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Abstract  

The Major Histocompatibility Complex Class II Transactivator (CIITA) gene (16p13) has 

been reported to associate with susceptibility to multiple sclerosis, rheumatoid arthritis and 

myocardial infarction, recently also to celiac disease at genome wide level. However, 

attempts to replicate association have been inconclusive. Previously, we have observed 

linkage to the CIITA region in Scandinavian type 1 diabetes families.  

Here we analyze five Swedish type 1 diabetes cohorts and a combined control material from 

previous studies of CIITA. We investigate how the genotype distribution within the CIITA 

gene varies depending on age, and the association to type 1 diabetes. 

Unexpectedly we find a significant difference in the genotype distribution for markers in 

CIITA (rs11074932, p=4x10-5 and rs3087456, p=0.05) with respect to age, in the collected 

control material. This observation is replicated in an independent cohort material of about 

2000 individuals (p=0.006, p=0.007). 

We also detect association to type 1 diabetes for both markers, rs11074932 (p=0.004) and 

rs3087456 (p=0.001) after adjusting for age at sampling. The association remains 

independent of the adjacent type 1 diabetes risk gene CLEC16A. Our results indicate an age 

dependent variation in CIITA allele frequencies, a finding of relevance for the contrasting 

outcomes of previously published association studies.  

 

Keywords 

Type 1 diabetes (T1D); CIITA; autoimmunity; association, age 

 

Introduction 

Type 1 diabetes (T1D) is a multifactorial disease where a number of genes are thought to be 

involved in regulating disease susceptibility. The major histocompatibility complex (MHC) is 
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known to be the major T1D susceptibility locus, accounting for approximately half of the 

genetic susceptibility to T1D 1. The MHC region is thought to contain several susceptibility 

genes with two of the major ones being DRB1 and DQB11in the MHC class II (MHCII) 

region. In the Caucasian population, there are two major susceptibility haplotypes for T1D, 

DRB1*03-DQA1*05:01-DQB1*02:01 and DRB1*04-DQA1*03:01-DQB1*03:02, and one 

protective haplotype, DRB1*15-DQA1*01:02-DQB1*06:02 2, 3. 

The regulation of the MHCII genes is mainly at the transcriptional level, and one of the 

crucial factors is the class II transactivator, encoded by the CIITA gene (16p13). The CIITA 

protein is a non-DNA binding co-activator which acts as a platform for the assembly of 

transcription factors that bind to MHC II promoters and control transcription 4, 5. CIITA  is 

regarded as the master control factor for the expression of MHCII genes 6, and the lack of 

CIITA expression leads to an almost complete lack of MHCII expression 7. Four independent 

and cell type specific CIITA promoters (PI-PIV) have been identified in humans 8.  Promoter 

I (PI) mainly controls CIITA expression in myeloid dendritic cells and macrophages, while 

PIII is active in B-cells, activated T cells and plasmacytoid dendritic cells and the PIV 

promoter regulates IFNγ-inducible CIITA expression in cells of non-hematopoetic origin and 

in thymic epithelium 9. The function of the PII promoter in humans has not yet been fully 

characterised 8.  

Since CIITA has a unique role in the control of MHC II expression and the MHC II locus is 

the major genetic determinant for susceptibility to autoimmune diseases, CIITA is an 

interesting candidate gene in the study of autoimmune diseases like T1D 10. Previously, we 

found genome-wide significant linkage on chromosome 16 in the region of CIITA to T1D 

(LOD=3.7), among T1D patients who also carry the DRB1*03 and DRB1*04 alleles 11. The 

HLA association to T1D is also know to vary with age at onset, such that the association is 

stronger in younger patients compare to older 3, 12, 13 . 
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Genome wide significant association to celiac disease has recently been reported for markers 

in the CIITA gene14. In addition, increased susceptibility to myocardial infarction (MI), 

rheumatoid arthritis (RA) and multiple sclerosis (MS) has been demonstrated for a 

polymorphism (rs3087456) in the 5´ region of type III CIITA 15. However, this association 

has not always been replicated in later studies, and the outcome of the analysis is varying 

depending on which control group that has been used.  

In this study, we test the hypothesis that CIITA is a T1D susceptibility gene. In addition, we 

investigate if the allele distribution in the gene varies depending on age, and how this may 

affect the evidence for association. 

 

Results 

Primary association to T1D in DISS2 

The tag SNPs described under methods were first genotyped in the DISS2 material, a T1D 

cohort consisting of DNA samples from 586 incident T1D patients and 836 controls 16.  

Association was found in the area between PI and PIII. Five markers were added upstream of 

the PI promoter to better define the associated region in CIITA. One extra marker was also 

added in the CLEC16A gene, which is a known T1D susceptibility gene which maps close to 

CIITA 17, in order to exclude that association to T1D in the CIITA gene was due to LD with 

this gene. The initial analyses indicated that several of the SNPs were associated to T1D with 

the most significant association being to rs11074932 (S1). After correcting for multiple 

testing, only rs11074932 remained significant. 

 

Age stratification 

Due to the inconclusive results when trying to replicate earlier association in the area, and 

different outcome depending on what control group that was used, we wanted to investigate if 
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the age among the controls could have an effect on the association. The same three markers 

(rs11074932, rs3087456 and rs4774) used in the combined T1D study below was 

investigated. Control cohorts were collected as described in the methods section, and a test 

for trend showed that there is a significant trend where the frequency of the genotypes 

changes over age for two of the markers (rs11074932, p=4x10-5; rs3087456, p=0.05)  among 

the controls (fig1). For both markers the frequency of the major allele homozygote is 

increasing with age. The rs3087456 marker is significant only when the oldest age group 

(over 75 years of age) is included in the analysis. It should be noted that this group consist of 

several autopsy cases from a brain bank originally included in the Alzheimer’s disease 

control group. No age dependent effect was evident for the rs4774 marker. 

