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Abstract

Through the advent of high-order harmonic generation and attosecond light
pulses, photoionization dynamics has been studied on the attosecond time-scale,
the intrinsic time-scale of such dynamics. When the electron leaves the atomic
potential a phase shift is imprinted on the electron wavefunction. The measure-
ment of this phase, together with amplitude allows us to determine the dynamics
that of the photoionization.

In this thesis, attosecond (10−18 s) and femtosecond (10−15 s) photoionization
dynamics are studied using the photoelectron interferometry technique, Re-
construction of Attosecond Beating By Interference of two-photon Transitions
(RABBIT). In RABBIT, the electron wavepacket is interfered with itself, and
through this spectral interference, the spectral amplitude and phase can be re-
trieved.

Attosecond time-delay measurements, are performed in argon and xenon where
different aspects of electron correlation are investigated. In argon photoioniz-
ation is studied in the region of the Cooper minumum, where the ionization
cross section rapidly decrease. In xenon photoionization is studied across the
4d giant dipole resonance. Resonant dynamics is studied using energy-resolved
RABBIT. The studied resonances are the 1s3p, 1s4p, 1s5p (below threshold)
and 2s2p (above threshold) in He and 3s−14p (above threshold) in Ar. Most of
the measurements in the thesis are angular-integrated.

If the photoelectron is prepared as a mixed state, RABBIT is unsuccessful in
characterizing the quantum state of the electron, since it cannot be represented
as a wavefunction. Therefore a quantum state tomography protocol for photo-
electrons (KRAKEN) was developed and tested experimentally in non-resonant
ionization of helium, neon and argon. In the case of neon and argon, due to
spin-orbit splitting, the entanglement between the photoelectron and ion leads
to decoherence induced by incomplete measurements where the state of the ion
is not measured.
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Popular Science Summary

The interaction of matter with light is along with gravity one of the two forces
of nature that humans can directly experience. When the sun shines on our
skin we can feel the heat from light being absorbed, in the receptors of our eyes
light-matter interaction enables our vision. The dynamics of this interaction is
ultimately due to by the interaction between electrons and photons, the quanta
of light. The dynamics of the electron-photon interaction occur on the atto-
second (10−18 s) time scale, where the proportion of 1 attosecond to 1 second
is the same proportion as 1 second to the age of the universe. To uncover on
how photons and electrons interact, it should be measured on these very short
times.

In 1987, a new type of extreme ultraviolet laser was invented, with pulses of
duration on the order of attoseconds. These laser pulses can be used as a very
fast camera flash, to record a slow motion movie of how the electrons move.
From this slow motion movie it is possible to learn how light interacts with
matter.

When an atom absorbs a photon of sufficiently high energy, an electron can be
removed from the atom. This effect is called the photoelectric effect. In this
thesis, I have used such an attosecond laser to measure the dynamics of the
photoelectric effect in different elements.

Quantum mechanics is the theory that describes how matter interacts with
light. In quantum mechanics objects can have strange properties that seem
unintuitive to everyday experience. For example, quantum objects can be in two
places at once, a property called superposition. Additionally quantum objects
can be entangled, what Einstein called, a spooky action at a distance. If two
objects, A and B, are entangled an observation on A will change the state of B
instantaneously, even if they are separated by a large distance. In this thesis,
a method to measure the quantum state of a photoelectron is presented. Such
measurements allow to characterize the quantum properties of the electron and
may unravel how the the entanglement evolves between the electron and the
atom under these very short time-scales.

One can argue that the work of this thesis is of little practical use. However
basic research have repeatedly shown an ability to provide unexpected practical
applications.
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Populärvetenskaplig sammanfattning

Interaktionen mellan materia och ljus är tillsammans med gravitationen en av
de tv̊a naturkrafter som människor direkt kan uppleva. När solen skiner p̊a v̊ar
hud kan vi känna värmen fr̊an ljus som absorberas, i receptorerna i v̊ara ögon
möjliggör ljus-materia växelverkan v̊ar syn. Dynamiken i denna interaktion
beror ytterst p̊a interaktionen mellan elektroner och fotoner. Dynamiken i ljus
materia växelverkan sker p̊a attosekundtidsskalan (10−18 s), där proportionen
mellan 1 attosekund och 1 sekund är samma proportion som mellan 1 sekund och
universums ålder. För att först̊a hur fotoner och elektroner interagerar måste
interaktionen mätas p̊a dessa mycket korta tider.

1987 uppfanns en ny typ av extrem ultraviolett laser, med pulser med pulslängd
i storleksordningen av attosekunder. Dessa laserpulser kan användas som en
mycket snabb kamerablixt, för att spela in en slow motion-film av hur elektron-
erna rör sig. Fr̊an denna slow motion-film är det möjligt att lära sig hur ljus
interagerar med materia.

När en atom absorberar en foton med tillräckligt hög energi kan en elektron
avlägsnas fr̊an atomen. Denna effekt kallas den fotoelektriska effekten. I detta
examensarbete har jag använt en attosekundlaser för att mäta dynamiken av
den fotoelektriska effekten för olika grundämnen.

Kvantmekanik är teorin som beskriver hur materia interagerar med ljus. Inom
kvantmekaniken kan objekt ha märkliga egenskaper som är ointuitiva för mak-
roskopiska varelser. Till exempel kan kvantobjekt vara p̊a tv̊a ställen samtidigt,
en egenskap som kallas superposition. Dessutom kan kvantobjekt vara sam-
manflätade, vad Einstein kallade, en spöklik växelverkan. Om tv̊a objekt, A
och B, är sammanflätade, kommer en observation p̊a A att ändra tillst̊andet för
B omedelbart, även om de är åtskilda med ett stort avst̊and. I denna avhandling
presenteras en metod för att mäta kvanttillst̊andet hos en fotoelektron. Dessa
mätningar gör det möjligt att karakterisera elektronens kvanttillst̊and och kan
skapa en först̊aelse för hur sammanflätningen beter sig mellan elektronen och
atomen under dessa mycket korta tidsskalor.

Man kan hävda att arbetet med denna avhandling är av liten praktisk nytta.
Grundforskning har dock upprepade g̊anger visat en förmåga att ge oväntade
praktiska tillämpningar.
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H. Laurell, R. Weissenbilder, C. L. Arnold, R. Feifel, J. M. Dahlström,
G. Wendin, M. Gisselbrecht, E. Lindroth, and A. L’Huillier
Nature Communications 11, (2020)

III Resonant two-photon ionization of helium atoms studied by
attosecond interferometry
L. Neoricic, D. Busto, H. Laurell, R. Weissenbilder, M. Ammitzböll,
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C. Guo, S. Ahmed, A. F. Kockum, C. L. M. Petersson, E. Lindroth,
C. Dittel, R. J. Squibb, R. Feifel, M. Gisselbrecht, C. L. Arnold, A.
Buchleitner, A. L’Huillier, D. Busto
Manuscript in preparation

All papers are reproduced with permission of their respective publishers.

viii



Abbreviations

APT Attosecond Pulse Train
ATI Above-Threshold Ionization
CPA Chirped Pulse Amplification
DC Direct Current
EWP Electron Wave Packet
HHG High-order Harmonic Generation
IR Infrared
MCP Micro Channel Plate
RABBIT Reconstruction of Attosecond

Beating by Interference of two-photon Transitions
SNR Signal-to-Noise Ratio
Ti:Sapphire Titanium:Sapphire
XUV Extreme Ultraviolet
QST Quantum State Tomography
MBES Magnetic Bottle Electron Spectrometer
VMI Velocity Map Imaging
RRPA Relativistic Random Phase Approximation
RRPAE Relativistic Random Phase Approximation with Exchange

ix



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Popular Science Summary . . . . . . . . . . . . . . . . . . . . . . . . . iii
Populärvetenskaplig sammanfattning . . . . . . . . . . . . . . . . . . . v
List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Part I: Summary 1

1 Introduction 1
1.1 Attosecond science . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Quantum coherence in attosecond metrology . . . . . . . . . . . 2
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Attosecond light pulses and High order harmonic generation 5
2.1 Ultrashort light pulses . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 High order harmonic generation . . . . . . . . . . . . . . . . . . . 10
2.3 Temporal structure of the emitted radiation . . . . . . . . . . . . 15
2.4 Light source of the attosecond laboratory . . . . . . . . . . . . . 17

3 Attosecond photoelectron interferometry 19
3.1 Photoelectron interferometry . . . . . . . . . . . . . . . . . . . . 19
3.2 Reconstruction of attosecond beating by interference of two photon

transitions (RABBIT) . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5 Results I: Time-delays . . . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Results II: Resonances . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Quantum state tomography and decoherence in photoionization 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 KRAKEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Electron purity and bipartite entanglement . . . . . . . . . . . . 50
4.4 Numerical simulations close to Fano resonances . . . . . . . . . . 53
4.5 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . 55



4.6 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Summary and outlook 63
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Author Contributions 67

Acknowledgments 70

References 73

Part II: Publications 80
Paper I: Attosecond photoionization dynamics in the vicinity of the

Cooper minima in argon . . . . . . . . . . . . . . . . . . . . . . . 81
Paper II: Attosecond electron–spin dynamics in xe 4d photoionization 89
Paper III: Resonant two-photon ionization of helium atoms studied by

attosecond interferometry . . . . . . . . . . . . . . . . . . . . . . 97
Paper IV: Breaking the time symmetry of Fano resonances in atto-

second photoelectron interferometry . . . . . . . . . . . . . . . . 111
Paper V: Probing electronic decoherence with high-resolution atto-

second photoelectron interferometry . . . . . . . . . . . . . . . . 121
Paper VI: Continuous-variable quantum state tomography of photo-

electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Paper VII: Ultra-stable and versatile high-energy resolution setup for

attosecond photoelectron spectroscopy . . . . . . . . . . . . . . . 149
Paper VIII: Measuring the quantum state of a photoelectron . . . . . 163

xi





Chapter 1

Introduction

1.1 Attosecond science

To gain insight into a physical process it is necessary to measure its evolu-
tion. For example, the trajectory of a moving object can be recorded with a
camera, from which the dynamics of the motion can be inferred. However for
dynamics much faster than the duration of a flash of the camera it becomes
impossible to understand the dynamics of the interaction. In the early 19th
century stroboscopic photography were pioneered by Harold Edgerton [1] to
study the dynamics of fast classical processes. In stroboscopic measurements a
short light flash illuminates the object at a certain time of the evolution and the
picture is recorded. This process is then repeated for different times enabling
the reconstruction of the dynamics of the process. Stroboscopic measurements
are ultimately limited to the pulse duration of the flash, so to study ever faster
dynamics shorter light pulses are needed.

The intrinsic dynamics of chemistry occurs on extremely short timescales. The
quantum beating period resulting from interference between two states separ-
ated in energy by ΔE is equal to, τbeating = h/ΔE, where h is the Planck
constant. This gives the time scale of the rotational motion of molecules to be
on the order of picoseconds (10−12 s), vibrational molecular motion on the order
of femtoseconds (10−15 s) and the electronic motion on the order of attoseconds
(10−18 s).

With the advent of high harmonic generation [2, 3] and attosecond pulses [4,
5], attosecond light pulses could be used as flashes in measurements similar
to stroboscopic measurements to measure how electron motion evolves on its

1



natural timescale. A common approach is to use an attosecond pulse to initiate
the dynamics and then probe the dynamics with an infrared (IR) femtosecond
pulse.

In this thesis an interferometric technique, Reconstruction of Attosecond Beat-
ing By Interference of Two photon transitions (RABBIT), has been used where
an attosecond pulse train ionizes a sample and an IR femtosecond pulse probes
the ionization dynamics. In RABBIT both the spectral amplitude and phase of
the ionized photoelectron is measured, from which the dynamics of ionization
can be retrieved.

Attosecond metrology has increased the knowledge of electron dynamics and
using RABBIT photoionization dynamics has been measured in atoms [6–11],
molecules [12–15] and solids [16, 17].

1.2 Quantum coherence in attosecond metrology

Recently, the fields of quantum information and attosecond physics have star-
ted to merge as questions regarding the coherence of electronic processes on the
attosecond and femtosecond timescales have been posed. Coherence is the abil-
ity of quantum systems to maintain their quantum properties. As a quantum
system interacts with its environment it is subject to decoherence and looses its
quantum behaviour.

Entanglement and coherence have been studied in several recent works in at-
tosecond science. In [18], the density matrix of an attosecond pulse train is
measured from which the degree coherence of the pulse train is obtained. In
[19], the degree of coherence of vibrational modes of H2 is controlled and meas-
ured, effectively controlling the degree of entanglement between the ion and the
photoelectron. Optical cat states have been generated using high order har-
monic generation [20]. The density matrix of an electronic attosecond pulse
train in the context of electron microscopy has been measured [21]. Addition-
ally, entanglement between photoelectrons in non-sequential double ionization
has been measured [22].

In this thesis we contribute to this development. We present a quantum state
tomography protocol for photoelectrons (KRAKEN). Using KRAKEN it is pos-
sible to quantify the degree of coherence of a photoelectron, making it possible
to address questions regarding the entanglement between the photoelectron and
the ion. We present the first KRAKEN measurements in helium, neon and ar-
gon, where in the case of neon and argon we are able to quantify the degree of
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entanglement between the ion and the photoelectron.

KRAKEN is a new measurement scheme that can address questions in photoion-
ization dynamics, such as coherence and entanglement, that RABBIT could not.
KRAKEN is therefore an useful new tool in attosecond scientists toolbox for
studying attosecond dynamics in atoms, molecules, and solids.

1.3 Outline

In this thesis, photoionization dynamics is studied using the measurement tech-
niques RABBIT and KRAKEN. The thesis summarizes the results of 8 papers.

In papers I and II, photoionization time-delays are measured using RABBIT. In
particular, electron correlation is studied in argon and xenon. In argon, a broad
spectral region covering the 3s and 3p Cooper minima, where the 3p amplitude
is strongly reduced, is explored. In xenon, we study ionization in the 4d-shell
covering part of the “giant dipole resonance” [23, 24].

