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Popular scientific summary

In many parts of the world, it is a common occurrence to see flocks of birds per-
forming intricate and seemingly well-coordinated maneuvers, as for show. Given the
opportunity, one might see similarly fascinating movements among schools of fish,
or herds of land animals. Moving together in such complex patterns can have great
benefits, as it is often safer to move as a group than doing so alone. Such ordered
movement, where a large number of individuals contribute, is called collective motion.
Some forms of such behavior is well understood, but the details of why some patterns
of motion appear remains difficult to explain.

Looking through a microscope, one can also see bacteria, alga, or other microswimmers
performing collective motion. Some swim in a breast stroke-like manner using two
tail-like structures called flagella, and are called pullers. Others have flagella at the back
of their bodies which they rotate in order to swim, and are called pushers. The latter
generally show the most exciting behavior. They tend reorient themselves to swim
side-by-side, and stir up the surrounding fluid to the degree that they can move faster
and over longer distances than they could on their own. As they swim, the movement
of the fluid around them will spread any nutrients around over time, a phenomenon
called enhanced diffusion. In this thesis, I have explored several aspect of such diffusion
by using computer simulations. This approach allowed me to specify the details of the
swimmer model as well as the environment, in order to mimic different experimental
situations or simulate systems that cannot be realized in a laboratory. A number of
non-swimming #racer particles were included, the motion of which I tracked over time
to evaluate their diffusion.

Even in a fluid without microswimmers present, particles will move around slightly
with what is called Brownian motion. One of the goals of my work has been to under-
stand how such motion affects enhanced diffusion. Another has been to investigate
how particles of different sizes are affected by enhanced diffusion. When undergoing
Brownian motion smaller particles always tend to move the most, but this has been
found to not always be the case for particles in microswimmer suspensions. Lastly,
I studied how microswimmers affect elongated particles, and in particular how such
particles are pushed around to different degrees in different directions. One would
perhaps expect that a long and thin particle would be hardest to push "sideways”, yet
this is what has been seen to happen in some experiments.

The results of my simulations do not always match experimental observations made
previously, but what that tells us is that the behavior of the microswimmers is not due
to the hydrodynamic interactions that I have included, narrowing down the field of
possible explanations and showing where more research is needed.
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Prologue

The aim of this thesis has been to study different aspects of enhanced diffusion in
microswimmer suspensions, by means of large-scale Lattice Boltzmann simulations.
Several experimentally observed phenomena remain largely unexplained, due in large
part to the complexities associated with collective motion at higher swimmer con-
centrations, and in particular that of bacterial turbulence. I mainly considered the
following three topics:

* The interplay between active and passive diffusion.

We find that large values of the Brownian diffusion coefficient can lead to sup-
pression of active diffusion, but argue that this effect is negligible for biologic-
ally relevant swimmer and tracer parameters, at odds with previous claims in
the literature.

* The effect of Faxén’s law on the tracer size-dependence of enhanced diffusion.

The diffusion coeflicient is found to exhibit non-monotonic behavior with re-
spect to tracer size, qualitatively opposite to what has been experimentally ob-
served. We thus argue that the experimental results cannot be explained by
hydrodynamic interactions, as these are included in our simulations.

* Anisotropic diffusion of ellipsoidal tracers.

In bulk suspensions of pushers, we observe a sudden increase in the ratio of
diffusion coeflicients along the tracers’ major and minor axes, coinciding with
the onset of active turbulence, while finding no anisotropic behavior in puller
suspensions. This is in disagreement with previous experimental results in bac-
terial suspensions confined to thin liquid films, leading us to conclude that the
experimentally observed behavior might be due to non-hydrodynamic effects,
and that the geometry of the system might be of importance.






Introduction



Figure 1.1 Examples of macroscopic active matter, in the form of a flock of starlings (left,
reproduced from ref. 1) and a school of barracudas (right, reproduced from ref. 2).

Most aqueous environments on earth are home to a wide range of microorganisms,
from the surface of oceans and lakes where algae are often plentiful, to the seafloor
where bacteria break down biological matter settling from above. Even the bodies of
large organisms can act as ecosystems to vast numbers of microscopic forms of life.
Many such microorganisms possess the ability to propel themselves, which they rely
on to find nutrients, or to avoid hazards such as predators or toxins. As they swim they
stir up the surrounding fluid, which displaces any particles or other organisms around
them. The disturbance flow due to a collection of such swimmers leads to enhanced
diffusion, which in itself can have great biological importance across many length
scales — from the cellular level,? to potentially contributing to global circulation.* In
this thesis, I have endeavored to build a better understanding of enhanced diffusion of
tracer particles in microswimmer suspensions, through the use of large-scale Lattice
Boltzmann simulations.

1.1 Active matter

The field of active matter concerns a class of systems intrinsically out of equilibrium,
due to the presence of a large number of agents with the ability to extract energy
from their environment, which they use to perform mechanical work.>” Research
on the topic combines aspects of physics, chemistry, and biology, as most examples
of active matter are biological in origin, while many of the resulting phenomena are
rationalised in terms of concepts from thermodynamics and statistical physics.



The work performed by individual agents is usually in the form of self-propulsion.
While the details of the mechanics of motion are of interest in themselves, much of
the focus of active matter lies in the large-scale collective motion that the propulsion
often results in. Macroscopic collective motion can be observed in flocks of birds®
and schools of fish,*!° giving rise to fascinating pattern formation as displayed in
Fig. 1.1. On the microscopic scale, different forms of collective motion is displayed
by a variety of organisms, and includes motility-induced clustering,!! and bacterial
(or active) turbulence. 12716 The latter refers to the appearance of chaotic flow patterns
seen in bacterial suspensions at high enough concentrations, where the fluid speed
can greatly exceed the propulsion speed of individual swimmers.

Several theoretical models have been developed with the purpose of describing the
phenomena observed in active matter, starting from basic physical principles. The
non-equilibrium nature of such systems, and their often non-linear, chaotic beha-
viour, suggest that this is not an easy task. However, even relatively simple active
matter models have been successful in qualitatively describing collective behaviour.
One of the earliest models is the so-called Vicsek model, developed in 1995.17 It is an
intentionally minimal model which aims to describe flocking behaviour by employing
one basic rule, through which each individual aligns with its neighbours within a given
distance, with some uncertainty due to a noise. Despite its simplicity, it has proven
to be able to accurately reproduce the collective motion of some groups of animals,
like that of flocking birds, and remains a widely studied model. Another, similarly
minimal model of active matter consists of so-called active Brownian particles. These
are spherical, self-propelled particles with mutual, isotropic repulsive interactions. At
high enough particle concentrations, the local velocities of the particles decrease due
to collisions, and the system separates into dense and dilute phases. This is referred to
as motility-induced phase separation, due to the dependence on the particle’s degree
of self-propulsion. '® This bears similarities to behaviour observed in some microor-
ganisms, like Myxococcus Xanthus.*

1.2 Microswimmers

The two models described above describe what is referred to as dry active matter, since
they describe systems in contact with a solid substrate that acts as a momentum sink.
In the case of bulk aqueous environments, the presence of a momentum-conserving
fluid is instead of central importance to the dynamics to the system, as it leads to
long-ranged hydrodynamic interactions between agents. Such systems are called wer
active matter, and any microscopic self-propelled agents involved are aptly named
microswimmers.



The study of microswimmers is of interest not only for fundamental research, but also
for many applications primarily in biology and medicine.?® Understanding the beha-

vior and locomotion of pathogenic microorganisms is of relevance for preventing and

21,22 characterization of sperm motility is employed for

23,24

fighting infectious diseases,

evaluating and potentially treating infertility, and swimming micro-scale robots

25,26

have been suggested for highly targeted drug delivery, and microsurgery.?” In the

design of such microrobots, inspiration can be drawn from the study of the naturally

evolved swimming strategies of microorganisms.

Figure 1.2 Examples of typical biological microswimmers. E. coli (left) is a flagellated pusher
bacterium (reproduced from ref. 28), Chlamydomonas (middle) is a flagellated puller alga (re-
produced from ref. 29), and Paramecium (right) is a ciliated alveolate (reproduced from ref. 30).

Biological microswimmers employ a wide range of mechanisms for locomotion. Some
utilize one or several flagella, which can be arranged in a variety of configurations de-
pending on the species. In general, they can be separated into two groups, depending
on whether their flagella are primarily rear-, or front-mounted, relative to the direc-
tion in which they swim. Examples of so-called pushers include the spermatozoa of
animals, which have a single flexible flagellum which they move in a whip-like fashion
to propel themselves. As they swim, they draw in fluid from their sides, and push it in
the forward and backward directions. Pullers do the opposite, by pulling fluid from
their fronts and rears, and expel it towards their sides. Most swimming bacteria, as
well as many other microorganisms, can be considered pushers. The bacterium Cau-
lobacter has a single rigid flagellum of a right-handed helical shape attached to a rotary
motor, which is turned clockwise to push the cell forwards.3! Escherichia coli (Fig. 1.2
left), often considered an archetypal pusher, has several side- and rear-mounted helical
flagella that bundle together when turned clockwise, and rotate as a cluster to propel
the swimmer.3? By rotating the individual flagella counter-clockwise, they unbundle
and cause the bacterium to change direction. Alternation between swimming and re-
orientation is referred to as run-and-tumble behaviour, and is observed in a number of
species. The alga Chlamydomonas (Fig. 1.2 center) is often considered a model puller-
type swimmer. It has two front-mounted flagella, which it beats in a synchronized,
breast stroke-like manner to move itself. 3 It has however been noted that it oscillates
between effectively being a pusher and puller during a stroke cycle,3*3> and pure



puller-like behaviour is rarely seen in biological microswimmers. Many forms of col-
lective behaviour in wet active matter, most notably that of bacterial turbulence, can
be partially of fully attributed to to the hydrodynamic interactions between pushers,
making them especially interesting subjects of study. ¢

Some microorganisms, in particular eukaryotic ones, move by using a large number of
cilia covering their entire cell bodies. These beat in an organized, wave-like pattern to
propel the swimmer, in what is called a metachronal rhythm.3” Paramecium (Fig. 1.2
right) is an organism representative of this group, whose members cannot always be
classified as either pushers or pullers. Unlike flagellated microswimmers, the actuation
of a ciliated organism is generally not limited to the rear or front of its body, and
propulsive forces are instead generated across most of its surface area.

1.3 Biomixing and enhanced diffusion

It is well known that the presence of swimming organisms in an aqueous environment
leads to increased mixing of the fluid constituents.?® As an organism swims, it disturbs
the fluid around it, thereby displacing any particles in its vicinity. This advection
increases in magnitude with increased density of swimmers in the system, and can
often come to dominate over displacements due to passive diffusion. This can be seen
in Fig. 1.3, which displays trajectories of spherical tracer particles in suspensions with
and without swimming bacteria.

