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Abstract 

Objective 

Despite the rise of high-throughput technologies, clinical data such as age, gender and 

medical history guide clinical management for most diseases and examinations. To 

improve clinical management, available patient information should be fully exploited. 

This requires appropriate modeling of relevant parameters. 

 

Methods 

When kernel methods are used, traditional kernel functions such as the linear kernel are 

often applied to the set of clinical parameters. These kernel functions, however, have 

their disadvantages due to the specific characteristics of clinical data, being a mix of 

variable types with each variable its own range. We propose a new kernel function 

specifically adapted to the characteristics of clinical data. 

 

Results 

The clinical kernel function provides a better representation of patients’ similarity by 

equalizing the influence of all variables and taking into account the range r of the 

variables. Moreover, it is robust with respect to changes in r. Incorporated in a least 

squares support vector machine, the new kernel function results in significantly improved 

diagnosis, prognosis and prediction of therapy response. This is illustrated on four 

clinical data sets within gynecology, with an average increase in test area under the ROC 

curve (AUC) of 0.023, 0.021, 0.122 and 0.019, respectively. Moreover, when combining 

clinical parameters and expression data in three case studies on breast cancer, results 

improved overall with use of the new kernel function and when considering both data 

types in a weighted fashion, with a larger weight assigned to the clinical parameters. The 

increase in AUC with respect to a standard kernel function and/or unweighted data 

combination was maximum 0.127, 0.042 and 0.118 for the three case studies. 

 

Conclusion 

For clinical data consisting of variables of different type, the proposed kernel function–

which takes into account the type and range of each variable–has shown to be a better 

alternative for linear and non-linear classification problems. 

 

Key words: machine learning; support vector machine; kernel function; biostatistics; 

clinical data representation; clinical decision support system; gynecology; breast cancer 

 

1. Introduction 

During an examination, patient-specific information such as age, menopausal status and 

medical history is registered. Histopathological parameters such as tumor size, lymph 

node status and relapse rate, and ultrasound data such as endometrium thickness are often 

registered as well, with the set of clinical parameters characterizing a patient depending 

on the investigated disease. Such parameters or combinations thereof have been evaluated 

as prognostic indicators (for example, [1,2]). Because clinicians prefer interpretable 

decision support systems, clinical management for diagnosis and prognosis and decisions 
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concerning therapy response are for most of the diseases and examinations fully based on 

clinical and pathological indicators. 

Besides clinical data, high-throughput technology–and especially microarray technology–

has considerably advanced basic biological science and the entire field of cancer 

taxonomy, biomarker development and identification of prognostic and predictive 

markers [3-5]. In numerous studies, multiple high-throughput data sources were collected 

and simultaneously studied while omitting clinical parameters. High-throughput data, 

however, are in general much more difficult and expensive to collect while clinical 

parameters are routinely measured by clinicians. The latter have been used by clinicians 

for decades and should be included in the investigation, moreover because a critical study 

on the prediction of breast cancer outcome has suggested that clinical markers and 

profiles obtained from high-throughput technologies have similar power for prognosis 

[6]. 

Advanced mathematical models can aid clinical decision support. In many previous 

studies [7-10], the support vector machine (SVM) [11] was used for this purpose. Several 

disadvantages, however, occur when applying the SVM directly to clinical data, due to 

the heterogeneous nature of clinical data compared to high-throughput data sources. The 

influence of each variable on patients’ similarity will be proportional to its range, thereby 

enlarging the influence of irrelevant continuous variables and diminishing the 

contribution of important discrete variables. As it has been shown that better results can 

be obtained by adapting the kernel function to the structure of the data and defining a 

kernel function per domain [12], a distinction is made between continuous variables, 

ordinal variables with an intrinsic ordering but often lacking equal distance between two 

consecutive categories, and nominal variables without any ordering. 

The scale of the input data was already known to influence model performance. A rough 

distinction according to variable type was incorporated in LS-SVMlab, a Matlab/C 

toolbox containing a variety of techniques and algorithms for the least squares support 

vector machine (LS-SVM) with applications in classification and non-linear regression 

[13]. Binary variables were re-scaled to {-1,1} whilst continuous variables were 

normalized, avoiding attributes in larger numeric ranges to dominate those in smaller 

ranges. Other variables, however, were kept unchanged, thereby not distinguishing 

ordinal from nominal variables. 

We will propose an alternative kernel function specifically developed for clinical data, 

which does not suffer from the ambiguity of data preprocessing by equally taking into 

account all variables. First, we will show the improvement obtained with this alternative 

kernel function when applied to four clinical data sets within gynecology. Secondly, the 

advantage of this kernel function will be illustrated for the combination of clinical and 

microarray data in three case studies on breast cancer. 

  

2. Methods 

2.1 Kernel methods and least squares support vector machine 

Kernel methods are a powerful class of algorithms for pattern analysis. They work in a 

high dimensional feature space to which data x is mapped from the original input space 

with the function Φ(x) [14,15]. The kernel function k(x
i
 ,x

j
) efficiently computes the inner 

product  between all pairs of data items x
i
 and x

j
 in the feature space, 
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resulting in the N x N kernel matrix K with N the number of data items. Any symmetric, 

positive semi-definite function is a valid kernel function, resulting in many possible 

kernels. However, no formal proof of optimality exists for the use of one kernel function 

above an other. The functions that are most frequently employed in classification 

problems are the linear kernel , the polynomial kernel  with–as kernel 

parameters–the intercept constant  and degree , and the radial basis function 

 with  representing the width of a Gaussian distribution 

centered on the data points. The polynomial kernel corresponds to a feature space 

spanned by all products of d variables at the most. This kernel results in a quadratic 

separating surface in the input space for d = 2, and it represents the cubic kernel for d = 3. 

More complex kernel functions have been proposed as well, such as graph and wavelet 

kernels [16,17]. In this paper, the linear kernel function is compared with a newly 

introduced kernel function for clinical data, referred to as the clinical kernel function (see 

section 2.3).  

  

A kernel algorithm for supervised classification is the LS-SVM, a simplified version of 

the SVM [11] and developed by Suykens et al. [18,19]. Given is a training set for 

classification  of N samples with feature vectors  and binary output 

labels . The aim of supervised classification is to train a function  

that correctly classifies unseen samples . Data points  with  are 

assigned the label +1, data points with  the label –1. A non-linear function of 

the form , with w representing the normal vector on the decision 

hyperplane  and variable b the bias term, can be obtained with the 

following constrained optimization problem for the LS-SVM: 

 subject to    with 

, and NP and NN representing the number of positive and 

negative samples, respectively. 