 

Replication of age variation in an independent population based cohort material 

The same markers in the CIITA gene were investigated in two cohorts of 25- and 75 year old 

women (PEAK and OPRA), respectively. Here we could confirm the significant variation in 

genotype for marker rs11074932 (p=0.006) and rs3087456 (p=0.007) with the minor allele 

homozygote genotype frequency decreasing with age. Additionally, an earlier undiscovered 

variation could also be seen for the rs4774 marker (p=0.03), but here the minor allele is 

instead increasing with age (fig2 and table 1). 

 

Age corrected association to type 1 diabetes in combined material 

To increase power to detect association to T1D we combined cohorts from five T1D case-

control studies and corrected for age at sampling using logistic regression. Due to the big 

discrepancies in age between the T1D cases and the other control cohorts, only T1D cohorts 

were included in this analysis. 
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Four SNPs (rs11074930, rs11074932, rs3087456 and rs4774) were chosen on the basis that 

they either had remained significant after correcting for age by matching each case to two 

controls in an initial analysis in a smaller (DISS2) cohort (rs11074930, rs11074932) (S1), or 

been found associated to autoimmune disease in earlier publications (rs3087456, rs4774) 15, 

18-20. Rs11074930 was found to deviate from Hardy-Weinberg equilibrium in a section of the 

control population and was discarded from further studies. Two markers showed some 

association (rs11074932 p=0.004 and rs3087456 p=0.001) (table 2) after correcting for age in 

the combined cohorts of T1D. 

An age-stratified meta-analysis was performed for the associated markers to get an overview 

of the influence of different age-groups and clarify the association. Only individuals under 40 

years of age were included in this analysis since the majority of the patient falls into this 

group. We find that for both rs11074932 and rs3087456, heterozygotes are negatively 

associated, while major allele homozygotes are positively associated with T1D (fig3).The 

association of CIITA SNPs to T1D was independent of CLEC16A, a nearby gene which is an 

established T1D locus 21, as association to CIITA SNPs remained after adding CLEC16A 

marker rs12708716 to the logistic regression model in the DISS2 cohort. In addition, an LD 

plot of the area was made in the DISS2 cohort demonstrating that the rs12708716 SNP in 

CLEC16A is not in LD with any of our typed SNPs (fig4). We also tested whether gender 

would affect the association, and added gender as a covariate in the logistic regression model. 

This did not alter the association. 

 

Interaction analysis with HLA 

We also investigated if there was an interaction between T1D HLA risk alleles and CIITA. 

Since CIITA is a key protein in the control of expression of MHC class II alleles and we have 

previous findings of increased linkage in DRB1*03/DRB1*04 positive patients in this region 



9 
 

of chromosome 16 11, we wanted to further investigate the role of interaction between CIITA 

and HLA DRB1. Interaction analyses on both the additive and multiplicative scale was 

performed. These analyses were done for presence of minor allele compared to major allele 

homozygotes. For both associated markers (rs11074932 and rs3087456) the results showed 

that there is a significant additive interaction for major allele homozygotes and absence of 

DRB1*15 in relation to T1D, but not in any of the other HLA types. There was no interaction 

on the multiplicative scale (data not shown). This means that individuals risk for T1D 

associated with the joint lack of the protective DRB1*15 allele and presence of major allele 

homozygotes for any of these two SNPs are greater than the sum of the risk associated with 

DRB1*15 and CIITA SNPs individually (fig5). The analysis shows that the association is 

depending on the absence of DRB1*15, which is not unexpected since the majority of T1D 

cases are DRB1*15 negative and DRB1*15 is known as a strong protective factor for T1D.  

The proportion of T1D is higher among DR15 negative individuals for major allele positive 

compared to major allele negatives for both markers (p<0.001 for rs11074932 and p<0.0003 

for rs3087456) while no such difference is seen among DR15 positive individuals. This 

supports our conclusion that the CIITA association seem to be among DR15 negative 

individuals.  

 

Since the association to T1D remained for two SNP markers (rs11074932 and rs3087456) 

even after controlling for age, gender and HLA, we suggest that these polymorphisms or 

other polymorphisms in close proximity are related to T1D susceptibility. 

 

Discussion 

Given the pivotal role of CIITA for regulation of MHC class II gene transcription 6, it is an 

obvious candidate for affecting susceptibility to autoimmune diseases known to be associated 
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to MHC class II haplotypes22. Previous studies have reported positive 19, 20 but also negative 

23, 24 results regarding association of CIITA to different autoimmune diseases. 

In this study, we have performed LD mapping of the CIITA gene followed by an analysis of 

association to T1D. We identified a region extending between the PI and PIII promoters of 

the CIITA gene, which is modestly associated to T1D. This association remains significant 

after correcting for age, gender, HLA association and association to the neighboring 

CLEC16A gene, which is a nearby established T1D risk gene 21. In a genome-wide 

association (GWA) scan performed by The Wellcome Trust Case Control Consortium 

(WTCCC) 17the 16p13 area was found to be significant associated to T1D. The CLEC16A 

gene has been thoroughly evaluated and found to be the major associated T1D risk gene in 

the area, and independent of the CIITA gene 25. However this doesn’t rule out the possibility 

that CIITA can have a minor role as well at a more modest level. In the mentioned 

investigation of the area there were inconclusive results regarding the association of CIITA, 

when significant association to T1D was found in a family material but not in the case-

control cohort 25. Our findings regarding the association of the CIITA gene to T1D is not 

genome wide significant, but in the complex settings of the T1D many genes with moderate 

influence are believed to have an impact on the etiology of the disease. This association 

between CIITA and T1D does however need to be confirmed in other materials to remain of 

interest. 