In papers III, IV and V resonant photoionization dynamics is studied using
RABBIT. In paper III the 1s3p, 1s4p and 1s5p below threshold resonances in He
are studied using angular resolved and angular integrated measurements. The
angular resolved measurements show phase jumps in emission angle and kinetic
energy that we then explain using perturbation theory. In paper IV the 3s−14p
Fano resonance in argon is studied using angular integrated measurements. Due
to the high spectral resolution of the electron spectrometer and the narrow IR
probe spectra we are able to resolve a larger than π phase variation. The large
phase variation is attributed to the complexification of the Fano parameter,
q. In paper V angularly integrated RABBIT measurements are used to study
the 2s2p Fano resonance in helium. The amplitude and phase are measured
across the resonance from which the density matrix and Wigner function of the
photoelectron is reconstructed.

In paper VI the KRAKEN protocol is presented. In KRAKEN a narrowband
bichromatic probe field is used to retrieve subdiagonals of the photoelectron
density matrix, and subsequently by scanning on of the wavelengths of the
probe the full density matrix can be reconstructed. We validate the KRAKEN
protocol using numerical simulations and reconstruct the density matrices of
photoelectrons emitted in the vicinity of the 2s2p and 3s−14p Fano resonances
in helium and argon, showing excellent agreement with theoretical calculations.
In paper VII we present a new photoelectron interferometer for RABBIT and
KRAKEN measurements. The interferometer is versatile, has high spectral res-
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olution and excellent temporal stability. Finally, in paper VIII we experiment-
ally demonstrate the KRAKEN protocol in helium, neon and argon showing
excellent agreement with theoretical calculations. We measure a purity less
than one in the case of neon and argon which implies that the ion and the
photoelectron are entangled.

The introduction to the articles is structured as follows: in chapter 2, the con-
cepts of high-order harmonic generation and attosecond pulses are introduced.
Furthermore, the laser system used for the measurements in this thesis is presen-
ted. In chapter 3 attosecond time-delays and photoelectron interferometry is
introduced. More specifically, the RABBIT protocol is derived using a dens-
ity matrix formalism. In chapter 4 the quantum state tomography protocol,
KRAKEN, is presented. Additionally, how to characterize ion-photoelectron
entanglement using KRAKEN is explained. We present a summary and out-
look in chapter 5.
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Chapter 2

Attosecond light pulses and
High order harmonic
generation

2.1 Ultrashort light pulses

This chapter introduces the mathematical description of optical pulses. A brief
summary on ultrafast laser development is made and the concept of high order
harmonic generation is introduced.

2.1.1 Waveforms and optical pulses

An optical pulse can be represented by its complex amplitude,

E(t) = A(t)eiφ(t). (2.1)

Where A(t) is the temporal envelope of the pulse and φ(t) the phase. A(t) and
φ(t) are real scalar functions. Optical pulses are square-integrable, i.e. they
have finite energy. It is therefore well defined to take the Fourier transform of
a pulse E(t), and get the spectral amplitude of the pulse as,

E(ω) =
1

2π

∫ ∞

−∞
dt A(t)eiφ(t)+iωt. (2.2)
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Since optical pulses have a well defined Fourier transform the temporal and
spectral variance obey the Fourier uncertainty relation, also denoted the time-
bandwidth product,

ΔωΔt ≥ 1

4π
. (2.3)

This relation can be shown by using the definition of the variances Δω and
Δt. For Gaussian pulses, the Fourier uncertainty is minimal. Expressed in full
width at half maximum (FWHM) and frequency (ν), using that ν = ω/2π, the
uncertainty becomes,

ΔtFWHMΔνFWHM ≥ 0.44. (2.4)

A consequence of the Fourier uncertainty principle is the Heisenberg uncer-
tainty principle of quantum mechanics. Due to the wave-particle duality, first
introduced by de Broglie, and the Fourier transform relationship between the
canonical conjugates, such as the position and momentum observables (x̂,p̂) the
Heisenberg uncertainty principle is enforced,

ΔxΔp ≥ h

4π
. (2.5)

A difference between the Fourier uncertainty and the Heisenberg uncertainty
is the introduction of the Planck constant. The Planck constant originates
from the canonical quantization procedure and the commutator between the
canonical conjugates. The meaning of the Heisenberg uncertainty is as follows.
An observation of a canonical quantity restricts the variance of the canonical
conjugate. If the position representation of a quantum state is confined, then
the momentum representation is uncertain and vice versa. This uncertainty
holds for all observables with canonical conjugates. It was shown by Pauli, that
there is no observable for time. However, it is still possible to reformulate the
Heisenberg uncertainty principle in energy and time,

ΔEΔt ≥ h

4π
. (2.6)

For short temporal intervals, the energy of a quantum state is uncertain. Imagine
that you are customer at a quantum mechanical bank. Contrary to what is
possible at a classical bank, you can at the quantum bank withdraw more than
is in your account given that you deposit it again quickly enough. This strange
structure of reality enables physical phenomena such as virtual particles and
vacuum fluctuations. Returning to optical pulses, the most common optical
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waveform is probably the Gaussian pulse. It is defined as,

E(t) = A0exp

(
− t2

2σ2
t

+ iωct+ iφ(t)

)
, (2.7)

where σt characterizes the temporal width of the pulse, ωc the carrier frequency
and φ(t) the temporal phase. If the temporal phase φ(t) is constant or linear,
the Fourier uncertainty is exact and the pulse is what is called Fourier limited.
If not, the pulse is chirped. A chirp implies that the instantaneous frequency
varies as function of time as

ωi(t) ≡
∂Arg(E(t))

∂t
= ωc +

∂φ(t)

∂t
. (2.8)

If the temporal phase is constant, it contributes to the pulse as a global phase
shift and the instantaneous frequency is invariant. A linear temporal phase res-
ults in a constant shift of the instantaneous frequency. Since the instantaneous
frequency is dependent on the derivative of the temporal phase, a linear spectral
chirp has a quadratic temporal phase. Chirped pulses are not Fourier limited. A
visualization of the concept of spectral chirp is given in Fig. 2.1. It is possible to

Figure 2.1: a) Fourier limited pulse, the spectral components are phase locked and arriving at the
same time. b) Pulse with a linear spectral chirp, the spectral components arrive with
a quadratic lag proportional to their frequency.

represent a waveform in the spectral and temporal domain simultaneously using
time-frequency analysis. In linear time-frequency analysis instead of taking the
Fourier integral over all times, a window function is applied that localizes the
observation to a temporal interval. A common linear time-frequency represent-
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ation is the short-time Fourier transform (STFT),

S(ω, τ, σ) =
1

2π

∫ ∞

−∞
dt E(t)h(t− τ, σ)eiωt. (2.9)

For the short-time Fourier transform, h(t− τ, σ) is a rectangular window func-
tion. Different choices of window function will give different time-frequency
representations of the waveform. For example, using the Gaussian function as
window function defines the Gabor transform. Linear time-frequency represent-
ations are the most common approach for analyzing signals in the time-frequency
domain. However, in some situations higher-order time-frequency representation
can be advantageous. Perhaps the most famous second-order time-frequency
representation is the Wigner-Ville representation [25–27],

Wf (ω, t) =

∫ ∞

−∞
dτ E∗

(
t− τ

2

)
E
(
t+

τ

2

)
eiωt. (2.10)

TheWigner function is a quadratic time-frequency representation and has higher
temporal-spectral resolution than a linear time-frequency representation, such
as the STFT [27]. However the Wigner function intrinsically is subject to self-
interference which can be problematic for some applications. The Wigner func-
tion [25] is also a central object in the phase-space formulation of quantum
mechanics where it is the phase space representation of the density matrix and
is defined as,

Wf (x, p) =

∫ ∞

−∞
dξ 〈x− ξ

2
| ρ̂ |x+

ξ

2
〉 eiξp. (2.11)

A general density matrix ρ̂ can be written as
∑

k pk |k〉 〈k| and pk are the prob-
abilities of the projectors, |k〉 〈k|. Inserting two completeness relations and thus
representing the Wigner function in the position representation gives,

Wf (x, p) =
∑
k

pk

∫ ∞

−∞
dξ ψ†

k

(
x− ξ

2

)
ψk

(
x+

ξ

2

)
eiξp, (2.12)

which for a pure state reduces to,

Wf (x, p) =

∫ ∞

−∞
dξ ψ†

(
x− ξ

2

)
ψ

(
x+

ξ

2

)
eiξp, (2.13)

showing that the Wigner function of a pure state has the same form as the
Wigner-Ville time-frequency representation.
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2.1.2 Chirped pulse amplification

Since the invention of the first laser by Theodore Maiman in 1960 [28], the use
and applications of laser technology has been extensive. It has since its inception
been an essential technology in industrial manufacturing and research.

In Fig 2.2 the development of focused laser intensity over time is shown. Between
1960 and 1970, Q-switching and mode-locking [29, 30] were invented. Q-switching
and mode-locking enabled the laser to be pulsed, confining the pulse energy in
a short temporal window. This increased the focused intensity several orders
of magnitude. Between 1970 and 1985, the focused intensity stagnated due to
damage of the amplification medium at high pulse intensity. The optical break-

Figure 2.2: Development of focused intensity over time. Figure adapted from [31].

down of the gain medium was a problem that Donna Strickland and Gerard
Mourou faced, and subsequently solved in 1985 by inventing the chirped pulse
amplification (CPA) scheme [32]. For this invention they were awarded the 2018
Nobel prize in physics. In CPA, a clever trick is used to circumvent the high
intensities in the gain medium, that ultimately leads to optical breakdown. An
overview of CPA in the time-domain is shown in Fig. 2.3. The main idea is
to start with low intensity ultra-short pulses generated in an oscillator. In the
following description of CPA the pulse duration and pulse energies are the ones
that were used in this work. The short pulses are generated by mode-locking.
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Figure 2.3: Schematic over a chirped pulse amplifier in the temporal domain. An oscillator (O)
delivers a short and weak pulse that is temporally stretched in a stretcher (S) after
which it is amplified (A) and finally compressed (C).

The pulses are then sent through a stretcher. This is an optical configuration,
commonly using dispersive elements, such as prisms or gratings, that increase
the pulse duration by applying a spectral chirp. This dispersion ideally preserves
the pulse energy but stretches the pulse in time, according to the Fourier uncer-
tainty principle, from 20 fs to often hundreds of picoseconds. This dramatically
decreases the intensity of the pulse. After the stretcher, the pulse is amplified,
often through a sequence of optical amplifiers. Due to the long temporal trace
of the pulse, the pulse energy can be increased by many orders of magnitude
without optical breakdown of the medium. Finally, the pulses are compressed
in a compressor which is the optical inverse operation of the stretcher. The
compressor output is a laser pulse with a similar pulse duration as the original
pulse of 20 fs, but with an energy on the order of mJ.

The incredible breakthrough by Strickland and Mourou started a new era of laser
development and new light sources based on non-linear optics took advantage
of the dramatic increase in pulse energy.

2.2 High order harmonic generation

High order harmonic generation is a highly nonlinear optical process that can
occur when a high intensity laser pulse, often generated through CPA, is focused
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down in a medium, most commonly an atomic gas. In the focus of the laser
beam the peak intensity can reach intensities on the order of PW/cm2 giving
an electric field strength of the light on the order of GV/cm, comparable to the
electric field of the atomic potential. The strong optical field greatly distorts
the Coulomb potential and enables highly non-linear processes. Subsequently,
optical overtones of the fundamental laser field are emitted from the medium
forming a harmonic spectrum where the harmonics, of odd order, are separated
from each other by twice the frequency of the driving field.

Similarly to when a pianist strikes a note, overtones are generated and the intens-
ity of the overtones decreases rapidly with increasing harmonic order. However,
for the optical high order harmonic generation process this describes only the
perturbative regime. For optical high order harmonics something very strange
happens. At high harmonic orders, the intensity of the harmonics stops de-
creasing and can remain almost constant for many harmonic order. This region
is called the plateau and can only be described non-perturbatively. At a high
harmonic order the harmonic intensity sharply drops defining what is denoted
the harmonic cutoff. Figure 2.4 shows a schematic of a harmonic spectrum with
the perturbative, non-perturbative and cutoff regions indicated. High order har-
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Figure 2.4: Schematic of a harmonic spectrum showing three regions. (Blue peaks) The per-
turbative region, here the intensity of the harmonics decreases rapidly as function of
harmonic order. (Red peaks) The plateu/non perturbative region, the intensity of the
harmonics is constant as function of harmonic order. (Green peaks) The cutoff, for
energies greater than 3.17Up the harmonic intensity decrease with increasing harmonic
order.

monic generation was first demonstrated by [2, 3] and has then since sparked
much research activity due to the possibility to generate table top coherent
sources of pulses with attosecond duration and spectrum in the XUV and soft
x-ray spectral range, which are of interest in spectroscopy and XUV metrology
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[5].

2.2.1 The three step model

Due to the non-perturbative nature of the plateau harmonics, perturbation the-
ory cannot be used to explain them. A full quantum model of HHG based on
solving the time-dependent Schrödinger equation was developed in [33]. Ad-
ditionally, a semi-classical model called the three step model was developed in
[34, 35]. The three step model treats the tunneling through the atomic potential
quantum mechanically and the propagation of the tunnel-ionized electron clas-
sically. It describes well the physics of high order harmonic generation. More
advanced theoretical descriptions exist, such as the strong field approximation
(SFA) [36]. However, in this thesis emphasis will be put on the three step model.

Figure 2.5: Illustration of the three step model. a) Tunneling ionization of a dressed atom. b)
Propagation of the electron in the continuum. c) Recombination and emission of a
high energy photon.