(a)no E. coli . (b) with E. coli .
ar Eid
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Figure 1.3 Experimentally measured trajectories of spherical particles in suspensions without
microswimmers (a), and in the presence of E. coli (b-d). The bacterial concentration was » =
3 x 10? cells per ml, the observation time was 8 s, and the scale bars are 20 pm. It can be readily
seen that the presence of bacteria enhances particle displacements. Tracer sizes are indicated in
the top right of each panel. Reproduced from ref. 39 with permission.



Quantitatively, the impact of particle advection by microswimmers can be seen in
the increase in effective translational diffusion coefficients D7 in active suspensions,
relative to that of Brownian motion. This phenomenon is referred to as enbanced dif-
fusion, 443 and will be discussed more extensively in Chapter 5. In dilute suspensions,
Dy is known to increase linearly with microswimmer concentration 7, 384143 but dis-
plays non-trivial behavior following the onset of collective behaviour. In suspensions
of pushers, the scaling becomes superlinear, while progressing slower than linearly for
pullers. 4447 At a critical density of pushers, corresponding to the onset of bacterial
turbulence, the effective diffusion coefficient is known to increase dramatically. 44

This is closely related to active transport, and is of importance in many biological
contexts. For example, the collective behaviour in colonies of flagellated protozoa is
known to increase their fluid supply, and thereby their access to nutrients. It has also
been hypothesized that swimming organisms contribute significantly to mass trans-
port in the oceans, potentially supplementing global circulation and thereby affect-
ing climate. #*%4% More modest, but well established instances of active transport are
those occurring in intracellular transport>® and during the absorption of nutrients in
intestines,>! although these are related to biological processes other than swimming,.
Advection of passive particles is also of a more fundamental relevance, as tracers can
be used as probes for exploring active matter systems — especially the strongly non-
equilibrium fluctuations that arise in active systems and that are fundamentally dif-

ferent to the corresponding fluctuations seen in equilibrium (Brownian) systems. 2



Fluid dynamics



2.1 Navier-Stokes equations

In fluid dynamics, the Navier-Stokes equations are of central importance. They are
partial differential equations that describe the flow of Newtonian fluids, by relating
the velocity U(r, #) of a fluid with density p, and dynamic and bulk viscosities # and
#, respectively, to the pressure p and external force density f acting on the fluid:>?

oU 1
p{at + (U-V)U} = —Vp+uVU+ <m+ 3/4> V(V-U)+f (@21

dp B
5 +V-(pU)=0 2.2)

Equation (2.1) is referred to as the momentum equation, and Eq. (2.2) as the con-
tinuity equation. For many applications, including the simulations described in this
thesis, the fluid can be considered to be incompressible - an approximation which
yields the incompressible Navier-Stokes equations: >33

p{%[:—l-(U'V)U}——Vp—l—ﬂVZU—i-f V-U=0 (23

Both versions of the equations are non-linear, making most problems involving them
difficult or impossible to solve analytically. Instead, elaborate numerical methods have
to be employed, which is the primary concern of the branch of computational fluid
dynamics.

The left-hand side of the momentum equations correspond to inertial effects, while
the terms on the right-hand side describes the effects of viscous and external forces.
The ratio of those two contributions is referred to as the Reynolds number:

Re — Inertial forces _ Lw’ (2.4)

Viscous forces 7

where U and / are the characteristic flow speed and length scale of the system in
question. At low Reynolds numbers flows are laminar, meaning characterized by the
fluid moving along smooth paths in layers with little to no mixing. In contrast, at
high enough Reynolds numbers flows become turbulent, undergoing chaotic changes
in pressure and direction over time. A characteristic of such a system is the appearance
of vortices across a range of length scales. The transition from laminar to turbulent
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flow occurs around a critical value of the Reynolds number, Re,,, which depends on
what system is being considered. For flow in a circular duct, Re,, &~ 2100,¢ while
in the case of flow around an object immersed in fluid, Re,, in the range of 10-100
has been observed.>? At very low Reynolds numbers, Re < 1, one can observe so-
called Srokes flow — a special case of laminar flow where inertial effects are negligible.
[lustrations of laminar and turbulent flows can be seen in Fig. 2.1.

-> -> ->
— — —p

— —
- -

-
—_—
— =
_/
\ \m
V) M i
Figure 2.1 Two cases of fluid flow through a pipe. At low Reynolds numbers (top) the flow is

laminar, and follows smooth streamlines that remain stable over time. At high Reynolds numbers
(bottom) the flow is turbulent, with rapidly shifting streamlines. Reproduced from ref. 57.

To understand the swimming strategies of different organisms, it is useful to consider
the Reynolds number of their environments. A typical bacterium has a size on the
order of 1 pm, and a swimming speed on the order of 10 pm/s. In water, which has
a density of around 1000 kg/m? and a dynamic viscosity of around 1073 Pa - s, we
obtain Re ~ 107>, If we instead consider a human being, using / = 1 m and U =
1 m/s, we obtain Re = 10°. In the former case, viscous forces thus dominate over
inertial forces, while for the swimming human the opposite is true. The implications
of this are important for what swimming mechanisms are effective at the microscale
versus the macroscale.

2.2 'The low Reynolds number regime

As the focus of this thesis lies on microswimmers, we now further consider the limit
of low Reynolds numbers. As inertial forces are negligible in such systems, organisms
such as bacteria and algae have to employ swimming gaits that do not utilize inertia,
as macroscopic animals do. One aspect of this can be illustrated through the scallop



Figure 2.2 The main swimming stroke of a scallop. This animal swims, or “jumps”, by re-
peatedly opening and closing its valves. The opening is done slowly, resulting in little displace-
ment, while the closing is much more rapid, causing brief but significant motion. Reproduced
from ref. 60.

theorem. lt states that, in a Newtonian fluid at low Reynolds number, any swim-
mer that exhibits only time-symmetric motion will achieve no net displacement.>®
In other words, if the swimmer in question deforms its body in a sequence which is
identical when observed forward and backwards in time, called reciprocal motion, it
will always remain in the same spot after reverting to its original shape. This is true
even in the case of different parts of the motion being performed at different rates.
The eponym of the theorem, the scallop, is an example of a macroscopic organism
swimming using such motion. It "jumps” by repeatedly opening its valves slowly and
then rapidly closing them, thereby pushing water away to propel itself, as illustrated in
Fig. 2.2. This mechanism is entirely dependent on inertia, and microscopic swimmers
can thus not utilize it in a Newtonian fluid. The scallop theorem does however not
hold in fluids not belonging to this category. 3 This has been demonstrated e.g. by the
designing of a microscopic scallop-like swimmer being able to propel itself in a shear
thickening fluid. ®® Biological microswimmers have developed a range of swimming
mechanisms to avoid reciprocal motion. Spermatozoa and many single-celled euka-
ryotes have flexible flagella, which they move in a whip-like manner, sending traveling
waves backwards and thereby display time asymmetry.®! Bacteria with rigid flagella
such as Caulobacter and E. Coli turn these continuously in one direction for unin-
terrupted locomotion. >%? Some swimmers have the ability to change the direction
of flagellar rotation, and thereby have a simple mechanism for moving in reverse.3!
Other organisms, like Chlamydomonas Reinbardtii, have several flagella which they
move in more complex, non-reciprocal manners.

12



2.3 'The Stokes equations and flow singularities

Constraining ourselves to the zero Reynolds number limit relevant to microswimmers,
we can neglect the inertial terms on the left-hand side of the incompressible Navier-
Stokes equations, Eq. (2.3). This yields the Stokes equations:>>

Vp=uVU+Ff V-U=0 (2.5)

In contrast to the full Navier-Stokes equations, these are /inear partial differential
equations, and therefore significantly easier to solve. That is not to say that they
are always analytically solvable, however closed-form solutions exist for a number of
systems - including some relevant to the treatment of microswimmers.

We now consider a particular method of solving the Stokes equations, namely through
the use of so-called Green’s functions. To start, one lets the forcing term in the Stokes
equations be represented by a point force F at the origin, f(r) = 6(r) - F/, where § is
the Dirac delta function. Assuming that |U| and p vanish as |t] — 00, the following
solution can be obtained: ¢4

F (T 1
U — F, . = — - — 26
10 - o (3+5). 20
where 7 = |z, T is the identity matrix, and J is the Green’s function for the Stokes

equation. In general, a Green’s function is the solution G to a differential equation
LG = §, where L is a linear differential operator. The particular Green’s function J
in Eq. (2.6) is called the Stokeslet, % as it is the solution to a delta forcing in the Stokes
limit. Furthermore, due to the linearity of the Stokes equations, it is straightforward
to expand to more complex force distributions by a superposition of solutions. In
fact, a solution to any arbitrary force distribution f(r) can be written as

U(r) = /f(r/) -J (r — r') dr’. (2.7)

If the force distribution is non-trivial, the integral might not be possible to solve
exactly. In such cases, it can instead be Taylor expanded. This yields a multipole
expansion, of which the leading term is the Stokeslet, Eq. (2.6), representing a force

monopole. The second term in the expansion represents a force dipole, and is given
by?>

13
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Figure 2.3  Stokes flow due to a force monopole (left) and dipole (right), referred to as a Stokes-
let and stresslet respectively.
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where p is the orientation vector of the force dipole, and & is the dipole strength,
which for an extended dipole of two opposite forces +=F separated by a distance /, is
given by

K= —. (2.9)

Just as Eq. (2.6) is associated with a Stokeslet, the form of Eq. (2.8), representing a
force dipole, is associated to a so-called stressler. As the force F can take on either pos-
itive or negative sign, corresponding to the two forces pointing away from or towards
each other respectively, the sign of x indicates which of the two types of dipole is
being considered.

The flow fields due to a Stokeslet and a stresslet can be seen in Fig. 2.3, where the
former decays as 1/, and the latter as 1/72. The Stokeslet is the leading-order term
describing the flow field around bodies with external forcing, such as a colloid being
dragged through a fluid or sedimenting under gravity. The less long-ranged stresslet
is, as we will see in Chapters 3 and 4, the leading-order flow singularity for force-free
microswimmers.
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Interactions in microswim-

mer suspensions
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3.1 'The flow fields of pushers and pullers

The interactions between a microswimmer and the surrounding fluid, and by exten-
sion the interactions with other particles, depend on the details of how it propels itself.
As mentioned in Section 1.2, microswimmers can generally be classified as either push-
ers or pullers. The former class can be described as rear-actuated, where the swimmers
expel fluid from their fore and aft as they move, while drawing in fluid from their
sides. Pullers affect their surroundings in the opposite way, by attracting fluid along
their main axis and expelling it perpendicularly to it. Fig. 3.1 schematically illustrates
the flow fields that can be observed around an E. coli bacterium — a typical pusher,
and a C. reinhardtii alga during the puller phase of its stroke.