We have in our study observed a significant difference in the genotype distribution for CIITA 

SNPs in a control cohort across different age groups, which we also confirm in an 

independent material of approximately 2000 individuals. The change in genotype frequency 

with age among controls in this gene can be one reason for the conflicting results of 

previously published CIITA case-control association studies. Thus, if one genotype or allele is 



11 
 

less abundant among older control individuals, it could give a false association result for that 

genotype when compared with a younger patient group. 

Possibly, this phenomenon may be relevant also for other genomic regions, and therefore 

suggest that proper matching of cases and controls with respect to age are important in 

genetic studies. This effect may not be evident when only analyzing an age restricted sample 

material. For example, no age effect was found among the T1D patients. However, with most 

of the T1D patients having an onset before the age of 30, they cover only part of the age span 

included in the investigation. The variation for rs4774 with age was not discovered in our 

initial combined control material, where only 18 individuals over the age of 75 were 

genotyped for this marker, but seen in the cohort study including about 1000 75 year old 

individuals. Possibly the effect for this marker is more profound for the oldest age groups, 

and the same tendency is seen for the rs3087456 marker, where the significance level 

improves when adding additional 75 year- or older individuals to the analysis. Although the 

discrepancies in results between association studies of the CIITA gene in part can be due to 

lack of statistical power to detect a small effect size, variability in outcome could also be 

affected by differences in age between patients and controls, a variable which often is not 

accounted for in genetic case-control studies.  

There can be different underlying reason for an age effect on allele frequencies among the 

controls, which we will address in this discussion. 

One reason could be population stratification, where the genotype frequencies vary among 

different population cohorts. Detailed data on ethnic origin was not available for all the 

cohorts included in this investigation, but when available, individuals with non-Scandinavian 

origin have been removed. The rs11074932 SNP is the marker varying most across the 

different age groups, with the TT genotype increasing with age at the expense of the other 

genotypes. The minor allele in the European and African populations (C) is the major allele 
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in Japanese and Chinese populations. The distribution is similar for marker rs3087456, where 

the minor allele (G) in Europeans is the major allele in Japanese and African populations, but 

not much information about population diversity regarding genotypes for these two markers 

is available. Theoretically infiltration of these populations could affect our findings. 

However, since the controls used in this study were all collected from Swedish residents and 

individuals with non-Scandinavian descent were removed, no or very few Japanese/Chinese 

or African individuals have to our knowledge been included. Also, one could argue that these 

are only minor immigrant groups in Sweden, and their participation in study cohorts like the 

one described here are likely to be small. Hence, the variation we see in our material is 

unlikely to depend solely on population heterogeneity. 

A maybe more reasonable and interesting theory concerns how the genotype affects health. It 

does not have to be a dramatic effect on longevity or survival, a small influence on the 

severity or recurrence of a common cold could be enough. If a certain genotype is associated 

with being healthier it might be more likely that these individuals are included as healthy 

controls for a medical study. Such an effect may be more pronounced for older individuals 

and will result in a skewing of genotypes in the study cohorts. Blood-donors are generally 

regarded as healthier than the general population. When we investigated the blood-donor 

control group from the MS cohort 1 (n=1217), we found that they have a lower minor allele 

frequency for rs3087456 (0.22) than the combined control material together (0.24). Similarly, 

the minor allele frequency for rs11074932 was 0.27 among blood donors compared to 0.28 in 

the whole material, regardless of age. This correlates with the findings that the older age 

groups in this study had a lower frequency of the minor allele homozygote genotype than did 

the younger groups. 

The minor allele of rs3087456 has been associated with lower expression of MHC class II 

chains after stimulation of leukocytes with interferon-γ 15. Possibly, a higher frequency of the 
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minor allele for these markers leads to less expression of the CIITA gene and subsequently 

less MHCII molecules, which in turn could lead to less effective antigen presentation and 

immune defense. If this also leads to more severe or more occurrence of infections, it will 

affect the possibility for those individuals to become a blood-donor or participate in a clinical 

study as a healthy control, maybe even more so if you are older. Theoretically, healthy older 

individuals in this study and blood donors are then expected to have increased expression of 

CIITA and therefore likely a more efficient clearance of infections.  

A perhaps less likely explanation is that an infection or other environmental influence cause 

selection pressure for a certain genotype in the whole population, affecting the individual 

chance of survival. For this to occur, the infection in question must have conferred a high rate 

of mortality in young individuals, a scenario similar to what occurred due the Spanish flu 

epidemic. 

Another reason for the variation of genotypes could be events that affect genotyping results.  

Since the genotyping of the different cohorts in this study has been performed with different 

methods we had in some cases overlapping results for the same individuals from different 

genotyping platforms (RA cohort, DASH and Taqman technology). We could not find any 

major discrepancy in genotyping results in this test sample (one mismatch out of 664 

samples). Also, the RA cohort was re-genotyped with Taqman technology with a 100% 

concordance in results. It could be considered advantageous that different methods have been 

used, since it minimizes the effect of an introduced systematic error. All genotyping 

platforms used are well established and described.  