A schematic of the three step model is shown in Fig. 2.5. In the three step
model the atomic potential is perturbed by a driving optical field. If the electric
field strength of the optical field is of the same order of magnitude as the atomic
potential, it perturbs the potential to such an extent that tunneling ionization
is allowed. Since there exists a probability for the valence electron to tunnel
through the atomic potential, a process called tunneling ionization, the electron
will tunnel-ionize. It is assumed to have zero velocity in the continuum after
tunneling. Thereafter the driving field accelerates the ionized electron classically.
After a half-cycle, the optical driving field switches sign and the electron is
decelerated and subsequently accelerated back to the ion. When the electron
is back in close proximity of the ion there is a small but finite probability of
recombination. If the electron recombines, through the conservation of energy
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a high energetic photon will be emitted with energy,

Ephoton = Ip + Telectron, (2.14)

where Ip is the ionization potential of the target atom, and Telectron the kinetic
energy of the electron at recombination. The ionization potential is dependent
on the target atom and is generally of the order of tens of eV. For xenon the
ionization potential is 12.1 eV and for helium 24.6 eV. Treating the driving
field classically, E = E0 sinωt, and solving the equations of motion, the radial
position of the electron for times t ≥ ti, where ti is the time that the electron
tunnels, can be found as,

x(t) =
qE0

meω2

(
sin(ωt)− sin(ωti)− ω(t− ti) cos(ωti)

)
, (2.15)

where q is the electron charge, E0 the electric field amplitude, me the mass of
the electron, and ω the angular frequency of the driving field. In Fig. 2.6, the

Figure 2.6: a) Classical electron trajectories in black. The return energy is encoded in the linewidth
of the curves. In blue the driving optical field. b) Electron kinetic energy vs. excursion
time. Two trajectories end up with the same final kinetic energy.

electron trajectories are shown and the electron kinetic energy at recombination
is shown vs. excursion time. The maximal kinetic energy that the electron can
acquire is 3.17Up, where Up is the ponderomotive energy given by,

Up =
E2

0q
2

4meω2
∝ λ2I0, (2.16)

where I0 is the peak intensity and λ the laser wavelength. This defines the cutoff
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of the high harmonic spectra as,

Ecutoff
photon = Ip + 3.17Up. (2.17)

Since Up is proportional to the square of the wavelength and the intensity of
the driving field, the cutoff of the harmonic spectra can be extended to higher
energies either by using laser sources with longer wavelengths (or increasing the
intensity of the driving field, however this approach is ultimately limited by
the ionization of the medium). This has sparked the recent wave of table-top
soft x-ray sources [37] using HHG generated from mid-IR lasers with longer
fundamental wavelength than the traditional Ti:Sapphire with a wavelength
of 800 nm. The HHG conversion efficiency scales approximately in the range
(λ−5 − λ−9) [38, 39] making it challenging to build such sources.

For a given kinetic energy the recombination time is not unique, corresponding to
different times in the continuum. Two trajectories for the electron are possible.
These trajectories are denoted as long and short and were first experimentally
verified in [40]. The emitted XUV pulse will after recombination inherit the
properties of the electron wavepacket including its chirp.

2.2.2 Phase matching

So far in the description of HHG we have considered the single atom response. In
reality the gas medium is not localized to a single point in space and the intense
laser pulse does not interact with a single atom but an ensemble of atoms at
random positions in space [41]. If the phase relation from all these point sources
is random the emitted radiation will average out to zero, dramatically decreasing
the conversion efficiency of the generation process. To mitigate this, a phase
relationship must be enforced between the point sources. This enforcement is
called phase matching and for HHG is described by equation [42],

Δk(q) = qk − kq = 0, (2.18)

where k is the wave vector of the IR field and kq is the wave vector of the
XUV field with frequency qω. Phase matching is fulfilled when the wave vector
mismatch, Δk = 0. Δk can be decomposed into,

Δk = Δkdipole +Δkfree electrons +Δkneutral atoms +ΔkGouy. (2.19)

The dipole phase Δkdipole describes the phase acquired by the electron while
propagating in the continuum before recombination. The terms Δkfree electrons
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and Δkneutral atoms describe the contributions to the refractive index of the me-
dium due to ionized electrons, a negative contribution, and neutral atoms a
positive contribution. The last term, ΔkGouy, describes the Gouy phase vari-
ation across a focus of an optical beam.

2.3 Temporal structure of the emitted radiation

After the demonstration of high order harmonic generation, the temporal struc-
ture of the generated light has been investigated. Given the large spectral
bandwidth of tens to hundreds of eV, through the Fourier uncertainty, if the
harmonics are phase locked it is possible to have pulses with pulse duration on
the order of attoseconds [43, 44], yielding the shortest coherent pulses ever gen-
erated. Considering a spectral bandwidth of 100 eV, the Fourier limit becomes,

Δt ≥ 0.44

Δν
=

0.44h

100 eV
= 18.2 as. (2.20)

The lower bound of the pulse duration hold strictly for Fourier limited pulses,
i.e. unchirped pulses.

To determine the pulse duration of the attosecond pulse a cross correlation
technique called Reconstruction of Attosecond Beating By Two Photon Trans-
itions (RABBIT), further discussed in chapter 3, was used. Through RABBIT
measurements [4], it was found that the temporal structure of the pulses is an
attosecond pulse train. Given a harmonic spectra of odd order harmonics, and
representing the harmonics as a coherent sum of Dirac delta functions,

E(Ω) =
N∑

n=0

Anδ(Ω− ω(2n+ 1))exp(iφn). (2.21)

After Fourier transformation of the spectra the temporal waveform becomes,

E(t) =
N∑

n=0

Anexp(iω(2n+ 1)t+ iφn). (2.22)

Using RABBIT measurements, the phase difference of consequtive harmonics
was measured [4], and shown to be approximately linear as function of XUV
frequency,

Δφ2n = φ2n+1 − φ2n−1 ∝ (2n+ 1). (2.23)
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This implies that the spectral phase is proportional to the square of the harmonic
order,

φ2n+1 ∝ (2n+ 1)2, (2.24)

showing that the attosecond pulse train is not Fourier limited. However since
both the spectral amplitude, An, and the phase, φn, can be measured it is pos-
sible to take the inverse Fourier transform and obtain the temporal structure as
an attosecond pulse train, where the individual attosecond pulses are approx-
imately 100 as long. If there is no phase relation between consecutive φn, the
coherent sum of E(t) becomes an incoherent sum and the temporal width an
individual pulse in the pulse train is on the order of fs.

Figure 2.7: Temporal structure of the attosecond pulse train. Fourier transformation of the atto-
second pulsetrain gives a spectrum with harmonics separated by 2ω. Fourier transform-
ation of a single attosecond pulse gives a continuous spectra with the same spectral
width as the pulse train.

In Fig. 2.7 a schematic representation of the temporal structure of the high
order harmonics is shown. To summarize, in the time domain, the attosecond
pulse train is a consequence of phase-locked harmonics. In the spectral domain
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the harmonic spectra with spacing of 2ω, is a consequence of the temporal
interference of attosecond pulses emitted every half-cycle of the driving field. If
a single attosecond pulse is gated in the temporal domain this corresponds in
the spectral domain to a continuous spectrum.

The discovery of high harmonic generation and attosecond pulses has enabled
probing dynamics of electronic motion on the attosecond time scale, its natural
time-scale. Opening the field of attosecond physics.

2.4 Light source of the attosecond laboratory

In this thesis attosecond pulse trains were generated using HHG driven by femto-
second IR pulses. The laser used is a Ti:Sapphire CPA system with a central
wavelength of 800 nm. A schematic of the laser system is shown in Fig. 2.8.
The laser system has five main components, the oscillator, stretcher, regener-
ative amplifier, cryogenic amplifier and the compressor. The oscillator emits
pulses with a power of 240 mW at 80 MHz repetition rate giving a pulse energy
of 3 nJ. The oscillator spectrum spans from 650 to 950 nm. The spectrum is
cut at the first mirror to span roughly from 700 to 900 nm, where 90 mW of
average power are sent into the stretcher. After the stretcher the pulses are
sent through an programmable acousto-optic modulator (DAZZLER) that can
control the spectral amplitude and phase of the pulses. After the DAZZLER the
pulses are sent through a 4-pass booster amplifier, and then through a Pockels
cell that picks pulses with a repetition rate of 1 kHz and transmits them into
the regenerative amplifier. In the regenerative amplifier the pulses are amplified
in 14 round trips giving a final pulse energy of 0.4 mJ after which the pulse is
coupled out with a secondary Pockels cell. The pulse is then sent into a three-
pass amplifier which increases the pulse energy to 4 mJ and subsequently sent
into the three-pass cryogenically cooled amplifier. The final amplification stage
increases the pulse energy to 7-10 mJ. All amplifiers are pumped with the second
harmonic of Neodynium-doped yttrium lithium flouride pump lasers (Nd:YLF)
with a central wavelength of 527 nm. After the cryo amplifier the pulses are
compressed in a compressor back to close to the Fourier limit with an efficiency
of 65% giving a final pulse energy of 4.5-6.5 mJ and a pulse duration of 22 fs.
These laser pulses were used to generate, through HHG, the attosecond pulse
train in paper I, II, V and in the angle-resolved measurements in paper III.
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Figure 2.8: Schematic of the laser system in the attosecond laboratory. The laser system is a
Ti:Sapphire CPA system.

The laser system was upgraded during my PhD, increasing the repetition rate
and enabling to lock the carrier envelope phase (CEP) offset. New pump lasers
enabled to increase the repetition rate of the laser system to 3 kHz while main-
taining the pulse energy of 5 mJ and pulse duration of 22 fs. The upgraded
laser system was used in the measurements for paper IV, VIII and in the angle
integrated measurements in III.
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Chapter 3

Attosecond photoelectron
interferometry

In this chapter, we present the main part of the experimental results of this thesis
(papers I, II, III, IV, V). The aim of the measurements is first introduced and
more specifically the RABBIT technique is explained and derived using a density
matrix approach. A new attosecond photoelectron interferometer is presented
and finally attosecond photoelectron interferometry measurement results are
presented.

3.1 Photoelectron interferometry

3.1.1 Atomic photoionization dynamics

Photoionization is the physical phenomena where an electron subject to electro-
magnetic radiation is removed from an atom and emitted into the continuum.
For this to occur the photon energy must be greater than the ionization po-
tential, �ω > Ip, or the intensity high enough to allow multi-photon processes
such as multi-photon ionization (MPI) [45]. When the electron is bound to the
atomic potential, the energy states that the electron can occupy are quantized.
However after the ionization moment, leaving the atomic potential behind, the
electron is described quantum mechanically with scattering states |εα〉, where
ε represents the kinetic energy of the electron and α is a set of good quantum
numbers. Asymptotically, these scattering states can be approximated by plane
waves. An electron wavepacket is no longer well defined in energy but given as
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a distribution. It is therefore represented as a superposition of scattering waves,

|ψ〉 =
∑
α

∫
dε cα(ε) |εα〉 (3.1)

For a long time, only the amplitude of ionization was measurable using photo-
electron spectroscopy. However with the advent of photoelectron interferometry,
it became possible to measure both the spectral amplitude and relative phase
of the electron wave packet after photoionization. Subsequently, by taking the
Fourier transform of the measured electron spectral amplitude and phase it is
possible to retrieve the corresponding temporal amplitude and phase of the pho-
toelectron, enabling the study of photoionization dynamics in the time domain.

Figure 3.1: Broadband a) and narrowband b) EWP excited by HHG. The broadband EWP is
localized in space and evolves on the as timescale, while the narrowband EWP evolves
on the fs timescale.

The wavepacket can either be excited by a broadband XUV field consisting of
many harmonics (Fig. 3.1 a)) or a single harmonic (Fig. 3.1 b)). The broadband
EWP is initially localized in space and evolves on the attosecond (10−18 s)
timescale while the narrowband EWP evolves on the (10−15 s) femtosecond
timescale. The broadband EWP is used to measure ionization time-delays in
paper I, II while the narrowband EWP is used to measure the amplitude and
phase across atomic resonances in paper III, IV, V.

The Hilbert space of the scattering state is continuous, since the kinetic energy
of the photoelectron can take on any positive value, and thereby of infinite

20



dimension. When the electron wave-packet leaves the potential of the parent
ion it is subject to dispersion due to variation of the atomic potential as function
of radial distance to the core. This concept was developed by Eisenbud, Wigner
and Smith [46] and is commonly denoted the Wigner time-delay, τs. Wigner
interpreted the spectral phase variation of the photoelectron as a time-delay
encoding the photoionization dynamics. In a general scattering process the
delay obtained by a wavepacket is given by,

τs = 2�
∂φ

∂E
. (3.2)

Fig. 3.2 shows a general scattering process. The wavepacket that scatters on
the potential arrives on the other side before the wavepacket that does not.

Figure 3.2: Scattering time delay induced wavepacket travelling through potential. The wave-
packet travelling through the potential arrives faster at the other side than the wave
packet that does not.

In a Coulombic potential, the asymptotic limit of the radial continuum wave-
function of a scattering state with angular momentum L has the form [47],

lim
r→∞Rk,L(r) =

√
2

πkr2
sin

(
kr +

Z ln(2kr)

k
+ ηL(k)−

πL

2

)
, (3.3)

where k is the wavevector, related to the kinetic energy as, E = �
2k2/2m,

r the radial distance to the core and Z is the nuclear charge. ηL(k) is the

21



scattering phase and L the angular momentum. The scattering phase can be
further decomposed in two contributions ηL(k) = σL(k) + δL(k), where σL(k)
is the Coulomb phase shift and δL(k) a phase shift introduced to compensate
for the quantum defect. In photoionization, the derivative of ηL(k) with respect
to kinetic energy gives the scattering time-delay as half of the delay previously
introduced,

τEWP = �
∂ηL(k)

∂E
. (3.4)

The half comes from the fact that photoionization is a half scattering process
with just an outgoing wave. The Wigner time-delay can be interpreted as the
group delay of the electron wavepacket due to the effect of the short range
potential. An interesting consequence of that the scattering states Hilbert space
is bound from below is that it is not possible to define a conjugate operator for
time, leaving time a parameter in quantum mechanics. This argument was
first put forward by Pauli and is denoted the Pauli objection [48]. Therefore
the Wigner delay should not be viewed as a temporal observable but as the
derivative of the spectral phase or the group delay of the EWP. In general,
the measurement of the spectral phase of photoelectrons over a large energy
range (Fig. 3.1 a)) allows the study of photoionization dynamics through the
measurement of the Wigner time-delay.