S
By
S

Figure 3.1 Fluid flow fields around a typical pusher like E. coli (left) and a typical puller like C.
reinhardtii (right).

It can be noted that the flow field due to a pusher-type swimmer displays qualitative
similarities with that of a stresslet of positive dipole strength, shown in Fig. 2.3. It
turns out that the experimentally measured flow field around pusher bacteria can in-
deed be accurately described as that coming from an extended force dipole. This is
illustrated in Fig. 3.2, which displays the flow field around an E. coli bacterium (A),
the best fit to an extended dipole field (B), as well as the residual flow field (C), ob-
tained by subtracting the latter from the measured flow. ®> For distances from the cell
body exceeding ~ 6 pm, the flow generated by the bacterium is well-approximated
by that of an extended force dipole, ®> indicating that such a model would be suitable
for describing the far-field hydrodynamic interactions acting in real bacterial suspen-
sions. The implementation of en extended force dipole model is further described
in Section 4.2. It is however clear, that this approach is not sufficient for capturing
near-field hydrodynamic interactions. While the flow field around a swimmer has
been found to be dipolar to leading order, higher-order terms in the multipole ex-
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Figure 3.2 Experimentally measured flow field of an E. coli bacterium (A), the best fit dipole
field (B), and the difference between the two (C), obtained by subtracting (B) from (A). The
dipole model overestimates the field close to the bacterium, particularly at distances < 6um.
Reproduced from ref. 65.

pansion discussed in Section 2.3 (in particular the quadrupole moment) contribute
significantly close to the swimmer.®¢ In addition, non-hydrodynamic effects such as
excluded volume and steric interactions play important roles in real microswimmer
suspensions, and their inclusion is therefore relevant for a complete description of
how swimmers interact. At low to moderate microswimmer concentrations, the long
ranged (1/7%) nature of dipole interactions makes them dominate over other, more
short-ranged forms of interaction. In the research contained in this thesis, and for
studying the generic properties of microswimmer suspensions, we will therefore limit
ourselves to consider purely dipolar interactions.

3.2 Swimmer-swimmer interactions

As a microswimmer displaces the fluid around it, other particles in its vicinity will
be advected and rotated. Hydrodynamic interactions between two swimmers will
thus affect both of their velocities and orientations, the details of which are highly
dependent on whether they can be classified as pushers or pullers. This can be exem-
plified by considering two swimmers moving in parallel directions, at relative positions
r = ry — r;. If travelling precisely side by side, p - r = 0, and Eq. (2.8) becomes
remarkably simple:

17



Figure 3.3 Mutual reorientation between pushers (left) and pullers (right), due to dipolar hy-
drodynamic interactions. Pushers align and proceed to swim side by side, while pullers turn to
swim at an 180° angle.

From this it can immediately be observed that two parallel pushers (x > 0) attract
one another, while two pullers (k < 0) in the same configuration are mutually re-
pelled.>¢” In addition to this, a more important effect is the mutual reorientation
of the swimmers that occur due to the gradient of their flow fields, illustrated in
Fig. 3.3. When two pushers come in close proximity, their swimming directions
tend to align, whereby they come to swim side-by-side as their trajectories converge.
Two pullers, on the other hand, tend to anti-align at an 180°angle, leading to them
swimming apart.>¢” Thus, far-field hydrodynamic interactions mediated by force di-
pole flow fields promote mutual alignment in the case of pusher-type microswimmer
suspensions, while having an opposite, destabilizing effect on alignment in puller sus-
pensions. The organizing effect due to hydrodynamic interactions between pusher
bacteria like E. coli is however counterbalanced by the randomizing effect of bacterial
tumbling (see Section 1.2), which plays a similar role as temperature in equilibrium
systems of interacting particles.

Another aspect of microswimmer behavior of biological importance is that which
occurs near a boundary. Due to differences in the hydrodynamic interactions with
their environment, the dynamics greatly depend on the propulsion mechanism, just
as in the case of mutual reorientation discussed above. Pusher-type swimmers tend
to align themselves with solid walls, similar to how they would relative to another
pusher.>%¢% For a swimmer such as E. coli, the oppositely exerted torques from its
cell body and flagella then causes it to swim in a circular pattern parallel to the wall. %%
74 Pullers, on the other hand, reorient themselves as to swim at a right angle relative to
the boundary, and therefore tend to swim head-on into the wall, where they therefore
accumulate.’

18



3.3 Collective behavior in active matter

The interactions between microswimmers in a suspension affects both their spatial and
orientational correlations, which increasingly impacts the dynamical properties of the
system as the swimmer concentration 7 increases. “* When reaching a critical value 7,,
the correlations between pushers give rise to collective motion called active or bacterial
turbulence. The turbulent state is characterized by large-scale coherent motion, where
the fluid speeds can significantly exceed the propulsion speed of an individual swim-
mer, and is thus a strongly many-body phenomenon. In bulk suspensions of pullers,
collective phenomena such as active turbulence are absent. As the dipole field around
such swimmers act to decorrelate their orientations, collective motion is suppressed
rather than enhanced once swimmer-swimmer correlations become significant. The
transition to active turbulence has traditionally been described via mean-field kin-
etic theories that neglect swimmer-swimmer correlations below 7,. However, it was
recently shown that such correlations have a clear impact on the properties of the
suspension even far below the transition to bacterial turbulence, at concentrations
corresponding to < 10% of 7..%* Due to the strongly non-linear behaviors in the
turbulent state, a theoretical description of active turbulence is challenging. Several
successful approaches have been developed, which aim to capture the complexities of
this topic. Here, we briefly describe two such theoretical approaches: kinetic theory,
which is a method suitable for describing bacterial turbulence among microswim-
mers, and active nematics, which is a model that can be utilized for capturing active
turbulence in dense active matter systems.

3.3.1 Kinetic theory of microswimmer suspensions

One approach to theoretically describing active matter systems is that of kinetic theory.
The starting point of such methods is the equations of motion (EOM:s) of the particles
involved. 47576 Microswimmers are typically modelled as force dipoles acting on the
surrounding fluid, with the sign of their dipole differing depending on if they are
pushers or pullers. The system is then described by a continuum probability density
function for IV; swimmers ¥(ry, p1, ..., In,, PN, £), the time evolution of which is
45,77,78

given by the Fokker-Planck equation:

N; N;
s ) . A s
— 4+ [vni . (1‘1‘\11) + vp,i . (PZ‘IJ)] = _M)\\Il + E i:E 1 /dpl\lla (32)

i=1

where A is the tumble rate of the swimmers, and the dot (") represents the temporal
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derivative. The flux t is connected to the equation of translational motion, which has

contributions due to swimming, advection from the local flow field, and translational
diffusion:”>7?

f=up+ Ulr) — DV, (In V), (3.3)

where v; is the swimming speed, and Dy is the Brownian diffusion coefficient. p is
given by Jefferys equation, which originally describes the reorientation of an ellipsoidal
body in a viscous fluid at low Reynolds number,®° plus an additional term represent-
ing rotational diffusion:”>7°

p=(—pp): [(BE+V) p—DroVp(ln¥)] (3.4)

where I is he identity matrix, 3 is a shape parameter, E and V are the fluid rate of
strain and vorticity tensors respectively, and Dp g is the rotational Brownian diffusion
coefficient. A shape parameter of f = 0 corresponds to spherical swimmers, while
B = 1 corresponds to infinitely thin, needle-like swimmers. We will discuss equations
of motion in greater detail in Chapter 4.

Starting from a homogeneous and isotropic base state in a bulk 3-dimensional system,
linear stability analysis of the mean-field version of the Fokker-Planck equation (3.2)
can be performed within the framework of kinetic theory. The results show an oriental
instability in the case of pushers exceeding a critical density n, = 5\/fk, 44757681
which can be interpreted as a transition to active turbulence. *>:2 Puller suspensions
do however prove to be stable at all swimmer densities, analogous to such systems not
exhibiting significant collective phenomena. Furthermore, numerical simulations of
the mean-field version of Eq. (3.2) yield flow patterns and particle motion in qualitat-
ive agreement with experimental observations, including chaotic, large-scale coherent
motion.

3.3.2 Active nematics

The second main class of models exhibiting active turbulence is active nematics,
which build on classical continuum models developed for liquid crystals. 8% This ana-
logy stems from the fact that some active matter systems, like dense suspensions of
elongated bacteria or filamentous particles mixed with motor proteins, share many
characteristics with nematic liquid crystals, including long-range orientational order.
The base of this approach are a set of continuum equations, describing equilibrium
nematic liquid crystals: 33

20



Figure 3.4 Active nematic turbulence, as observed in a microtubule-kinesin system using fluor-
escence confocal microscopy (left), and in simulations solving the continuum equations of mo-
tion of active nematics (right). Two defects, respectively referred to as comet-like (or +1/2), and
trefoil-like (or —=1/2), are highlighted in each case. Reproduced from ref. 83.

0
8_(t1+U-VQ—szDRH. (3:5)

Q is the nematic order parameter given by Q = d%llQ(pp — 1/d), where d is the
dimensionality of the system, and Q is the magnitude of the local nematic order. S is
a co-rotation term;

I I I
S = (BE+V)- <Q—|— 5) + (Q-i— g) (PE—V)—=2p (Q—i— 3) (Q:VU), (3.6)
and H relates to the relaxation of Q towards the the local free energy minimum;

0A 1 0A

Where A is the free energy density, typically taken to be of a generic, double-well

form.