Whatever the cause is, it is important to consider the effect it has on association studies and 

thoroughly choose well-matched controls in these cases. This variance could clearly affect 

the results of an association study that doesn’t consider the age among the control group 

compared to the patient cohort.  
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The association found to T1D in this study is of moderate strength and not genome wide 

significant. However the importance of the CIITA gene’s function in the immune system 

makes it plausible that it can have an effect on the pathogenesis of T1D. The two markers 

(rs3087456 and rs11074932) investigated here are in quite high linkage disequilibrium, 76% 

(r2), with each other (fig4), and for both markers it is the major allele homozygote that is 

associated to T1D. Since there are earlier findings of lower expression of MHC class II 

chains after stimulation of leukocytes with interferon-γ 15 for the minor allele of rs3087456, it 

is possible that a lower expression of CIITA and subsequently MHCII molecules could be 

protective to T1D in the way of less efficient self-antigen presentation, and higher or 

“normal” levels of CIITA correlating to the major allele genotype are involved in 

susceptibility. This correlates with our theory regarding the health aspect described above. 

Further functional studies are needed to investigate how different alleles may affect the 

expression of MHC class II in the setting of T1D.  

 

In summary, we report an age dependent variation in SNPs located in the CIITA gene among 

control materials. In addition, we demonstrate a significant, albeit modest association to T1D 

for SNPs located in the genomic region of the PI and PIII promoters of the CIITA gene after 

controlling for age. Taken together these results suggest that replication of this association 

and other association studies in case-control materials should be performed with careful 

matching for age. 

 

Materials and Methods 

Ethics Statement 

All included cohorts, patient material and analyses in this study were approved by the 

Regional Ethical Review Boards in the citites of Stockholm, Lund and Umeå in Sweden 



15 
 

(www.epn.se). Informed consent from all study participants or their parents was obtained. 

Investigations were carried out according to guidelines from the Declaration of Helsinki. 

 

Subjects: Type 1 diabetes patients and controls  

Diabetes Incidence Study in Sweden 1 (DISS1) 

The DISS1 cohort consists of DNA samples from 839 T1D patients and 625 sex, age and 

residence matched controls. Blood was collected from incidence patients from the Diabetes 

Incidence Study in Sweden (DISS) registry, diagnosed between 1987 and 1989, at the age of 

15-36 years 26. 667 of the patients were classified with T1D by the treating physician. 

Sufficient DNA was available for 431 T1D cases and 348 controls in this cohort, these were 

the individuals included in the current investigation. 

Diabetes Incidence Study in Sweden 2 (DISS2) 

The DISS2 cohort consists of DNA samples from 778 incident diabetes patients aged 15-36 

years and from the DISS registry during 1992 and 1993, and 836 sex and age- matched 

controls 16. 586 of the patients were classified with T1D at follow-up and these subjects are 

included in this study. 

Swedish Childhood Study (Sv2) 

497 cases of children between 0-14 years with newly diagnosed T1D collected from the 

Swedish Childhood registry. Controls were geographically, gender and age matched to all 

cases above 7 years of age (n=423). For patients under the age of 7 years a control was 

selected among patients being treated at the hospital for reasons other than T1D (n=53) 27.  

Better Diabetes Diagnosis Study (BDD) 

2700 incident diabetes patients under the age of 18 years at diagnosis, collected between 

2005 and 2009 from 40 pediatric clinics in Sweden for the Better Diabetes Diagnosis study28. 
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Only patients diagnosed with T1D and with all parents and grandparents born in Scandinavia 

are included in this study. 

Diabetes Registry in Southern Sweden (DR) 

804 T1D patients, 436 men and 368 women, with onset age between 1 and 75 years of age, 

from the Diabetes Registry in Southern Sweden, all enlisted at the Dep. of Endocrinology at 

Malmö University Hospital, Sweden and collected between 1996 and 2005. Additionally,  

2312 healthy controls, 1695 men and 617 women between 45 and 75 years of age 29. 

Individuals of known non-Scandinavian origin were excluded (n=100). 

Due to risk for overlap among patients in the DISS2 and DR cohorts, those individuals that 

could possibly occur in both cohorts were identified and removed from this study (n=73). To 

our knowledge there are no other cohorts in this study that could be overlapping. 

 

Extra control cohorts: 

Rheumatoid arthritis (RA) 

1426 healthy controls matched to RA patients by age, sex and residential area. The 

recruitment of affected individuals and controls was described previously in connection with 

EIRA study 30. 373 of these controls were used in the SNP tagging analysis. 

Individuals deviating in a PCA analysis or of known non-Scandinavian origin were excluded 

from this study (n=93) 31. 

Multiple sclerosis (MS) 

From the Swedish MS 1 cohort, the control group consisted of 1215 healthy blood donors 

originating from Sweden or other Nordic countries 32. 

From the Swedish MS 2 cohort, we used 663 controls matched for age, sex, and residential 

location to newly diagnosed MS cases resident throughout Sweden in the EIMS studies 33. 
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All individuals of known non-Scandinavian origin were excluded from the current study 

(n=190). 

Myocardial infarction – SCARF (MI) 

From the SCARF15 study the control group consists of 387 sex- and age-matched healthy 

persons between 40-60 years of age, and recruited from the general population of the same 

county as cases with MI, of self-reported Caucasian origin. 

Alzheimer’s disease – SNAC (AD) 

424 healthy controls of 60-73 years of age, from an earlier study of AD 34, randomly selected 

and sex-matched from 3500 individuals included in the longitudinal study: The Swedish 

National Study on Aging and Care in Kungsholmen (SNACK), in Stockholm, Sweden. Also, 

originally added to this cohort are 39 individuals which are autopsy cases from the 

Karolinska Brainbank who died from cardiovascular or malignant diseases, between 56-91 

years of age and without a medical history of dementia 34. 

Population based control cohorts from Osteoporosis study (PEAK-25 and OPRA) 

The PEAK-25 cohort consists of 1005 healthy women of Swedish or Northeuropean ancestry. 

The women are all 25 years old and randomly selected from the Malmö city files between 

1999 and 2003.35 

The second cohort consists of 1010 healthy controls from the Malmö Osteoporosis 

Prospective Risk Assessment (OPRA) study, all aged 75 years and of Swedish or  

Northeuropean ancestry, randomly selected from the Malmö city files between 1995 and 

199936. 

