
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Analysis of Embedded Controllers Subject to Computational Overruns

Vreman, Nils

2023

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Vreman, N. (2023). Analysis of Embedded Controllers Subject to Computational Overruns. Department of
Automatic Control, Faculty of Engineering LTH, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/86cfbae1-788e-484e-84ec-cda95d0de68f

Analysis of Embedded Controllers
Subject to Computational Overruns

Nils Vreman

Department of Automatic Control

PhD Thesis TFRT-1141
ISBN 978-91-8039-688-2 (print)
ISBN 978-91-8039-687-5 (web)
ISSN 0280–5316

Department of Automatic Control
Lund University
Box 118
SE-221 00 LUND
Sweden

© 2023 by Nils Vreman. All rights reserved.
Printed in Sweden by Media-Tryck.
Lund 2023

Abstract

Microcontrollers have become an integral part of modern everyday embedded sys-
tems, such as smart bikes, cars, and drones. Typically, microcontrollers operate un-
der real-time constraints, which require the timely execution of programs on the
resource-constrained hardware. As embedded systems are becoming increasingly
more complex, microcontrollers run the risk of violating their timing constraints,
i.e., overrunning the program deadlines. Breaking these constraints can cause severe
damage to both the embedded system and the humans interacting with the device.
Therefore, it is crucial to analyse embedded systems properly to ensure that they do
not pose any significant danger if the microcontroller overruns a few deadlines.

However, there are very few tools available for assessing the safety and perfor-
mance of embedded control systems when considering the implementation of the
microcontroller. This thesis aims to fill this gap in the literature by presenting five
papers on the analysis of embedded controllers subject to computational overruns.
Details about the real-time operating system’s implementation are included into the
analysis, such as what happens to the controller’s internal state representation when
the timing constraints are violated. The contribution includes theoretical and com-
putational tools for analysing the embedded system’s stability, performance, and
real-time properties.

The embedded controller is analysed under three different types of timing viola-
tions: blackout events (when no control computation is completed during long peri-
ods), weakly-hard constraints (when the number of deadline overruns is constrained
over a window), and stochastic overruns (when violations of timing constraints are
governed by a probabilistic process). These scenarios are combined with different
implementation policies to reduce the gap between the analysis and its practical ap-
plicability. The analyses are further validated with a comprehensive experimental
campaign performed on both a set of physical processes and multiple simulations.

In conclusion, the findings of this thesis reveal that the effect deadline overruns
have on the embedded system heavily depends the implementation details and the
system’s dynamics. Additionally, the stability analysis of embedded controllers sub-
ject to deadline overruns is typically conservative, implying that additional insights
can be gained by also analysing the system’s performance.

3

Acknowledgements

I would like to begin by expressing my deepest gratitude to everyone who has con-
tributed to my journey towards a PhD, both professionally and personally. While it
is impossible to mention everyone by name, I am immensely grateful to those who
have brightened my days and helped me along the way.

Firstly, I owe a special thanks to the Department of Automatic Control and the
many individuals who have made it such a welcoming and supportive workspace.
Were it not for the people there, I would never have pursued a PhD. A special
mention goes out to: Gautham, Mattias, Bagge, Martinka, Marcus TA, Marcus G,
Pauline, Victor, Alex, Julian, Max NC, Johanna W, Frida N, Luka, and the In-
nebandy Crew. Another important reason why the department is such a pleasant
workspace are the tireless efforts of Eva, Mika, Cecilia, Monika, Anders B, and
Anders N. Thank you for providing invaluable support to all the PhD students pass-
ing through the department, all while spreading joy.

A special thank you is extended to my supervisor and dear friend, Martina.
Your constant support, both professionally and personally, has been invaluable to
me, and I would not be the person I am today without you. Words cannot express
my gratitude, but please know that I will be forever grateful for having shared this
journey with you. And to my co-supervisor and mentor, Anton, your encouragement
during times of doubt has been instrumental in me reaching my goal. Thank you for
all the beers shared, and to many more.

I am fortunate to count many of my colleagues as close friends. Claudio, thank
you for sticking with me through thick and thin, and for all the unforgettable work
discussions, life events, drinking nights, and travels. Ylva, I am thankful for your
encouragement, your friendship, and the many meaningful conversations we have
had (and will have) over dinners. Albin, Martin H, and Martin M, you have all been
an inspiration (even in the face of adversity), and I am grateful for the laughter,
dinners, pub nights, and game nights we have shared, and to the ones to come.
Paolo, your kindness and knowledge have helped guide me, and I am lucky to have
had the pleasure of getting to know you. Johan R, thank you for all the pub nights
and trips we have enjoyed together. And finally, to Richard, thank you for for always
having my back and for the joy you bring.

5

Last but not least, I am forever grateful for the love and support of my friends
and family outside of work who have encouraged me throughout my journey to-
wards a PhD. Calle, you have always been there for me, whether we were living
together or not, and I appreciate all the new and cool things you have taught me,
and the good times we have shared. To Olof and Erik B, despite us seeing each other
far too rarely, I cannot thank you enough for your friendship. And to my parents,
who may not always have understood the details of my work, but have always stood
by me with unwavering support and love; thank you! To my brother Kalle, you have
been a constant inspiration to me, and I am so lucky to have you in my life. And
finally, to Elin, there are no words to thank you enough, and to Åse and Micke, your
support means the world to me.

Financial Support The author is a member of the ELLIIT Strategic Research Area
at Lund University. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement Number
871259 (ADMORPH project). This publication reflects only the author’s view and
the European Commission is not responsible for any use that may be made of the
information it contains.

6

Contents

1. Introduction 12
1.1 Real-Time Control Systems . 14
1.2 Outline . 18

2. Background 20
2.1 Real-Time Systems . 20

2.1.1 Execution Modelling using State Machines 31
2.2 Control Systems . 33

2.2.1 Control System Stability 37
2.2.2 Control System Performance 42

3. Contribution 45
3.1 Included Papers . 45
3.2 Additional Publications . 49

Bibliography 51
Paper I. Analysis of Control Systems Subject to Bursts of Deadline

Misses 59
1 Introduction . 60
2 Related Work . 61
3 System Behaviour in Nominal Conditions 63

3.1 Plant Model . 63
3.2 Controller Model . 64
3.3 Closed-Loop System Dynamics 65

4 System Behaviour with Deadline Misses 67
5 Burst Interval Analysis . 69

5.1 Fault Model . 69
5.2 Closed-Loop System Dynamics 70

6 Experimental Results . 75
6.1 Furuta Pendulum . 75
6.2 Control Benchmark . 79

7 Conclusions . 82
References . 82

7

Contents

Paper II. Deadline-Miss-Adaptive Controller Implementation 89
1 Introduction . 90
2 System Model . 91

2.1 Control Systems under Ideal Operations 92
2.2 Control Systems Subject to Deadline Misses 94
2.3 Control System Stability under Deadline Misses 95

3 Problem Description . 96
3.1 Related Work . 96
3.2 Research Problem Motivation 97

4 Real-Time Controller Adaptation 100
4.1 Adaptive Controller Synthesis 100
4.2 Stochastic Performance Analysis 104

5 Experimental Evaluation . 107
5.1 Real World Evaluation – Ball and Beam 107
5.2 Benchmark Evaluation – Process Industry 112

6 Conclusion . 115
References . 116

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard
Constraints 123

1 Introduction . 124
2 Background and related work 126
3 AnyHit, RowHit, and constraint sets 130

3.1 Relating RowHit and AnyHit constraints 131
3.2 Handling sets of weakly-hard constraints Λ 134

4 WeaklyHard.jl . 135
4.1 Weakly-hard constraints as automata 136
4.2 Automaton construction 137
4.3 Scalable automata generation 139
4.4 Example . 140
4.5 WeaklyHard.jl functionality 141

5 Experimental evaluation . 141
5.1 Comparing WeaklyHard.jl and WHRTgraph 142
5.2 Evaluating RowHit constraints 144
5.3 Analysing sets of weakly-hard constraints 145
5.4 Determining the dominant constraint set 147

6 Conclusion . 148
References . 149

Paper IV. Stability under Extended Weakly-Hard Constraints 153
1 Introduction . 154
2 Background and Notation . 155

2.1 Real-time tasks that may miss deadlines 155
2.2 Control tasks that may miss deadlines 157

8

Contents

2.3 Stability analysis techniques based on JSR 157
3 Extended Weakly-Hard Task Model 158
4 Automaton Representation of EWHC 160
5 Stability Analysis . 161

5.1 Kronecker lifted switching system 162
5.2 Extended weakly hard and JSR properties 163

6 Evaluation . 165
7 Conclusion . 167
References . 167

Paper V. Stochastic Analysis of Control Systems Subject to Faults 171
1 Introduction . 172
2 Problem Formulation . 173

2.1 Control System Synthesis 174
2.2 Fault Model . 175
2.3 Problem Formulation . 178

3 Analysis . 179
3.1 Event Outcomes . 179
3.2 Closed-Loop System Dynamics 181
3.3 Markov Chain . 184
3.4 Markov Jump Linear Systems Analysis 186

4 Evaluation . 188
4.1 Automotive Cruise Control Evaluation 189
4.2 Ball and Beam Evaluation 192

5 Related Work . 194
6 Conclusion and Future Work 195
References . 196

9

Nomenclature
Notation Description
R Set of real numbers.
N≥ Set of natural numbers (inclusive), i.e., 0,1,2, . . .
N> Set of natural numbers (exclusive), i.e., 1,2,3, . . .
E [·] Expected value of a stochastic function.
|·| Cardinality of a set and absolute value of a number.
‖·‖ Norm of a function or matrix.
d·e Ceiling function.
b·c Floor function.
P Plant representation.
C Controller representation.
Scl Closed-loop system representation.
Φ Closed-loop system matrix.
Γ Closed-loop input matrix.
x̃k Closed-loop state vector at discrete time step k.
Pk Closed-loop state vector’s covariance matrix at discrete time step k.
Jk Quadratic cost at discrete time step k.
τ Arbitrary task in the real-time operating system.
H Deadline handling strategy.
λ Weakly-hard constraint.
Λ Set of weakly-hard constraints.
Σ Alphabet.
S (λ) Satisfaction set of a weakly-hard constraint λ .(x

k

)
The AnyHit weakly-hard constraint.(x

k

)
The AnyMiss weakly-hard constraint.〈x

k

〉
The RowHit weakly-hard constraint.〈x

k

〉
The RowMiss weakly-hard constraint.

G Graph representation of the state machine describing a task’s execution.
V Set of vertices/states in graph G or in a Markov chain.
E Set of labeled edges/transitions between vertices in V.

11

1
Introduction

Entering the digital age has forever changed how we interact with the world and how
it interacts with us. Unlike only 20 years ago, from the moment we wake up in the
morning till the moment we close our eyes at night, we interact with advanced com-
puter systems. Our cellphones, work computers, and even our cars contain many
computational devices, performing everything from menial tasks, such as checking
the weather and accessing mail clients, to safety critical tasks, such as the car’s ABS
breaks and most of the engine’s functionality. To put the digital growth rate in per-
spective, the semiconductor market share has more than quadrupled over the last 20
years [WSTS; SIA, 2022].1

Not only is the number of computational devices increasing, but their indepen-
dent capabilities, functionalities, and complexities are growing steadily, all while
the cost to buy and manufacture them has become cheaper. Obviously, the increased
efficiency and reduced cost opened up new businesses and domains, in particular
within the IT-domain, whilst also consolidating and automating preexisting indus-
try. Integrating digital components and software solutions is nowadays the norm
rather than the exception; this does not come as a surprise, considering that au-
tomating and simplifying the decision making and data collection yield both eco-
nomical and safety benefits. Generally, integrating software into any domain help
monitor system safety, log and transmit important data, orchestrate the execution
of different components, and remotely micromanage system updates. Subsequently,
software integration is a powerful tool that both improves efficiency and increases
revenue, assuming everything behaves as intended.

Interconnecting multiple systems is, however, not a trivial task. As the systems
are getting increasingly more complex, the surface for possible errors is also grow-
ing. After connecting two components together, new problems can be encountered
in addition to the components individual faults; for instance, problems with the cou-
pling or new problems in the individual components. A motorbike can experience
all the same problems that a normal bike can encounter (such as a loose chain), but it
can also experience issues from connecting the bike together with a motor (such as

1 Semiconductors are components constituting the foundation of generally all electronic devices.

12

Chapter 1. Introduction

electric clutch). Similarly to the motorbike, systems relying on the interconnection
of computational devices and digital components can experience complex coupling
issues. For example, data transmissions can easily be delayed or stall indefinitely if
data is lost, a computer’s orchestrator can get overloaded, and systems with remote
updates have the potential to break every time a new patch is installed. These prob-
lems are neither easy to detect nor troubleshoot; particularly since their origin can
be obfuscated by complex software and hardware interconnections.

The effects of such errors can be extremely expensive and cause companies to
lose billions of dollars. Typically the outcome of system faults is that the normal
operation of the device (or machine) is degraded. The degradation can accumulate
over time and either wear down the device or affect the end product. Obviously,
there is a lot of money to be gained by extending the devices’ lifetime through
proper fault analysis. Furthermore, if the end product is inferior to the promised
product, the consumers would go elsewhere — no matter whether the product is a
service, such as cloud storage, or a physical product, such as a cellphone.

Arguably more important than the economic consequences are the risks to per-
sonal safety, security, and privacy. One of the modern era’s most devastating ex-
amples are the Boeing’s 737 MAX crashes, killing 346 people in two subsequent
crashes.2 The crashes were caused by erroneous sensor readings being misinter-
preted by the flight control system, resulting in the planes nosediving into the
ground. Another relevant (although less lethal) example is the infamous Stuxnet
worm.3 Stuxnet infiltrated the system controlling the gas centrifuges in multiple
Iranian nuclear plants, significantly damaging them whilst also collecting critical
information.

It is generally impossible to guarantee that today’s complex computer systems
are absolutely safe, secure, and performs according to specifications under all con-
ditions. Additionally, testing for all possible future problems is expensive and time
consuming at best and infeasible in practice. It is therefore crucial to develop easy-
to-use, powerful tools to simplify the analysis of both the systems’ performance and
safety properties.

The purpose of this thesis is to provide tools and methods for analysing systems
experiencing faults. In particular, the focus is to analyse software integrated sys-
tems where the faults occur in the interconnection between software and hardware.
By treating accessibility, clarity, and generalisability as first-class citizens we aim
to lower the threshold for using the powerful tools provided. More specifically, we
provide tools to analyse real-time control system performance and stability when
the real-time tasks governing the control computations are subject to deadline over-
runs. The following subsection introduces the basic context for the real-time control
system constituting this thesis’ principal theme.

2 https://en.wikipedia.org/wiki/Boeing_737_MAX_groundings
3 https://en.wikipedia.org/wiki/Stuxnet

13

Chapter 1. Introduction

Task #3
FILE-CODE

Task #2
FILE-CODE

Task #1
FILE-CODE

Control Task #3
FILE-CODE

Control Task #2
FILE-CODE

Control Task #1
FILE-CODE

Real-Time Operating System

H
W

In
te

rf
ac

es

CLOCK

HardwareCLOCK

CLOCK

A
ct

ua
tio

n
Se

ns
in

g

Figure 1.1 A control system represented at a high level of abstraction. The plant
is represented on the right and its digital control structure is shown on the left. The
control structure comprises hardware and its interfaces with the plant as well as a
real-time operating system and its running tasks, among which are the control tasks.

1.1 Real-Time Control Systems

Fundamentally all systems today contain a certain level of automation, whether it
is automatic heat control in buildings or memory allocation in the cloud for storing
photos. The science of making systems automatically behave according to prede-
fined specifications is called automatic control. Characteristic for many automatic
control systems (control systems for short) is that they employ feedback, i.e., data
collected from the system is routed back and used in the decision mechanisms to
control the system. As an example, consider the temperature control in a room, if
the actual temperature is known, it can be used (fed back) to determine whether
the heating should be turned up or down to meet the desired temperature. A spe-
cific class of control systems are the real-time control systems, which are defined
by guaranteeing the timely execution of software in the control system. A common
misconception is that real-time systems are inherently very fast; however, the defini-
tion only relates the timeliness of the system to a precise notion of correctness. The
real-time system’s correctness is then expressed as guarantees that a set of prede-
fined temporal constraints are met. To enforce the satisfaction of these constraints,
a real-time operating system (RTOS) is typically employed.

A high-level abstraction of a real-time control system is depicted in Figure 1.1.
Next, the individual components seen in the figure are introduced.

Plant The right part of the figure depict the process we are trying to control (de-
noted the plant). This could be anything from flight control of a drone (as in the
figure), indoor heating systems, or the load on a server in a data centre. In this and
following chapters, the drone’s flight control system will be used as a recurring ex-
ample to illustrate the different concepts. The arrows going to and from the plant
indicate the flow of data; actuation data goes into the plant and sensor data is col-

14

1.1 Real-Time Control Systems

lected from the plant. Actuation data refers to the commands sent to the components
responsible for movement or change in the plant, i.e., the actuators. Similarly, the
sensor data is all information collected by the sensors, e.g., the drone’s accelera-
tion in different directions or its angular velocity. These signals are transmitted via
the hardware interfaces on the computational unit responsible for controlling the
plant. Historically, these signals were transmitted via wire, but in the last couple of
decades wireless communication has become more common [Park et al., 2018].

A communication protocol is used for the plant to communicate with the hard-
ware interfaces.4 The choice of protocol is domain dependent, for instance, in the
automotive industry the controller area network (CAN) is widely used [Voss, 2005].
There exists a plethora of domain specific communication protocols, but some es-
tablished ones include Profibus, Modbus, Ethernet/IP, and (the aforementioned)
CAN.

Hardware Depending on the application, the hardware used to control the plant
can be anything from a logic-based system (e.g., programmable logic controllers)
to a general purpose computer (e.g., laptops or server systems). We mainly refer to
microcontrollers (MCUs), i.e., small computers with integrated memory, central
processing units (CPUs), graphical processing units (GPUs), and programmable
input/output peripherals (PIOs) all on a single chip; however, we emphasise that
the presented results are not bound to a specific hardware architecture. It is also
common to connect multiple levels of control hardware together. For instance, hav-
ing a high-level trajectory planner communicate with a low-level control structure
whose objective is to enforce that the desired trajectory is followed, e.g., the hover-
ing height of a drone.

The choice of computer architecture is often flexible and can be changed de-
pending on the plant structure. It is for instance not uncommon that the plant sen-
sors include their own MCU to perform data processing before transmitting it to the
central control hardware [Karray et al., 2018]. Another common architecture choice
is having many single objective, specialised MCU nodes operating together towards
a global target, e.g., controlling the rotational velocity of the individual drone pro-
pellers during flight.

Clocks There exists another discrepancy between the components of the real-time
control system: the time quantisation. The plant, hardware, and RTOS are most
likely executing in different time scales, where the plant (at least in the drone ex-
ample) is likely to execute in continuous time while the hardware and RTOS are
both executing in (different) discrete quanta. Extremely simplified, the hardware
contains a clock that measures the progress of physical time in ticks rather than
seconds (like a wall-clock would). For the hardware clock, these ticks are physical

4 A communication protocol is a set of rules setup in order for two or more actors in a network to be
able to transmit information to one another. The rules include (but are not limited to) semantics, i.e.,
how to format the information, and synchronisation, i.e., how much and how fast the information is
transmitted.

15

Chapter 1. Introduction

events (typically the oscillations of a crystal) occurring with a known frequency.
The RTOS clock is then based on the hardware clock; it reads the hardware clock
at a frequency specified by the user and wraps it in a virtual layer to improve ap-
plicability. The granularity of the RTOS clock is thus quite coarse, which in turn
introduces release jitter and execution time variations on the tasks. Additionally,
the inconsistencies between different clocks is a difficult problem and it has in fact
warranted its own research domain, i.e., clock synchronisation.

Real-Time Operating System Commonly, real-time control systems rely on a real-
time operating system to schedule and constraint the temporal execution of a set of
tasks. Each task is assigned a priority (a value to describe how important the task is),
a dedicated function to execute (e.g., compute a value, transmit data, or log data),
and a deadline before which the function is supposed to complete its execution.
Typically there exists more than one task executing in the RTOS. To guarantee that
each task is assigned the correct amount of processor time, a scheduler is used to or-
chestrate the tasks’ execution. Specifically, the scheduler (i) swaps tasks in and out,
(ii) wakes up tasks that are currently not executing but should start executing, and
(iii) interrupt tasks that are currently executing when something with higher priority
requires the processor. The orchestration is based on a scheduling algorithm, where
some of the most popular algorithms include: fixed-priority, earliest-deadline-first,
and round-robin. Additionally, the tasks are not supposed to have any information
about the RTOS orchestration and it is thus the RTOS responsibility to ensure that
the task has access to its own context, i.e., the resources it requires.

The time it takes for a task to finish executing its corresponding function can
vary greatly between iterations. For instance, if a task contains different conditional
branches its execution time may be dependent on the branch taken.5 To quantify
a task’s execution time, the simplest task models approximate it as the worst-case
execution time (WCET), i.e., the maximum length of time the task could execute on
the specific hardware. The WCET is typically pessimistic, but it is also important
for guaranteeing reliability in safety-critical real-time systems.

Since there may exist many tasks in the RTOS and the scheduler can swap them
in and out arbitrarily, there are no guarantees that a task will execute its entire func-
tion consecutively. Firstly, as tasks can be dependent of one another, one task may
have to wait for another task to change its state (or compute a value) before complet-
ing its execution. Secondly, if the executing task gets preempted by the scheduler
in favour of another higher-priority process (e.g., an interrupt or a higher-priority
task), it will again have to wait for the scheduler to switch it back in. The maximum
length of time from that a task starts executing until it finishes is called the worst-
case response time (WCRT). If a task’s WCRT is smaller than its deadline, the task
will be guaranteed to always meet its deadline.

5 If a function’s behaviour change depending on a logical condition, it is said to have conditional
branches.

16

1.1 Real-Time Control Systems

Controller As can be seen in Figure 1.1, we conceptually distinguish control tasks
from normal tasks, even though there is no discernible difference between these
tasks from the RTOS perspective. The control tasks are all the tasks responsible for
controlling the plant, while the normal tasks take care of everything else. Taking the
drone as an example, the control tasks can be two tasks where one is making sure
that the rotational velocity of each propeller is following the desired setpoint whilst
the other is controlling the motors’ relative speeds to propel the drone forwards. Ad-
ditionally, there are other tasks communicating sensor data (e.g., barometric pres-
sure, MCU temperature, acceleration, etc.) to the central processing unit.

As elaborated upon in Chapter 2, we partition the tasks in these two categories
because we are specifically interested in analysing the control tasks’ effect on the
real-time control system when their temporal execution is unreliable. In particular,
the aim of the thesis is to investigate the control system’s behaviour when the con-
trol tasks overrun their respective deadlines. This is particularly relevant for control
systems, because enforcing that the control task’s WCRT is shorter than its dead-
line (i.e., that the task never overruns its deadline) would involve postponing the
deadline. Holding off the deadline results in fewer control updates, hence severely
degrading the control system’s performance. Consequently, allowing a certain num-
ber of deadline overruns can improve the control system’s overall performance.

Timeliness
In some situations, real-time control systems are executed under suboptimal timing
conditions. As already mentioned, faults typically lead to reduced quality of the end
product and can in the worst case be lethal. However, the term “timing faults” is
an oversimplification of a complex class of problems. When analysing timing faults
and irregularities it is thus important to properly define the fault type under analysis.
The following list include some of the most general timing irregularities analysed
in literature.

• Computational overruns – When there exists computational elements in the
system, i.e., something that takes the current state of the system and trans-
forms or translates it, there is the possibility that it will not complete its ex-
ecution, either on time or at all. Generally, this is connected to a real-time
system if the computation has to complete before a predetermined deadline.

• Time delays – Time delays might be some of the oldest timing problems anal-
ysed in the literature. Nowadays, time delays involve both internal time delays
and input/output delays, i.e., respectively when the plant includes time delays
or when the sensing, actuation, or control contains time delays. The control
community has developed methods to both analyse and design controllers for
systems with known time delays [Mirkin, 2004; Mirkin and Palmor, 2005].

• Jitter – Variations in the time delay are called jitter. Note that the previously
mentioned release jitter, originating from the coarse granularity of the RTOS

17

Chapter 1. Introduction

clock, is just one type of jitter. Another type of jitter appear when transmitting
data over a network; if the packet latency (time delay) is constant in time,
there is no jitter in the system. Instead, if the latency varies over time (as it
usually does), there exists jitter in the system. The jitter intensity depends
on the size of the latency fluctuations. In the control literature, methods to
compensate for jitter have been proposed [Cervin et al., 2004].

• Communication losses – If data packets transmitted over a network are either
lost along their route or too delayed to be useful, they are considered lost.
Another case when the packets are dropped is when the network is shut down
or overloaded, either by too much traffic or an attack. Packet losses can occur
both on the way to and from the hardware.

Conceptually, it may be natural to view some of the timing irregularities as equiv-
alent from a system-wide perspective. Distinguishing time delays from jitter or
communication losses from computation overruns is difficult in this context. For
instance, both communicational losses and computational overruns affect the un-
derlying software implementation; thus, it is only natural to assume that one can be
substituted for the other when analysing the system in order to save both time and
effort. However, the different models hold unique information that does not neces-
sarily overlap. It is therefore crucial to analyse all the appropriate models in order
to get a comprehensive picture of the specific system’s behaviour.

This thesis specifically targets systems subject to computational overruns, and
(to a minor extent) communication losses. Of particular interest are the problems
that occur in real-time control systems due to control tasks overrunning their cor-
responding deadlines. It is convenient to blame computational overruns on poor
system design and programming errors; however, even a flawless system design
can experience overruns due to, for instance, cache memory misses [Gracioli et al.,
2015] or radiation-induced faults [Tsog et al., 2021]. More commonly, it is known
that the real-time control system’s nominal performance is degraded if a design that
completely avoids overruns is used, i.e., if the deadline is postponed until after the
WCRT of the controller. Thus, with the awareness that it can cause transient faults,
the control system engineers can choose to tolerate a few overruns when the control
task’s execution time is near its worst case, in order to improve the system’s nominal
performance.

1.2 Outline

This thesis is a collection of papers and is divided into two parts. The first part
comprises the first three chapters and serves both as a summary and as an extension
of the motivation for the research work. The second part includes the papers that
constitute the major scientific contribution of this thesis.

18

1.2 Outline

The first chapter presented a high-level introduction to the relevant concepts
and problems. Next, Chapter 2 provide a rigorous presentation of the concepts that
were loosely introduced in Chapter 1. In addition to the proper problem description,
the chapter also outlines the relevant background and related work from both the
real-time and control theoretical domains. For each of the five papers constituting
the main part of the thesis, Chapter 3 contains a short summary of its content, a
brief description of its scientific contribution, and the respective authors’ individual
contribution.

19

2
Background

This chapter presents the necessary background and motivation for the remainder
of the thesis. We divide the chapter in two primary parts. First, a discussion on
the theoretical aspects of real-time systems is provided. An extended introduction
to how real-time operating systems operates is presented, e.g., processor sharing,
task states, scheduling strategies, etc. However, the main focus is dedicated to the
most commonly used task models and their respective advantages and disadvan-
tages, with respect to deadline overruns. Additionally, we provide a brief discussion
on state-machine applicability to the aforementioned task models. Next, the rele-
vant control theoretical background is presented based on the theory of real-time
systems. Two different system modelling approaches are introduced: switching sys-
tems and Markov jump linear systems. Both models are particularly relevant for
real-time systems where the control task can overrun its deadlines. Specifically for
these systems, we present and discuss different stability and performance analyses.

2.1 Real-Time Systems

We begin with an introduction to real-time system fundamentals. The breadth of
the topic prevents a comprehensive review of the existing literature to fit within the
scope of this thesis. In fact, real-time systems are all information processing systems
which reacts to external input within a predetermined deadline. This includes sen-
sors, actuators, process control, machine vision, robotics, and health care systems,
to acknowledge a fraction of all real-time systems. Instead, we focus the attention
to the elements which impact real-time control systems the most, i.e., CPU provi-
sioning, memory management, periodic tasks, task models, scheduling policies, and
execution models. Since the RTOS is tightly interconnected with the hardware, it is
natural to illustrate them jointly. Next, we describe the underlying hardware and
real-time architecture seen in Figure 2.1.

Although this thesis does not discern different hardware architectures from one
another, it is appropriate to talk about microcontrollers and embedded systems, in
particular due to their prevalence in real-time control systems. Despite being two

20

2.1 Real-Time Systems

Task #3
FILE-CODE

Task #2
FILE-CODE

Task #1
FILE-CODE

Control Task #3
FILE-CODE

Control Task #2
FILE-CODE

Control Task #1
FILE-CODE

Real-Time Operating System

H
W

In
te

rf
ac

es

CLOCK

HardwareCLOCK

CLOCK

Task #1
FILE-CODE

Task #2
FILE-CODE

· · · Task #N
FILE-CODE

C
ac

he

C
or

e
#1

C
or

e
#2

C
or

e
#M· · ·

C
PU

M
em

or
y

I/
O

In
te

rf
ac

e

Scheduler

Figure 2.1 A more detailed view of the digital elements of the control system
introduced in Figure 1.1. Processor, memory, and hardware interfaces are represented
as well as the scheduler responsible for determining which task(s) that are currently
executing on the hardware platform.

different hardware architectures, the terms embedded system and microcontroller
will carelessly be used interchangeably due to their natural similarities. As intro-
duced in Chapter 1, microcontrollers (MCUs) are small computers with integrated
processors, memory, and I/O peripherals. Most embedded systems are based on mi-
crocontroller architectures, however, some embedded systems are based on one or
more microprocessors with external memory and I/O peripherals. Hence, micro-
controllers are embedded systems which can also be used to develop more complex
embedded systems, but an embedded system is not necessarily a microcontroller.

The basis of every hardware architecture is a central processing unit (CPU, or
simply processor). This is the electronic component responsible for executing the
desired functions. Each function (or program) is translated into a list of instructions
to be executed on the CPU. These instructions belong to the machine’s language
used to tell the processor what type of operation to execute, e.g., load a specific
memory register or execute an arithmetic operation. The time it takes for the CPU
to execute one instruction, i.e., fetching the instruction from memory before decod-
ing and executing it, is typically called an instruction cycle (or simply cycle); this
is the basic unit used to measure CPU speed. To execute the program instructions,
the processor can contain one or more cores, respectively denoting the processor
as single-core or multi-core. Each core is able to execute a list of program instruc-
tions. Hence, the advantage of using multi-core processors (compared to single-core
processors) is the increased number of instructions that can be executed in paral-

21

Chapter 2. Background

lel. However, this gain comes at the cost of an elevated system complexity where
the memory and application layout has to be adapted to the multi-core architec-
ture [Brandenburg, 2011].

Integrated with the processor is a cache memory, i.e., a small but fast memory
that is easy to access from the operational cores. The cache memory stores recently
accessed instructions and data to reduce the latency induced by fetching from main
memory, i.e., the main hardware storage. Most modern CPUs have a layered cache
memory hierarchy, where the smallest and fastest layer is denoted L1, the second
smallest and fastest is denoted L2, and so on. When the processor needs to access
some data, it first examines whether the data exists in the cache and in that case
fetch it from there; otherwise, it collects the data from the main memory.

If a task wants to access cached data (or instructions) that cannot be found, it is
said to experience a cache miss; similarly, a cache hit occurs when the sought data
is found in the cache. Cache misses can arise if:

• the size of the requested data is too large to fetch;

• the requested data is not yet loaded into the cache; or

• the data has been evicted from the cache, e.g., to make room for more recently
retrieved data, or because the cache has been flushed due to security reasons.

Ideally, the number of cache misses that a task experiences is kept to a minimum,
in particular since fetching data from the main memory can incur large timing over-
heads on the task execution. Additionally, the longer a task executes, the less likely
it is to contract cache misses. Intuitively, the task will experience a few initial cache
misses when the data is loaded into the cache, but thereafter the cache will be oc-
cupied by relevant data and the cache misses should decrease. This is also known
as cache warming. If the task continues to experience significant cache misses even
after the cache warming phase, it is said to be thrashing the cache, i.e., contin-
uously experiencing cache misses. Thrashing can severely impact both real-time
performance, energy consumption, and even collapse system execution [Wadleigh
and Crawford, 2000]. In multi-core setups where different cores share a cache layer,
thrashing is a big concern; however, there exists strategies to mitigate frequent inter-
ference from different tasks sharing the same cache [Brandenburg, 2011]. To help
mitigate cache eviction (both in single- and multi-core setups), cache partitioning is
typically employed. Cache partitioning reserves specific memory addresses for spe-
cific tasks, whilst reserving others for shared data. Thus, cache evictions are limited
to the specific cache memory regions that are shared among multiple tasks, unless
the cache is flushed due to security reasons.

To interface with the external environment, the hardware uses input/output pe-
ripherals (I/O peripherals). The peripherals are all external components connected
to the hardware, e.g., sensors, actuators, or routers. Depending on the hardware, the
peripherals can either be connected to the circuit board responsible for joining the

22

2.1 Real-Time Systems

different components together or directly into the CPU. If the link to the external
environment is wireless, the I/O peripherals are not necessarily sensors or actua-
tors, but rather radio antennas, Bluetooth transmitters, or Wi-Fi routers (depending
on the wireless communication protocol) interacting with the sensors and actuators.
Typically, each peripheral is assigned to an I/O port in the device, i.e., a unique
number to know which physical pin to transmit and receive data through.

Separately from the I/O port, the communication protocol defines the rules used
to pack and unpack the packets sent between the peripherals and the hardware over
the communication channel. As an analogy, consider a postcard being sent between
England and France; the port is where we choose to send the letter, i.e., both the
address to send it to and the postage stamp, while the protocol is the content of
the message, i.e., the chosen communication format. Communication protocols and
their implementation details belong to a vast research topic which falls outside the
scope of this thesis. However, it is an important component of real-time networked
control systems and is thus briefly introduced here.

Information transmitted over a network (wired or wireless) is generally repre-
sented as a set of bits (ones and zeroes) to be read in series or parallel; without loss
of generality, we will only mention the serial case. The communication protocol
defines the rules determining how the transmitter should encode its data in order for
the receiver to decode it using the same set of rules. The rules are highly dependent
on the communication protocol and its application domain. We illustrate the idea of
communication protocols with an example: consider the case where a transmitter
wants to send the character R using the universal asynchronous receiver-transmitter
(UART) protocol.1 The rules defined by this protocol states that each data packet
contains exactly 8 bits of information, is prepended with a start bit (0), and is ap-
pended with a stop bit (1). Since the binary representation of R is 01010010 (using
ASCII encoding), the encoded character’s packet representation to be sent over the
network is then

0
Start bit

01010010
Data bits

1
End bit

.

Transmitting a message, such as RTS, thus involve encoding each character individ-
ually before transmitting the encoded bit stream in sequence,

001010010
R

1 001010100
T

1 001010011
S

1.

The network over which the packets are transmitted, typically consist of one or
more routers forwarding the packets between different target locations. To deter-
mine where to forward the packet to, the packet includes a network address that is
read by the router before rerouting the packet according to a routing policy.2 Addi-
tionally, each router contains a buffer to store incoming packets before processing

1 Assuming ASCII encoding of the character, 8 data bits, no parity, and 1 stop bit, i.e., UART 8-N-1.
2 The network address is an identifier to help recognise where to forward the packet to. Common

examples of network addresses are IP addresses and MAC addresses.

23

Chapter 2. Background

them. Processing the packets in the buffer is efficient, but it requires some non-
negligible overhead, i.e., reading the network address and deciding where to for-
ward the packet. Thus, under normal conditions the receiver will experience packet
latency and jitter, but if the network traffic is heavy the buffer space can quickly
be exhausted. In other words, if the packets arrive faster than what the router can
process it becomes congested.

Multiple policies have been developed to control the congestion, one common
example being the tail drop policy [Comer, 2013]. Generally all the congestion con-
trol strategies employ intentional packet dropping, i.e., if a packet arrives while the
buffer space is exhausted, the congestion controller will remove either the arriving
packet or one in the buffer (depending on the strategy). In addition to the congestion
controller dropping packets, there are intermittent packet drops due to, e.g., packets
being misrouted [Bradley et al., 1998], security threats [Hansman and Hunt, 2005],
software bugs [Mai et al., 2011], or wireless communication [Zhu et al., 2021].

Regardless of the packet drops’ origins, they can have dire consequences for
real-time control systems. Losing packets on the network connecting the con-
trol hardware and the plant, is the same as losing sensor measurements or con-
trol commands. Generally, this will degrade the control performance [Nilsson,
1998], however, if enough packets are lost it could cause critical system failures
or crashes [Xiong and Lam, 2007].

To simplify the interface with the hardware while guaranteeing timeliness, a
real-time operating system is commonly employed. The RTOS is responsible for
orchestrating the tasks’ execution and allocating resources (e.g., memory and CPU
time) to said tasks. The terms “task”, “process”, and “thread” are frequently con-
fused in many documents; to avoid this confusion we provide a definition in the
context of real-time operating systems:

• Process – A process is a computer program with its own stack, control block3,
and instruction set.

• Thread – A thread is an entity within a process that share the memory context
with additional threads.

• Task – The term task is used analogously with process.

The notational confusion likely arose from the multithreading, multiprocessing, and
multitasking paradigms. In a multiprocessing environment, multiple tasks can ex-
ecute concurrently, each on a separate core; multithreading is a CPU feature for
executing multiple threads concurrently on a single core; and, multitasking is when
a single core is executing multiple tasks concurrently.

3 A task’s control block (TCB) includes descriptive information about the task, for instance, the iden-
tifier used by the scheduler, its priority, and the task’s state (running, ready, blocked, suspended,
etc.).

24

2.1 Real-Time Systems

The RTOS typically employ a scheduler to orchestrate the tasks and to provide
them with the appropriate resources. The scheduler is responsible for switching
tasks in and out, making sure that the correct task context (the task’s resources) is
brought into scope, handling interrupts, and ensuring fairness among the entities
sharing the resources, e.g., interrupts, tasks, and kernel methods. How the scheduler
assigns resources is decided by the scheduling algorithm. Most scheduling algo-
rithms adopt a preemptive approach to assigning resources, i.e., the scheduler is run
once every time slice (time quanta) to choose which task to switch in. Classical ex-
amples of preemptive scheduling algorithms are: (i) fixed priority preemptive (FPP),
where the task with the highest predetermined priority value is executed; (ii) earli-
est deadline first (EDF), where the task with the shortest time to its corresponding
deadline is executed; and (iii) round-robin (RR), where the tasks are switched into
scope in a circular order. Depending on the choice of algorithm, the real-time sys-
tem’s execution pattern may vastly differ. For instance, two different scheduling
strategies applied to one set of real-time tasks, may or may not result in the system
being schedulable, i.e., all the temporal constraints are satisfied. If the RTOS tasks
are not schedulable there exists tasks overrunning their corresponding deadlines.

In order for the scheduler to know when to stop the currently running task in
favour of switching in another, the RTOS clock triggers an interrupt at every clock
tick. Interrupts can come from both hardware and software, but the RTOS ticks are
triggered by the software clock in the RTOS.4 Attached to the interrupt is generally
an interrupt service routine (ISR), i.e., a callback function to execute when the
specific interrupt is triggered. For instance, in the context of the scheduler’s tick
interrupt, the ISR may be responsible for switching out the currently active task
before switching in a new task and its relevant context. The ISR connected to the
RTOS clock tick is also one of the major causes for release jitter in RTOS, i.e.,
the time it takes to put the suspended task into the ready queue before picking a
new candidate to execute varies between invocations. Since the RTOS suspends the
execution of the active task whenever an interrupt is triggered (even if it happens
in the middle of a time slice), it is crucial that the ISR is fast, to avoid stalling the
processor. Hence, if the callback function takes too long to execute or if the ISR is
triggered too often, it can cause significant time delays in the schedule execution.

Employing a scheduler for single-core processors follow the described
paradigm, however, for multi-core systems additional design choices have to be
made. Fundamentally, two different approaches have been taken to scheduling to
a multi-core processor: global or partitioned scheduling. The former assumes one
scheduler responsible for scheduling all the tasks in a global ready queue to the
individual cores based on available and required resources. On the other hand,
partitioned scheduling (sometimes referred to as clustered scheduling) involves

4 Hardware interrupts come from events changing the state of the system, e.g., external signals trig-
gering that they need attention from the RTOS, watchdog timers triggering an interrupt at set time
intervals, or spurious interrupts (electrical anomalies) [Drepper and Molnar, 2003].

25

Chapter 2. Background

dividing the tasks into partitions that are then mapped to separate cores with in-
dividual schedulers. Despite having additional computational resources to work
with, multi-core systems are subject to deadline overruns similarly to single-core
systems, when the capacity is exceeded or due to other events such as deadlocks
and locking of shared resources.

Tasks All the real-time tasks considered in this thesis are recurrent, i.e., they do
not terminate during system operation. The recurrent task model simplifies the a
priori analysis of the real-time workload’s effect on the system execution. A plethora
of methods have been derived to model the recurrent task execution, ranging in
complexity from the classic Liu and Layland model [Liu and Layland, 1973] to
directed acyclic graph (DAG) models [Saifullah et al., 2014]. Henceforth, the terms
recurrent tasks and tasks will be used analogously.

The task model adopted in this thesis defines a task τ as a sequence of jobs jk,
where each job is responsible for executing one full iteration of the task’s function.
Here, k counts the number of discrete time steps since the task was created. Each
task τi is characterised by the triplet (ei,di, pi). Here, for each job; ei > 0 is the
worst-case execution time (WCET); di > 0 is the relative deadline; and, pi ≥ di is
the minimum interarrival period. The RTOS scheduler releases a job jk at time ak
(the job’s release time) and the job then completes its execution at time fk (the job’s
completion time). A recurrent task is periodic if its jobs are released at equidistant
time points, i.e., ak = k ·T where T is fixed. In particular, control tasks are typically
implemented as periodic tasks, hence one job is released in every period. To make
sure that the periodic task’s jobs finish their execution before the subsequent job
is released, it is common to adopt implicit deadlines, i.e., that job jk completes its
execution before the release time of job jk+1; formally, it implies that fk ≤ ak+1 =
k ·T +T = ak +T or simpler di = pi = T .

Under ideal computational conditions, each job completes its execution before
its corresponding deadline, i.e., fk ≤ ak +di. However, it can happen that the indi-
vidual job has not yet finished executing when it reaches the end of its allotted time
budget. We then say that the job experiences a deadline overrun (also referred to as
deadline miss or computational overrun). Respectively, if the job completes before
its deadline, it meets its deadline (experiences a deadline hit).

DEFINITION 1—DEADLINE OVERRUN
The k-th job (jk) of a task τi is said to experience a deadline overrun if

fk > ak +di.

Computational overruns are present in generally all real-time domains from avionics
and defence to consumer electronics [Åkesson et al., 2020], thus highlighting the
importance of analysing their impact on the systems’ functional correctness.

Every real-time system behaves differently in the presence of deadline over-
runs. Depending on the application, some systems crash while others experience a

26

2.1 Real-Time Systems

degraded efficiency. Due to this individuality, most real-time systems were histori-
cally divided into two classes describing how the systems were affected by compu-
tational overruns.

• Hard real-time systems – It is imperative that all deadlines are met in order to
prevent critical system failure.

• Soft real-time systems – The perceived quality of the system is degraded with
the number of overrun deadlines, but it is unlikely that it will impact system
safety.

Soft real-time systems typically do not crash catastrophically when they experience
a finite number of deadline overruns. To analyse these systems, their deadline over-
runs are typically modelled using stochastic processes. For instance, the most basic
models assume that jobs’ deadline outcomes are independent and identically dis-
tributed random variables, i.e., that the outcome of each job depend only on the
probability that this specific job overruns its deadline. Intuitively, this assumption
is too simplistic for real systems and instead stochastic models for the task execu-
tion were developed based on, for instance, Markov chains [Liu et al., 2005; Friebe,
2022; Abeni et al., 2017; Lincoln and Cervin, 2002] and task chains [Manolache et
al., 2004; Liu and Anderson, 2010], where the transitions between states are proba-
bilistic. Despite the hard and soft classes covering many real-time systems, they do
not cover all cases. In particular, embedded controllers are typically better described
using the firm real-time system model, characterised by being able to overrun a few,
but not too many, deadlines before causing critical system failure.

Arguably the most recognised firm model is the weakly-hard task model [Bernat
et al., 2001]. These models were originally devised to provide formal guarantees to
tasks that can tolerate occasional deadline overruns, e.g., control tasks where de-
creasing the sampling time would improve the overall performance whilst introduc-
ing intermittent computational overruns. What defines a weakly-hard task is that
the distribution of deadline hits and misses during a window of k jobs is precisely
bounded.5 In other words, in addition to the number of overrun deadlines that a task
experiences in a window, the sequence in which they appear is also affecting the
task execution. We here compile the definitions of the weakly-hard models:

DEFINITION 2—WEAKLY-HARD TASK
A weakly-hard task τ is a task that satisfies (at least) one of the following con-
straints:

(i) τ `
(x

k

)
(AnyHit): in any window of k consecutive jobs, the minimum number

of deadline hits is x;

5 From context it will always be clear whether k is used to respectively denote the window length of a
weakly-hard constraint or to count the discrete number of job iterations of a recurrent task.

27

Chapter 2. Background

(ii) τ `
〈x

k

〉
(RowHit): in any window of k consecutive jobs, the minimum number

of consecutive deadline hits is x;

(iii) τ `
(x

k

)
(AnyMiss): in any window of k consecutive jobs, the maximum num-

ber of deadline misses is x; and

(iv) τ `
〈x

k

〉
(RowMiss): in any window of k consecutive jobs, the maximum num-

ber of consecutive deadline misses is x;

for some values of x ∈ N≥, k ∈ N>, where x≤ k.

Here, the ` symbol is used to indicate that all possible sequences of deadline hits
and misses of τ satisfy the right hand side.