The flow of the surrounding fluid is described by coupling these equations to the
incompressible Navier-Stokes equation, Eq. (2.3), and adding an active stress term
—V - (€Q) to the right-hand side due to the activity of the particles. The sign of
the activity coeflicient ¢ indicates if the system is pusher-, or puller-like in behavior,
in this context often referred to as extensile or contractile. Microtubule and kinesin
suspensions are an example of an extensile system suitable for modeling using active
nematics, 3 while mouse fibroblast cells are a suitable candidate for a corresponding

contractile system. 84
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The most significant difference between active nematics and the liquid crystal models
on which they are based lies in the topological defects that form (and disappear) in
pairs due to the activity.8? An example of this can be seen in Fig. 3.4, where pairs
of defects are highlighted. As these defects are generated, they can move away from
one another, and pairs potentially become unbound before meeting other defects,
whereby they annihilate.®5 Defects such as these appear also in equilibrium (pass-
ive) liquid crystals, but proliferate to a much higher degree in extensile active matter
systems, where they are mutually repelled and therefore more long lived. #>-8¢ Addi-
tionally, spontaneous unbinding of defect pairs has not been observed in equilibrium
nematic crystals.®> The disruption of long-range order induced by defect prolifera-
tion, and the accompanying formation of seemingly chaotic patterns, are character-
istic properties of active turbulence,® just as in the case of pusher microswimmer
suspensions (see Fig. 3.4). Due to the continuum nature of these models, they are
however limited when it comes to mapping the field-theoretical parameters to prop-
erties of individual agents. Therefore they are less suitable for modelling interactions
at the length scale of an individual particle. Also, as nematic alignment is an inherent
aspect of active nematics, orientational order is typically present even in the absence
of activity. In the case of bacterial suspensions, this is however only true in cases
of high density and/or confinement, where excluded-volume constraints (rather than
activity) can cause nematic order. Thus, active nematic models are more suited for the
description of experimental systems where the density is high enough to cause strong
local alignment between agents, such as in Fig. 3.4.
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Models and Methods
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4.1 Overview

In this thesis I present simulations of microswimmer suspensions, with the primary
purpose of studying the motion of passive tracer particles. The flow of the fluid it-
self is computationally solved for using the Lattice Boltzmann method (LBM). This
is a class of methods in computational fluid dynamics which differs from others in
the field, as it does not directly solve any conservation equations (namely the Navier-
Stokes equations), which preserve macroscopic quantities like mass, momentum and
energy. Instead, Lattice Boltzmann methods models the fluid on a mesoscopic scale
as consisting of fictive particles undergoing collision and streaming processes. The
particles are confined to a lattice, on which fluid properties like density and velocity
can be extracted. As the dynamics of the model are local in nature, LBMs have several
advantages over other approaches in computational fluid dynamics. It can be used for
simulating multi-phase flows, flows through complex boundaries, and is straightfor-
ward to parallelize. For our purposes, of great relevance is the ability to incorporate
a large number of off-lattice swimmers (V, > 10°) in order to adequately capture
collective phenomena.

To model the individual microswimmers, the extended force dipole model was used,
as introduced in Section 3.1. We define the equations of motion (EOMs), Egs. (4.1)
to (4.3), which determine how swimmers are advected and rotated by the fluid as well
as how they propel themselves. In turn, the forces exerted by the swimmers onto the
fluid determine how the flow field U evolves in time. While the fluid is simulated
on the lattice, the swimmer (and tracer) particles have no such restrictions, and move
freely in continuous space. This means that interpolations are required from the on-
lattice fluid, to advect and rotate the off-lattice swimmers, and in the reverse direction,
in order to apply the swimmer forces onto the fluid. Tracers are advected (and in some
cases rotated) by the fluid similarly to swimmers, but exert no forces on it.

4.2 Swimmer model

In this section, we first consider the simple extended force dipole model used in the
work described in this thesis, followed by a brief overview of other swimmer models
of relevance in the field.
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4.2.1 'The extended force dipole model

In our simulations, microswimmers are modelled as consisting of a sphere of radius
a connected by a thin rod to a point some distance / away. The sphere corresponds
to the cell body, and the external point represents the flagellar bundle. p; is a vector
pointing along the rod toward the head of the swimmer, defining its orientation. Two
oppositely directed forces = Fp; are exerted on the surrounding fluid, situated at the
cell body and flagella respectively, thus forming an extended force dipole. /is used as
a basic measure of the swimmer size, and corresponds to a distance somewhat shorter
than the real-world distance from the cell body to the the end of its flagella.®> As
the forces are equal in magnitude, the swimmers are force-free, and their individual
contributions to the fluid velocity field are therefore dipolar to leading order. The
swimmers can be characterized by their dipole strength, k = FI/u as presented in
Eq. (2.9), the sign of which determines if it is a pusher (k > 0) or a puller (k < 0).
In the case of a pusher, the forces are directed away from one another, while in the
case of a puller they point towards each other. The model, specifically for the case of
a pusher, is illustrated in Fig. 4.1.

VsPs
_Fps Ia
———— - —
l

=

Figure 4.1 Schematic illustration of a pusher microswimmer modelled as an extended force
dipole, along with its parameters.

The time evolution of a swimmer’s position r, and orientation p; is given by the fol-

lowing equations of motion: 4480

I, = up; + U(r;) (4.1)
pf = (]I - P:PS) : (ﬁE +V) “Ps (42)

where U(r,) is the fluid velocity evaluated at the position of the body of the swimmer,
v, is the swimming speed, and I is the unit tensor. Eq. (4.2) is Jeffery’s equation,
describing the reorientation of an ellipsoidal particle in a viscous fluid at low Reynolds
number. 3 = (4% — 1)/(4* + 1) is a shape parameter, with g denoting the ellipsoid
aspect ratio, and E = (VU + VU')/2 and V = (VU — VUT)/2 are, respectively,
the rate-of-strain and vorticity tensors, evaluated at r,. Assuming an infinite aspect
ratio, ¢ = 0o = = 1, and Eq. (4.2) simplifies to:
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U s -U s Ps
ps= (I—pps) - (VU) - p.= (I - psps) - (x) l(r PD, (4.3)

where the last equality is correct to linear order in the time step 0z

In addition to the reorientation caused by hydrodynamic interactions, the direction of
the swimmer is randomized at Poisson distributed intervals of an average frequency
A, representing the tumble aspect of the run-and-tumble motion displayed by real
bacteria. In the absence of other microswimmers and other forms of external forcing,
these dynamics lead to a persistent random walk, with a persistence length of /, =
v;/A. This tumbling mechanism cannot however be included in a continuous-time
differential equation, like that in Eq. (4.3), in a straightforward manner.

While the cell body radius « is specified above, it does not enter the equations of mo-
tion, nor does it directly relate to the swimming speed v, or forces F exerted by the
swimmer. As such, the model does not entail explicitly resolved bodies, and swim-
mers are effectively fore-aft symmetric, apart from their self-propulsion. The relation
between F, /, and v, can be utilized to calculate an effective hydrodynamic radius,
and estimate the cell body radius a. To achieve this, we consider the force balance on
the swimmer, relating the propulsive force Fp, acting on the flagella, with the Stokes’
drag acting on the cell body. % In the absence of any external velocity field, this can
be stated as

Fp; = 6rpa (vp; — W) . (4.4)

where W is the velocity field generated by the flagella, evaluated at the position of
the cell body. In order for the drag force to be accurately described using Stokes’ law,
we assume that (2//)> < 1, so that the velocity field has negligible gradients around
the swimmer’s body. W is approximated as the flow field due to a Stokeslet of equal
magnitude and opposite sign to the propulsive force, located at the position of the
flagella. From Eq. (2.6), we obtain the following expression:

1 1
W= STM(H"’_PSP:) : (_FPs) = _@FP: (4.5)

This can be substituted into Eq. (4.4), yielding

o L (1—3‘Z>= £ (4.6)
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The last equivalence introduces the effective hydrodynamic radius z, given by

a

— (4.7)

I R

Il
[\S1[S%}
~Ix

Given a set of model parameters, Eq. (4.6) can be used to obtain the effective cell body
radius . This in turn can be used for calculating approximate packing fractions, which
allows for quantitative comparisons with experiments.

4.2.2 Other models

We now briefly consider two other computational swimmer models of wide use in
active matter — the sguirmer model, and the slender rod model.

In the former, microswimmers are modelled as spheres or ellipsoids with imposed
velocity boundary conditions across their surfaces. It is arguably the most well-studied
model of microswimmers, first developed by Blake in 1952,%7 and later refined to
model the ciliated organism Paramecium (Fig. 1.2 right). In the case of a spherical
swimmer displaying axisymmetric motion, expressions for the radial and tangential
components of the slip velocity at the boundary are respectively given by®®

v, = ZAnPn (cos 0) (4.8)
n=1
and
vy = Z B,V, (cos ), (4.9)
n=1

where P, is the n-th Legendre polynomial and V/, is defined by:

V,(cosh) = sind P’ (cos 0), (4.10)

2
n(n+1)

where primes (') denote derivatives with respect to the argument in the Legendre
polynomials. 6 is the polar angle relative to the swimming direction, as illustrated
in Fig. 4.2. A, and B, are coeflicients that characterize the details of the squirmer’s
propulsion. Especially the ratio B, /By is of relevance, as its sign determines if the
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frames of reference. They depict a pusher (left, reproduced from ref. 89), neutral swimmer
(center, reproduced from ref. 90), and puller (right, reproduced from ref. 91).

flow field is puller-like (positive), or pusher-like (negative). In the case of B, /B; = 0,
the swimmer expresses neither characteristic, and is referred to as a neutral swimmer.
The velocity fields generated by all three types of swimmer are displayed in Fig. 4.2.
Some aspects of the collective behaviour of squirmers can be illustrated by considering
a homogeneous suspensions of swimmers with an initial orientational alignment. In
the case of pushers, orientations quickly decorrelate, while pullers aggregate together
and display flocking with long-ranged polar order. %2

In the slender rod model, swimmers are instead modelled as highly elongated
("slender”) particles, which propel themselves by imposing a tangential shear stress
on the fluid across a section of their surface, while the remainder of their body is sub-
ject to a no-slip boundary condition. The particle is effectively a pusher in the case
of the shear stress being imposed near its rear, and a puller when it is imposed near
the front.3%%3 In agreement with experiments and kinetic theory, a transition to act-
ive turbulence can be observed among slender rod pushers above a critical swimmer

concentration, but not among pullers. 47-93-94

4.3 Tracer models

In this thesis, we consider three types of tracer particles — point particles, spheres, and
ellipsoids. For the first two, we consider only their translational motion, and they can
thus be described by a single equation of motion. For point tracers, the EOM has a
simple form:
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t, = U(r,) + /2Dy, (4.11)

where the first term represents simple advection by the fluid, and the second cor-
responds to Brownian motion. Dy is the Brownian diffusion coefficient, and 7 is a
unit-variance white noise, d-correlated in space and time. Brownian motion is only
considered for point particles, and the corresponding term will thus be omitted from
the EOMs of the other tracer types.