Additional information regarding the cohorts is available as a supplementary table (S3). 

 

Genotyping methods 
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In the DISS2 cohort the allelic discrimination method for SNPs (single nucleotide 

polymorphisms) TaqMan ABI 7900 (Applied Biosystems, Inc ABI, Sweden) 37 was used for 

all markers except for rs4774, rs3087456 and rs8052709 for which the DASH38 method was 

used.   

SNP genotyping for DISS1 and SV-2 studies was performed using the MassArray chip-based 

matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (Sequenom Inc., 

San Diego, CA, USA) using the HME chemistry as described 39.  

T1D samples and controls from Diabetes registry in Southern Sweden (DR) and the BDD 

cohort were genotyped with the TaqMan method. 

In the gathered control material from RA, MS and MI, samples was genotyped as previously 

described 15. Additional samples from these cohorts were genotyped with the TaqMan 

method. The controls from the AD cohort were genotyped with DASH. 

In the PEAK-25 and OPRA cohorts, markers rs4774 and rs3087456 was genotyped with 

IPLEX (Sequenom Inc., San Diego, CA, USA) and rs11074932 was genotyped with Taqman. 

 

HLA typing 

HLA typing in the different cohorts were performed as follow; 

DISS1 and SV2: restriction fragment-length polymorphism (RFLP) was used for DR typing, 

and genotyping for DQB1, DQA1 and DRB1 was performed with PCR amplification 

followed by dot blot hybridizations 13. 

DISS2: HLA genotyping for DQB1, DQA1 and DRB1 was performed with PCR 

amplification followed by dot blot hybridizations and by RFLP as previously described 13, 

except that allele-specific PCR amplification (PCR-SSP) of DRB1 alleles was also used 40 

BDD: A method based on an asymmetrical PCR and a subsequent hybridization of allele-

specific probes was used, as described previously41. Established haplotypes in the European 
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population were used to determine DR genotypes in the BDD cohort where only DQA1 and 

DQB1 were genotyped. 

MS and RA: Genotyping by allele specific amplification as described earlier 40. 

The other cohorts had no data concerning HLA status. 

 

Tag SNPs and haplotype blocks 

41 SNP markers were selected from dbSNP (http://www.ncbi.nlm.nih.gov/SNP/) to be evenly 

spread across 66428 bp of the CIITA gene (before PI to 3’ UTR). Previously validated SNPs 

were chosen preferentially. The average marker spacing was 1468 bp (range 86-4030 bp).  

All SNPs were first genotyped in a selected cohort of 373 controls. 13 of the selected SNPs 

were non-polymorphic and one did not follow Hardy-Weinberg equilibrium and were 

discarded from further studies (S1). 

Genotypes from the remaining 28 SNPs were used to analyze linkage disequilibrium (LD) 

block structure and to identify haplotype tagging SNPs (htSNPs). The results from this 

analysis revealed five LD blocks (S2), and common haplotypes in each block could be 

resolved by typing 1 to 3 htSNPs. LD blocks and htSNPs were accomplished using the 

HapBlock analysis program 42-44. The block partitioning algorithm was set as the dynamic 

programming algorithm,42 the common haplotype method was used for block partitioning and 

the method for identifying htSNPs was capable of identifying all common (> 5%) haplotypes.  

 

Age stratification 

Controls from studies of RA, MS, AD and MI together with T1D controls (DISS1, DISS2, 

SV2, DR) were analysed for three SNP markers, rs11074932 (C/T) 3747 controls, rs3087456 

(A/G) 7331 controls and rs4774 (C/G) 3317 controls (S3).  
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The controls were divided into fifteen 5 years intervals with respect to age at sampling (0-4, 

5-9 .... 65-69, and >70). 

 

Statistical analysis 

Pearson's Chi-squared test was used to detect overall association, logistic regression analysis 

using generalized linear modeling between the persons with diabetes and the general 

population, was used to correct for the effect of age and HLA on the CIITA association. 

When correcting for age in logistic regression, the age-group 7 (30-35 years) was used as a 

reference group. In the logistic regression model where HLA was included as a factor, only 

individuals with data regarding DRB1*04 haplotype were included in these analyses to be 

able to compare results, since this was a limiting factor. HLA coding was otherwise defined 

as presence or absence of allele for DRB1*15 and DRB1*03, for DRB1*04, only individuals 

with DRB1*04*DQB1-03:02 were considered positive for DRB1*04.  

 Chi-squared Test for Trend in Proportions was used to detect the overall trend in variation of 

genotype over age. Pearson's Chi-squared test was also used to detect differences in genotype 

and allele frequencies between the two age groups in the population based cohorts used for 

replication. 

A joint age-stratified (“meta-analysis over age-groups”) test of association in CIITA with 

T1D in the combined cohort of five case–control studies was performed for the first 8 age-

groups, (0-39 years) using fixed effect Mantel–Haenszel analysis and Woolf’s test for 

heterogeneity in R using the meta.MH command in the rmeta package. 

In rs3087456_GG, age group 1 (0-4 yrs) was removed from the analysis due to heterogeneity 

between groups (p=0.04) 

To investigate interaction between the CIITA gene and HLA haplotypes, departure from 

additivity was estimated by calculating attributable proportion (AP) due to interaction. These 
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analyses were performed as described 45, using the generalized linear modeling (glm) in R 

and the vcov command to get the covariance matrix. As suggested by Knol et al, the group 

with the lowest OR when both factors are considered jointly have been used as reference 

group when calculating AP 46, however the OR plotted in fig.5 are from the analysis when 

DR15 and CIITA minor allele positives were used as a reference group to clarify the 

interaction effect. The modeling included the SNP marker of investigation, as well as HLA 

haplotypes and age groups described as above. 