To formalise which sequences of deadline hits and misses that are permitted
under a specific weakly-hard constraint, an alphabet is introduced. For historical
reasons, the language used to characterise the deadline outcomes of a weakly-hard
task is binary, i.e., it consists solely of two unique character mappings to a deadline
hit and a deadline miss.6 Formally, the alphabet of outcomes is denoted Σ = {0,1},
where 0 indicates a job overrunning its corresponding deadline and 1 represents a
job meeting its deadline. With the use of the alphabet and conventional language
theoretical notation [Hopcroft et al., 2006], a character ck ∈ Σ is defined as the
outcome of the k-th job. Similarly, a word w is a sequence of characters, i.e., w =
〈c1,c2, . . .〉. Hence, a word is representing a sequence of deadline hits and misses.
The set of all all length N words that can be constructed from the alphabet Σ is
denoted ΣN .

Since all of the weakly-hard constraints act on the same language it is natural
to ask whether they are relatable to one another, or not. In [Bernat et al., 2001], the
authors show that the constraints are in fact comparable using the sets containing
all sequences satisfying the specific constraints. With a slight abuse of notation we
will let w ` λ represent the case when a word w (outcome sequence) satisfies the
weakly-hard constraint λ .

DEFINITION 3—SATISFACTION SET
The satisfaction set SN (λ) of an arbitrary weakly-hard constraint λ , is the set of
all length N ∈ N> words w satisfying λ . Formally,

SN (λ) =
{

w | w ∈ Σ
N , w ` λ

}
.

To simplify notation, the set of infinite length words satisfying a constraint will be
denoted as S∞ (λ) ≡ S (λ). Using the satisfaction sets it is then possible to define
a partial ordering among the constraints, i.e., relate them to one another based on
their difficulty to satisfy. A weakly-hard constraint is harder to satisfy if it is more

6 In Paper IV we extend this notation to also encompass more appropriate languages in the real-time
control systems setting.

28

2.1 Real-Time Systems

restrictive in which sequences satisfy the constraint. Consider for instance the con-
straint λ1 =

(1
1

)
, which requires that every job meets its corresponding deadline.

The constraint is extremely restrictive in what sequences it permits; in fact, the sat-
isfaction set of this constraint only contains one sequence, SN (λ1) = {1N}. On the
other hand, the constraint λ2 =

(0
1

)
requires no job deadlines to be met to be satis-

fied; thus, all sequences satisfy this constraint, SN (λ2) = ΣN . Intuitively, since λ1
is more restrictive than λ2, we say that λ1 dominates λ2. We formalise this partial
ordering in the following definition:

DEFINITION 4—CONSTRAINT DOMINANCE
Given two arbitrary weakly-hard constraints λ1 and λ2, we say that λ1 dominates
λ2 (denoted λ1 � λ2) if and only if all words satisfying λ1 also satisfy λ2. Formally,

λ1 � λ2⇔S (λ1)⊆ S (λ2).

Definition 4 confirms that λ1 =
(1

1

)
dominates λ2 =

(0
1

)
, because S (λ1) ⊆ S (λ2).

Many constraint dominance relations have been derived in literature [Bernat et al.,
2001].7 Additionally, the partial ordering motivates the notion of constraint equiv-
alence

λ1 � λ2∧λ2 � λ1⇔ λ1 ≡ λ2,

where ∧ is the logical conjunction operator. The constraint equivalence is also ex-
pressible through the satisfaction sets, i.e., λ1 ≡ λ2⇔S (λ1) = S (λ2).

Despite not having gained a lot of traction in the research community, a real-time
task can be subjected to multiple weakly-hard constraints. However, the nature of
the weakly-hard constraints still require that every constraint is satisfied for a partic-
ular sequence. Since one of the main mathematical advantages of the weakly-hard
constraints is that they are fully representable by the closed set that is their respec-
tive satisfaction sets; if a task τ satisfies a set of N constraints Λ = {λ1,λ2, . . . ,λN},
the joint satisfaction set has to be the intersection of all the individual satisfaction
sets

S (Λ) =
N⋂

i=0

S (λi).

The chosen task model is important when analysing the execution pattern of the
real-time task, but implementation details, such as the scheduler’s functionality, are
typically not included in the analysis. In fact, it has been shown that the implemen-
tation’s design choices significantly affect both the performance and safety prop-
erties of the system [Cervin, 2005]. This thesis addresses the discrepancy between
the real-time models, control theoretical models, and the implementation specifica-
tions by including details about the implementation in the real-time control system
analysis. For instance, consider the k+3-rd job in Figure 2.2; the behaviour of the

7 In Paper III we extend the known orderings with two theorems relating the AnyHit and RowHit
constraints, thus making it possible to relate all the different weakly-hard constraints.

29

Chapter 2. Background

Time

τ
jk jk+1 jk+2 jk+3

Figure 2.2 Example of the execution trace belonging to a task τ , where four jobs
are depicted. The k+ 3-rd job reaches its corresponding deadline (the activation of
the next job) without having completed its execution.

real-time system is undefined, regardless of the chosen task model. The function
that job jk+3 is supposed to carry out remains unfinished, resulting in an unknown
behaviour if the overrun deadline is left unmanaged. It is therefore crucial to include
some details about the implementation in the system analysis.

In addition to orchestrating the tasks in the RTOS, the scheduler is also respon-
sible for supervising the tasks overrunning their deadlines (denoted the overrun
handling strategy). Different strategies have been developed to handle overruns in
varying applications. In [Caccamo et al., 2002], the authors propose a method for
avoiding deadline overruns by postponing the deadline of the job that requires more
processor time to complete. An arbiter designed to drop certain jobs upon release
(i.e., skipping them) is proposed in [Yoshimoto and Ushio, 2011]. However, as de-
scribed in [Cervin, 2004], three of the simplest overrun handling strategies are:

• Queue – The naive approach involves letting the job overrunning its deadline
to continue its execution whilst queueing up subsequent jobs. As soon as the
executing job is finished, the first instance in the job queue is immediately
released and activated. Instead of queuing all subsequent jobs, it is common
to only queue the most recent job; this is typically denoted the Queue(1)
strategy. However, the Queue strategies risk successive jobs being delayed
enough to induce domino effects in the system.

• Skip – Under the Skip strategy (sometimes referred to as Skip-Next or
Continue), the job overrunning its deadline is allowed to continue executing
until completion. Unlike the Queue strategy, subsequent jobs are skipped (i.e.,
terminated before release) instead of being put into a job queue. Hence, the
domino effects that can occur under Queue are avoided; this does however
come at the cost of skipping a full job even in the presence of infinitesimal
overruns.

• Kill – If a job overruns its deadline under the Kill strategy (sometimes
referred to as Abort), the job is immediately terminated allowing the subse-
quent job to be released and activated on time. One of the main advantages
with the Kill strategy comes from its binary outcome representation, i.e., ei-
ther the job is completed or it is not. This fits well together with, for instance,
the weakly-hard task models’ language representation. On the other hand, a

30

2.1 Real-Time Systems

drawback with Kill is that if the task function depends on an internal state,
the part of the computation that was completed may need to be rolled back
to a previous state via, e.g., memory checkpointing [Vogt et al., 2015]. Since
such an operation requires additional overhead, it further increases the risk
of missing the subsequent job’s deadline. Additionally, if many consecutive
job deadlines are overrun, the corresponding task risks never doing any actual
work.

A framework for switching between Kill and Skip to drop delayed packets in ar-
bitrated networked control systems is presented in [Soudbakhsh et al., 2018]. The
authors of [Pazzaglia et al., 2018] discuss the performance of real-time control sys-
tems subject to the AnyMiss constraints with respect to both the Kill and Skip
strategies; additionally, the authors discuss how the overrun handling strategy af-
fect the freshness of the control signal, i.e., the age of the actuated control signal.
In [Köhler and Ernst, 2019] the authors extend an existing method for computing
weakly-hard guarantees in multi-component systems where deadline outcomes are
considered binary events, i.e., adhering to the Kill strategy.

Separately from the scheduler’s overrun strategy, it is important to analyse what
happens when the actuators do not receive a fresh control command due to, for in-
stance, a deadline overrun or a packet loss on the network. The actuators typically
employ an actuator mode to decide which command to enact on the plant if no new
control command has been received. The research community has proposed (among
many other) smart actuator degradation policies [Ma et al., 2018] and adaptive com-
pensation schemes [Xing et al., 2017] for actuators subject to intermittent faults.
However, two of the simplest and most frequently employed policies are the Zero
and Hold actuator modes [Schenato, 2009]. If no new control signal is received by
the actuator, the Hold actuation mode holds the last received control command until
a new directive is received. On the contrary, the Zero actuation mode stops acting
on the plant if no new control command is received.8 Choosing a proper actuator
mode is non-trivial and is in general highly dependent on the plant and controller
dynamics [Schenato, 2009]. For controllers with integrating dynamics, Hold is a
good choice pressuming that the controller command is keeping the system close to
its desired execution point. On the contrary, the Zero mode may be safer for plants
with noisy or unstable dynamics, because avoiding to affect the system can be better
than to act on outdated control commands.

2.1.1 Execution Modelling using State Machines
Ever since Liu and Layland proposed their simplistic task model [Liu and Layland,
1973], more expressive models have been sought to properly characterise the execu-
tion of real-time tasks. One of the more prominent methods to capture the task exe-
cution’s expressiveness involved utilising directed acyclic graphs (DAGs) [Baruah,

8 Paper I shows that the choice of actuation mode can significantly affect both stability and perfor-
mance properties of the physical system, when the controller is subject to computational overruns.

31

Chapter 2. Background

2003; Chakraborty and Thiele, 2005; Stigge et al., 2011]. In fact, both graphs and
finite state machines (FSM) are frequently used to monitor task execution and verify
system safety [Kumar et al., 2012; Dai and Burns, 2020; Hertneck et al., 2020]

The use of finite state machines (also referred to as finite state automata) have
moreover been applied to the research of deadline overrun modelling. In fact, for
a task’s jobs the computational overrun process have been modelled using finite
state machines for both soft and firm real-time systems. In [Horssen et al., 2016]
the authors model the AnyMiss weakly-hard constraint using an automaton where
the transition events between states are represented by the job outcomes. A Markov
chain (MC) model was used in [Ling and Lemmon, 2003] to model the dropout rate
of sensor packets in a soft networked control system. [Kwak et al., 2001] utilise a
Markov chain to select optimal time points for memory checkpointing in real-time
systems where tasks may experience transient faults. Henceforth, we will sloppily
refer to finite state machines as automata.9

Both automata and Markov chains are constructed from directed graphs, with
the main difference that the automata transitions are deterministic by nature whilst
the Markov chain requires a distribution of probabilities to model the transitions be-
tween states. In this thesis, both automata and MC are represented by an underlying
graph G = (V,E), where V is the set of vertices (or states) and E is the set of edges
(or transitions). However, the vertices and transitions symbolise different deadline
overrun models for respectively the automata and Markov chain.

The automaton model is used to represent the feasible sequences of deadline hits
and misses for the weakly-hard constraints.10 Here, the underlying graph depend
on the chosen constraint, i.e., Gλ = (Vλ ,Eλ). Each vertex vi ∈Vλ represents a word
wi ∈ Sk (λ), where k is the window length of λ . A transition ei, j = (vi,v j,ci, j) ∈ Eλ

is a triplet describing the transition condition ci, j ∈ Σ to get from vertex vi to v j. For
instance, there exists a transition ei, j = (vi,v j,0) between vi and v j if the sequence
of deadline hits and misses wi still satisfies the constraint λ if followed by a deadline
miss (i.e., ci, j = 0) and the resulting sequence can be represented by w j.

When modelling stochastic computational overruns, the Markov chain models
are naturally better-suited than the automaton model.11 The MC is represented by
a set of states vi ∈ V where the transitions between states is again a triplet ei, j =
(vi,v j, pi, j)∈E. Unlike the automata model, the transition here defines a transitional
probability pi, j between two states vi and v j, i.e., a transition from state vi to state v j
occurs with probability pi, j ∈ [0,1]. Trivially, the cumulative probability of leaving
any state vi is 1

∑
v j∈V

pi, j = 1.

Note that pi,i is not necessarily 0, meaning that with probability pi,i state vi remains

9 To keep notation consistent with Papers III and IV.
10 The automaton model is derived in Paper III and utilised in Paper IV.
11 The Markov chain is utilised in Papers II and V.

32

2.2 Control Systems

v2v1 Fail

Automaton

1
0

1

0 v2v1

Markov Chain

1− p
p

1− p

p

Figure 2.3 Graph representation example of an automaton (left) and Markov chain
(right). Left: the automaton models the firm real-time constraint that at most one
deadline overrun can exist in every window of two consecutive jobs. Right: the
Markov chain models the soft real-time constraint in which the outcome of each
job is an iid process with overrun probability p.

the active state. A Markov state is said to be absorbing if it, once entered, is never
left, i.e., has probability pi,i = 1. The transitional probability depends on the specific
probability distribution.

To demonstrate the similarities and differences between the automaton and
Markov chain, an example is shown in Figure 2.3. Here, the automaton is con-
structed from a weakly-hard real-time task subject to the constraint

(x
k

)
=

(1
2

)
, i.e.,

at least one job has to meet its deadline in every window of two consecutive job ac-
tivations. Recall that the characters 0 and 1 respectively represent an overrun and a
met deadline in the automaton’s language. Then, the vertex v1 represent a sequence
with a met deadline as its most recent job outcome whilst v2 correspond to a se-
quence where the last job overran its deadline. Since the constraint does not tolerate
two consecutive deadline overruns, if a deadline overrun occur from vertex v2 the
constraint would be violated and the fail-state is entered. In comparison, the MC
represent a soft real-time task where every job has an independent and identically
distributed (iid) probability p of overrunning its deadline. Notice that the transitions
in both the automaton and in the Markov chain represent the outcome of exactly
one job execution. This is a deterministic transition (no probabilities involved) in
the automaton, whilst it is stochastic for the MC.

2.2 Control Systems

By omitting the implementation details, such as the real-time system’s hardware
layer and operating system, the remaining components are the mathematical models
of the plant and controllers. Figure 2.4 highlights how these models relate to the
relevant system architecture. The mathematical models characterise the system’s
behaviour in time, typically via a dynamical system of differential (or difference)

33

Chapter 2. Background

Task #3
FILE-CODE

Task #2
FILE-CODE

Task #1
FILE-CODE

Control Task #3
FILE-CODE

Control Task #2
FILE-CODE

Control Task #1
FILE-CODE

Real-Time Operating System

H
W

In
te

rf
ac

es

CLOCK

HardwareCLOCK

CLOCK

readSensors(&y);
*u = computeCtrl(*y);
actuateCtrl(&u);
sleepUntil(period);

{
zk+1 = p(zk, yk)

uk = q(zk, yk)

{
ẋ(t) = f (x(t), u(t), t)

y(t) = g(x(t), u(t), t)

Figure 2.4 An example of the code snippet executed by the control task together
with the mathematical representation of the control algorithm (left) and the mathe-
matical model of the plant dynamics (right).

equations written on state-space form{
ẋ(t) = f (x(t), u(t), t)

y(t) = g(x(t), u(t), t).
(2.1)

Practically all real-world plants can be modelled using continuous-time, non-
linear state-space equations on the same form as Equation (2.1). The physical prop-
erties of the plant (e.g., velocity, position, rotation, etc.) are collected in the state
vector x(t) ∈ Rnx , the exogenous signals affecting the plant are collected in the
input vector u(t) ∈ Rnu , and the measurable quantities are collected in the output
vector y(t) ∈ Rny . The dynamical behaviour of the system is described by the func-
tions f and g, which we say are time-variant if they explicitly depend on the vari-
able t and time-invariant if they do not, i.e., if f (x(t), u(t), t) = f (x(t), u(t)) and
g(x(t), u(t), t) = g(x(t), u(t)). A state-space system is linear if the functions f and
g can be expressed as linear combinations of their arguments, i.e., a linear state-
space system can be written as{

ẋ(t) = Ac(t)x(t)+Bc(t)u(t)

y(t) =Cc(t)x(t)+Dc(t)u(t).
(2.2)

The matrices Ac(t) ∈ Rnx×nx and Bc(t) ∈ Rnx×nu govern the state evolution of the
plant while Cc(t)∈Rny×nx and Dc(t)∈Rny×nu describe its output process. The plant
is said to be linear time-invariant (LTI) if none of the matrices in Equation (2.2) are
time-dependent, e.g., Ac(t) = Ac.

If the plant is continuous, it is typically discretised to simplify the analysis,
synthesis, and implementation of the controllers. Transforming the continuous-time
plant model into its discrete-time equivalent is non-trivial and generally depend on
how the continuous system is sampled, i.e., how the analog-to-digital converters

34

2.2 Control Systems

(ADC) and digital-to-analog converters (DAC) are designed. The DAC is located
near the actuators and translates the digital value received from the controller to an
analog actuator command. Similarly, the ADC transforms the analog sensor values
to digital signals to be sent to the controlling hardware. One of the most commonly
applied sampling techniques is the zero-order hold (ZOH) circuit, where the DAC
holds the last converted analog signal constant until a new discrete value is received
and converted. The sensors are generally configured to sample the plant at the dis-
crete time instants when the control signal to the plant changes. In other words, if
the DAC receives and converts discrete values at time instants { tk }k∈N≥ , the sensors
sample the system in the same time points. For periodically sampled systems, the
sampling instants are equidistant with a sampling period of T , i.e., tk = k ·T . The
resulting discrete-time, LTI model of the plant P is then

P :

{
xk+1 = Axk +Buk +W wk

yk =C xk +Duk,
(2.3)

where the variable subscripts counts the discrete time samples since system startup,
i.e., xk = x(k ·T) and xk+1 = x(k ·T +T). Note that the process’ stochastic distur-
bance process wk ∈ Rnw and dynamic matrix W ∈ Rnx×nw have been added. The
disturbance process wk is typically a stochastic process with (assumed) known sta-
tistical properties, modelling the unknown plant dynamics and exogenous signals.

Similarly to how the plant is described using a dynamical system on state-space
form, controllers are typically defined on the same format (denoted the controller’s
control law). Section 2.1 described how the control algorithm is implemented as a
function governed by a task executing in the RTOS; modern controllers are hence
unlikely to be continuous. Therefore, the discrete, time-invariant state-space repre-
sentation of a general control law is{

zk+1 = p(zk, yk)

uk = q(zk, yk).
(2.4)

Here, the control state vector zk ∈ Rnz represent the controller’s dynamics, the con-
trol signals uk ∈ Rnu are inputs to the plant, and the functions p and q govern the
dynamical behaviour of the controller. Intuitively, each time step k corresponds to
one job activation of the control task. Similar to the plant, if p and q can be ex-
pressed as linear combinations of their arguments, i.e., p(zk, yk) = F zk +Gyk and
q(zk, yk) = H zk +K yk, then the controller C is linear

C :

{
zk+1 = F zk +Gyk

uk = H zk +K yk.
(2.5)

We say that a controller C is stateless (or static) if it has no dependence on the
internal state z, i.e., nz = 0. Furthermore, a stateful (or dynamic) controller C is any
controller that depend on its internal state z, i.e., nz > 0.

35

Chapter 2. Background

To improve timing predictability whilst also reducing input-output jitter one-
step delay controllers are frequently employed.12 The one-step delay is generally
taken into consideration during the control design process, in other words, the con-
trol algorithm is designed for the control signal to be computed during the k-th con-
trol period and to be deployed by the actuators at the release of the k+1-st control
job. In the real-time literature, one-step delay are commonly referred to as logical
execution time (LET) controllers [Ernst et al., 2018; Gemlau et al., 2021; Kirsch
and Sokolova, 2012]. The LET paradigm simplifies the schedulability analysis, im-
proves timing predictability, and removes time-varying computational delays (e.g.,
release jitter, context switching overhead, and interrupts), but it comes at the cost of
introducing a time delay in the actuation.

The vast treatise on synthesis and analysis of both linear and non-linear con-
trol laws that exists is likely too large to review in any thesis; however, some of
the most known algorithms are outlined here. Arguably the most famous control
structure is the proportional-integral-derivative (PID) controller, in which the error
between the sensor measurements and the desired plant states are used to compute
the new control signal [Åström and Hägglund, 2006]. The PID controller is linear
and stateful, assuming that either the I or D part is included. From the domain of
optimal control, the linear-quadratic regulator (LQR) was derived to analytically
minimise a quadratic cost function penalising large control signals and plant state
deviations. The linear and stateless LQR algorithm has been the subject to a large
research effort [Goswami et al., 2012; Linsenmayer and Allgöwer, 2018], likely
due to its elegant mathematical properties. Additionally, the LQR is a fundamental
part of solving the linear-quadratic-Gaussian (LQG) problem [Åström and Witten-
mark, 1997]. Like LQR, model predictive control (MPC) originate from optimal
control [Allgöwer et al., 1999]; however, they differ in the cost function’s structure.
When LQR optimises the control structure over a full time window, MPC provides
a receding time horizon solution while also supporting constraints on the trajectory,
control state, and control signal.

Control theory is dedicated to developing models and algorithms (such as PID,
LQR, LQG, and MPC) for designing p and q such that the control system’s state
follows a desired trajectory while minimising undesirable effects such as noise, dis-
turbances, and large actuator commands. In Sections 2.2.1 and 2.2.2, the control
law’s objectives will be expanded upon, particularly discussing stability and perfor-
mance. However, to discuss stability and performance in real-time control systems,
it is crucial to first properly introduce feedback. The sensor signals that are received
at the controller are processed by the control algorithm before the computed control
signal is transmitted back to the actuators. Routing signals back into the plant like
this is called feedback control (or closed-loop control). Typically, the closed-loop

12 If the controller adopts a one-step delay approach, the order of the last two statements of the control
algorithm in Figure 2.4 has to be swapped, suggesting that the second equation of the system of equa-
tions (2.5) instead should be read as uk+1 = H zk +K yk . However, the control law’s reformulation is
typically made implicitly by augmenting the controller’s state with the control signal.

36

2.2 Control Systems

system (i.e., all components involved in the closed-loop control) is also described
by a dynamical equation, acquired by combining Equations (2.3) and (2.5)

x̃k+1 = Φ x̃k +Γw wk, (2.6)

where x̃k is the closed-loop system’s state vector, Φ is the closed-loop system matrix
responsible for encoding the closed-loop system’s dynamics, and Γw is the dynamic
matrix of the exogenous stochastic variable wk.

Thus far, the system execution has been assumed to be faultless. However, we
are interested in analysing the real-time control system when the control tasks are
subject to computational overruns. Despite only having system components that are
discrete-time, linear, and time-invariant, the closed-loop system dynamics become
time-variant when introducing computational faults. In place of Equation (2.5), the
controller C is then characterised by

C :

{
zk+1 = Fθk zk +Gθk yk

uk = Hθk zk +Kθk yk,
(2.7)

where θk is the process governing the overruns, e.g., a weakly-hard sequence or
Markov process. For instance, given a sequence w of job outcomes adhering to the
weakly-hard RowHit constraint

〈2
5

〉
, e.g., w = 110011011; indexing the k-th charac-

ter in the word w as ck, the outcome process is θk = ck. The controller dynamics then
depend on whether the deadline was met (1) or overrun (0) as well as the scheduler’s
overrun policy, i.e., Kill, Skip, Queue, or some other deadline overrun strategy.

The changing control equations do in turn also change the closed-loop dynamics
from Equation (2.6)

x̃k+1 = Φθk x̃k +Γw wk. (2.8)

If θk is governed by a Markov process, then Equation (2.8) is denoted a Markov
jump linear system (MJLS) [Feng et al., 1992]. Instead, if the process changing the
closed-loop dynamics is deterministic, it is labeled a switching system [Liberzon,
2003]. We acknowledge that this simplified description of both Markov jump linear
systems and switching systems is extremely coarse. In the upcoming sections, we
will introduce notation for both MJLS and switching systems such that the stability
and performance analyses are unambiguous.

2.2.1 Control System Stability
One of the fundamental objectives of all control synthesis is to stabilise the system.
Stability theory is a broad domain and there exists many both weak and strong def-
initions of stability. For dynamical systems (such as control systems), a common
notion of stability is that bounded perturbations in the initial conditions of a differ-
ential (or difference) equation results in bounded perturbations in the solution.13 In

13 Note that this implies that the disturbances do not affect the linear system’s stability.

37

Chapter 2. Background

other words, if a system is stable for a bounded set of initial condition then the solu-
tion will not grow unbounded. Conversely, if a system is unstable the solution grows
unbounded. As an example, if the drone system from Chapter 1 was unstable, under
certain conditions the motor velocity would rapidly increase (or decrease) until the
drone finally crashed (a highly undesirable behaviour).

In practice, these vague notions of stability are formalised in rigorous mathe-
matical definitions. Two of the classic definitions of stability for linear dynamical
systems are the Routh-Hurwitz stability criterion for continuous systems [Åstrom
and Murray, 2008] and the Schur stability criterion for discrete systems [Åström
and Wittenmark, 1997]. The criteria could be summarised by:

• A continuous-time linear system is said to be Hurwitz stable if all its charac-
teristic polynomial’s roots lie in the open left half-plane.

• A discrete-time linear system is said to be Schur stable if all its characteristic
polynomial’s roots lie inside the open unit disk.

In practice, these conditions directly correspond to verifying that all the sys-
tem’s eigenvalues are either strictly in the left half plane (continuous systems) or
strictly inside the unit disc (discrete systems). The Hurwitz stability criterion for a
continuous-time LTI system with system matrix Φc and the Schur stability criterion
for a discrete-time LTI system with system matrix Φ is then

Hurwitz: max{Re(eigi (Φ
c))}< 0,

Schur: max{|eigi (Φ)|}< 1,

where eigi (Φ) retrieves the i-th eigenvalue of Φ and Re(·) extracts the real-part of
a complex number (element-wise when applied to a vector). It is worth noting that
the Schur stability criterion is dependent on the spectral radius of the system, i.e.,
the maximum asymptotic growth rate of the system. Denoting the spectral radius of
a square matrix Φ ∈ Rn×n with ρ (Φ), it is then defined as14

ρ (Φ) = max{|eig1 (Φ)| , |eig2 (Φ)| , . . . , |eign (Φ)|}= lim
k→∞
‖Φk‖1/k. (2.9)

Deterministic Switching Stability The classical notions of linear systems stability
do not hold when the closed-loop dynamics is time-variant. Instead, more powerful
mathematical tools are needed, dependent on the definition of the switching process
θk, i.e., whether the system is subject to deterministic or stochastic switching. By
deterministic switching we mean systems where the switching process θk is a deter-
ministic constraint, such as the weakly-hard constraints; in other words, a switching
system where stability is independent of the probability of transitioning between
different execution modes. On the other hand, stochastic switching refer to systems

14 The second equality is a well-established relation known as Gelfand’s formula. The equality holds
true regardless of the chosen matrix norm.

38

2.2 Control Systems

where θk is governed by an entirely stochastic process, e.g., a Markov chain, and
the switching stability is hence highly dependent on the transition probabilities. In
this thesis, emphasis has been to analyse switching stability from the deterministic
framework, using methods introduced next.

A useful tool for determining stability of most dynamical systems is Lyapunov’s
second method – more frequently referred to as Lyapunov’s stability criterion. Es-
sentially, the stability criterion is based on finding a function with particular prop-
erties (denoted the Lyapunov function) for the system under consideration; if a Lya-
punov function exists, the system is globally asymptotically stable [Åström and
Wittenmark, 1997]. The Lyapunov function is an energy function which is zero at
the unique point of equilibrium, positive everywhere else, and decreases along all
trajectories of the system. For instance, consider an oscillating pendulum; it will
always move toward the position with the lowest energy, finally reaching its resting
state when it is hanging freely downwards, i.e., where the potential energy of the
pendulum has reached its equilibrium. Unfortunately, finding a suitable Lyapunov
function is generally a very complex problem – in particular when the system expe-
riences switching dynamics due to overruns.

Fortunately, the joint spectral radius (JSR) [Rota and Strang, 1960] has in re-
cent years become the subject of intense research due to its role in (among oth-
ers) discrete-time switching systems stability analysis. From its name, it might be
clear that the joint spectral radius is a generalisation of the spectral radius from
Equation (2.9). In fact, the JSR generalises the spectral radius to a set of matrices
A = {Φ1,Φ2, . . . ,ΦN} (denoted the switching set), i.e., it represents the maximum
asymptotic growth rate of the arbitrary switching between matrices in the set. For
the switched dynamical system in Equation (2.8), each matrix Φi ∈ A is a unique
matrix describing one switching mode of θk and the JSR is then the maximal asymp-
totic growth rate of the closed-loop states x̃k under arbitrary switching of the matri-
ces Φi ∈ A. Trivially, if the switching set only contains one matrix, i.e., A = {Φ},
then the joint spectral radius and the spectral radius are equivalent.

To simplify notation, we borrow the following definition from [Jungers, 2009]

Ak , {Φ1 · · ·Φk | Φi ∈ A} .

Thus,Ak is the set of all matrix multiplications involving k matrices from the setA.
Using the introduced notation, the following definition provides a formal definition
of the JSR [Jungers, 2009].

DEFINITION 5—JOINT SPECTRAL RADIUS
Given a bounded set of matrices A, the joint spectral radius (JSR) of A is defined
as

ρ (A) = lim sup
k→∞

{
‖Φ‖1/k | Φ ∈ Ak

}
.

Since ρ (A) correspond to the maximum asymptotic growth rate of the arbitrary
switching between matrices in the set A, if the worst-case sequence of matrices

39

Chapter 2. Background

Φ ∈ Ak has a bounded growth rate ‖Φ‖ < 1, it implies that the switching system
x̃k = Φ · x̃0 is bounded by the triangle inequality, i.e., |x̃k| ≤ ‖Φ‖|x̃0| → 0. Stability
of a switched dynamical system via the joint spectral radius is outlined in the fol-
lowing theorem (for more details and a formal proof we refer the interested reader
to [Jungers, 2009]).

THEOREM 1—SWITCHING STABILITY
For any bounded set of matrices A, the corresponding switched dynamical system
is stable if and only if ρ (A)< 1.

Furthermore, Theorem 1 raises an interesting question about the converse case:
which is the switching sequence Φ1 · · ·Φk ∈ Ak resulting in ρ (A)≥ 1? To the best
of this thesis’ author’s knowledge, there are currently no results outlining which
sequence that destabilises the switched dynamical system.

The JSR is a powerful tool since it makes it possible to determine whether a
switching system is asymptotically stable (ρ (A)< 1) or not (ρ (A)≥ 1). However,
the problem of computing the exact JSR value, and thus also testing whether or not
the system is stable, is in practice undecidable [Blondel and Tsitsiklis, 2000]. To
overcome this problem, the research community have in the last decade set out
to develop and improve approximation methods, bounding the JSR from above
and below [Jungers, 2009]. Multiple different methods have been developed to
approximate the JSR, such methods include (but are not limited to): branch and
bound [Gripenberg, 1996], polytope [Protasov, 1996], ellipsoidal norms [Blondel et
al., 2005; John, 2014], and sum-of-squares (SOS) relaxation methods [Parrilo and
Jadbabaie, 2008; Wang et al., 2021b; Wang et al., 2021a].

An interesting relation to the Lyapunov stability is the fact that searching for a
common ellipsoidal norm is equivalent to finding a common quadratic Lyapunov
function. However, in [Ando and Shih, 1998] the authors describe a constructive
method for generating asymptotically stable switching systems for which no com-
mon quadratic Lyapunov function exist. Instead, the authors of [Parrilo and Jad-
babaie, 2008] prove that if the solution to the SOS problem in Equation (2.10) pro-
vides a pair (p(x) ,γ) such that (i) the polynomial p(x) is homogeneous and in the
interior of the SOS cone and (ii) γ < 1, then p(x) is positive definite and decreases
along all trajectories, meaning that p(x) is a Lyapunov function for the switching
system defined by A.

ρSOS,2d (A) = inf
p(x)∈R2d [x],γ

γ

s.t.
{

p(x) is SOS
γ2d p(x)− p(Φix) is SOS, Φi ∈ A.

(2.10)

Here R2d [x] is the set of homogeneous polynomials of degree 2d. Additionally, the
authors show how the upper bound on the JSR achieved by the SOS approach in
Equation (2.10) is never weaker than the one obtained with a common quadratic
Lyapunov function.

40

2.2 Control Systems

Trivially, since ρLB (A) ≤ ρ (A) ≤ ρUB (A), if an approximation method pro-
vides an upper bound ρUB (A) that is below one for the switched dynamical system,
it is confirmed to be stable; conversely, if the lower bound ρLB (A) is above one, the
system is guaranteed unstable. The active research in this field continues to enhance
both the bounds and algorithmic complexities, thus constantly improving the appli-
cability of the JSR notion.

Stochastic Switching Stability If the overrun process in Equation (2.8) is gov-
erned by a Markov model, it is possible to utilise well-known results for Markov
jump linear systems (MJLS) [Lincoln and Cervin, 2002; Feng et al., 1992; Nilsson
et al., 1998]. While the switching system stability analysis (e.g., JSR) provides a de-
terministic stability certificate, i.e., the switching system stability analysis provides
guarantees that the dynamical system will be stable under all configurations of the
different modes, the MJLS stability analysis provides a stochastic certificate. This
certificate does in turn provide probabilistic guarantees that the MJLS will almost
surely converge to its equilibrium point [Feng et al., 1992].15

Since MJLS are stochastic by nature, the existing stability analyses typically
investigate how the expected value of the system’s states evolve in time. Arguably
the most well-known stability analysis methods are stochastic stability (SS) and
different variants of mean-square stability (MSS) [Feng et al., 1992]. Paraphrased
from [Costa et al., 2005], we say that the dynamical system in (2.8), governed by a
Markov process θk, is mean-square stable if

lim
k→∞

E
[
‖x̃k‖2]< ∞.

In practice, testing for mean-square stability implies verifying that the spectral ra-
dius of the operator Ψ, i.e., the operator defining the Markov jump linear system’s
covariance, is less than one. We denote an N-state Markov chain’s transition proba-
bility matrix with Π =

{
pi, j

}
∈ RN×N ; this matrix specifies the probability of tran-

sitioning from the i-th to the j-th Markov state. Additionally, In is defined as the size
n×n identity matrix and ⊗ denotes the Kronecker product. The following theorem
then holds [Costa et al., 2005].

THEOREM 2—MEAN-SQUARE STABILITY
The dynamical system in Equation (2.8), governed by an N-state Markov chain with
transition probability matrix Π ∈ RN×N , is MSS if

ρ (Ψ)< 1,

where
Ψ =

(
Π

T⊗ In2
)
·blkdiag

({
Φ

T
i ⊗Φi

}
i∈{1,2,...,N}

)
.

15 In probability theory, the notion of almost surely means that an event will happen with probability 1.

41

Chapter 2. Background

In practice, Theorem 2 simplifies the MSS testing and implies almost sure stability
of the expected dynamics. Finding the spectral radius of a matrix is intuitively much
faster than, for instance, the joint spectral radius (which has already been discussed
to be undecidable). This is one of the main advantages with the stochastic certificate
received by the MSS in comparison to the deterministic one received by computing
the JSR.

2.2.2 Control System Performance
Stability analysis, such as the one discussed in Section 2.2.1 is undeniably a black
and white concept. A control system can for instance neither be 90% nor 10% sta-
ble; the system is either stable or it is not. This stands in contrast to the notion of
control system performance which is a more ambivalent and fluctuating concept.
Performance as a metric to be measured exists in many differing domains, however,
we will unequivocally use the notion of performance in place of control system
performance, unless otherwise stated.

Evaluating the performance of a control system involves first defining what is
important for the application in focus. As mentioned in Section 2.2, the objective of
control synthesis is to design the functions p and q from Equation (2.4) such that
some predetermined requirements are met. Aside from the obvious stability neces-
sity, the requirements typically involve (but are not limited to): (i) accurately fol-
lowing a desired system trajectory, (ii) quick convergence to said trajectory, (iii) ef-
ficiently rejecting process disturbances, (iv) minimising the control effort without
significantly affecting other objectives, and (v) estimating or predicting the sys-
tem state by eliminating inaccuracies and measurement errors. How the different
control objectives are valued is dependent on the specific application. Ideally, any
controller’s ultimate goal is to satisfy these objectives perfectly. Unfortunately, there
exists a trade-off between the controller’s robustness and tracking performance, i.e.,
how well it handles respectively disturbances and setpoint changes. The trade-off
expresses itself implicitly as a limit on how efficiently the desired setpoint can be
tracked if disturbances and unmodeled dynamics are also to be effectively rejected.

To judge how well the synthesised controller performs, a performance analysis
is frequently employed. The analysis method uses a performance metric to qualita-
tively measure the performance of the controller, i.e., the performance metric pro-
duces a descriptive value for the specific controller. Using the performance measure,
it is then possible to compare the quality of one controller to another. The analysis is
typically simulation-based, meaning that the performance is evaluated on a virtual
replica (or model) of the system. Intuitively, performance analysis methods provide
a coarse estimation of how well the controller will perform when connected to the
actual system. To improve the results, it is thus necessary to run the controller also
on the physical hardware. However, this can become costly in case there are unde-
tected problems with either the control or real-time system design. The system is
therefore first evaluated in extensive simulations and tests [Mandrioli, 2022].

42

2.2 Control Systems

Innumerable different methods for analysing control system performance have
been developed. This thesis facilitates a performance analysis of real-time control
systems subject to computational overruns using a stochastic quadratic cost function

Jk = E
[
x̃T

k Qx̃k
]
. (2.11)

Here, Jk is the closed-loop state’s cost increment in the k-th period and Q is a pos-
itive semidefinite weight matrix penalising large closed-loop state deviations. The
model is based on well-known theory for linear stochastic systems [Åström, 1970;
Åström and Wittenmark, 1997; Nilsson et al., 1998; Cervin et al., 2019].

We assume that the desired reference point for the closed-loop state x̃k is zero
and that the disturbance wk is an independent, discrete-time, zero mean, Gaussian
white noise process with covariance E

[
wk wT

k

]
= R1. The assumptions may seem

overly restrictive, but we emphasise that more elaborate and advanced disturbance
processes (and reference trajectories) can be realised by augmenting the closed-loop
system with additional states describing the exogenous dynamics.16 With these as-
sumptions, together with the initial condition on the closed-loop state’s mean value
and covariance being respectively E [x̃0] = m0 and cov(x̃0) = R0, it is possible to
describe how to evaluate Equation (2.11).

The expression in Equation (2.11) is difficult to compute in practice. Instead, it
is easier to first transform the cost Jk into an equivalent form before evaluating it.
We define the closed-loop system’s mean value and covariance functions as mk and
Pk respectively

mk = E [x̃k] , Pk = cov(x̃k) = E
[
x̃k x̃T

k
]
−E [x̃k] E [x̃k]

T . (2.12)

Note that because E [wk] = 0, the mean value of the state adhere to the following
dynamical equation

mk+1 = E [Φ x̃k +Γw wk] = Φmk.

From (2.12) it then follows that (2.11) can equivalently be written as [Bates, 2011]

Jk = E
[
x̃T

k Qx̃k
]

= tr
(
E
[
x̃T

k Qx̃k
])

= tr
(
QE

[
x̃k x̃T

k
])

= tr
(
Q
(
Pk +mk mT

k
))

= tr(QPk)+mT
k Qmk.

(2.13)

Here, tr(·) computes the trace of its argument. If the condition E [x̃0] = m0 = 0 is
enforced, the expression can be reduced to solving Jk = tr(QPk).

16 In both Paper I and II we augment the system state to model respectively brown noise (integrated
white noise) and reference trajectories.

43

Chapter 2. Background

Solving Equation (2.13) still requires knowledge about how the closed-loop
state’s covariance Pk propagates in time. Recalling that x̃k and wk are independent,
evolving the covariance results in the following dynamical equation

Pk+1 = cov(x̃k+1)

= E
[
x̃k+1 x̃T

k+1
]
−E [x̃k+1] E [x̃k+1]

T

= E
[
(Φ x̃k +Γw wk)(Φ x̃k +Γw wk)

T
]
−Φmk mT

k Φ
T

= ΦE
[
x̃k x̃T

k
]

Φ
T +ΓwE

[
wk wT

k
]

Γ
T
w−Φmk mT

k Φ
T

= Φ
(
cov(x̃k)+mk mT

k
)

Φ
T +ΓwE

[
wk wT

k
]

Γ
T
w−Φmk mT

k Φ
T

= ΦPk Φ
T +Γw R1 Γ

T
w.

(2.14)

Equations (2.13) and (2.14) establish the foundation for the performance analysis
on a nominally executing dynamical system, such as the one in (2.6). When the
control task starts experiencing deadline overruns, the switching dynamics alters the
performance analysis accordingly, i.e., switching Φ for Φθk in Equation (2.14).17

The research community developed multiple different tools to simplify
the performance analysis of real-time embedded (or networked) control sys-
tems [Ohlin et al., 2006]. For instance, JitterBug [Lincoln and Cervin, 2002]
and JitterTime [Cervin et al., 2019] are tools to precisely evaluate the quadratic
cost function considered in this thesis (2.13) for mixed continuous-/discrete-time
system components.

17 In Papers I and II we make additional alterations to the performance analysis to properly facilitate it
under the specific system conditions.

44

3
Contribution

The main scientific contribution of this thesis is presented in the five papers that fol-
low this chapter. This chapter provides an overview of the scientific contributions
of each of the five publications to the real-time control research. Additionally, each
author’s contribution to the papers is described in detail. We conclude the chapter
with Section 3.2, which lists additional peer-reviewed publications that were ex-
cluded from this thesis. These publications have been omitted to improve the cohe-
sion of this manuscript, as they cover tangential topics with respect to the research
presented in the thesis.

Difference Between Published and Included Version There are two differences
between the published papers and the version included in this thesis: (i) the language
and mathematical notation of the papers presented in this thesis have been unified
for readability and consistency, (ii) figures and tables have been resized to match
the format of the thesis.

3.1 Included Papers

Paper I
N. Vreman, A. Cervin, and M. Maggio (2021). “Stability and Per-
formance Analysis of Control Systems Subject to Bursts of Dead-
line Misses”. In: 33rd Euromicro Conference on Real-Time Systems
(ECRTS). Vol. 196. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für Informatik. ISBN:
978-3-95977-192-4. DOI: 10.4230/LIPIcs.ECRTS.2021.15

Scientific Summary In Paper I, linear control system stability and performance is
analysed when the controller experiences persistent computational blackouts. His-
torically, the models to analyse such events have been either stochastic or overly
conservative. These models have been thoroughly investigated in the literature, but
few have been shown to achieve similar results on industrial applications.

45

Chapter 3. Contribution

On the contrary, Paper I proposes a new fault model that handles consecutive
computational overruns whilst also encapsulating graceful recovery back to nom-
inal execution conditions. The fault model is coupled together with different ac-
tuator (Zero and Hold) and scheduling strategies (Kill and Skip) to provide a
holistic system model. To properly analyse the specific fault model, a methodology
for analysing the stability and performance is also derived. The stability analysis is
based on a switched system stability approach, whilst the performance analysis is
based on evolving a quadratic cost function in time.

To reinforce the analysis methodology’s applicability to industrial applications,
an experimental campaign is carried out. The paper analyses both a non-linear phys-
ical system (a Furuta pendulum) and a set of linear system models representative of
the process industry. From the analysis performed on the physical system, the paper
shows that it is possible to draw accurate conclusions about the physical process’
behaviour using simulation results.

Contribution Statement The idea of analysing control system stability using fault
models that are matching industrial needs was proposed by M. Maggio. The phys-
ical testing environment and the experiments were implemented and executed by
N. Vreman, who also developed the fault model and its formalisation. The switch-
ing stability analysis was derived by M. Maggio and N. Vreman. The method for
analysing the system performance was developed together by A. Cervin and N. Vre-
man. The manuscript writing and editing effort was shared among all three authors.

Paper II
N. Vreman, C. Mandrioli, and A. Cervin (2022a). “Deadline-Miss-
Adaptive Controller Implementation for Real-Time Control Systems”.
In: IEEE 28th Real-Time and Embedded Technology and Applications
Symposium (RTAS). DOI: 10.1109/RTAS54340.2022.00010

Scientific Summary Many different robust controllers exists, specifically target-
ing control systems where the controller can experience timing faults. The main
advantage of using these synthesis methods is that they can guarantee a priori sys-
tem stability, under their respective fault model. Paper II identifies some limitations
of previous work, namely: (i) complex design methods, (ii) poor performance in
nominal conditions, and (iii) strong assumptions on the control law’s structure.

To address the shortcomings of previous synthesis methods, the paper proposes
an adaptive control law that: (i) is simple to design and implement, (ii) requires
minimal system knowledge, and (iii) does not affect the nominal control perfor-
mance. The adaptive controller assumes that there exists a controller that has been
synthesised with respect to a specific control system’s specification under nominal
conditions. Assuming that the Kill strategy is employed, the adaptation then alters
the controller matrices (based on the number of computational overruns) to quickly
restore nominal control performance. To analyse the performance gain of the adap-

46

3.1 Included Papers

tive controller, the existing stochastic performance analyses based on Markov jump
linear system’s theory is extended to compute the relative performance degrada-
tion, i.e., the performance degradation caused by using a controller other than the
ideal controller.

The adaptive controller is validated on a physical process (a Ball and Beam)
and on the set of process industrial models, used also in Paper I. Significant perfor-
mance gain is shown despite having an immense number of computational overruns.
Additionally, since the proposed method does not guarantee any a priori stability
guarantees, the paper analyses the switched system stability a posteriori.

Contribution Statement The initial observation, that many fault-tolerant con-
trollers are restricted to overly specific system conditions, was made by C. Man-
drioli. A set of limitations was identified together by C. Mandrioli and N. Vreman;
who also derived the adaptive controller addressing these limitations. A. Cervin de-
rived the performance analysis to validate the controller. The adaptive controller
was implemented on the Ball and Beam plant by N. Vreman, and the data was col-
lected by both N. Vreman and C. Mandrioli. The manuscript writing and editing
effort was shared among all three authors.

Paper III
N. Vreman, R. Pates, and M. Maggio (2022b). “WeaklyHard.jl: Scal-
able Analysis of Weakly-Hard Constraints”. In: IEEE 28th Real-Time
and Embedded Technology and Applications Symposium (RTAS). DOI:
10.1109/RTAS54340.2022.00026

Scientific Summary Ever since their introduction, the weakly-hard models have
been steadily increasing in both academic and industrial popularity. The existing
tools and research have focused on single constraints, in particular the AnyMiss
constraint. In certain domains, e.g., control systems, this choice is likely motivated
by the AnyMiss constraints popularity rather than its fitness to the problem state-
ment.