The regularization parameter γ represents the trade-off between maximization of the 

distance between samples of the two considered classes (that is, ) and 

minimization of the squared error contribution. Regularization by keeping γ small allows 

tackling the problem of overfitting by enforcing low complexity and good 

generalizability while tolerating misclassifications in case of overlapping distributions. 

Because in many two-class problems data sets are skewed in favor of one class with 

 or , we used an adapted version of the LS-SVM in which a different 
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factor  is assigned to positive and negative samples [20]. In this way, the contribution 

of false negative and false positive errors to the objective function is balanced. 

 

In dual space, the equivalent problem of this optimization problem is a system of linear 

equations in function of the number of samples [18,19]. All experiments and calculations 

in this study were therefore performed in dual space, using Matlab 7.0.0 for Windows. 

 

2.2 Kernel-based integration of multiple data sets 

The representation of any data set with a real-valued kernel matrix, independent of the 

nature or complexity of the data to be analyzed, makes kernel methods ideally positioned 

for heterogeneous data integration. In [21], Daemen and colleagues investigated whether 

clinical and microarray data can be efficiently combined. In most microarray studies on 

cancer, the focus is on the microarray analysis while clinical data are not modeled in the 

same manner. When integrating both heterogeneous data sources, advantage can be taken 

from the strength of both data sources. This approach has been improved and extended 

towards the inclusion of multiple high-throughput data sources [22]. Three ways to 

simultaneously learn from multiple data sources were discussed, differing in the stage of 

the model building process at which integration occurs and referred to as early, 

intermediate and late integration [21]. With early integration, the microarray and clinical 

data sets would be concatenated before model building. Due to the huge amount of genes, 

clinical variables would need to be very significant before being selected. The late 

integration approach in which the two sets of variables would be treated separately before 

combining the resulting classifiers at the end may fail in improving performance with 

respect to the separate models due to the high correlation between microarray and clinical 

data. We therefore opted for intermediate integration in which the data sets are treated as 

separate entities and then combined at the kernel level–possibly weighted as 

–before building one final model. 

 

2.3 Kernel function for clinical data 

A normalized kernel function provides a measure of similarity between patients based on 

their clinical profiles. Obtained similarity values with the normalized linear and 

polynomial kernel function, however, strongly depend on the range of each variable, 

favoring continuous variables with a large range (for example, age from 20 to 50 years 

contrary to progesterone from 0 to 5 nmol/l). Also for ordinal variables the comparison of 

two patients with value 1 and 2 depends on the range of this variable. These patients will 

be less similar when the variable has only three categories compared to six. Furthermore, 

when an ordinal variable equals zero, the inner product will always be zero, independent 

of patients’ dissimilarity. For nominal variables that lack an intrinsic ordering, the inner 

product between two patients should only be larger than zero in case both patients have 

the same category. 

In this manuscript, we introduce an alternative kernel function, the clinical kernel 

function, specifically developed for clinical data. A distinction is made between 

continuous, ordinal and nominal variables, and per variable type a kernel function is 

defined. To guarantee the same influence of each variable, the appropriate kernel function 

is applied to each variable individually before calculating the global, heterogeneous 

kernel matrix. 
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The following notations are used: k(zi ,zj) denotes the kernel function for variable z 

between patients i and j;  represents the corresponding individual kernel 

matrix for variable z; and  represents the global, heterogeneous kernel matrix. 

For clinical studies in which the data are non-linear separable, the polynomial version of 

the clinical kernel function is used, obtained by replacing  in the polynomial kernel 

function by the clinical kernel definition (in the tables and figures referred to as clin 

poly).  

 

Continuous and ordinal clinical variables 

The ordinal variables in the considered data sets (see section 3.1 and 3.2) are bleeding 

score, color score, tumor stage, tumor grade and nodal status. For those variables, the 

categories were replaced by their rank. Under the assumption of an equal distance 

between two consecutive categories, the same kernel function is proposed for continuous 

and ordinal variables: 

, 

with constant r the range of a continuous variable z or the number of categories minus 1 

for an ordinal variable z. The value for r can be extracted from the data or can be based 

on clinical knowledge or a priori information from specialist literature. The difference in 

z-value between two patients i and j is compared with and rescaled to this range. When r 

is based on the training data, the test data may contain more extreme values for certain 

variables. However, the kernel matrix will remain positive semi-definite with only 

negative values besides the diagonal, expressing more dissimilarity with the training 

cases. 

 

Nominal clinical variables 

For nominal variables, the kernel function between patients i and j is defined as the 

Kronecker delta function. This corresponds to setting the smoothing parameter λ of the 

Aitchison and Aitken kernel method for unordered categorical data [23] to 1, eliminating 

the problem of choosing a suitable value for λ: 

. 

This kernel function is independent of the variable values, making binary dummy 

variables obsolete. 

 

Final kernel for clinical data 

For each individual kernel function k, the similarity measure is forced to the interval 

[0,1]. The global, heterogeneous kernel matrix K can therefore be defined as the sum of 

the individual kernel matrices Kz divided by the total number of clinical variables p. K 

describes the similarity for a group of patients based on a set of variables of different 

type. This corresponds to the additive kernel function . 
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Example 

To illustrate the clinical kernel function, we calculate the similarity (that is, kernel 

matrix) between three patients h, i and j for the continuous variable age. Patient h is 23 

years old, patient i is 26 and patient j 54. Suppose based on the training data that the 

minimal age is 20 and maximal age 100. The elements in the kernel matrix can then be 

calculated as follows:  

 

The resulting kernel matrix for variable age equals  

. 

The extent of most types of cancer is described with a TNM classification system: T 

represents the size of the primary tumor, with suppose ranks 1, 2, 3 and 4 for illustrative 

purpose; N describes the degree of spread of the tumor to regional lymph nodes (0, 1 or 

2); the absence or presence of metastasis is represented by the binary variable M. Patient 

h is characterized by T1N0M0, patient i by T3N2M1 and patient j by T4N1M1. The 

resulting individual matrices are 

 

, , .  

