  7.6%  20.7% –  7.6%  20.7% 

1960–1968 Blue concrete (0) –  10.8%  17.1% –  10.8%  17.1% 
Blue concrete (1) –  15.6%  45.5% –  15.6%  45.5% 

1968–1975 Blue concrete (0) –  12.4%  20.3% –  12.4%  20.3% 
Blue concrete (1) –  5.7%  14.5% –  5.7%  14.5% 

1975–1980 Blue concrete (0) –  13.3%  20.0% –  13.3%  20.0% 
Blue concrete (1) –  2.0%  5.3% –  2.0%  5.3%  

Table 6d. Probabilistic distribution of Basement. 

Joint distribution  Model 1.1 Model 2.1 Model 3.1 Average 

Basement Evidence Joint Disjoint Joint Disjoint Joint Disjoint Joint Disjoint 

0 Blue concrete (0)  22.8%  33.9%  22.9%  36.9% –  22.9%  35.4%   
Blue concrete (1)  11.8%  34.4%  11.6%  30.0% –  11.7%  32.2%  

1 Blue concrete (0)  41.8%  66.1%  40.7%  63.1% –  41.3%  64.4%   
Blue concrete (1)  23.7%  65.6%  24.8%  70.0% –  24.3%  67.8%   

Table 6e. Probabilistic distribution of floor area. 

Joint distribution Model 1.1 Model 2.1 Model 3.1 Average 

Floor area Evidence Joint Disjoint Joint Disjoint Joint Disjoint Joint Disjoint 

0–150 Blue concrete (0)  11.2%  18.5% –  15.1%  22.6%  13.2%  20.6% 
Blue concrete (1)  1.6%  4.6% –  3.5%  13.5%  2.6%  9.1% 

150–220 Blue concrete (0)  10.1%  15.8% –  17.2%  23.3%  13.7%  19.6% 
Blue concrete (1)  1.8%  4.8% –  3.6%  11.6%  2.7%  8.2% 

220–360 Blue concrete (0)  11.0%  16.7% –  16.2%  22.9%  13.6%  19.8% 
Blue concrete (1)  5.9%  15.3% –  4.1%  13.4%  5.0%  14.4% 

360–1500 Blue concrete (0)  16.6%  26.5% –  13.5%  18.8%  15.1%  22.7% 
Blue concrete (1)  12.2%  34.0% –  6.9%  24.3%  9.6%  29.2% 

1500- Blue concrete (0)  14.8%  22.6% –  9.2%  12.5%  12.0%  17.6% 
Blue concrete (1)  14.8%  41.5% –  10.8%  37.2%  12.8%  39.4%  

Table 6f Probabilistic distribution of average distance to historical blue concrete manufacturing plants. 

Joint distribution Model 1.1 Model 2.1 Model 3.1 Average 

Average distance Evidence Joint Disjoint Joint Disjoint Joint Disjoint Joint Disjoint 

0–300 Blue concrete (0) – –  8.0%  11.7%  8.0%  11.7% 
Blue concrete (1) – –  13.8%  44.2%  13.8%  44.2% 

300–600 Blue concrete (0) – –  3.1%  4.5%  3.1%  4.5% 
Blue concrete (1) – –  15.1%  51.7%  15.1%  51.7% 

600- Blue concrete (0) – –  58.9%  83.8%  58.9%  83.8% 
Blue concrete (1) – –  1.2%  4.1%  1.2%  4.1%  
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buildings built during 1955–1960, 5.7% of buildings built during 
1968–1975, 4.8% of buildings built during 1930–1955, as well as 2.0% 
of buildings built during 1975–1980 potentially contain blue concrete. 

Concerning building sizes, larger buildings have a higher risk of 
containing blue concrete. For instance, buildings with a floor area be
tween 360–1500 m2 have almost doubled the risk of blue concrete than 
those under 360 m2. Approximately 12.8% of buildings with a size above 
1500 m2 and 9.6% of buildings between 360–1500 m2 are suspected of 
containing blue concrete, while only 5.0% of median and around 2,5% 
of small buildings potentially have blue concrete. Notably, buildings 
built with at least one basement have a doubled probability of having 
blue concrete compared to those built without, where 24.3% of the 
buildings with basements and 11.7% of the buildings without basements 
are probably exposed to blue concrete. Finally, the average distance to 
blue concrete manufacturing plants was proved to be a determining 
factor. Buildings situated further than 600 km have a significantly low 
risk of contamination by blue concrete. 