Paper III aspires to (i) change the focus from the AnyMiss constraint to the
RowHit constraint and (ii) propose a scalable, open-source tool (WeaklyHard.jl)
that can be used to analyse all the weakly-hard constraints. In order to switch the
attention to the RowHit constraint, we provide two novel theorems on the rela-
tion between it and the AnyHit constraint, finalising the relationship graph between
all the weakly-hard constraints. The WeaklyHard.jl tool employs an automaton
model to describe the discrete-time execution of a task subject to a specific weakly-
hard constraint. Additionally, WeaklyHard.jl is the first tool to address sets of
weakly-hard constraints. The paper reports the results of an experimental campaign
that addresses both scalability of WeaklyHard.jl compared to the state-of-the-art
alternative and tests the novel features of WeaklyHard.jl.

47

Chapter 3. Contribution

Contribution Statement The idea behind the paper and the tool was developed by
N. Vreman. The tool and its underlying algorithms was developed by N. Vreman,
with input from M. Maggio. The formulation of the theorems relating the AnyHit
and RowHit constraints were derived by N. Vreman, with proof-sketches that R.
Pates helped refining. The manuscript was written by N. Vreman and M. Maggio,
with input from R. Pates.

Paper IV
N. Vreman, P. Pazzaglia, V. Magron, J. Wang, and M. Maggio (2022c).
“Stability of Linear Systems Under Extended Weakly-Hard Con-
straints”. IEEE Control Systems Letters 6. DOI: 10 . 1109 / LCSYS .
2022.3179960

Scientific Summary Despite the weakly-hard models having steadily gained more
traction in the analysis of control systems, the weakly-hard model fails at expressing
some characteristics of the implementation of control systems, e.g., how the actual
controller implementation deals with deadline misses. Paper IV rectifies this dis-
crepancy, by extending the formal language defining the weakly-hard constraints,
and connecting the analysis on weakly-hard control systems to the actual imple-
mentation of controllers.

The paper uses the automata-based model produced by WeaklyHard.jl (pre-
sented in Paper III). A post-processing step is proposed that refines the automaton
and handles the analysis of extended weakly-hard constraints, the extension being
the implementation’s characteristics. The paper presents a stability analysis based
on switching linear systems, that advances the state of the art of analysing imple-
mentation of control systems.

The dynamics of the linear control system is Kronecker lifted with the adjacency
matrix of the automaton to obtain an equivalent system model, now also subject to
the extended weakly-hard constraint. This system model can then be analysed us-
ing any method applicable to arbitrary switching systems. The paper uses a JSR
approach, but other alternatives can be envisioned. In addition to the stability analy-
sis, the paper discusses theoretical results relating the real-time constraints with the
control system stability.

Contribution Statement P. Pazzaglia came up with the idea for the paper after
discussions with N. Vreman. The theoretical results presented in the paper were
developed together by N. Vreman and P. Pazzaglia. N. Vreman extended the func-
tionality of WeaklyHard.jl with the ability to handle a more expressive formal
language for implementation concerns. V. Magron and M. Maggio discussed the
JSR analysis, which was implemented by J. Wang. The manuscript was written by
P. Pazzaglia and N. Vreman, with input and revisions from co-authors.

48

3.2 Additional Publications

Paper V
N. Vreman and M. Maggio (2023). “Stochastic Stability Analysis of
Control Systems Subject to Communication and Computation Faults”.
Submitted to ACM SIGBED International Conference on Embedded
Software (EMSOFT)

Scientific Summary Research into fault-tolerant real-time control systems has
been split between focusing on networked systems experiencing communication
dropouts, i.e., packet losses, or embedded systems suffering computational over-
runs. Despite carrying very different information, the computational overruns have
been compared to communication dropouts when analysing the system dynamics,
and vice versa. The paper aims to clarify this discrepancy by analysing what hap-
pens when these faults can occur simultaneously, as is the case for real implemen-
tations.

Most modern results on switched system analysis provide certificates of stabil-
ity or performance under worst-case conditions. However, the worst-case conditions
may be exceedingly rare, resulting in overly conservative guarantees. Instead, typi-
cal methods for deriving bounds on both packet losses and computational overruns
are probabilistic by nature. By modelling both the packet losses on the input/out-
put channels (to and from the plant) and the computational overruns as stochastic
variables, we are able to utilise powerful results from Markov Jump Linear Systems
theory, providing stability contracts with almost sure convergence guarantees.

We apply the analysis to two case studies from the recent literature and show
their robustness to a comprehensive set of faults. The analysis clearly shows how
the systems are distinctly affected by either individually or jointly occurring com-
putational and communication faults.

Contribution Statement M. Maggio proposed the idea of looking into the analysis
of systems with a combination of faults. The implementation of the analysis and the
generation of the results was done by N. Vreman, with input from M. Maggio. The
manuscript writing was shared between the two authors with N. Vreman taking a
leading role.

3.2 Additional Publications

The author of this thesis has also contributed to the following peer-reviewed publi-
cations.

M. Gunnarsson, N. Vreman, and M. Maggio (2023). “Trusted Ex-
ecution of Periodic Tasks for Embedded Systems”. In: IFAC World
Congress

49

Chapter 3. Contribution

M. Nyberg Carlsson, N. Vreman, and A. Cervin (2023). “Timing-
Robust Control over the Cloud Using On-Line Parametric Optimiza-
tion”. In: IFAC World Congress

K. Krüger, N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler
(2021). “Randomization as Mitigation of Directed Timing Inference
Based Attacks on Time-Triggered Real-Time Systems with Task Repli-
cation”. Leibniz Transactions on Embedded Systems 7:1. DOI: 10 .
4230/LITES.7.1.1

N. Vreman and C. Mandrioli (2020). “Evaluation of Burst Failure Ro-
bustness of Control Systems in the Fog”. In: 2nd Workshop on Fog
Computing and the IoT (Fog-IoT). Vol. 80. OpenAccess Series in Infor-
matics (OASIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
ISBN: 978-3-95977-144-3. DOI: 10.4230/OASIcs.Fog-IoT.2020.8

N. Vreman, R. Pates, K. Krüger, G. Fohler, and M. Maggio (2019).
“Minimizing Side-Channel Attack Vulnerability via Schedule Ran-
domization”. In: IEEE 58th Conference on Decision and Control
(CDC). DOI: 10.1109/CDC40024.2019.9030144

N. Vreman and M. Maggio (2019). “Multilayer Distributed Control
over 5G Networks: Challenges and Security Threats”. In: Proceedings
of the Workshop on Fog Computing and the IoT (Fog-IoT). IoT-Fog ’19.
Association for Computing Machinery, New York, NY, USA. ISBN:
9781450366984. DOI: 10.1145/3313150.3313223

50

Bibliography

Abeni, L., D. Fontanelli, L. Palopoli, and B. Villalba Frías (2017). “A markovian
model for the computation time of real-time applications”. In: International
Instrumentation and Measurement Technology Conference (I2MTC), pp. 1–6.
DOI: 10.1109/I2MTC.2017.7969878.

Åkesson, B., M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis (2020). “An em-
pirical survey-based study into industry practice in real-time systems”. In: 41st
IEEE Real-Time Systems Symposium (RTSS).

Allgöwer, F., T. A. Badgwell, J. S. Qin, J. B. Rawlings, and S. J. Wright (1999).
“Nonlinear predictive control and moving horizon estimation — an introduc-
tory overview”. In: Frank, P. M. (Ed.). Advances in Control. Springer London,
London, pp. 391–449. ISBN: 978-1-4471-0853-5.

Ando, T. and M.-h. Shih (1998). “Simultaneous contractibility”. SIAM Journal
on Matrix Analysis and Applications 19:2, pp. 487–498. DOI: 10 . 1137 /
S0895479897318812.

Åstrom, K. J. and R. M. Murray (2008). Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, USA. ISBN: 0691135762.

Åström, K. J. and B. Wittenmark (1997). Computer-Controlled Systems (3rd Ed.)
Prentice-Hall, Inc., USA. ISBN: 0133148998.

Åström, K. (1970). Introduction to stochastic control theory. Vol. 70. Mathematics
in science and engineering. Academic Press, United States. ISBN: 0-12-065650-
7.

Åström, K. and T. Hägglund (2006). Advanced PID Control. English. ISA - The
Instrumentation, Systems and Automation Society. ISBN: 978-1-55617-942-6.

Baruah, S. K. (2003). “Dynamic- and static-priority scheduling of recurring real-
time tasks”. Real-Time Systems 24:1, pp. 93–128. ISSN: 0922-6443. DOI: 10.
1023/A:1021711220939.

Bates, D. (2011). Quadratic forms of random variables. URL: https://pages.
stat.wisc.edu/~st849-1/lectures/Ch02.pdf (visited on 2023-03-02).

51

Bibliography

Bernat, G., A. Burns, and A. Liamosi (2001). “Weakly hard real-time systems”.
IEEE Transactions on Computers 50:4, pp. 308–321. DOI: 10 . 1109 / 12 .
919277.

Blondel, V. D., Y. Nesterov, and J. Theys (2005). “On the accuracy of the ellipsoid
norm approximation of the joint spectral radius”. Linear Algebra and its Appli-
cations 394, pp. 91–107. ISSN: 0024-3795. DOI: 10.1016/j.laa.2004.06.
024.

Blondel, V. D. and J. N. Tsitsiklis (2000). “The boundedness of all products of a
pair of matrices is undecidable”. Systems & Control Letters 41:2, pp. 135–140.
ISSN: 0167-6911. DOI: 10.1016/S0167-6911(00)00049-9.

Bradley, K., S. Cheung, N. Puketza, B. Mukherjee, and R. Olsson (1998). “De-
tecting disruptive routers: a distributed network monitoring approach”. IEEE
Network 12:5, pp. 50–60. DOI: 10.1109/65.730751.

Brandenburg, B. (2011). Scheduling and locking in multiprocessor real-time oper-
ating systems. PhD thesis, p. 614. ISBN: 978-1-267-25618-8.

Caccamo, M., G. Buttazzo, and L. Sha (2002). “Handling execution overruns in hard
real-time control systems”. IEEE Transactions on Computers 51:7, pp. 835–
849. DOI: 10.1109/TC.2002.1017703.

Cervin, A., P. Pazzaglia, M. Barzegaran, and R. Mahfouzi (2019). “Using Jitter-
Time to analyze transient performance in adaptive and reconfigurable control
systems”. In: IEEE International Conference on Emerging Technologies and
Factory Automation, pp. 1025–1032.

Cervin, A. (2004). Merging Real-Time and Control Theory for Improving the Per-
formance of Embedded Control Systems. Department of Computer Engineering
and Systems Science, University of Pavia, Italy.

Cervin, A. (2005). “Analysis of overrun strategies in periodic control tasks”. IFAC
Proceedings Volumes 38:1. 16th IFAC World Congress, pp. 219–224. ISSN:
1474-6670. DOI: 10.3182/20050703-6-CZ-1902.01076.

Cervin, A., B. Lincoln, J. Eker, K.-E. Årzén, and G. Buttazzo (2004). “The jit-
ter margin and its application in the design of real-time control systems”. In:
Proceedings of the 10th International Conference on Real-Time and Embedded
Computing Systems and Applications.

Chakraborty, S. and L. Thiele (2005). “A new task model for streaming applications
and its schedulability analysis”. In: Design, Automation and Test in Europe,
486–491 Vol. 1. DOI: 10.1109/DATE.2005.26.

Comer, D. (2013). Internetworking with TCP/IP. 6th ed. Pearson. ISBN:
013608530X.

Costa, O. L. V., R. P. Marques, and M. D. Fragoso (2005). Discrete-Time Markov
Jump Linear Systems. Probability and Its Applications. Springer London. ISBN:
978-1-85233-761-2.

52

Bibliography

Dai, X. and A. Burns (2020). “Period adaptation of real-time control tasks with
fixed-priority scheduling in cyber-physical systems”. Journal of Systems Archi-
tecture 103, p. 101691. ISSN: 1383-7621. DOI: 10.1016/j.sysarc.2019.
101691.

Drepper, U. and I. Molnar (2003). “The native posix thread library for linux”. White
Paper, Red Hat Inc 10:2, pp. 22–42.

Ernst, R., S. Kuntz, S. Quinton, and M. Simons (2018). “The logical execution
time paradigm: new perspectives for multicore systems”. Dagstuhl Reports 8,
pp. 122–149.

Feng, X., K. Loparo, Y. Ji, and H. Chizeck (1992). “Stochastic stability properties
of jump linear systems”. IEEE Transactions on Automatic Control 37:1, pp. 38–
53. DOI: 10.1109/9.109637.

Friebe, A. (2022). Timing and schedulability analysis of real-time systems using
hidden markov models.

Gemlau, K.-B., L. Köhler, R. Ernst, and S. Quinton (2021). “System-level logical
execution time: augmenting the logical execution time paradigm for distributed
real-time automotive software”. ACM Transactions on Cyber-Physical Systems
5:2. ISSN: 2378-962X. DOI: 10.1145/3381847.

Goswami, D., M. Lukasiewycz, R. Schneider, and S. Chakraborty (2012). “Time-
triggered implementations of mixed-criticality automotive software”. In: De-
sign, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1227–
1232. DOI: 10.1109/DATE.2012.6176680.

Gracioli, G., A. Alhammad, R. Mancuso, A. A. Fröhlich, and R. Pellizzoni (2015).
“A survey on cache management mechanisms for real-time embedded systems”.
ACM Computing Surveys 48:2. ISSN: 0360-0300. DOI: 10.1145/2830555.

Gripenberg, G. (1996). “Computing the joint spectral radius”. Linear Algebra and
its Applications 234, pp. 43–60. ISSN: 0024-3795. DOI: 10 . 1016 / 0024 -
3795(94)00082-4.

Gunnarsson, M., N. Vreman, and M. Maggio (2023). “Trusted Execution of Peri-
odic Tasks for Embedded Systems”. In: IFAC World Congress.

Hansman, S. and R. Hunt (2005). “A taxonomy of network and computer attacks”.
Computers & Security 24:1, pp. 31–43. ISSN: 0167-4048. DOI: 10.1016/j.
cose.2004.06.011.

Hertneck, M., S. Linsenmayer, and F. Allgöwer (2020). “Stability analysis for non-
linear weakly hard real-time control systems”. IFAC-PapersOnLine 53:2. 21st
IFAC World Congress, pp. 2594–2599. ISSN: 2405-8963. DOI: 10.1016/j.
ifacol.2020.12.307.

Hopcroft, J., R. Motwani, and J. Ullman (2006). Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publish-
ing Co., Inc., USA. ISBN: 0321455363.

53

Bibliography

Horssen, E. P. van, A. R. B. Behrouzian, D. Goswami, D. Antunes, T. Basten, and
W. P. M. H. Heemels (2016). “Performance analysis and controller improvement
for linear systems with (m, k)-firm data losses”. In: 2016 European Control
Conference (ECC), pp. 2571–2577. DOI: 10.1109/ECC.2016.7810677.

John, F. (2014). “Extremum problems with inequalities as subsidiary conditions”.
In: Giorgi, G. et al. (Eds.). Traces and Emergence of Nonlinear Programming.
Springer Basel, pp. 197–215. ISBN: 978-3-0348-0439-4. DOI: 10.1007/978-
3-0348-0439-4_9.

Jungers, R. (2009). The Joint Spectral Radius: Theory and Applications. Lecture
Notes in Control and Information Sciences. Springer Berlin, Heidelberg. ISBN:
9783540959793.

Karray, F., M. W. Jmal, A. Garcia-Ortiz, M. Abid, and A. M. Obeid (2018). “A
comprehensive survey on wireless sensor node hardware platforms”. Computer
Networks 144, pp. 89–110. ISSN: 1389-1286. DOI: 10.1016/j.comnet.2018.
05.010.

Kirsch, C. and A. Sokolova (2012). “The logical execution time paradigm”. In: Ad-
vances in Real-Time Systems. Springer Berlin Heidelberg, pp. 103–120. ISBN:
978-3-642-24349-3.

Köhler, L. and R. Ernst (2019). “Improving a compositional timing analysis frame-
work for weakly-hard real-time systems”. In: 2019 IEEE Real-Time and Em-
bedded Technology and Applications Symposium (RTAS), pp. 228–240. DOI:
10.1109/RTAS.2019.00027.

Krüger, K., N. Vreman, R. Pates, M. Maggio, M. Völp, and G. Fohler (2021). “Ran-
domization as Mitigation of Directed Timing Inference Based Attacks on Time-
Triggered Real-Time Systems with Task Replication”. Leibniz Transactions on
Embedded Systems 7:1. DOI: 10.4230/LITES.7.1.1.

Kumar, P., D. Goswami, S. Chakraborty, A. Annaswamy, K. Lampka, and L. Thiele
(2012). “A hybrid approach to cyber-physical systems verification”. In: Pro-
ceedings of the 49th Annual Design Automation Conference. DAC ’12. Asso-
ciation for Computing Machinery, New York, NY, USA, pp. 688–696. ISBN:
9781450311991. DOI: 10.1145/2228360.2228484.

Kwak, S. W., B. J. Choi, and B. K. Kim (2001). “An optimal checkpointing-strategy
for real-time control systems under transient faults”. IEEE Transactions on Re-
liability 50:3, pp. 293–301. DOI: 10.1109/24.974127.

Liberzon, D. (2003). Switching in Systems and Control. Systems & control.
Birkhauser. ISBN: 9783764342975.

Lincoln, B. and A. Cervin (2002). “Jitterbug: a tool for analysis of real-time control
performance”. In: IEEE Conference on Decision and Control. Vol. 2, pp. 1319–
1324. DOI: 10.1109/CDC.2002.1184698.

54

Bibliography

Ling, Q. and M. Lemmon (2003). “Soft real-time scheduling of networked control
systems with dropouts governed by a markov chain”. In: Proceedings of the
2003 American Control Conference, 2003. Vol. 6, 4845–4850 vol.6. DOI: 10.
1109/ACC.2003.1242490.

Linsenmayer, S. and F. Allgöwer (2018). “Performance oriented triggering mecha-
nisms with guaranteed traffic characterization for linear discrete-time systems”.
In: European Control Conference (ECC), pp. 1474–1479. DOI: 10 . 23919 /
ECC.2018.8550568.

Liu, C. and J. Layland (1973). “Scheduling algorithms for multiprogramming in a
hard-real-time environment”. Journal of the ACM 20:1, pp. 46–61. ISSN: 0004-
5411. DOI: 10.1145/321738.321743.

Liu, C. and J. H. Anderson (2010). “Supporting soft real-time dag-based systems
on multiprocessors with no utilization loss”. In: IEEE Real-Time Systems Sym-
posium, pp. 3–13. DOI: 10.1109/RTSS.2010.38.

Liu, D., X. S. Hu, M. Lemmon, and Q. Ling (2005). “Scheduling tasks with markov-
chain based constraints”. In: Euromicro Conference on Real-Time Systems,
pp. 157–166. DOI: 10.1109/ECRTS.2005.27.

Ma, Y., Y. Wang, S. Cairano, T. Koike-Akino, J. Guo, P. Orlik, and C. Lu (2018). “A
smart actuation architecture for wireless networked control systems”. In: DOI:
10.1109/CDC.2018.8619831.

Mai, H., A. Khurshid, R. Agarwal, M. Caesar, P. B. Godfrey, and S. T. King (2011).
“Debugging the data plane with anteater”. SIGCOMM Computer Communica-
tion Review 41:4. ISSN: 0146-4833. DOI: 10.1145/2043164.2018470.

Mandrioli, C. (2022). Control-Theoretical Perspective in Feedback-Based Systems
Testing. PhD thesis. Lund University.

Manolache, S., P. Eles, and Z. Peng (2004). “Optimization of soft real-time sys-
tems with deadline miss ratio constraints”. In: IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 562–570. DOI: 10.1109/RTTAS.
2004.1317304.

Mirkin, L. (2004). “On the approximation of distributed-delay control laws”. Sys-
tems & Control Letters 51:5, pp. 331–342. ISSN: 0167-6911. DOI: 10.1016/j.
sysconle.2003.09.010.

Mirkin, L. and Z. J. Palmor (2005). “Control issues in systems with loop delays”.
Handbook of networked and embedded control systems, pp. 627–648.

Nilsson, J. (1998). Real-Time Control Systems with Delays. PhD thesis.
Nilsson, J., B. Bernhardsson, and B. Wittenmark (1998). “Stochastic analysis

and control of real-time systems with random time delays”. Automatica 34:1,
pp. 57–64. ISSN: 0005-1098. DOI: 10.1016/S0005-1098(97)00170-2.

55

Bibliography

Nyberg Carlsson, M., N. Vreman, and A. Cervin (2023). “Timing-Robust Con-
trol over the Cloud Using On-Line Parametric Optimization”. In: IFAC World
Congress.

Ohlin, M., D. Henriksson, and A. Cervin (2006). Truetime 1.4 - reference manual.
Park, P., S. Coleri Ergen, C. Fischione, C. Lu, and K. H. Johansson (2018). “Wire-

less network design for control systems: a survey”. IEEE Communications Sur-
veys & Tutorials 20:2, pp. 978–1013. DOI: 10.1109/COMST.2017.2780114.

Parrilo, P. and A. Jadbabaie (2008). “Approximation of the joint spectral radius
using sum of squares”. Linear Algebra and its Applications.

Pazzaglia, P., L. Pannocchi, A. Biondi, and M. D. Natale (2018). “Beyond the
Weakly Hard Model: Measuring the Performance Cost of Deadline Misses”. In:
Altmeyer, S. (Ed.). 30th Euromicro Conference on Real-Time Systems (ECRTS
2018). Vol. 106. Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 10:1–10:22. ISBN: 978-3-
95977-075-0. DOI: 10.4230/LIPIcs.ECRTS.2018.10.

Protasov, V. Y. (1996). “The joint spectral radius and invariant sets of the several
linear operators”. Fundamentalnaya i Prikladnaya Matematika 2. ISSN: 0024-
3795.

Rota, G.-C. and W. G. Strang (1960). “A note on the joint spectral radius”. In:
Proceedings of the Netherlands Academy.

Saifullah, A., D. Ferry, J. Li, K. Agrawal, C. Lu, and C. D. Gill (2014). “Parallel
real-time scheduling of dags”. IEEE Transactions on Parallel and Distributed
Systems 25:12, pp. 3242–3252. DOI: 10.1109/TPDS.2013.2297919.

Schenato, L. (2009). “To zero or to hold control inputs with lossy links?” IEEE
Transactions on Automatic Control 54:5, pp. 1093–1099.

Soudbakhsh, D., L. T. X. Phan, A. M. Annaswamy, and O. Sokolsky (2018). “Co-
design of arbitrated network control systems with overrun strategies”. IEEE
Transactions on Control of Network Systems 5:1, pp. 128–141. DOI: 10.1109/
TCNS.2016.2583064.

Stigge, M., P. Ekberg, N. Guan, and W. Yi (2011). “The digraph real-time task
model”. In: 2011 17th IEEE Real-Time and Embedded Technology and Appli-
cations Symposium, pp. 71–80. DOI: 10.1109/RTAS.2011.15.

Tsog, N., S. Mubeen, M. Behnam, M. Sjödin, and F. Bruhn (2021). “Simulation
and analysis of in-orbit applications under radiation effects on cots platforms”.
In: IEEE Aerospace Conference, pp. 1–8. DOI: 10.1109/AERO50100.2021.
9438255.

Vogt, D., C. Giuffrida, H. Bos, and A. S. Tanenbaum (2015). “Lightweight memory
checkpointing”. In: 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, pp. 474–484. DOI: 10.1109/DSN.2015.
45.

56

Bibliography

Voss, W. (2005). A comprehensible Guide to Controller Area Network. 2nd ed. Cop-
perhill Media Corporation, USA. ISBN: 0976511606.

Vreman, N., A. Cervin, and M. Maggio (2021). “Stability and Performance Analy-
sis of Control Systems Subject to Bursts of Deadline Misses”. In: 33rd Euromi-
cro Conference on Real-Time Systems (ECRTS). Vol. 196. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. ISBN: 978-3-95977-192-4. DOI: 10.4230/LIPIcs.ECRTS.2021.
15.

Vreman, N. and M. Maggio (2019). “Multilayer Distributed Control over 5G Net-
works: Challenges and Security Threats”. In: Proceedings of the Workshop on
Fog Computing and the IoT (Fog-IoT). IoT-Fog ’19. Association for Comput-
ing Machinery, New York, NY, USA. ISBN: 9781450366984. DOI: 10.1145/
3313150.3313223.

Vreman, N. and M. Maggio (2023). “Stochastic Stability Analysis of Control Sys-
tems Subject to Communication and Computation Faults”. Submitted to ACM
SIGBED International Conference on Embedded Software (EMSOFT).

Vreman, N. and C. Mandrioli (2020). “Evaluation of Burst Failure Robustness of
Control Systems in the Fog”. In: 2nd Workshop on Fog Computing and the
IoT (Fog-IoT). Vol. 80. OpenAccess Series in Informatics (OASIcs). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN: 978-3-95977-144-3. DOI:
10.4230/OASIcs.Fog-IoT.2020.8.

Vreman, N., C. Mandrioli, and A. Cervin (2022a). “Deadline-Miss-Adaptive Con-
troller Implementation for Real-Time Control Systems”. In: IEEE 28th Real-
Time and Embedded Technology and Applications Symposium (RTAS). DOI:
10.1109/RTAS54340.2022.00010.

Vreman, N., R. Pates, K. Krüger, G. Fohler, and M. Maggio (2019). “Minimizing
Side-Channel Attack Vulnerability via Schedule Randomization”. In: IEEE 58th
Conference on Decision and Control (CDC). DOI: 10.1109/CDC40024.2019.
9030144.

Vreman, N., R. Pates, and M. Maggio (2022b). “WeaklyHard.jl: Scalable Analysis
of Weakly-Hard Constraints”. In: IEEE 28th Real-Time and Embedded Technol-
ogy and Applications Symposium (RTAS). DOI: 10.1109/RTAS54340.2022.
00026.

Vreman, N., P. Pazzaglia, V. Magron, J. Wang, and M. Maggio (2022c). “Stability
of Linear Systems Under Extended Weakly-Hard Constraints”. IEEE Control
Systems Letters 6. DOI: 10.1109/LCSYS.2022.3179960.

Wadleigh, K. and I. Crawford (2000). Software Optimization for High-performance
Computing. HP Professional. Prentice Hall PTR. ISBN: 9780130170088.

Wang, J., M. Maggio, and V. Magron (2021a). “SparseJSR: A Fast Algorithm to
Compute Joint Spectral Radius via Sparse SOS Decompositions”. American
Control Conference.

57

Bibliography

Wang, J., V. Magron, and J.-B. Lasserre (2021b). “TSSOS: A Moment-SOS hierar-
chy that exploits term sparsity”. SIAM Journal on Optimization 31:1.

WSTS; SIA (2022). Semiconductor market size worldwide from 1987 to 2022 (in
billion u.s. dollars). URL: https : / / www . statista . com / statistics /
266973 / global - semiconductor - sales - since - 1988/ (visited on
2023-01-23).

Xing, L., C. Wen, Z. Liu, H. Su, and J. Cai (2017). “Adaptive compensation for
actuator failures with event-triggered input”. Automatica 85, pp. 129–136. ISSN:
0005-1098. DOI: 10.1016/j.automatica.2017.07.061.

Xiong, J. and J. Lam (2007). “Stabilization of linear systems over networks with
bounded packet loss”. Automatica 43:1, pp. 80–87. ISSN: 0005-1098. DOI: 10.
1016/j.automatica.2006.07.017.

Yoshimoto, T. and T. Ushio (2011). “Optimal arbitration of control tasks by job
skipping in cyber-physical systems”. In: 2011 IEEE/ACM Second International
Conference on Cyber-Physical Systems, pp. 55–64. DOI: 10.1109/ICCPS.
2011.18.

Zhu, F., C. Zhang, Z. Zheng, and A. Farouk (2021). “Practical network coding
technologies and softwarization in wireless networks”. IEEE Internet of Things
Journal 8:7, pp. 5211–5218. DOI: 10.1109/JIOT.2021.3056580.

58

Paper I

Stability and Performance Analysis of
Control Systems Subject to Bursts of

Deadline Misses

Nils Vreman Anton Cervin Martina Maggio

Abstract

Control systems are by design robust to various disturbances, ranging from
noise to unmodelled dynamics. Recent work on the weakly hard model—
applied to controllers—has shown that control tasks can also be inherently
robust to deadline misses. However, existing exact analyses are limited to the
stability of the closed-loop system. In this paper we show that stability is im-
portant but cannot be the only factor to determine whether the behaviour of
a system is acceptable also under deadline misses. We focus on systems that
experience bursts of deadline misses and on their recovery to normal opera-
tion. We apply the resulting comprehensive analysis (that includes both stabil-
ity and performance) to a Furuta pendulum, comparing simulated data and data
obtained with the real plant. We further evaluate our analysis using a bench-
mark set composed of 133 systems, which is considered representative of in-
dustrial control plants. Our results show the handling of the control signal is an
extremely important factor in the performance degradation that the controller
experiences—a clear indication that only a stability test does not give enough
indication about the robustness to deadline misses.

Originally published in Leibniz International Proceedings in Informatics
(LIPIcs) 33rd Euromicro Conference on Real-Time Systems (2021). The math-
ematical notation has been unified to match the remainder of the thesis. Reprinted
with permission.

59

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

1. Introduction

Feedback control systems have been used as prime examples of hard real-time sys-
tems ever since the term was coined. However, in the past twenty years, it has be-
come increasingly clear that the hard real-time task model is overly strict for most
control systems. Requiring that all deadlines of a periodic control task must be
met can lead to very conservative designs with low utilisation, low sampling rates,
and—in the end—worse than necessary control performance. Following this line of
reasoning, researchers started looking into task models in which tasks can sporad-
ically miss some deadlines, and defined concepts like the “skip factor” [Koren and
Shasha, 1995], i.e., the number of correctly executed jobs that must occur between
two failed instances. Task models with failed jobs eventually led to the definition
of the weakly hard task model [Bernat et al., 2001], that specify constraints on the
sequence of jobs that complete their execution correctly and the ones that miss their
deadlines. Adopting the weakly hard model allows a control task to opportunisti-
cally execute more frequently, which in general improves reference tracking and
disturbance rejection [Kauer et al., 2014; Linsenmayer and Allgower, 2017; Pazza-
glia et al., 2018].

A recent industrial survey has shown that practitioners are used to work with
systems that experience deadline misses [Åkesson et al., 2020, Questions 14 and
15]. In a significant percentage of cases, these systems are subject to blackout events
that can persist for more than ten consecutive task periods. Examples of such events
are mode switches in mixed-criticality systems, resets due to hardware faults, se-
curity attacks, specific types of cache misses, and connectivity issues in networked
control systems. Handling all of these situations by design could require extreme
resource over-provisioning.

In this paper we focus precisely on these sporadic system events, which may
cause a control task to stall for one or several cycles. To determine the effect of
deadline misses on the control system, it is of utmost importance to analyse the
physics of the plant and the effect of control signals not being delivered to it. For
these systems, stability guarantees have been given on the maximum number of
tolerable consecutive deadline misses [Maggio et al., 2020]. These guarantees only
consider stability of the closed-loop system as the property to be preserved. In this
paper, we demonstrate that while stability may be preserved, the control system
performance may be severely affected by the burst of misses. Performance and sta-
bility have been considered simultaneously in the literature. For example, in [Ghosh
et al., 2018] a controller is developed that guarantees stability, accepting some level
of performance degradation for a given plant. However, we believe that a lot is
left open to investigate, especially with respect to general guarantees. In particular,
in this paper we aim to understand the effect that the deadline handling strategies
jointly have on performance and stability, providing a holistic evaluation. Further-
more, we evaluate our results on both simulated platforms and real control plants.
More precisely, we offer the following contributions:

60

2 Related Work

• We propose a new type of weakly hard task model, which specifies a con-
secutive deadline miss interval followed by a minimum consecutive deadline
hit (recovery) interval. This model is crucial to properly assess the perfor-
mance effect of a burst of deadline misses, as the ones reported by practition-
ers [Åkesson et al., 2020].

• We provide an analysis methodology for stability and performance of con-
trol tasks executing under this task model using a variety of implementation
choices to handle deadline misses (Kill vs. Skip, Zero vs. Hold). In partic-
ular, we separately consider the two cases in which a miss pattern is repeated
(which fits an increased workload situation—for example due to a different
mode of execution), and in which it is not possible to specify constraints on
the repetition of the miss pattern.

• We compare experimental results obtained with a real process—a Furuta pen-
dulum that is stabilised in the upright position—with simulation results based
on a linear model of the same process, using the same controller. This shows
that simulated data is representative enough to draw conclusions on the con-
troller performance, despite unmodelled nonlinear dynamics and noise.

• We present the result of a large scale evaluation campaign of commonly used
controllers on a benchmark of 133 industrial plants. From this evaluation we
conclude that the choice of actuation strategy (i.e., what to do with the control
signal when a miss occurs) affects control performance significantly more
than the choice of deadline handling strategy (i.e., what to do with the control
task when a miss occurs).

The rest of this paper is outlined as follows. In Section 2 we give a brief
overview of related work. In Section 3 we present relevant control theory and intro-
duce the stability and performance concepts. Section 4 describes the weakly hard
task models and the strategies that are commonly used to handle deadline misses.
Section 5 presents our extension to the weakly hard task model, and the correspond-
ing stability and performance analysis. Section 6 presents our experimental results,
and Section 7 concludes the paper.

2. Related Work

The work presented in this paper is closely related to two broad research areas,
namely, the analysis of (i) weakly hard systems and (ii) fault-tolerant control sys-
tems.

Weakly Hard Systems: Deadline misses can be seen as sporadic events caused
by unforeseen delays in the system. Such delays could for instance be induced by
overload activations [Xu et al., 2015; Hammadeh et al., 2014] or cache misses [Alt-
meyer and Davis, 2014; Davis et al., 2013]. The idea behind weakly hard analysis

61

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

is that deadline misses are permitted under predefined constraints. Such systems
have been analysed extensively from a real-time scheduling perspective [Bernat
and Burns, 1997; Caccamo and Buttazzo, 1997; Choi et al., 2019; Hammadeh et
al., 2019]. The weakly hard models have gained traction in the research community
as a tool to understand and analyse systems with sporadic faults [Soudbakhsh et al.,
2013; Bund and Slomka, 2014; Frehse et al., 2014; Bund and Slomka, 2015; Ham-
madeh et al., 2017b; Hammadeh et al., 2017a; Sun and Natale, 2017; Ahrendts et
al., 2018; Soudbakhsh et al., 2018; Pazzaglia et al., 2018; Gaukler et al., 2019]. In a
recent paper, Gujarati et al. [Gujarati et al., 2019] analysed and compared different
methods for estimating the overall reliability of control systems using the weakly
hard task model. Furthermore, the authors of [Natarajan et al., 2019] proposed a
toolchain for analysing the strongest, satisfied weakly hard constraints as a function
of the worst-case execution time.

Fault-Tolerant Control Systems: Real-time systems are sensitive to faults.
Due to their safety-critical nature, it is arguably more important to guarantee fault-
tolerance with respect to other classes of systems. Some of these faults can be de-
scribed using the weakly hard model. Due to the nature of control systems, special
analysis techniques can combine fault models and the physical characteristics of
systems.

Fault-tolerance has been investigated in many of its aspects, e.g., fault-aware
scheduling algorithms [de Niz et al., 2013; Caccamo et al., 2000] and the analy-
sis of systems with unreliable components [Khosravi et al., 2015]. Furthermore,
restart-based design [Abdi et al., 2017a; Abdi et al., 2019] has been used as a tech-
nique to guarantee resilience. The fault models are frequently assumed to target
overload-prone systems, or systems with components subject to sporadic failures.
Bursts of faults have been observed to affect real systems [Chen et al., 2015; Vre-
man and Mandrioli, 2020]. Gujarati et al. [Gujarati et al., 2018] proposed an analysis
method for networked control systems that uses active replication and quantifies the
resilience of the control system to stochastic errors. Maggio et al. [Maggio et al.,
2020] developed a tool for determining the stability of a control system where the
control task behaves according to the weakly hard model. From the control perspec-
tive, there has been extensive research into both analysis and mitigation of real-time
faults in feedback systems [Ramanathan, 1997; Goswami et al., 2014; Ghosh et al.,
2018]. Very often, this research produced tools to analyse the effect of computa-
tional delays [Cervin et al., 2019] and of choosing specific scheduling policies or
parameters [Palopoli et al., 2000; Cervin, 2005], possibly including deadline misses.
In a few instances, researchers looked at how to improve the performance of control
systems in conjunction with scheduling information [Buttazzo et al., 2007]. One
such effort analyses modifications to the code of classic and simple control systems
to handle overruns that reset the period of execution of the control task [Pazzaglia
et al., 2021]. Abdi et al. [Abdi et al., 2017b] proposed a control design method
for safe system-level restart, mitigating unknown faults during runtime execution,
while keeping the system inside a safe operating space. Pazzaglia et al. [Pazzaglia

62

3 System Behaviour in Nominal Conditions

+ C P

−1

rk ek uk yk

wk

Figure 1. Control loop: The reference value rk is compared with the output yk of
the plant P . The control error ek = rk−yk is used by the controller C to compute the
value of the control signal uk. The plant is disturbed by the stochastic process wk.

et al., 2019] used the scenario theory to derive a control design method accounting
for potential deadline misses, and discussed the effect of different deadline handling
strategies. Linsenmayer et al. [Linsenmayer et al., 2020] worked on the stabilisation
of weakly-hard linear control systems for networked control systems, with some ex-
tension for nonlinear systems [Hertneck et al., 2019]. In the considered setup, faults
compromise network transmissions, but do not interfere with the controller com-
putation (assuming that the computation is triggered). The work also focused on
stability, with no control performance evaluation.

To the best of our knowledge, no previous work has devised a combined stability
and performance analysis to understand how faults (even when they can be toler-
ated) affect the plant that should be controlled when different deadline handling
strategies are used.

3. System Behaviour in Nominal Conditions

In this section, we introduce the relevant control background needed for the re-
mainder of the paper, and we detail how the controller and the system behave under
normal operation.

3.1 Plant Model
We first describe the model we use for the object we are trying to control. In control
terms—mostly due to historical reasons—this object is called a plant. Examples
range from a pendulum that we would like to stabilise in the upward position, to a
chemical dilution process, to the distribution of workload in a datacenter.

Plants are usually modelled as continuous- or discrete-time dynamical systems.
All real-world plants are nonlinear, but for control design purposes they are often
linearised around their operating points. Around such a point, the resulting model
becomes a Linear Time-Invariant (LTI) system. In this paper, we restrict our anal-
ysis to discrete-time LTI systems, because we investigate controllers implemented

63

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

with fixed-rate sampling and actuation in digital electronics. To design and analyse
these systems, we use the discrete-time counterpart of the continuous-time physical
model, which can be obtained with standard techniques [Åström and Wittenmark,
1997].

We consider a plant P described in state-space form:

P :

{
xk+1 = Axk +Buk +W wk

yk = C xk +Duk
(1)

In (1), k counts the discrete instants that represent the plant’s sampling points.
We assume periodic sampling; the time between two consecutive samples k and
k+ 1 is fixed and equal to sampling period T . In the equation, xk is a column vec-
tor with nx elements. These elements represent the state variables that account for,
e.g., the storage of mass, momentum, and energy. Similarly, uk is a column vector
with nu elements. These values represent the inputs that affect the dynamics of the
plant. We also consider wk, a column vector with nu elements. The term wk repre-
sents an unknown load disturbance, modelled as a stationary stochastic process with
known properties. Finally, yk is a column vector with ny elements, that represents
the measurements that are taken from our plant. The matrices A (size nx× nx), B
(size nx× nu), C (size ny× nx), D (size ny× nu), and W (size nx× nu) characterise
the dynamics of the plant.

3.2 Controller Model
The plant P is controlled by a periodically executing controller C with implicit
deadlines, i.e., the deadline of each task instance (job) coincides with the next task
activation. We consider the class of all linear controllers with a one-step delay be-
tween sampling and actuation.1 In other words, we consider all the controllers that
can be written as linear systems, according to the following state-space equation:

C :

{
zk+1 = F zk +Gek

uk+1 = H zk +K ek
(2)

Here, zk is a column vector with nz elements that represents the state of the
controller. The input of the controller is ek, a vector of ny elements. Each element
in the vector is the error between the corresponding plant output and its reference
value (ek = rk− yk, where rk represents the reference values for the plant outputs).

1 One-step delay controllers are controllers in which a control signal is computed in the k-th inter-
val and actuated at the beginning of the k + 1-th period. In the real-time systems jargon, one-step
delay controllers are often referred to as controllers that follow the Logical Execution Time (LET)
paradigm [Kirsch and Sokolova, 2012; Ernst et al., 2018]. From the real-time perspective, imple-
menting the controller following the LET paradigm improves the timing predictability. From the
control perspective, one-step delay controllers reduce activation jitter and allows the engineer to
neglect time-varying computational delays.

64

3 System Behaviour in Nominal Conditions

Finally, uk is a vector of nu elements, that encodes the output of the controller, which
is connected to the plant input vector. The matrices F (size nz×nz), G (size nz×ny),
H (size nu×nz), and K (size nu×ny) characterise the dynamics of the controller. For
every task activation, the controller first applies the value of uk that was computed
by the previous job and then reads the inputs rk and yk. It then calculates the values
of zk+1 and uk+1 that will be used in the next iteration.

The analysis methodology presented in the remainder of this paper is valid for
all linear controllers. The class of linear controllers includes some of the most fre-
quently used controllers in industry, in particular proportional and integral (PI),
proportional, integral, and derivative (PID), lead–lag compensators, and linear-
quadratic-Gaussian (LQG) controllers. Although the performance analysis is pre-
sented for the time-invariant case, the formulas are valid also for systems with
time-varying matrices. Hence, it is possible to analyse plants and controllers that
transition between different local linear models.

3.3 Closed-Loop System Dynamics
We now analyse the closed-loop system shown in Figure 1. Combining the dynam-
ical models from (1) and (2), we obtain matrices that represent the closed-loop sys-
tem. We denote the state vector of the closed-loop system with x̃k =

[
xT

k , zT
k , uT

k

]T,
where T is the transpose operator. In this way, we obtain a system that has the vec-
tors rk and wk as input, and is described by

Scl :

{
x̃k+1 = Φ x̃k +Γr rk +Γw wk

yk = C̃ x̃k,
(3)

where the closed-loop state matrix Φ is

Φ =

 A 0nx×nz B
−GC F −GD
−KC H −K D

 , (4)

the input matrices Γr and Γw are

Γr =

0nx×ny

G
K

 , Γw =

 W
0nz×nu

0nu×nu

 , (5)

and the output matrix C̃ is

C̃ =
[
C 0nx×nz D

]
. (6)

Figure 2 shows the graphical representation of the closed-loop system Scl, with
input and output signals.

65

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

Scl

rk

wk

yk

Figure 2. Closed-loop system rewritten as a new linear system Scl. The resulting
system has two inputs, rk and wk and one output. The feedback loop shown in Fig-
ure 1 is hidden inside Scl.

Stability To assess the stability of the closed-loop system under normal operation,
it is sufficient to check the eigenvalues of the state matrix. According to the Schur
stability criterion [Åström and Wittenmark, 1997], if the eigenvalues of Φ lie within
the unit disc, then the system is asymptotically stable. Formally, a closed-loop sys-
tem is Schur stable if and only if

max
i
|eigi (Φ)|< 1, (7)

where eigi (Φ) is a function that returns the i-th eigenvalue of Φ.
If the system dynamics change at runtime (e.g., in the case of a lost sample, un-

expected delay, or computational problem), Schur stability is no longer a sufficient
stability criterion. Instead, switching stability analysis can be employed to check
the stability of a system with alternating dynamics [Jungers, 2009]. There has been
a lot of research on the switching stability analysis, with multiple tools developed
in order to simplify the analysis. Two main methods are employed: (i) the search for
a common Lyapunov function, e.g., as done in [Linsenmayer and Allgower, 2017],
(ii) the computation of the Joint Spectral Radius (JSR), e.g., as done in [Maggio
et al., 2020; Vankeerberghen et al., 2014].

Performance Alongside stability, it is important to look at the performance of the
closed-loop system. Performance can be defined in different ways, often depending
on the application [Åström and Hägglund, 2006]. Whichever way is chosen, a com-
mon way to quantify performance is to define a cost function and evaluate the cost
function during the execution of the controller. In our work, we use a quadratic cost
function

Jk = E
[
eT

k Qeek +uT
k Quuk

]
. (8)

The cost function penalises deviations from the reference value as well as usage
of the control signal. E [·] denotes expected value, and the positive semidefinite
weighting matrices Qe (size ny×ny) and Qu (size nu×nu) weigh the different terms
against each other. A small cost value means that the controller successfully makes
the error approach zero, using a small control signal.

If the stochastic properties of the external signals rk and wk are known, it is
possible to calculate the value of the cost function analytically. For simplicity and
without loss of generality, we will henceforth assume that rk = 0 (i.e., we want to

66

4 System Behaviour with Deadline Misses

regulate the output to zero) and that wk is a zero-mean Gaussian white noise process
with variance R = E

[
wkwT

k

]
. More elaborate disturbance models can be realised by

adding extra states in the plant model.
We now detail how to evaluate (8). Let Pk denote the covariance of the closed-

loop state vector at time k,
Pk = E

[
x̃kx̃T

k
]
. (9)

The state covariance evolves according to

Pk+1 = ΦPk Φ
T +Γw RΓ

T
w. (10)

Given Pk, we can calculate the cost for time step t as

Jk = E
[
x̃T

k Qx̃k
]
= tr(Pk Q) , (11)

where tr computes the trace of the matrix, and

Q =

CT Qe C 0nx×nz 0nx×nu

0nz×nx 0nz×nz 0nz×nu

0nu×nx 0nu×nz Qu

 (12)

is the total cost matrix. The stationary cost of the system is defined as J∞. This is
the cost that the system converges to when operating under normal conditions:

J∞ = lim
k→∞

Jk. (13)

This means that there exists an instant k̄ for which Jk reaches a value arbitrarily
close to the steady-state value J∞, or ∀ε, ∃k̄ s.t. ∀k > k̄, |(Jk− J∞)/J∞|< ε .