This example illustrates that the kernel values decrease with increasing dissimilarity 

between patients. The proposed kernel function takes into account the range of variables 

(for example, 0.66 (T) vs. 0.5 (N) for a difference of one unit in the number of 

categories). Moreover, the kernel value equals zero when two patients are most dissimilar 

(T1 vs. T4 and N0 vs. N2). The linear kernel function, on the other hand, would have led 

to erroneous positive values. 

The global, heterogeneous kernel matrix for the similarity between patients h, i and j 

based on age, tumor size (T), lymph node spread (N) and metastasis (M) is given by 

. 

A comparison of the proposed clinical kernel function with the linear and polynomial 

functions on real data sets is provided in section 4. 

 

3. Experiments 

3.1 Clinical data 
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We considered four clinical data sets. A binary outcome was selected or constructed for 

prediction, and a distinction was made between continuous variables (labeled as C), 

ordinal variables (O), and nominal variables (N). Before the analyses, some of the 

original variables were log-transformed. To avoid deteriorating performances, each data 

set was also reduced to a set of variables lacking redundancy by investigating the pairs of 

variables with a Spearman correlation coefficient in absolute value above 0.7. Details of 

the eligibility criteria, patient information registration and examinations have been 

published in the respective original publications. 

   

I) Endometrial disease: abnormal versus normal 

Data set I contains clinical information on 402 patients with an endometrial disease who 

underwent an ultrasound examination and color Doppler [24]. The patients were divided 

into two groups according to their histology: abnormal (hyperplasia, polyp, myoma, and 

carcinoma) versus normal (proliferative endometrium, secretory endometrium, atrophia). 

After excluding patients with incomplete data and correlation-based exclusion of 

redundant variables, data set I contained 22 variables for 339 patients, of which 163 were 

abnormal and 176 normal. An overview of the 22 clinical variables is given in Table 1. 

II) Miscarriages: miscarriage versus vital fetus 

A prospective observational study of 1828 women undergoing transvaginal ultrasound 

before 12 weeks gestation resulted in data for 2356 pregnancies. Among them, 1458 were 

normal at week 12 whereas 898 had miscarried by the end of week 12 [25]. The 18 

clinical variables are shown in Table 2. 

III) Pregnancies of unknown location (PUL): ectopic pregnancy (EP) versus other types 

of PUL 

Data set III contains data on 1003 PULs [26]. Both persisting PULs (18 cases) and 

pregnancies with missing data were excluded, resulting into 856 PULs among which 

there were 460 failing PULs, 330 intrauterine pregnancies and 66 EPs. Because correct 

classification of EPs among PULs has been shown to be the most important diagnostic 

problem [27], the 66 EPs were considered versus the 790 other PULs. We refer to Table 3 

for an overview of the 12 clinical variables. 

IV) Adnexal masses: malignant versus benign 

As fourth clinical data set, we studied a multicentric data set on adnexal masses, collected 

by the international ovarian tumor analysis group (IOTA) during phase 1 and 1b [2,28]. 

More than 40 clinical and ultrasound variables were collected from 1573 patients, of 

whom 1164 had a benign and 409 a malignant adnexal mass. We considered only those 

ultrasound variables that were included in at least one of the previously developed 

models for the calculation of the risk of malignancy in adnexal tumors (see Table 4) [28]. 

 

3.2 Clinical and expression data 

Besides pure clinical data sets, we also considered three case studies in which both 

microarray data and a sufficient number of clinical variables were available. The 

microarray data were obtained with the Affymetrix technology and preprocessed with 

MAS5.0 (Affymetrix). An updated array annotation was used for the conversion of 

probes to entrez gene ids [29]. Finally, genes with low variation were excluded in an 

unsupervised way, retaining the 5000 genes with the largest standard deviation across all 

samples.  
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V) Breast cancer: recurrence 

The first data set of 129 patients contained information on 17 clinical variables [30]. 

After exclusion of redundant variables, variables with too many missing values and 

patients with missing clinical information, this data set (referred to as data set V and 

represented in Table 5) consisted of 110 patients, in 85 of whom disease didn’t recur 

whilst in 25 patients disease recurred. 

VI) Breast cancer: treatment response 

The second data set, in which response to treatment was studied, consisted of 12 variables 

for 133 patients [31]. Patient and variable exclusion as described above resulted in data 

set VI. Of the 129 remaining patients, 33 showed complete response to treatment while 

96 patients were characterized as having residual disease. An overview of the 8 variables 

is provided in Table 6. 

VII) Breast cancer: relapse 

In the last case study, relapse was studied in 187 patients [32]. After preprocessing, data 

set VII retained information on 5 variables for 177 patients. In 112 patients, no relapse 

occurred while 65 patients were characterized as having a relapse. We refer to Table 7 for 

an overview of the variables included in this case study. 

 

3.3 Model building strategy 

For the clinical data sets (section 2.4), the data were randomly split into 2/3
rd

 for training 

and 1/3
rd

 for testing. This split was performed stratified to outcome to ensure that the 

relative proportion of outcomes sampled in both training and test set was similar to the 

original proportion in the full data set. On the training samples, a 10-fold cross-validation 

(CV) approach was applied for the optimization of the regularization parameter γ on a 

logarithmic scale from 10
-4

 to 10
+6

. When the polynomial kernel function was used, a 

three-dimensional grid was required for the additional optimization of tuning parameters 

τ and d, both varying on a linear scale from 1 to 5. Contrary to the typical use of the 

polynomial kernel with τ = 1 [33-35], scaling (that is, τ ≠ 1) was considered as this has 

shown to increase test performance [36]. The optimal parameter values were chosen 

corresponding to the model with the highest 10-fold train area under the receiver 

operating characteristic curve (AUC). In case of multiple models with equal AUC, the 

model with the lowest balanced error rate and an as high as possible sum of sensitivity 

and specificity was chosen. This optimal model was further validated on the 1/3
rd

 of 

samples left out for testing. To obtain a better estimate of the prediction performance of 

the classifiers and thus a more reliable comparison of the clinical alternative with the 

traditional kernel functions, the split of the data in a training and test part was repeated 

100 times. The 10-fold train AUC and test AUC values averaged over these 100 

repetitions are reported. The one-sided paired-sampled t-test was used to compare the 

AUC values obtained with the applied kernel functions. A p-value of 0.05 was considered 

statistically significant. For the linear and the polynomial kernel function, the more robust 

normalized version 
 
was used, although not 

explicitly mentioned in the remaining of the paper. To fairly compare the kernel 

functions, the linear and polynomial kernel functions were applied to both the raw data 

(in the tables and figures referred to as linear/poly) as well as the data after normalization 

(referred to as linear norm/poly norm). For the normalization, continuous and ordinal 
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variables were re-scaled to a range of 0 to 1, whilst nominal variables with k categories 

were replaced by k-1 binary dummy variables. 