3.1.2 Fano resonances

The amplitude and phase of an electron wavepacket can have a large variation,
if the ionization occurs through an atomic resonance, such as a Fano reson-
ace. Fano resonance is a quantum interference phenomena between direct pho-
toioniozation and ionization via a bound state, which autoionizes. Its theor-
etical description was given by Fano in 1961 [49]. Attosecond interferometry
techniques have allowed the measurement of the amplitude and phase variation
of the ionizing electron wavepacket (EWP) across the 3s−14p resonance in ar-
gon [8, 50, 51] and the doubly excited states (2s2p, 2s3p) in helium [10, 52]
and the 2s−1np resonances in neon [53]. In particular, the build-up in time
and frequency of the electron wave packet, around the 2s2p resonance has been
characterized [10, 52]. The ultrafast dynamics the 2s2p Fano resonance has also
been investigated using attosecond transient absorption [54]. Additionally using
the same technique, Ott and coworkers have shown that it is possible to control
the Fano lineshape with an intense IR pulse [55] and to observe the correlated
two-electron dynamics in real time [56].
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Figure 3.3: a) Energy diagram for the 2s2p Fano resonacne in helium. b) Amplitude (blue curve)
and phase (red curve) of the Fano resonance factor R(ε). c) Complex trajectory of
the resonance factor. At the resonance energy the complex trajectory travels through
the origin of the complex plane. Giving rise to the discontinuous π phase jump in
Arg(R(ε)).

Fig. 3.3 shows the energy diagram of the 2s2p Fano resonance in helium. Follow-
ing absorption by an XUV photon, an electron can be excited from the ground
state to the doubly excited state. Due to configuration interaction the electron
after some time autoionizes to the continuum. Alternatively the electron can
be directly ionized to the continuum following absorption of an XUV photon.
Since there are two pathways that reach the same final state in energy, there
will be quantum interference leading to the famous asymmetric Fano lineshape.
Following the formalism of [57], the one photon interaction prepares the atom
in the eigenstate,

|ψE〉 = aφ |φ〉+
∫

dε b(ε) |ε〉 , (3.5)

where the first term describes the bound state and the second term represents
the continuum. The transition amplitude to the resonant continuum can then
be calculated as,

〈ψE | ẑ |g〉 = 〈E| ẑ |g〉 ε+ q

ε+ i
, (3.6)

where ẑ is the dipole operator and q is a real parameter that characterizes the
resonance. It is given as the ratio between the transition matrix elements of the
autoionizing and the direct channels,

q =
〈φ| ẑ |g〉

πV ∗ 〈E| ẑ |g〉 . (3.7)
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The reduced energy, ε is defined as ε = 2(E−Eφ)/Γ, where Eφ is the resonance
energy and Γ is the width of the resonance. V ∗ describes the interaction between
the bound and continuum states. The final state is modified with the resonance
factor R(ε),

R(ε) =
q + ε

ε+ i
. (3.8)

In Fig. 3.3 b) the amplitude (blue curve) and phase (red curve) of R(ε) is shown
for the 2s2p Fano resonance in helium. This Fano resonance has q = −2.77.
Around the resonance energy there is a phase jump of π radians. In Fig. 3.3 c)
the complex trajectory of R(ε) is shown. At ε → ±∞, R(ε) = 1. At ε = Eφ the
complex trajectory crosses the origin giving a π phase jump.

3.2 Reconstruction of attosecond beating by inter-
ference of two photon transitions (RABBIT)

Figure 3.4: a) Optical Mach-Zehnder interferometer and b) photoelectron interferometer. RAB-
BIT utilizes a Mach-Zehnder interferometer with an APT pump and IR probe with
variable temporal delay. Ω1, Ω2 are the frequencies of two consecutive harmonics.
|ε1〉, |ε2〉 are the states reached by absorption of XUV only radiation. |εf 〉 is reached
by interfering two-photon transitions.

Reconstruction of Attosecond Beating By Interference of two photon Transitions
(RABBIT) [4, 58, 59] is an attosecond photoelectron interferometry technique
that uses an attosecond pulse train (APT) as pump, and a weak fraction of the
generating IR field as the probe. The principle of RABBIT is shown in Fig. 3.4
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a). In an interferometer (e.g. Mach-Zehnder), a combination of APT and IR
probe at a variable time delay (τ) is prepared. Both beams are focused down in a
gas jet where electrons are ionized. In Fig. 3.4 b) the electron spectrum obtained
after absorption of the XUV field is shown in purple. The atom can additionally
absorb or emit an IR photon, generating the sidebands shown in red. Since two
paths end up at the same state |εf 〉, there is quantum interference. By scanning
the pump-probe delay, the phase of the arms of the quantum interferometer is
changed giving rise to sideband oscillations as ∼ cos(2ωτ + Δφ), where Δφ is
the phase difference between the two paths.

Fig. 3.5 shows a RABBIT scan in helium. The phase of the sideband oscilla-
tion includes the spectral phase of the ionization process as well as the phase
difference between consecutive harmonics.

Figure 3.5: RABBIT scan in helium. Figure adapted from paper VII.

The RABBIT equation can be derived by using first order perturbation theory
in quantum mechanics [60]. Here, since the density matrix will be used in
chapter 4, we derive the RABBIT equations using the same formalism, for a
single final scattering state. We do not consider the effect of several angular
channel channels.

The signal at the final energy εf , is given as the population of the density matrix
in the scattering state representation ρ̂xuv+ir,

S(εf ) = 〈εf | ρ̂xuv+ir |εf 〉 . (3.9)
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The interaction of the electron with the infrared probe field can be formally
described as the action of a unitary operator on the density matrix due to
absorption of the XUV photon ρ̂xuv as,

ρ̂xuv+ir = Û †(τ, ω)ρ̂xuvÛ(τ, ω), (3.10)

where τ is the pump-probe delay and ω the angular frequency of the probe
field. Furthermore, the probe field is assumed to be monochromatic. Û is the
scattering operator.

In paper VI a derivation of the KRAKEN protocol is shown (see chapter 4). By
following the same approach and interchanging the probe frequencies, ω1 → ω
and ω2 → −ω, in the KRAKEN derivation and considering both the absorption
and emission path, the signal, S(εf , τ, ω), can be written in terms of ρ̂xuv as,

S(εf , τ, ω) ≈ |μεf ,ε1 |2ρxuv(ε1, ε1) + |μεf ,ε2 |2ρxuv(ε2, ε2)
+ eiωτμεf ,ε1μ

∗
εf ,ε2

ρxuv(ε1, ε2)

+ e−iωτμεf ,ε2μ
∗
εf ,ε1

ρxuv(ε2, ε1),

where εi = εf ± �ω, with (+) for absorption and (−) for emission and, μεf ,εi , is
the continuum-continuum transition matrix element defined as, 〈εf | ẑ |εi〉. The
interaction with the infrared probe gives access to off diagonal terms of the one
photon density matrix. Rewriting using, 2Re(z) = z + z∗ gives,

S(εf , ω, τ) ≈ |μεf ,ε1 |2ρxuv(ε1, ε1) + |μεf ,ε2 |2ρxuv(ε2, ε2)
+ 2|μεf ,ε1 ||μεf ,ε1 ||ρxuv(ε1, ε2)| cos(2ωτ +Δφ).

(3.11)

The phase difference between consecutive harmonics, Δφ, is given by,

Δφ = Arg(μεf ,ε2)−Arg(μεf ,ε1) + Arg(ρxuv(ε1, ε2)). (3.12)

The first two terms are the measurement induced continuum-continuum phases,
and their difference is,

Δφcc = Arg(μεf ,εf+ω)−Arg(μεf ,εf−ω). (3.13)

If the state of the photoelectron is mixed, RABBIT cannot characterize the
state since it cannot be described as a wavefunction [61]. In the case of a pure
state electron wavepacket (one angular channel, no spin-orbit splitting of the
ion), Arg(ρxuv(ε1, ε2)), is the sum of the phase difference introduced from the
group delay of the harmonics, denoted the attochirp and the scattering phase
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difference,

Arg(ρxuv(ε1, ε2)) = ΔφXUV +ΔηL. (3.14)

The Wigner delay can be approximated from the finite difference of the spectral
derivative of the scattering phase as,

τEWP = �
∂ηL
∂E

= �
ΔηL
ΔE

+O(ΔE). (3.15)

Since the energy spacing of two consecutive harmonics is 2�ω, the Wigner time
delay in first order approximation becomes,

τEWP ≈ ΔηL
2ω

. (3.16)

The RABBIT technique has enabled the measurement of the Wigner time-delay
[6, 62, 63] and the study of photoionization dynamics on its natural time scale.
Broadband RABBIT has been used in papers I, II.

In papers III, IV and V we apply the energy resolved RABBIT or Rainbow
RABBIT [10], where the spectral amplitude and phase is measured across a
sideband. Eq. (3.11) is strictly speaking valid for monochromatic radiation.
Finite pulse effects can be included by taking the convolution of the optical
pump field, with the optical probe field multiplied with the two photon transition
matrix element [64]. The finite bandwidth of the probe, in particular, limits the
spectral resolution. Therefore some of the results in (papers IV and V) have
been obtained with a reduced probe bandwidth.

By Fourier transformation of the spectral wavefunction the temporal wavefunc-
tion can be computed. Using the spectral or temporal wavefunction, it is pos-
sible to analyze the state of the photoelectron in the time-frequency domain.
Examples of such time-frequecy methods are, Gabor analysis [65], the Wigner
function [52], and by construction of the build up of the EWP [10, 66]. The
build-up of the EWP is given by,

ψ(ε, τ) =

∫
dt eiεtψ(t)θ(t− τ). (3.17)

The build-up cuts the dynamics with a moving Heaviside function and by inverse
Fourier transform the spectra for different times are obtained. From the build-up
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the transient Wigner function can be calculated as,

Wf (ε, t, τ) =

∫
dξ eiξt ψ†

(
ε− ξ

2
, τ

)
ψ

(
ε+

ξ

2
, τ

)
. (3.18)

Additionally, assuming pure state, the evolution of the density matrix of the
EWP can be computed as,

ρ(ε, ε′, τ) = ψ†(ε, τ)ψ(ε′, τ). (3.19)

These time frequency analysis methods are useful for uncovering subtle struc-
tures in the photoionization dynamics.

3.3 Setup

As part of my PhD studies, the attosecond pump probe interferometer was
redesigned and rebuilt. The new design has the same parity in the number of
reflections in both interferometer arms, advantageous for passive beam-pointing
stability. Finally, new vacuum chambers with better differential pumping and
new optics were installed.

3.3.1 Attosecond photoelectron interferometer

Details on the attosecond photoelectron interferometer and its performances
can be found in paper VII, below follows a brief description of the experimental
setup.

In Fig. 3.6 a schematic of the Mach-Zehnder interferometer is presented. The
pump beam is shown in red and the probe in yellow. Laser pulses at a repetition
rate of 3 kHz and with a pulse energy up to 4 mJ, are generated in a Titanium-
Sapphire CPA system with spectral bandwidth tunable in the range of 40-80
nm. The central wavelength can be varied between 790 and 810 nm. The laser
tunability is advantageous when studying atomic resonances, since the central
wavelength can be centered at the resonance energy. The laser is sent on a
40-60 beamsplitter that divides the pump beam and the probe beam with 40%
of the intensity in the pump beam and 60% in the probe beam. The pump
beam is first sent on a motorized delay stage with two mirrors in retro-reflective
configuration.
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Figure 3.6: Schematic of the Mach-Zehnder attosecond photoelectron interferometer. The laser
is incident on a 40-60 Beam Splitter (BS) that separates the pump and the probe.
The pump is then sent on a Motorized Stage (MS) and focused down with a dielectric
Focusing Mirror (FM) into the Gas Cell (GC). HHG is generated and transmitter
through a metallic filter in a Filter Wheel (FW) recombined with the probe in a
Recombination Mirror (RM). The pump probe delay is controlled with an Attosecond
delay Stage (AS). A Pickup Mirror (PM) can be inserted to look for temporal overlap
on the Spectrometer (S1). Figure adapted from paper VII.

This delay stage is used for coarse adjustments of the temporal delay between
the pump and the probe beams and is usually used to find temporal overlap. The
pump beam is then sent through an iris used for alignment, on a holey mirror
that cuts the center of the beam. It is finally focused down by a dielectric concave
spherical mirror with a focal length of 50 cm. The pump beam propagates
through a sapphire window into the generation vacuum chamber with a pressure
of 10−7 mbar and 10−3 mbar with gas load. The beam is focused in a 6 mm
long pulsed gas cell supplied from Amsterdam Piezo Valve. The gas cell is
mounted on a Smaract 2d linear translation stage that allows for translation of
the gas cell in the xy-plane. Additionally there is a Newport stage mounted on
the Smaract stage that allows for adjustment of the angle of incidence, in total
giving motorized control of five degrees of freedom (x, y, z, θx, θy). In the gas
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cell high-order harmonics are generated. The XUV radiation and the pump IR
propagate colinearly into the recombination vacuum chamber with a pressure
of 10−6 mbar. The central part of the pump IR is filtered out using a metallic
foil filter mounted on a fused silica plate in a Smaract filter wheel. The outer
part of the pump IR is not filtered by the metallic foil and later used for active
temporal stabilization with the probe. The XUV radiation is then sent through a
recombination mirror where it is overlapped with the probe IR and then focused
down using a toroidal mirror (2f configuration with f = 60 cm) into an effusive
gas jet in the Chamber for Atomic and Molecular Physics, (CAMP). Here the
XUV radiation ionizes electrons, that are analyzed by an ekectron spectrometer,
here a magnetic bottle spectrometer.
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Figure 3.7: Schematic of the active stabilization loop. The outer part of the pump IR is transmitted
through the fused silica plate and on the Recombination Mirror (RM) after which it is
reflected and sent into a pieze of Fused Silica (FS) and focused down with a Focusing
Lens (FL) on a Linear Polarizer (LP) a Narrowband Filter (NF) and finally a Camera
(C1). The probe IR is transmitted through the RM on a λ/2-plate through the FL on
tunable Wedge Pair (WP) and on the camera. Figure adapted from paper VII.