4. Discussion 

The section discussed the key findings and compared the applica
bility of the Bayesian network method with prediction approaches. The 
last part highlights the practical implementation of the developed 
models for in situ hazardous building material assessment, including 
blue concrete. 

4.1. Results implication 

The data-driven pipeline for blue concrete pattern identification was 
configured and demonstrated using Bayesian network models. Approx
imately 18% of the observed buildings contain blue concrete in the blue 
concrete dataset, which matches the expert estimation of 15–20% blue 
concrete-containing residential dwellings and workplaces from national 
indoor radon measurements (Rönnqvist, 2021). In the study, the 
detection frequency and the link between blue concrete and indoor 
radon were characterized through detailed aggregation at the building 
class level than the current literature (Clavensjö & Åkerblom, 2020). 
The study outcomes contribute to knowledge expansion about blue 
concrete from residential to non-residential buildings and provide an 
overview of the radon situation in existing building stocks. The findings 
on the types of blue concrete elements are beneficial for appraising 
remediation actions and related implementation costs for blue concrete- 
induced radon in different building classes (Clavensjö & Åkerblom, 
2020). Besides, the impacts of crucial cadastral and building parameters 
on radon concentration were determined and aligned with previous 
literature (McGrath & Byrne, 2020), assuring data validity and pin
pointing critical features for subsequent network modeling. 

Choosing multiple Bayesian networks with the highest BIC scores is 
favorable for model comparison and complementation of probability 
distributions for factors that are not modeled in specific networks. It is 
observed that joint probability distributions Pr (Yi | Xi) in Models 
1.1–3.1 are mutable, depending on the numbers and the types of vari
ables included in structural learning. Therefore, by solely identifying 
dependent relationships from data without involving domain knowl
edge, the direction of the edges between P (event | prior knowledge) can 
sometimes be misleading. For example, P (Building class | Blue con
crete), with blue concrete as the parent node and building class as the 
children node, does not seem to be plausible to formulate a query of 
“what is the probability that the building class is a single-family house 
given the presence of blue concrete?”. In fact, the question will be 
reasonable and queriable if the order of the variables is reversed, which 
signifies the necessity of employing domain knowledge for preliminary 
DAG calibration. However, the algorithms did capture the underlying 
patterns of the data, i.e., dependency or correlation between variables, 
and the links between nodes are stable across models. For instance, blue 
concrete is dependent of building class (Model 1.1, 1.2 and Scenario I), 
construction year (Model 1.2, Scenario I and II), the average distance to 
manufacturing plants (Model 3.1, Scenario II and III) but is independent 
of floor area (Model 1.1, 3.1, and Scenario I-III). 

Further evaluating the results from network analytics, the edges in 
DAG are changeable in case of more variables are incorporated into 
network training. The strength of the dependent relationships between 
nodes variates along with the node dynamics. This can be seen in the 
predictive analysis, where the link between building class and blue 
concrete was replaced by the average distance to manufacturing plants 
in Scenario I and II, as well as the link between construction year blue 
concrete disappeared in Scenario III compared to Scenario I and II. The 
assumption of variable domination was verified in the diagnosis anal
ysis. The average distance to blue concrete plants, by itself, is the most 
significant variable among all the others. This variable and its combi
nation with building class, construction year, and floor area influence 
the presence of blue concrete. Besides, the findings from sensitivity 
analysis show that simple networks are favorable for single-family 
houses, multifamily houses, or school buildings. The exception is the 

Table A1 
Overview of the blue concrete dataset.  