 

For the three clinical data sets for which corresponding expression data were available 

(section 2.5), the number of available samples was much smaller (in the order of 

hundreds as compared to thousands of samples in pure clinical studies). The intercept 

constant τ in the polynomial kernel function was therefore fixed to 1. Moreover, instead 

of selecting an independent test set, 10-fold CV was applied to each full data set and 

repeated 100 times. For each repetition, the random division of data into 10 folds was 

performed with stratification to outcome. For the kernel matrix obtained from the 

microarray data set in each case study, the 200 most differentially expressed genes 

selected from the training data with the Wilcoxon rank-sum test were considered. The 

performance of the clinical kernel with respect to the traditional kernel functions was 

independent of the specific number of incorporated genes.  

Because the normalized linear and polynomial kernel functions were used and the kernel 

values obtained with the clinical alternative lay between 0 and 1 due to their construction, 

the weights assigned to the kernel matrices reflect the importance of each individual data 

set for the problem at hand. In the case studies with clinical data (CL) and microarray 

data (MA), three settings were therefore considered for the evaluation of the clinical 

kernel function: only the clinical data sets were considered for classification (1 CL + 0 

MA), the influence of microarray and clinical data on prediction was set equal as has 

shown to be sufficient under some assumptions [21,37,38] (½ CL + ½ MA), and the 

weights assigned to both data sets were optimized because equal weights are not optimal 

when both data sets are of different relevance [39] (μ CL + (1-μ) MA). In the latter, we 

made μ vary from 0 to 1 in steps of 0.05, and the combination (γ,μ) or (γ,μ,d) that led to 

the largest 10-fold AUC was selected. For comparison, the results obtained with only 

microarray data (o CL + 1 MA) are reported as well. 

The models based on only clinical data were also compared to a conventional prognostic 

index, the Nottingham prognostic index (NPI). The formula for the NPI equals 0.2 x 

tumor size (cm) + tumor grade (1-3) + lymph node stage (1-3) [1], and could only be 

applied to data set V. 

 

4. Results 

4.1 Comparison of the linear and clinical kernel function 

In a first phase, we verified whether the clinical kernel function better represents true 

similarity between patients. For this purpose, a publicly available data set on breast 

cancer containing a mix of continuous, ordinal and nominal variables was used in which 

the appearance of distant subclinical metastases was predicted based on the primary 

tumor [40]. The data set of 148 patients contained 13 clinical parameters, represented in 

Table 8 [41]: 2 continuous parameters, age (20-60 years old) and tumor diameter (0-70 

mm); 4 ordinal parameters, one with 16 categories and 3 with 3 categories each; and 7 

nominal, binary parameters. 

Four comparisons based on the patients’ data shown in Table 8 were made to verify 

whether differences in kernel values correspond to true differences in patient data. 

Patients 193 and 265 differ greatly in tumor size, are most different for the ordinal 
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variables and are distinct concerning all nominal variables. The clinical kernel function 

assigns to them a kernel value of 0.152, contrary to 0.141 for the linear kernel function. 

Patients 153 and 193, on the other hand, are most dissimilar according to the linear kernel 

function with a kernel value of 0.009, contrary to a clinical kernel value of 0.390. 

Although age and tumor size are more different compared to patients 193 and 265, 

patients 153 and 193 have the same characteristics for two ordinal and two nominal 

variables. The clinical kernel function ranks these patients as more similar because the 

influence of all variables is equalized. In the linear kernel, the influence of the continuous 

variables age and tumor size dominates the influence of the non-continuous variables. 

We subsequently validated the separate influence of continuous and non-continuous 

variables on the calculation of the kernel matrix when keeping the other variables fixed. 

Patients 4 and 109, for example, are different according to two nominal variables, whilst 

patients 4 and 174 slightly differ in two ordinal variables (0 vs. 1 for O1 with 16 

categories; 1 vs. 2 for O2 with 3 categories). Taking into account the range of the 

variables, patients 4 and 174 are more similar than patients 4 and 109. This difference in 

similarity is much clearer with the clinical kernel function (0.956 and 0.846, respectively) 

than with the linear kernel function (0.946 and 0.931, respectively). The final 4 patients 

in Table 8 only differ in age and tumor size. For both patients 26 and 199 and patients 9 

and 251, this difference is 1 year in age and 1 mm in tumor size, with the latter pair being 

older with a slightly larger tumor. For the clinical kernel function, the similarities 

k(26,199) and k(9,251) are both equal to 0.997. These similarities, however, are slightly 

different according to the linear kernel function (0.9983 and 0.9984). 

These comparisons of the linear and clinical kernel function show that differences in 

kernel values obtained with the linear kernel function do not optimally reflect true 

differences in patient data. This is caused by continuous variables dominating non-

continuous ones and because the range of the variables is not taken into account. Patients 

are assigned to be similar when only ordinal and nominal variables differ, or dissimilar 

when differing more with respect to the continuous variables. In general, we can 

conclude from these comparisons that the clinical kernel provides a better representation 

of patients’ similarity by equalizing the influence of each variable and taking into account 

the range of the variables.  

 

4.2 Results for clinical data 

We compared the linear and polynomial kernel function with the clinical alternatives on 

four data sets when used in a supervised classification algorithm. A 10-fold CV approach 

was applied for training an LS-SVM model, subsequently validated on a test set. The 10-

fold train and test results averaged over 100 random repetitions are shown in Table 9 

while the corresponding boxplots are provided in Figure 1. Overall, the LS-SVM models 

based on the clinical kernel definition significantly outperformed the models based on the 

linear and polynomial kernel (with and without normalization of the data). The test 

performance obtained with the polynomial kernel function after data normalization was 

slightly better in 1 case compared to the non-linear clinical kernel function. For the linear 

clinical kernel, the increase in 10-fold train AUC values ranged from -0.008 to 0.24, 

whereas the interval was [-0.08; 0.28] for the test AUC values. For the non-linear version, 

the intervals were [-0.005; 0.28] and [-0.15; 0.29], respectively. 
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When comparing the polynomial kernel with its clinical variant, the intercept and degree 

were–in the majority of repetitions–1 for the polynomial kernel, while varying from 1 to 

5 and 3 to 5, respectively for the non-linear clinical kernel. When comparing the clinical 

alternatives, in three out of the four case studies the non-linear clinical kernel 

outperformed the linear version on the training data; however, it produced worse test 

results for all four data sets. The linear clinical kernel function has thus a better 

generalization performance. Moreover, the clinical kernel function not only outperformed 

the linear and polynomial kernel when using the LS-SVM classifier. It also performed 

well in combination with the regular SVM classifier [42]. 