After the interaction region, both the APT and the IR probe are propagated
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on a Hitachi concave grating that is mounted on a linear Smaract stage. The
first diffraction order of the HHG is then imaged onto a MCP after which there
is a phosphor screen with a camera imaging the screen, forming the XUV spec-
trometer. Using this design it is possible to measure the XUV spectra and
the photoelectron spectra simultaneously. To overlap the pump and the probe
field spatially, the grating can be moved out using the linear translation stage,
sending the beam on a lens that focuses down the two beams on a camera.

In Fig. 3.7 a schematic of the active temporal stabilization loop is shown. High
resolution RABBIT measurements require long term temporal stability between
the XUV and IR pulses on the order of tens of as. To ensure temporal stability,
an active stabilization loop is implemented. The outer part of the pump IR
is reflected on the recombination mirror, delayed with a fused silica piece and
focused down on camera. The probe IR is transmitted through a hole in the
recombination mirror via a λ/2-plate for contrast control and then focused down
through a tunable wedge pair on the camera creating interference fringes. Both
pulses are narrowband filtered with a 10 nm bandpass filter to ensure fringes for
a long scan range (-400, 400) fs.

The stabilization procedure consists in first removing the aluminum filter by
rotating the Smaract filter wheel, moving in the pick-up mirror (PM) and looking
for spectral fringes on the spectrometer (S1) (Fig. 3.6). Here the motorized
stage (MS) can be manually turned to find temporal overlap. The fringes on
S1 estimates the temporal overlap between pump and probe in the interaction
region in the CAMP, neglecting the transmission through the metallic filter. The
filter can then be realigned and the pick-up removed. By tuning the dispersion in
the wedge pair temporal overlap can be found on the camera which in turn can be
actively stabilized using a feedback loop with error signal from the phase of the
interference signal of the FFT. The feedback loop then actuates the attosecond
delay stage (AS).

3.3.2 Electron spectrometers

For the experiments conducted, two types of spectrometer are used. In Fig.
3.8, a schematic of the Magnetic Bottle Electron Spectrometer (MBES) and the
Velocity Map Imaging (VMI) is shown.
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Figure 3.8: Schematic of the MBES a) and the VMI b). The MBES are used as the photoelectron
detector in papers I, II, III, IV, V and VIII, while the VMI is used in paper III. Figure
adapted from paper III.

By default, the MBES is used thanks to its high spectral resolution and transmis-
sion. In the MBES, electrons are guided by a magnetic field from a permanent
magnet into a drift tube to a detector. The electrons are subject to cyclotron
motion and from the time of flight it is possible to calculate the kinetic energy of
the electrons at ionization. For the MBES the conversion between time-of-flight
time and photoelectron kinetic energy is given by,

E =
me(L+ γ)2

2t2tof
, (3.20)

where me is the electron mass, L the length of the flight tube, ttof the time it
takes for the electron to reach the detector and γ a calibration parameter. As
can be seen in Eq. (3.20) the resolution of the spectrometer scales proportional
to the length of the magnetic bottle, therefore it is advantageous to have a long
bottle. For this work, a bottle of length 2 m is used. In the flight tube, the
electron is assumed to propagate classically with constant kinetic energy. The
electron collides with the multi-channel plate (MCP) at the end of the drift tube
initiating an electronic cascade that is then detected. It is possible to apply a
voltage in the magnetic bottle to decelerate electrons down to 1-2 eV where the
MBES has the highest resolution, ΔE/E ≈ 2%.

For the measurements in paper III, a VMI allowing for angular resolution is
used to study resonant two-photo ionization in helium. In the VMI electrons are
focused with an electrostatic lens onto a MCP after which there is a phosphor
screen that is imaged by a camera. At the MCP the photoelectron angular
distrubution (PAD) is projected on a plane. Using Abel inversion it is possible,
from the 2d projection, to reconstruct the PAD. The resolution of a VMI scales
as, ΔE/E ≈ 5%, giving a lower spectral resolution than that of the MBES.
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3.4 Resolution

The spectral measurement of the electron with a MBES can be mathematically
formulated as the convolution between the MBES point-spread function (PSF)
and the kinetic energy spectrum (Sraw) of the electron.

Smeasured(ε) =

∫
dε′ psf(ε′)Sraw(ε− ε′) (3.21)

The PSF limits the spectral resolution of the MBES. The PSF is a consequence of
volume averaging in the interaction region of the CAMP and the angular integ-
ration. It is possible to remove the convolution by use of spectral deconvolution.
Spectral deconvolution is implemented in paper V using blind Richardson-Lucy
deconvolution [67, 68].

Figure 3.9: Characterization of the spectral resolution of the MBES by below threshold ionization
of the helium 3p state and varying the retarding potential.

In Fig. 3.9 the kinetic energy spectra measured with the MBES of a resonant
two-photon process is shown for different retarding potentials. A spectrally
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broad harmonic excites the 3p Rydberg state in helium and an electron is ionized
through the absorption of a secondary narrow-band filtered (10 nm) IR photon.
The width of the electron peak is given as the convolution of the resonance
width with the IR field and the point spread function of the MBES. The width
of the electron peak is to a good approximation given as the MBES point spread
function. The point spread function broadens for increasing kinetic energy and
by scanning the retarding potential the point spread function as function of
kinetic energy can be determined. To maximize spectral resolution in rainbow
RABBIT the retarding potential is applied such that the kinetic energy of the
photoelectron is around 1 eV. Here the resolution of the spectrometer is < 50
meV.

3.5 Results I: Time-delays

In this section broadband attosecond time-delay measurements are presented
using RABBIT to study subtle aspects of electron correlation, such as the 3s
and 3p Cooper minimum in argon and the Giant dipole resonance in xenon.

3.5.1 Paper I: Attosecond photoionization dynamics in the vi-
cinity of the Cooper minima in argon

In this work the Rainbow RABBIT technique is used to measure the photoion-
ization time-delay difference between the 3s and 3p subshells in a large spec-
tral range, ∼ 34 eV, covering both the 3s and the 3p Cooper minima. The
Cooper minimum is an interesting phenomenon caused by the zero crossing of
the 3p → εd radial transition matrix element. Due to electron correlation, the 3p
Cooper minima is imprinted in the 3s ionization channel. The Cooper minimum
is reflected in the ionization cross section as a sharp decrease.

In the following, we call 3p (3s) harmonics the electron peak due to absorption
of one harmonic from the 3p (3s) state and 3p (3s) sidebands the electron peak
following a two-photon transition from the 3p (3s) state. Different contributions
may partially overlap spectrally. Using Rainbow RABBIT, with high spectral
resolution, it is possible to disentangle processes due to absorption of one har-
monic from the 3p state and the sideband following a two-photon transition
from the 3s state.
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Figure 3.10: 2ω amplitude (top panel) and phase (bottom panel) retrieved from Rainbow RABBIT
measurements across the 3s-3p Cooper minima in argon performed in Saclay. Hn

denotes the nth harmonic. Hn,3s (Hn,3p) denotes the electron peak due to absorption
of the nth harmonic from the 3s (3p) state. SBn±1,s (SBn±1,p) denotes the electron
peak following a two-photon transition from the 3s (3p) state. Figure adapted from
paper I.

In Fig. 3.10 the retrieved amplitude of the oscillations with frequency 2ω (top
panel), and phase (bottom panel) are shown. The red regions in the top panel
correspond to 3s harmonics and sidebands, while the blue peaks correspond to
3p harmonics and sidebands. In the bottom panel the black curve shows the
retrieved phase and the yellow curve the phase from theoretical calculations. As
can be seen there is a spectral overlap between 3p harmonics and 3s sidebands.
However it is possible to retrieve the 3p and 3s sideband phases despite the
partial spectral overlap with the harmonics, by taking the phase value from
spectral regions without overlap. The cross section for 3s ionization is about
one order of magnitude lower than the 3p ionization cross section. This results
in one order of magnitude difference in the signal-to-noise ratio between 3s and
3p phases, making it challenging to retrieve the 3s phase.

In Fig. 3.11 the Wigner-time delay difference between the 3s and 3p shells
in argon is shown. The purple points are from measurements by us while the
yellow points are from measurements of the Saclay group. The green curve
shows the delay difference calculated using the Two-Photon Two-Color Ran-
dom Phase Approximation with Exchange. In general there is good agreement
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between measurement and theory, however not in the region around the 3s
Cooper minimum. This discrepancy between theory and experiment is attrib-
uted to overlapping contributions of shake-up states. The large phase retrieval
error close to the 3s Cooper minimum is caused by the low 3s ionization cross
section going to zero at the Cooper minimum.

Figure 3.11: Time-delay measurements across the 3p and 3s Cooper minima in argon. Figure
adapted from paper I.

3.5.2 Paper II: Attosecond electron-spin dynamics in xenon 4d
photoionization

Another interesting case of electron correlation is photoionization in the region
of the Xe 4d giant dipole resonance, which has been a subject of study for many
years [23, 24]. The resonance is very broad and a consequence of collective
many-electron effects in the 4d shell.

In Fig. 3.12 (a) a schematic of the photoionization process is presented. A XUV
photon ionizes an electron from the 4d shell. This process is followed by Auger
decay. For example, a 5s electron fills the hole in the 4d shell and a 5p electron
is emitted. The energy diagram in Fig. 3.12 (b) shows the intermediate and
final states of the ion. The spin-orbit interaction in leads to a splitting of 2 eV
for the 4d−1 2D5/2 and 2D3/2 states of the Xe+ ion.

In these measurements RABBIT is combined with coincidence spectroscopy to
disentangle spectrally overlapping electron peaks [69]. In Fig. 3.13 a two-
electron coincidence map is shown. The electron emitted from the 4d shell
is referred to as the fast electron and the electron emitted from the n = 5 shell
the slow electron. This notation is due to the kinetic energy difference between
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the 4d photoelectron and the Auger electron, emitted from the n = 5 shell.

Figure 3.12: (a) Schematic illustration of Xe 4d direct photoionization (purple) and Auger decay
processes (green) after absorption of a XUV photon. (b) Xe energy diagram showing
the Xe+ intermediate and Xe2+ final states involved. Figure adapted from paper II.

For coincidence measurements we limit the ionization rate to one event per laser
shot, such that we can correlate the kinetic energy of the fast electron with the
slow electron. This requires a long measurement time, making the experiment
challenging. Fig. 3.13 shows the measured photoelectron coincidence map with
XUV-only (a) and XUV + IR (b). By fitting the sideband oscillations, the
phases can be extracted. While the variation of the phase with energy determ-
ines the time delay, the comparison of the phases from the same sideband order,
for different ionic cores informs on the influence of the spin-orbit coupling in
photoionization. The phases are found to be independent of the subsequent
Auger decay.

We measure a 100 as time delay difference between Xe 4d5/2 and Xe 4d3/2 near
the 4d threshold. With theoretical calculations, using the Relativistic Random
Phase Approximation (RRPA) method, we show that the measured 100 as time
delay is a consequence of interference due to several resonances. The spin-orbit
coupling in Xe weakens the dominating role of LS-coupling in the near threshold
region, giving rise to the LS-forbidden transition from singlet ground state to
triplet 4d9f 3P and 3D states. The drastic variation in the photoionization time
delay can be attributed to the mixing of singlet and triplet resonances in this
region.
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Figure 3.13: Two-electron coincidence spectra using (a) XUV only and (b) XUV+IR. The projec-
tion on the slow electron energy axis (e) shows Auger electron peaks labelled with
the corresponding decay. Spots with a fixed slow electron energy and different fast
electron energies indicate the energy of the photoelectron detected in coincidence
with the Auger electron (labelled e.g. as H57-H61 in (a)). The projection on the
fast electron energy axis (c) and (d) is a cut for the photoelectrons in coincidence
with 4d−1(2D3/2) → 5s−2(1S0) Auger electrons. In (d), the sidebands arising from
the two-photon transition can be observed (labelled e.g. as S58 and S60 in (b) in
contrast to the previous convention). Figure adapted from paper II.

3.6 Results II: Resonances

In this section paper III, IV and V are summarized, more details about the
results are found in the respective articles.

3.6.1 Paper III: Resonant two-photon ionization of helium atoms
studied by attosecond interferometry

In this work we study two-photon ionization of He via the below threshold 1s3p,
1s4p, and 1s5p resonances using the rainbow RABBIT technique. We measure
the photoelectron spectral amplitude and phase across the 1s3p, 1s4p and 1s5p
states using both a velocity map imaging spectrometer and a magnetic bottle
electron spectrometer.
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Figure 3.14: Energy diagram of the 1s3p, 1s4p and 1s5p below threshold resonances in helium. In
purple the XUV transitions are shown and in red the IR transitions. In sideband 16,
(SB16), the PAD is a superposition of s and d partial waves. Figure adapted from
paper III.

In Fig. 3.14 the energy diagram of the processes involved are shown. Harmonic
15 can be tuned to promote a 1s electron to the 3p, 4p or 5p atomic orbitals.
By absorption of an IR photon the electron is subsequently ionized. The res-
onant excitation, via a discrete state, leads to a rapidly varying phase of the
photoelectrons as function of kinetic energy and emission angle.

Figure 3.15: Angle and energy resolved phase of sideband 16, across the 4p resonance. (a) Left
panel shows theoretical phase obtained from two-photon RRPA calculations, while
the right panel show measured phase. In (b) left panel the contribution to the total
phase from the d-channel is shown while in the right the contribution from the s-
channel. Figure adapted from paper III.