All statistical analyses were performed in the statistical computer program R version 2.6.247, 

except the initial association analysis which was  performed in Unphased48 using the 

cocaphase command. An LD plot over the markers in the DISS2 cohort was performed in 

Haploview 4.2 (fig4)49. 

Supplementary information is available at Genes&Immunity´s website. 
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Figure Legends 

Figure 1. Genotype distribution with age in CIITA among controls. 

Genotype frequencies in percent for A) rs11074932 B) rs3087456 and C) rs4774 related to 

age-group (number of individuals in parenthesis). P-value for respectively genotype in test 

for trend-over-age. For B) the p-value for the AA genotype is 0.09 if the oldest group (over75 

yrs of age) is removed. 

 

Figure 2. Genotype frequencies in cohort material. 

Genotype frequencies in marker rs11074932, rs3087456 and rs4774 in the two groups of the 

cohort material (25 years old, n=1005 and 75 years old, n=1010 individuals).  

P-values for genotypes in 2x3 chi-sqr test. 

 

Figure 3. Age-stratified analysis of association in CIITA with type 1 diabetes. 

Association in the combined cohort of five Scandinavian case–control studies for individuals 

under 40 years of age, of rs11074932 and rs3087456 in CIITA with Type 1 diabetes.  

Meta analysis of age-groups with 5 years intervals and using the frequency of the genotypes 

for each marker. 

 

Figure 4. Linkage disequlibrium plot of CIITA and CLEC16A in the DISS2 cohort. 

Linkage disequilibrium of the CIITA to CLEC16A gene region in the DISS2 cohort; darker 

gray indicates higher r2 between markers. (Haploview 4.2) 

 

Figure 5. Interaction between DRB1*15 and markers  in CIITA. 

Lack of DRB1*15 together with the major allele homozygote increases the OR for type 1 

diabetes. Error bars are 95% CI of OR estimates. 



32 
 

Attributable proportion (AP) is the proportion of the incidence among individuals exposed to 

both associated factors compared to the factors individually. The AP value is significant if 

separate from zero.  

HLA is coded as absence of HLA allele for DRB1*15. The CIITA SNPS were coded as 

absence of minor allele for both markers.  

 

Supplementary material 

S1. SNP positions and association analysis for T1D in the DISS2 cohort. 

S2. LD block analysis in 373 Caucasian controls 

S3. Cohorts – numerical summary  

S4. Members of the Swedish Childhood Diabetes Study Group, the Diabetes Incidence in 

Sweden Study Group and the Better Diabetes Diagnosis Study group. 
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Tables 

 
Table 1 Allele frequency and p-values for OPRA and PEAK cohorts  

Minor allele 
frequency 

PEAK- 
25 yrs old 

OPRA- 
75 yrs old 

p-value allele1 p-value 
genotypes2 

p-value  
minor allele 
homozygote 
genotype3 

rs11074932-C 0.303 0.271 0.03 0.02 0.006 

rs3087456-G 0.270 0.235 0.01 0.01 0.007 

rs4774-C 0.301 0.311 0.52 0.64 0.03 

 

12x2 Chi Sqr test for variation between groups in allele distribution 
22x3 Chi Sqr test for variation between groups in genotype frequency 
32x2 Chi Sqr test for variation between groups in minor allele homozygotes vs. other 
genotypes frequency 
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Table 2 Association of CIITA to Type 1 Diabetes in the combined T1D cases and controls. 

Marker 
cases % 

(n) 
controls% 

(n) 
chi2 1 

(p-value)
log reg 2 
(p-value)

logreg corrected for age3 
(P-value) 

logreg 
minor 
allele 

corrected 
for age4 

(P-value) 
rs11074932  

TT 53% (1374) 48% (595)  

CT 39% (1012) 43% (533) 0.007 0.006  

CC 8% (195) 9% (115) 0.15 0.15  

Total n 2581 1243 0.005 0.004 

rs3087456  

AA 59% (1945) 55% (1981)  

AG 35% (1139) 38% (1369) 0.001 0.003  

GG 6% (200) 7% (251) 0.040 0.09  

Total n 3284 3601 0.002 0.001 

rs4774  

GG 48% (605) 47% (616)  

GC 42% (528) 43% (563) 0.58 0.58  

CC 10% (126) 10% (131) 0.88 0.96  

Total n 1259 1310 0.86   0.62 

 
1 2x3 Chi Sqr test for association of genotypes to T1D without correction for age at sampling 
2 Logistic regression analysis testing association of heterozygotes and minor allele 
homozygotes with major allele homozygotes as reference group 
3 Logistic regression analysis testing association of heterozygotes and minor allele 
homozygotes with major allele homozygotes as reference group, age at sampling was 
included as covariates. 
4 Logistic regression analysis testing association of presence of minor allele with major allele 
homozygotes as reference group, age at sampling was included as covariates. 
 
 

 

 

 

 

 













 1 

S1. SNP positions and association analysis for T1D in the DISS2 cohort. 
 