In terms of forces acing on a point particle, there is a balance precisely when the tracer
velocity u, equals the fluid velocity U, according to Stokes’ law. If we instead consider
spherical tracers, this force balance is however shifted. This is described by Faxén’s
law, which is a correction to Stokes’ law for the frictional force F acting on a spherical
object in a viscous fluid at low Reynolds number: ?5-98

2
F = 67uRy [(1 + ]ZOA> U-— u,} (4.12)

Here, Ry is the radius of the spherical particle, and A = V? is the Laplace operator.
Force balance is realized when

R2
=u,= (1 + 6°A> U. (4.13)

In our simulations, AU is numerically evaluated with the finite difference method,
using a seven-point stencil:

AU(r) ~ %(U(r “ih) 4 Ue+ih) + Ule — jh) + Ul + jh)+
U(r — kb) + Ulr + ki) — 6U(r)> (4.14)

where i, j and k are the Cartesian basis vectors, and 4 is the discretization length over
which the operator is numerically evaluated.

For ellipsoidal tracers, the translation is governed by Eq. (4.11). An extension of
Faxén’s law to ellipsoidal particles has been accomplished,®®'%° but is beyond the
scope of this thesis. Reorientation of the particles is governed by Jeffery’s equation, as
in the case of swimmers. Assuming an infinite aspect ratio, one obtains

. Ulr, H/2)) — U(r, — ph/2
b= (L pp) (VU)-p, =~ (1 pp)- L RARN U=l 4
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Equation (4.15) is similar to Eq. (4.3), with the only difference being that, in the
case of a swimmer, the fluid velocity is evaluated at the cell body and the flagella,
and rotation occurs around the former. In the case of an ellipsoidal tracer, the fluid
velocity is evaluated at two points along the major axis, at equal distance from the
particle center point around which the reorientation occurs. While the rotational
EOM is that of an ellipsoid, the particles have no resolved bodies in this model, and
thereby no defined size.

4.4 Lattice-Boltzmann methods

4.4.1 'The Boltzmann equation and its discretization

The starting point of Lattice Boltzmann methods of fluid simulation, is the Boltzmann
equation. ! It describes the statistical behaviour of a system of particles, through the
time evolution of their phase-space density function f(r, u, #):

T w vt L ovp=ap) (4.16)
t m

where r and u denotes particle position and velocity, and 7 is the particle mass. Q isa
so-called collision operator which represents the effect of collisions between particles,
to be described below. f'can be considered as a generalization of mass density p, as
it simultaneously represents the density of mass in three-dimensional physical space,
as well as three-dimensional velocity space. Originally the equation was formulated
with application to actual molecules in mind. However, in the context of Lattice
Boltzmann (LB) simulations, the particles considered are instead fictive, representing
the fluid on a mesoscopic scale.

As indicated by its name, and briefly described in Section 4.1, the LB distribution
function is simulated on a lattice. This corresponds to /" being computed at discrete
points in space, and at discrete time steps. The velocities of the particles involved
are thus restricted to a finite set, represented by the vectors ¢;. This is illustrated in
Fig. 4.3, showing one two-dimensional and one three-dimensional lattice system.

The set of allowed velocity vectors can be used to classify different LB methods by
lattice type through the DdQgq scheme, where & represents the dimensionality of
the system and ¢ is the number of available velocities. The set typically includes
vectors pointing to the closest neighboring nodes, as well as a null vector representing
stationary particles. As examples, let us consider the models displayed in Fig. 4.3. A
particle in a D2Q9 system can move with a speed of 0, 1, or /2 lattice units 6L per
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D2Q9

D3Q15

Figure 4.3 lllustration of a two-dimensional (left) and three-dimensional (right) LB lattice. Dots
represent lattice nodes, on which £'is computed, and arrows indicate the available velocity vectors
¢; relative to the center point in the given DdQq scheme.

time step d7 corresponding to remaining at the same node, moving along the axes,
or moving diagonally. In a D3Q15 lattice, which we employ in our simulations, the
allowed speeds are 0, 1, or V3, respectively for being stationary, moving along the
axes, or moving to the corners of the cube.

To facilitate the use of Eq. (4.16), we consider g different density functions f(r, #),

i € {0, g— 1}, each representing particles moving with velocity ¢;. A discrete-velocity

Boltzmann equation can then be considered for each given 7102

of; F — 0.
E+szrﬁ+ |:mvuf:|l_Qz(f) (417)

Given those f;, macroscopic observables of the fluid can be obtained by calculating
moments of the distribution functions. The fluid density p is expressed as

p=> filr2), (4.18)

while the fluid velocity is the average of the microscopic particle velocities:

U= ; S il e (4.19)
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Rearranging Eq. (4.17) yields

Yra V=0 - | vg] soprees. @)

On the right-hand side we now have a collision term ; and a forcing term ®;, which
we will consider in some more detail. Both of these have taken on different forms in
different implementations of LBM. A common and relatively simple choice for €; is
the Bhatnagar—Gross—Krook (BGK) operator; 103104

Q) = Sed fED _Tﬁo(r’ ) (4.21)

Collisions described by this operator act to redistribute particles in phase space, so as
to relax the system towards its equilibrium state £°, given by a Maxwell-Boltzmann
distribution. 7 is the relaxation time. A discrete representation of the equilibrium
distributions can be obtained by considering their expansions in Hermite polynomials

up to second order: 102

(4.22)

U.c¢ (U-¢)) U-U

0 i i

j = Wi 1 - 9
£t = (142524 2R - B )
where w; are the weights of the velocity set {c;}, and ¢; is the speed of sound in the
medium. The weights w; are generally not all equal, and their values in our specific

implementation are presented in Section 4.4.3.

The forcing term ®; can be discretized in a similar manner, again employing a second

order Hermite expansion: 1%

ot C; — U (CZ' . U)Cl‘
q’,’(l‘, t) = <1 — 27_,) w; < 2 + 4 ) . f(l', t), (423)

s CJ‘

where f is the force density. We can now express the full lastice Boltzmann equation
by discretizing Eq. (4.20): 102103

fi(r + ciot, ¢+ 08) = fi(r, 1) — T—i-é();t/Z (fi(e,0) = f2(r,2) — ®i(r,2)),  (4.24)

where we have introduced a new set of density functions

fi(e, 1) = filr, 2) — %(Q,(f) + D,(r,2)). (4.25)
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The discrete time evolution of the system, as seen in Eq. (4.24), can be considered as
the result of two separate processes. The first can be thought of as a collision step, in
which the density functions relax towards their equilibrium states, considering particle
collisions and external forces:

fi(e,0) = fi(r, 1) — T—|—6(l;t/2 (i —f— @) (4.26)

The second is a streaming step, where the density functions are allowed to propagate
along the lattice, according to their velocities:

fie+ i8¢+ 08) = £ (x,2) (4.27)

In actual implementations of LBMs, these steps are alternated between. The algorithm
is efficient, and was designed with parallelization in mind,'°® which is achievable
due to the Lattice Boltzmann equation, as well as the collision and forcing terms,
corresponding to entirely local dynamics.

4.4.2 Implementation of point forces

The discrete representation of the forcing term as seen in Eq. (4.23) considers a force
density f acting on the lattice nodes, where f; are computed. In many scenarios, the
actual forces acting on the system will be defined off-lattice, and may even be modelled
as force singularities. This is the case with the microswimmers described in this thesis
— in particular section 4.2, and there is thus a need to interpolate such forces to the
lattice nodes. We accomplish this through the use of a regularized version of the Dirac

0 function, given by '%”

70 = e (5) e (5 o (52): 628

where 0L is the lattice spacing, and g(7) is defined by

3=2[r|++/ 14+4|r| -4
g , Ir] < 1.
g(;’) — 5_2‘7""_\/ _87"'_12‘7‘_472’ 1 S |7| < 2 (429)

0, M > 2.

This procedure regularizes the forces over a support of two lattice units, effectively
replacing the point forces with smooth but sharply peaked force density distributions.
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The net force density at a given lattice node at r is obtained as a sum over all individual
(regularized) point forces:

2N;

f(r) =) F(r,)8(r — 1), (4.30)
a=1

where F'(r,) is the point force exerted at position r,. With /V; swimmers, and two
forces per swimmer, there are thus 2/V; forces to interpolate. The same regulariza-
tion was used for interpolating fluid velocities from the lattice nodes to the off-lattice
swimmers, by summing over all /V, nodes at positions ry;, ;

U'(r) =) Ulen, )6 (x — 1a,), (4.31)
N

4.4.3 Computational details

We employed a D3Q15 LBM, mainly using a cubic simulation box with a side length
of 100 lattice units, and periodic boundary conditions. The weights of the velocity
vectors ¢; were set to wy = 2/9 for remaining in place, w; — wg to 1/9 for moving
along the axes, and w7 — w5 to 1/72 for moving to the corners of the cube, as seen in
Fig. 4.3. In terms of LB units, defined by the lattice spacing L and time step length d7,
the swimmer and fluid parameters were set to F = 1.57 x 1073,/ =1, A = 2x 1074,
and if not specified otherwise, s, = 1072, Lastly, # was set to 1/6, corresponding
to the fluid relaxing to local equilibrium on each time step. The number of tracers
was chosen as IV, = 10° for sufficient statistics. The swimmer Reynolds number of
our system, assuming a density p of unity, is Re = pw,//p ~ 6 x 1073, confirming
that we are in the low Reynolds number limit. We can further consider the non-
dimensionalized dipole strength of our swimmers, k, = F/(pulv;) = 9.4. This is
similar to that of an actual E. coli bacterium, for which F# ~ 0.42 pN, / ~ 1.9 pm,
and v; & 22 um/s, yielding x,, ~ 10.0.%
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Enhanced diffusion
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5.1 Overview of tracer advection and diffusion by
microswimmers

In suspensions of microswimmers, the diffusion of passive tracer particles is generally
a complex function of both the swimming speed, dipole strength, tumbling rate, and
number density of microswimmers. Here, we give an overview of different forms of
interactions giving rise to tracer displacement — most of which are hydrodynamic in
nature. It should be noted from the outset that, in the absence of swimmer-swimmer
interactions, dipolar pushers and pullers are equivalent due to the symmetry of their
individual flow fields. Experimentally, it has been observed that at low swimmer con-
centrations 7, where swimmer-swimmer correlations are negligible, the translational
diffusion coefhicient D7 of tracers increases linearly with 7. 384143 The onset of collect-
ive behaviour among pushers coincides with a deviation from this linear dependence,
building up to the turbulent state where D7 increases dramatically. This is due to the
increased advection which follows from the enhanced fluid flow discussed previously.
In puller suspensions on the other hand, correlations between swimmers suppresses
the increase in diffusion, as swimmer-swimmer interactions decorrelate their orienta-

tions.
10! 3
10° 4
S 10-1 4
1072 -
5 Pl —— Pushers
107° 4 —I— Pullers
—¥— Non-Interacting
T T ML | T T ML | T T
1073 10~2 10~1

Figure 5.1 Effective translational diffusion coefficients of pushers, pullers, and non-interacting
swimmers, as functions of swimmer number density ». Error bars denote one standard deviation
as estimated from at least four separate runs with different initial conditions. Results are presen-
ted in terms of the swimmer length /and swimming timescale //v;.
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In Fig. 5.1 we have reproduced the dependence of D7 on the swimmer number density
n for pushers, pullers, and non-interacting swimmers, as previously discovered. 4447 In
our context, non-interacting swimmers refers to simulations in which hydrodynamic
interactions between swimmers have been disabled, by setting the terms involving the

fluid velocity U in their EOMs, Egs. (4.1) and (4.3), to zero.