4. System Behaviour with Deadline Misses

The analysis above holds when the control task meets all its deadlines. However,
the presence of deadline misses changes the behaviour of the system. The stability
of controllers with a number of consecutive deadline misses has been investigated
in [Maggio et al., 2020]. The results of this investigation attested that, due to their
inherent robustness, many control systems can withstand at least a small number of
consecutive misses.

To analyse the system, we need to clarify three aspects about the miss behaviour:

(i) What happens to the control signal.

(ii) What happens to the control task.

(iii) The computational model used for the analysis (how many deadlines can we
miss, and in what pattern).

67

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

For the first item, the actuator can either output a Zero (uk = 0nu×1), or Hold
the previous value (uk = uk−1). The choice depends on both the plant dynamics
and on the controller, as no strategy in general dominates the other one [Schen-
ato, 2009]. For controllers with integral action, it makes sense to hold the previous
control value, under the presumption that the system is still disturbed and that a non-
zero control signal is needed to keep the plant close to its operating point. On the
other hand, the Zero strategy may be preferred for plants with unstable or integrator
dynamics, where outputting a zero control action may be the safer option.

Considering the second item, at least three different strategies can be em-
ployed to deal with a control task that misses its deadline [Cervin, 2005]: (i) Kill,
(ii) Skip, (iii) and Queue(σ) (σ ∈ {1,2,3, . . .}). When the Kill strategy is used,
the job that missed its deadline is terminated, its changes are rolled back, and the
next job is released. Following the Skip strategy, the job that missed its deadline
continues its execution. No new control task jobs are released until the currently
running one completes its execution. Queue(σ) behaves similarly to Skip in al-
lowing the current job to complete execution, but also allows the activation of new
jobs (the queue of active jobs holds up to the most recent σ instances of the control
task). In this paper we only analyse Kill and Skip. In fact, the results presented
in [Cervin, 2005; Maggio et al., 2020] suggest that Queue(σ) is not a feasible strat-
egy to handle misses. The presence of two or more active jobs in the same period
creates a chain effect that is hard to recover from and that deteriorates stability and
performance.

The last item refers to models of computation. The weakly hard task
model [Hamdaoui and Ramanathan, 1995; Bernat et al., 2001] is usually considered
expressive enough to analyse the behaviour of tasks that miss their deadlines. The
authors of [Bernat et al., 2001] propose four definitions for a weakly hard real-time
task τ:

DEFINITION 1—WEAKLY HARD TASK MODELS [BERNAT ET AL., 2001]
A task τ may satisfy any of these four weakly hard constraints:

(i) τ `
(x
`

)
: there are at least x hits for every ` jobs,

(ii) τ `
(x
`

)
: there are at most x misses for every ` jobs,

(iii) τ `
〈x
`

〉
: there are at least x consecutive hits for every ` jobs,

(iv) τ `
〈x
`

〉
: there are at most x consecutive misses for every ` jobs.

There has been a lot of research on the second model, often also called m-K
model [Koren and Shasha, 1995; Ramanathan, 1997; Soudbakhsh et al., 2013; Bund
and Slomka, 2014; Frehse et al., 2014; Bund and Slomka, 2015; Hammadeh et
al., 2017b; Hammadeh et al., 2017a; Sun and Natale, 2017; Ahrendts et al., 2018;
Soudbakhsh et al., 2018; Pazzaglia et al., 2018; Pazzaglia et al., 2019; Gaukler et al.,

68

5 Burst Interval Analysis

2019] (with m being the maximum number of misses in a window of K activations).
Recently there has also been an analysis of the stability of control systems when the
control task behaves according to the fourth model [Maggio et al., 2020].

If the misses are due to faults or security attacks, usually the control task experi-
ences an interval of consecutive misses. When the fault is resolved, the control task
starts hitting its deadlines again. From the performance standpoint, a consecutive
number of misses degrades the control quality. We are interested in what degrada-
tion is acceptable and how much time should occur between two potential failures.
Specifically, we look at how many deadline hits should follow a given number of
consecutive misses for the system to recover. None of the four models above allow
us to formulate this requirement (as they specify either consecutive hits or misses
but not both), which leads us to introduce a different weakly hard model of compu-
tation, together with its analysis, in Section 5.

5. Burst Interval Analysis

In this section, we analyse the stability and performance of a real-time control sys-
tem that experiences bursts of deadline misses. Section 5.1 introduces the fault
model, Section 5.2 derives the control system behaviour subject to different real-
time policies and delves into both the stability and performance analysis.

5.1 Fault Model
Faults can happen during the normal execution of tasks on a platform. Informally,
as a result of a fault, tasks miss their deadlines. When the fault is resolved, then the
original situation is recovered (possibly after a transient initial phase).

Specifically, given a system Scl, we define a burst intervalM as an interval of
controller activations in which the control task executing C consecutively misses
m deadlines, regardless of the strategy used to handle the misses. We assume that
the burst intervalM is followed by a recovery interval R, defined as an interval in
which the control task consecutively hits n deadlines.

During the burst interval, the deadline misses of the control task are handled
using a deadline handling strategy D (Kill, K, or Skip, S). The control signal uk
is selected in accordance with the actuation strategy A (Zero, Z, or Hold, H). We
denote the combination ofD andAwithH= (D,A). For exampleH could be SZ to
indicate that the Skip deadline handling strategy is paired with the Zero actuation
strategy. The system recovers once it operates close to steady-state.

From an industrial viewpoint, the proposed fault model is highly relevant. The
common approach is to treat faults as pseudo-independent events adhering to pre-
defined constraints on their incidence rate [OConnor and Kleyner, 2012; Mont-
gomery, 2009; Khosravi et al., 2017]. However, during the operation of a control
system, faults can be caused by events like network connection problems (e.g., cut-
ting the connection between the sensor and the controller), security attacks, con-

69

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

tention on resources. Studies in the automotive sector, for example, indicate that
deadline misses can occur in bursts [Quinton et al., 2014; Xu et al., 2015]. In these
cases, the controller does not execute properly for a given amount of time (e.g., un-
til the connection is restored, the attack is terminated, or the resource contention is
reduced). The analysis methods we propose allow us to address such situations and
to provide tighter bounds on the closed-loop stability and performance than under
the previously proposed weakly hard models. Moreover, following a burst interval,
we are interested in analysing the length of the recovery interval R that is needed
to return to normal operation under each implementation strategy H. Hence, we
here extend the weakly hard models of computation with a fifth alternative and then
devote the remainder of the paper to its analysis.

DEFINITION 2—WEAKLY HARD FAULT MODEL WITH BURST OF MISSES
A real-time task τ may satisfy the weakly hard task model

(v) τ `
{m
`

}
: there are at most m consecutive misses, followed by `−m consecu-

tive hits for every ` jobs.

This means that a real-time task τ behaves according to the model τ `
{m
`

}
, if, when-

ever τ experiences a burst intervalM consisting of m consecutive deadline misses,
it is always followed by a recovery interval R consisting of n = `−m consecutive
deadline hits.

5.2 Closed-Loop System Dynamics
In this section we derive the system dynamics for a closed-loop control system
under the assumption that we enter a burst interval of length m after time instant k,
and after m deadline misses we start completing the control job in time.

Normal Operation: Under normal operating conditions the system is not ex-
periencing any deadline misses. In other words, the system evolves according to the
closed-loop system dynamics (3).

Kill&Zero: If a control task deadline miss occurs at time instant k, the plant
states xk still evolve as normal. However, the controller terminates its execution
prematurely by killing the job, thus not updating its states (zk+1 = zk). The con-
troller output is determined by the actuation strategy and is here zero (uk+1 = 0).
Now, consider a burst interval of length m after time instant k. Recalling that
x̃k = [xk

T zk
T uk

T]T, we can write the evolution of the closed-loop system for the
sequence of m deadline misses followed by a single deadline hit as the product of a
matrix representing the behaviour of the system for a hit and a matrix representing
the behaviour in case of miss elevated to the power of m to indicate m steps of the
system evolution.

70

5 Burst Interval Analysis

The resulting closed-loop system in state-space form isxk+m+1
zk+m+1
uk+m+1

= Φ

 A 0nx×nz B
0nz×nx I 0nz×nu

0nu×nx 0nu×nz 0nu×nu

m

︸ ︷︷ ︸
ΦKZ(m)

xk
zk
uk

 , (14)

where ΦKZ (m) represents the system matrix for m misses under the Kill&Zero
strategy, followed by a single hit (the matrix Φ that is multiplied to the left of the
equation). The matrix Φ is the same specified in (4), and represents the first hit that
follows the m misses, hence, we determine how x̃k influences x̃k+m+1 (m misses and
one hit).

Kill&Hold: Changing the actuation strategy to Hold, slightly alters the system
matrix we derived for the Kill&Zero case. The plant states xk evolve as normal and
the control states zk are still not updated (zk+1 = zk). However, due to the change in
actuation strategy, the last actuated value is instead held (uk+1 = uk). The resulting
closed-loop state-space form can be seen in (15), where ΦKH (m) is used to represent
the system matrix for m misses under the Kill&Hold strategy and matrix Φ is
specified in (4). xk+m+1

zk+m+1
uk+m+1

= Φ

 A 0nx×nz B
0nz×nx I 0nz×nu

0nu×nx 0nu×nz I

m

︸ ︷︷ ︸
ΦKH(m)

xk
zk
uk

 (15)

Skip&Zero: When the control task misses a deadline under the Skip strategy,
the job missing the deadline is allowed to continue its execution until completion.
However, no subsequent job of the control task is released until the current job has
finished executing. If the currently active job terminates during period k, the next
control job is released at the start of the k+1-th period. We can then write the evo-
lution of the system where the control job experiences m misses before completing
its execution, meaning that there is a subsequent hit that uses old information for
the error measurements. While the controller executed only once to completion, the
plant evolved for m+1 steps. The resulting closed-loop state-space form can be seen
in (16), where ΦSZ (m) is used to represent the system matrix under the Skip&Zero
strategy for m misses and one completion using old measurements.xk+m+1

zk+m+1
uk+m+1

=

Am+1 0nx×nz AmB
−GC F −GD
−KC H −KD


︸ ︷︷ ︸

ΦSZ(m)

xk
zk
uk

 (16)

Skip&Hold: Similar to Skip&Zero, one job finishes execution after m consecu-
tive misses. However, the actuation strategy holds the previous control value during

71

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

the entire burst interval. Therefore, the plant evolution is affected by a cumulative
sum over the prior control values. The resulting closed-loop state-space form can
be seen in (17), where ΦSH (m) is used to represent the system matrix for m misses
under the Skip&Hold strategy.xk+m+1

zk+m+1
uk+m+1

=

Am+1 0nx×nz ∑
m
i=0 AiB

−GC F −GD
−KC H −KD


︸ ︷︷ ︸

ΦSH(m)

xk
zk
uk

 (17)

Equations (14)–(17) are inspired by the analysis in [Maggio et al., 2020], but
we have we introduced two generalisations. The first one is that our controller is
specified as a general state-space system; therefore our method is able to address
all linear controllers. The second generalisation is that we could include estimates
of the plant states in the controller. We can thus properly handle the presence of
an observer.2 Furthermore, we simplify the calculations by reducing the number of
states x̃k of the closed-loop matrices.

Stability We now describe how the system matrices above can be used to analyse
stability. Recall that a closed-loop control system is stable if and only if the (fixed)
system matrix Φ is Schur stable. This criterion is also valid for cyclic patterns,
where Φ represents the product of all closed-loop state matrices experienced in a
full burst–recovery cycle. Hence, we can search for the shortest recovery interval
length n such that

max
i

∣∣eigi
(
Φ

n−1
ΦH (m)

)∣∣< 1, H ∈ {KZ,KH,SZ,SH}. (18)

Recall that ΦH (m) already includes one hit, thus the left multiplication with Φn−1.
This is a sufficient condition and not necessary, meaning that a miss occurring dur-
ing the recovery interval does not immediately imply that the closed-loop system is
destabilised. We summarise the analysis in the following definition.

DEFINITION 3—STATIC-CYCLIC STABILITY ANALYSIS
We denote the stability analysis from (18) with the term static-cyclic stability anal-
ysis. The system under analysis cycles through a sequence of m misses followed by
a sequence of n hits, indefinitely.

The static-cyclic analysis assumes a repeating burst–recovery cycle with no inter-
ruptions. This works well for instance in case the misses are due to a permanent

2 In [Maggio et al., 2020] the controller state is specified as part of the plant (e.g., when the proportional
and integral controller is introduced). This implies that the state is computed although the controller
did not execute. Our formulation fixes this by separating the plant execution and the controller states.

72

5 Burst Interval Analysis

overload condition caused by a mode switch (for example from low to high crit-
icality mode in mixed-critical systems). However, the setting is not very general.
To foster generality, we complement the stability evaluation with a less restrictive
stability analysis, based on the proposed task model in Definition 2.

DEFINITION 4—MISS-CONSTRAINED STABILITY ANALYSIS
To guarantee miss-constrained stability, a system has to be stable under arbitrary
switching between all the possible m realisations (i.e., closed-loop matrices) that
comply with all task models τ `

{m⊂
`

}
,m⊂ ∈ {1, . . . ,m} and also include the case

in which the system does not miss deadlines.

In other words, a system is miss-constrained stable if and only if it is stable under
arbitrary switching of the closed-loop matrices in the set{

Φ
`−1

ΦH (1) , Φ
`−2

ΦH (2) , . . . , Φ
`−m

ΦH (m) , Φ

}
. (19)

Switching stability is unfortunately quite involved.3 However, many excellent tools
have been developed to simplify this analysis (e.g., MJSR [Maggio et al., 2020] or
the JSR toolbox [Vankeerberghen et al., 2014] for MATLAB).

Performance We now show how the cost function in Equation (11) can be used
as a time-varying performance metric. Before a burst interval, we assume that the
system is in the neighbourhood of its steady-state covariance P∞ and performance
J∞.

When a burst interval of m missed deadlines occurs, the system will be disrupted
and its covariance matrix will evolve according to

Pk+m+1 = ΦH (m)Pk (ΦH (m))T +Φ
jnRw

(
Φ

jn
)T

, (20)

where

Rw =

[
∑

jm
i=0 Ai W RW T (Ai)T 0nx×nz+nu

0nz+nu×nx 0nz+nu×nz+nu

]
,

jm =

{
m−1 if D = K (Kill),
m if D = S (Skip),

jn =

{
1 if D = K (Kill),
0 if D = S (Skip).

(21)

A and W are matrices from the plant evolution in (1), R is the noise intensity
from (10), and Φ is the closed-loop matrix from (4). The cost will simultaneously

3 We have devoted some research effort into the investigation of a suitable stability analysis for control
tasks subject to a set of weakly-hard constraints (of the type presented in Defintion 1). A summary
of our findings can be found at https://arxiv.org/abs/2101.11312.

73

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6
H= KZ

Jk,H/J∞ = Jk,KZ/J∞

2ε band

JM,H = JM,KZ

m n∗H = n∗KZ

Time

N
or

m
al

is
ed

C
os

t

Figure 3. Illustration of normalised cost (Jk/J∞), performance recovery interval
n∗H and maximum normalised cost JM,H on a data trace. The example uses H =
Kill&Zero and ε = 0.1.

change following (11). In the recovery interval, the covariance is again governed
by the normal closed-loop evolution described in (10). The system is said to have
recovered once the cost is arbitrarily close to the steady-state cost. We evaluate this
as ∣∣∣∣J∞− Jk

J∞

∣∣∣∣< ε, (22)

where ε > 0 is the recovery threshold.

DEFINITION 5—PERFORMANCE RECOVERY INTERVAL
We define the recovery length interval n∗H as the smallest n such that (22) is satisfied
for all k ≥ n when usingH to handle deadline misses.

DEFINITION 6—MAXIMUM NORMALISED COST
We denote the maximum normalised cost of the system by

JM,H = max
k

Jk,H

J∞

, (23)

where Jk,H is the cost computed according to (11) when using H to handle the
deadline misses.

Figure 3 gives a graphical representation of n∗H and JM,H for an execution trace in
which the controller experiences 3 misses and uses Kill&Zero as strategyH.

Compared to the stability analysis, the performance analysis also takes into ac-
count state deviations and uncertainty due to disturbances. In Section 5.2 we used
the system dynamics to analyse the stability of the system. The disturbance term wk
was neglected as it does not influence the system stability. However, its presence (as
the presence of any disturbance) changes the dynamic behaviour of the system. For
the performance metric, the state covariance matrix Pk evolves according to both

74

6 Experimental Results

the noise intensity and the system dynamics (20). The result is that the performance
analysis provides us with a conservative (but more realistic) recovery interval, that
takes system uncertainties into consideration.

To find the length of the recovery interval, we evolve the state covariance dur-
ing a burst interval, using a specific strategy H according to (20). Thereafter, the
state covariance is evolved under normal operation, according to (10), until (22) is
satisfied, allowing us to find the performance recovery interval n∗H.

6. Experimental Results

In this section, we apply the analysis presented in Section 5 to a set of case studies,
analysing stability and performance. We first present detailed results with a Furuta
pendulum, both in simulation and with real hardware, using the same controller.
The simulated results are compared to the real physical plant. This shows that the
performance analysis does capture the important trends for real control systems. We
then present some aggregate results obtained with a set of 133 different plants from
a control benchmark. One noteworthy aspect is that the Furuta pendulum model is
linearised for the control design and the pendulum stabilised around an unstable
equilibrium—the top position—while the control benchmark includes (by design)
stable systems. The difference between simulation results and real experiments for
stable linear systems should in principle be smaller than for unstable nonlinear sys-
tems, making our pendulum the ideal stress test for the similarity of simulated and
real data.

6.1 Furuta Pendulum
We here analyse the behaviour of a Furuta pendulum [Furuta et al., 1992], a rota-
tional inverted pendulum in which a rotating arm is connected to a pendulum. The
rotation of the arm induces a swing movement on the pendulum. The pendulum
has two equilibria: a stable position in which the pendulum is downright, and an
unstable position in which the pendulum is upright. Our objective is to keep the
pendulum in the up position, by moving the rotating arm.

The Furuta pendulum is a highly nonlinear process. In order to design a con-
trol strategy to keep the pendulum in the top position, it is necessary to linearise
the dynamics of the system around the desired equilibrium point. We consider this
as a stress test to check the divergence between simulation results and real hard-
ware results, because of the instability of the equilibrium and the nonlinearity of
the dynamics. In fact, the controller necessarily acts with information that is valid
only around the upright position, and there is only a range of states in which the
linearised model closely describes the behaviour of the physical plant.

We design a linear-quadratic regulator (LQR) to control the plant. Every T =
10ms the plant is sampled and the control signal is actuated. Based on state-of-the-
art models [Cazzolato and Prime, 2011] and on our control design, the plant model

75

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

1

10

20

30

40

50

1 5 10 15 20 25

Kill&Hold

n

m

1

10

20

30

40

50

1 5 10 15 20 25

Skip&Hold

n

1

10

20

30

40

50

1 5 10 15 20 25

Kill&Zero

n

1

10

20

30

40

50

1 5 10 15 20 25

Skip&Zero

n

Figure 4. Miss-constrained stability (dark coloured area) and static-cyclic stability
(light coloured area) when different strategies H are used in the example and the
weakly hard model in Definition 2 is considered. Each square represents a window
of size `= m+n. The dark area satisfies both the miss-constrained and static-cyclic
stability whilst the light area only provides static-cyclic stability. The white squares
denote potentially unstable combinations of m and n.

P is

P :


xk+1 =


1.002 0.0100 0 0
0.3133 1.002 0 0

−2.943 ·10−5 −9.808 ·10−8 1 0.01
−0.0059 −2.943 ·10−5 0 1

xk +


−0.0036
−0.7127
+0.0096
+1.9120

uk + Iwk,

yk = Ixk,
(24)

the controller C takes the form

C : uk+1 =
[
8.8349 1.5804 0.2205 0.3049

]
xk (25)

and is designed and analysed using the following parameters (see Section 3.3):

Qe = diag{100,1,10,10} , Qu = 100, R = diag{0,0,10,1} . (26)

We first apply the stability analyses presented in Section 5.2 to our model. Fig-
ure 4 shows the results. Each square in the figure represents a combination of (at
most) m deadline misses (on the vertical axis) and (at least) n deadline hits (on the
horizontal axis). If a square is coloured with a dark colour, the corresponding com-
bination of misses and hits is both static-cyclic and miss-constrained stable, found
using the JSR Toolbox [Vankeerberghen et al., 2014]. The light squares in the
figure show combinations for which the system only satisfies the static-cyclic sta-
bility condition. The white squares mark configurations for which stability cannot
be guaranteed.

76

6 Experimental Results

We remark on the presence of peaks in the static-cyclic stability region of
H = KH at n = {1,5,9,13,19}. Similar peaks are also found for the other strate-
gies, but for different values of n. These peaks indicate that the system would be
stable if that particular burst and recovery interval length would be repeated indef-
initely. However, this assumption is not robust to variations in the burst or recov-
ery interval lengths as can be seen from the miss-constrained stability region being
more conservative with its guarantees. Instead, the peaks in the static-cyclic region
can be explained by stable modes occurring due to the natural frequencies of the
open-loop (for the Zero actuation mode) and closed-loop (for the Hold actuation
mode) systems. It is also interesting to note that Kill seems to consistently yield a
larger stability region than Skip, while neither Zero nor Hold dominate each other
in terms of stability guarantees. An example of the latter fact was given already
in [Schenato, 2009].

For the performance analysis, we considered a one-shot burst fault of a specific
length m, followed by a long period of normal execution. Assuming that the pen-
dulum starts close to the upright equilibrium, with stationary cost J∞, we calculate
how the covariance Pk and performance cost Jk evolve during and after the burst in-
terval using Equations (20)–(21).4 These calculations assume an ideal, linear model
of the pendulum. The simulation results for different strategies and bursts of length
m = 20 are shown in the upper half of Figure 5. For Hold, it is seen that the cost
grows exponentially during the initial fault interval (the first 20T = 0.2s). This is
true also for Zero, although the growth rate is too small to be visible. The reason
for the poor performance of Hold is that any non-zero held control signal will ac-
tively push the pendulum away from its unstable upright equilibrium even further
than either disturbances or noise would already do without a proper control action.

The large spike in cost comes when the controller is reactivated at time 0.2s.
Here, the Hold strategy again shows much worse performance than Zero, with the
peak cost being almost an order of magnitude worse. The difference between Kill
and Skip is relatively small, with the latter strategy consistently performing slightly
worse than the former. This is due to the small extra delay caused by using old data
in the Skip strategy.

We conducted experiments on a Furuta pendulum, using the same controller
for the real plant rather than its model.5 Initially, we performed 500 experiments
with 500 jobs each and no deadline misses, to determine the nominal variance of
the system—i.e., the stationary variance used to find the static cost J∞. For each

4 The analysis is implemented using JitterTime [Cervin et al., 2019], https://www.control.
lth.se/jittertime.

5 A video, showing experiments with the real system and bursts of deadline misses can be viewed at
https://youtu.be/0P0K_7lvKVU. The video shows a comparison of all the strategies for bursts
of (m = 20,n = 480). Furthermore, we have included additional experiments with (m = 50,n = 450)
and (m = 75,n = 425) for the Skip&Hold strategy. The results of the additional experiments with
higher values of m are not described in the paper, as stability could not be guaranteed (and in fact the
pendulum is not at all times kept in the upright position).

77

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

0 0.5 1 1.5 2
1

10

30

50

Kill&Hold

37.9
J k
/J

∞

0 0.5 1 1.5 2
1

10

30

50

Skip&Hold

46.7

0 0.5 1 1.5 2
1
3
5
7

Kill&Zero

5.9

0 0.5 1 1.5 2
1
3
5
7

Skip&Zero

6.6

Si
m

ul
at

ed

0.5 1 1.5 2
1

10

30

50
33.8

Time [s]

J k
/J

∞

0.5 1 1.5 2
1

10

30

50 44.0

Time [s]
0.5 1 1.5 2

1
3
5
7

4.0

Time [s]
0.5 1 1.5 2

1
3
5
7

3.7 R
ea

l

Time [s]

Figure 5. Normalised performance cost Jk/J∞ obtained with the Furuta pendulum.
The upper part of the figure shows simulated data, while the lower part of the figure
shows the corresponding values obtained averaging the results of 500 experiments
with the real process and hardware. Each experiment corresponds to a 500 jobs of
the controller (20 misses and 480 hits).

strategy H we then ran 500 identically set up experiments. In each experiment, the
control task operated according to the task model from Definition 2, experiencing
a burst of length m = 20 misses, followed by by a recovery interval with n = 480
deadline hits.

Due to system model uncertainties (e.g., friction) being significant, the rotation
angle around the arm axis displayed a considerable variance. We removed the state
from the covariance calculations, since the arm angle majorly impacted the variance
despite its inconsequential significance on the system dynamics (the pendulum can
be stabilised with the arm being around any position, provided that the pendulum
itself is kept in the upright position). Including the rotation angle would not change
the shape of the performance degradation seen in Figure 5. However, it would make
the results obtained with different strategiesH not comparable (in some of them, the
rotation angle could have varied less across the 500 experiments). The covariance
matrix Pk was derived by calculating the variance of the closed-loop state vector x̃k
according to Equation (9), in each time step k.

The resulting performance cost can be seen in the lower half of Figure 5, where
the cost Jk was calculated according to Equation (11) and normalised using the
stationary cost J∞. Comparing the simulated (upper) and real (lower) performance
costs in Figure 5, we notice the similarities between the simulated analysis and the
analysis performed on the physical plant. Particularly, the strategies involving Hold
actuation show similar behaviours. For these strategies, the simulated and real val-
ues are very close for the transient burst interval, the secondary cost peak (seen

78

6 Experimental Results

around time 0.4s), and the maximum normalised cost JM,H. However, the real cost
is recovering slower than in the simulations—an effect that arises due to the nonlin-
ear effects present in the real process, but unmodelled in the simulated environment.
Instead, comparing the Zero actuation strategies, the performance cost of the phys-
ical experiments during the burst interval seem to improve compared to the simula-
tions. This is again likely due to the unmodelled dynamics (e.g., friction) appearing
in the physical experiment but not in the simulations. The stiction component of the
friction reduces the variance of the states when the actuation signal becomes zero.
With longer burst intervals, a similar behaviour as for the Hold actuation strategies
would appear. Despite this difference, both the recovery interval, the secondary cost
peak (around 0.4s), and the maximum normalised costs JM,H are comparable.

We conclude that the results of the experiments performed on the physical pro-
cess support the validity of the performance analysis presented in Section 5.2.

6.2 Control Benchmark
In Section 6.1 we extensively discussed the results obtained with a single plant
(the Furuta pendulum), with the aim of showing that simulating the performance
cost yields interesting and relevant results. As the main novelty of this paper lays
in the introduction of the performance analysis as an additional tool to evaluate the
behaviour of control systems that can miss deadlines, we here focus on performance.

We use a set of representative process industrial plants [Åström and Hägglund,
2004], developed to benchmark PID design algorithms in the control literature. The
set includes 9 different batches of stable plants, each presenting different features
that can be encountered in process industrial plants, for a total of 133 plants.6 For
each batch, all systems have the same structure, but different parameters. For ex-
ample, the fourth batch is a stable system with a set of repeated eigenvalues, and a
single parameter specifying the system order, which can take six possible values (3,
4, 5, 6, 7, or 8). Almost all the plants have a single independent parameter. The only
exception is Batch 7, for which we can specify two different configuration param-
eters, the first one having 4 possible values and the second one having 9 potential
alternatives, with a total of 36 possible configurations.

The analysis methodology presented in this paper is valid for all linear con-
trol systems. In Section 6.1, we introduced an LQR controller to analyse the Fu-
ruta pendulum. To demonstrate the generality of the analysis, here, we focus on the
most common controller class: proportional and integral (PI) controllers. These con-
trollers constitute the vast majority of all the control loops in the process industry.7

We also performed the analysis for proportional, integral, and derivative (PID) con-

6 In our analysis, we present results with 134 plants. In fact, the test set was used in [Garpinger and
Hägglund, 2015] to assess a control design method, and an additional plant was added to the set
during this assessment. We included this additional plant in our analysis.

7 A 2001 survey by Honeywell [Desborough, 2001] states that 97% of the existing industrial con-
trollers are PI controllers.

79

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

3 6 9 12 15 18 21

0
20
40
60

1

B
at

ch
1

pKill&Holdp

3 6 9 12 15 18 21

0
20
40
60

1

Skip&Hold

3 6 9 12 15 18 21

0
20
40
60

1

pKill&Zerop

3 6 9 12 15 18 21

0
20
40
60

1

Skip&Zero

3 6 9 12 15 18 21
0

50

100

1

B
at

ch
2

3 6 9 12 15 18 21

0

50

100

1 3 6 9 12 15 18 21

0

50

100

1 3 6 9 12 15 18 21

0

50

100

1

1 2 3 4 5 6 7 8 9 10

0
20
40
60
80

1

B
at

ch
3

1 2 3 4 5 6 7 8 9 10

0
20
40
60
80

1 1 2 3 4 5 6 7 8 9 10

0
20
40
60
80

1 1 2 3 4 5 6 7 8 9 10

0
20
40
60
80

1

1 2 3 4 5 6

0
20
40
60

1

B
at

ch
4

1 2 3 4 5 6

0
20
40
60

1 1 2 3 4 5 6

0
20
40
60

1 1 2 3 4 5 6

0
20
40
60

1

1 2 3 4 5 6 7 8 9

0
20
40
60
80

100

1

B
at

ch
5

1 2 3 4 5 6 7 8 9

0
20
40
60
80

100

1 1 2 3 4 5 6 7 8 9

0
20
40
60
80

100

1 1 2 3 4 5 6 7 8 9

0
20
40
60
80

100

1

1 2 3 4 5 6 7 8 9 10

0

50

100

1

B
at

ch
6

1 2 3 4 5 6 7 8 9 10

0

50

100

1 1 2 3 4 5 6 7 8 9 10

0

50

100

1 1 2 3 4 5 6 7 8 9 10
0

50

100

1

5 10 15 20 25 30 35

0

50

100

1

B
at

ch
7

5 10 15 20 25 30 35

0

50

100

1 5 10 15 20 25 30 35

0

50

100

1 5 10 15 20 25 30 35

0

50

100

1

1 2 3 4 5 6 7 8 9 10 11

0
20
40
60

1

B
at

ch
8

1 2 3 4 5 6 7 8 9 10 11

0
20
40
60

1 1 2 3 4 5 6 7 8 9 10 11

0
20
40
60

1 1 2 3 4 5 6 7 8 9 10 11

0
20
40
60

1

1 2 3 4 5 6 7 8 9 10

0

20

40

60

1

B
at

ch
9

1 2 3 4 5 6 7 8 9 10

0

20

40

60

1 1 2 3 4 5 6 7 8 9 10

0

20

40

60

1 1 2 3 4 5 6 7 8 9 10

0

20

40

60

1

Figure 6. Performance Recovery Interval n∗H needed to recover from a burst of
10 deadline misses for different strategies and all the plants in the 9 batches for PI
controllers designed according to [Garpinger and Hägglund, 2015].80

6 Experimental Results

trollers obtaining similar results. Introducing our tuning for PID controllers requires
additional clarifications and details, which we omit due to space limitations.

For each plant we derived a PI controller according to the methodology pre-
sented in [Garpinger and Hägglund, 2015]. In order to showcase the applicability of
our analysis to different linear systems, controllers, and noise models, we analyse
the resulting closed-loop systems for m ∈ [1,20], under the assumption that the sys-
tems are affected by brown noise (in comparison to the white noise applied to the
Furuta Pendulum). The brown noise model integrates the white noise and is thus
applicable to systems where the noise is more dominant at lower frequencies (e.g.,
oscillations from nearby machinery). Figure 6 shows the results for m = 10.

The first result that the figure shows is that the plant dynamics plays an impor-
tant role in how the system reacts to misses. For example, the plants in Batch 4 and
Batch 8 need around 20 hits to recover from a burst of 10 misses. On the contrary,
the plants in Batch 6 and Batch 7 need a higher number of hits to recover from
the same burst interval. The second result that is apparent from the figure is that
the Hold actuation strategy recovers much better (performance-wise) than Zero.
The reason why Hold outperforms Zero can be explained by the brown noise. The
control signal will actively counteract the integrated noise dynamics, meaning that
zeroing the control signal removes the compensation against the integrated noise.
Finally, comparing the deadline handling strategies, Kill performs marginally bet-
ter than Skip. Under Kill, the controller uses fresh data at the beginning of the
recovery interval, while Skip uses old data. However, we assumed ideal rollback
(i.e., zero additional computation time for the rollback and clean state) for the Kill
strategy. In real systems, rollback is difficult to realise and the advantage provided
by Kill over Skip may therefore become unimportant. These findings are consis-
tent throughout all the plants in the experimental set, regardless of the burst interval
length m.

The plant dynamics and noise affect the behaviour and performance of the
strategies. Comparing the results of Section 6.1 with the aggregate results, it be-
comes apparent that the actuation strategy (Zero or Hold) affects control perfor-
mance significantly more than the deadline handling strategy. For the Furuta pen-
dulum (an unstable, nonlinear plant influenced by white noise) Zero performed the
best, but for the process industrial systems (stable, linear plants influenced by brown
noise) Hold outperformed Zero. These results were apparent even with no consid-
eration taken to the deadline handling strategies. Thus, we conclude that the plant
and noise model should be the ruling factor when choosing the actuation strategy,
while the deadline handling strategy is mainly limited by the constraints imposed
by the real-time implementation.

81

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

7. Conclusions

In this paper we analysed control systems and their behaviour in the presence of
bursts of deadline misses. We provided a comprehensive set of tools to determine
how robust a given control system is to faults that hinder the computation to com-
plete in time, with different handling strategies. Our analysis tackles both stability
and performance. In fact, we have shown that analysing the stability of the sys-
tem is not enough to properly quantify the robustness to deadline misses, as the
performance loss could be significant even for stable systems. We introduced two
performance metrics, linked to the recovery of a system from a burst of deadline
misses.

A limitation of the presented performance analysis is that it only applies to linear
control systems. However, the approach can easily be extended to analyse time-
varying linear systems and can also be used for local analysis of a nonlinear system
that should follow a given reference trajectory. In fact, to illustrate the applicability
to real (e.g., nonlinear) systems, we applied the analysis to a Furuta pendulum and
compared the results of simulations obtained with a model of the process to the
real execution data. The results support our claim that the proposed performance
analysis is a valid approximation of the real-world system performance.

We performed additional tests on a large batch of industrial plants, using modern
control design techniques. From our experimental campaign, we conclude that the
choice of actuation strategy affects the control performance significantly more than
the choice of deadline handling strategy.

Acknowledgements

The authors are members of the ELLIIT Strategic Research Area at Lund Univer-
sity. This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement Number 871259 (AD-
MORPH project). This publication reflects only the authors’ view and the European
Commission is not responsible for any use that may be made of the information it
contains.

References

Abdi, F., C. Chen, M. Hasan, S. Liu, S. Mohan, and M. Caccamo (2019). “Pre-
serving physical safety under cyber attacks”. IEEE Internet of Things Journal
6:4.

Abdi, F., R. Mancuso, R. Tabish, and M. Caccamo (2017a). “Restart-based fault-
tolerance: system design and schedulability analysis”. In: 23rd IEEE Interna-
tional Conference on Embedded and Real-Time Computing Systems and Appli-
cations (RTCSA).

82

References

Abdi, F., R. Tabish, M. Rungger, M. Zamani, and M. Caccamo (2017b). “Appli-
cation and system-level software fault tolerance through full system restarts”.
In: 8th International Conference on Cyber-Physical Systems (ICCPS). ISBN:
9781450349659.

Ahrendts, L., S. Quinton, T. Boroske, and R. Ernst (2018). “Verifying weakly-hard
real-time properties of traffic streams in switched networks”. In: 30th Euromi-
cro Conference on Real-Time Systems (ECRTS). Vol. 106. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 15:1–15:22. ISBN: 978-3-95977-075-0.

Åkesson, B., M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis (2020). “An em-
pirical survey-based study into industry practice in real-time systems”. In: 41st
IEEE Real-Time Systems Symposium (RTSS).

Altmeyer, S. and R. I. Davis (2014). “On the correctness, optimality and precision
of static probabilistic timing analysis”. In: Design, Automation Test in Europe
Conference Exhibition (DATE), pp. 1–6.

Åström, K. J. and T. Hägglund (2004). “Revisiting the Ziegler-Nichols step re-
sponse method for PID control”. Journal of Process Control 14:6, pp. 635–650.
ISSN: 0959-1524.

Åström, K. J. and B. Wittenmark (1997). Computer-Controlled Systems (3rd Ed.)
Prentice-Hall, Inc., USA. ISBN: 0133148998.

Åström, K. and T. Hägglund (2006). Advanced PID Control. English. ISA - The
Instrumentation, Systems and Automation Society. ISBN: 978-1-55617-942-6.

Bernat, G. and A. Burns (1997). “Combining
(n

m

)
-hard deadlines and dual priority

scheduling”. In: 18th IEEE Real-Time Systems Symposium (RTSS), pp. 46–57.
Bernat, G., A. Burns, and A. Liamosi (2001). “Weakly hard real-time systems”.

IEEE Transactions on Computers 50:4, pp. 308–321. DOI: 10 . 1109 / 12 .
919277.

Bund, T. and F. Slomka (2014). “Controller/platform co-design of networked con-
trol systems based on density functions”. In: 4th ACM SIGBED International
Workshop on Design, Modeling, and Evaluation of Cyber-Physical Systems.
ACM, pp. 11–14. ISBN: 978-1-4503-2871-5.

Bund, T. and F. Slomka (2015). “Worst-case performance validation of safety-
critical control systems with dropped samples”. In: 23rd International Confer-
ence on Real Time and Networks Systems (RTNS). ACM, Lille, France, pp. 319–
326. ISBN: 978-1-4503-3591-1.

Buttazzo, G., M. Velasco, and P. Marti (2007). “Quality-of-control management in
overloaded real-time systems”. IEEE Transactions on Computers 56:2, pp. 253–
266.

Caccamo, M. and G. Buttazzo (1997). “Exploiting skips in periodic tasks for en-
hancing aperiodic responsiveness”. In: 18th IEEE Real-Time Systems Sympo-
sium (RTSS), pp. 330–339.

83

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

Caccamo, M., G. Buttazzo, and L. Sha (2000). “Capacity sharing for overrun con-
trol”. In: 21st IEEE Real-Time Systems Symposium (RTSS), pp. 295–304.

Cazzolato, B. S. and Z. Prime (2011). “On the dynamics of the Furuta pendulum”.
Journal of Control Science and Engineering.

Cervin, A., P. Pazzaglia, M. Barzegaran, and R. Mahfouzi (2019). “Using Jitter-
Time to analyze transient performance in adaptive and reconfigurable control
systems”. In: IEEE International Conference on Emerging Technologies and
Factory Automation, pp. 1025–1032.

Cervin, A. (2005). “Analysis of overrun strategies in periodic control tasks”. IFAC
Proceedings Volumes 38:1. 16th IFAC World Congress, pp. 219–224. ISSN:
1474-6670. DOI: 10.3182/20050703-6-CZ-1902.01076.

Chen, A., H. Xiao, A. Haeberlen, and L. T. X. Phan (2015). “Fault tolerance and the
five-second rule”. In: Workshop on Hot Topics in Operating Systems (HotOS).

Choi, H., H. Kim, and Q. Zhu (2019). “Job-class-level fixed priority scheduling of
weakly-hard real-time systems”. In: Real-Time and Embedded Technology and
Applications Symposium (RTAS), pp. 241–253.

Davis, R. I., L. Santinelli, S. Altmeyer, C. Maiza, and L. Cucu-Grosjean (2013).
“Analysis of probabilistic cache related pre-emption delays”. In: 25th Euromicro
Conference on Real-Time Systems (ECRTS), pp. 168–179.

de Niz, D., L. Wrage, A. Rowe, and R. Rajkumar (2013). “Utility-based resource
overbooking for cyber-physical systems”. In: 19th IEEE International Con-
ference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pp. 217–226.

Desborough, L. (2001). “Increasing customer value of industrial control perfor-
mance monitoring-honeywell’s experience”. Preprints of CPC, pp. 153–186.

Ernst, R., S. Kuntz, S. Quinton, and M. Simons (2018). “The logical execution
time paradigm: new perspectives for multicore systems”. Dagstuhl Reports 8,
pp. 122–149.

Frehse, G., A. Hamann, S. Quinton, and M. Woehrle (2014). “Formal analysis of
timing effects on closed-loop properties of control software”. In: 35th IEEE
Real-Time Systems Symposium (RTSS), pp. 53–62.

Furuta, K., M. Yamakita, and S. Kobayashi (1992). “Swing-up control of inverted
pendulum using pseudo-state feedback”. Proceedings of the Institution of Me-
chanical Engineers, Part I: Journal of Systems and Control Engineering 206:4,
pp. 263–269.

Garpinger, O. and T. Hägglund (2015). “Software-based optimal PID design with
robustness and noise sensitivity constraints”. Journal of Process Control 33,
pp. 90–101. ISSN: 0959-1524.

84

References

Gaukler, M., T. Rheinfels, P. Ulbrich, and G. Roppenecker (2019). “Conver-
gence rate abstractions for weakly-hard real-time control”. arXiv preprint
arXiv:1912.09871.

Ghosh, S. K., S. Dey, D. Goswami, D. Mueller-Gritschneder, and S. Chakraborty
(2018). “Design and validation of fault-tolerant embedded controllers”. In: De-
sign, Automation & Test in Europe Conference Exhibition (DATE). IEEE.

Goswami, D., D. Mueller-Gritschneder, T. Basten, U. Schlichtmann, and S.
Chakraborty (2014). “Fault-tolerant embedded control systems for unreliable
hardware”. In: International Symposium on Integrated Circuits (ISIC). IEEE.

Gujarati, A., M. Nasri, and B. B. Brandenburg (2018). “Quantifying the resiliency
of fail-operational real-time networked control systems”. In: 30th Euromicro
Conference on Real-Time Systems (ECRTS). Vol. 106. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. ISBN: 978-3-95977-075-0.

Gujarati, A., M. Nasri, R. Majumdar, and B. B. Brandenburg (2019). “From iter-
ation to system failure: characterizing the fitness of periodic weakly-hard sys-
tems”. In: 31st Euromicro Conference on Real-Time Systems (ECRTS). Vol. 133.
Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

Hamdaoui, M. and P. Ramanathan (1995). “A dynamic priority assignment tech-
nique for streams with (m,k)-firm deadlines”. IEEE Transactions on Computers
44:12, pp. 1443–1451.

Hammadeh, Z. A. H., R. Ernst, S. Quinton, R. Henia, and L. Rioux (2017a).
“Bounding deadline misses in weakly-hard real-time systems with task de-
pendencies”. In: Design, Automation & Test in Europe Conference Exhibition
(DATE), pp. 584–589.

Hammadeh, Z. A. H., S. Quinton, and R. Ernst (2014). “Extending typical worst-
case analysis using response-time dependencies to bound deadline misses”. In:
14th International Conference on Embedded Software (EMSOFT). ACM. ISBN:
9781450330527.

Hammadeh, Z. A. H., S. Quinton, and R. Ernst (2019). “Weakly-hard real-time
guarantees for earliest deadline first scheduling of independent tasks”. ACM
Transactions of Embedded Computing Systems 18:6. ISSN: 1539-9087.

Hammadeh, Z. A. H., S. Quinton, M. Panunzio, R. Henia, L. Rioux, and R. Ernst
(2017b). “Budgeting under-specified tasks for weakly-hard real-time systems”.
In: 29th Euromicro Conference on Real-Time Systems (ECRTS). Vol. 76. Leibniz
International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 17:1–17:22. ISBN: 978-3-95977-037-8.

85

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

Hertneck, M., S. Linsenmayer, and F. Allgöwer (2019). “Nonlinear dynamic pe-
riodic event-triggered control with robustness to packet loss based on non-
monotonic lyapunov functions”. In: 58th IEEE Conference on Decision and
Control (CDC), pp. 1680–1685.

Jungers, R. (2009). The Joint Spectral Radius: Theory and Applications. Lecture
Notes in Control and Information Sciences. Springer Berlin Heidelberg. ISBN:
9783540959809.

Kauer, M., D. Soudbakhsh, D. Goswami, S. Chakraborty, and A. M. Annaswamy
(2014). “Fault-tolerant control synthesis and verification of distributed embed-
ded systems”. In: Design, Automation & Test in Europe Conference Exhibition
(DATE).

Khosravi, F., M. GlaSS, and J. Teich (2017). “Automatic reliability analysis in the
presence of probabilistic common cause failures”. IEEE Transactions on Relia-
bility 66:2.

Khosravi, F., M. Müller, M. GlaSS, and J. Teich (2015). “Uncertainty-aware re-
liability analysis and optimization”. In: Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 97–102. ISBN: 9783981537048.

Kirsch, C. and A. Sokolova (2012). “The logical execution time paradigm”. In: Ad-
vances in Real-Time Systems. Springer Berlin Heidelberg, pp. 103–120. ISBN:
978-3-642-24349-3.

Koren, G. and D. Shasha (1995). “Skip-Over: algorithms and complexity for over-
loaded systems that allow skips”. In: 16th IEEE Real-Time Systems Symposium
(RTSS), pp. 110–117.

Linsenmayer, S. and F. Allgower (2017). “Stabilization of networked control sys-
tems with weakly hard real-time dropout description”. In: 56th IEEE Confer-
ence on Decision and Control (CDC), pp. 4765–4770.

Linsenmayer, S., M. Hertneck, and F. Allgower (2020). “Linear weakly hard real-
time control systems: time- and event-triggered stabilization”. IEEE Transac-
tions on Automatic Control.

Maggio, M., A. Hamann, E. Mayer-John, and D. Ziegenbein (2020). “Control-
system stability under consecutive deadline misses constraints”. In: 32nd Eu-
romicro Conference on Real-Time Systems (ECRTS). Leibniz International Pro-
ceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik.