39



In Fig. 3.15 (a,right) the measured phase of the 2ω component of the photo-
electron angular distribution (PAD) obtained using the VMI specttrometer is
shown. The red semi-circle indicates the resonance energy of the 4p resonance.
The white areas correspond to spectral regions where it was not possible to re-
trieve the phase of the oscillations (too low signal to noise ratio). Comparing
the measured phase to the theoretical (a,left), there is great similarity. In Fig.
3.15 (b,left) and (b,right) the theoretical phase is decomposed into the d- and
the s-channel. The total phase in Fig. 3.15 (a,left) is similar to 3.15 (b,left)
indicating that the resonant path to the d-wave dominates. However at the
magic angle 54.7◦, the d-wave is vanishes because the spherical harmonic Y2,0 is
zero and the s-channel dominates.

Angle resolved measurements can provide insight into the relative strength of
the different partial waves and, in principle, enables the complete characteriz-
ation of the electron wavepacket. With a VMI, through the measurement of
the PAD, the momentum of the photoelectron is reconstruced. Using a MBES,
the emission angle is integrated over, yielding the kinetic energy as the observ-
able, with higher spectral resolution than what is possible with a VMI. The
lower spectral resolution as compared to angle integrated measurements make
these measurements challenging. Through these measurements we could give a
complete characterization of the resonant electron wavepacket (phase and amp-
litude) in emission angle and energy.

3.6.2 Paper IV: Breaking time reversal symmetry of Fano res-
onances in attosecond photoelectron interferometry

In this work the 3s−14p Fano resonance in argon is studied using Rainbow
RABBIT. This particular resonance has been studied previously in Lund [8, 51].
The objectives of revisiting this Fano resonance was to test the influence of the
improved spectral resolution and temporal stability with our upgraded setup
(chapter 4 and paper VII). In the case of argon, the spin orbit splitting energy
is εSO = 177 meV. Due to the spin-orbit splitting, the one photon wavepacket has
two copies, one for j = 1/2 and one for j = 3/2. Since the states of the ion are
orthogonal, the electron spectrum is the incoherent sum of the individual spectra
corresponding to the two spin-orbit components, which can be approximately
described by the same distribution, with a difference of a factor 2 in amplitude
and a shift of energy by εSO,

Selectron(ε) =
1

3
SFano(ε) +

2

3
SFano(ε− εSO). (3.22)
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The 3s−14p resonance is a window resonance, with a q-parameter equal to −0.25.
In the previous measurement [51], the destructive interference from the Fano
resonance was not visible in the amplitude and the spin-orbit components were
not well resolved. Now with improved spectral resolution we can see both the
spin-orbit splitting and the window resonance in the two spin-orbit components.

Figure 3.16: (a) Energy diagram for the 3s−14p Fano resonance in argon. (b,c) Sideband oscilla-
tions for SB (18,16) respectively. (d,e) shows the 2ω Fourier filtered SB oscillations.
Figure adapted from paper IV.

In Fig. 3.16 (a) the energy diagram of the processes involved in our measurement
is shown. H17 is tuned to be resonant with the 3s−14p state. In Fig. 3.16 (b,c)
the sideband oscillations are shown as function of delay for SB18 and SB16.
There is a strong asymmetry between SB16 and SB18, which are even more
visible in (d) and (e) with scans filtered at the 2ω component.

In Fig. 3.17(a,b) the 2ω amplitude and phase are shown for SB16 and SB18

respectively. In SB16 The phase variation across the resonance is 4 rad while
only 1 rad in SB18. This huge phase difference cannot be explained using the 1-
photon matrix element for the Fano resonance which only allows for a maximal
phase variation of π. Therefore a model including the IR probe field as weak
perturbation was developed to explain the large phase variation.
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Figure 3.17: (a,b) Shows the retrieved amplitude and phase for SB16 and SB18. Figure adapted
from paper IV.

Figure 3.18: (a) Energy diagram of the Fano resonance assuming a single continua. (b) Cross
section, (c) phase, and (d) complex trajectory of the Fano resonance for different
values of the q-parameter. Figure adapted from paper IV.

In Fig. 3.18(a) the energy diagram of a Fano resonance is shown assuming a
single quasi-bound state and a single continuum. The IR probe is included in
the diagram as it can through absorption or stimulated emission of an infrared
photon from the 3s−14p state followed by autoionization lead to a broadening of
the discrete state. This broadening is included by allowing the resonance energy
to become complex, Er → Er + iγ. Inserting the complex resonance energy in
the expression for the 1-photon resonance factor, R(ε), and performing algebraic
manipulation it can be shown that this corresponds to a complexification of the
q-parameter,

q → q ∓ 2(q − i)γ/Γ, (3.23)
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where the ∓ is + for absorption to SB18 and − for emission to SB16. In
Fig. 3.18(d) the complex trajectory of the resonance factor R(ε) is shown for
three different q-parameters, q = −0.25 (black), q = −0.25 − 0.25i (blue) and
q = −0.25 + 0.25i (pink). In Fig. 3.18(c) and (d) the argument and phase of
R(ε) are shown. When the origin is inside the complex trajectory, the argument
of R(ε) has a 2π phase jump, while when the origin is outside, the phase jump is
smaller than π. This explains the strong differences between SB16 and SB18 since
the sign change of the imaginary addition to the q-parameter is different for ab-
sorption and emission. Additionally the measurement of a complex q-parameter
implies that time-reversal symmetry is broken for the system indicated inside
the dashed rectangle in Fig. 3.18(a), due to a portion of the population of
the 3s−14p being dissipated from the quantum interferometer made of the Fano
resonance.

3.6.3 Paper V: Probing electronic decoherence with high-resolution
attosecond photoelectron interferometry

This study examines the ionization dynamics of the 2s2p resonance in helium
using attosecond interferometry with high spectral resolution, while keeping
a temporal resolution down to the attosecond time scale. This enables us to
calculate the time-dependent Wigner representation and to perform a quantum
state reconstruction of the ionizing EWP. We use the energy resolved RABBIT
technique (Rainbow-RABBIT) [10] with a narrow band probe pulse (10 nm).
The spectral resolution is limited by the magnetic bottle spectrometer (MBES)
response width of 90 meV. A blind Richardson-Lucy deconvolution algorithm is
used to compensate for the point spread function of the MBES, increasing the
spectral resolution to be close to the Heisenberg limit. The RABBIT technique
allows both the spectral phase and amplitude of the autoionized EWP to be
measured from which the temporal profile of the EWP can be reconstructed.

In Fig. 3.19 (a,b) the retrieved amplitude and phase (blue) in SB38 is shown.
The calculation (red curve) is based on a model assuming the EWP to be pure
and fits the data well. We can therefore, under the pure state assumption, re-
construct the Wigner function. It is shown in Fig. 3.19 (e). Close to t = 0 the
broad spectral feature corresponds to direct ionization while the long and spec-
trally narrow decay around 58.6 eV corresponds to autoionization. The fringes
correspond to quantum interference between direct ionization and autoioniza-
tion.
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Figure 3.19: Spectral amplitude (a) and phase (b) retrieved in SB38. Red curves are fits assuming
pure state. In (c) The Wigner distribution of the spectral wavefunction in SB38 is
shown. Figure adapted from paper V.

For SB40 the situation is slightly different. The calculation assuming a pure state
(red curve) does not fit the data as well as for SB38 [see Fig. 3.19 (c,d)]. The
contrast is worse and the phase jump smaller, implying decoherence. We explain
this result by considering the final continua εs, εd after two-photon ionization.
The density matrix of the photoelectron can be expressed as,

ρ̂electron(t) = |ψelectron(t)〉 〈ψelectron(t)|

=

∫
dεdε′

(
cs(ε, t)c

∗
s(ε

′, t) |Rs(ε)〉 ⊗ |Y00〉 〈Rs(ε
′)| ⊗ 〈Y00|

+ cd(ε, t)c
∗
d(ε

′, t) |Rd(ε)〉 ⊗ |Y20〉 〈Rd(ε
′)| ⊗ 〈Y20|

+ cs(ε, t)c
∗
d(ε

′, t) |Rs(ε)〉 ⊗ |Y00〉 〈Rd(ε
′)| ⊗ 〈Y20|

+ cd(ε, t)c
∗
s(ε

′, t) |Rd(ε)〉 ⊗ |Y20〉 〈Rs(ε
′)| ⊗ 〈Y00|

)
e

i(ε−ε′)t
� ,

where, Rl(ε) is the radial amplitude for the angular momentum l and Ylm the
spherical harmonics. The MBES detects the photoelectrons independently of
their emission angle, only their energy is determined. Therefore the angular
degrees of freedom need to be traced over to obtain the measured EWP, char-
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acterized by the radial density matrix,

ρ̂radial(t) = trθ,φ(ρ̂electron(t))

=

∫
dεdε′

(
cs(ε, t)c

∗
s(ε

′, t) |Rs(ε)〉 〈Rs(ε
′)|

+ cd(ε, t)c
∗
d(ε

′, t) |Rd(ε)〉 〈Rd(ε
′)|

)
e

i(ε−ε′)t
� .

(3.24)

The radial density matrix of the photoelectron is the sum of the density matrices
for the radial s and d continua. If cs(ε, t) |Rs(ε)〉 = cd(ε, t) |Rd(ε)〉, the purity
of the photoelectron is less than one and the photoelectron is described as a
mixed state. For SB40 this is the case as the 2p2 state, which is close to one
IR photon above the 2s2p resonance, is of symmetry 1S0 and can only couple
to the s-channel yielding different spectral phase and amplitude for the s and d
wavepackets.

As descibed in more details in paper V, the evolution of the s and d radial
wavefunction can be calculated separately, the evolution of the mixed state
density matrix can be reconstructed, and the purity can be calculated as function
of time as, γ(t) = tr(ρ̂radial(t)).

Figure 3.20: Evolution of density matrix in SB40 (a,b,c) and purity (d). Off-diagonal elements
represent coherences while the main diagonal represents the populations. (a,b,c)
show the density matrix at different times (0, 12, 22) fs. In (a) only the direct
path is visible since the EWP has not autoionized from the quasi-boundstate. At
intermediate times (b), the coherences of the EWP show interference between the
direct and autoionizing path. In (c) the coherences are more localized, clearly showing
the destructive interference of the Fano resonance. Figure adapted from paper V.

Fig. 3.20 shows the evolution of the density matrix retrieved from SB40. At
t = 0, as shown in detail in paper V, only direct ionization takes place meaning
that the state of the photoelectron is pure. As the 2s2p state gets excited and
the s continuum is influenced by the 2p2 1S0 state the purity decreases to the
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asymptotic value of 0.89.

It is challenging to quantify decoherence of EWP’s using RABBIT since it em-
ploys a wavefunction formalism. Instead the density matrix should be meas-
ured directly using Quantum State Tomography (QST). In the next chapter a
quantum state tomography protocol for photoelectrons ionized using attosecond
pulses is presented.
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Chapter 4

Quantum state tomography
and decoherence in
photoionization

4.1 Introduction

The gold standard for characterization of a quantum state is quantum state
tomography. Quantum state tomography (QST) is the process of reconstruct-
ing the density matrix of an arbitrary quantum state. QST is performed through
a sequence of projective measurements on the prepared state, from which the
density matrix can be reconstructed. An analogy can be made with 3D tomo-
graphy where a three dimensional geometry is to be determined by performing
a sequence of planar projections. The planar projections have a dimension of
one order less than the geometry that is to be characterized. The same holds for
QST. In QST the density matrix is the higher dimensional object and through
projective measurements the density matrix can be reconstructed.

There are density matrix reconstruction techniques for bound states using mul-
tidimensional spectroscopy [70–72]. 2D IR spectroscopy utilizes a pump pulse
and two probe pulses with a variable delay between the probe pulses and a sec-
ondary variable delay between the pump and probe pulses. By scanning both
delays and taking the Fourier transform, the coherence map can be built up from
which the density matrix can be reconstructed. This approach does not work
for continuum states, since the EWP is not bound to the interaction region and
after the ionization moment, it will propagate away. Therefore an alternative
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approach to project the density matrix of the EWP was implemented in the
protocol developed in this thesis called KRAKEN.

In, [18, 21], quantum state tomography protocols for photoelectrons ionized with
attosecond pulses are presented. In [18], the density matrix of an attosecond
pulse train is reconstructed from which the purity of the pulse train is obtained.
The density matrix of an electronic attosecond pulse train in the context of
electron microscopy is reconstructed in [21].

4.2 KRAKEN

Kvantillst̊andstomogRafi Av attoseKundElektroNv̊agpaket (KRAKEN), (Quan-
tum state tomography of attosecond electron wavepackets), is an attosecond
photoelectron interferometry protocol that utilizes a femtosecond XUV pump
to ionize an EWP that is then probed with a bichromatic probe.

Figure 4.1: Energy diagram for RABBIT a) and KRAKEN b). RABBIT measures the degree of co-
herence of electron wave packets originating from absorption of consecutive harmonics
by interfering H2q+1 with H2q−1 while KRAKEN measures the degree of coherence of
an electron wave packet originating from absorption of a single harmonic by interfering
the harmonic H2q+1 with itself.

In Fig. 4.1 the energy diagrams for RABBIT and KRAKEN are compared.
In RABBIT two quantum paths involving absorption of consecutive harmonics
interfere, while in KRAKEN different parts of the wavepacket due to absorption
of one photon absorb different probe photons to interfere with each other.

The KRAKEN derivation is shown in detail in paper VI. Here we summarize
the results. In KRAKEN, we only consider the absorption path from a harmonic
and the probe field is bichromatic instead of monochromatic. We can write the

48



photoelectron spectrum due to absorption of XUV radiation (frequency Ω) and
bichromatic field (frequencies ω1 and ω2) as,

S(εf , τ, δω) ≈ |μεf ,ε1 |2ρxuv(ε1, ε1) + |μεf ,ε2 |2ρxuv(ε2, ε2)
+ eiδωτμεf ,ε1μ

∗
εf ,ε2

ρxuv(ε1, ε2)

+ e−iδωτμεf ,ε2μ
∗
εf ,ε1

ρxuv(ε2, ε1).