As this behaviour is readily observable in simulations such as ours, and can be ra-
tionalized in terms of the dipolar velocity fields of swimmers (see Section 3.2), en-
hanced tracer diffusion in microswimmer suspensions has largely been attributed to
far-field hydrodynamic interactions. 4446 While this behavior is relatively well under-
stood, there are many aspects of tracer advection and enhanced diffusion in active
suspensions that remain to be fully explained, some of which we address in the fol-
lowing sections.

The velocity field due to individual dipolar swimmers was described in Section 3.1,
and the far field effects on swimmer-swimmer correlations was discussed in Sec-
tion 3.2. Other interactions known to contribute to the displacement of tracer
particles can be said to involve either near-field hydrodynamic effects, or be related to
direct collisions between particles. 1°8 The nature of the latter is easy to comprehend,
but its relative impact on the dynamics of an active matter system is in many cases
poorly understood. Non-hydrodynamic effects such as electrostatic and van der Waals
interactions between the tracers and microswimmers can also be considered, but will
generally be specific to each experimental system, and are thus unlikely to account for
widely observed diffusive phenomena.

Near-field hydrodynamic effects are due to the details of the short-ranged part of the
swimmer flow field. For example, close to a microswimmer, the dipole approximation
is no longer suitable for describing the velocity field. This is partly due to the detail
of the swimmer’s propulsion mechanism, but also due to the excluded volume effect
of the cell body. Lubrication forces arise when two bodies are close to one another,
but not in contact, and can lead to adhesive as well as repulsive interactions.

A clear example of a near-field effect known to impact tracer advection is so-called
entrainment.'°%11° This can occur in cases where microswimmers are significantly
larger than the passive particles, leading to the latter being effectively captured in a
stagnation point of the swimmer’s flow field. The tracer can then be carried over
a large distance, before escaping and resuming regular diffusive motion. Individual
tracer trajectories are therefore punctuated by very large displacements, and the dis-
placement statistics are qualitatively different from Brownian motion and enhanced
diffusion mediated by far-field hydrodynamic interactions. The effect depends on the
propulsion mechanism of the swimmers, as well as the size of the considered tracers.
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While near-field effects and particle collisions can have significant effects on tracer dif-
fusion in microswimmer suspensions, they are not included in our simulations. This
is a reasonable approximation when modelling small swimmers without stagnation
points, like £. coli, immersed in bulk solutions where direct collisions are rare. This
view is further supported by the good agreement between theory and simulations for
enhanced diffusion measured in three-dimensional E. co/i suspensions. 43

5.2 Displacement of point tracers by dipolar swimmers

‘V
‘V

-~~~

A

Figure 5.2 lllustration of a swimmer-tracer scattering event. « is the shortest distance between
the swimmer's trajectory and the tracer’s original position, and A is the tracer’s net displacement
during the scattering event. Reproduced from Paper IIl.

We now study the comparatively simple case of a single tracer advected by a dipolar
swimmer, in the absence of Brownian motion. The swimmer travels in a straight
line, with an initial swimmer-tracer separation « in the direction perpendicular to the
swimming direction. This is illustrated in Fig. 5.2, and is informative for understand-
ing enhanced diffusion, in particular before the onset of collective motion among the
swimmers. For the case of the swimmer moving along an infinite straight path, the
resulting tracer trajectory forms a closed loop, leading to a vanishing tracer net dis-
placement A (Fig. 5.3a). When the swimmer’s path is finite in length, the tracer’s
trajectory is effectively punctuated part-way through the loop, resulting in a signi-
ficantly greater A (Fig. 5.3b). This resembles a scattering event due to a tumbling
swimmer, and the effective advection caused between swimmer reorientations.

In the absence of swimmer-swimmer correlations, the total displacement of tracers,
and therefore also their (active) diffusion coefficient Dy, can be seen as the result of a
superposition of independent swimmer-tracer scattering events. While the displace-
ment A due to any single scattering event depends on the tumbling rate A, it has been
shown that, in the limit of large self propulsion speeds v, Dy is in fact independent
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Figure 5.3 Examples of tracer trajectories due to scattering events, as illustrated in Fig. 5.2,
obtained by integration of Eq. (2.8). (a) displays the trajectory due to a non-tumbling swimmer,
following a straight, infinite path. (b) shows a trajectory due to an equivalent swimmer following
a finite path, illustrating the effect a swimmer has on tracers between two tumbling events.

of \.1' A generalization of this result for finite v; has later been derived, resulting in
an approximate expression for the active diffusion coefficient Dy: 4>

7Kn

~ .1
2048)\e + 3367w, G-

Dy

where ¢ is a characteristic size of the microswimmers, which we consider to be equal
to the regularization length of the dipolar flow field. This expression captures the
linear dependence of D4 with 7 seen below the onset of collective behaviour, and
illustrates how both tumbling and swimming suppresses active diffusion, through A
and v; respectively. We will revisit these effects in Section 5.4 and Paper II.

5.3 Computing diffusion coefficients

We have implemented two different methods of computing translational diffusion
coefficients. The first relies on the mean-square displacement (MSD) of the tracers,
and can be considered an extension of the expression for the displacement of a particle
undergoing Brownian motion:

MSD(A#) = (|r,(10 + Af) — r(1)|?) = 24D, (5.2)

where 4 is the dimensionality of the system. The MSD is obtained by averaging over
all tracer particles, and all time origins #. In active suspensions, the MSD can instead
be fitted using a persistent random walk model, characterized by a ballistic regime at

39



short times, and a diffusive regime beyond an effective crossover time 77. This results

in the expression 2

MSD(At) = 2dD1 (At — 17]1 — exp (—At/77)]) . (5.3)

The other approach to computing translational diffusion coeflicients relies on the
Green-Kubo relation,

Da=3 [t wond =3 [ 0en UG 0) =5 [ citias
(5.4)

The last equality defines the velocity autocorrelation function C7(#) in the co-moving
tracer frame. The relation assumes point-like tracers advected by the fluid, so that
f; = U(r,). It should be noted that while Egs. (5.2) and (5.3) relates to the total
effective diffusion coeflicient, potentially including Brownian diffusion in addition to
that caused by swimmer activity, Eq. (5.4) enables us to isolate the active diffusion
coeflicient D4. Therefore, it is the method of choice in Section 5.4, where we consider
the balance between Dy and the Brownian diffusion coefficient Dy. Eq. (5.4) can
also be considered more robust than relying on MSD analyses, as no curve fitting is
required. On the other hand, the Green-Kubo relation offers no way to directly obtain
the crossover time 77, and cannot be directly implemented for computing diffusion
coeflicients along the different axes of anisotropic tracers. By applying both methods
where possible, we have ensured that they yield equivalent results.

Where applicable, rotational diffusion coefficients of ellipsoidal tracers were calculated
by fitting the orientational autocorrelation function Cy(Az) = (p.(#) - p:(20 + Az))

to the approximate expression*!?

2DpAP
\ /47’1% + A2

This expression can be said to interpolate between ballistic behavior at short times,
(Cp = exp [—(Dg/7r)A#]) and diffusive behavior beyond the effective crossover
time 7g, (C, = exp[~2DgA4]). It was first formulated by considering the random

motion of a point on the surface of a sphere, in the case where the angular velocity is
113

CP(At) =exp |— (5.5)

determined by an Ornstein-Uhlenbeck process.
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5.4 Balance of active and passive diffusion

In addition to being advected by the microswimmers in a suspension, tracer particles
undergo Brownian motion due to thermal fluctuations. This is characterized by their
thermal diffusion coefficient Dy. While the Brownian motion could initially be ex-
pected to increase the total diffusivity of particles, it has been hypothesized to suppress
enhanced diffusion,® as random displacements disrupt swimmer-swimmer correla-
tions and the spatiotemporal correlations of U(r,) along tracer trajectories. This is
considered in more detail in Paper II, while we offer a brief overview here.

First, we consider the impact of some other parameters known to suppress D4, namely
the tumbling rate A and propulsion speed v, of the swimmers. This is displayed in
Fig. 5.4, showing results of both LB simulations and predictions from kinetic theory
(See paper 1II), in the absence of Brownian motion and swimmer-swimmer correla-
tions. The active diffusion coeflicient is shown to decrease monotonically with both
parameters, with close agreement between theory and simulations. This behavior is
due to the temporal decorrelation of the velocity field U(r,) when swimmers change
direction (tumbling), or move significantly in relation to the tracer (self-propulsion).

(a) (b) x107°
107% 4 1.50
1.25 o
106 4 1.00 4
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1077 o 0.50 4
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10-8 0.00

Figure 5.4 Active tracer diffusion in the absence of Brownian motion. (a) displays the A~!
dependence of Dy in the case of shakers — swimmers with a vanishing propulsion speed. (b)
displays the more complex dependence of D4 on u;, at a fixed tumbling rate of A = 10~%. Sym-
bols denote results from simulations, while solid lines show results from kinetic theory. Results
are presented in LB units, and error bars denote one standard deviation as estimated from at
least four separate runs with different initial conditions. Reproduced from Paper II.

To investigate the effect of Brownian motion, we define three dimensionless quant-
ities for characterizing the system. The first is the Pécler number, which measures the
relative importance of active and thermal forces, and which we define by

_ Da(Dy=0)

Pe
Dy

5 (5.6)

where D4(Dy = 0) is the active diffusivity of tracers in an equivalent suspension,
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but in the absence of Brownian motion. Secondly, we measure the change in active
diffusion due to Brownian motion through the quantity

D4(Dy)

$= DaDy=0)°

(5.7)

Lastly, the self-propulsion of swimmers is quantified by the non-dimensionalized

swimmer persistence length Z;
v.f
L= —. .8
X 58

(8) 10 (b)

Figure 5.5 Decrease in active diffusion due to Brownian motion. (a) shows Dy as a function
of Dy for four different persistence lengths Z, while (b) displays the same data expressed in the
dimensionless quantities Pe and £. Error bars denote one standard deviation as estimated from
four separate runs with different initial conditions. The circles for L = 0 and 2.4 correspond to
the hydrodynamic diffusion in suspensions in which Brownian motion has been applied to the
swimmers as opposed to the tracers, showing the two cases to be equivalent. Reproduced from
Paper II.