Montgomery, D. (2009). Introduction to Statistical Quality Control. Wiley. ISBN:
9780470233979.

Natarajan, S., M. Nasri, D. Broman, B. B. Brandenburg, and G. Nelissen (2019).
“From code to weakly hard constraints: a pragmatic end-to-end toolchain for
timed C”. In: 40th IEEE Real-Time Systems Symposium (RTSS), pp. 167–180.

OConnor, P. P. and A. Kleyner (2012). Practical Reliability Engineering. 5th. Wiley
Publishing. ISBN: 047097981X.

86

References

Palopoli, L., L. Abeni, G. Buttazzo, F. Conticelli, and M. Di Natale (2000). “Real-
time control system analysis: an integrated approach”. In: 21st IEEE Real-Time
Systems Symposium (RTSS), pp. 131–140.

Pazzaglia, P., A. Hamann, D. Ziegenbein, and M. Maggio (2021). “Adaptive design
of real-time control systems subject to sporadic overruns”. In: Design, Automa-
tion & Test in Europe Conference Exhibition (DATE).

Pazzaglia, P., C. Mandrioli, M. Maggio, and A. Cervin (2019). “DMAC: Deadline-
Miss-Aware Control”. In: 31st Euromicro Conference on Real-Time Systems
(ECRTS). Vol. 133. Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 1:1–1:24. ISBN: 978-3-
95977-110-8.

Pazzaglia, P., L. Pannocchi, A. Biondi, and M. D. Natale (2018). “Beyond the
Weakly Hard Model: Measuring the Performance Cost of Deadline Misses”. In:
Altmeyer, S. (Ed.). 30th Euromicro Conference on Real-Time Systems (ECRTS
2018). Vol. 106. Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 10:1–10:22. ISBN: 978-3-
95977-075-0. DOI: 10.4230/LIPIcs.ECRTS.2018.10.

Quinton, S., T. T. Bone, J. Hennig, M. Neukirchner, M. Negrean, and R. Ernst
(2014). “Typical worst case response-time analysis and its use in automotive
network design”. In: 51st Annual Design Automation Conference (DAC). ACM,
San Francisco, CA, USA, pp. 1–6. ISBN: 9781450327305.

Ramanathan, P. (1997). “Graceful degradation in real-time control applications us-
ing (m,k)-firm guarantee”. In: 27th IEEE International Symposium on Fault Tol-
erant Computing, pp. 132–141.

Schenato, L. (2009). “To zero or to hold control inputs with lossy links?” IEEE
Transactions on Automatic Control 54:5, pp. 1093–1099.

Soudbakhsh, D., L. T. X. Phan, O. Sokolsky, I. Lee, and A. Annaswamy (2013).
“Co-design of control and platform with dropped signals”. In: 4th ACM/IEEE
International Conference on Cyber-Physical Systems (ICCPS). ACM, pp. 129–
140. ISBN: 978-1-4503-1996-6.

Soudbakhsh, D., L. T. X. Phan, A. M. Annaswamy, and O. Sokolsky (2018). “Co-
design of arbitrated network control systems with overrun strategies”. IEEE
Transactions on Control of Network Systems 5:1, pp. 128–141. DOI: 10.1109/
TCNS.2016.2583064.

Sun, Y. and M. D. Natale (2017). “Weakly hard schedulability analysis for fixed pri-
ority scheduling of periodic real-time tasks”. ACM Transactions on Embedded
Computing Systems 16:5s. ISSN: 1539-9087.

Vankeerberghen, G., J. Hendrickx, and R. M. Jungers (2014). “JSR: a toolbox to
compute the joint spectral radius”. In: 17th International Conference on Hybrid
Systems: Computation and Control (HSCC). ACM, Berlin, Germany, pp. 151–
156. ISBN: 9781450327329.

87

Paper I. Analysis of Control Systems Subject to Bursts of Deadline Misses

Vreman, N. and C. Mandrioli (2020). “Evaluation of Burst Failure Robustness of
Control Systems in the Fog”. In: 2nd Workshop on Fog Computing and the
IoT (Fog-IoT). Vol. 80. OpenAccess Series in Informatics (OASIcs). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN: 978-3-95977-144-3. DOI:
10.4230/OASIcs.Fog-IoT.2020.8.

Xu, W., Z. A. H. Hammadeh, A. Kröller, R. Ernst, and S. Quinton (2015). “Im-
proved deadline miss models for real-time systems using typical worst-case
analysis”. In: 27th Euromicro Conference on Real-Time Systems (ECRTS),
pp. 247–256.

88

Paper II

Deadline-Miss-Adaptive Controller
Implementation for Real-Time Control

Systems

Nils Vreman Claudio Mandrioli Anton Cervin

Abstract

The policy used to implement a control algorithm in a real-time system can
significantly affect the quality of control. In this paper, we present a method to
adapt the controller implementation, with the objective to improve the system’s
performance under real-time faults. Our method compensates for missing state
updates by adapting the controller parameters according to the number of con-
secutively missed deadlines. It extends the state-of-the-art by considering dy-
namic controllers, which have had limited coverage in previous literature. The
adaptation mechanism can be precomputed offline, solely based on knowledge
about the controller and not on the controlled plant. The approach is indifferent
to the control design, as well as to the scheduling policy, and can be automat-
ically realised by the operating system, thus improving the robustness of the
control system to intermittent and unexpected real-time faults. We develop a
stochastic performance analysis method and apply it to both a real plant and
numerous simulated plants to evaluate our adaptive controller. Complementary
to the stochastic analysis, we also do worst-case stability analysis of the result-
ing system. The results confirm the conjuncture that the adaptive controller im-
proves both the performance and robustness in the presence of deadline misses.

Originally published in IEEE 28th Real-Time and Embedded Technology and
Applications Symposium (2022). The mathematical notation has been unified to
match the remainder of the thesis. Reprinted with permission.

89

Paper II. Deadline-Miss-Adaptive Controller Implementation

1. Introduction

Computer-controlled systems are prime instances of real-time systems [Oshana,
2006; Akesson et al., 2020]. Due to the tight interconnection between the envi-
ronment, hardware, and software, designing such systems has been considered chal-
lenging. Part of this challenge resides in the design of the real-time software, specif-
ically considering both the normal operation [Lozoya et al., 2013; Aminifar et al.,
2011] (e.g., correct output computation) and system malfunctions [Caccamo et al.,
2002; Ramanathan, 1997] (e.g., temporary overloads). For this reason, the research
community has undertaken a significant effort to merge design choices on the algo-
rithmic side and on the real-time implementation side.

In computer-controlled systems, algorithms are developed using control the-
ory [Åstrom and Murray, 2008]. The theory offers strong and practically relevant
formal guarantees, but also makes strict assumptions on the real-time execution of
the implemented algorithm. These assumptions are naturally translated into periodic
tasks with hard deadlines. However, meeting every single deadline in a periodic
control task is not necessary [Ramamritham, 1996; Ramanathan, 1997]. Instead,
the timing requirements are the result of design choices and engineering trade-offs
between resource utilisation and performance [Lozoya et al., 2013; Cervin et al.,
2004].

Co-design approaches have been proposed to maximise the control performance
while minimising the real-time resource utilisation [Marti et al., 2001; Rehbinder
and Sanfridson, 2000]. However, the tight integration between control algorithms
and the real-time implementation has limitations, due to the complexity of the
resulting systems. This complexity generally translates into (i) complex design
methodologies, (ii) conservative results, and (iii) strong assumptions on the system
properties.

Differently from existing approaches, in this paper we avoid the additional com-
plexity by automatically adapting the real-time implementation of the controller.
The approach is inspired by the concept of autotuning, originating in the control
literature [Åström and Hägglund, 1984; Hägglund and Åström, 1983]. Autotuning
was developed to simplify the PID control design process by automatically optimis-
ing the controller’s design parameters. This idea is here translated to the real-time
implementation, where instead the predesigned control algorithm is automatically
adapted for the real-time architecture to minimise the design effort.

To enable an automatic adaptation of the control algorithm for a wide range of
systems, we make as few assumptions about the implementation platform as possi-
ble. The system requirements that we pose are nonintrusive and seen in industrial
applications [Akesson et al., 2020]. The real-time operating system is required to
be able to: schedule periodic tasks with implicit deadlines, abort (Kill) instances
of tasks that miss their deadlines, roll back the state of aborted tasks [Ying Zhang
and Krishnendu Chakrabarty, 2003; Seong Woo Kwak et al., 2001], and handle con-
troller inputs and outputs at task release times [Kirsch and Sokolova, 2012; Ernst

90

2 System Model

et al., 2018]. While previous co-design approaches require, e.g., probabilistic or
weakly hard descriptions of deadline misses [Pazzaglia et al., 2019; Kauer et al.,
2014], our adaptation approach works for any deadline miss model. From the point
of view of the controller, we assume a linear time-invariant control law, but we
require no prior information about the control design, nor about the system to be
controlled. Similarly to [Pazzaglia et al., 2021], our adaptive control implementa-
tion is applicable to general linear discrete-time controllers and not only static ones.

To evaluate the performance of our adaptive implementation, we propose a
stochastic analysis of the control system. The analysis assumes a probabilistic
model of the deadline misses; however, it is agnostic to how the model is obtained.
We utilise this analysis to evaluate our approach on both a real system and a bench-
mark set of 268 simulated control systems from the process industrial domain. We
use the former to evaluate the practical relevance of the proposed approach and the
latter to evaluate its general applicability. We complement our performance analysis
with a worst-case stability analysis. In all of our tests, the adaptive implementation
improves both the performance and the worst-case stability of the system.

The paper provides the following two main contributions:

• It proposes a novel, modular and intuitive control law implementation that
adapts the control action upon the occurrence of deadline misses in the peri-
odic controller task. The adaptive implementation has a small overhead and
is applicable to all linear dynamic controllers.

• It proposes a probabilistic analysis of the resulting control system subject to
deadline misses. The analysis is based on a comparison with the ideal system
without deadline misses and is used to evaluate the performance of both a
real system and numerous simulated control systems. The results show that
the adaptive implementation significantly improves the system performance
and robustness, compared to the nominal implementation.

The remainder of this paper is outlined as follows. In Section 2 we present the
relevant control and real-time system background. Section 3 presents and discusses
the previous literature on the topic, identifying the limitations of the state-of-the-art
that we are addressing. In Section 4 we first propose our adaptive implementation
of the control law, and then we integrate the proposed controller with a probabilistic
analysis method to enable its evaluation. Section 5 presents an empirical evalua-
tion of the adaptive control law based on the proposed analysis for both a physical
system and numerous simulated systems. Finally, Section 6 concludes the paper.

2. System Model

This section introduces the necessary background and models needed for the re-
mainder of the paper. We discuss the real-time implementation of a general linear

91

Paper II. Deadline-Miss-Adaptive Controller Implementation

ECU

Control Task C
y = read_input();
u = ctrl_comp();
write_output(u);

Physical Plant P
xk+1 = Axk+Buk+Wwk

yk =Cxk+Duky

u

w

Figure 1. Typical structure of a computer-controlled system. Left: the Electronic
Control Unit (ECU) implementing a real-time system, including a task executing the
controller. Right: the physical plant controlled by the actuation variable u, affected
by the disturbance w, and producing the measurement y.

controller and how it can affect the performance of the system. We start by describ-
ing the behaviour of the system under ideal conditions. Based on this, we state how
deadline misses in the real-time implementation affect the system’s behaviour.

2.1 Control Systems under Ideal Operations
The objective of a control system is to regulate a physical process, usually called a
plant, so that it behaves as desired. Figure 1 shows the structure of a control system,
where an Electronic Control Unit (ECU) implements a real-time system. Among
the different tasks executed in the system, there is a task responsible for the control
computations, denoted as the control task. Every job released by this task performs
the following actions: (i) Read measurements from the sensors. (ii) Use the sensor
information to update its state and compute a control action. (iii) Write the control
action to the actuators. The executed algorithm is generally designed using control
theory, where the effective application of the algorithm relies on assumptions about
the real-time execution.

The dynamic behaviour of a plant is commonly described using a state-space
model [Åstrom and Murray, 2008]. Such models are constituted of two sets of
equations: one describing the dynamics of the plant and another one describing
the relation between the plant state and the available measurements. Describing
physical phenomena, those equations are for the most part continuous and nonlin-
ear. However, for control design and implementation purposes, they are commonly
transformed into a discrete-time linear time-invariant (LTI) state-space model:

P :

{
xk+1 = Axk +Buk +W wk

yk =C xk +Duk
(1)

Here, the variable k counts the number of discrete time steps that have passed
since the system started executing. Furthermore, the variable xk ∈ Rnx represents
the plant state, uk ∈ Rnu corresponds to the control signal computed in order to af-
fect the plant, wk ∈ Rnw models disturbances and reference signals, and yk ∈ Rny is

92

2 System Model

the measurement signal available to the controller. For what concerns the matrices,
A ∈ Rnx×nx captures the relation between the current state and the next state, while
B ∈Rnx×nu and W ∈Rnx×nw respectively capture how the control signal and the ex-
ogenous signals affect the state at the next time step. Furthermore, C ∈ Rny×nx and
D ∈ Rny×nu respectively describe how the current state and control signal relate to
the measurements.

To control the behaviour of the plant, a controller C is synthesised to follow
some desired properties, such as: (i) stability, (ii) speed of convergence, (iii) control
effort, and (iv) disturbance rejection. The stability requirement enforces that none
of the signals diverge and is a necessary condition for all controllers. Moreover, a
controller that fulfils all requirements will make the output converge to the reference
value within a specified time, while minimising the control effort and the effect of
possible disturbances.

Controllers are commonly implemented as fixed-rate, periodically executing
tasks, following the Logical Execution Time (LET) paradigm [Henzinger et al.,
2003; Kirsch and Sokolova, 2012; Ernst et al., 2018]. Adopting this paradigm, the
sensors are read at the beginning of the task period, and the control action is written
to the actuators at the end of the period. This minimises the effect of fluctuations in
the execution pattern of the control algorithm (called jitter) at the cost of introducing
a one-step delay in the actuation.

While they are sometimes specified as transfer functions [Åstrom and Murray,
2008], controllers are often implemented as discrete-time state-space systems. More
specifically, we assume that the controller is an LTI system that takes the measure-
ment yk as input and produces the control signal uk+1 as output:1

C :

{
zk+1 = F zk +Gyk

uk+1 = H zk +K yk.
(2)

Here, zk ∈ Rnz represents the internal state of the controller. The second equation,
specifying the control action at step k+ 1, captures the one-step delay introduced
by the LET paradigm. The matrices F ∈ Rnz×nz , G ∈ Rnz×ny , H ∈ Rnu×nz , and K ∈
Rnu×ny govern the behaviour of the controller.

In conjunction with Equation (2), we define two types of controllers: static and
dynamic.

DEFINITION 1—STATIC CONTROLLER
We denote a static controller as any controller C that is stateless (i.e., it has no
internal state z; nz = 0).

DEFINITION 2—DYNAMIC CONTROLLER
We denote a dynamic controller as any controller C that is stateful (i.e., it has an
internal state z; nz ≥ 1).

1 Note that we adopt a positive feedback convention.

93

Paper II. Deadline-Miss-Adaptive Controller Implementation

From the definitions above, we note that a static controller can be written
as a fixed gain matrix times the input (i.e., C : uk+1 = Kyk), while a dynamic
controller is equivalent to (2) with non-empty matrices F , G, H, and K. Ex-
amples of static controllers include proportional (P) controllers, state feedback
controllers, and linear–quadratic regulators (LQR), while dynamic controllers in-
clude proportional–integral–derivative (PID) controllers, lead–lag compensators,
and linear–quadratic–Gaussian (LQG) regulators [Åstrom and Murray, 2008].

2.2 Control Systems Subject to Deadline Misses
We assume that the controller C is implemented as a periodic task with period T and
implicit deadlines. Intuitively, each execution period of the control task corresponds
to one time step k. At the start of period k, the task releases a job that should be
completed before the deadline at time (k+1)T .

Faults in the real-time system can affect the timely execution of the control
task [Steinbauer, 2013]. We denote the outcome of a job’s execution as either a
deadline hit or miss, corresponding to whether the job completed its execution be-
fore its deadline or not. The source of a deadline miss could be a temporary CPU
overload [Baruah and Haritsa, 1997], cache misses [Milligan and Cragon, 1996;
Wang et al., 2012], or unexpected preemption from hardware interrupts or higher
priority tasks [Stankovic et al., 1995]. However, the analysis and adaptation meth-
ods presented in this paper are independent of the origin of the deadline miss.

To study what happens when the controller misses a deadline, we have to define
how the system behaves in such circumstances. In particular, three aspects need to
be considered: (i) how the controller state is updated, (ii) how the actuator handles
the lack of a new control signal [Schenato, 2009], and (iii) how the operating sys-
tem handles a job that misses its deadline [Pazzaglia et al., 2019; Cervin, 2005].
The first item refers to what happens to the internal state z when the controller is
unable to finish its execution ahead of its dedicated deadline. Henceforth, we as-
sume that when the controller misses its deadline, the controller state is not updated
(implying zk+1 = zk). This is motivated by the possibility to roll back zk to a pre-
vious state [Akesson et al., 2020; Seong Woo Kwak et al., 2001; Ying Zhang and
Krishnendu Chakrabarty, 2003] and by the impossibility to guarantee that the state
update was finished if the job was only partially completed.

Regarding the second item, mainly two actuator models have previously been
considered in the literature: Zero and Hold [Schenato, 2009]. Under the Zero
model, if the job released at time kT misses its deadline at time (k+1)T , the actu-
ator outputs uk+1 = 0. This strategy is uncommon in practice, because it performs
well only in very specific cases [Vreman et al., 2021a]. Instead, the more com-
mon actuator model is to hold the control signal in the case of a missed deadline:
uk+1 = uk. Although our proposed adaptation is in itself independent of the actuator
model, the Hold model has been adopted in the analysis and examples of this paper.

For what concerns the handling of the job that missed the deadline, there exist

94

2 System Model

at least three different employable strategies: (a) Kill (b) Skip, and (c) Queue.
When using the Kill strategy, the job that missed its deadline gets terminated, the
controller state is rolled back, and the next job is released. The Skip strategy does
not terminate the job that missed its deadline. Instead, it lets the job continue its
execution, not releasing subsequent jobs until the active one has finished executing.
Queue behaves similarly to the Skip strategy: it does not kill the current job, but
it does release the subsequent jobs to the job queue. Both the Skip and Queue
strategies allow jobs to work with outdated input data, since they do not terminate
jobs that miss their deadline. Thus, they introduce a lag in the actuation of the
control law, which in most cases reduces the control performance with respect to
what could be achieved with the Kill strategy.

For the remainder of this paper we will use the Kill strategy, since it (a) in-
troduces explicit breakpoints in which to adapt the controller, (b) supplies the con-
troller with the latest sensor measurement after an overrun, (c) helps free computa-
tional resources in overrun situations, and (d) is a common choice in both industry
and literature [Akesson et al., 2020; Bernat et al., 2001; Hertneck et al., 2019].
Furthermore, we note that in [Vreman et al., 2021a] it has been observed that the
actuator model is of greater relevance than the handling of the deadline overrun. We
also note that an effective implementation of the Kill strategy that includes state
roll-back requires the implementation of checkpointing mechanisms [Ying Zhang
and Krishnendu Chakrabarty, 2003; Seong Woo Kwak et al., 2001], which might
not be implemented by default in a real-time system.

We conclude this section by mentioning that various models have been pro-
posed to describe tasks that may experience deadline misses, e.g., soft [Marchand
and Chetto, 2008] or weakly hard models [Bernat et al., 2001; Hammadeh et al.,
2017]. For the adaptive controller in this work, we only assume that the number of
consecutive deadline misses q is bounded by a finite quantity qmax < ∞. This as-
sumption is a practical necessity, since accepting an infinite run of deadline misses
would completely disconnect the plant from the controller [Maggio et al., 2020].

Solely for performance analysis, in Section IV-B we adopt a stochastic model
of the sequences of deadline hits and misses. Such a model can be computed from a
probabilistic task set model using existing techniques [Chen and Chen, 2017; Chen
et al., 2018; Markovi et al., 2021]. However, we remark that the proposed adaptive
controller implementation is independent of the stochastic deadline miss model.

2.3 Control System Stability under Deadline Misses
Guaranteeing the stability of control systems is essential in control engineering.
A linear control system without exogenous inputs is stable if and only if the sys-
tem’s state always converges to zero irrespective of its initial value. Assuming ideal
conditions, i.e., no deadline misses, stability can be verified by checking whether
all the closed-loop system’s eigenvalues lie inside the unit circle. However, in the
presence of deadline misses, the classical stability criteria are no longer sufficient,

95

Paper II. Deadline-Miss-Adaptive Controller Implementation

since the dynamics of the control system is time-varying and changes according to
the specific pattern of deadline misses. For such cases, switched system stability
analysis (also known as switching stability) is a viable extension of classical sta-
bility [Liberzon, 2003]. In this paper, we analyse the switching stability using both
a time-averaged (Markov Jump Linear Analysis [Fang and Loparo, 2002]) and a
worst-case (Joint Spectral Radius [Rota and Strang, 1960]) approach.

Modelling the deadline misses as a stationary random process with known sta-
tistical properties allows us to calculate an analytical time-averaged performance
index of the closed-loop system. If the performance index is finite, then the system
is guaranteed to be stable in the mean-square sense (meaning that the state will not
diverge with probability 1). We develop our approach to compute the time-averaged
performance in Section 4.2.

If the statistical properties of the deadline misses are unknown or uncertain,
switching stability can still be analysed under worst-case conditions. The Joint
Spectral Radius (JSR) generalises the spectral radius of a matrix (i.e., the largest
absolute eigenvalue) to a set of matrices; thus, the JSR characterises the largest
asymptotic growth (or contraction) rate of the states. If the JSR of the set of closed-
loop matrices representing i = {0,1, . . . ,qmax} deadline misses (followed by a hit) is
below 1 then the system is switching stable. Conversely, if it is above 1, there exists
at least one sequence of deadline misses and hits that makes the system unstable.
There exist both toolboxes and methods for calculating the JSR for control sys-
tems subject to deadline misses [Vankeerberghen et al., 2014; Maggio et al., 2020;
Vreman et al., 2021b].

3. Problem Description

In this section, we discuss the problem of implementing a control system, as defined
in Section 2, that is robust to deadline misses. The problem has been investigated
in the existing literature, and different methods have been proposed to solve it. We
offer a discussion on the scientific literature to identify the strengths and limitations
of previous work and motivate the research problem studied in this paper.

3.1 Related Work
The robustness of control algorithms to timing faults has been discussed both from
the analysis and synthesis perspectives. From the analysis perspective, the litera-
ture proposes different methods to analyse the stability and performance of con-
trol systems in the presence of real-time faults. The performance of different over-
run handling strategies was discussed in the context of control systems in [Cervin,
2005]. Similar studies, in the context of networked control systems, were presented
by [Schenato et al., 2007] and [Vreman and Mandrioli, 2020]. In [Frehse et al.,
2014], the authors developed a network of hybrid automata to analyse the conse-
quences of timing variations in control software. The analysis of control systems un-

96

3 Problem Description

der consecutive deadline misses was addressed in [Maggio et al., 2020] and [Xiong
and Lam, 2007], using respectively the joint spectral radius and Lyapunov theory.
Both [Hertneck et al., 2021] and [Hertneck et al., 2020] also leveraged Lyapunov
theory to analyse nonlinear systems subject to network problems. Shifting the fo-
cus from stability to performance, [Vreman et al., 2021a] analysed control systems
subject to bursts of deadline misses.

From the synthesis perspective, many works have studied overruns from a con-
trol and scheduling co-design perspective [Årzén et al., 2000]. In [Schinkel and
Chen, 2006], the authors designed state feedback controllers with time-varying
gain, guaranteeing control performance under arbitrary period changes of the con-
trol task. A similar approach was taken in [Ramanathan, 1997], where instead a
weakly hard task model with known execution pattern was assumed. The authors
of [Kumar et al., 2012] designed stabilising state feedback controllers with different
controller gains depending on the system’s time delay. In [Pazzaglia et al., 2019],
the authors used a probabilistic characterisation of the task model to develop state
feedback controllers that are robust to deadline overruns. Motivated by industrial
practices, [Pazzaglia et al., 2021] proposed the re-initialisation of the control task’s
period after the occurrence of overruns as well as the design of an adaptive control
law. In the field of networked control [Gupta and Chow, 2010; Törngren, 1998],
different works have proposed compensation schemes for jitter and dropped data
packets [Nilsson et al., 1998; Zhang et al., 2001; Hespanha et al., 2007]. Within the
same field, [Kauer et al., 2014] proposed a control compensator design scheme for
dropped packets under the weakly hard model that also guaranteed stability. Simi-
larly, [Linsenmayer et al., 2021] used design techniques from optimal control theory
to co-design controllers. [Caccamo et al., 2000] proposed to change the control task
period according to the task execution time to improve schedulability and control
performance. Finally, several works discussed the trade-offs between schedulability
and control performance [Crespo et al., 1999; Eker and Cervin, 1999; Marti et al.,
2001; Caccamo et al., 2002].

This paper distinguishes itself from previous synthesis literature as it assumes
that a linear controller has already been developed. We propose an adaptive im-
plementation of the control algorithm that does not require modifications to the
system’s design phase.

3.2 Research Problem Motivation
Despite the considerable amount of prior research, we argue that existing design
approaches to handling real-time faults in controllers suffer from at least one of the
following limitations:

(i) Assumptions about static controller – i.e., the controller cannot have any in-
ternal dynamics [Ramanathan, 1997; Schinkel and Chen, 2006; Zhang and
Yu, 2010; Kumar et al., 2012; Kauer et al., 2014; Linsenmayer and Allgower,
2017; Pazzaglia et al., 2019; Maggio et al., 2020].

97

Paper II. Deadline-Miss-Adaptive Controller Implementation

(ii) Complex co-design methodology, leading to conservative results – i.e., a de-
tailed system model and a large extra design effort are needed [Marti et al.,
2001; Schinkel and Chen, 2006; Kumar et al., 2012; Kauer et al., 2014; Lin-
senmayer and Allgower, 2017; Pazzaglia et al., 2021].

(iii) Increased runtime overhead – i.e., the approach reduces the likelihood of
completing the control execution within the same total time budget [Crespo
et al., 1999; Camacho et al., 2010; Caccamo et al., 2000].

The first limitation substantially narrows the applicability of the proposed de-
sign techniques, since the vast majority of real-world controllers include a dynami-
cal part (e.g., an integrator to remove stationary errors, or a filter to estimate states or
remove measurement noise). It is important to study dynamic controllers as they are
more severely affected by computational faults than static ones. Intuitively, a static
controller computes the control action u solely based on the latest measurement, and
is therefore always up to date with respect to the plant state. In contrast, a dynamic
controller computes u also with respect to its internal state, which is computed on
the base of older measurements. When deadline misses occur, the controller state
diverges from its desired value and degrades the control performance. We support
this intuition with a motivating example, considering a static controller and a com-
parable dynamic controller that includes a Kalman filter [Åström and Wittenmark,
1984]. The two controllers are designed to give similar performance under ideal
conditions. The example shows that, while the static controller inherently provides
robustness to deadline misses, the dynamic controller is significantly more sensitive.

EXAMPLE 1—MOTIVATING EXAMPLE
Consider the discrete-time LTI plant

P :

xk+1 =

[
0 1
−0.8 1.8

]
xk +

[
0
1

]
uk

yk = xk.

(3)

The control system’s objective is to bring the state x to zero. The plant P consists of
a stable pole and an integrator, which is compatible with several real-world appli-
cations, e.g., a cart on a rail or a joint of a robotic arm. To regulate the plant, we
first consider the static controller C1:

C1 : uk+1 =
[
0.256 −0.372

]
yk.

The system is sampled and actuated using a sample time of T = 0.1 s. We consider
a scenario where the ECU executing the control law is experiencing sporadic CPU
overloads, resulting in 25% of the control jobs missing their corresponding dead-
lines. The initial state of the plant is x0 = [1,1]T, and we want the controller to move
it to the final position x f = [0,0]T. In Figure 2, we show only the second component

98

3 Problem Description

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

Time (s)

St
at

e

x2 (C1 – ideal)
x2 (C1 – with misses)
x2 (C2 – ideal)
x2 (C2 – with misses)
Overrun

Figure 2. The state x2 corresponding to P (sampled with T = 0.1s) being con-
trolled by the static controller C1 (dashed blue) or the LQG controller C2 (dashed
green) during an interval of sporadic overloads (×). The corresponding ideal be-
haviours (system not subject to overruns) for the static (solid blue) and LQG (solid
green) controllers are also plotted. The state x1 follows a very similar trajectory and
is not plotted for readability.

of the state vector x: the other component follows a very similar trajectory and is
thus not plotted (for clarity). The behaviour of the plant controlled by C1 without
deadline overruns is the solid blue line. The dashed blue line instead corresponds to
the state evolution in the presence of deadline misses. The control task overruns are
marked by red crosses on the horizontal axis. Despite the missed job completions,
the plant state recovers gracefully in very few steps, similarly to the ideal behaviour
of the controller (in the absence of overruns).

Practically, in all industrial applications, the control law C1 would be preceded
by a noise filter or a state estimator, which introduces dynamic behaviour in the
controller. Thus, we now consider the LQG controller C2, which contains a Kalman
filter designed to suppress noise:

C2 :

zk+1 =

[
−0.151 0.810
−0.711 1.206

]
zk +

[
0.151 0.190
0.166 0.221

]
yk

uk+1 =
[
0.226 −0.242

]
zk +

[
−0.023 −0.034

]
yk.

The dashed green line in Figure 2 shows the second component of the plant state
x, controlled by the dynamic LQG controller C2 and subject to the same deadline
misses as controller C1. Comparing it to the ideal behaviour (solid green line), we
observe a significant performance degradation compared to the static controller C1.
This showcases that dynamic controllers suffer more under sporadic overloads than
static controllers.

As for the second limitation listed above, introducing additional complexity for
the gain of better performance is not always a desired design solution. The more
convoluted the control design, the higher the design cost. This is a consequence

99

Paper II. Deadline-Miss-Adaptive Controller Implementation

of the increased development time needed to design the controller. When the com-
plexity of the controller increases, the cost of the system upkeep increases due to
the expert knowledge required. The most popular controllers in industry are thus
simple ones that still perform adequately (e.g., the PI controller [Sun et al., 2016;
Desborough and Miller, 2002; Åström and Hägglund, 1984]).

Considering the third limitation, introducing additional overhead for fault-prone
systems risks even more deadline misses. Depending on the plant or task model,
there are cases where increasing the overhead might be acceptable, e.g., if deadline
misses appear sporadically in bursts. However, for many task models, increasing
the execution time after a deadline miss could have severe consequences, causing
domino effects where subsequent jobs also miss their deadlines.

One major strength of many previously proposed fault-tolerant control design
methods is that they can guarantee closed-loop stability under their respective fault
and system models [Schinkel and Chen, 2006; Kumar et al., 2012; Linsenmayer
and Allgower, 2017; Linsenmayer et al., 2020]. A majority of the studies investi-
gate static controllers. However, in most real-world applications, the controllers are
dynamic, e.g., an integrator, estimator, or filter is included in the loop. The a pri-
ori guarantees provided for the static controller are hence lost. Additionally, if the
model of the controlled plant is unknown, no a priori stability guarantees could be
achieved. However, the resulting closed-loop system could be analysed a posteriori
using any existing general method (see Section 2.3).

Research Objective Tackling all the shortcomings mentioned above in a holistic
manner is a complex task that does not necessarily have a general solution. In this
paper, we set out to derive a control adaptation strategy for dynamic controllers to
handle deadline misses whilst providing a simple structure, minimal overhead, and
that does not reduce the system performance under ideal conditions. To analyse the
performance and robustness of the adaptive control strategy, we also seek to derive a
stochastic mean-square analysis of the resulting closed-loop system to be performed
a posteriori.

4. Real-Time Controller Adaptation

In this section, we derive an adaptive implementation scheme for real-time con-
trollers to address the problems discussed in Section 3.2. We explain the intuition
behind the proposed adaptation; then, starting from an arbitrary linear control al-
gorithm, we show how to derive the adapted controller. The adaptive controller is
complemented with a probabilistic analysis method to evaluate its effectiveness for
a given control system and a given deadline miss model.

4.1 Adaptive Controller Synthesis
To simplify and generalise the adaptation approach, we do not assume any infor-
mation about the control design, apart from the controller itself. In practice, this

100

4 Real-Time Controller Adaptation

implies that we consider neither the specific control design technique, the control
system requirements, nor the plant’s dynamics. The controller is assumed to be
given in state-space form, specified by (2). This assumption is made without loss
of generality, since any realisable linear digital controller can be expressed in this
form [Åstrom and Murray, 2008].

The controller behaves ideally when every control period includes one job com-
pleting the execution of Equation (2), i.e., every job hits its deadline. By iterating
the equation, the desired controller state and control action at any future time step
can be computed. We formally define this behaviour as follows:

DEFINITION 3—IDEAL CONTROLLER
We denote the ideal controller, C (q), as the discrete-time LTI controller C evolved
over an interval of q+1 consecutive deadline hits. The controller state and output
at the end of the interval are

C (q) :


zk+q+1 = Fq+1 zk +∑

q
i=0 F iGyk+q−i

uk+q+1 = H Fq zk+

+H ∑
q
i=1

[
F i−1 Gyk+q−i

]
+K yk+q.

(4)

With q = 0 we obtain the ideal controller behaviour over a single time step.
From the definition above, we see how the quantities of interest, z and u, are

computed using the values of y in the interval [k,k+q]. These values correspond
to the periodic measurements coming from the sensors. In the presence of deadline
misses, the control task discards the measurements and does not update the con-
troller’s state. Thus, both the state and output of the controller deviate from their
desired behaviours. Applying Equation (2) to a scenario of q consecutive deadline
misses, we obtain the following:

DEFINITION 4—NOMINAL CONTROLLER
We denote the nominal controller, Cn (q), as the discrete-time LTI controller C
evolved over an interval of q consecutive deadline misses followed by one dead-
line hit. After the hit, the state and output are given by

Cn (q) :

{
zk+q+1 = F zk +Gyk+q

uk+q+1 = H zk +K yk+q.
(5)

In the absence of deadline misses, we have Cn (0) = C.

By comparing (4) and (5) we see that, when deadline misses occur, the con-
troller state zk+q+1 and control action uk+q+1 diverge from the ideal values, i.e., the
ones that would be obtained in the presence of only deadline hits. To compensate
for this error (and consequently minimise it), we propose to dynamically alter the
controller’s computations in real time according to the number of deadline misses.

101

Paper II. Deadline-Miss-Adaptive Controller Implementation

Ideally, we would like an adaptive controller Ca (q) that mimics the ideal con-
troller C (q) for any q. However, this is infeasible due to how the controller’s dynam-
ics evolves during an interval of deadline misses. More specifically, Equation (4)
shows that C (q) depends on the values of yk+i for i ∈ {0,1, . . . ,q−1}. When the
control task is subjected to faults, the corresponding jobs jk+i miss their respec-
tive deadline. Thus, the unfinished jobs are terminated prematurely, a new job is
released, and the corresponding measurement values yk+i are lost. The nominal
controller, after a series of misses, has access only to the sample yk+q. This fun-
damentally limits how well the controller’s ideal behaviour can be reconstructed.

Hence, we propose the use of an interpolation scheme to minimise the effect
of the lost measurement values. We approximate the missing measurement values
using a linear interpolation between yk−1 and yk+q according to

ŷk+q−i =
i yk−1 +(q+1− i)yk+q

q+1
. (6)

If we substitute the values of y that are missing in the ideal controller, Equation (4),
with the corresponding interpolated ones ŷ from Equation (6), we obtain an adaptive
controller as follows:

DEFINITION 5—ADAPTIVE CONTROLLER
We denote the adaptive controller, Ca (q), as an adaptation of the controller C
evolved over an interval of q consecutive deadline misses followed by one dead-
line hit. After the hit, the state and output are

Ca (q) :

{
zk+q+1 = Fz(q)zk +Fy(q)yk−1 +Gy(q)yk+q

uk+q+1 = Hz(q)zk +Hy(q)yk−1 +Ky(q)yk+q,
(7)

where
Fz(q) = Fq+1

Fy(q) = ∑
q
i=0

i
q+1 F i G

Gy(q) = ∑
q
i=0

q+1−i
q+1 F i G

Hz(q) = H Fq

Hy(q) = H ∑
q
i=1

i
q+1 F i−1 G

Ky(q) = K +H ∑
q
i=1

q+1−i
q+1 F i−1 G.

Note that for q = 0 we recover the original controller.
All matrices in Ca (q) (q ∈ {0, . . . ,qmax}) can be precomputed and stored in

memory. Compared to the nominal controller, the two matrices Fy and Hy of size
nz×ny and nu×ny need to be added to the controller, and one full set of controller
matrices needs to be stored for each value of q. The memory requirement thus grows

102

4 Real-Time Controller Adaptation

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1.0

Time (s)

St
at

e

x2 (C2 – ideal)
x2 (Cn

2 – nominal)
x2 (Ca

2 – adaptive)
Overrun

Figure 3. The state x2 corresponding to P being controlled by the LQG controller
C2 (dashed green) or adaptive LQG (dashed orange) controller during an interval of
sporadic overloads (×). The corresponding ideal behaviour (system not subject to
overruns, solid green) is also plotted.

linearly with qmax. The adaptive controller also needs to store the old measurement
value yk−1, which makes it marginally more complex.

We now briefly discuss how the limitations described in Section 3.2 are ad-
dressed. This work proposes an adaptation of the F , G, H, and K matrices of the
controller, thus adapting also the dynamic part of the controller. The adaptive con-
troller’s matrices can be precomputed directly from the specified controller using
Equation (7), and then stored in memory for each q ≤ qmax. The control algo-
rithm can be developed independently of this adaptation, hence no extra design
effort is needed. For q = 0 the adaptive and the ideal controllers are equivalent, i.e.,
Ca (0) = C (0), thus guaranteeing that the controller’s performance is not degraded
under ideal conditions. Concerning the limitation of increased runtime overhead,
each time a job is released, the counter q of immediately preceding deadline misses
is evaluated and the corresponding controller matrices are selected. Hence, the exe-
cution time of the adaptive controller will be independent of q and only marginally
longer than for the nominal controller.

In Section 3.2, we presented a motivating example of why it is insufficient to
analyse static controllers subject to overruns. We conclude this section with a con-
tinuation of this example showing the benefits of our scheme.

EXAMPLE 2—APPLICATION TO MOTIVATING EXAMPLE
Consider the plant P , from Equation (3), controlled by the LQG controller C2. We
apply our proposed scheme to C2, obtaining the corresponding adaptive controller
Ca

2 (q). In Figure 3, we compare the plant state obtained by controlling the plant
using the two controllers, subject to the same deadline misses as in Figure 2. The
dashed green line and the dashed orange line correspond, respectively, to the nom-
inal LQG (the same as in Figure 2) and adaptive LQG. The solid green line corre-
sponds to the ideal controller’s behaviour, i.e., in the absence of deadline misses. We

103

Paper II. Deadline-Miss-Adaptive Controller Implementation

note a significant improvement in the performance of the adaptive LQG compared
to the nominal LQG: the oscillations disappear and the state converges faster.

The proposed adaptive controller is inspired by the ideal controller C (q), but
there is no a priori guarantee that it will perform better than the nominal controller
Cn (q). However, for a given plant and deadline miss model, the closed-loop system
can be analysed and compared for different controllers. Since the actual sequence
of hits and misses is generally unpredictable, in the next section, we propose a
probabilistic method to compare the performance of the adaptive controller with
the nominal controller.

4.2 Stochastic Performance Analysis
To analyse the performance of the closed-loop system, we need to model the plant,
the external disturbance w, and the sequences of deadline misses. For what concerns
the plant, we consider the standard state-space model presented in Equation (1). The
plant disturbance w and the sequence of deadline hits and misses are modelled as
stationary random processes with known statistical properties. This allows us to
analyse the time-averaged performance of the closed-loop system subject to dead-
line misses. The analysis offered here is inspired by [Nilsson et al., 1998], which in
turn relies on classical results for jump linear systems [Blair Jr. and Sworder, 1975].

The control performance is measured in terms of the weighted stationary vari-
ance of the plant output y,

J = E
[
yT

k Qyk
]
, (8)

where Q ∈ Rny×ny is a positive semidefinite weighting matrix2. A smaller value
of the cost J is better, as it means that the controller can suppress the disturbance
w more effectively. Additionally, the closed loop is guaranteed to be stable in the
mean-square sense as long as J is finite [Fang and Loparo, 2002], i.e., J < ∞.

The state of the complete system consists of the plant and the controller in feed-
back interconnection, together with the buffered previous measurement value and
the calculated next control signal. Accordingly, we define the closed-loop state vec-
tor as

x̃k =


xk
zk

yk−1
uk

 .

As seen in Figure 1, the only external input of the closed-loop system is the distur-
bance w. Hence, the state of the closed loop evolves according to the time-varying
linear system

x̃k+1 = Φkx̃k +Γwk. (9)

2 Without loss of generality, we assume that zero is the desired plant output. A non-zero reference
value can be modelled as an exogenous signal that is stored in the plant and offset in the measurement
signal.

104

4 Real-Time Controller Adaptation

1

hit

misses misses

missesmiss

3

1

2

p
0

q
max

2

p
1

1

3

max
q

pp

p

1

1

Figure 4. Markov model for the random sequence of hits and misses.

Here,

Γ =

[
W

0(nz+ny+nu)×nw

]
,

while Φk can be either Φhit(q) or Φmiss, depending on whether the current deadline
was hit or missed, and defined as

Φhit(q) =


A 0 0 B

Gy(q)C Fz(q) Fy(q) Gy(q)D
C 0 0 D

Ky(q)C Hz(q) Hy(q) Ky(q)D

 ,

where q denotes the number of consecutive deadline misses since the last hit, and

Φmiss =


A 0 0 B
0 Inz 0 0
0 0 Iny 0
0 0 0 Inu

 .

Assuming that w is a zero-mean white noise process with known covariance
matrix R = E

[
wk ·wT

k

]
∈ Rnw×nw , we can calculate how the state covariance,

Pk = E
[
x̃k · x̃T

k

]
, evolves over time. Evaluating the covariance of both sides in Equa-

tion (9) we obtain (see, e.g., [Åström and Wittenmark, 1984])

Pk+1 = ΦkPkΦ
T
k +ΓRΓ

T. (10)

We model the task execution as a random process, assuming that the pattern of
hits and misses in the real-time system is described by the homogeneous Markov
model shown in Figure 4. In this model, after each hit, the system will experience a
miss interval of length q∈ {0, . . . ,qmax} with independent probability pq. Naturally,
∑

qmax
i=0 pi = 1.

105

Paper II. Deadline-Miss-Adaptive Controller Implementation

In each interval, the system will experience q deadline misses followed by one
deadline hit. Iterating (10) over said interval, the covariance will then develop as

Pk+q+1 = Φhit(q)
(
(Φmiss)

qPk(Φ
T
miss)

q

+∑
q−1
i=0 (Φmiss)

iΓRΓT(ΦT
miss)

i
)

ΦT
hit(q)

+ΓRΓ
T.

The time-varying closed-loop system together with the Markov model define a
discrete-time Markov jump linear system for which well-established results exist
(e.g., [Blair Jr. and Sworder, 1975; Nilsson et al., 1998; Lincoln and Cervin, 2002]).
Using this theory, it is possible to calculate the stationary (time-averaged) state co-
variance, denoted P. With this, the performance (8) can finally be obtained as

J = tr
(
PQ

)
,

where

Q =

[
CTQC 0

0 0nz+ny+nu

]
.

To compare the performance of different implementations, we first define the
ideal performance as the cost J obtained when there are no deadline misses (i.e.,
p0 = 1 and pi = 0, i≥ 1). We then obtain the relative performance degradation of an
arbitrary controller C† by calculating the weighted mean-square difference between
the actual and ideal systems’ outputs, y†

k and yk respectively, and normalising it with
respect to the ideal performance J:

∆J†

J
=

E
[
(y†

k− yk)
TQ(y†

k− yk)
]

E
[
yT

k Qyk
] . (11)

This can be found by analysing both systems in parallel when driven by the same
noise sequence wk: [

x̃†
k+1

x̃k+1

]
=

[
Φ

†
k 0

0 Φk

][
x̃†

k
x̃k

]
+

[
Γ

Γ

]
wk

After finding the stationary state covariance Pe of this extended system (using the
same technique as referred to above), we can retrieve the absolute performance
difference as

∆J† = tr
(

Pe

[
Q −Q
−Q Q

])
.

106

5 Experimental Evaluation

5. Experimental Evaluation

In this section, we compare our adaptive controller with the nominal controller im-
plementation for different case studies. We demonstrate the practical usefulness of
the proposed controller by examining its impact on real hardware, namely, a ball and
beam plant. We compare the performance of the adaptive control system with the
nominal one, according to the analysis presented in Section 4.2. Finally, we com-
plement the results with a worst-case switching stability analysis of the nominal and
adaptive controlled systems.

In addition to the evaluation on the physical system, we present aggregate results
obtained from a set of control benchmarks, representative of the process industry.
We use this set of plants to evaluate the general applicability of our approach. To
make the evaluation comprehensive, we chose an unstable plant (the ball and beam)
for the physical experiments and a set of mainly stable plants for the aggregate
results. Furthermore, we remark that all the considered controllers are dynamic.
As discussed in Section 3.1, to the best of our knowledge, only one previous work
considers dynamic controllers [Pazzaglia et al., 2021]. In that work, however, a
different overrun handling method is used, and a proper comparison is therefore not
possible.