Value category Data specification Measurement type 

Building-generic data from the national building dataset 
1. Matching keys National real estate 

index 
EPC index (Energy 
declaration index) 
FNR (Real estate 
key) 
UUID (Universally 
unique identifier) 
Address 

String + Nominal 
Nominal 
Nominal 
Nominal 
String 

2. Cadastral info Municipality 
Postcode 
Post place 

String 
Nominal [5 digits] 
String 

3. Building usage Municipality 
building category 
code 
Municipality 
building usage code 
EPC building 
category 
EPC building type 

Nominal [1–7 types] 
Nominal [1–99 types] 
Nominal [Single or double-family 
house, Multifamily house, Non- 
residential building] 
Nominal [Detached, semi-attached, 
attached] 

4. Building 
characteristics 

Building age 
Floor area 
Number of floors 
Number of stairwells 
Number of 
apartments 
Number of 
basements 
Shelter room 

Scale variable [Year] 
Scale [m2] 
Ordinal 
Nominal 
Scale 
Nominal [0, 1, 2, >2] 
Binary [Yes, No] 

5. Ventilation Ventilation type Nominal [Exhaust, Balanced, 
Balanced with heat exchanger, 
Exhaust with heat pump, Natural 
ventilation] 

6. Radon Indoor radon annual 
average value 

Scales [Bq/m3] 

Building-specific data from municipality indoor radon measurements 
7. Blue concrete Blue concrete 

detection 
Binary [Yes, No] 

5. Building 
characteristics 

Foundation type - 
Gävle 

Nominal [Basements, Suspended 
foundation, Souterrain, Shallow 
foundation, Unknown] 

6. Radon Indoor radon annual 
average value 

Scales [Bq/m3] 

Building-specific data from pre-demolition audit inventories 
7. Blue concrete Blue concrete 

detection 
Binary [Yes, No]  

Blue concrete- 
containing 
component 

Nominal [Wall, facade, floor/ 
foundation, ventilation shaft, others, 
unspecific]  
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model for other buildings whose DAG is complicated but linear. This 
could be due to the observations clustered in this subset being rather 
heterogeneous and hard to identify consistent patterns. The school 
buildings, on the other hand, have homogeneous building usage and 
typology that allows a simpler DAG structure and better fit. 

The results from causal inference suggest that the presence of blue 
concrete depends on average distance and construction year, but the 
indirect impact from other covariates, such as building class and base
ments, should not be disregarded. Although blue concrete is indepen
dent of basements and floor area, the combined presence of blue 
concrete and basements can be found more frequently in certain 
building types. It would be thus necessary to stratify data subgroups 
according to their building classes in model training before imple
menting causal inference. Despite of generic modeling approach, the 
results of probability inference approximately aligns with the condi
tional probability distributions in parameter learning with a slight 
variance between models. Based on conditional probability in Model 
1.1, around 36% of the buildings are likely to contain blue concrete. 
Using the identical DAG structure from Model 1.1 and performing var
iable binning with the same interval on the prediction dataset, 37% of 

regional buildings built between 1930 and 1980 with blue concrete were 
estimated in the probabilistic inference. The share of blue concrete from 
the samples and the large population is close, indicating the certainty of 
the predicted results. In the end, slight adjustments were made to 
compute averaging probability of 34% for a conservative estimation. 

4.2. Comparison between predictive approaches 

Learning Bayesian networks has several advantages for hazardous 
building material prediction in terms of operability and explainability. It 
combines the strengths of machine learning classification, which iden
tifies data patterns without the need for explicit programming, and the 
interpretability of traditional statistic methods. Unlike conventional 
Bayesian models that require expert knowledge to specify variable de
pendency and probability distribution, learning the Bayesian network 
harnesses structure learning to generate potential DAG structures and 
then perform parameter learning based on the input dataset. Because of 
this feature, it is flexible and efficient to update new CPDs when more 
instances are added to the training dataset. Its inference outputs –causal 
graphical networks and comprehensive probabilistic lookup tables – 

Table B1 
Overview of the arithmetic mean and confidence intervals (CI) of the annual average of indoor radon levels by building classes, basements, and ventilation types 
(values in bold were computed with a minimum of 20 observations).  