(4.1)

Here εi = εf − ωi and τ is the delay between the XUV field and the bichro-
matic probe. Assuming that the continuum-continuum matrix elements, με1,ε2 ,
are constant1, and taking the Fourier transform of the obtained photoelectron
spectrogram along the delay, τ , for each energy bin and isolating the component
oscillating at frequency δω = ω1−ω2, one retrieves a signal that is proportional
to the subdiagonal of the one-photon density matrix,

F{S(εf , τ, δω)}(δω) ≈ μεf ,ε1μ
∗
εf ,ε2

ρxuv(ε1, ε2). (4.2)

By measuring a sequence of delay scans with different spectral components of
the probe, ω1 and ω2, the density matrix can be reconstructed.

In Fig. 4.2 a vizualization of the reconstruction procedure of the KRAKEN
protocol is shown, using simulations in He close to the 2s2p Fano resonance.
First a pump-probe delay scan is computed with a single XUV harmonic as the
pump and the bichromatric IR field as the probe. The delay needs to be scanned
in a large range, spanning a number of beating periods (τbeating ∼ �/δω).

The delay scan is Fourier transformed over delay giving a Fourier map that has
three peaks. The populations correspond to the DC component of the Fourier
map, (first two terms in eq. (4.1)). The second contribution (positive frequency)
is the subdiagonal of the density matrix at the interference frequency, δω, (third
term in eq. (4.1)). The third peak is the fourth term in eq. (4.1) and therefore
the complex conjugate of the second one. By selecting the row corresponding
to the interference frequency and placing it in a matrix as indicated in the Fig.
4.2, a subdiagonal of the density matrix is reconstructed. The procedure is then
repeated for different values of δω and the sparse density matrix is reconstruc-
ted. Through interpolation of the sparse density matrix the continuous variable
density matrix is reconstructed as shown in Fig. 4.2 d).

The main diagonal of the density matrix contains the populations, while the
off-diagonal elements are the coherences, which encode the degree of coherence

1This is a good approximation across the bandwidth of a harmonic in non-resonant condi-
tions.
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between continuum states. As a density matrix is subject to decoherence the
coherences decay and the populations are left, yielding the maximally mixed
state. Additionally the density matrix is normalized such that the populations
sum up to 1, tr(ρ) = 1, for the preservation of the Born rule.

Figure 4.2: Reconstruction procedure of the KRAKEN protocol illustrated with simulations in
He close to the 2s2p resonance. a) A pump-probe delay scan is measured with the
femtosecond XUV pump and bichromatic IR probe. b) Fourier map obtained from
Fourier transforming the spectrogram in a) along the delay axis for each energy bin.
By selecting the component oscillating at frequency δω, a subdiagonal of the density
matrix is retrieved. c) Repeating the procedure in a) and b) for a sequence of probe
spectral components the sparse density matrix can be reconstructed. d) Continuous
variable density matrix obtained by interpolating the sparse density matrix with a
moving average. Figure adapted from paper VI.

4.3 Electron purity and bipartite entanglement

In general, when a short XUV pulse ionizes an atom, the final state can be
written as,

|ψatom〉 =
∑
j

∫
dε cj(ε) |j, ε〉 , (4.3)
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assuming a single angular momentum continuum channel, where j are the
quantum numbers for the ion, and ε the scattering states describing the photo-
electron wavepacket. The density matrix of the atom, assuming a pure state, is
given by,

ρ̂atom = |ψatom〉 〈ψatom| . (4.4)

However in photoelectron spectroscopy, only the photoelectron is measured and
the observer does not know the quantum state of the ion. In quantum mechanics
this loss of information has to be taken into account to properly describe the sub-
system, by taking the trace over the degrees of freedom that are not measured.
Therefore in our situation we have to trace over the ionic degrees of freedom.
The density matrix of the photoelectron then becomes,

ρ̂electron = trion(ρ̂atom) =

=
∑
j

∫
dε1dε2 c∗j (ε1)cj(ε2) |ε1〉 〈ε2|

(4.5)

If the ion and electron degrees of freedom are separable, i.e. if the coefficients
factorize cj(ε) = ajb(ε), the electron is a pure state, otherwise it is mixed.

The purity is often used to quantify the degree of coherence of a density matrix.
The purity is defined as,

γ = tr(ρ̂2), (4.6)

where the trace is the integral over the elements of the density matrix,

γ =

∫
dε 〈ε| ρ̂2 |ε〉 (4.7)

By inserting the completeness relation of the scattering states the purity can be
expressed as [18],

γ =

∫
dεdε′ |ρ(ε, ε′)|2 (4.8)

What is notable about this expression is that the purity is not a function of the
phase of the density matrix. The purity is a scalar value in the range [1/d, 1],
where d is the dimension of the Hilbert space. Since the Hilbert space of the
scattering states is infinite dimensional, the purity of the maximally mixed state
is 0.
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4.3.1 Ion-photoelectron entanglement in neon and argon

In the case of argon and neon, the ionization threshold is split due to spin-orbit
interaction. In paper VI we show that the state of the total system, assuming
fully coherent XUV radiation, can be written as,

|ψatom〉 = a1/2 |1/2〉 ⊗
∫

dε b1/2(ε) |ε〉+ a3/2 |3/2〉 ⊗
∫

dε b3/2(ε) |ε〉 , (4.9)

where, |j〉, is the quantum state of the ion and
∫
dε bj(ε) |ε〉, the quantum state

of the photoelectron associated to a specific ionic state. b3/2(ε) is identical to
b1/2(ε) up to a shift in energy corresponding to the spin-orbit splitting, εSO,
b3/2(ε) = b1/2(ε− εSO). The density matrix of the photoelectron is then,

ρelectron = p1/2

∫
dε1dε2 b1/2(ε1)b

∗
1/2(ε2) |ε1〉 〈ε2|

+ p3/2

∫
dε1dε2 b1/2(ε1 − εSO)b

∗
1/2(ε2 − εSO) |ε1〉 〈ε2|

= p1/2ρ1/2 + p3/2ρ3/2,

(4.10)

where pj = |aj |2. The purity in the case of spin-orbit splitting is then given as,

γ = tr(ρ2electron) = p21/2 + p23/2 + 2p1/2p3/2tr(ρ1/2ρ3/2). (4.11)

The last term is the trace over the product of the density matrices of the two
spin-orbit components and can be represented as an overlap integral. The purity
can be rewritten as,

γ = p21/2 + p23/2 + 2p1/2p3/2

∣∣∣∣
∫

dε b∗1/2(ε)b1/2(ε− εSO)

∣∣∣∣
2

. (4.12)

For argon and neon the probabilities, p1/2 and p3/2, are given from the sum-
rule, and pj is proportional to the degeneracy. Therefore, using p1/2 = 1/3 and
p3/2 = 2/3, gives,

γ =
5

9
+

4

9

∣∣∣∣
∫

dε b∗1/2(ε)b1/2(ε− εSO)

∣∣∣∣
2

. (4.13)

By changing the overlap integral, the purity of the photoelectron can be con-
trolled. If the XUV bandwidth is much narrower than the spin-orbit splitting
energy, σXUV � εSO, the overlap integral is approximately zero and the pur-
ity is 5/9. This corresponds to the maximally mixed state of the photoelec-
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tron. Instead, if the XUV bandwidth is much larger than the spin-orbit energy
σXUV � εSO the overlap integral is approximately 1 giving a purity of 1 corres-
ponding to a pure state. Since this is a bipartite state, electron + ion, assuming
that the XUV is fully coherent, a reduced purity of the photoelectron implies
entanglement between the photelectron and the ion. The concurrence is an
entanglement measure and can for bipartite states be written as [73],

C =
√
2(1− γ). (4.14)

A concurrence equal to one corresponds to a maximally entangled state and a
concurrence of zero corresponds to a separable state. By changing the XUV
bandwith the overlap between the spin-orbit components can be controlled,
and consequently the purity of the photoelectron and the ion-photoelectron
entanglement.

4.4 Numerical simulations close to Fano resonances

In paper VI, we present the KRAKEN protocol and validate the protocol using
simulations based on a model assuming finite pulses [64]. KRAKEN spectro-
grams are simulated from which the density matrix can be reconstructed, sub-
diagonal by subdiagonal. The sparse density matrix is then interpolated using
a moving average filter to give the continuous variable density matrix.

Figure 4.3 presents the amplitude and phase of the density matrix of a photo-
electron wavepacket close to the 2s2p Fano resonance in helium, and the 3s−14p
Fano resonance in argon. There is excellent agreement between the direct cal-
culation and the numerical reconstruction using KRAKEN. The dark crosses
in the amplitudes of the density matrices in helium and argon are due to the
destructive interference of the Fano resonance. In argon, due to the spin-orbit
splitting, the pattern repeats itself, resulting in two crosses. At the position of
the destructive interference there is a phase jump due to the Fano resonance.
Both the reconstructed amplitude and phase of the density matrix agree well
with the direct calculation.
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Figure 4.3: Amplitude and phase of density matrix of the 2s2p Fano resonance in helium from
direct calculation (a,b) and using KRAKEN (e,f). Amplitude and phase of density
matrix of the 3s−14p Fano resonance in argon from direct calculation (c,d) and using
KRAKEN (g,h). Figure adapted from paper VI.

In Fig. 4.4 the purity and concurrence for the 3s−14p Fano resonance in ar-
gon is plotted against XUV bandwidth. For XUV bandwidth below 0.1 eV the
purity is constant, since the two spin-orbit components do not overlap and the
overlap integral is zero. In this region the state of the EWP a the maxim-
ally mixed state with a purity, γ = 5/9. As the bandwidth is increased, the
overlap increases and the purity therefore increases. Conversely, the entangle-
ment decreases for increasing XUV bandwidth. There is maximal entanglement
between the electron and ion for XUV bandwidths less than 0.1 eV. There is
excellent agreement between the purity and concurrence values reconstructed
using KRAKEN (crosses) and the direct one-photon calculation (solid lines).

An intuitive interpretation of why the entanglement decreases when the overlap
between the spin-orbit components increases is as follows. If the bandwidth
is small enough so that there is no spectral overlap, by measuring the kinetic
energy of the electron, we determine with certainty the state of the ion. However,
if the XUV bandwidth is large enough, the spectral components associated to
the ionic states j = 1/2 and j = 3/2 overlap. In this case, if we measure an
electron with a kinetic energy in the range where the two components overlap,
we do not know what is the state of the ion and the ionic wavefunction does not
collapse.
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Figure 4.4: a) Purity (blue curve) and concurrence (red curve) vs. XUV bandwidth in argon
calculated using a direct (1-photon) calculation. The dashed line indicates half the
spin-orbit splitting energy in argon. For smaller bandwidths there is very little overlap
between the spin-orbit components giving a purity of 5/9. The crosses are the purity
and concurrence values reconstructed using KRAKEN. Amplitude of density matrices in
argon for bandwidths 0.14 b), 0.21 c), and 0.35 d) eV. The dark crosses in the density
matrices is due to the destructive interference from the Fano resonances. Figure
adapted from paper VI.

4.5 Experimental setup

KRAKEN measurements are very challenging and set high requirements on the
experimental setup. A typical KRAKEN scan takes 8 hours to acquire, during
which it is necessary for the pump-probe delay and laser intensity to be stable.
Additionally the probe spectrum is required to be bichromatic with tunable
spectral components. The spectral filtering of the probe decreases the probe
peak intensity by two orders of magnitude, due to the increase of the probe
pulse duration and the removal of most of the spectral components, making it
challenging to have high enough intensity to allow two-photon transitions.
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Figure 4.5: Schematic of the KRAKEN experimental setup. A folding mirror on a flip-mount has
been flipped out of the beam path of the probe, sending the probe into the 4f-shaper.
In the pump, the beam path is extended to compensate for the extension in the probe.
The pump includes a spectral filter which enables independent central wavelengths of
the pump and the probe. Figure adapted from paper VII.

Fig. 4.5 shows the experimental setup used for KRAKEN measurements. Most
of the setup has been described in the previous chapter. Here we outline the
specificities of these measurements (se also paper VII). A 4f-shaper is inserted
in the probe of the Mach-Zehnder interferometer. The 4f-pulse shaper consists
of three operations, an optical Fourier transform, spatial filtering in the Fourier
plane, using slits, and inverse optical Fourier transform. The incident probe
beam is sent on a reflection diffraction grating (1200 lines/mm, supplied from
Spectrogon), that diffracts the beam. The diffracted beam is focused with a
spherical mirror (focal length of 50 cm) on a line. In the Fourier plane, two slits,
3 mm wide, are placed. One slit is mounted on a motorized translation stage
from Thorlabs and the other one is kept stationary. The entire slit configuration
is mounted upside down above the gratings on a secondary translation stage for
alignment purposes. After the Fourier plane the reverse process occurs, the pulse
are focused with a 50 cm spherical mirror on an identical reflection diffraction
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grating, resulting in a collimated beam after the 4f-shaper. To compensate for
the longer beam path in the probe, there is a beam path extension in the pump
such that after recombination of the pump and probe pulses there is temporal
overlap. In the path extension of the pump, there is a tunable spectral filter
that allows for tuning of the pump central wavelength independently from the
probe.

Figure 4.6: (a) Spectrum of the laser pulse. (b) Spectrum after passing through the 4f-shaper
with two slits in the Fourier plane. Measured d-scan trace, before (c) and after (d)
passing through the 4f-shaper, with no slits inserted. Figure adapted from paper VII.

In Fig. 4.6 the laser spectra are shown before (a) in black and after (b) passing
through the 4f-shaper. By changing the slit position, the spectral content of the
probe is controlled. In Fig. 4.6(c,d) dispersion scan (d-scan) [74, 75] measure-
ments are shown before (c) and after (d) passing through the 4f-shaper, showing
that the pulse is compressed after the pulse shaper. The probe spectra are recor-
ded during a KRAKEN scan, and are later used for subdiagonal renormalization

57



according to the formula,

ρNORM(ε, ε+ δω) =
ρRAW(ε, ε+ δω)

IXUV

√
qIR1(ω1)IIR1(ω1)qIR2(ω2)IIR2(ω2)

, (4.15)

where IIR1 is the intensity of the first probe pulse (with frequency ω1), IIR2 is the
intensity of the second probe pulse (frequency ω2), IXUV is the harmonic intens-
ity, qIR1 and qIR2 are the relative spectrometer responses at the two frequencies.
IIR1, IIR2 and IXUV are integrated over their respective spectral peaks.