5.1 Real World Evaluation – Ball and Beam
System Description and Models The ball and beam [Wellstead et al., 1978] is a
common example in the automatic control literature and education, where a ball is
free to roll over a beam that in turn is tilted by a servo motor. The control objective is
to make the ball position follow a reference trajectory across the beam by adjusting
the voltage sent to the motor. Both the beam angle and the ball position can be
measured. Assuming the sampling period T = 0.01 s, a discrete-time plant model
P was derived as

P :


xk+1 =


1 0.015 0.0003 0
0 1 0.045 0
0 0 1 0
0 0 0 1

 xk +


2.9·10−5

0.0058
0.256

0

 uk +wk

yk =

[
0.5 0 0 −1
0 0 0.25 0

]
xk,

where the four components of xk represent the ball position, ball velocity, beam
velocity, and ball reference, respectively. The external signal vector wk is assumed
to be white noise with variance R = diag{1,1,1,1}. Under this state-space model,
the objective is to regulate both outputs yk to zero, with the performance weighting
matrix Q = diag{1,1}.

To control P we design a cascaded P–PID controller. Cascaded controllers
are frequently applied to systems with multiple measurements where one mea-
sured quantity affects another, but not vice versa. Thus, the plant measurements

107

Paper II. Deadline-Miss-Adaptive Controller Implementation

Table 1. Analytical study of the relative performance degradation of the ball and
beam plant P using either the nominal Cn or adaptive controller Ca.

p 10% 20% 30% 40% 50% 60% 70%

∆Jn/J 2.5% 9.2% 20.8% 39.9% 75.3% 156% 452%

∆Ja/J 0.1% 0.1% 0.3% 0.6% 1.1% 2.5% 6.7%

can be controlled in sequential order (hence the naming cascaded) using a con-
troller designed for each measurement signal. In our case study, this is implemented
by a proportional (P) controller designed for controlling the beam’s angle and a
proportional–integral–derivative (PID) controller for the ball’s position. The con-
troller is run as a periodically executing task with period T = 0.01 s on a single core
CPU where overrun deadlines are killed and the corresponding sensor data is dis-
carded. In between actuator calls, the control signal is assumed to be held constant.
The state-space representation of our controller is

C :


zk+1 =

[
1 0
0 0.9685

]
zk +

[
0.025 0
−0.2608 0

]
yk,

uk+1 =
[
−0.108 −0.2608

]
zk +

[
−2.43 −3

]
yk.

Experiments Design We apply the performance analysis presented in Section 4.2
to the plant model P controlled using either the ideal (C), nominal (Cn), or adaptive
(Ca) implementations from Section 4.1. We include the effect of deadline misses
only on the nominal and adaptive control systems. The probability distribution
pq can be chosen arbitrarily according to the desired task model. For simplicity,
we assume here that the deadline misses are Bernoulli distributed [Schenato et
al., 2007], i.e., the probabilities of missing deadlines in each period are indepen-
dently and identically distributed with probability p. This results in the probability
pq = (1− p)pq of q consecutive deadline misses followed by a hit. We assume that
no more than qmax = 20 consecutive deadlines can be missed. The latter assump-
tion might seem restrictive, but if the probability of missing a deadline is 30%, the
probability of missing 20 consecutive deadlines is less than 4 ·10−11.

We measure the relative performance of the nominal and adaptive controllers
according to the quantity ∆J†/J in Equation (11). Since the mean-square deviation
from the ideal controller is used to evaluate the relative performance, the optimal
achievable cost is 0. For the real system, we do not feed the system with white noise,
but we expose the system to a repeatable exogenous signal in the form of periodic
reference changes. Furthermore, we evaluate the relative performance degradation
empirically from the measured signals using Equation (11), with E being interpreted
as the mean value of the real signals.

108

5 Experimental Evaluation

Table 2. Empirical study of the relative performance degradation of the real ball
and beam plant using either the nominal Cn or adaptive controller Ca.

p 10% 20% 30% 40% 50% 60% 70%

∆Jn/J 6.3% 27.1% 22.5% 50.5% 73.1% 260% ∞

∆Ja/J 6.1% 7.8% 3.2% 4.6% 3.8% 4.9% 11.7%

500 505 510 515 520 525 530 535 540 545 550

0
5

10
15

Time (s)

Po
s.

(c
m

)

Ball Position with the Ideal Controller C

Figure 5. Snippet of the test performed on the real ball and beam plant using
the ideal controller, i.e., without deadline misses. The plot shows one period of the
square wave used as reference, the black line. The blue line shows the ball’s position.

To complement the performance analysis, we perform a JSR stability analysis
on the model to determine the maximum number of consecutive deadline misses
that are tolerated while still guaranteeing closed-loop stability.

Analytical Evaluation The performance results obtained with the analytical study
of P for different values of p are summarised in Table 1. From the table, we can see
that the adaptive controller drastically improves the relative performance (in com-
parison to the nominal controller) across all deadline miss probabilities. Already for
small probabilities, the nominal controller significantly degrades the relative perfor-
mance compared to the ideal controller; e.g., for p = 30% the relative performance
is degraded by 20.8%. This can be compared to the adaptive controller, where the
relative performance reduction stays below 5% until the miss probability reaches
70%.

Analysing the switching stability, we calculated the JSR for the set of closed-
loop matrices corresponding to i = {0,1, . . . ,q} consecutive deadline misses fol-
lowed by one hit (q≤ qmax). The nominal control system is guaranteed to be switch-
ing stable (i.e., the JSR is below 1) for a maximum of q = 2 consecutive deadline
misses, while the adaptive control system is guaranteed stable up to q = 8. We
conclude that the adaptive controller improves also worst-case robustness against
deadline misses for the ball and beam. However, we emphasise that these results do
not imply that the system will go unstable if more deadline misses occurs; only that

109

Paper II. Deadline-Miss-Adaptive Controller Implementation

0

5

10

15

p = 30%

Cn

Po
s.

(c
m

)

0

5

10

15

p = 30%

Ca

Po
s.

(c
m

)

0

5

10

15

p = 50%

Cn

Po
s.

(c
m

)

500 505 510 515 520 525 530 535 540 545 550

0

5

10

15

p = 50%

Ca

Time (s)

Po
s.

(c
m

)

Figure 6. Snippets of the tests performed on the real ball and beam plant for p =
30% (two top plots) and p = 50% (two bottom plots). The plots show one period of
the square wave used as reference, the black line. The coloured lines show the ball
position, in green for the nominal controller (first and third plots) and orange for the
adaptive controller (second and third plots).

110

5 Experimental Evaluation

the system is guaranteed switching stable if no more than q consecutive deadline
misses are ever experienced.

Empirical Evaluation We conducted experiments on the physical ball and beam
plant to evaluate the performance of the controller on a real system.3 Each exper-
iment is run for 10 minutes, where the control objective is for the ball to follow a
square-wave reference across the beam. The square wave has a period of 50 s and
alternates between position 0 and 15 cm. Differently from the analytical evalua-
tion, it is impossible to obtain the same exogenous signal wk in the different ex-
periments. While the reference changes can be exactly repeated, the real stochastic
disturbances (in the form of electrical noise, mechanical glitches, etc.) are not re-
peatable. This means that the empirical cost relative to the ideal case, as measured
by Equation (11), is not expected to be zero even in the complete absence of dead-
line misses.

Figure 5 displays a snippet of the ball’s position (blue line) under said ideal
conditions. The ball quite successfully follows the reference (black line). Here, the
fluctuations around the reference are caused by measurement noise and irregular-
ities in the beam surface, where the latter can cause the ball to get lodged in an
undesired position and thus result in oscillations.

After measuring the performance of the ideal controller, each controller (Cn and
Ca) was applied to the system, using probabilities p ∈ {10%, 20%, . . . , 70%} of
missing each deadline (with qmax = 20). The results of the experiments are reported
in Table 2, where the relative performance degradation ∆J†/J is computed for both the
nominal and adaptive controllers. To give an intuition for how the physical system
behaves, in Figure 6 we provide a snippet of a time plot portraying the ball’s position
controlled by either the nominal (upper plots) or adaptive (lower plots) controller.
We distinguish the differences between the nominal and adaptive controllers for
a probability p = 30% (left plots) of missing a deadline. The nominal controller
shows oscillations around the reference value. When the probability of missing a
deadline is increased to p = 50% (right plots), the nominal controller’s oscillations
grow more evident, while the adaptive controller appears unaffected (compared to
the ideal controller in Figure 5).

From Table 2, we observe that the adaptive controller has a lower performance
degradation across all deadline miss probabilities p≥ 20% compared to the nominal
controller. The performance of the adaptive controller seems virtually unaffected for
p≤ 60%, where the baseline relative degradation of approximately 4% to 8% is due
to the natural disturbances in the system. The nominal controller on the other hand
experiences significant performance degradation at higher miss probabilities, and
for p = 70% the system becomes unstable – we report this as an infinite cost.

3 A video, showing experiments with the real ball and beam system can be viewed at
https://youtu.be/6y_C7NIzXto. The video provides a real-world comparison between the nom-
inal and adaptive controllers for p = {30%,50%,70%}.

111

Paper II. Deadline-Miss-Adaptive Controller Implementation

In summary, both the analytical and empirical studies show that the adaptive
controller Ca consistently outperforms the nominal controller Cn for the ball and
beam. Furthermore, the adaptive controller can tolerate a large likelihood of random
deadline misses (at least 60%) without any noticeable performance degradation.

5.2 Benchmark Evaluation – Process Industry
System Description and Models To evaluate the general applicability of the pro-
posed adaptive controller, we perform an extensive evaluation campaign on a bench-
mark set of plants. The set was developed specifically to evaluate various PID de-
signs [Åström and Hägglund, 2004] in the process industry. It consists of 134 unique
plants separated into 9 categories, where each category has its own specific proper-
ties frequently recognised in the process industry. Since the benchmark was devel-
oped specifically with process industrial plants in mind, the majority of the plants
are stable, i.e., all their eigenvalues lie inside the unit circle. However, there are also
plants with integrating dynamics included in the benchmark, i.e., an eigenvalue in
1; these plants are generally not considered stable. For each plant, two controllers
– a PI and a PID controller – are optimised using known methods [Garpinger and
Hägglund, 2008]; hence, 268 unique control systems are analysed in total.

Experiments Design Similarly to the ball and beam, we analyse the relative per-
formance of the nominal and adaptive controllers in accordance with the analysis
described in Section 4.2. We again consider the probability of missing a deadline to
follow a Bernoulli distribution with probabilities p ∈ {10%, 30%, 50%, 70%} and
a maximum of qmax = 20 consecutive deadline misses. We feed the systems with a
stochastic disturbance and analytically evaluate the ability of the controllers to re-
ject it. Differently from the ball and beam, we analyse the systems when subject to
brown noise, i.e., integrated white noise [Schmidt, 1985]. The brown noise model
is generally considered appropriate for process industrial plants since it is dominant
for low frequencies (e.g., load disturbances and disturbances from nearby heavy
machinery). We assume that the same disturbance process enters the ideal, nominal,
and adaptive control systems; this guarantees an unbiased comparison between the
different controllers. For each of the 268 control systems we calculate the relative
performance ∆J†/J for both the nominal and the adaptive controller.

Similarly to the ball and beam, we complement our performance analysis with
a JSR worst-case stability analysis.

Experiments Results In Figure 7 we display histograms reporting the relative per-
formance degradation of all the 268 control systems. The horizontal axis displays
the relative performance ∆J†/J in logarithmic scale. The vertical axis counts the num-
ber of control systems with a given relative performance. The four plots correspond
to the different deadline miss probabilities considered. In each plot, we represent
the nominal controllers with green bars and the adaptive controllers with orange
bars. Unstable closed-loop systems have an infinite cost and are thus marked in the
rightmost part of the plot, beyond the red dashed threshold.

112

5 Experimental Evaluation

0
50

100
150 p = 10%

Cn Ca Instability threshold

0
50

100
150 p = 30%

0
50

100
150 p = 50%

N
um

be
ro

fs
ys

te
m

s

10−5 10−4 10−3 10−2 10−1 100 101 ∞
0

50
100
150 p = 70%

∆J†/J

Figure 7. Histograms comparing the relative performance degradation of the nom-
inal and adaptive controllers for the benchmark plants. The plots correspond to dif-
ferent deadline miss probabilities p. The orange bars report the performance obtained
with the adaptive controller Ca, while the green bars report the performance obtained
with the nominal controller Cn. The systems with a performance worse than the sta-
bility threshold (red dashed line) resulted in unstable dynamics.

From Figure 7 we see that the adaptive controller performs better than the nom-
inal one for all the 268 control systems, regardless of the probability of missing
a deadline. Despite the control systems’ dynamics varying significantly (e.g., lag
dominated, lead dominated, oscillatory, high system order, integrating), the worst
adaptive control system still performs better than the best nominal control system
for all p. The improvement is particularly distinguishable for lower probabilities,
e.g., p = 10%, where the mean relative cost over all the control systems is improved
by two orders of magnitude.

Second, when the probability of missing a deadline grows, the relative perfor-
mance degradation increases accordingly. For p = 50% and p = 70% some of the
systems using the nominal controller become unstable, i.e., ∆J†/J = ∞. In the case of
p = 70%, more than 40% of the nominal control systems are unstable. On the other
hand, all the adaptive control systems are stable and have a relative cost degrada-
tion below 10%. This suggests that Ca improves both performance and robustness

113

Paper II. Deadline-Miss-Adaptive Controller Implementation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

20
40
60

q

N
um

be
ro

fs
ys

te
m

s Cn Ca

Figure 8. Histogram reporting the number of benchmark systems (out of 268) that
are guaranteed switching stable for up to q consecutive deadline misses, according
to the JSR analysis. For each value of q, the green bar (left) reports how many Cn

controlled systems can tolerate up to q consecutive deadline misses and the orange
bar (right) reports the corresponding number of Ca controlled systems. For readabil-
ity the y axis is cut at 65: a total of 138 plants can tolerate 20 or more misses with
the nominal controller, and a total of 185 plants can tolerate 20 or more misses with
the adaptive controller.

compared to the nominal controller.
To verify that the adaptive controller improves the robustness to deadline misses

compared to the nominal controller, we complement the evaluation with a JSR anal-
ysis. The histogram in Figure 8 shows, for each value of q, the number of control
systems that are guaranteed switching stable for a maximum number of consecu-
tive deadline misses q, when they are controlled with either the nominal (Cn) or
the adaptive (Ca) controller. Intuitively, the more control systems that can guaran-
tee switching stability for a higher value of q, the better. The vertical axis of the
histogram is cut at 65 for legibility: this affects only the columns for q = 20 where
the nominal controller can guarantee stability for 138 plants while the adaptive con-
troller can guarantee stability for 185 plants.

For the nominal controller, we see that the maximum number of consecutive
deadline misses tolerated by the system varies greatly between the different control
systems. In the whole benchmark, 138 systems were stable for (at least) 20 consec-
utive deadline misses, but 123 systems were guaranteed stable only for one or two
misses. Furthermore, 5 of the nominal control systems were unstable unless all of
the control task’s deadlines were hit.

For the adaptive controller, on average, a much larger number of consecutive
deadline misses can be tolerated. Out of all the control systems, 185 were stable
for (at least) q = 20, and the large majority of the remaining control systems are
guaranteed to tolerate between q = 10 and q = 19 consecutive deadline misses.
Additionally, we see that all adaptively controlled systems can tolerate at least 3
deadline misses.

We note that both for the nominal and adaptive controllers, a significant number
of control systems are stable for 20 deadline misses. This presumably follows from

114

6 Conclusion

the (mainly) stable nature of the plants in the benchmark, an attribute that generally
makes the system more robust.

The results of the evaluation campaign confirm the hypothesis that the proposed
adaptive controller improves the control system’s performance in the presence of
deadline misses. While we observed some cases in which the nominal controller
goes unstable and the adaptive controller is stable, we never observed the opposite.
Additionally, the adaptive controller does not compromise the performance under
ideal conditions, and it preserves the major part of the ideal controller’s performance
when deadline misses are present.

6. Conclusion

In this paper, we have proposed a novel adaptive implementation scheme for real-
time embedded controllers, aiming to increase their robustness to arbitrary patterns
of deadline misses. The approach adapts a general, predesigned linear controller
according to the number of consecutive deadline overruns. No additional assump-
tions are made on the predesigned controller or the plant model, and only minimal
requirements are put on the control task (Logical Execution Time) and the real-time
operating system (late tasks being killed). The adaptation scheme can be imple-
mented without any additional complexity or design overhead, hence strengthening
the industrial applicability. Additionally, we extend the state-of-the-art by consider-
ing dynamic controllers.

To analyse our controller implementation, we developed a probabilistic ap-
proach. With said approach, it is possible to leverage a plant model and a proba-
bilistic model of deadline misses to evaluate the effectiveness of the adaptive con-
troller. We complement this average-case analysis with a worst-case stability anal-
ysis based on JSR. We used both approaches to evaluate the controller on both a
physical plant and a considerable number of simulated plants from the literature
on process control. The results show that our adaptive controller implementation
consistently improves system performance and robustness to deadline misses.

Acknowledgements

This work was supported by the ELLIIT Strategic Research Area. This work was
partially supported by the Wallenberg AI, Autonomous Systems and Software Pro-
gram (WASP) funded by the Knut and Alice Wallenberg Foundation. This project
has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 871259 (ADMORPH project). This
(publication/report) reflects only the authors’ view and the European Commission
is not responsible for any use that may be made of the information it contains.

115

Paper II. Deadline-Miss-Adaptive Controller Implementation

References

Akesson, B., M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis (2020). “An em-
pirical survey-based study into industry practice in real-time systems”. In: 41st
IEEE Real-Time Systems Symposium.

Aminifar, A., S. Samii, P. Eles, and Z. Peng (2011). “Control-quality driven task
mapping for distributed embedded control systems”. In: 17th International Con-
ference on Embedded and Real-Time Computing Systems and Applications,
pp. 133–142. DOI: 10.1109/RTCSA.2011.41.

Årzén, K.-E., A. Cervin, J. Eker, and L. Sha (2000). “An introduction to control
and scheduling co-design”. In: 39th IEEE Conference on Decision and Control,
pp. 4865–4870. DOI: 10.1109/CDC.2001.914701.

Åstrom, K. J. and R. M. Murray (2008). Feedback Systems: An Introduction for
Scientists and Engineers. Princeton University Press, USA. ISBN: 0691135762.

Åström, K. J. and T. Hägglund (1984). “Automatic tuning of simple regulators with
specifications on phase and amplitude margins”. Automatica 20:5, pp. 645–651.
ISSN: 0005-1098. DOI: https : / / doi . org / 10 . 1016 / 0005 - 1098(84)
90014-1.

Åström, K. J. and T. Hägglund (2004). “Revisiting the Ziegler-Nichols step re-
sponse method for PID control”. Journal of Process Control 14:6, pp. 635–650.
ISSN: 0959-1524.

Åström, K. J. and B. Wittenmark (1984). Computer controlled systems: Theory and
design (1 ed.) English. Prentice-Hall. ISBN: 0-13-164319-3.

Baruah, S. K. and J. R. Haritsa (1997). “Scheduling for overload in real-time sys-
tems”. IEEE Transactions on Computers 46:9, pp. 1034–1039. DOI: 10.1109/
12.620484.

Bernat, G., A. Burns, and A. Liamosi (2001). “Weakly hard real-time systems”.
IEEE Transactions on Computers 50:4, pp. 308–321. DOI: 10 . 1109 / 12 .
919277.

Blair Jr., W. P. and D. D. Sworder (1975). “Feedback control of a class of linear dis-
crete systems with jump parameters and quadratic cost criteria”. International
Journal of Control 21:5, pp. 833–841. DOI: 10.1080/00207177508922037.

Caccamo, M., G. Buttazzo, and Lui Sha (2000). “Elastic feedback control”. In: 12th
Euromicro Conference on Real-Time Systems, pp. 121–128. DOI: 10.1109/
EMRTS.2000.853999.

Caccamo, M., G. Buttazzo, and L. Sha (2002). “Handling execution overruns in hard
real-time control systems”. IEEE Transactions on Computers 51:7, pp. 835–
849. DOI: 10.1109/TC.2002.1017703.

Camacho, E. F., T. Alamo, and D. M. de la Peña (2010). “Fault-tolerant model pre-
dictive control”. In: 15th IEEE Conference on Emerging Technologies in Fac-
tory Automation, pp. 1–8. DOI: 10.1109/ETFA.2010.5641226.

116

References

Cervin, A. (2005). “Analysis of overrun strategies in periodic control tasks”. IFAC
Proceedings Volumes 38:1. 16th IFAC World Congress, pp. 219–224. ISSN:
1474-6670. DOI: 10.3182/20050703-6-CZ-1902.01076.

Cervin, A., B. Lincoln, J. Eker, K.-E. Årzén, and G. Buttazzo (2004). “The jit-
ter margin and its application in the design of real-time control systems”. In:
Proceedings of the 10th International Conference on Real-Time and Embedded
Computing Systems and Applications.

Chen, K.-H. and J.-J. Chen (2017). “Probabilistic schedulability tests for unipro-
cessor fixed-priority scheduling under soft errors”. In: 12th IEEE International
Symposium on Industrial Embedded Systems (SIES), pp. 1–8. DOI: 10.1109/
SIES.2017.7993392.

Chen, K.-H., G. Von Der Brüggen, and J.-J. Chen (2018). “Analysis of deadline miss
rates for uniprocessor fixed-priority scheduling”. In: 24th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications
(RTCSA), pp. 168–178. DOI: 10.1109/RTCSA.2018.00028.

Crespo, A., I. Ripoll, and P. Albertos (1999). “Reducing delays in RT control: the
control action interval”. In: 14th IFAC World Congress 1999, Beijing, China.
DOI: https://doi.org/10.1016/S1474-6670(17)57454-6.

Desborough, L. and R. Miller (2002). “Increasing customer value of industrial con-
trol performance monitoring—Honeywell’s experience”. AIChE Symposium Se-
ries 98.

Eker, J. and A. Cervin (1999). “A Matlab toolbox for real-time and control systems
co-design”. In: 6th International Conference on Real-Time Computing Systems
and Applications. DOI: 10.1109/RTCSA.1999.811266.

Ernst, R., S. Kuntz, S. Quinton, and M. Simons (2018). “The logical execution
time paradigm: new perspectives for multicore systems”. Dagstuhl Reports 8,
pp. 122–149.

Fang, Y. and K. Loparo (2002). “Stochastic stability of jump linear systems”. IEEE
Transactions on Automatic Control 47:7, pp. 1204–1208. DOI: 10.1109/TAC.
2002.800674.

Frehse, G., A. Hamann, S. Quinton, and M. Woehrle (2014). “Formal analysis of
timing effects on closed-loop properties of control software”. In: 35th IEEE
Real-Time Systems Symposium (RTSS), pp. 53–62.

Garpinger, O. and T. Hägglund (2008). “A software tool for robust PID design”.
IFAC Proceedings Volumes 41:2. ISSN: 1474-6670. DOI: https://doi.org/
10.3182/20080706-5-KR-1001.01082.

Gupta, R. A. and M. Chow (2010). “Networked control system: overview and re-
search trends”. IEEE Transactions on Industrial Electronics 57:7, pp. 2527–
2535. DOI: 10.1109/TIE.2009.2035462.

Hägglund, T. and K. J. Åström (1983). A method and an apparatus in tuning a
PID-regulator. Patent application WO/1983/000753.

117

Paper II. Deadline-Miss-Adaptive Controller Implementation

Hammadeh, Z. A. H., S. Quinton, R. Henia, L. Rioux, and R. Ernst (2017). “Bound-
ing deadline misses in weakly-hard real-time systems with task dependencies”.
In: Design Automation and Test in Europe (DATE). Lausanne, Switzerland.
URL: http://ieeexplore.ieee.org/document/7927054/.

Henzinger, T., B. Horowitz, and C. Kirsch (2003). “Giotto: A time-triggered lan-
guage for embedded programming”. Proceedings of the IEEE 91:1, pp. 84–99.
DOI: 10.1109/JPROC.2002.805825.

Hertneck, M., S. Linsenmayer, and F. Allgöwer (2019). “Nonlinear dynamic pe-
riodic event-triggered control with robustness to packet loss based on non-
monotonic lyapunov functions”. In: 58th IEEE Conference on Decision and
Control (CDC), pp. 1680–1685.

Hertneck, M., S. Linsenmayer, and F. Allgöwer (2020). “Stability analysis for non-
linear weakly hard real-time control systems”. IFAC-PapersOnLine 53:2. 21st
IFAC World Congress, pp. 2594–2599. ISSN: 2405-8963. DOI: 10.1016/j.
ifacol.2020.12.307.

Hertneck, M., S. Linsenmayer, and F. Allgöwer (2021). “Efficient stability analysis
approaches for nonlinear weakly-hard real-time control systems”. Automatica
133, p. 109868. ISSN: 0005-1098. DOI: https://doi.org/10.1016/j.
automatica.2021.109868. URL: https://www.sciencedirect.com/
science/article/pii/S0005109821003903.

Hespanha, J. P., P. Naghshtabrizi, and Y. Xu (2007). “A survey of recent results in
networked control systems”. Proceedings of the IEEE 95:1, pp. 138–162. DOI:
10.1109/JPROC.2006.887288.

Kauer, M., D. Soudbakhsh, D. Goswami, S. Chakraborty, and A. M. Annaswamy
(2014). “Fault-tolerant control synthesis and verification of distributed embed-
ded systems”. In: 2014 Design, Automation Test in Europe Conference Exhibi-
tion (DATE), pp. 1–6. DOI: 10.7873/DATE.2014.069.

Kirsch, C. and A. Sokolova (2012). “The logical execution time paradigm”. In: Ad-
vances in Real-Time Systems. Springer Berlin Heidelberg, pp. 103–120. ISBN:
978-3-642-24349-3.

Kumar, P., D. Goswami, S. Chakraborty, A. Annaswamy, K. Lampka, and L. Thiele
(2012). “A hybrid approach to cyber-physical systems verification”. In: 49th An-
nual Design Automation Conference (DAC). San Francisco, California, pp. 688–
696. ISBN: 9781450311991. DOI: 10.1145/2228360.2228484. URL: https:
//doi.org/10.1145/2228360.2228484.

Liberzon, D. (2003). Switching in Systems and Control. Systems & control.
Birkhauser. ISBN: 9783764342975.

Lincoln, B. and A. Cervin (2002). “Jitterbug: a tool for analysis of real-time control
performance”. In: IEEE Conference on Decision and Control. Vol. 2, pp. 1319–
1324. DOI: 10.1109/CDC.2002.1184698.

118

References

Linsenmayer, S. and F. Allgower (2017). “Stabilization of networked control sys-
tems with weakly hard real-time dropout description”. In: 56th IEEE Confer-
ence on Decision and Control (CDC), pp. 4765–4770.

Linsenmayer, S., M. Hertneck, and F. Allgower (2020). “Linear weakly hard real-
time control systems: time- and event-triggered stabilization”. IEEE Transac-
tions on Automatic Control.

Linsenmayer, S., B. W. Carabelli, S. Wildhagen, K. Rothermel, and F. All-
göwer (2021). “Controller and triggering mechanism co-design for control over
time-slotted networks”. IEEE Transactions on Control of Network Systems 8,
pp. 222–232.

Lozoya, C., P. Mart, M. Velasco, J. M. Fuertes, and E. X. Martin (2013). “Resource
and performance trade-offs in real-time embedded control systems”. Real-Time
Systems 49:3, pp. 267–307. DOI: 10.1007/s11241-012-9174-9.

Maggio, M., A. Hamann, E. Mayer-John, and D. Ziegenbein (2020). “Control-
system stability under consecutive deadline misses constraints”. In: 32nd Eu-
romicro Conference on Real-Time Systems (ECRTS). Leibniz International Pro-
ceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik.

Marchand, A. and M. Chetto (2008). “Dynamic scheduling of periodic skippable
tasks in an overloaded real-time system”. In: 2008 IEEE/ACS International Con-
ference on Computer Systems and Applications (AICCSA), pp. 456–464. DOI:
10.1109/AICCSA.2008.4493573.

Markovi, F., A. V. Papadopoulos, and T. Nolte (2021). “On the convolution effi-
ciency for probabilistic analysis of real-time systems”. In: Brandenburg, B. B.
(Ed.). 33rd Euromicro Conference on Real-Time Systems (ECRTS). Vol. 196.
Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 16:1–16:22. ISBN: 978-
3-95977-192-4. DOI: 10 . 4230 / LIPIcs . ECRTS . 2021 . 16. URL: https :
//drops.dagstuhl.de/opus/volltexte/2021/13947.

Marti, P., J. M. Fuertes, G. Fohler, and K. Ramamritham (2001). “Jitter compensa-
tion for real-time control systems”. In: 22nd IEEE Real-Time Systems Sympo-
sium (RTSS 2001), pp. 39–48. DOI: 10.1109/REAL.2001.990594.

Milligan, M. and H. Cragon (1996). “The use of cache memory in real-time sys-
tems”. Control Engineering Practice 4:10, pp. 1435–1442. ISSN: 0967-0661.
DOI: https://doi.org/10.1016/0967-0661(96)00154-2.

Nilsson, J., B. Bernhardsson, and B. Wittenmark (1998). “Stochastic analysis
and control of real-time systems with random time delays”. Automatica 34:1,
pp. 57–64. ISSN: 0005-1098. DOI: 10.1016/S0005-1098(97)00170-2.

119

Paper II. Deadline-Miss-Adaptive Controller Implementation

Oshana, R. (2006). “Overview of embedded systems and real-time systems”. In: Os-
hana, R. (Ed.). DSP Software Development Techniques for Embedded and Real-
Time Systems. Embedded Technology. Newnes, Burlington, pp. 19–34. ISBN:
978-0-7506-7759-2. DOI: https://doi.org/10.1016/B978-075067759-
2/50004-1. URL: https://www.sciencedirect.com/science/article/
pii/B9780750677592500041.

Pazzaglia, P., A. Hamann, D. Ziegenbein, and M. Maggio (2021). “Adaptive design
of real-time control systems subject to sporadic overruns”. In: Design, Automa-
tion & Test in Europe Conference Exhibition (DATE).

Pazzaglia, P., C. Mandrioli, M. Maggio, and A. Cervin (2019). “DMAC: Deadline-
Miss-Aware Control”. In: 31st Euromicro Conference on Real-Time Systems
(ECRTS). Vol. 133. Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 1:1–1:24. ISBN: 978-3-
95977-110-8.

Ramamritham, K. (1996). “Where do time constraints come from? Where do they
go?” International Journal of Database Management 7:2, pp. 4–11.

Ramanathan, P. (1997). “Graceful degradation in real-time control applications us-
ing (m,k)-firm guarantee”. In: 27th IEEE International Symposium on Fault Tol-
erant Computing, pp. 132–141.

Rehbinder, H. and M. Sanfridson (2000). “Integration of off-line scheduling and op-
timal control”. In: 12th Euromicro Conference on Real-Time Systems, pp. 137–
143.

Rota, G.-C. and W. G. Strang (1960). “A note on the joint spectral radius”. In:
Proceedings of the Netherlands Academy.

Schenato, L. (2009). “To zero or to hold control inputs with lossy links?” IEEE
Transactions on Automatic Control 54:5, pp. 1093–1099.

Schenato, L., B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry (2007).
“Foundations of control and estimation over lossy networks”. Proceedings of
the IEEE 95:1, pp. 163–187. DOI: 10.1109/JPROC.2006.887306.

Schinkel, M. and W.-H. Chen (2006). “Control of sampled data systems with vari-
able sampling rate”. International Journal of Systems Science 37. DOI: 10 .
1080/00207720600681161.

Schmidt, P. C. (1985). “Handbook of stochastic methods for physics, chemistry and
the natural sciences”. Berichte der Bunsengesellschaft für physikalische Chemie
89:6, pp. 721–721.

Seong Woo Kwak, Byung Jae Choi, and Byung Kook Kim (2001). “An optimal
checkpointing-strategy for real-time control systems under transient faults”.
IEEE Transactions on Reliability 50:3, pp. 293–301. DOI: 10 . 1109 / 24 .
974127.

120

References

Stankovic, J., M. Spuri, M. D. Natale, and G. Buttazzo (1995). “Implications of
classical scheduling results for real-time systems”. Computer 28:6, pp. 16–25.
DOI: 10.1109/2.386982.

Steinbauer, G. (2013). “A survey about faults of robots used in RoboCup”. In: Chen,
X. et al. (Eds.). RoboCup 2012: Robot Soccer World Cup XVI. Springer, Berlin,
Heidelberg, pp. 344–355. ISBN: 978-3-642-39250-4.

Sun, L., D. Li, and K. Y. Lee (2016). “Optimal disturbance rejection for PI controller
with constraints on relative delay margin”. ISA Transactions 63, pp. 103–111.
ISSN: 0019-0578. DOI: https://doi.org/10.1016/j.isatra.2016.03.
014.

Törngren, M. (1998). “Fundamentals of implementing real-time control applica-
tions in distributed computer systems”. Real-Time Systems 14:3, pp. 219–250.
DOI: 10.1023/A:1007964222989.

Vankeerberghen, G., J. Hendrickx, and R. M. Jungers (2014). “JSR: a toolbox to
compute the joint spectral radius”. In: 17th International Conference on Hybrid
Systems: Computation and Control (HSCC). ACM, Berlin, Germany, pp. 151–
156. ISBN: 9781450327329.

Vreman, N., A. Cervin, and M. Maggio (2021a). “Stability and performance anal-
ysis of control systems subject to bursts of deadline misses”. In: 33rd Euromi-
cro Conference on Real-Time Systems (ECRTS). Vol. 196. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik. DOI: 10.4230/LIPIcs.ECRTS.2021.15.

Vreman, N., A. Cervin, and M. Maggio (2021b). “Stability and Performance Analy-
sis of Control Systems Subject to Bursts of Deadline Misses”. In: 33rd Euromi-
cro Conference on Real-Time Systems (ECRTS). Vol. 196. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. ISBN: 978-3-95977-192-4. DOI: 10.4230/LIPIcs.ECRTS.2021.
15.

Vreman, N. and C. Mandrioli (2020). “Evaluation of Burst Failure Robustness of
Control Systems in the Fog”. In: 2nd Workshop on Fog Computing and the
IoT (Fog-IoT). Vol. 80. OpenAccess Series in Informatics (OASIcs). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN: 978-3-95977-144-3. DOI:
10.4230/OASIcs.Fog-IoT.2020.8.

Wang, W., P. Mishra, and A. Gordon-Ross (2012). “Dynamic cache reconfiguration
for soft real-time systems”. ACM Trans. Embed. Comput. Syst. 11:2. ISSN: 1539-
9087. DOI: 10.1145/2220336.2220340.

Wellstead, P. E., V. Chrimes, P. R. Fletcher, and A. J. R. R. Moody (1978). “The
ball and beam control experiment”. The International Journal of Electrical En-
gineering & Education 15:1.

Xiong, J. and J. Lam (2007). “Stabilization of linear systems over networks with
bounded packet loss”. Automatica 43:1, pp. 80–87. ISSN: 0005-1098. DOI: 10.
1016/j.automatica.2006.07.017.

121

Paper II. Deadline-Miss-Adaptive Controller Implementation

Ying Zhang and Krishnendu Chakrabarty (2003). “Fault recovery based on check-
pointing for hard real-time embedded systems”. In: 18th IEEE Symposium on
Defect and Fault Tolerance in VLSI Systems, pp. 320–327. DOI: 10 . 1109 /
DFTVS.2003.1250127.

Zhang, W. and L. Yu (2010). “Stabilization of sampled-data control systems
with control inputs missing”. IEEE Transactions on Automatic Control 55:2,
pp. 447–452. DOI: 10.1109/TAC.2009.2036325.

Zhang, W., M. S. Branicky, and S. M. Phillips (2001). “Stability of networked con-
trol systems”. IEEE Control Systems Magazine 21:1, pp. 84–99. DOI: 10.1109/
37.898794.

122

Paper III

WeaklyHard.jl: Scalable Analysis of
Weakly-Hard Constraints

Nils Vreman Richard Pates Martina Maggio

Abstract

Weakly-hard models have been used to analyse real-time systems subject to
patterns of deadline hits and misses. However, the tools that are available in
the literature have a set of shortcomings. The analysis they offer is limited
to a single weakly-hard constraint and to patterns that specify the number of
misses, rather than the number of hits. Furthermore, the scalability of the tools
is limited, effectively making it hard to address systems where deadline misses
are really sporadic events. In this paper we present WeaklyHard.jl, a scalable
tool to analyse a set of weakly hard constraints belonging to all the four types
of weakly hard models. To achieve scalability, we exploit novel dominance
relations between weakly-hard constraints, based on deadline hits. We provide
experimental evidence of the tool’s scalability, compared to the state-of-the-
art for a single constraint, a thorough investigation of hit-based weakly-hard
constraints, and a sensitivity analysis to constraint set parameters.

Originally published in IEEE 28th Real-Time and Embedded Technology and
Applications Symposium (2022). The mathematical notation has been unified to
match the remainder of the thesis. Reprinted with permission.

123

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

1. Introduction

A recent survey on the state of industrial practice in real-time systems showed
that a significant fraction of real-time tasks are allowed to miss a finite number of
deadlines [Åkesson et al., 2020]. The research community spent years defining and
analysing models of tasks that can miss deadlines, from soft real-time systems [But-
tazzo et al., 2005], to tasks with a skip-factor [Koren and Shasha, 1995], from calcu-
lating the miss ratio based on execution time probability distributions [Manolache
et al., 2004], to approximating the deadline miss probability [Brüggen et al., 2018;
Bozhko et al., 2021; Brüggen et al., 2021] for a given system.

One of such models in which tasks may miss deadlines is the weakly-hard task
model [Bernat et al., 2001]. Weakly-hard tasks behave according to patterns of hit
and missed deadlines that are (mainly) window-based. The originally proposed con-
straint models specifies alternatively (for a window of subsequent jobs): (i) the min-
imum number of deadlines that are hit, (ii) the minimum number of consecutive
deadlines that are hit, (iii) the maximum number of deadlines that may be missed,
or (iv) the maximum number of consecutive deadlines that may be missed. The
third of these models – often called the (m,K) model – gained attention in the
research community, generating results on scheduling algorithms [Hamdaoui and
Ramanathan, 1995], real-time and schedulability analysis [Sun and Natale, 2017;
Pazzaglia et al., 2021b; Hammadeh et al., 2017c], verification [Huang et al., 2019a;
Behrouzian et al., 2020] and runtime monitoring [Wu et al., 2020] of constraint
satisfaction, derivation of task model parameters [Xu et al., 2015], together with
applications to domains like telecommunication [Ahrendts et al., 2018; Huang et
al., 2019b] and control systems [Ramanathan, 1999; Pazzaglia et al., 2018; Vreman
et al., 2021; Pazzaglia et al., 2021a]. The fourth model has also proved relevant to
perform analyses of the stability of control systems [Maggio et al., 2020]. Further-
more, the relation between weakly-hard constraint types has been partially investi-
gated [Tu et al., 2007; Wu et al., 2020]. However, this investigation remains partial
as some of the constraints are not connected and their dominance (i.e., the compar-
ison of how strictly does the task model constrain the task execution for different
types of constraints) is not assessed.

The practical usefulness of weakly-hard models will remain limited, unless it
is possible to build tools to enforce and monitor the satisfaction of weakly-hard
constraints for execution platforms. Many real-time platforms offer the possibility
to invoke “protected” task executions, ensuring that deadlines are met at the cost of
increasing the execution cost. This is a very simple mechanism to secure that the
weakly-hard constraint is satisfied in an execution platform. However, this requires
writing monitoring code, that generates transition points to this protected execution
mode when a constraint might otherwise be violated. Generating this code in a
scalable way requires abstracting from the constraint and representing the execution
of tasks with compact, but expressive, models.

To date, the literature has focused on the (m,K) constraint, neglecting the others,

124

1 Introduction

despite their relevance in application domains such as control [Maggio et al., 2020;
Linsenmayer and Allgower, 2017; Vreman et al., 2021]. As a result, the mentioned
tools and models are not available for all the constraint types. This paper aims at
both solving this problem and answering some open issues, namely: (i) guarantee-
ing consecutive deadline hits, and not only following patterns of deadline misses;
and (ii) dealing with systems that satisfy multiple weakly-hard constraint simulta-
neously.

The first issue comes from the consideration that in practice it may be easier
to guarantee that some prescribed job will hit their deadline rather than ensuring
that the number of misses follows a given pattern. This is the case of the men-
tioned protected execution environment. As an example, mixed-criticality allows
the scheduler to raise the criticality level and thus guarantee that the highly-critical
tasks meet the corresponding deadlines [Burns and Davis, 2013]. We can treat the
weakly-hard task as highly critical and raise the criticality level when a deadline hit
must be enforced. Alternatively, we can increase the budget of a reservation-based
scheduler [Casini et al., 2019]. Despite the fact that guaranteeing hits is often easier
than enforcing miss patterns, the first two types of weakly hard tasks, that constrain
the number of hits, have not been receiving much attention from the research com-
munity.

Furthermore, we would like to analyse tasks that satisfy multiple constraints
simultaneously. Most analysis methods only take into account a single constraint,
e.g., [Pazzaglia et al., 2018] or [Maggio et al., 2020] for the stability of control
systems. In some cases, one of the two constraints dominates the other, meaning that
satisfying the dominant constraint also guarantees the satisfaction of the dominated
one. But this is not always the case. Consider for example two constraints λ1 and
λ2, where λ1 specifies that the task may miss a maximum of 2 deadlines in every
window of 5 consecutive jobs, and λ2 that it may miss a maximum of 3 deadlines
in every window of 7 consecutive jobs. On the one hand the sequence 0011100,
where 0 represents a deadline miss and 1 a deadline hit, satisfies λ1 but fails λ2,
meaning that λ2 does not dominate λ1. On the other hand the sequence 0001111
satisfies λ2 but fails λ1, and so λ1 does not dominate λ2 either. If the analysis can
only be conducted with a single constraint, the choice of which constraint is to be
used is left to the practitioner, while it would be best to consider both constraints
simultaneously.

Finally, we bring forward the question of scalability. Many of the research re-
sults, for example in the control domain [Pazzaglia et al., 2018; Linsenmayer and
Allgower, 2017; Linsenmayer et al., 2021], use short windows. However, for prac-
tical applications it may be relevant to use a large window size, as done for example
in the experimental analysis in [Behrouzian et al., 2020]. In fact, the original mo-
tivation behind the weakly-hard task model [Bernat et al., 2001] uses a practical
example from the avionics domain in which a deadline may be missed 11 times in
every consecutive 295 jobs. It seems reasonable that systems that are built and cer-
tified (for example in the automotive domain) would not experience many deadline

125

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

misses, and that using a short window size would lead to very conservative results.
To address these questions and empower researchers with a tool to apply their

analysis techniques, this paper presents WeaklyHard.jl, a software library for
weakly hard tasks that treats scalability as a first-class citizen. More precisely, the
contributions of the paper are the following:

• We provide a theoretical contribution on the relation between weakly hard
tasks that constrain the number of hits and the number of consecutive hits
in a window (Section 3). This relation allows us to relate all the types of
constraints with one another, and provide some ordering among them.

• We leverage an automata-based representation to describe the behaviour of a
task subject to a weakly-hard constraint [Horssen et al., 2016; Linsenmayer
et al., 2021]. In constrast to other approaches, our description exploits a map-
ping between a single transition in the automaton and a deadline (Section 4).
This enables uses such as automatic generation of monitors to check weakly-
hard constraint satisfaction on the fly.

• We extend the automaton to describe a task subject to a finite set of weakly-
hard constraints (Section 3). In this way, we are able to address the analysis
of systems that satisfy multiple constraints, possibly of different types, that
do not dominate one another. As far as we know, this is the first paper that
presents an analysis of a set of weakly-hard constraints.

We conduct an extensive performance evaluation campaign with a two-fold pur-
pose (Section 5). First, we analyse the scalability of our library compared to the state
of the art whenever possible, i.e., for single constraints. Second, we look at sets of
constraints and perform a sensitivity analysis, to determine which parameters affect
the execution time of the automaton construction for a set of constraints.

WeaklyHard.jl can be used for monitoring tasks subject to multiple weakly-
hard constraints, analysing satisfaction sets, schedulability analysis, or connecting
the weakly-hard model to applied fields like control theory. In particular, recent
papers [Pazzaglia et al., 2018; Maggio et al., 2020; Vreman et al., 2021; Linsen-
mayer et al., 2021; Linsenmayer and Allgower, 2017] connected the weakly-hard
model with control proofs considering stability and performance guarantees, and
WeaklyHard.jl can generate general automata-based monitoring code ensuring
the satisfaction of said properties.

2. Background and related work

In this work, we analyse a single real-time task. For the remainder of this paper, a
real-time task τ is an entity composed of a sequence of jobs (ji)i∈N≥ , representing

126

2 Background and related work

code that is executed repeatedly on a given hardware platform (not necessarily ac-
cording to any temporal pattern or periodicity). A task is characterised by its relative
deadline d, representing the time after which each job should be completed.

The index i counts the job number. For a given job ji, we denote with ai its
release time (the time in which the job becomes active in the hardware platform),
and with fi its completion time (the time in which the job terminates its execution).
We also use di to represent the absolute deadline of the i-th job, meaning that di =
ai +d.

In general, a job can either complete its execution before its deadline or overrun
it, resulting respectively in a deadline hit or miss (collectively denoted by the job’s
outcome).

DEFINITION 1—DEADLINE HIT
The i-th job of a task τ is said to hit its deadline if fi ≤ di.

DEFINITION 2—DEADLINE MISS
The i-th job of a task τ is said to miss its deadline if fi > di.

The weakly-hard task model [Bernat et al., 2001; Bernat, 1998] provides guarantees
on the sequence of outcomes of a real-time task via four constraints, each specifying
how deadline misses and hits are interleaved for a window of k≥ 1 consecutive jobs.

DEFINITION 3—WEAKLY-HARD TASK
A weakly-hard task τ is a task that satisfies (at least) one of the following con-
straints:

(i) τ `
(x

k

)
(AnyHit): in any window of k consecutive jobs, the minimum number

of hits is x;

(ii) τ `
〈x

k

〉
(RowHit): in any window of k consecutive jobs, the minimum number

of consecutive hits is x;

(iii) τ `
(x

k

)
(AnyMiss): in any window of k consecutive jobs, the maximum num-

ber of misses is x; and

(iv) τ `
〈x

k

〉
(RowMiss): in any window of k consecutive jobs, the maximum num-

ber of consecutive misses is x;

for some values of x ∈ N≥, k ∈ N>, where x ≤ k. We use the ` symbol to indicate
that all the possible sequences of outcomes of τ satisfy the right hand side.