Building class Radon CI Blue concrete Basement Radon CI Ventilation type Radon CI 

Single-family house 
(n = 1,831) 

130 ± 10 No detection Without 70 ± 17 Natural 83 ± 25 
Exhaust 44 ± 13 
Balanced 57 ± 13 

With 76 ± 14 Natural 80 ± 16 
Exhaust 50 ± 15 
Balanced 72 ± 27 

Detection Without 187 ± 76 Natural 235 [-] 
Exhaust 177 ± 89 
Balanced – 

With 367 ± 140 Natural 367 ± 173 
Exhaust 275 ± 113 
Balanced 671 [-] 

Multifamily house 
(n = 263) 

167 ± 16 No detection Without 98 ± 30 Natural 110 [-] 
Exhaust 72 ± 13 
Balanced 156 ± 10 

With 112 ± 16 Natural 125 ± 25 
Exhaust 104 ± 26 
Balanced 92 ± 35 

Detection Without 247 ± 36 Natural 290 ± 37 
Exhaust 129 ± 34 
Balanced – 

With 190 ± 35 Natural 235 ± 73 
Exhaust 176 ± 41 
Balanced 128 ± 54 

School building 
(n = 58) 

73 ± 13 No detection Without 71 ± 16 Natural – 
Exhaust 6 [-] 
Balanced 72 ± 16 

With 67 ± 16 Natural – 
Exhaust – 
Balanced 67 ± 16 

Detection Without 114 ± 16 Natural – 
Exhaust 106 ± 0 
Balanced 130 [-] 

With 116 ± 67 Natural – 
Exhaust – 
Balanced 116 ± 68 

Other building 
(n = 54) 

192 ± 75 No detection Without 205 ± 85 Natural 540 ± 0 
Exhaust 70 ± 54 
Balanced 135 ± 78 

With 66 ± 40 Natural – 
Exhaust 240 [-] 
Balanced 49 ± 24 

Detection Without 455 ± 167 Natural 426 ± 223 
Exhaust – 
Balanced 540 [-] 

With 225 ± 225 Natural – 
Exhaust 93 [-] 
Balanced 244 ± 244  
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aree rather intuitive and transparent compared to other gray-box or 
black-box prediction approaches. In addition, learning Bayesian net
works can handle small datasets and missing values; meanwhile, it does 
not need tedious feature engineering and model tuning. The character
istics make it particularly suitable for modeling unstructured and het
erogeneous building-specific data. 

However, applications of learning Bayesian networks in the building 
sector are rare. Only a few studies are found in the areas of building 
inspection and diagnosis (Pereira et al., 2021), building predictive 
maintenance (Bortolini & Forcada, 2017), building performance evalu
ation (Bortolini & Forcada, 2020), and building damage prediction in 
disasters (Chen & Zhang, 2021). These studies reported that Bayesian 
networks are robust and rigorous for quantifying multivariate 

probability under uncertainty and, thus, can be swiftly replicated for 
other building elements providing necessary adaptation. However, no 
Bayesian network use cases are found for hazardous building material 
prediction in the literature. It may be due to the fact that building stock 
is extremely complicated with various levels of systems and materials. 
Extending the scope of a single Bayesian network model for compre
hensive inference may not be as effective as integrating several Bayesian 
models. The overwhelming models’ complexity and limited possibility 
of validation may be the reasons restricting the feasible implementation 
of Bayesian networks to real problems. 

Nonetheless, learning Bayesian networks have some drawbacks pri
marily related to accuracy. Among all, the probabilistic inference comes 
with a lower granularity due to the need for data discretization. The 

Fig. B1. Averaging radon level by building class, blue concrete, basement, and ventilation type illustrated in scatterplots (considering data size of each specific data 
subgroup) and bar plots (counts of blue concrete and non-blue concrete subgroups by building class). The overall results were summarized in line charts with 
arithmetic mean values and confidence intervals (CI) of annual indoor radon levels. 

Table C1 
Exploring potential DAG of the blue concrete Bayesian networks using structural learning algorithms and evaluated with the BIC scoring metric. The three highest 
scores of the node sets were sorted in descending order, and the best models with the highest scores are marked in bold.  