Without the intention to exhaustively compare the SVM and LS-SVM with other 

classification methods, we applied three widely used classifiers to the clinical data, being 

Naive Bayes, K-nearest neighbor and decision trees. For Naive Bayes, the normal 

distribution was used to model continuous variables, whilst ordinal and nominal variables 

were modeled with a multivariate multinomial distribution. Prior probabilities for the 

classes were estimated from the relative frequencies of the classes in the training data. 

For the K-nearest neighbor algorithm, the number of nearest neighbors used for 

classification was set to 3. Finally for the decision tree, the minimal number of samples 

per node and tree leaf was set to 10 and 1, respectively, and a distinction was made 

between continuous/ordinal and nominal variables. For all three methods, training on 

2/3
rd

 of the samples and testing on 1/3
rd

 of the samples was repeated 100 times, with use 

of the same splits as for the LS-SVM. The average test accuracies for the three methods 

when applied to the 4 clinical data sets and for the LS-SVM with use of the best clinical 

kernel function are shown in Table 10. The LS-SVM performed better for 2 out of 4 data 

sets and similar than at least one of the three other approaches for the other 2 data sets. 

 

4.3 Results for clinical and expression data 

The results for the three case studies with clinical and microarray data are shown in Table 

11 and Figure 2. When only clinical data were considered, the same trend as with the 4 

previous data sets was observed, that is, a significant increase in performance was 

obtained with the clinical kernel definition. Applying the NPI to data set V resulted in an 

AUC of 0.604, which was worse than both the traditional kernel functions (AUC = 0.782-

0.793) and the clinical kernel functions (AUC = 0.818). When combining the clinical data 

with microarray data, the clinical kernel variant resulted in a significant improvement for 

the three data sets, both for an equal influence of clinical and microarray data and with 

the weights assigned to both data sets optimized (only the latter for data set V). Overall, 

the clinical variant of the polynomial kernel performed slightly better than the linear 

clinical kernel, likely due to the complexity of the classification problems caused by the 

heterogeneity of breast cancer and the low number of samples. For data set V and VII, 

however, a degree of 1 already led to optimal results, both for μ optimized and set to 0.5. 

Results are shown when the 200 most differential genes were considered for the 

calculation of the microarray-based kernel matrix. A similar trend was observed with the 

inclusion of less (20, 50, 100) and more (500) genes. 

Tables 5, 6 and 7 contain for the clinical parameters the univariate results, which differ in 

function of the predicted outcome. Age, estrogen and progesterone status are more 

important for treatment response whilst tumor stage and size are important factors for the 

prediction of recurrence and relapse. Figure 3 shows per case study the histogram of the 
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weights assigned to the clinical data set when combined with microarray data for the 

linear and clinical kernel function. Similar distributions were obtained for the polynomial 

kernel function and its clinical variant. A clear link was observed between the weights 

assigned to the kernel matrix for the clinical data set when based on the linear kernel 

function before data normalization and the significance of the continuous variables (age, 

tumor size). The influence of continuous variables with a wide range is much larger on 

the calculated patients’ similarities than that of ordinal and nominal variables. When 

these continuous variables are in addition significantly related to the predicted outcome, 

the corresponding kernel matrix is assigned a large weight. This was the case for data sets 

V and VII caused by the relevance of tumor size. For data set VI weights were spread 

between 0 and 1 due to the limited relevance of age, the only variable with a large range. 

After normalization of the data on the other hand, smaller weights were assigned to the 

data with use of the linear kernel function compared to the clinical kernel function. 

We also investigated the effect of data integration on performance. Compared to the use 

of only clinical data (1 CL + 0 MA) or microarray data (0 CL + 1 MA; Table 11), a better 

performance was obtained for all kernel functions in all three case studies when 

considering both clinical and microarray data with the weights assigned to them 

optimized (μ CL + (1- μ) MA). When equal weights were assigned to both data sets (½ 

CL + ½ MA), the performance for the linear and polynomial kernel function decreased. 

Moreover, the histograms in Figure 3 show that in the majority of repetitions a larger 

weight was assigned to the clinical data than to the microarray data. Whether clinical data 

are sufficient and whether the weights should be optimized, however, is often not known 

beforehand and depends on the specific application and data sets. In [19], the data 

integration approach was applied to another breast cancer data set for which weight 

optimization was not beneficial, neither was microarray data with respect to the available 

clinical parameters. 

 

4.4 Robustness of the clinical kernel function 

The clinical kernel function depends on one parameter that needs to be set in advance: for 

continuous variables the range; for ordinal variables the number of categories. This 

parameter r can be based on the training data or on experience or literature information. 

We investigated the robustness of the clinical kernel function to changes in r. The 

distances  for variable z between patients i and j vary from 0 to r. When the range 

for z is based on the training data, the kernel values vary from 0 to 1. When enlarging the 

range based on experience or literature information, the kernel values will vary between a 

positive number smaller than 1 and 1, thereby diminishing the richness of the kernel 

function, and possibly its ability to properly predict a patient’s label. When decreasing 

the range, kernel values can become negative. However, using a value for r that deviates 

from the range based on the training data has only a small influence on performance. The 

clinical kernel function is therefore robust with respect to changes in the parameter r. 

For the continuous variable age, we divided the case studies in three groups according to 

the application: the pregnancy-related case studies II and III; the uterus-related case 

studies I and IV; and the breast cancer case studies V, VI and VII. For case studies II and 

III, the difference in age range (15-48 vs. 14-49 years) had no influence on performance. 

For case study I, the original age range (22-85 years) was enlarged to the age range of 

case study IV (that is, 9-94 years). Also for case studies V, VI and VII, the previous age 
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ranges were replaced by their union (28-88 years). For case studies I, VI and VII, 

enlarging the range for age only caused a small decrease in performance (average AUC 

decrease = 0.0006), whilst for case study V, a small increase in AUC of 0.0001 was 

observed. 