In Fig. 5.5, we present the effect of varying the Brownian diffusion coefhcient, for four
different persistence lengths L. Active diffusion coefficients D4 were computed using
the Green-Kubo relation, Eq. (5.4). From panel (a), it is immediately observable that
D decreases with Dy, for large enough values of the latter. The change is most notable
for L = 0, corresponding to "swimmers” that do not propel themselves, commonly
referred to as shakers. The same data is presented in panel (b), but in terms of the
Péclet number and & to better illustrate the effect of varying propulsion speed v;,. As
¢ falls below unity, Dy is reduced compared to its non-Brownian value. In the case
of shakers, this can be observed as soon as Pe < 1, while occurring at lower and
lower values of Pe as L increases. For the fastest swimmers considered, L = 4.0, &
remains close to unity in the whole observed range of Pe, indicating no suppression
of Dy for values of Pe as low as 1073, This is notable, as a reduced persistence length
of L = 4 still corresponds to relatively slow swimming in biological contexts. For
comparison, estimates of L for E. coli bacteria lie in the range or 5 to 20, %> suggesting
that any effect of Brownian motion on Dy is likely negligible in bacterial suspensions,
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in contrast with previous claims in the literature. Thus, while we have found Dy to
have a suppressive effect on active diffusion, this is unlikely to contribute to behavior
seen among biological microswimmers, due to their relatively fast self-propulsion.
This includes the non-monotonic dependence of Dy on tracer size, 3?14 discussed in
Section 5.5.

5.5 Diffusion of spherical tracers

A fundamental aspect of Brownian motion is the inverse scaling of the passive dif-
fusion coefhicient Dy with particle radius Ry, as described by the Stokes-Einstein
relation. !> In microswimmer suspensions, experimental observations have however
shown this scaling not to hold, and the effective diffusivity D7 has been found to have
a non-monotonic dependence on Ry, displaying a broad maximum for particles in the
1-10pm range. 3® This behavior has also been reproduced in simulations, !4 however
the precise origin remains unclear due to the simultaneous effect of several types of
interactions.
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Figure 5.6 Trajectories of spherical tracers advected by a single swimmer moving along an
infinite, straight path. Reproduced from Paper IIl.

The effect of Brownian motion has been discussed as a potential explanation of this
non-monotonic behavior, butas argued in Section 5.4, such effects are likely negligible
in suspensions of biological microswimmers, except at extremely low Péclet numbers.
Other candidate mechanisms include tracer entrainment, which is expected to have
a strong dependence on tracer size Ry. In Paper III, we explored whether modified
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tracer advection due to Faxén’s law, Eq. (4.12), could reproduce the dependence on
Ry seen in experiments, as the correction depends explicitly on tracer size. Here, we
offer a brief overview.

We first considered the relatively simple case of a spherical tracer being advected by
a single swimmer, similar to the scenario described in Section 5.2. When integrating
over the tracer’s trajectory, the Laplacian of the dipolar velocity field (Eq. (2.8)) at the
position of the tracer could be analytically expressed as

3K b)
V2U(rt; I, ps) = 45 [(1 - ﬁ(r/ ) PS)Z) v+ 2(1'/ : P:)Pf} ) (5.9)

wheret/ =1, — r, and ¥/ = |1/

The results in the case of a swimmer moving along a straight, infinite path can be
seen in Fig 5.6 for a range of tracer radii, rescaled by the shortest distance between
the swimmer’s trajectory and the tracer’s original position. For a tracer radius of 0,
the trajectory of a point tracer as seen in Fig. 5.2a is accurately reproduced. As the
tracer size is increased, the two characteristic kinks in the Ry = 0 loop are smoothed
out. For Ry/a = 1, the appearance of a new kink can be seen, which then extends
into an additional loop as Ry/a > 1. This regime is however unphysical, in the
sense that the tracer radius is so large as to reach beyond the swimmer trajectory. The
growing perturbations relative to Ry = 0 show that Faxén’s law has an impact on
tracer trajectories, which could potentially affect diffusion coefficients.

@ L=10 % L=10—4
54 28 F 2.8 ——
= 56 § 5.6 49—
I 47
<,
2
Q
SRR
Q
141 *® G
00 05 0.5 1.0 15 20 25 30
R()/E

Figure 5.7 Tracer size dependence of Dy and 7. (a) D(Ry)/D+(0) for three different values
of the reduced swimmer persistence length Z, as indicated. Symbols indicate results from LB
simulations, while dashed lines display predictions from kinetic theory. Inset shows mean-square
displacement curves at L = 2.8 for Ry/a = 0 (blue), 1.4 (orange), and 2.8 (green) together with
the respective fits to the persistent random walk model, Eq. (5.3). (b) Ballistic persistence time
T as obtained from LB simulations. For Ry > 2.3 at L = 5.6 data is excluded since the quality
of the fit is too poor to reliably determine 7. Reproduced from Paper |ll.
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Next, we turn to the actual case of active diffusion, as induced by many individual
scattering events. Starting in the dilute limit, we considered non-interacting swim-
mers, thus explicitly excluding swimmer-swimmer correlations. The results in Fig.
5.7 show the results from LB simulations and kinetic theory, expressing the change
in Dy with Ry due to the Faxén correction as D7(Ry)/D7(Ry = 0). In panel (a),
a non-monotonic behavior is clearly observed for all three curves. However, while
the agreement between simulations and kinetic theory is good, local minima are ex-
hibited, rather than the maxima observed experimentally and numerically in previous
works. 3114 This is a clear indication that the experimentally observed behavior is not
due to far-field hydrodynamic interactions. In panel (b), we display the persistence
time 77 of ballistic motion, as obtained by fitting to Eq. (5.3). All three curves show
similar behavior, although uncertainties are significant for the largest studied L. 77
exhibits an initial increase with Ry, before decreasing around Ry/e ~ 1. Notably,
the minima in panel (a) also occur around these radii, meaning when swimmers and
tracers are of similar sizes. This suggest qualitative differences in behavior depending
on which particle type is the largest.
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Figure 5.8 Effect of swimmer-swimmer correlations between pushers on tracer diffusion. The
reduced diffusion coefficient D7/ Dy is displayed as a function of swimmer concentration 7 for
a range of reduced tracer radii Ry /e.

Lastly, we considered suspensions of intermediate microswimmer density, where
swimmer-swimmer correlations become significant. In Fig. 5.8, we display the active
diffusion coeflicient relative to its value in a suspension of non-interacting swimmers,
D7/Dr, as a function of swimmer density 7 and for a variety of reduced tracer
radii Ry/e. The figure specifically shows the case of pusher suspensions, and while
the relative diffusion coeflicient deviates from unity as 7 increases, it can be observed
that increased tracer radius generally seems to reduce the effect of swimmer-swimmer
correlations. A similar trend could also be observed for puller-type swimmers, al-
though with deviations from unity being negative rather than positive.''® However,
it can also be discerned that the effect of swimmer-swimmer correlations are greatest
around Ry/e = 1, further indicating a qualitative change in behavior around this
tracer size.
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5.6 Diffusion of ellipsoidal tracers

It has been experimentally observed that tracer particles with shape asymmetry display
anomalous anisotropic diffusion. *7>!18 The effective drag on an elongated, ellipsoidal
particle is expected to be smallest along its major axis, which through the Einstein re-
lation suggests that the rate of Brownian diffusion be greatest in this direction. '** This
has indeed been observed to be the case of Brownian diffusion in bulk suspensions,
where the ratio of diffusion coeflicients parallel and perpendicular to the ellipsoid
major axis D /D) — 2 for large tracer aspect ratios, due to their anisotropic fric-
tion. 1297122 [n microswimmer suspensions confined to thin liquid films, DH /D] has
instead been found to fall below unity in the case of pushers (£. coli) at high dens-
ities.!1” In the case of puller-type swimmers (C. Reinhardtii), the ratio was instead
observed to remain > 1,''® in qualitative agreement with the behaviour in absence of
swimmers. These results were partially explained in terms of the different symmetries
of the flow fields of pushers and pullers in the qausi-2D geometry of their experi-
mental system, and were ultimately attributed to the far-field dipolar fields generated
by the swimmers.

In paper I, we investigated whether this anomalous anisotropic diffusion could be re-
produced using LB simulations. In order to compute effective diffusion coefficients
separately for directions parallel and perpendicular to the tracers’ major axes, we em-
ployed a co-moving and co-rotating frame of reference for each particle. This ap-
proach is equivalent to that of Han et al.'2! 117118 but extended from two to three
dimensions. The total displacement of a tracer was computed by starting from its po-
sition and orientation in the laboratory frame at time step #,, respectively r,(#,) and
p:(#,). During the time interval between two time steps ¢ = £, — #,—; the particle
undergoes a translation dr; , = r,(#,) — r,(#,—1). This is transformed into the tracer’s
body frame through the application of two subsequent rotations as seen in Fig. 5.9.
This yields a body frame displacement

0t =Ry - Ry - Oy, (5.10)
where

cost,, 0 sinf,,

R, = 0 10 |, (5.11)
—sinf,,, 0 cosf,,
cosl,, sinf,, O

R, = | —sin6,, cosf,, 0]. (5.12)
0 0 1
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Figure 5.9 Schematic illustration of the rotation of an ellipsoidal tracer used for evaluating its
displacement in the co-moving coordinate frame of reference.

The angles are averaged over time steps 7 and n — 1, 0, ,, = [0;(¢,—1) + 0:(2,)]/2,
where 0, is the angle between p; and the lab xy plane and 0, is the azimuthal angle
between the x-axis and a projection of p, onto the xy plane. By summing over all
individual displacements 0r,, 7, the full body frame displacement over a macroscopic
time interval #, can be computed as

i(t,) = Z 0%, 4 (5.13)
k=1

For trajectories of length A, the displacement in the body frame is given by Ar,(Az) =
t.(to + At) — 1,(#y). The first component of this quantity corresponds to the dis-
placement along the particle’s major axis, while the other two components repres-
ents the displacement in the plane perpendicular to this axis. For the computation
of mean-square displacements, averaging was performed over all tracer particles, and
over all time origins #y yielding trajectories of a given duration Az. Translational diffu-
sion coeflicients were then obtained by fitting to Eq. (5.3), while rotational diffusion
coeflicients were calculated by fitting the orientational autocorrelation function to

Eq. (5.5).