Rank Input Hyperparameter Scoring method Structural learning 

No Model Nodes Algorithm BIC Average Edges 

1  1.2 Floor area, 
Building class, Basement, 
Blueconcrete 

hc − 2731 − 2739 (Blue concrete, Building class), (Building class, Floor area), (Basement, Floor area), 
(Basement, Building class)  

1.4 ts − 2754 (Blue concrete, Building class), (Building class, Floor area), (Floor area, Basement)  
1.1 pc ¡2729 (Blue concrete, Building class), (Building class, Floor area), (Basement, Floor 

area), (Basement, Building class)  
1.3 mmhc − 2742 (Building class, Blue concrete), (Floor area, Building class), (Floor area, Basement), 

(Basement, Building class) 
2  2.3 Construction year, 

Building class, Basement, 
Blueconcrete 

hc − 3162 − 3121 (Blue concrete, Building class), (Construction year, Blue concrete), (Construction year, 
Building class), (Basement, Construction year), (Basement, Building class)  

2.2 ts − 3098 (Blue concrete, Building class), (Building class, Construction year), 
(Construction year, Basement)  

2.4 pc − 3174 (Blue concrete, Construction year), (Blue concrete, Building class), (Construction year, 
Building class), (Basement, Construction year), (Basement, Building class)  

2.1 mmhc ¡3051 (Blue concrete, Building class), 
(Construction year, Basement), (Construction year, Blue concrete), (Basement, 
Building class) 

3  3.2 Floor area, 
Average distance, Blue 
concrete 

hc − 3153 − 3138 (Blue concrete, Average distance), 
(Blue concrete, Floor area), 
(Average distance, Floor area)  

3.1 ts ¡3123 (Blue concrete, Average distance), 
(Average distance, Floor area)  

3.2 pc − 3153 (Average distance, Floor area), (Blue concrete, Floor area), (Blue concrete, Average 
distance)  

3.1 mmhc ¡3123 (Floor area, Average distance), 
(Average distance, Blue concrete)  
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trade-off derives from the fact that too large variable intervals will result 
in a rough model, whereas too fine intervals will lead to few unrepre
sentable data points. Besides, some searching algorithms, such as 
Exhaust Search and Max-Min Hillclimb Search, are computationally 
expensive, thus, are not able to handle high dimensional data. This, in 
turn, limits the model capability in the search for optimal model pa
rameters and hyperparameters. Therefore, prior knowledge is needed in 
preliminary node selection to delineate the search scope. Machine 

learning does not have such limits and is able to cope with high 
dimensional, massive, and mixed types of input data. But at the same 
time, they are sensitive to missing values and require a relatively large 
dataset to avoid overfitting. In spite of excellent prediction performance, 
the prediction results from machine learning are unable to discover the 
causal relationships between variables (Wu et al., 2022). Consequently, 
learning Bayesian networks have its edge in hazardous building material 
prediction for preliminary screening and approximate reasoning. 

Table D1 
The evolvement of the DAGs in relation to the incrementing evidence.  

Hyperparameter Metric Structural learning 

Algorithm Scoring method Score Average DAG construction 

Scenario I 
P (Construction year, Floor area, Building class, Blueconcrete) = Pr (Blueconcrete | Construction year) Pr (Blueconcrete | Building class) Pr (Building class | Construction year) Pr (Floor area | 
Building class) 

pc / mmhc BDeu − 5091 − 5080 
K2 − 5033 
BIC − 5117 

Scenario II 
P (Construction year, Floor area, Building class, Average distance, Basement, Number of floors, Blueconcrete) = Pr (Building class | Average distance) Pr (Floor area | Building class) Pr (Number 
of Floors | Building class) Pr (Construction year | Blue concrete) Pr (Blue concrete | Average distance) Pr (Basement | Floor area) 

ts / pc BDeu − 4756/ 
− 4759 

− 4771 

K2 − 4728/ 
− 4736 

BIC − 4729/ 
− 4718 

Scenario III 
P (Construction year, Floor area, Building class, Average distance, Basement, Number of floors, Number of stairwells, Number of apartments, Blueconcrete) = Pr (Average distance | Number of 
floors) Pr (Number of stairwells | Number of floors) Pr (Average distance | Number of apartments) Pr (Number of floors | Number of apartments) Pr (Number of apartments | Building class) Pr 
(Number of stairwells | Number of apartments) Pr (Average distance | Number of stairwells) Pr (Blue concrete | Average distance) Pr (Basement | Construction year) 

pc BDeu − 3862 − 4031 
K2 − 3799 
BIC − 4431  
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4.3. Practical implementation 