 

5. Discussion and conclusions 

When applying the normalized linear or polynomial kernel function for modeling clinical 

data, the influence of each variable is proportional to its range. When mainly continuous 

variables with a large range are informative for the target outcome, good results are 

obtained with the linear kernel function. On the other hand when mainly ordinal and 

nominal variables with a small number of categories are relevant, the performance of the 

traditional kernel functions is poor as well. Correlation with outcome is often unknown 

beforehand, nominal variables with numerous categories can distort the calculation of 

patient similarity, and moreover, dependency on variable range should be discarded. 

Hence, each variable should have the same influence on the calculation of patient 

similarities, which was previously not the case. We therefore proposed a linear additive 

kernel function as alternative for the linear and polynomial kernel function that takes into 

account the type and range of each variable. This requires the specification of each type 

of variable, as well as the range for continuous variables and the number of categories for 

ordinal variables based on the training data or a priori knowledge. The clinical kernel 

definition is robust with respect to the specific choice of the range or number of 

categories. 

 

From our results, we can conclude that the clinical kernel function represents similarities 

between patients more accurately. Moreover, the LS-SVM based on the clinical kernel 

variant significantly outperformed the linear and polynomial kernel function when tested 

on four pure clinical data sets and three sets of clinical parameters collected in microarray 

studies. When in the latter case studies expression data were added by using a kernel-

based integration approach, the clinical kernel variant led to a significant increase in 

performance for the 3 case studies. Finally, the kernel function proposed in this paper is 

not limited to clinical data. Any data set consisting of different types of variables can 

benefit from this function. Moreover, the proposed kernel function can be used in 

combination with any kernel method or method that can be kernelized. 
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Tables 

 

Table 1: Clinical variables data set I (endometrial disease) 

 

variable type range p-value 

1. age (years) C 22 – 85 <0.0001* 

2. weight (kg) C 45 – 160 0.026* 

3. number of miscarriages/abortions O 0 – 5 0.825* 

4. parity O 0 – 7 0.316* 

5. menopausal status N 1,2,3 0.02º 

6. hormonal therapy N 0,1,2,3,4 0.048º 

7. intrauterine device N 0,1,2 0.107º 

8. type of AUB
ρ
 N 1,2,3 0.946º 

9. amount of AUB
ρ
 N 1,2,3 0.323º 

10. duration of AUB
ρ
 (months) C 0.41 – 4.80

ψ
 0.393* 

11. endometrial cells N 1,2,3 0.174º 

12. endometrium thickness on US
ε
 (mm) C 0 – 3.91

ψ
 <0.0001* 

13. intracavity fluid (mm) C 0 – 8.7 0.503* 

14. 3-layer pattern N 1,2 0.482º 

15. intracavity lesion N 1,2,3 <0.0001º 

16. subendometrial cyst N 1,2 0.488º 

17. endometrial cyst N 1,2 0.031º 

18. number of calcifications O 0 – 10 0.012* 

19. number of myoma O 0 – 4 <0.0001* 

20. ovary aspect N 1,2 0.365º 

21. presence of follicles N 0,1 0.887º 

22. pedicle sign N 1,2,3 <0.0001º 
ρ 
AUB, abnormal uterine bleeding 

ε 
US, ultrasound 

ψ 
on a logarithmic scale after correction for a positively skewed distribution (log(x+1)) 

* Wilcoxon rank-sum test 

º Fisher’s exact test 
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Table 2: Clinical variables data set II (miscarriages) 

 

variable type range p-value 

1. age (years) C 15 – 48 <0.0001* 

2. PBAC bleeding score O 0 – 4 <0.0001* 

3. follow-up consent N 0,1,2 0.019º 

4. ethnicity N 0,1,2,3,4,5,6  

5. regular dates N 0,1,2 <0.0001º 

6. gravida O 1 – 12 0.714* 

7. number of deliveries after 24 weeks O 0 – 10 0.447* 

8. number of terminated pregnancies O 0 – 4 0.001* 

9. number of early miscarriages O 0 – 10 0.848* 

10. number of PULs
ρ
 O 0 – 1 0.174* 

11. number of late miscarriages O 0 – 5 0.461* 

12. number of ectopic pregnancies O 0 – 1 0.391* 

13. previous chromosomal abnormalities N 0,1 0.047º 

14. bleeding
ψ
 N 0,1 0.0006º 

15. pain
ψ
 N 0,1 <0.0001º 

16. previous ectopic pregnancy
ψ
 N 0,1 0.183º 

17. previous miscarriage
ψ
 N 0,1 <0.0001º 

18. anxiety
ψ
 N 0,1 <0.0001º 

ρ 
PUL, pregnancy of unknown location

 

ψ 
indication for scan 

* Wilcoxon rank-sum test 

º Fisher’s exact test 
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Table 3: Clinical variables data set III (pregnancies of unknown location) 

 

variable type range p-value 

1. hCG
ρ
 at 48h (U/l) C 0 – 9.52

ψ
 <0.0001* 

2. progesterone at 48h (nmol/l) C 0 – 5.52
ψ
 0.008* 

3. endometrium thickness (mm) C 0.92 – 3.58
ε
 0.651* 

4. character of midline echo N 0,1 0.58º 

5. free fluid in pouch of Douglas N 0,1 0.737º 

6. gestational age (days) C 2.30 – 4.61
ψ
 0.212* 

7. lower abdominal pain N 0,1 0.157º 

8. vaginal bleeding N 0,1,2 0.034º 

9. previous miscarriage N 0,1 1º 

10. previous ectopic pregnancy N 0,1 0.007º 

11. anxiety N 0,1 0.715º 

12. age (years) C 14 – 49 0.378* 
ρ 
hCG, human chorionic gonadotropin

 

ψ 
on a logarithmic scale after correction for a positively skewed distribution (log(x)) 

ε
 on a logarithmic scale after correction for a positively skewed distribution (log(x+1)) 

* Wilcoxon rank-sum test 

º Fisher’s exact test 
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Table 4: Clinical variables data set IV (adnexal masses) 