Before examining the anisotropic aspects of tracer diffusion, we considered the labor-
atory frame diffusion coefficients D7and Dg as a function of swimmer density 7. This
is shown in Fig. 5.10, for the cases of pushers, pullers, and non-interacting swimmers.
Both the translational and rotational diffusion coeflicients are qualitatively analogous
to the behaviour discussed in Fig. 5.1. At the lowest swimmer densities, all three
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Figure 5.10 Translational and rotational diffusivity of ellipsoidal tracers, as measured in the
laboratory frame. (a) and (b) display, respectively, the translational and rotational diffusion coef-
ficients D7 and Dg as functions of swimmer density ». The inset in (a) shows an example of the
translational MSD in a pusher suspension at » = 0.1, with a fit using Eq. (5.3), and the inset in (b)
shows C(Az) in the same suspension, with a fit using Eq. (5.5). Error bars denote one standard
deviation as estimated from at least four separate runs with different initial conditions. Results
are presented in terms of the swimmer length /and swimming timescale //v,. Reproduced from
Paper I.

swimmer types show a linear increase with 7, before displaying significant deviations
at intermediate concentrations (0.01 < 7z < 0.2), corresponding to the onset of
swimmer-swimmer correlations. Pushers show a more steep increase in D7 and Dy
with 7, corresponding to the buildup towards bacterial turbulence, while pullers ex-
hibit a slower increase. In the case of translational diffusion, this is in agreement with
previous findings. 444647 Furthermore, beyond the transition (7 > 0.2) it can be ob-
served that the translational diffusion coefficient of pushers deviates by approximately
two orders of magnitude relative to the non-interacting value, while D deviates by
one order of magnitude less. For pullers, the relative effect of correlations can also be
seen to be smaller for rotation than translation. This can be explained by considering
the decay law of the dipolar velocity fields generated by the swimmers. Tracer advec-
tion depends on the magnitude of the local velocity field, to which the contributions
of individual swimmers scale as 7~2. The superposition of the fields generated by the
whole suspension thus leads to truly long-ranged interactions. However, tracer ro-
tation depend on the local velocity gradient, to which the contribution of a dipolar
field decays as 72, and their superposition only yields a marginally long-ranged form
of interaction. The correlation length of the velocity gradient field is therefore ex-
pected to be shorter, and thus D can be expected to be less affected than D7 by
swimmer-swimmer correlations.

By decomposing the displacement as seen in the co-moving body frame, as described
by Egs. (5.10) to (5.13), the anisotropy of the translational diffusion can be quan-
tified by considering the ratio of diffusion coefficients parallel end perpendicular to
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Figure 5.11 Anisotropic diffusion of ellipsoidal tracers, as measured in the co-moving body
coordinate frame. The ratio of diffusion coefficients along the tracer major and minor axis is
displayed as a function of ». Error bars denote one standard deviation as estimated from at least
four separate runs with different initial conditions. Reproduced from Paper I.

the particle major axis, D /D, as displayed in Fig. 5.11. It can immediately be ob-
served that suspensions of pullers and non-interacting swimmers display no discern-
ible anisotropic diffusion, as the ratio remains close to unity across the whole range
of swimmer densities. Pushers, however, display a sharp increase around » = 0.15,
before stabilizing around D) /D, ~ 1.1. This occurrence coincides with the onset of
active turbulence, as seen in Fig. 5.10. It is noteworthy that the steep increase in the
ratio of diffusion coeflicients appears significantly more well defined than the gradu-
ally growing deviation from linear behavior seen in Fig. 5.10, and therefore appears
to be a potential signature of the transition to the turbulent state.

It is also obvious that the behavior of pushers seen in Fig. 5.11 is qualitatively differ-

ent from experimental observations, ''”

where Dj|/D, decreases monotonically with
n and falls well below unity after the onset of collective motion. This strongly sug-
gest that, in unbounded three-dimensional systems, this type of anisotropy cannot be
attributed to far-field hydrodynamic interactions as mediated by dipolar swimmers.
Furthermore, previously presented arguments for the observed anisotropy in thin li-
quid films are based on tracer advection by a single swimmer, where both particles
are confined to a two-dimensional plane while the swimmer dipole field is three-
dimensional. Under this geometry, the equivalence between pushers and pullers at
the single-swimmer level does not hold, and allows for different translation-rotation
couplings for the two types of swimmers.''” As this is prohibited in bulk 3D sus-
pensions, such effects cannot yield different anisotropy for pushers and pullers in our
system, in the absence of swimmer-swimmer correlations. However, as the anom-
alous translation-rotation coupling in liquid films is only experimentally observable
at concentrations where swimmer-swimmer correlations are known to be significant,
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single-swimmer effects are also indicated to be insufficient for describing the beha-
viour under such geometries. Instead, we suggest that the true origin of the aniso-
tropic diffusion lies in other effects such as near-field hydrodynamic interactions or
direct collisions between swimmers and tracers. Nevertheless, as 2D confinement is
known to affect the hydrodynamic interactions between dipolar swimmers, simula-
tions of such geometries could be fruitful, which is considered in Chapter 6.
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Quasi-two dimensional sys-

tems
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In this chapter, we briefly consider quasi-two dimensional microswimmer systems,
and present previously unpublished results of LB simulations of anisotropic tracer
diffusion in such geometries. As described is Section 5.6, for bacterial suspensions
in thin liquid films, the ratio of diffusion coefficients parallel and perpendicular to
ellipsoidal tracers’ major axis D) /D falls below unity in the case of pushers at high
densities, while remaining > 1 for pullers. This is in clear disagreement with the res-
ults of our simulations of three-dimensional microswimmer suspensions, also presen-
ted in Section 5.6. Motivated by these discrepancies, we investigated the impact of
the system geometry on the diffusive behavior of ellipsoidal tracers. As opposed to the
simulations presented in Chapter 5, we constructed a quasi-two dimensional system,
by employing a simulation box with a quadratic base of Z, = L, = 100 lattice units,
and a thickness of L, = 9 lattice units. Periodic boundary conditions were applied
in the x-, and y-directions, while no-slip boundary conditions were applied in the z-
direction. The positions and orientations of swimmers and tracers were confined to
the mid-plane of the simulation box (at z = L,/2), while the fluid was allowed to
propagate also along the z-axis. The number of tracer particles included was reduced
to IV, = 20000, due to the smaller system size.

a) 101 J b
@ 10 ® ]
—
-~
10° \<_], 10-1 4
A
=2
074 Zio 1072
I &
Q 1072 4 Q 10-3 4
1073 o 104 4
—&— Pushers
104 —4— Pullers -
0 ~¥— Non-Interacting 1077 3
T T T T T T T T T T
103 10—2 101 10° 10! 1073 102 10-! 10° 10"
n2p n2p

Figure 6.1 Translational and rotational diffusion of ellipsoidal tracers in a quasi-two dimen-
sional system, as measured in the laboratory frame. (a) and (b) display, respectively, the trans-
lational and rotational diffusion coefficients D and Dy as functions of the two-dimensional
swimmer density n,p. The inset in (a) shows an example of the translational MSD in a pusher
suspension at z,p = 0.2, with a fit using Eq. (5.3), and the inset in (b) shows C(A¢) in the same
suspension, with a fit using Eqg. (5.5). Error bars denote one standard deviation as estimated
from at least four separate runs with different initial conditions. Results are presented in terms
of the swimmer length /and swimming timescale //v,.

We begin by examining the laboratory frame diffusion coeflicients D7 and Dp as
functions of the two-dimensional swimmer density 7op = N;/L.L,, equivalent to
our approach for the corresponding three-dimensional system shown in Fig. 5.10. As
seen in Fig. 6.1, similar behavior can also be observed in the quasi-two dimensional
system. At low swimmer concentrations D7 and Dy display linear scaling with 7;p
for all three swimmer types. At intermediate densities (0.1 < 7,p < 2), both diffu-
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sion coefficients exhibit a more steep increase with 7,p in the case of pushers, while
increasing more slowly in the case of pullers. We identify this as the the onset of
swimmer-swimmer correlations, which in the case of pushers is the buildup towards
bacterial turbulence, analogous to what could be seen in three dimensions. Beyond
this transition region, pullers however display behavior qualitatively different from
that seen in Fig. 5.10. D7 decreases sharply by around one order of magnitude, and
then remain largely constant. Dg initially shows a similar behavior, before increasing
even more dramatically with increased 7;p, and approach the linear curve of non-
interacting swimmers.

This behavior of pullers is a consequence of an instability associated with density
variations, which arises due to the in-plane flow fields being effectively compressible,
in spite of the incompressibility of the 3D bulk fluid.'?3 As the fluid can move out-
of-plane, dipolar swimmers act as sources (pushers) or sinks (pullers), with the latter
showing a tendency to cluster together with their heads pointing towards a central
point. The onset of such clustering is associated with a dramatic increase in the fluid
mean-square velocity. This would be expected to increase the MSD of tracers, and
thereby their translational diffusion coeflicient, which is not reflected in Fig. 6.1. This
might be due to the tracers becoming trapped in the sinks generated by clusters of
pullers — a phenomenon that is in part unphysical due to excluded volume effects
absent in our simulations.
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Figure 6.2 Anisotropic diffusion of ellipsoidal tracers in a quasi-two dimensional system, as
measured in the co-moving body coordinate frame, analogous to Fig. 5.11. The ratio of diffusion
coefficients along the tracer major and minor axis is displayed as a function of n,p. Error bars
denote one standard deviation as estimated from at least four separate runs with different initial
conditions.

Next, we turn to the anisotropy of translational diffusion, by considering the ratio of
diffusion coefficients parallel end perpendicular to the particle major axis, Dj|/D .
The results are presented in Fig. 6.2, analogous to the results for tree-dimensional
suspensions displayed in Fig. 5.11. However, we exclude pullers due to the unphys-
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ical aspects of their behavior following the instability just discussed. Non-interacting
swimmers yield no anisotropic behavior in the whole observed range of 7,p, while
pushers display a gradual decrease in Dj|/D, with swimmer density. This is partly
in agreement with experimental observations, which show that this ratio drops below
unity for E. coli suspensions at intermediate densities.!!” However, due to the un-
avoidable inclusion of Brownian motion in any laboratory setting, anisotropic diffu-
sion will be skewed towards the ellipsoid’s major axis at low swimmer densities where
advection is small, making direct comparison with Fig. 6.2 difficult. Nevertheless, the
agreement in the trend of decreasing D, /D, with nyp in the case of pushers indic-
ate that the geometry of the system might indeed partially explain their anisotropic
diffusion in thin liquid films.
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