The types of constraints in Definition 3 have received different attention in the real-
time systems literature. In particular, the AnyMiss constraint has been extensively
studied, and is commonly addressed as the (m,K) weakly-hard task model [Ham-
daoui and Ramanathan, 1995; Hammadeh et al., 2017b; Hammadeh et al., 2017a;

127

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

Sun and Natale, 2017; Ahrendts et al., 2018; Pazzaglia et al., 2018]. However, these
constraints have been studied separately, while a task can simultaneously satisfy
many, possibly of different types.

Exploiting different types of constraints – and possibly different parameters for
the same type of constraint – leads to a better outcome for the analysis of the sys-
tem. This follows from the space of possible sequences being pruned, thus allow-
ing us to focus on proving that the real-time system behaves correctly in the rel-
evant cases. In the following, we denote a set of L weakly-hard constraints with
Λ = {λ1,λ2, . . . ,λL}. To characterise the possible sequences of outcomes that sat-
isfy a constraint, we borrow some elementary concepts from language theory, in
particular the binary alphabet [Hopcroft et al., 2006].

DEFINITION 4—ALPHABET Σ OF JOB OUTCOMES
We define the alphabet of job outcomes Σ = {0,1}, where 0 indicates a deadline
miss and 1 represents a deadline hit.

Using well-established notation, we denote the character ci ∈ Σ as the outcome of
job ji. A word w of length |w| = N is a sequence of characters w = 〈c1,c2, . . . ,cN〉
that specifies a sequence of consecutive job outcomes for a task. Without loss of
generality, we assume that all words are preceded and followed only by hits. We
denote the sub-word of a word w from index a to b with w(a,b) = 〈ca,ca+1, . . . ,cb〉.
Finally, ΣN denotes the set of all possible words of length N.

With a slight abuse of notation, we use w` λ to indicate that the word w satisfies
the constraint λ . Obtaining the set of words satisfying λ follows directly from the
definitions of the alphabet and the constraint itself [Bernat et al., 2001; Bernat,
1998].

DEFINITION 5—SATISFACTION SET SN (λ)
The set of all length N words w, satisfying the weakly-hard constraint λ , is denoted
by SN (λ). Formally, SN (λ) =

{
w ∈ ΣN |w ` λ

}
, N ≥ 1.

Trivially, all words in SM (λ) are sub-words of words existing in SN (λ), if M ≤ N.
To simplify notation we define the set containing all words of infinite length as
S (λ)≡ S∞ (λ).

Using satisfaction sets, it is possible to formally define a partial ordering be-
tween two constraints λi and λ j. We denote the logical conjunction with ∧ and
the logical disjunction with ∨. The following notions of constraint domination and
equivalence [Bernat et al., 2001; Bernat, 1998] are used extensively throughout the
remainder of the paper (jointly denoted constraint dominance).

DEFINITION 6—CONSTRAINT DOMINATION
Given two arbitrary weakly-hard constraints λi and λ j, λi dominates λ j (denoted
λi ≺ λ j) if all words satisfying λi also satisfy λ j, i.e., S (λi)⊂ S (λ j). Correspond-
ingly, λi � λ j⇔S (λi)⊆ S (λ j).

128

2 Background and related work

DEFINITION 7—CONSTRAINT EQUIVALENCE
Given two arbitrary weakly-hard constraints λi and λ j, λi is equivalent to λ j if
they respectively dominate each other. Formally, λi ≡ λ j ⇔ λi � λ j ∧λ j � λi. Two
constraints are equivalent if they share the same satisfaction set, i.e., λi ≡ λ j ⇔
S (λi) = S (λ j).

The notion of constraint dominance has attracted attention from different areas,
and is still occasionally researched [Wu et al., 2020; Tu et al., 2007]. To provide
dominance results, we first define the weakest and hardest constraints [Bernat et al.,
2001; Bernat, 1998].

DEFINITION 8—WEAKEST CONSTRAINT λ

The weakest constraint λ is defined as the constraint satisfied by any word. For-
mally, SN (λ) = ΣN , ∀N ∈ N>.

DEFINITION 9—HARDEST CONSTRAINT λ

The hardest constraint λ is defined as the constraint satisfied solely by the word
containing all deadline hits. Formally, SN (λ) = {1N}, ∀N ∈ N>.

Using these definitions, we now review known constraint dominance relations. We
refer the reader to [Bernat, 1998] or any referenced paper for the corresponding
proofs.

LEMMA 1—KNOWN EQUIVALENCE RELATIONS
The following equivalence relations hold:

(i)
(x

k

)
≡
(k−x

k

)
, an AnyHit constraint with x deadline hits in a window of k jobs

is equivalent to an AnyMiss constraint with k− x hits in a window of k jobs,

(ii)
〈x

k

〉
≡ 〈x〉, ∀k ≥ 1, a RowMiss constraint is independent of the window size,

i.e., it is equivalent to the same constraint with any k value,

(iii) 〈x〉 ≡
(x

x+1

)
, a RowMiss constraint with x deadline misses is equivalent to an

AnyMiss with x possible misses in a window of x+ 1 jobs [Maggio et al.,
2020],

(iv)
〈1

k

〉
≡

(1
k

)
, (trivially) a RowHit constraint is equivalent to an AnyHit when

looking at the same window length and a single deadline,

(v)
〈x

k

〉
≡ λ ⇔ x> k/2, a RowHit constraint is equivalent to the hardest constraint

when x > k/2.

Using these equivalence relations, we can always translate AnyMiss and
RowMiss constraints into a corresponding AnyHit constraint. However, there is
no clear equivalence between AnyHit and RowHit constraints (beside the trivial

129

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

case of a single deadline and the same window length). Finding such a relation is
important because it would allow us to treat sets of different types of constraints
reducing the analysis to a single type and therefore improving efficiency. This mo-
tivates our formal analysis of the relation between hit-related constraints, presented
in Section 3.

Denoting with b·c and d·e respectively the floor and ceiling operators, we can
then define some domination relations.

LEMMA 2—KNOWN DOMINATION RELATIONS
The following domination relations hold:

(i)
(x1

k1

)
�

(x2
k2

)
⇔ x2 ≤ max{a,b}, where a = b k2

k1
cx1 and b = k2 − d k2

k1
e(k1 −

x1); the AnyHit constraint with parameters x1 and k1 dominates all AnyHit
constraints with parameters x2 and k2 if and only if x2 ≤ max{a,b} with a
and b defined as above.

(ii) For any two constraints
〈x1

k1

〉
,
〈x2

k2

〉
6≡ λ ,

〈x1
k1

〉
�

〈x2
k2

〉
⇔ (k2 < k1 ∧ k2 ≤ x1−

d k1−k2
2 e) ∨ (k2 ≥ k1∧ x2 ≤ x1); this specifies the domination between two

RowHit constraints depending on their constraint parameters.

(iii)
〈x1

k

〉
�
(x2

k

)
⇒{x2 ≤ 4x1−k−2, x2 ≤ x1, x2 ≥ 0}; for a fixed and equal win-

dow k, if a RowHit constraint with consecutive deadlines hits x1 dominates an
AnyHit constraint with x2 deadlines hits, then the indicated relation between
the constraint parameters hold.

(iv) 〈x1〉� 〈x2〉⇔ x1≤ x2; a RowMiss constraint with a lower number of deadline
misses dominates a RowMiss with a higher number of deadline misses.

(v)
(x+p

k+p

)
�

(x
k

)
if p > 0; AnyMiss constraints can be dominated by other

AnyMiss constraints when particular relations hold for values of their pa-
rameters [Tu et al., 2007].

The ability to translate constraints into AnyHit equivalents makes Lemma 2(i)
very powerful to compare different weakly hard constraints. Finally, Lemma 2(iii)
is the only known result that relates the RowHit constraints with the other types.
However, its applicability is limited to the case in which the two constraints share
the same window size. From the presentation of the existing constraint dominance
relations, we gather that there is an important piece missing to achieve a compre-
hensive weakly-hard analysis.

3. AnyHit, RowHit, and constraint sets

This section contains the theoretical contribution of the paper. In 3.1, we present
some novel results on the relation between the RowHit and AnyHit constraints.

130

3 AnyHit, RowHit, and constraint sets

The results introduce the final theoretical pieces allowing us to relate all the weakly-
hard constraint types to the AnyHit constraint, and thus to pave the way towards an
efficient analysis implementation. In 3.2, we extend the theoretical results to handle
sets of constraints, possibly containing constraints of different types.

3.1 Relating RowHit and AnyHit constraints
Our first theoretical contribution is the proof of a condition regarding the domination
of a RowHit constraint over a AnyHit constraint, precisely〈x1

k1

〉
�
(x2

k2

)
⇔ x2 ≤ x1 bk2/pc+max{0,x1− p+(k2 mod p)}

with p = k1 − x1 + 1. The proof is based on restricting the AnyHit constraint’s
minimum number of hits in order to ensure that its satisfaction set includes the one
of the RowHit constraint.

THEOREM 1—RowHit–AnyHit DOMINATION

Let S be the satisfaction set of the RowHit constraint λ1 =
〈x1

k1

〉
, and k2 ≥ x2 be

non-negative integers. Then the following are equivalent:

(i) Every sequence in S satisfies the AnyHit constraint
(x2

k2

)
;

(ii) x2 ≤ x1 bk2/pc+max{0,x1− p+(k2 mod p)}, where p = k1− x1 +1.

Proof. We split the proof in two separate parts. First, we are going to prove that
¬(ii)⇒¬(i), and then we will prove that (ii)⇒ (i), concluding the argument.
¬(ii)⇒¬(i): Consider the binary sequence that alternates between x1 consecu-

tive 1’s and p− x1 consecutive 0’s, where p is as in (ii):

s̄ = . . . 1 . . .1︸ ︷︷ ︸
x1

p− x1︷ ︸︸ ︷
0 . . .01 . . .1︸ ︷︷ ︸

x1

p− x1︷ ︸︸ ︷
0 . . .0 . . . (1)

First observe that s̄ ∈ S. Using the definitions of floor and modulo operator, for any
integer value (including p = k1+1) we can rewrite k2 as k2 = bk2/pc+(k2 mod p).
From the definition of sequence s̄ in Equation (1), s̄ certainly contains a sub-word
of length k2 with

x1bk2/pc+max{0,x1− p+(k2 mod p)}

1’s. If the inequality in (ii) does not hold, then s̄ does not satisfy the AnyHit con-
straint λ2 =

(x2
k2

)
(the sub-word of length k2 above would contain fewer than x2 1s).

(ii)⇒ (i): Let s be any sequence in S. Now let s′ be equal to s, except that
every maximal sub-word of 1s with fewer than x1 elements has been replaced with
a sub-word of zeros:

s′i =

{
1 if si is part of a sub-word of at least x1 1s,
0 otherwise.

131

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

First observe that s ∈ S implies s′ ∈ S. This is because maximal sub-words of 1s
with fewer than x1 elements do not contribute to the satisfaction of a RowHit con-
straint (from the perspective of this constraint, such sub-words may as well be ze-
ros). Also note that if s′ satisfies an AnyHit constraint, so does s. This is because
s can be obtained from s′ by flipping 0s to 1s, which cannot lead to a violation of
an AnyHit constraint. Therefore, it is sufficient to show that if (ii) holds, any such
s′ satisfies the AnyHit constraint in (i). By construction, s′ alternates between sub-
words of 1’s with at least x1 elements, and sub-words of zeros of at most p− x1
elements

s′ = . . . 1 . . .1︸ ︷︷ ︸
≥ x1

≤ p− x1︷ ︸︸ ︷
0 . . .0 1 . . .1︸ ︷︷ ︸

≥ x1

≤ p− x1︷ ︸︸ ︷
0 . . .0 . . .

It then follows that every sub-word of length k2 in s′ has at least as many 1’s as
every sub-word of length k2 in the sequence s̄ from (1). Since s̄ satisfies the AnyHit
constraint, so does s′, and therefore so does every s ∈ S as required. 2

The second theoretical contribution of the paper is the proof of a condition re-
garding the domination of an AnyHit constraint over a RowHit constraint, specifi-
cally (x1

k1

)
�
〈x2

k2

〉
⇔ x2 ≤min{bk2/(z1 +1)c, dx1/z1e}

where z1 = k1− x1.

THEOREM 2—AnyHit–RowHit DOMINATION

Let S be the satisfaction set of the AnyHit constraint
(x1

k1

)
, and k2 ≥ x2 be non-

negative integers. Then the following are equivalent:

(i) Every sequence in S satisfies the RowHit constraint
〈x2

k2

〉
;

(ii) x2 ≤min{bk2/(z1 +1)c, dx1/z1e}, where z1 = k1− x1.

Proof. We split the proof in two separate parts. First, we are going to prove that
¬(ii)⇒¬(i), and then we will prove that ¬(i)⇒¬(ii), concluding the argument.
¬(ii)⇒¬(i): We split the proof into three cases.
Case 1: 0 < k2 ≤ z1. Let s̄ = . . .sdsdsd . . . (i.e. the sequence constructed by

repeating the sub-word sd), where

sd = 1 . . .1︸ ︷︷ ︸
x1

z1︷ ︸︸ ︷
0 . . .0 .

Observe that s̄ ∈ S. Since bk2/(z1 +1)c= 0, ¬(ii) implies that x2 > 0. This implies
¬(i) because s̄ contains at least k2 consecutive 0s, and therefore cannot satisfy the
RowHit constraint

〈x2
k2

〉
.

132

3 AnyHit, RowHit, and constraint sets

Case 2: k2 > z1 ∧ dx1/z1e ≥ bk2/(z1 +1)c. Let sd be a sequence of length k2
consisting of k2− z1 1s and z1 0s, with the 1s arranged into z1 +1 sub-words

sd = 1 . . .1︸ ︷︷ ︸
l1

01 . . .1︸ ︷︷ ︸
l2

0 . . .01 . . .1︸ ︷︷ ︸
lz1+1

,

where the lengths of the sub-words lk satisfy

lk ∈
{⌊

k2− z1

z1 +1

⌋
,

⌈
k2− z1

z1 +1

⌉}
.

Let s̄ = . . .111sd111 . . . (i.e. a sequence of all 1s except for a single sub-word sd).
Since this sequence contains only z1 0s, s̄ ∈ S. The conclusion now follows since⌈

k2− z1

z1 +1

⌉
=

⌊
k2− z1−1

z1 +1

⌋
+1 =

⌊
k2

z1 +1

⌋
,

and so if x2 > bk2/(z1 +1)c, then this s̄ does not satisfy the RowHit constraint
〈x2

k2

〉
.

Case 3: k2 > z1 ∧ dx1/z1e < bk2/(z1 +1)c. Let sd be a sequence of length k1
consisting of x1 1s and z1 0s, with the 1s arranged into z1 sub-words

sd = 1 . . .1︸ ︷︷ ︸
l1

01 . . .1︸ ︷︷ ︸
l2

0 . . .01 . . .1︸ ︷︷ ︸
lz1

0,

where the lengths of the sub-words lk satisfy lk ∈ {bx1/z1c,dx1/z1e}. Let s̄ =
. . .sdsdsd . . . (i.e. the sequence constructed by repeating the sub-word sd). Observe
that every sub-word of length k1 in s̄ contains exactly x1 1s, and therefore s̄ ∈ S.
Observe also that s̄ contains no sub-words of more than dx1/z1e consecutive 1s, and
therefore if x2 > dx1/z1e, s̄ does not satisfy the RowHit constraint

〈x2
k2

〉
.

¬(i)⇒¬(ii): Under the hypothesis of ¬(i), there exists a sequence s ∈ S such
that s does not satisfy the RowHit constraint

〈x2
k2

〉
.

Let s′ be the sequence obtained from s by removing all 0s from the start of s,
and then replacing all sub-words of 0s with length greater than one with a single 0
(for example, if s = 011001010001 . . ., then s′ = 11010101 Clearly s′ ∈ S since
this process only removes 0s, and s′ also does not satisfy the RowHit constraint.
Consider now the sub-word sd formed from the first k2 elements of s′.1 This sub-
word will take the form

sd =


1 . . .1︸ ︷︷ ︸

l1

01 . . .1︸ ︷︷ ︸
l2

0 . . .01 . . .1︸ ︷︷ ︸
ln

, or

1 . . .1︸ ︷︷ ︸
l1

01 . . .1︸ ︷︷ ︸
l2

0 . . .01 . . .1︸ ︷︷ ︸
ln

0,

1 Strictly speaking if s is too short, then the sequence s′ resulting from this process might have length
less than min{k1,k2} which would mean that the statement s′ ∈ S is ill defined. In this case 0s should
only be removed until s′ has length min{k1,k2}. This will still result in a sequence that satisfies the
AnyHit constraint but violates the RowHit constraint. All the given arguments remain valid for such
an s′, since they only depend on inequalities based on the number of 0s in particular sub-words of
length k1 as guaranteed by the AnyHit constraint (note in Case 1 it is perfectly valid for l1 = 0).

133

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

depending on whether the final element is 0 or 1. Note that the lengths of the sub-
words of 1s satisfy 0 ≤ lk < x2. We will now show that the existence of such a
sub-word implies ¬(ii) by considering two cases.

Case 1: k2 ≤ k1 + l1. In this case the sub-word sd contains at most z1 0s, and so
n≤ z1+1. The pigeonhole principle then demonstrates that there must be an integer
1≤ k ≤ n such that

lk ≥
⌈

k2− z1

n

⌉
.

To see this, note that sd has at least k2− z1 1s, and these must be allocated into n
pigeonholes corresponding to the n sub-words of 1s. This implies that

x2 > lk ≥
⌈

k2− z1

n

⌉
≥
⌈

k2− z1

z1 +1

⌉
=

⌊
k2

z1 +1

⌋
and bk2/(z1 +1)c ≥ min{bk2/(z1 +1)c,dx1/z1e} as required.

Case 2: k2 > k1 + l1. Let s′d denote the sub-word obtained by removing the first
l1 elements of sd , and also removing elements from the end of sd , until s′d has length
k1. This sub-word takes the form

s′d =


01 . . .1︸ ︷︷ ︸

l2

01 . . .1︸ ︷︷ ︸
l3

0 . . .01 . . .1︸ ︷︷ ︸
lm+1

, or

01 . . .1︸ ︷︷ ︸
l2

01 . . .1︸ ︷︷ ︸
l3

0 . . .01 . . .1︸ ︷︷ ︸
lm+1

0,

depending on whether the final element is 0 or 1. Since s′d satisfies the AnyHit
constraint

(x1
k1

)
, it contains at most z1 zeros, and so m ≤ z1. Therefore, in this case

the pigeonhole principle implies that at least one of the lengths lk must satisfy

lk ≥
⌈x1

m

⌉
≥
⌈

x1

z1

⌉
.

This implies x2 > lk ≥ dx1/z1e ≥ min{bk2/(z1 +1)c,dx1/z1e} as required. 2

The two theorems above complete the relation graph between the different types
of weakly-hard constraints. Now that we have a complete picture, we can start in-
vestigating sets Λ of L constraints, Λ = {λ1, . . . ,λL}.

3.2 Handling sets of weakly-hard constraints Λ

We extend the theory to the case in which τ is subject to an arbitrary set of con-
straints of the form presented in Definition 3. First, we extend the satisfaction from
Definition 5 and obtain

SN (Λ) =
⋂

λ∈Λ

SN (λ) (2)

134

4 WeaklyHard.jl

where
⋂

is the generalised intersection. We use τ ` Λ to denote that τ satisfies all
the constraints in the set Λ. This implies that each word w ∈ SN (Λ) must belong
to the satisfaction set of all the constraints in Λ. Trivially, Equation (2) allows us to
extended Definitions 5 and 6 to define constraint dominance for sets of constraints.

Constraint dominance significantly reduces the problem complexity when work-
ing with sets of weakly-hard constraints, Λ. If the constraint set supports different
types of weakly-hard constraints, it can be beneficial to find an equivalent set of
constraints with minimal cardinality.

To minimise the number of constraints in the problem formulation, the con-
straint dominance is utilised in order to find the minimal cardinality, equivalent
subset. Utilising the comprehensive picture the theorems provide, we propose the
notion of a dominant set, thus simplifying the analysis of weakly-hard systems sub-
ject to multiple constraints.

DEFINITION 10—DOMINANT SET
The dominant set Λ∗ of a set of weakly-hard constraints Λ is defined as the smallest
cardinality subset of Λ representing an equivalent set of constraints. Formally, Λ∗ ⊆
Λ where

(i) λi,λ j ∈ Λ∗ ⇒ λi 6≡ λ j, ∀i 6= j,

(ii) λi,λ j ∈ Λ∗ ⇒ λi � λ j, ∀i 6= j,

(iii) λi ∈ Λ\Λ∗ ⇒ ∃λ j ∈ Λ∗ s.t. λ j � λi.

From Definition 6, a weakly-hard constraint λi dominates λ j if and only if S (λi)⊆
S (λ j). Thus, excluding all the dominated constraints from Λ does not change the re-
sulting satisfaction set. The equivalence between the constraint set and its dominant
set is trivial considering the respective satisfaction sets:

S (Λ∗) =
⋂

λ∈Λ∗
S (λ) =

⋂
λ∈Λ

S (λ) = S (Λ).

In the following section, we present our tool, WeaklyHard.jl, and use the the-
orems presented in this section and the dominance between constraints to simplify
the analysis of sets of weakly-hard constraints.

4. WeaklyHard.jl

In this section we introduce WeaklyHard.jl2, a scalable tool for analysing (sets
of) weakly-hard constraints of different types. The tool facilitates the analysis of
weakly-hard tasks providing functions to:

2 https://github.com/NilsVreman/WeaklyHard.jl

135

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

(i) compare two arbitrary weakly-hard constraints or two sets of weakly-hard
constraints, obtaining answers about their dominance,

(ii) translate a weakly-hard constraint or a set of weakly-hard constraints into a
corresponding automaton, that represents all the sequences that belong to the
satisfaction set of the set of constraints,

(iii) produce all sequences of arbitrary length that satisfy a set of weakly-hard
constraints, i.e., the satisfaction set.

We distribute WeaklyHard.jl as an open-source package, written in the Julia pro-
gramming language [Bezanson et al., 2017]. Julia is a scripting language with Just-
In-Time compilation. The language design is centered upon two core concepts:
type-stability and function specialisation through multiple-dispatch. The type-stable
compilation provides an implementation that is close to the hardware, resulting in
efficient code execution. Multiple-dispatching allows us to write a user-friendly
code library. Additionally, Julia’s built in package manager simplifies the distri-
bution of non-proprietary packages.

A task subject to any weakly-hard constraint (from Definition 3) can be repre-
sented using an automaton. Automata have been used in the analysis of networked
systems [Huang et al., 2019b; Osch and Smolka, 2001], schedulability [Zeng and Di
Natale, 2012; Fersman et al., 2002; Fersman et al., 2007], and control systems [Lin-
senmayer and Allgower, 2017; Linsenmayer et al., 2021; Pazzaglia et al., 2018;
Horssen et al., 2016]. In this paper, we decided to constrain the automaton struc-
ture, thinking about the possible use of the automaton, e.g., generating a monitor
to check whether a constraint is satisfied. In our representation, vertices encode the
task’s state, i.e., the relevant suffix of the sequence of job outcomes. Similarly, edges
are associated with a feasible outcome (hit or miss) and encode the transitions from
one state to another. Feasibility here refers to the fact that deadline misses are not
allowed if the constraint would not permit them. The outcome sequences acquired
from all random walks in the automaton correspond to the satisfaction set of the
weakly-hard constraint represented by the automaton.

Due to their combinatorial nature, weakly-hard systems are inherently compli-
cated to analyse. Their complexity becomes apparent in the size of the automaton,
and evidently grows when the window length of the constraint increases. In the fol-
lowing, we present a scalable approach for generating automata representations of
weakly-hard constraints.

4.1 Weakly-hard constraints as automata
Suppose that τ ` λ . We use Gλ = (Vλ ,Eλ) to indicate the directed labeled graph
Gλ corresponding to the automaton representation of τ . Here, Vλ represents the
set of vertices in the graph and Eλ represents the directed edges between vertices
(also denoted transitions). Each vertex vi ∈ Vλ represents a word wi ∈ S (λ). With
a slight notational abuse, vertices vi will occasionally (when evident from context)

136

4 WeaklyHard.jl

be treated as the word they represent, wi. The transition ei, j ∈ Eλ corresponds to a
tuple ei, j = (vi,v j,ci, j), where the vertex pair vi,v j ∈ Vλ denotes the tail and head
of the transition, and the character ci, j ∈ Σ corresponds to the transition’s label. A
transition ei, j is feasible if and only if the concatenation of the character ci, j to the
word wi satisfies λ . Formally:

ei, j ∈ Eλ ⇔
〈
wi (2, |wi|) , ci, j

〉
= w j ` λ .

Finally, for two vertices vi,v j ∈ Vλ we say that v j is a direct successor of vi if
there exists a transition ei, j ∈ Eλ . Without loss of generality, we will assume that
each vertex vi ∈ Vλ can have at most two direct successors with distinct transition
outcomes, i.e., one successor v j1 through ei, j1 = (vi,v j1 ,1) and (if permissible) one
successor v j0 through ei, j0 =

(
vi,v j0 ,0

)
.

4.2 Automaton construction
The naïve approach of constructing the automaton Gλ is both time consuming and
memory intensive (including |Sk (λ)| vertices, where k is the window length of λ).
In order to improve performance and scalability, we include the following optimi-
sations:

(i) representing words as bit strings,

(ii) minimising the automata size by combining equivalent vertices during the
automata generation, and

(iii) representing large sets of constraints with their dominant subset.

Support for bit string operations (like shifting) is essential for efficient sequence
management. Logical and bitwise operations are directly supported by all proces-
sors, thus they are highly optimised and require a minimal amount of instruction
cycles. We use the following notation: & is the bitwise and, | is the bitwise or, and
� is the logical left-shift.

Each word w∈S (λ) is a sequence of outcomes and can therefore be interpreted
as a string of bits – recall that an outcome is a character in Σ = {0,1}. The rightmost
character in w is the outcome of the last job, e.g., w = 001 implies that the last
deadline was hit, but the two previous ones were missed. Assuming that the task τ

experienced the outcomes w and the next outcome is c ∈ Σ, then the new sequence
of outcomes is w′ = (w� 1) | c.

The size of the naïve automaton can be reduced substantially by combining
vertices that would otherwise result in language-equivalent states [Hopcroft et al.,
2006]. Two vertices vi1 ,vi2 ∈ Vλ are considered equivalent if they share the same
direct successors with the same transition outcomes. As an example, consider the
AnyHit constraint λ =

(1
2

)
. Trivially there are only three feasible vertices in the

naïve automaton, since there are 2k = 4 words in Σk and w = 00 is infeasible. The

137

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

Algorithm 1 Generation of the minimal automaton representation Gλ correspond-
ing to a weakly-hard constraint λ .

1: procedure BUILDAUTOMATON(λ)
2: Vλ ←{v1 = (1� n)−1}
3: Eλ ← /0, Q = {v1}
4: while Q 6= /0 do
5: vi← pop(Q)
6: v j0 ← compact (λ , (vi� 1) |0)
7: v j1 ← compact (λ , (vi� 1) |1)
8: if v j0 ` λ then
9: if v j0 6∈Vλ then

10: Vλ ←Vλ ∪
{

v j0

}
11: Q← Q∪

{
v j0

}
12: Eλ ← Eλ ∪

{
ei, j0 = (vi,v j0 ,0)

}
13: if v j1 6∈Vλ then
14: Vλ ←Vλ ∪

{
v j1

}
15: Q← Q∪

{
v j1

}
16: Eλ ← Eλ ∪

{
ei, j1 = (vi,v j1 ,1)

}
return Gλ = (Vλ ,Eλ)

words w1 = 11 and w2 = 01 are equivalent since they share the same direct suc-
cessors with the same transition outcomes, i.e., (w1� 1) | 0 = (w2� 1) | 0 and
(w1� 1) |1 = (w2� 1) |1, considering the window k = 2. Intuitively, the fact that
it is possible to combine vertices comes from the realisation that a task’s history,
prior to the last k job outcomes, is irrelevant. Combining the equivalent vertices
results in a new vertex representing the word w = w1 & w2.

Finally, for sets of weakly-hard constraints Λ we construct the automaton GΛ∗

for the dominant set Λ∗ ⊆ Λ. Since S (Λ∗) = S (Λ), it also follows that GΛ∗ ≡ GΛ.
We generate the minimal automaton Gλ as presented in Algorithm 1. The au-

tomaton is initialised with a single vertex corresponding to the word w1 = 1n,
v1 = (1� n)− 1. Here, n is the smallest number of hits required in a window to
meet the constraint λ , e.g., n= 1 for λ = 〈3〉 or n= 2 for

〈2
5

〉
. As long as there exists

uninitialised vertices vi, its successors v j0 and v j1 are created and passed through a
function in order to compact them. This step reduces the new word to the mini-
mal, equivalent word that would still satisfy λ . In particular, if either (vi� 1) |0 or
(vi� 1) | 1 return an existing vertex vi0 or vi1 , then v j0 and v j1 are reduced to the
corresponding existing one. If the resulting words would satisfy λ , they are prop-
erly added to the automaton. Note that it is only required to verify that the successor
following a deadline miss satisfy the constraint.

Notice that minimality comes from the fact that we include a vertex in Gλ only
if there exists no other vertex that represents the same sequence. In fact, each new

138

4 WeaklyHard.jl

vertex added to the automaton represents a feasible sequence that no other vertex
is already encoding. If a potential new vertex represents a sequence that is equiva-
lent to another existing vertex, the algorithm connects the existing vertex instead of
creating a new one.

4.3 Scalable automata generation
Intuitively, the time required for generating an automaton is directly correlated to
its size, i.e., more vertices lead to a larger exploration time and hence to a larger
automaton-construction time. Additionally, the automata-based representation can
be used in embedded devices, e.g., to monitor the satisfaction of a constraint. Thus,
space and memory requirements create a clear need for the automaton to be mini-
mal.

We provide a brief discussion on the minimum number of vertices needed to
express the automaton corresponding to the weakly hard constraints presented in
Definition 3. The structure of the minimal automaton depends on the type of con-
straint. For example, to describe an AnyHit constraint

(xah
kah

)
we need to keep track of

the number and the position of the deadline hits we encountered in the past kah out-
comes, giving us a number of vertices that corresponds to the binomial coefficient
kah choose xah. The AnyMiss constraint can be reduced to the AnyHit constraint
and hence we easily obtain the number of its vertices. For the RowMiss constraint,
the number of vertices is also obvious, as we need to count the number of consec-
utive deadlines that have been missed, and return to the initial state as soon as the
following outcome is a hit. Denoting with s(λ) the function that counts the number
of vertices of the minimal automaton corresponding to the constraint λ , we obtain:

AnyHit : λah =
(xah

kah

)
⇒ s(λah) =

kah!
xah!(kah− xah)!

AnyMiss : λam =
(xam

kam

)
⇒ s(λam) =

kam!
xam!(kam− xam)!

RowMiss : λrm =
〈xrm

krm

〉
⇒ s(λrm) = xrm +1

e.g., the minimal automaton for the AnyMiss constraint
(5

20

)
includes 15504 ver-

tices.
The RowHit constraint,

〈xrh
krh

〉
is more interesting. When krh < 2xrh, the con-

straint reduces to the hardest constraint λ , hence the automaton has a single vertex.
If krh = 2xrh, it is possible to have a single deadline miss, that can only appear be-
fore a sequence of xrh has been recorded, hence the corresponding automaton has
xrh+1 vertices. If krh = 2xrh+1, the number of vertices of the automaton are xrh+2

139

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

1

10

100

1

01

0

1

Gλ1, λ1 =
(1

3

)

11

110

1101 1100

11000

1

1

0

1 0

1

0

0

1

1

1

Gλ2, λ2 =
〈2

6

〉

11

110

1101 1100

1

1

0

1 0

1

0

1

1

GΛ, Λ = {λ1, λ2}

Figure 1. Minimal automata Gλ1
, Gλ2

, and GΛ representing respectively λ1, λ2,
and Λ = {λ1,λ2} from the Example in Section 4.4.

and subsequent values can be found using recursion. Specifically,

RowHit : λrh =
〈xrh

krh

〉
⇒ s(λrh) =

1 krh < 2xrh

xrh +1 krh = 2xrh

xrh +2 krh = 2xrh +1
2s(

〈 xrh
krh−1

〉
)− s(

〈 xrh
krh−2

〉
)+1 2xrh +1 < krh < 3xrh

s(
〈 xrh

krh−1

〉
)+ xrh krh ≥ 3xrh.

In contrast to the AnyHit or AnyMiss constraints, the size of the minimal automa-
ton corresponding to the RowHit constraint is linear in the window length krh in
stationarity, i.e., when krh ≥ 3xrh. The linearity property also holds for the RowMiss
constraint. Intuitively, since the size of the minimal automaton is directly correlated
to the scalability, RowHit and RowMiss constraints are preferred for large problems.

4.4 Example
We now provide an example to illustrate how the automata differ between constraint
types. In particular, we focus on AnyHit and RowHit constraints, that have been the
subject of our theoretical investigation.

Given the two weakly-hard constraints λ1 =
(1

3

)
and λ2 =

〈2
6

〉
, we apply Theo-

rems 1 and 2 and confirm that there is no partial ordering between the constraints,

140

5 Experimental evaluation

i.e. λ1 � λ2 and λ2 � λ1. Following the steps in Algorithm 1, we generate the min-
imal automaton representations of the two constraints, i.e., Gλ1 and Gλ2 . The au-
tomaton representing the constraint set Λ = {λ1, λ2}, i.e., GΛ, is also generated and
subsequently minimised. The results are shown in Figure 1, where the leftmost,
middle, and rightmost automata correspond respectively to Gλ1 , Gλ2 , and GΛ.

One of the most important novelties presented in this paper is the possibility
to analyse weakly-hard constraint sets containing all the weakly-hard constraints
types from Definition 3. Prior work proposed alternative solutions to the automaton
generation problem, handling either a specific type of constraint [Horssen et al.,
2016], or a separate solution for each individual constraint type [Linsenmayer and
Allgower, 2017]. Our aim is to switch the focus to the applicability and scalability
of the constraint representation, and hence substitute AnyHit and AnyMiss with
RowHit and RowMiss whenever possible. Being able to analyse sets of constraints
in a scalable way brings us one step closer to the analysis of real systems, in which
window lengths are quite large. Additionally, for real systems it is often easier to
constrain hits (e.g., via execution in a protected environment without interference)
rather than the maximum number or the pattern of deadline misses.

4.5 WeaklyHard.jl functionality
The most relevant functions provided by WeaklyHard.jl are summarised in Ta-
ble 1.3 In addition to the automata generation, the toolbox provides functions to
compare constraints and obtain answers about their dominance and equivalence, to
reduce a set of constraints to their dominant subset, and to generate sequences of
arbitrary length satisfying sets of weakly-hard constraints. We also included a func-
tion that generate the satisfaction set SN (Λ) from an automaton GΛ. In addition to
the functions presented in Table 1, additional functions are included as syntactic
sugar for a better user experience.

5. Experimental evaluation

We evaluate here the performance of WeaklyHard.jl.4 First, we assess the scal-
ability of the automaton generation, comparing WeaklyHard.jl with the state-of-
the-art WHRTgraph [Linsenmayer and Allgower, 2017; Linsenmayer et al., 2021].
Then, we conduct a sensitivity analysis of WeaklyHard.jl to determine which pa-
rameters affect the execution time for the automata generation in cases that cannot
be handled with other tools, e.g., sets of weakly-hard constraints. We provide re-
sults on how the type of constraints, maximum window length, and constraint set

3 The package includes a README file that guides the user through the setup of the package and
provides simple usage examples. The only prerequisite is the Julia interpreter and compiler, available
at https://julialang.org.

4 All the reported experiments ran on an Intel Xeon E5-2620 v3 @ 2.40GHz CPU with 126GB RAM
memory.

141

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

Table 1. Functions offered by WeaklyHard.jl.

Function Description

AnyHitConstraint(x, k) Defines a constraint λ =
(x

k

)
AnyMissConstraint(x, k) Defines a constraint λ =

(x
k

)
RowHitConstraint(x, k) Defines a constraint λ =

〈x
k

〉
RowMissConstraint(x) Defines a constraint λ = 〈x〉

is_satisfied(Lambda, w) Returns true if w ` Λ, i.e., if the word w satisfies
all the constraints in Λ, and false otherwise (note:
can be invoked also passing a single constraint λ

as parameter)

is_dominant(lambda1,
lambda2)

Returns true if λ1 � λ2 and false otherwise

is_equivalent(lambda1,
lambda2)

Returns true if λ1 ≡ λ2 and false otherwise

dominant_set(Lambda) Returns Λ∗ ⊆ Λ

build_automaton(Lambda) Returns the automaton GΛ (note: can be invoked
also passing a single constraint λ as parameter)

minimize_automaton!(G) Returns the minimal representation of GΛ (note:
changes GΛ)

random_sequence(G, N) Returns a word w, |w| = N obtained through an
N-step random walk in GΛ

all_sequences(G, N) Returns the satisfaction set SN (Λ) corresponding
to GΛ

cardinality affect the computation time needed to generate the automaton. Finally,
we investigate the average cardinality of the dominant set as a function of the car-
dinality of a set of constraints.

5.1 Comparing WeaklyHard.jl and WHRTgraph
The literature contribution that is closest to our research is WHRTgraph [Linsen-
mayer and Allgower, 2017; Linsenmayer et al., 2021]. WHRTgraph’s analysis of
weakly-hard tasks is also based on the construction of automata. While WHRTgraph
handles only one weakly-hard constraint at a time, it can construct the automa-
ton that correspond to AnyHit and RowHit constraints, making it the reference
in terms of analysis capabilities. WHRTgraph is implemented in MATLAB, while
WeaklyHard.jl is implemented in Julia. Hence, comparing the execution times

142

5 Experimental evaluation

x = 1 x = 2 x = 3 x = 4 x = 5
x = 6 x = 7 x = 8 x = 9 x = 10

0 1 2 3 4 5 6 7 8 9 10
0.1

1

10

100

1000

10000

i = k− x

ex
ec

ut
io

n
tim

e
ba

se
lin

e
(l

og
sc

al
e)

WeaklyHard.jl
(baseline 3.7µs)

0 1 2 3 4 5 6 7 8 9 10
0.1

1

10

100

1000

10000

An
yH

it

i = k− x

WHRTgraph
(baseline 32.4ms)

0 1 2 3 4 5 6 7 8 9 10
0.1

1

10

100

1000

10000

i = k− x

ex
ec

ut
io

n
tim

e
ba

se
lin

e
(l

og
sc

al
e)

WeaklyHard.jl
(baseline 3.2µs)

0 1 2 3 4 5 6 7 8 9 10
0.1

1

10

100

1000

10000

Ro
wH

it

i = k− x

WHRTgraph
(baseline 17.7ms)

Figure 2. Execution time comparison for AnyHit and RowHit constraints with
WeaklyHard.jl and WHRTgraph [Linsenmayer and Allgower, 2017] increasing the
difference between window size and number of hits constrained. Baseline values are
reported on top of the corresponding plots.

of the two (on their own) is pointless. Furthermore, we are more interested in as-
sessing the scalability to an increase in the constraint window size than the absolute
numbers for the execution times. We therefore define a baseline case, for a fair com-
parison, i.e., the reported results are fractions and multiples of the baseline, which
is different for each tool and constraint type.

143

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

To test the scalability of the automaton generation, we ask both WeaklyHard.jl
and WHRTgraph to generate the automata that correspond to the AnyHit

(x
k

)
and

RowHit
〈x

k

〉
constraints for x ∈ {1,2, . . . ,10}, k = x+ i and i ∈ {0,1, . . . ,10}. We

divide the obtained results by the baseline value, i.e., the execution time needed for
the corresponding tool to generate the automaton for the given constraint type, x = 2
and k = 4.5

Figure 2 shows the mean value of the execution time for the automaton gener-
ation, divided by the corresponding baseline value, using a logarithmic y-axis. The
baseline computation times for AnyHit constraint are 3.7µs for WeaklyHard.jl
and 32.4ms for WHRTgraph. On the contrary, for a RowHit constraint, the baseline
computation time is 3.2µs for WeaklyHard.jl and 17.7ms for WHRTgraph. Due to
the extensive computational time necessary to build the automata using WHRTgraph,
each automaton was built 30 times (i.e., each point in the figure is the mean of 30
executions). WeaklyHard.jl is significantly faster, thus, each automata was built
100000 times to reduce the execution time variance.

WHRTgraph represents a weakly-hard constraint with a slightly different, yet
equivalent automaton to the one generated by WeaklyHard.jl. In particular, the
automaton generated by WHRTgraph has fewer vertices and weights on the edges
encode the number of consecutive deadline misses allowed between the vertices.
Thus, a transition between two vertices in WHRTgraph is not equivalent to one out-
come (as for WeaklyHard.jl), reducing flexibility, i.e., making it harder for exam-
ple to automatically generate code to monitor the outcomes of task executions. Mul-
tiple successive outcomes for each transition also complicate the handling of sets of
weakly-hard constraints. In terms of scalability, an automaton representation with
fewer nodes may sound more efficient. However, we show that WeaklyHard.jl
scales better than WHRTgraph by more than an order of magnitude. The baseline
numbers show that WeaklyHard.jl is also significantly faster in absolute terms.

Comparing the scalability of the two tools for AnyHit constraints (leftmost
plots), we observe that WeaklyHard.jl is more than an order of magnitude faster
than WHRTgraph. On the contrary, for RowHit constraints (rightmost plots), we ex-
perience a speedup of almost two orders of magnitude for high values of i = k− x.
The scalability of the RowHit constraints are further investigated in the following
subsection.

5.2 Evaluating RowHit constraints
In the previous subsection we discussed the scalability of WeaklyHard.jl com-
pared to the state-of-the-art. Despite improvements of more than an order of mag-
nitude (not considering the baseline), the time necessary to construct the automata

5 The choice of the baseline case reflects the simplest constraint that is correctly handled by both
WeaklyHard.jl and WHRTgraph. Comparing the methods, we unveiled that WHRTgraph is unable
to find an automaton for constraints in which x = 1. The two plots for WHRTgraph in Figure 2 do not
contain results for x = 1 (white filled markers) precisely due to this problem.

144

5 Experimental evaluation

0 10 20 30 40 50 60 70 80
0.0000001

0.00001

0.001

0.1

10

i = k− x

ex
ec

ut
io

n
tim

e
[s

]
(l

og
sc

al
e)

x = 1
x = 15

Figure 3. Mean execution time of the generation RowHit constraint automaton.

for AnyHit constraints grows rapidly with increasing window lengths. Motivated
by the ongoing discussion on the practical importance of consecutive deadline
hits [Åkesson et al., 2020; Vreman et al., 2021] and the scalability considerations
presented in Section 4.3, we now perform an extensive evaluation of the scalability
of the RowHit constraints.

Using WeaklyHard.jl, we generate the automaton corresponding to the
RowHit

〈x
k

〉
constraints for x ∈ {1,2, . . . ,15}, k ∈ {x,x+ 1, . . . ,100}. To the best

of our knowledge, this is the first research work that generates automata representa-
tions of weakly-hard constraints with window lengths above 100. Figure 3 displays
the mean execution time over 100 executions for the automata generation using a
logarithmic scale, showing a piecewise exponential growth of execution time with
some jumps. Despite having constraints with window lengths up to k = 100, the
worst reported execution time is below 7 seconds; reinforcing the arguments in
favour of using RowHit rather than AnyHit constraints.

Another interesting consideration is related to the jumps in the execution time
that each line shows when reaching certain values of x and k. This follows from
the choice of using integers to represent words in WeaklyHard.jl. For constraints
where 2x+ k ≥ 64, 64 bit integers are not enough to represent all sequences, and
WeaklyHard.jl consequently converts the sequence representation to big integers
(using more than 64 bits). This representation requires additional resources (mem-
ory and computation), hence producing execution time jumps.

5.3 Analysing sets of weakly-hard constraints
WeaklyHard.jl is the first tool that provides the ability to analyse sets of weakly-
hard constraints. In the following we conduct a sensitivity analysis to assess the
scalability of the automaton generation for a set of weakly hard constraints. In par-
ticular, we are interested in finding how the window size affects the execution time

145

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

10 15 20 25 30

0.0001

0.01

1

100

kmax

ex
ec

ut
io

n
tim

e
[s

]
(l

og
sc

al
e)

Without RowHit

10 15 20 25 30

0.0001

0.01

1

100

| Λ
∗ |
=

2

kmax

With RowHit

10 15 20 25 30

0.0001

0.01

1

100

kmax

ex
ec

ut
io

n
tim

e
[s

]
(l

og
sc

al
e)

Without RowHit

10 15 20 25 30

0.0001

0.01

1

100

| Λ
∗ |
=

4

kmax

With RowHit

Figure 4. Execution time comparison for the generation of the automaton for sets
of constraints with increasing maximum window sizes maxk. Average values are
reported alongside the areas between minimum and maximum execution times.

of the tool, and how the composition of the set influences the execution time.
We randomise dominant sets of constraints, imposing that at least one of the

constraints has a window size of kmax ∈ {10, 11, . . . , 30}. We generate sets with
either |Λ∗| = 2 or |Λ∗| = 4. We allow these sets to include one RowHit constraint
or none. The results of our study are shown in Figure 4. For each of the values of
kmax in the figure, we generate 50 dominant sets Λ∗. The figure shows the average
execution time in seconds (as a line) and the area representing the span between
minimum and maximum execution time.

The first conclusion that we can draw is that the average execution times fol-
low straight lines in a logarithmic scale, thus clearly pointing to the exponen-
tial time complexity inherent to expressive task models, such as the weakly-hard
model [Stigge and Yi, 2015].

146

5 Experimental evaluation

20 40 60 80 100
1

3

5

7

9

11

|Λ|

| Λ
∗ |

Figure 5. Average cardinality of the dominant set Λ∗ as a function of |Λ| with
kmax = 100 for 1000 randomly generated constraint sets Λ.