 

variable type range p-value 

1. age (years) C 9 – 94 <0.0001* 

2. personal history of ovarian cancer N 0,1 0.004º 

3. hormonal therapy N 0,1 0.006º 

4. maximal diameter of the lesion (mm) C 2.08 – 6.02
ψ
 <0.0001* 

5. presumed ovarian origin of tumor N 0,1 0.16º 

6. pelvic pain during examination N 0,1 0.003º 

7. locularity of the tumor (morphology of the lesion) N 1,2,3,4,5,6  

8. maximal diameter of the solid component (mm) C 0 – 50
ρ
 <0.0001* 

9. number of papillary projections O 0 – 4 <0.0001* 

10. blood flow within papillary projection N 0,1 <0.0001º 

11. irregular internal cyst walls N 0,1 <0.0001º 

12. acoustic shadows N 0,1 <0.0001º 

13. color score of intratumoral blood flow O 1 – 4 <0.0001* 

14. presence of venous blood flow only N 0,1 0.004º 

15. presence of ascites N 0,1 <0.0001º 
ψ 

on a logarithmic scale after correction for a positively skewed distribution (log(x)) 
ρ
 maximal diameter of the solid component bounded to 50mm due to its binomial 

distribution (that is, the diameter equals 0 in those patients without a solid component) 

* Wilcoxon rank-sum test 

º Fisher’s exact test 
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Table 5: Clinical variables data set V (breast cancer – recurrence) 

 

variable type range p-value 

1. age (years) C 31 – 88 0.547* 

2. ethnicity N 0,1,2 0.151º 

3. ER
ρ
 status N 0,1 0.049º 

4. PR
ε
 status N 0,1 0.2º 

5. radiation treatment N 0,1 0.093º 

6. chemotherapy N 0,1 0.533º 

7. hormonal therapy N 0,1 0.674º 

8. nodal status (N) O 0 – 2 0.0001* 

9. metastasis (M) N 0,1 0.0004º 

10. tumor stage O 1 – 4 0.0002* 

11. tumor size (cm) C 0.262 – 2.14
ψ
 <0.0001* 

12. tumor grade O 1 – 3 0.06* 
ρ 
ER, estrogen receptor

 

ε 
PR, progesterone receptor 

ψ
 on a logarithmic scale after correction for a positively skewed distribution (log(x+1)) 

* Wilcoxon rank-sum test 

º Fisher’s exact test 
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Table 6: Clinical variables data set VI (breast cancer – treatment response) 

 

variable type range p-value 

1. age (years) C 28 – 79 0.045* 

2. ethnicity N 0,1,2,3,4 0.579º 

3. pretreatment tumor stage O 1 – 4 0.742* 

4. nodal status (N) O 0 – 3 0.763* 

5. nuclear grade O 1 – 3 0.0005* 

6. ER
ρ
 status N 0,1 <0.0001º 

7. PR
ε
 status N 0,1 0.0006º 

8. HER2
ψ
 status N 0,1 0.037º 

ρ 
ER, estrogen receptor

 

ε 
PR, progesterone receptor 

ψ 
HER2, human epidermal growth factor receptor 2 

* Wilcoxon rank-sum test 

º Fisher’s exact test 
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Table 7: Clinical variables data set VII (breast cancer – relapse) 

 

variable type range p-value 

1. age (years) C 32 – 86 0.331* 

2. tumor size (cm)  C 0 – 2.22
ψ
 0.0015* 

3. nodal status N 0,1 0.301º 

4. ER
ρ
 status N 0,1 0.031º 

5. tamoxifen treatment N 0,1 0.197º 
ρ 
ER, estrogen receptor

 

ψ 
on a logarithmic scale after correction for a positively skewed distribution (log(x+1)) 

* Wilcoxon rank-sum test 

º Fisher’s exact test 
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Table 8: Specific patient data from [36] 

 

 Patient ID 193 265 153 193 4 109 174 26 199 9 251 

 Disease status
 ψ

 0 0 1 0 0 1 0 0 0 0 0 

C1 age (years) 50 41 37 50 41 41 41 40 39 48 49 

C2 tumor size (mm) 8 45 50 8 20 20 20 14 15 15 16 

O1 nb pos lymph nodes 0 4 0 0 0 0 1 0 0 0 0 

O2 N (pN0, 1-3, ≥4) 1 3 1 1 1 1 2 1 1 1 1 

O3 grade 3 1 1 3 1 1 1 1 1 1 1 

O4 NIH
ρ
 risk 1 3 3 1 3 3 3 3 3 3 3 

N1 mastectomy 0 1 1 0 0 1 0 0 0 0 0 

N2 estrogen receptor 1 0 0 1 1 0 1 1 1 1 1 

N3 chemotherapy 0 1 0 0 0 0 0 0 0 0 0 

N4 hormonal therapy 0 1 0 0 0 0 0 0 0 0 0 

N5 St. Gallen criterion 0 1 1 0 1 1 1 1 1 1 1 

N6 NIH
ρ
 consensus 0 1 1 0 1 1 1 1 1 1 1 

N7 T (≤ 2 cm or > 2 cm) 0 1 1 0 0 0 0 0 0 0 0 
ρ 
NIH, National Institutes of Health

 

ψ 
appearance of distant subclinical metastases based on the primary breast tumor: yes = 1, 

no = 0 
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Table 9: Results for 4 clinical data sets within gynecology 

 

data set kernel function 10-fold AUC (std) p-valueº test AUC (std) p-valueº 

I 

linear 0.742 (0.023) 1.1e-46 0.750 (0.037) 3.3e-24 

linear norm* 0.770 (0.022) 1.7e-34 0.781 (0.038) 8.3e-7 

clinical 0.786 (0.023)  0.791 (0.038)  

poly 0.731 (0.025) 2.3e-47 0.738 (0.039) 2.8e-20 

poly norm* 0.770 (0.022) 6.0e-21 0.781 (0.037) 0.665 

clin poly 0.780 (0.023)  0.780 (0.043)  

II 

linear 0.752 (0.008) 3.8e-66 0.754 (0.014) 1.1e-43 

linear norm* 0.763 (0.008) 2.2e-48 0.763 (0.013) 2.3e-30 

clinical 0.777 (0.008)  0.778 (0.013)  

poly 0.735 (0.009) 2.6e-99 0.737 (0.014) 4.7e-55 

poly norm* 0.762 (0.008) 1.5e-86 0.763 (0.014) 3.5e-21 

clin poly 0.820 (0.008)  0.773 (0.015)  