SNP name htSNP Location/position
1
 

H-W
2
 

 

Minor allele 
frequency 
in  DISS2 

Association
3
 

Association after 
matching cases 
and controls for 

age
4 

    patients controls P<  

rs11074930** na Before PI/ 10842650 ns 0.45 0.52 0.005 0.04 

rs10431908** na Before PI/ 10851548 ns 0.23 0.28 0.01 0.39 

rs8052975** na Before PI/ 10856764 ns 0.26 0.30 0.02 0.44 

rs4781003** na Before PI/ 10859668 ns 0.16 0.19 0.1 0.60 

rs7501308** na Before PI/ 10862957 ns 0.26 0.31 0.006 0.08 

rs4781009* No Before PI/ 10865178 ns 0.26 0.30 0.04 0.32 

rs7500908 No PI/ 10867491 np -  -  -  -  

rs8059450 No PI/ 10867746 np -  -  -  -  

rs6498114* No 
between PI and PIII/ 

10871619 
ns 0.22 0.26 0.03 0.16 

rs6416647* yes 
between PI and PIII/ 

10873098 
ns 0.27 0.32 0.005 0.09 

rs11074932* No 
between PI and PIII/ 

10875837 
ns 0.27 0.32 0.002 0.05 

rs6498116* No 
between PI and PIII/ 

10876783 
ns 0.22 0.25 0.04 0.27 

rs7404116 No 
between PI and PIII/ 

10877836 
np -  -  -  -  

rs2071170* No 
between PI and PIII/ 

10878128 
ns     

rs3087456* Yes In PIII/ 10878403 ns 0.24 0.28 0.03 0.16 

rs12928665* No 
between PIII and PIV/ 

10878975 
ns 0.22 0.25 0.06 0.28 

rs12919717* No intron/ 10880686 ns 0.22 0.25 0.04 0.29 

rs4781011* Yes intron/ 10882812 ns 0.24 0.27 0.06 0.22 

rs11074933 No intron/ 10884067 np -  -  -  -  

rs11074934* No intron/ 10886941 ns 0.26 0.28 0.17 0.16 

rs10048113* No intron/ 10889417 ns 0.24 0.26 0.15 0.19 

rs8043545 No intron/ 10889846 np -  -  -  -  

rs8062705 No intron/ 10892631 np -  -  -  -  

rs7195305* No intron/ 10894700 ns     

rs11074937 No intron/ 10896875 np -  -  -  -  

rs4781015 No intron/ 10899453 np -  -  -  -  

rs7189406* No intron/ 10900989 ns     

rs6498124* Yes intron/ 10903351 ns 0.44 0.44 0.92 0.1 

rs11647384* Yes intron/ 10904790 ns 0.40 0.40 0.75 0.58 

rs7404615* No intron/ 10907174 ns     

rs4774* Yes non-synonymous/ 10908349 ns 0.32 0.30 0.35 0.23 

rs2229319 No non-synonymous/ 10908823 np -  -  -  -  

rs7196089 No intron/ 10910602 np -  -  -  -  

rs4781019* Yes intron/ 10911651 ns 0.46 0.47 0.52 0.54 

rs11074938* Yes intron/ 10914044 ns 0.36 0.36 0.99 0.44 

rs11647308 No intron/ 10914145 np -  -  -  -  

rs4781021* No intron / 10916768 ns     

rs6498131* No intron / 10918127 ns     

rs8056269* Yes intron / 10920068 <0.0009 0.44 0.42 na na 

rs7203275 No intron / 10924098 np -  -  -  -  

rs4781024* No intron / 10924559 ns     

rs1139564* Yes untranslated / 10926123 ns 0.17 0.17 0.67 0.81 

rs8052709* Yes untranslated / 10927756 ns 0.27 0.30 0.11 0.17 

rs11643328 No untranslated / 10928828 np -  -  -  -  

rs3087519* No untranslated / 10930709 ns     

rs4072865* Yes untranslated / 10931606 ns 0.48 0.49 0.43 0.47 

rs12708716** na CLEC16A gene / 11087374 ns 0.28 0.32 0.07 0.07 

All SNPs were first genotyped in a selected cohort of 373 controls. 13 of the selected SNPs were non-polymorphic and 1 did 
not follow Hardy-Weinberg equilibrium and were discarded from further studies 
* SNPs run in the HapBlock program. All markers within the haplotype blocks where not typed in the DISS cohort. 
**SNPs added in second round of genotyping. 
1 
Chromosome position, genome build 36.3, contig NT 010393.15 (Reference sequence) 

2
Test of Hardy-Weinberg Equilibrium in 373 Caucasian controls, ns=p>0.05, np= non-polymorphic 

3
 Association analyses performed in Unphased using cocaphase command in the DISS2 cohort. After correcting for multiple 

testing, significant association remained only for rs11074932. 
4
 Association analyses performed in Unphased using cocaphase command in the DISS2 cohort after manually matching each 

case to one or if possible two controls by exact age. 



 

S2. LD block analysis in 373 Caucasian controls 
 

Haplotype 
Block No. 

positions 
SNP 

boundaries 

Block 
size 
(bp) 

Number 
of 

typed 
SNPs 

htSNPs 
% of uniquely 
distinguished 

haplotypes 

Block 1 

upstream of 
PI to 

between PI 
and PIII 

rs4781009-
rs6416647 

7920 
bp 

3 rs6416647 89 

Block 2 

upstream of 
PIII to 

downstream 
of exon 8 

rs11074932 
– 

rs6498124 

27514 
bp 

12 
rs3087456 / 
rs4781011 / 
rs6498124 

81 

Block 3 
upstream of 
exon 11 to 
exon 13 

rs11647384 
– rs4774 

3559 
bp 

4 
rs11647384 / 

rs4774 
88 

Block 4 
the end of 
exon 13 to 
exon 20 

rs4781019 - 
rs8056269 

8417 
bp 

5 
rs4781019 / 
rs11074938 / 
rs8056269 

87 

Block 5 
spans the 
3´UTR. 