4.6 Experimental results

In paper VIII, we experimentally demonstrate the KRAKEN protocol by meas-
uring the non-resonant continuous variable density matrix of photoelectrons cre-
ated in helium, neon and argon by absorption of the 19th harmonic.

Figure 4.7: a) KRAKEN scans in helium for λ1 = 770 nm, and λ2 =
770, 790, 800, 810, 820, 830, 840 nm. b) Simulated KRAKEN scan in helium
for λ1 = 770 nm, and λ2 = 770, 790, 800, 810, 820, 830, 840 nm. The XUV bandwith
is 0.14 eV (FWHM intensity) and the IR bandwith 8 nm. Figure adapted from paper
VIII.
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Fig. 4.7 a) shows non-resonant KRAKEN scans in helium with increasing bi-
chromatic probe wavelength separation. One spectral component is kept sta-
tionary at 770 nm, while the other spectral component is scanned between 790
and 840 nm in steps of 10 nm. When the wavelength difference is increased,
the frequency of the sideband oscillations increases accordingly. A combination
of germanium and aluminum filters are used in the pump arm to filter out the
XUV radiation above H19. Fig. 4.7 b) shows simulated KRAKEN scans in
helium using a finite-pulse code based on the model by [64], showing excellent
agreement with the measured KRAKEN scan.

Figure 4.8: a) Amplitude of sideband oscillation for helium, neon and argon. Increasing frequency
difference, δω, from blue to green. b) Phase of oscillation in helium, neon and argon.
The phase curves are separated by 1 rad for visibility. Figure adapted from paper VIII.

By performing a cosine fit with a Gaussian envelope, for each energy bin, the
amplitude and phase of the sideband oscillations are retrieved. Fig. 4.8 presents
the measured amplitude a) and phase b) for helium, neon and argon. For in-
creasing δω the amplitude decreases. For the sideband phases, the spectral
chirp increases in helium and argon while being constant in neon. The linear
chirp comes from the femtosecond chirp, due to the intensity dependence of the
accumulated phase in the continuum (see chapter 2). This explain the phases
measured in helium and argon but it is unclear why the phase does not vary
much in neon. We note nonetheless, as shown in Eq. (4.8), that the phase of
the density matrix does not impact the calculation of the purity.
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Figure 4.9: Sparse density matrix in helium reconstructed from the oscillation amplitudes.

Using the measured amplitudes it is possible to reconstruct the sparse density
matrix as shown in Fig. 4.9. The subdiagonals in the reconstructed density
matrix are placed according to Eq. (4.2).

Figure 4.10: Reconstructed density matrices in helium a), neon b) and argon c) using KRAKEN.
Density matrices from RRPAE calculations in helium d), neon e) and argon f).

In order to retrieve the complete density matrix based on the sparse measure-
ments the sparse density matrix is fitted using a Bayesian optimization algorithm
based on Hamiltonian Monte Carlo methods. A numerical deconvolution pro-
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cedure to compensate for the point spread function of the MBES is also applied.
In Fig. 4.10 (a,b,c) the fitted and deconvolved density matrices are shown for
helium, neon and argon and in Fig. 4.10 (c,d,e) the density matrices calculated
using RRPAE are shown, showing a good agreement with the retrieved dens-
ity matrices. From the continuous variable density matrices it is possible to
calculate the purity.

Figure 4.11: Reconstructed purity in helium (εSO = 0), neon (εSO = 96meV) and argon (εSO = 177
meV) using a XUV bandwidth of 0.14 eV (black error bars). Purity in helium, neon
and argon from RRPAE calculations (black boxes).

In Fig. 4.11 the electron purity in helium, neon and argon for a XUV bandwidth
of 0.14 eV is shown. In helium there is no spin-orbit splitting and the density
matrix is a pure state, in neon the spin-orbit splitting energy is εSO = 96 meV,
and in argon the spin-orbit splitting energy is εSO = 177 meV. For larger spin
orbit splitting the overlap between the spin-orbit components is less, therefore
the purity is reduced. The black boxes are the purity values from RRPAE
calculations. The reduced purity of the photoelectron, in the case of neon and
argon, implies entanglement between the ion and the photoelectron.

Through these measurements we validate the KRAKEN protocol experimentally
by reconstructing the density matrix of photoelectrons emitted from helium,
neon and argon atoms. This opens the possibility, using KRAKEN, to study
the coherence of electon wavepackets in more complex systems.
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Chapter 5

Summary and outlook

5.1 Summary

In this thesis, the photoelectron interferometry techniques, RABBIT and KRAKEN,
are used to measure the wavefunctions and density matrices of electrons ionized
by XUV light pulses. Using RABBIT measurements, broadband resonances, in-
duced by electron correlation is studied with a train of attosecond XUV pulses
and resonant photoionization is investigated using two consecutive harmonics,
one of them close to the resonance. KRAKEN measurements are performed in
helium, neon and argon from which the photoelectron density matrix is determ-
ined.

In papers I and II, broadband RABBIT measurements (Fig. 5.1 a)) are used
to study electron correlation through the measurement of photoionization time-
delays. In paper I, the photoionization time-delay differences between the 3s
and 3p shell are measured across the 3s and 3p Cooper minima in argon. Theory
and experiment agree well over a large spectral region except at the 3s Cooper
minimum. A tentative explanation for the discrepancy is the influence of shake-
up processes. In paper II ionization of xenon in the 4d-shell is studied in the
region of the “giant dipole resonance”.

In papers III, IV and V energy-resolved RABBIT measurements (Fig. 5.1
b)) are performed to study resonant photoionization. In paper III, resonances
via the 1s3p, 1s4p and 1s5p states below threshold are investigated. In the
case of the 1s4p resonance, the amplitude and phase of the electron wavepacket
is measured as function of photoelectron kinetic energy and emission angle,
showing phase jumps due to the resonance. These phase jumps are explained
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using theoretical calculations based on perturbation theory. In paper IV, the
spectral amplitude and phase of the photoelectron is measured across the 3s−14p
Fano resonance in argon. Due to the high spectral resolution, we measure in
some cases a close to 2π phase jump consistent with a complex valued Fano
parameter, q. In paper V, resonant photoionization is studied using RABBIT
in the vicinity of the 2s2p Fano resonance in helium. From the measurement of
the spectral amplitude and phase, the Wigner function and density matrix of
the photoelectron is reconstructed.

Figure 5.1: Energy diagrams for the measurement schemes used in this thesis. a) Energy diagram
for broadband RABBIT used in the measurements of paper I and II. b) Energy diagram
for narrowband energy resolved RABBIT used in the measurements of paper III, IV
and V. c) Energy diagram for the KRAKEN protocol used in the numerical simulations
of paper VI and in the measurements of paper VIII.

In paper VI the KRAKEN protocol is presented (Fig. 5.1 c)) and validated
using numerical simulations performed in helium in the vicinity of the 2s2p
Fano resonance and in argon close to the 3s−14p Fano resonance. We also show
how KRAKEN can be used to probe bipartite entanglement between the ion
and the phototelectron. In paper VII a new photoelectron interferometer for
RABBIT and KRAKEN measurements is presented. The interferometer has
high spectral resolution (< 50 meV), low temporal jitter (13 as) and is versatile
in the sense that the central wavelength of the pump and probe field can be tuned
independently. In paper VIII we present the first KRAKEN measurements. We
reconstruct the density matrix in helium, neon and argon. In the case of neon
and argon, we measure a purity less than one, implying entanglement between
the ion and the photoelectron.

A central point in this thesis is the emphasis on high spectral resolution. The
high spectral resolution enables the measurement of the close to 2π phase vari-
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ation in paper IV as well as the quantum state reconstruction in paper V. The
high spectral resolution is also critical for the KRAKEN measurements, as the
spectrometer response is the main contribution to the experimental decoherece,
as shown in paper VI.

5.2 Outlook

In this thesis, a transition has been made from the measurement of phase and
time delays in atomic systems (RABBIT) to that of density matrices (KRAKEN).
Naturally, this outlook will focus on how to apply, improve and extend KRAKEN
measurements.

Having demonstrated the KRAKEN protocol experimentally, a natural next step
is to perform KRAKEN measurements in more complex systems. For example,
in simple molecules such as H2, where vibrational and electronic degrees of
freedom are entangled. Another possible system of investigation is Auger decay.
Auger decay is a three body problem with a slow electron, a fast electron and
the ion. From KRAKEN measurements both the density matrix of the fast and
the slow electron can be reconstructed. It may then be possible to characterize
tripartite entanglement. Additionally, using KRAKEN on solid samples it may
be possible to study the degree of coherence of electronic processes in solids.

Currently, a KRAKEN scan takes 8 hours to perform. This makes KRAKEN
an extremely challenging experimental protocol, since the laser and the inter-
ferometer need to be stable for the total duration of the scan. In KRAKEN, a
delay scan is recorded for each pair of probe spectral components. However, it
is possible to parallelize this process and read out several subdiagonals simul-
taneously using a well chosen probe spectrum, including more than two spectral
components. KRAKEN variants are currently being investigated both numer-
ically and experimentally with the purpose of only needing a single delay scan
to reconstruct the full density matrix. This would speed up the reconstruction
time with an order of magnitude, opening up the possibility to perform several
KRAKEN scans for different prepared states, opening the door to Quantum
Process Tomography (QPT) of photoelectrons.

The KRAKEN protocol is a generalization of RABBIT that enables the de-
termination of the degree of coherence of femtosecond electron pulses through
the measurement of the photoelectron density matrix. The density matrix re-
constructed using KRAKEN is measured at t → ∞. It would be interesting
to reconstruct the build-up [10] of the density matrix. Given the evolution
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of the density matrix, the evolution of the purity can be retrieved, which in
some systems could give insight into entanglement dynamics on the femtosecond
timescale.

66



Author Contributions

Paper I: Attosecond photoionization dynamics in the vicinity of
the Cooper minima in argon

In this paper, we measure photoionization time-delays between the 3s and 3p
subshells of argon using Rainbow RABBIT across the 3s and 3p Cooper minima.
The rapid variation of the time-delay differences across the 3p Cooper minima
are reproduced with theoretical calculations using the Two-Photon Two-Color
Random Phase Approximation with Exchange except in the region of the 3s
Cooper minimum.

I participated with data analysis and signal processing of the results obtained
in Lund, extracting the phases through a cosine fit and categorizing the relative
amplitudes as well as interpretation of the data. I participated to the manuscript
with comments and feedback.

Paper II: Attosecond electron–spin dynamics in xe 4d photoion-
ization

In this paper, we studied photoionization time-delays in xenon in the 70-100 eV
range by combining attosecond interferometry with coincidence spectroscopy.
Supported by calculations using the relativistic random phase approximation,
we identify two interfering ionization processes, the giant dipole resonance due
to collective effects in 4d → εf excitation with a fast decay time of a few
tens of attoseconds and a narrow resonance at threshold induced by spin-flip
transitions, with much longer decay time of several hundreds attoseconds. Our
results provide new insight into the complex electron-spin dynamics of photo-
induced phenomena.

I participated in taking the measurements and in the interpretation of the res-
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ults. I also participated to the manuscript with comments and feedback.

Paper III: Resonant two-photon ionization of helium atoms stud-
ied by attosecond interferometry

In this paper, we study resonant two-photon ionization of helium via the 1s3p,
1s4p and 1s5p states using angle resolved Rainbow RABBIT. We measure phase
jumps across the 1s4p state in energy and emission angle that we then interpret
using perturbation theory.

I participated in taking the measurements and in the data analysis. I also
participated to the manuscript with comments and feedback.

Paper IV: Breaking the time symmetry of Fano resonances in
attosecond photoelectron interferometry

In this paper, we study the 3s−14p Fano resonance in argon using Rainbow
RABBIT and measure a larger than π phase variation across the resonance in
SB 16. This huge phase variation is enabled by a complex q-parameter with
origin from the interaction of the bound state with the IR probe.

I participated in taking the measurements, in data analysis, and in the writing
of the manuscript.

Paper V: Probing electronic decoherence with high-resolution
attosecond photoelectron interferometry

In this paper, we study the 2s2p Fano resonance in helium using Rainbow Rabbit
measurements. From the amplitude and phase of the electron wavepacket we are
able to quantify the purity of the EWP and identify the dominant decoherence
channel. We also calculate the evolution of the purity.

I participated to the data analysis, and more specifically to the deconvolution
of the data, and to the interpretation of the results. I also participated to the
manuscript with comments and feedback.
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Paper VI: Continuous-variable quantum state tomography of pho-
toelectrons

In this paper, we propose the KRAKEN method, a continuous variable quantum
state tomography protocol for continuum states using attosecond pump probe
spectroscopy. Additionally a method to control ion-photoelectron entanglement
is presented.

I took a large part in the derivation of the method. I performed simulations
that verify the method. I also participated in writing of the manuscript.

Paper VII: Ultra-stable and versatile high-energy resolution setup
for attosecond photoelectron spectroscopy

In this paper, we present and characterize a new attosecond photoelectron in-
terferometer. We show a low temporal jitter of 13 as when activiely stabilizing
the delay, as well as a high tunability. One objective of the upgrade of the setup
was to enable the experimental realization of the KRAKEN protocol.

I participated in the design and implementation of the new inteferometer. I also
participated to the manuscript with comments and feedback.

Paper VIII: Measuring the quantum state of a photoelectron

In this paper, we present the first KRAKEN measurements. We characterize
the denisty matrix of the photoelecron in helium, neon and argon, and quantify
the degree of coherence of the photoelectron.

I participated in the experiment design and the building of the experimental
setup. I took a large part in the measurements, the data analysis, the interpret-
ation of the results and the writing of the manuscript.
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