III 

linear 0.677 (0.028) 1.6e-73 0.688 (0.052) 7.3e-43 

linear norm* 0.656 (0.031) 1.1e-75 0.661 (0.056) 2.1e-46 

clinical 0.819 (0.022)  0.815 (0.038)  

poly 0.648 (0.030) 1.9e-60 0.658 (0.058) 3.6e-24 

poly norm* 0.663 (0.023) 3.8e-79 0.641 (0.051) 1.3e-26 

clin poly 0.834 (0.022)  0.754 (0.071)  

IV 

linear 0.912 (0.006) 2.4e-98 0.911 (0.012) 1.5e-72 

linear norm* 0.937 (0.005) 3.5e-84 0.935 (0.010) 1.8e-55 

clinical 0.945 (0.004)  0.944 (0.009)  

poly 0.904 (0.006) 1.2e-100 0.904 (0.012) 8.8e-67 

poly norm* 0.937 (0.005) 1.6e-82 0.935 (0.010) 0.0143 

clin poly 0.948 (0.004)  0.936 (0.011)  

º one-sided paired-sampled t-test for the comparison of the linear and polynomial kernel 

with the clinical alternative 

* continuous and ordinal variables were re-scaled to a range of 0 to 1, and nominal 

variables with k categories were replaced by k-1 binary dummy variables before applying 

the kernel function 
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Table 10: Classifier comparison on 4 clinical data sets within gynecology, with the best 

performing classifier(s) for each data set underlined 

 

data 

set 

test accuracy 

(std) for Naive 

Bayes 

test accuracy 

(std) for K-

nearest neighbor 

test accuracy 

(std) for 

decision trees 

test accuracy (std) 

for LS-SVM with 

optimal clinical 

kernel* 

I 71.6 (3.9) 60.4 (3.9) 64.3 (4.5) 72.5 (3.9) – clinical 

II 73.5 (1.2) 75.0 (1.2) 69.0 (1.9) 74.8 (1.3) – clinical 

III 91.9 (0.8) 91.6 (0.9) 88.8 (1.8) 92.2 (0.6) – clin poly 

IV 87.3 (1.2) 84.5 (1.1) 84.9 (1.6) 90.5 (1.6) – clinical 
* Accuracy obtained with cut-off = 0 on the LS-SVM outcome 
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Table 11: Results of data integration for 3 case studies on breast cancer 

 

data 

set 

kernel 

function 

1 CL + 0 MA ½ CL + ½ MA μ CL + (1-μ) MA 0 CL + 1 MA 

10-fold AUC (std) p-valueº 10-fold AUC (std) p-valueº 10-fold AUC (std) p-valueº 10-fold AUC (std) 

V 

linear 0.793 (0.015) 9.2e-34 0.724 (0.025) 1.1e-83 0.794 (0.013) 2.6e-57 0.729 (0.027) 

linear norm* 0.793 (0.015) 2.3e-44 0.835 (0.018) 0.998 0.840 (0.019) 8.7e-17  

clinical 0.818 (0.015)  0.832 (0.021)  0.851 (0.017)   

poly 0.782 (0.014) 1.6e-52 0.735 (0.024) 3.9e-77 0.793 (0.017) 4.3e-67  

poly norm* 0.783 (0.016) 7.2e-52 0.841 (0.019) 0.697 0.841 (0.019) 1.1e-11  

clin poly 0.818 (0.015)  0.840 (0.018)  0.851 (0.017)   

VI 

linear 0.799 (0.009) 9.9e-39 0.813 (0.007) 1.1e-47 0.813 (0.007) 5.5e-41 0.815 (0.006) 

linear norm* 0.791 (0.010) 9.8e-65 0.809 (0.010) 4.7e-50 0.818 (0.006) 1.4e-35  

clinical 0.813 (0.008)  0.828 (0.008)  0.829 (0.008)   

poly 0.812 (0.012) 1.1e-10 0.813 (0.007) 7.2e-48 0.818 (0.009) 4.7e-32  

poly norm* 0.792 (0.010) 1.5e-62 0.813 (0.010) 1.2e-41 0.820 (0.007) 1.8e-33  

clin poly 0.819 (0.008)  0.832 (0.007)  0.833 (0.007)   

VII 

linear 0.650 (0.010) 3.0e-18 0.643 (0.015) 1.0e-60 0.665 (0.017) 1.7e-66 0.642 (0.022) 

linear norm* 0.624 (0.010) 6.0e-53 0.694 (0.020) 0.021 0.694 (0.020) 4.0e-38  

clinical 0.662 (0.012)  0.697 (0.020)  0.742 (0.023)   

poly 0.657 (0.010) 9.1e-27 0.649 (0.017) 2.0e-63 0.685 (0.017) 4.6e-54  

poly norm* 0.647 (0.013) 8.9e-33 0.674 (0.016) 1.4e-34 0.690 (0.017) 2.0e-45  

clin poly 0.676 (0.014)  0.718 (0.022)  0.742 (0.023)   

º one-sided paired-sampled t-test for the comparison of the linear and polynomial kernel with the clinical alternative 

* continuous and ordinal variables were re-scaled to a range of 0 to 1, and nominal variables with k categories were replaced by k-1 

binary dummy variables before applying the kernel function 

 



 30 

Figure captions 

Figure 1 

Boxplots of the 10-fold train and the test AUC values obtained in 100 repetitions for 4 

clinical data sets on (A) endometrial disease, (B) miscarriages, (C) pregnancies of 

unknown location, and (D) adnexal masses. 

 

Figure 2 

Boxplots of the 10-fold AUC values obtained in 100 repetitions for 3 case studies on 

breast cancer, for the prediction of (A) recurrence, (B) treatment response, and (C) 

relapse. For each case study, results are shown when only clinical data are considered (1 

CL + 0 MA; top), when clinical and microarray data have the same influence on 

prediction (½ CL + ½ MA; middle), and when the weights assigned to both data sets are 

optimized (μ CL + (1-μ) MA; bottom). 

 

Figure 3 

Histogram of the weights μ assigned to the clinical data in 100 repetitions when 

combined with microarray data according to μ CL + (1-μ) MA for the prediction of (A) 

recurrence, (B) treatment response, and (C) relapse. Weights are shown when assigned to 

the kernel matrix obtained with the linear kernel function (blue), with the linear kernel 

function after data normalization (green), and with the clinical kernel function (brown). 
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