 

rs1139564 - 
rs4072865 

5483 
bp 

4 
rs1139564 / 
rs8052709 / 
rs4072865 

94 

LD block definition and htSNP identification was carried out in HapBlock program (24-26). The block partitioning algorithm used 
was the dynamic programming algorithm by Zhang et al (24) this minimizes the total number of tag SNPs in a region of interest. 
The method for block partitioning was the “common haplotype” method where a set of SNPs form a LD block if the common 
haplotypes in this block account for at leas 80% of the observed haplotypes. The method for identifying htSNPs was the “all 
common haplotypes” method. This method identifies the minimum set of SNPs that can distinguish all common haplotypes 
within an LD block. Common haplotypes were defined to have a frequency of 5% or more. 

 
 
 



 1 

S3. Cohorts 
 

a) Overview of T1D cohorts – n (%) 
 

controls BDD DISS1 DISS2 DR SV2 Total sum: 

total 0 348 797 2312 342 3799 

men 0 196 (56%) 448 (56%) 1695 (73%) 179 (52%) 2518 

women 0 152 (44%) 349 (44%) 617 (27%) 163 (48%) 1281 

mean age 0 25 25 63 10  

median age 0 24 26 63 11  

range yrs 0 15-34 15-36 45-74 1-15  

cases BDD DISS1 DISS2 DR SV2  

total 1475 431 544 631 404 3485 

men 844 (57%) 277 (64%) 349 (64%) 337 (53%) 213 (53%) 2020 

women 631 (43%) 154 (36%) 195 (36%) 294 (47%) 191 (47%) 1465 

mean age 10 25 24 22 8  

median age 10 25 25 21 9  

range yrs 0-18 15-36 15-35 0-70 1-14  

 
 

b) Summary of cohorts used for age-stratification analyses; controls only, age 0-91 yrs (n). 
 

marker DISS1 DISS2 SV2 DR MS RA MI AD Total sum: 

rs11074932 295 757 191 na 1177 942 385 na 3747 

rs3087456 207 751 331 2312 1602 1324 387 417 7331 

rs4774 204 777 329 na 477 738 386 406 3317 

 
 

c) Summary of population based control cohorts for replication of age variation (n). 
 

marker OPRA 75 yrs old PEAK 25 yrs old Total sum: 

rs11074932 1002 1002 2004 

rs3087456 994 993 1987 

rs4774 990 976 1966 

 
 



S4. Members of the Swedish Childhood Diabetes Study Group: 
 

All from Departments of Pediatrics
 
in Sweden: M. Aili, Halmstad; L.E. Bååth, Östersund;

 
E. 

Carlsson, Kalmar; H. Edenwall, Karlskrona; G. Forsander,
 
Falun; B.W. Granström, Gällivare; 

I. Gustavsson, Skellefteå;
 
R. Hanås, Uddevalla; L. Hellenberg, Nyköping; H.

 
Hellgren, 

Lidköping; E. Holmberg, Umeå; H. Hörnell, Hudiksvall; Sten-A. Ivarsson, Malmö; C. 

Johansson,
 
Jönköping; G. Jonsell, Karlstad; K. Kockum, Ystad,

 
B. Lindblad, Mölndal; A. 

Lindh, Borås; J. Ludvigsson,
 
Linköping; U. Myrdal, Vä sterås; J. Neiderud,

 
Helsingborg; K. 

Segnestam, Eskilstuna; S. Sjöblad, Lund;L. Skogsberg, Boden; L. Strömberg, Norrköping; U.
 

Ståhle, Ängelholm; B. Thalme, Huddinge; K. Tullus,
 
Danderyd; T. Tuvemo, Uppsala; M. 

Wallensteen, Stockholm; O.
 
Westphal, Göteborg; and J. Åman, Örebro. 

 

Members of the Diabetes Incidence in Sweden Study (DISS) Group: 
 
Hans Arnqvist, Department of Internal Medicine, University of Linköping, Linköping; 

Elisabeth Björck, Department of Medicine, University Hospital, Uppsala; Jan Eriksson, 

Department of Medicine, University of Umeå, Umeå; Lennarth Nyström, Department of 

Epidemiology and Public Health, University of Umeå, Umeå; Lars Olof Ohlson, Sahlgrenska 

Hospital, University of Göteborg, Göteborg; Bengt Scherstén, Department of Community 

Health Sciences, Dahlby, University of Lund, Lund; Jan Östman, Center for Metabolism and 

Endocrinology, Huddinge University Hospital, Stockholm. 

 

Members of the BDD Study Group:  
 
Anita Nilsson (Malmö), Helena Desaix (Borås), Kalle Snellman (Eskilstuna), Anna 

Olivecrona (Falun), Åke Stenberg (Gällivare), Lars Skogsberg (Gävle), Nils Östen Nilsson 

(Halmstad), Jan Neiderud (Helsingborg), Åke Lagerwall (Hudiksvall), Kristina 

Hemmingsson (Härnösand), Karin Åkesson (Jönköping), Göran Lundström (Kalmar), 



Magnus Ljungcrantz (Karlskrona), Eva Albinsson (Karlstad), Karin Larsson (Kristianstad), 

Christer Gundewall (Kungsbacka), Rebecka Enander (Lidköping), Agneta Brännström 

(Luleå), Maria Nordwall (Norrköping), Lennart Hellenberg (Nyköping), Elena Lundberg 

(Skellefteå), Henrik Tollig (Skövde), Britta Björsell (Sollefteå), Björn Rathsman 

(Stockholm/Sacchska), Torun Torbjörnsdotter (Stockholm/Huddinge), Björn Stjernstedt 

(Sundsvall), Nils Wramner (Trollhättan), Ragnar Hanås (Uddevalla), Ingemar Swenne 

(Uppsala), Anna Levin (Visby), Anders Thåström (Västervik), Carl-Göran Arvidsson 

(Västerås), Stig Edvardsson (Växjö), Björn Jönsson (Ystad), Torsten Gadd 
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