The data-driven Bayesian approach can advise risk-based inspections 
when prioritizing the building groups with higher probabilities of con
taining in situ hazardous materials. The outcomes, despite primary, 
provide additional information for building auditors for blue concrete 
assessment during the early inspection procedure. It is also relatively 
cost-effective compared to the previous radiation scanning with the 
vehicle for mapping the presence of blue concrete buildings. The 
Bayesian network model is also reproducible when introducing new 
observations to the data pool and updating posterior probabilities of the 
target variables accordingly, which is especially beneficial in modeling a 
dynamic urban environment. Nowadays, there are roughly 300 prop
erties built with blue concrete in Umeå municipality, according to 
vehicle radiation measurements from early times (Umeå Kommun, 
2020). With the constant development of the city, this number may be 
outdated, and hard to trace the material flows of blue concrete in 
renovation or demolition activities. The predictive inference method 
developed in this study is able to overcome the limitation and 

implement it on various scales for purposes. On the one hand, the models 
can be used to identify risk-prone building groups and devise tailored 
policies for relevant authorities. On the other hand, the query can also be 
made at individual buildings to evaluate the likelihood of encountering 
blue concrete for property owners or demolition contractors. 

To scale up the probabilistic inference from the dataset to the 
regional or national scale, data representativeness was controlled to 
minimize potential sampling and selection bias. The representativeness 
of the observed buildings was addressed by comparing the building class 
distribution of the regional and national building stocks. The constitu
tion of the sample dataset consists of 88% residential and 12% non- 
residential buildings. The proportions resemble the building registers 
from five municipalities in 2021, where residential dwellings count for 
92%, and the rest of the non-residential buildings are 8% (Statistics 
Sweden, 2021). Further examining the national building stock, the 
proportions of building types are also similar − 94% residential and 6% 
non-residential dwellings (Statistics Sweden, 2021). To further improve 
the models’ generalizability and the results’ granularity, adding new 
observations from the five municipalities or other municipalities to the 

Fig. E1. Bayesian networks trained on the specific building class subsets: (1) Single-family houses, (2) Multifamily houses, (3) School buildings, (4) Other buildings.  
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existing training dataset is needed. The refined inference can be used to 
resolve the confounding effect on indoor radon from blue concrete and 
ground sources. 

5. Conclusions 

The study investigates the possibility of identifying the patterns of 
residual blue concrete through predictive inferences based on inspection 
records, indoor radon measurements, and building registers. Blue con
crete is estimated to be present in approximately 34% of buildings built 
between 1930 and 1980, more common than the existing assumptions. 
Training learning Bayesian networks on the input data enable one to 
untangle independencies and compute conditional probabilities be
tween blue concrete and other variables. The findings show that the 
average distance to blue concrete manufacturing plants is the most 
critical attribute for inferring the presence of blue concrete, followed by 
building class and construction year. Basements and floor area are in
dependent of the occurrence of blue concrete in the causal inference. By 
further applying the developed models to the registers of uninvestigated 
buildings in the sampled municipalities, the risk-prone building groups 
with higher probabilities of containing blue concrete are highlighted. 

To the authors’ best knowledge, it is the first study developing a 
learning Bayesian networks pipeline for hazardous building material 
prediction in building stock. The proposed predictive approach is 
reproducible by updating probabilistic inferences by adding new sam
ples. The prediction outcomes could guide risk-based inspections to 
evaluate buildings with potential blue concrete contamination and form 
a basis for radon remediation planning. The primary limitations of the 
study are the variety and sufficiency of the training data, which restricts 
a more detailed inference for particular building classes. Future research 
is suggested to include more blue concrete inspection records from other 
municipalities to improve models’ generalizability and validate the 
developed models empirically. 
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