When the cardinality of the set |Λ∗| increases (i.e., comparing the two leftmost
and the two rightmost plots) the maximum execution time does not change signifi-
cantly. In fact, states that would have been reachable with fewer constraint become
unreachable due to the additional constraints pruning the state-space. However, we
experience a slight reduction in the execution time’s variance, which follows from
the nature of the dominant set. Comparing two dominant sets, Λ∗1 and Λ∗2, with the
same kmax: when |Λ∗1|= 2 and |Λ∗2|= 4, the set Λ∗2 must include less restrictive con-
straints (otherwise they would dominate the other constraints in the set). Hence, the
set Λ∗2 is less likely to be trivial to analyse.

Finally, including a RowHit constraint in the set Λ∗ increases the execution
time by an order of magnitude. This follows from the complex interconnections
between the RowHit and remaining weakly-hard constraints. Particularly, for the
AnyHit, AnyMiss, and RowMiss constraints it is sufficient to count the deadline
hits of the jobs currently in the window; however, the RowHit constraints need to
keep additional track of when they appeared. This is further reinforced by the fact
that when a dominant set includes a RowHit constraint, the other constraints in the
set have to be very conservative in order to neither dominate nor be dominated by
it. However, we remark that WeaklyHard.jl is able to generate an automaton for
a set Λ∗ of 4 constraints with kmax = 30, including a RowHit constraint, in less than
200 seconds.

5.4 Determining the dominant constraint set
In Section 5.3 we investigated dominant sets Λ∗ with cardinality |Λ∗| ∈ {2,4}. Here
we justify why this is a relevant benchmark despite the low cardinality.

We select a maximum window size kmax = 100. The window size is large enough
that we can find an expressive variety of constraints without partial ordering. We

147

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

randomly generate sets Λ containing |Λ| ∈ {1, . . . ,100} constraints. For each value
of |Λ|we generate 1000 different sets, excluding all the trivial constraints that would
reduce to λ and λ . We then compute the dominant set Λ∗ corresponding to each set.
Figure 5 shows the average cardinality of Λ∗ (solid line) and the experienced range
(area).

As can be seen, most constraint sets reduce to dominant sets with cardinality
less than 4, thus motivating our investigation of the automaton generation execution
time. Generally, it is also interesting that additional constraints tends to reduce the
cardinality of Λ∗, after a peak is reached. This is however not surprising seeing as
adding constraints increases the chances of the added constraints being dominant
over some of the constraints in the set.

6. Conclusion

The research behind this paper is motivated by the attention the weakly-hard model
is receiving in both academic and industrial contexts. The paper primarily pro-
poses two contributions: (i) two novel theorems that complete the relation graph
between weakly-hard constraints of different types, and (ii) an open-source tool,
WeaklyHard.jl, that helps in the analysis of weakly-hard tasks. The tool includes
functions to relate different weakly-hard constraints to one another, and functions
to generate automata that encode the feasible outcomes of weakly-hard tasks.

We envision WeaklyHard.jl to be used for (i) the analysis of complex tasksets,
in which tasks are subject to different weakly-hard constraints, possibly with large
windows, (ii) the generation of monitoring code that provides runtime checks for
the satisfaction of weakly-hard constraints. As an example, to validate the conjec-
tures that became the theorems of Section 3.1, we used WeaklyHard.jl to generate
the satisfaction sets for various pairs of AnyHit and RowHit constraints. We then
calculated the intersection between the generated sets to verify that our conjecture
held for the specific cases under test.

We analyse the scalability of WeaklyHard.jl and the dominance between dif-
ferent constraints. Furthermore, we build dominant sets of constraints. To the best
of our knowledge, WeaklyHard.jl is the first tool that enables the analysis of tasks
that satisfy sets of weakly-hard constraints.

Acknowledgements

The authors are members of the ELLIIT Strategic Research Area at Lund Univer-
sity. This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement Number 871259 (AD-
MORPH project). This publication reflects only the authors’ view and the European
Commission is not responsible for any use that may be made of the information it
contains.

148

References

References

Ahrendts, L., S. Quinton, T. Boroske, and R. Ernst (2018). “Verifying weakly-hard
real-time properties of traffic streams in switched networks”. In: 30th Euromi-
cro Conference on Real-Time Systems (ECRTS). Vol. 106. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 15:1–15:22. ISBN: 978-3-95977-075-0.

Åkesson, B., M. Nasri, G. Nelissen, S. Altmeyer, and R. I. Davis (2020). “An em-
pirical survey-based study into industry practice in real-time systems”. In: 41st
IEEE Real-Time Systems Symposium (RTSS).

Behrouzian, A., H. Ara, M. Geilen, D. Goswami, and T. Basten (2020). “Firm-
ness analysis of real-time tasks”. ACM Trans. Embed. Comput. Syst. 19:4. ISSN:
1539-9087. DOI: 10.1145/3398328. URL: https://doi.org/10.1145/
3398328.

Bernat, G., A. Burns, and A. Liamosi (2001). “Weakly hard real-time systems”.
IEEE Transactions on Computers 50:4, pp. 308–321. DOI: 10 . 1109 / 12 .
919277.

Bernat, G. (1998). Specification and analysis of weakly hard real-time systems. PhD
thesis. Department de les Ciéncies Matemátiques i Informática, Universitat de
les Illes Balears, Spain.

Bezanson, J., A. Edelman, S. Karpinski, and V. Shah (2017). “Julia: a fresh approach
to numerical computing”. SIAM review 59:1, pp. 65–98. URL: https://doi.
org/10.1137/141000671.

Bozhko, S., G. von der Brüggen, and B. B. Brandenburg (2021). “Monte carlo
response-time analysis”. In: IEEE Real-Time Systems Symposium (RTSS),
pp. 342–355. DOI: 10.1109/RTSS52674.2021.00039.

Brüggen, G. von der, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik (2018).
“Efficiently approximating the probability of deadline misses in real-time sys-
tems”. In: Altmeyer, S. (Ed.). 30th Euromicro Conference on Real-Time Sys-
tems (ECRTS 2018). Vol. 106. Leibniz International Proceedings in Informatics
(LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Ger-
many, 6:1–6:22. ISBN: 978-3-95977-075-0. DOI: 10.4230/LIPIcs.ECRTS.
2018.6. URL: http://drops.dagstuhl.de/opus/volltexte/2018/
8997.

Brüggen, G. von der, N. Piatkowski, K.-H. Chen, J.-J. Chen, K. Morik, and B. B.
Brandenburg (2021). “Efficiently approximating the worst-case deadline fail-
ure probability under edf”. In: IEEE Real-Time Systems Symposium (RTSS),
pp. 214–226. DOI: 10.1109/RTSS52674.2021.00029.

Burns, A. and R. Davis (2013). “Mixed criticality systems – a review”. Department
of Computer Science, University of York, Tech. Rep, pp. 1–69.

149

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

Buttazzo, G., G. Lipari, L. Abeni, and M. Caccamo (2005). Soft Real-Time Systems.
Springer.

Casini, D., T. BlaSS, I. Lütkebohle, and B. Brandenburg (2019). “Response-time
analysis of ROS2 processing chains under reservation-based scheduling”. In:
31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Vol. 133, 6:1–
6:23. ISBN: 978-3-95977-110-8. DOI: 10.4230/LIPIcs.ECRTS.2019.6. URL:
http://drops.dagstuhl.de/opus/volltexte/2019/10743.

Fersman, E., P. Pettersson, and W. Yi (2002). “Timed automata with asynchronous
processes: schedulability and decidability”. In: Katoen, J.-P. et al. (Eds.). Tools
and Algorithms for the Construction and Analysis of Systems. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp. 67–82. ISBN: 978-3-540-46002-2.

Fersman, E., P. Krcal, P. Pettersson, and W. Yi (2007). “Task automata: schedu-
lability, decidability and undecidability”. Information and Computing 205:8,
pp. 1149–1172. ISSN: 0890-5401. DOI: 10.1016/j.ic.2007.01.009.

Hamdaoui, M. and P. Ramanathan (1995). “A dynamic priority assignment tech-
nique for streams with (m,k)-firm deadlines”. IEEE Transactions on Computers
44:12, pp. 1443–1451.

Hammadeh, Z. A. H., R. Ernst, S. Quinton, R. Henia, and L. Rioux (2017a).
“Bounding deadline misses in weakly-hard real-time systems with task de-
pendencies”. In: Design, Automation & Test in Europe Conference Exhibition
(DATE), pp. 584–589.

Hammadeh, Z. A. H., S. Quinton, M. Panunzio, R. Henia, L. Rioux, and R. Ernst
(2017b). “Budgeting under-specified tasks for weakly-hard real-time systems”.
In: 29th Euromicro Conference on Real-Time Systems (ECRTS). Vol. 76. Leibniz
International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 17:1–17:22. ISBN: 978-3-95977-037-8.

Hammadeh, Z., R. Ernst, S. Quinton, R. Henia, and L. Rioux (2017c). “Bound-
ing deadline misses in weakly-hard real-time systems with task dependencies”.
In: Design, Automation Test in Europe Conference Exhibition (DATE), 2017,
pp. 584–589. DOI: 10.23919/DATE.2017.7927054.

Hopcroft, J., R. Motwani, and J. Ullman (2006). Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publish-
ing Co., Inc., USA. ISBN: 0321455363.

Horssen, E. P. van, A. R. B. Behrouzian, D. Goswami, D. Antunes, T. Basten, and
W. P. M. H. Heemels (2016). “Performance analysis and controller improvement
for linear systems with (m, k)-firm data losses”. In: 2016 European Control
Conference (ECC), pp. 2571–2577. DOI: 10.1109/ECC.2016.7810677.

Huang, C., W. Li, and Q. Zhu (2019a). “Formal verification of weakly-hard sys-
tems”. In: Proceedings of the 22nd ACM International Conference on Hybrid
Systems: Computation and Control. HSCC ’19. Association for Computing Ma-

150

References

chinery, Montreal, Quebec, Canada, pp. 197–207. ISBN: 9781450362825. DOI:
10.1145/3302504.3311811.

Huang, C., K. Wardega, W. Li, and Q. Zhu (2019b). “Exploring weakly-hard
paradigm for networked systems”. In: Proceedings of the Workshop on De-
sign Automation for CPS and IoT. DESTION ’19. Association for Comput-
ing Machinery, New York, NY, USA, pp. 51–59. ISBN: 9781450366991. DOI:
10.1145/3313151.3313165.

Koren, G. and D. Shasha (1995). “Skip-Over: algorithms and complexity for over-
loaded systems that allow skips”. In: 16th IEEE Real-Time Systems Symposium
(RTSS), pp. 110–117.

Linsenmayer, S. and F. Allgower (2017). “Stabilization of networked control sys-
tems with weakly hard real-time dropout description”. In: 56th IEEE Confer-
ence on Decision and Control (CDC), pp. 4765–4770.

Linsenmayer, S., B. W. Carabelli, S. Wildhagen, K. Rothermel, and F. All-
göwer (2021). “Controller and triggering mechanism co-design for control over
time-slotted networks”. IEEE Transactions on Control of Network Systems 8,
pp. 222–232.

Maggio, M., A. Hamann, E. Mayer-John, and D. Ziegenbein (2020). “Control-
system stability under consecutive deadline misses constraints”. In: 32nd Eu-
romicro Conference on Real-Time Systems (ECRTS). Leibniz International Pro-
ceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik.

Manolache, S., P. Eles, and Z. Peng (2004). “Optimization of soft real-time sys-
tems with deadline miss ratio constraints”. In: IEEE Real-Time and Embedded
Technology and Applications Symposium, pp. 562–570. DOI: 10.1109/RTTAS.
2004.1317304.

Osch, M. van and S. Smolka (2001). “Finite-state analysis of the can bus proto-
col”. In: Proceedings Sixth IEEE International Symposium on High Assurance
Systems Engineering. Special Topic: Impact of Networking, pp. 42–52. DOI:
10.1109/HASE.2001.966806.

Pazzaglia, P., A. Hamann, D. Ziegenbein, and M. Maggio (2021a). “Adaptive design
of real-time control systems subject to sporadic overruns”. In: Design, Automa-
tion & Test in Europe Conference Exhibition (DATE).

Pazzaglia, P., L. Pannocchi, A. Biondi, and M. D. Natale (2018). “Beyond the
Weakly Hard Model: Measuring the Performance Cost of Deadline Misses”. In:
Altmeyer, S. (Ed.). 30th Euromicro Conference on Real-Time Systems (ECRTS
2018). Vol. 106. Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 10:1–10:22. ISBN: 978-3-
95977-075-0. DOI: 10.4230/LIPIcs.ECRTS.2018.10.

151

Paper III. WeaklyHard.jl: Scalable Analysis of Weakly-Hard Constraints

Pazzaglia, P., Y. Sun, and M. Di Natale (2021b). “Generalized weakly hard schedu-
lability analysis for real-time periodic tasks”. ACM Trans. Embed. Comput. Syst.
20:1, 3:1–3:26. DOI: 10.1145/3404888. URL: https://doi.org/10.1145/
3404888.

Ramanathan, P. (1999). “Overload management in real-time control applications
using (m, k)-firm guarantee”. IEEE Transactions on Parallel and Distributed
Systems 10:6, pp. 549–559. DOI: 10.1109/71.774906.

Stigge, M. and W. Yi (2015). “Graph-based models for real-time workload: a sur-
vey.” Real-Time Systems 51, pp. 602–636. DOI: 10.1007/s11241-015-9234-
z.

Sun, Y. and M. D. Natale (2017). “Weakly hard schedulability analysis for fixed pri-
ority scheduling of periodic real-time tasks”. ACM Transactions on Embedded
Computing Systems 16:5s. ISSN: 1539-9087.

Tu, G., J.-l. Li, F.-m. Yang, and W. Luo (2007). “Relationships between window-
based real-time constraints”. In: 13th IEEE International Conference on Em-
bedded and Real-Time Computing Systems and Applications (RTCSA 2007),
pp. 394–399. DOI: 10.1109/RTCSA.2007.62.

Vreman, N., A. Cervin, and M. Maggio (2021). “Stability and Performance Analy-
sis of Control Systems Subject to Bursts of Deadline Misses”. In: 33rd Euromi-
cro Conference on Real-Time Systems (ECRTS). Vol. 196. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. ISBN: 978-3-95977-192-4. DOI: 10.4230/LIPIcs.ECRTS.2021.
15.

Wu, S.-L., C.-Y. Bai, K.-C. Chang, Y.-T. Hsieh, C. Huang, C.-W. Lin, E. Kang,
and Q. Zhu (2020). “Efficient system verification with multiple weakly-hard
constraints for runtime monitoring”. In: Deshmukh, J. et al. (Eds.). Runtime
Verification. Springer International Publishing, Cham, pp. 497–516. ISBN: 978-
3-030-60508-7.

Xu, W., Z. A. H. Hammadeh, A. Kröller, R. Ernst, and S. Quinton (2015). “Im-
proved deadline miss models for real-time systems using typical worst-case
analysis”. In: 27th Euromicro Conference on Real-Time Systems (ECRTS),
pp. 247–256.

Zeng, H. and M. Di Natale (2012). “Schedulability analysis of periodic tasks imple-
menting synchronous finite state machines”. In: 24th Euromicro Conference on
Real-Time Systems (ECRTS), pp. 353–362. DOI: 10.1109/ECRTS.2012.30.

152

Paper IV

Stability of Linear Control Systems under
Extended Weakly-Hard Constraints

Nils Vreman Paolo Pazzaglia Victor Magron Jie Wang

Martina Maggio

Abstract

Control systems can show robustness to many events, like disturbances and
model inaccuracies. It is natural to speculate that they are also robust to spo-
radic deadline misses when implemented as digital tasks on an embedded plat-
form. This paper proposes a comprehensive stability analysis for control sys-
tems subject to deadline misses, leveraging a new formulation to describe the
patterns experienced by the control task under different handling strategies.
Such analysis brings the assessment of control systems robustness to computa-
tional problems one step closer to the controller implementation.

Originally published in IEEE Control Systems Letters (2022). The mathemati-
cal notation has been unified to match the remainder of the thesis. Reprinted with
permission.

153

Paper IV. Stability under Extended Weakly-Hard Constraints

1. Introduction

Robustness is an essential concern in the design of control systems; they must be
able to reliably handle nonlinear effects, unmodeled dynamics and noise, as well
as delays in signal transmissions and dropped packets. A lesser known problem
concerns the assessment of robustness to computational issues when controllers are
implemented as periodic tasks in cheap embedded platforms. Such tasks are ex-
pected to execute with real-time guarantees, i.e., their execution must be completed
before a well-defined deadline, when the control output must be sent to the actuator.
However, it is common in practice [Akesson et al., 2020] that tasks do not always
complete within their deadline, causing what is called a deadline miss. This may be
caused by delays in computation and memory accesses, transient overloads, bugs
and other issues.

A popular model to describe real-time systems allowing deadline misses is
the weakly-hard model [Bernat et al., 2001]. Weakly-hard tasks feature constraints
defining a maximum number of deadlines that can be missed (alternatively, a mini-
mum number to be satisfied) in a given number of consecutive periods. This model
is also the focus of this work. To analyse the effects on the controlled plant, it is
necessary to specify also what happens when the miss is experienced, both in terms
of changes to the control signal and of actions taken to deal with the failed compu-
tation [Pazzaglia et al., 2019]. An instance that experiences a deadline miss can be
allowed to continue executing until completion (and possibly used later), while in
other applications it is stopped and discarded instead.

There is however a mismatch between the guarantees that can be obtained for
real-time tasks and platforms [Xu et al., 2015; Choi et al., 2019], and the anal-
ysis available for control tasks under the weakly-hard model. Fewer works deal
with stability analysis of weakly-hard real-time control tasks, often targeting spe-
cific use-cases. For instance, the analysis in [Maggio et al., 2020] is limited to con-
straints specifying a maximum number of consecutive deadline misses. The results
in [Linsenmayer and Allgower, 2017; Linsenmayer et al., 2020], obtained for net-
worked linear control systems having packet dropouts bounded using the weakly-
hard model, can not be generalised for late completions or sets of weakly-hard
constraints. The authors of [Liang et al., 2019; Liang et al., 2020] studied safety
guarantees of weakly-hard controllers, considering a miss as a discarded compu-
tation with a known periodic pattern. In [Huang et al., 2020; Huang et al., 2019],
an over-approximation-based approach is proposed to check the safety of nonlin-
ear weakly-hard systems, where misses are treated as discarded computations and
the actuator holds its previous value. Convergence rates (providing sufficient stabil-
ity guarantees) are analysed in [Gaukler et al., 2019]. A Lyapunov-based stability
analysis of nonlinear weakly-hard systems is studied in [Hertneck et al., 2021],
with deadline misses treated as packet dropouts. However, the state-of-the-art listed
above lack generalisability to more expressive real-time implementations, such as
different deadline miss models or handling strategies.

154

2 Background and Notation

This paper aims at filling the gap, by providing a stability analysis that can
be applied to a class of generic weakly-hard models and deadline miss handling
strategies. First, we formally extend the weakly-hard model to explicitly consider
the strategy used to handle the miss events. By leveraging an automaton represen-
tation of the sequences allowed by (a set of) extended weakly-hard constraints,
we use Kronecker lifting and the joint spectral radius to properly express its sta-
bility conditions. Using the concept of constraint dominance, we prove analytic
bounds on the stability of a weakly-hard system with respect to less dominant con-
straints. Finally, we analyse the stability of the resulting closed-loop systems using
SparseJSR [Wang et al., 2021a], which exploits the sparsity pattern that naturally
arises in the Kronecker lifted representation. The proposed analysis calls for modu-
larity and separation of concern, and can be a useful tool to decouple the constraint
specification and the control verification.

2. Background and Notation

We consider a controllable and fully observable discrete-time sampled linear time
invariant system, expressed as

P :

{
xk+1 = Axk +Buk

yk =C xk +Duk,
(1)

where xk ∈Rnx , uk ∈Rnu and yk ∈Rny are the plant state, the control signal and the
plant output, sampled at time k ·T , T is the sampling period, and k ∈N≥. The plant
is controlled by a stabilising, LTI, one-step delay discrete-time controller

C :

{
zk+1 = F zk +G (rk− yk)

uk+1 = H zk +K (rk− yk) ,
(2)

where zk ∈Rnz is the controller’s internal state and rk ∈Rny is the setpoint. Without
loss of generality, we consider rk = 0.

2.1 Real-time tasks that may miss deadlines
The controller in (2) is implemented as a real-time task τ , and designed to be exe-
cuted periodically with period T in a real-time embedded platform. Under nominal
conditions the task releases an instance (called job) in each period, that should be
completed before the release of the next instance. We denote the sequence of acti-
vation instants for τ with (ak)k∈N≥ , such that, in nominal conditions, ak+1 = ak +T ,
the sequence of completion instants (fk)k∈N≥ , and the sequence of job deadlines
with (dk)k∈N≥ , such that dk = ak +T (also called implicit deadline). This require-
ment can be either satisfied or not, leading respectively to deadline hits and misses.

155

Paper IV. Stability under Extended Weakly-Hard Constraints

DEFINITION 1—DEADLINE HIT AND MISS
The k-th job of a periodic task τ with period T hits its deadline when fk ≤ dk and
misses its deadline when fk > dk.

We refer to both deadline hits and misses using the term outcome of a job. In-
tuitively, each job’s outcome is dependent on the characteristics of the remaining
tasks executing in the real-time system and the chosen scheduling algorithm. Given
a taskset and a (worst-case) schedule, it is possible to bound the worst-case be-
haviour of the job outcomes [Bernat et al., 2001; Xu et al., 2015]. This bound is
generally denoted using the weakly-hard model [Bernat et al., 2001]. Following
such model, a task τ may satisfy any combination of these weakly-hard constraints,
defined as follows.

(i) τ `
(x
`

)
: in any window of ` consecutive jobs, at most x deadlines are missed;

(ii) τ `
(x
`

)
: in any window of ` consecutive jobs, at least x deadlines are hit;

(iii) τ `
〈x
`

〉
: in any window of ` consecutive jobs, at most x consecutive deadlines

are missed; and

(iv) τ `
〈x
`

〉
: in any window of ` consecutive jobs, at least x consecutive deadlines

are hit.

In all such cases, x ∈ N≥, ` ∈ N>, and x ≤ `. A generic weakly-hard constraint is
hereafter denoted with the symbol λ , while a set of L constraints will be referred to
as Λ = {λ1,λ2, . . . ,λL}.

We define a word w = 〈c1,c2, . . . ,cN〉 as a sequence of N consecutive outcomes,
where each outcome ck is a character in the alphabet Σ = {M,H}. We use w ` λ to
denote that w satisfies the constraint λ . Stating that τ ` λ means that all the possible
sequences of outcomes that τ can experience satisfy the corresponding constraint λ .
The set of such sequences naturally results from the definition of λ , and is formally
defined as the satisfaction set as follows [Bernat et al., 2001].

DEFINITION 2—SATISFACTION SET SN (λ)
We denote with SN (λ) the set of words of length N ≥ 1 that satisfy a constraint λ .
Formally, SN (λ) = {w ∈ ΣN | w ` λ}.

Taking the limit to infinity, the set S (λ) contains all the words of infinite length that
satisfy λ . The notion of domination between constraints [Bernat et al., 2001] then
follows.

DEFINITION 3—CONSTRAINT DOMINATION
Constraint λi dominates λ j (formally, λi � λ j) if S (λi)⊆ S (λ j).

156

2 Background and Notation

2.2 Control tasks that may miss deadlines
When a control task τ is implemented on an embedded platform with limited
computational power, alongside other applications, it is not uncommon for it to
experience deadline misses, even in case of simple control designs (PID, LQG,
etc) [Akesson et al., 2020; Pazzaglia et al., 2021]. Computational overruns may
be caused by, e.g., bursts of interrupts, cache misses, variable execution times of
ancillary functions, or other complex interactions. If such events are rare or tempo-
rary, choosing a longer period for the controller to avoid them may result in worse
performance and stability margins for nominal conditions [Pazzaglia et al., 2019].

Characterising the stability and performance of such controllers requires know-
ing what happens when a control deadline is missed [Pazzaglia et al., 2019; Maggio
et al., 2020; Vreman et al., 2021]. In particular, we need a deadline miss handling
strategy to decide the fate of the job that missed the deadline (and possibly the next
ones), and an actuator mode to deal with the loss of a new control signal, for ex-
ample by Holding the previous value constant or Zeroing it [Schenato, 2009]. A
few handling strategies for periodic controllers have been proposed in literature, the
most interesting being Kill and Skip [Cervin, 2005; Pazzaglia et al., 2019; Maggio
et al., 2020].

DEFINITION 4—Kill STRATEGY
Under the Kill strategy, a job that misses its deadline is terminated immediately.
Formally, for the k-th job of τ either fk ≤ dk or fk = ∞.

DEFINITION 5—Skip STRATEGY
Under the Skip strategy, a job that misses its deadline is allowed to continue during
the following period. Formally, if the k-th job of τ misses its deadline dk, a new
deadline d+

k = dk +T is set for the job, and ak+1 = d+
k .

2.3 Stability analysis techniques based on JSR
In [Maggio et al., 2020], the authors identify a set of subsequences of hit and missed
deadlines, which can be arbitrarily combined to obtain all possible sequences in
S (

〈x
`

〉
). The stability analysis of the resulting arbitrary switching system is then

obtained by leveraging the Joint Spectral Radius (JSR) [Rota and Strang, 1960].
Given m ∈ N> and a set of matrices A = {Φ1, . . . ,Φm} ⊆ Rn×n, under the hy-

pothesis of arbitrary switching over any sequence s = 〈a1,a2, . . .〉 of indices of ma-
trices in A, the JSR of A is defined by:

ρ (A) = lim
N→∞

max
s∈{1,...,m}N

‖ΦaN · · ·Φa2Φa1‖
1
N . (3)

The number ρ (A) characterizes the maximal asymptotic growth rate of matrix
products from A (thus ρ(A) < 1 means that the system is asymptotically stable),
and is independent of the norm ‖·‖ used in (3). Existing practical tools such as the

157

Paper IV. Stability under Extended Weakly-Hard Constraints

JSR Matlab toolbox [Vankeerberghen et al., 2014] include multiple algorithms to
compute both upper and lower bounds on ρ (A).

When the switching sequences between the dynamics of A are not arbitrary,
but constrained by a graph G, the so called constrained joint spectral radius
(CJSR) [Dai, 2012] can be applied. Introducing SN (G) as the set of all possible
switching sequences s of length N that satisfy the constraints of a graph G, the
CJSR of A is defined by

ρ (A,G) = lim
N→∞

max
s∈SN(G)

‖ΦaN · · ·Φa2Φa1‖
1
N . (4)

In general, computing or approximating the CJSR is harder than using the JSR.
In [Philippe et al., 2016], the authors propose a multinorm-based method to ap-
proximate with arbitrary accuracy the CJSR. Other works [Kozyakin, 2014; Xu and
Acikmese, 2020] propose the creation of an arbitrary switching system such that
its JSR is equal to the CJSR of the original system, based on a Kronecker lifting
method. This will be also our approach, as detailed later.

In [Parrilo and Jadbabaie, 2008], the authors propose an efficient approach to
compute upper bounds of the JSR based on positive polynomials which can be de-
composed as sums of squares (SOS). Finding the coefficients of a polynomial being
SOS simplifies to solving an SDP [Lasserre, 2001]. To reduce time and space com-
plexity, a sparse variant has been proposed in [Wang et al., 2021a] exploiting the
sparsity of the input matrices, based on the term sparsity SOS (TSSOS) frame-
work [Wang et al., 2021b]. By contrast, the procedure in [Parrilo and Jadbabaie,
2008] will be denoted hereafter as dense. While providing a more conservative re-
sult, the sparse upper bound can be obtained significantly faster if the matrices from
A are sparse [Wang et al., 2021a], e.g., the matrices we analyse in Section 5.

3. Extended Weakly-Hard Task Model

To provide a comprehensive analysis framework, we need to examine what occurs
in each time interval (πk)k∈N≥ , with πk = [a0+k ·T,a0+(k+1) ·T). In this context,
an extension of the weakly-hard model is required to account for the given deadline
miss handling strategy, denoted with the symbolH.

DEFINITION 6—EXTENDED WEAKLY-HARD MODEL τ ` λH

A task τ may satisfy any combination of the four extended weakly-hard constraints
(EWHC) λH:

(i) τ `
(x
`

)H: in any window of ` consecutive jobs, at most x intervals lack a job
completion;

(ii) τ `
(x
`

)H: in any window of ` consecutive jobs, at least x intervals have a job
completion;

158

3 Extended Weakly-Hard Task Model

(iii) τ `
〈x
`

〉H: in any window of ` consecutive jobs, at most x consecutive intervals
lack a job completion;

(iv) τ `
〈x
`

〉H: in any window of ` consecutive jobs, at least x consecutive intervals
have a job completion

with x∈N≥, `∈N>, and x≤ `, while using strategyH to handle potential deadline
misses.

The definition above differs from the original weakly-hard model of [Bernat et al.,
2001], since (i) it explicitly introduces the handling strategyH; and (ii) it focuses on
the presence of a new control command at the end of each time interval πk, instead
of checking the deadline miss events, which guarantees its applicability also for
strategies different than Kill.

We now require an expressive alphabet Σ(H) to characterize the behaviour of
task τ in each possible time interval. For both Kill and Skip strategies, each in-
terval πk contains at most one activated and one completed job. This restricts the
possible behaviours to three cases:

(i) a time interval in which the same job is both released and completed is de-
noted by H (hit);

(ii) a time interval in which no job is completed is denoted by M (miss);

(iii) a time interval in which no job is released, but a job (released in a previous
interval) is completed, is denoted by R (recovery).

By checking all unique combinations of job activations and completions in each
interval, we obtain the alphabets for Kill and Skip as Σ(Kill) = {M,H} and
Σ(Skip) = {M,H,R}, respectively. The recovery character R is used in the Skip
alphabet to identify the late completion of a job. As a consequence, R is treated
equivalently to H when verifying the extended weakly hard constraints (EWHC).

The algebra presented in Section 2.1 is extended to the new alphabet. We assign
a character of the alphabet Σ(H) to each interval πk. A word w = 〈c1,c2, . . . ,cN〉 is
used to represent a sequence of N outcomes for task τ , with ck ∈ Σ(H) representing
the outcome associated to the interval πk. To enforce only feasible sequences, we
introduce an order constraint for the R character with the following Rule.

RULE 1—OUTCOME ORDERING

For any word w ∈ Σ(Skip)N , R may only directly follow M, or be the initial element
of the word.

The extended weakly-hard model also inherits all the properties of the original
weakly-hard model. In particular, the satisfaction set of λH can be defined for N ≥ 1
as SN (λH) = {w ∈ Σ(H)N | w ` λH}, and the constraint domination still holds as
λH

i � λH
j if S (λH

i)⊆ S (λH
j).

159

Paper IV. Stability under Extended Weakly-Hard Constraints

4. Automaton Representation of EWHC

Any EWHC, as presented in Definition 6, can be systematically represented using
an automaton. In this paper we build upon the WeaklyHard.jl automaton model
presented in [Vreman et al., 2022]. Here, a (minimal) automaton G

λH =(V
λH ,E

λH)
associated to λH consists of a set of vertices (V

λH) and a set of directed labeled
edges (E

λH). Each vertex vi ∈ V
λH corresponds to a word of outcomes of the ex-

tended weakly-hard task executions. Trivially, there exists no vertices for words that
do not satisfy the EWHC. A directed labeled edge ei, j = (vi,v j,c) ∈ E

λH (also de-
noted transition) connects two vertices iff the outcome c ∈ Σ(H) – the edge’s label
– appended to the tail vertex’s word representation (vi) would result in the word
equivalent to the one of the head vertex (v j). Thus, a random walk in the automaton
corresponds to a random word satisfying the EWHC. In particular, all the walks in
the automaton corresponds to all words in S (λH).

Since the WeaklyHard.jl automaton model only uses the binary alphabet Σ =
{M,H}, we require the additional character R to handle the Skip strategy properly.
Recall that both a hit (H) and a recovery (R) are considered job completions. Thus,
for the Skip strategy, we post-process the automaton by enforcing that Rule 1 is
honoured and that the corresponding transitions are correct, i.e., switching the labels
on some edges from H to R. We emphasise that despite the extended automaton
model appear similar for the Kill and Skip strategies, the differing transitions of
the two automata significantly affect the corresponding closed-loop systems, as will
be clear in Section 5.

The WeaklyHard.jl automaton model also allows for the case where the task
τ is subject to a set of multiple constraints. Since the stability analysis presented
in this paper is invariant to the type (and amount) of the constraints acting on the
control task τ , we henceforth say that τ is subject to a set of EWHC ΛH (unless
stated otherwise).

Extracting all transitions in E
ΛH corresponding to a character c ∈ Σ(H) yields

what is generally known as a directed adjacency matrix [Xu and Hong, 2012], de-
noted here as a transition matrix.

DEFINITION 7—TRANSITION MATRIX
Given an automaton G

ΛH , the transition matrix Fc(GΛH)∈RnV×nV , with nV = |V
ΛH |

and c ∈ Σ(H), is computed as Fc(GΛH) = { fi, j(c)} with

fi, j (c) =

{
1, if ∃ei, j = (vi,v j,c) ∈ E

ΛH

0, otherwise.

Since at most one successor exists from each vertex with a transition labeled with
c ∈ Σ(H), matrix Fc will have a column sum of either 1 or 0. We now introduce a
vector qk ∈ RnV called G-state, with nV = |V

ΛH |, representing the state of the given
automaton G

ΛH at interval πk.

160

5 Stability Analysis

DEFINITION 8—G-STATE qk

Given an automaton G
ΛH and a word w ∈ Σ(H)N , w = 〈c1,c2, . . . ,cN〉, for ` =

|v| , v ∈V
ΛH , we define qk ∈ RnV , where the i-th element qk,i is:

qk,i =

{
1, if 〈ck−`, . . . ,ck−1〉 ≡ vi ∈V

ΛH

0, otherwise.

The G-state qk is the vector representation of the vertex left at step k: here, qk =
0 means that the transition at step k− 1 was infeasible for the automaton. Given
an arbitrary word w = 〈c1, . . . ,ck, . . .〉, the G-state dynamics is defined as qk+1 =
Fc(GΛH) ·qk, and the following property holds [Xu and Hong, 2012].

LEMMA 1—INFEASIBLE SEQUENCE

If w /∈ SN (ΛH), then Fw(GΛH) = FcN (GΛH) · · ·Fc2(GΛH) ·Fc1(GΛH) = 0

Thus, if qk = 0 for an arbitrary k, then qk′ = 0 for k′ ≥ k.

5. Stability Analysis

Using the alphabet Σ(H) and the chosen actuator mode (i.e., Zeroing, or Holding
the previous value), we compute the closed-loop behaviour of the controlled system.
We identify one matrix for each dynamics corresponding to an interval πk associated
by c ∈ Σ(H), building the set AH.

Kill: Defining x̃K
k = [xT

k zT
k uT

k]
T as the closed-loop state vector, we compute the

discrete time closed-loop system dynamics ΦK
H , corresponding to the character H:

x̃K
k+1 = Φ

K
H x̃K

k , Φ
K
H =

 A 0 B
−GC F −GD
−KC H −KD

 .

For the case of M, the controller execution terminates prematurely and its states
are not updated (zk+1 = zk). Therefore, depending on the actuation mode (Zero or
Hold), the controller output is either zeroed (uk+1 = 0) or held (uk+1 = uk). The
resulting closed-loop system in state-space form is denoted with ΦK

M :

x̃K
k+1 = Φ

K
M x̃K

k , Φ
K
M =

A 0 B
0 I 0
0 0 ∆

 .

Here, ∆ = I (identity matrix) if the control signal is held and ∆ = 0 if zeroed. The
set of dynamic matrices under the Kill strategy is then AK = {ΦK

H ,Φ
K
M}.

Skip: For the Skip strategy, we introduce two additional states x̂k and ûk storing
the old values of xk and uk while the controller awaits an update. The resulting state

161

Paper IV. Stability under Extended Weakly-Hard Constraints

vector then becomes x̃S
k = [xT

k zT
k uT

k x̂T
k ûT

k]
T. When πk is associated to H, the two

additional states mirror the behaviour of the states of which they are storing data.
The resulting closed-loop system is described using ΦS

H :

x̃S
k+1 = Φ

S
H x̃S

k , Φ
S
H =


A 0 B 0 0
−GC F −GD 0 0
−KC H −KD 0 0

A 0 B 0 0
−KC H −KD 0 0

 .

For the case of M in πk, x̂k and ûk maintain their previous values. The resulting
closed-loop is described by ΦS

M :

x̃S
k+1 = Φ

S
M x̃S

k , Φ
S
M =


A 0 B 0 0
0 I 0 0 0
0 0 ∆ 0 0
0 0 0 I 0
0 0 0 0 I

 .

Finally, for the case of R, the new control command is calculated using the values
stored in x̂k and ûk. The resulting closed-loop system is described by ΦS

R :

x̃S
k+1 = Φ

S
R x̃S

k , Φ
S
R =


A 0 B 0 0
0 F 0 −GC −GD
0 H 0 −KC −KD
A 0 B 0 0
0 H 0 −KC −KD

 .

The resulting set of matrices under the Skip strategy is then defined as AS =
{ΦS

H ,Φ
S
M ,Φ

S
R}.

5.1 Kronecker lifted switching system
Combining the set of system dynamicsAH with the associated automaton G

ΛH , we
seek to obtain an equivalent system model based on Kronecker lifting, characterized
by a set of matrices denoted by L

ΛH and behaving as an arbitrary switching system,
such that ρ (L

ΛH) = ρ (AH,G
ΛH). In this way, powerful algorithms applicable to

arbitrary switching system [Vankeerberghen et al., 2014; Wang et al., 2021a] can
be used to find tight stability bounds. We build upon the Kronecker lifting approach
of [Xu and Acikmese, 2020]. Leveraging the vector qk of Definition 8, we introduce
the lifted discrete-time state ξk ∈ Rn·nV , defined as ξk = qk⊗ x̃k, where nV = |V

ΛH |
and ⊗ is the Kronecker product. By construction, ξk is a vector composed of nV
blocks of size n, where at most one block is equal to x̃k and all other blocks are
equal to the 0 vector. Then, we build a set of lifted matrices Lc(GΛH) ∈ Rn·nV×n·nV ,

162

5 Stability Analysis

which incorporates both the system dynamics and the possible transitions given a
certain outcome c ∈ Σ(H):

Lc(GΛH) = Fc(GΛH)⊗Φ
H
c , c ∈ Σ(H). (5)

The lifted dynamics of the closed loop system then become ξk+1 = Lc(GΛH) · ξk.
Formally, we obtain a system composed of a set of switching dynamic matrices,
L

ΛH .

DEFINITION 9—LIFTED SWITCHING SET L
ΛH

Given a set of dynamic matricesAH and an automaton G
ΛH , the switching set L

ΛH

is defined as:
L

ΛH = {Lc(GΛH) | c ∈ Σ(H)}.

Leveraging the mixed-product property of ⊗ and introducing a proper submulti-
plicative norm, it is possible to prove that ρ (L

ΛH) = ρ (AH,G
ΛH). For more details

and a formal proof we refer the interested reader to [Xu and Acikmese, 2020].

5.2 Extended weakly hard and JSR properties
We now provide a general relation between all EWHCs in terms of the joint spectral
radii.

THEOREM 1—JSR DOMINANCE

Given λH
1 and λH

2 as arbitrary EWHCs, if λH
2 � λH

1 then

ρ (L
λH

2
)≤ ρ (L

λH
1
).

Proof. From Equation (3), for a generic EWHC λH,

ρ (L
λH) = lim

N→∞
ρN (L

λH), ρN (L
λH) = max

a∈SN (λH)
‖Φa‖1/N .

Definition 3 gave us that λH
2 � λH

1 iff S (λH
2) ⊆ S (λH

1). Thus, if for a word b it
holds that b ∈ SN (λH

2), then it also holds that b ∈ SN (λH
1). The set of all possible

Φb is thus included in the set of all possible Φa, a ∈ SN (λH
1), thus:

max
b∈SN (λH

2)
‖Φb‖1/N ≤ max

a∈SN (λH
1)
‖Φa‖1/N , ∀N ∈ N>.

The theorem follows immediately when N→ ∞. 2

Theorem 1 is the first result that provides an analytic, correlation between the con-
trol theoretical analysis and real-time implementation. Primarily, it implies that the
constraint dominance from Definition 3 also carries on to the JSR, giving us a no-
tion of JSR dominance. The results of Theorem 1 are strategy-independent, further

163

Paper IV. Stability under Extended Weakly-Hard Constraints

reducing the coupling between the control analysis and real-time implementation,
and are also independent of the controlled system’s dynamics.

Two Corollaries of Theorem 1 are derived for the commonly used models
〈x
`

〉H
and

(x
`

)H, highlighting some practical relations between such constraints.

COROLLARY 1—
(x
`

)H DOMINANCE

Given λH
1 =

(x
`1

)H and λH
2 =

(x
`2

)H, if `1 ≤ `2 then

ρ (L
λH

2
)≤ ρ (L

λH
1
).

COROLLARY 2—
〈x
`

〉H DOMINANCE

Given λH
1 =

〈x
`

〉H and λH
2 =

(x
`

)H, then

ρ (L
λH

2
)≤ ρ (L

λH
1
).

The conclusions drawn from Theorem 1 are theoretical, but its practical applicabil-
ity lies in the algorithm used to find ρLB and ρUB, i.e., lower and upper bounds for
the JSR value. Using these bounds we can determine the stability of the correspond-
ing switching systems, as follows:

ρ
LB (L

λH
2
)≤ ρ (L

λH
2
)≤ ρ (L

λH
1
)≤ ρ

UB (L
λH

1
).

Regardless of the algorithm used to find the bounds, if λH
2 � λH

1 and ρUB(L
λH

1
)<

1, the system under λH
2 is switching stable. A similar relation holds for the lower

bound.
Theorem 1 can be further extended by relating the joint spectral radius of a

single constraint to sets of constraints.

THEOREM 2
Given an arbitrary EWHC λH, it holds that

ρ (L
ΛH)≤ ρ (L

λH), ∀ΛH 3 λ
H.

Proof. For an arbitrary EWHC set ΛH, its satisfaction set is

SN (ΛH) =
⋂

λH
i ∈ΛH

SN (λH
i).

Thus, for any λH
i ∈ ΛH it holds that

SN (ΛH)⊆ SN (λH).

164

6 Evaluation

If a word b is in SN (ΛH) it also belongs to SN (λH). The set of all possible Φb is
thus included in the set of all possible Φa, a ∈ SN (λH). As a consequence it holds
that

max
b∈SN (ΛH)

‖Φb‖1/N ≤ max
a∈SN (λH)

‖Φa‖1/N , ∀N ∈ N>.

The theorem follows immediately when N→ ∞. 2

As in Theorem 1, the more we restrict the execution pattern of the control task
with sets of constraints, the lower its JSR will be. Theorem 2 delivers the practical
insight that enforcing tighter EWHC to a stable system will never destabilise it, as
formally stated in the following corollary.

COROLLARY 3
Given an arbitrary EWHC λH, if ρ (L

λH)< 1 then

ρ (L
ΛH)< 1, ∀ΛH 3 λ

H.

6. Evaluation

We apply the lifted dynamics model presented in Section 5 to a representative plant
for the process industry, controlled using a PI-controller, sampled with T = 0.5 s:

P :


xk+1 =

0.606 0.304 0.076
0 0.606 0.304
0 0 0.606

xk +

0.014
0.091
0.394

uk

yk =
[
1 0 0

]
xk

C :

{
zk+1 = zk +0.359yk

uk+1 = 0.454zk +0.633yk.

We analyse the stability of the control systems subject to different
(x
`

)H constraints.
We consider all combinations of strategy (Kill or Skip) and actuator mode (Zero
or Hold). For each combination, we generate the lifted set L

λH . Its JSR ρ (L
λH) is

then approximated using three different algorithms. First, a lower and upper bound
of ρ (L

λH) is computed using the JSR toolbox [Vankeerberghen et al., 2014].
Then, an upper bound of the JSR is obtained via SOS relaxations, using both the
dense and sparse algorithm from SparseJSR [Wang et al., 2021a].

Table 1 displays our results, acquired on an Intel Core i5-8265U@1.60GHz
CPU with 8GB RAM. Lower and upper bounds are denoted “LB” and “UB”. All
upper bounds obtained with JSR toolbox was found greater than the ones obtained
with SOS, thus omitted from the Table. The symbol “−” means that the SDP solver
runs out of memory. The SDP solver in SparseJSR uses a second-order method.
Thus, a different solver (utilising a first-order method) could reduce memory usage

165

Paper IV. Stability under Extended Weakly-Hard Constraints

Ta
bl

e
1.

R
es

ul
ts

ob
ta

in
ed

fo
rt

he
st

ab
le

sy
st

em
P

,w
he

n
co

nt
ro

lle
d

us
in

g
C.

Ki
ll

&Z
er

o
Ki

ll
&H

ol
d

Sk
ip

&Z
er

o
Sk

ip
&H

ol
d

(x `) H
JS

R
D

en
se

Sp
ar

se
JS

R
D

en
se

Sp
ar

se
JS

R
D

en
se

Sp
ar

se
JS

R
D

en
se

Sp
ar

se
x

`
L

B
U

B
U

B
U

B
×

L
B

U
B

U
B

U
B

×
L

B
U

B
U

B
U

B
×

L
B

U
B

U
B

U
B

×
1

2
0.

96
0

1.
09

4
1.

07
0

1.
07

0
0.

86
0.

92
6

1.
09

4
1.

02
9

1.
02

9
0.

83
0.

92
2

1.
08

6
0.

92
4

0.
92

4
5.

40
0.

95
8

1.
08

3
0.

95
8

0.
95

8
4.

43
1

3
0.

92
0

1.
06

2
0.

99
5

0.
99

5
0.

83
0.

89
4

1.
05

3
0.

97
1

0.
97

1
0.

77
0.

89
8

1.
07

7
0.

97
4

0.
97

4
10

.5
0.

91
7

1.
07

7
0.

98
8

0.
98

8
10

.4
1

4
0.

89
0

1.
03

8
0.

94
5

0.
99

6
1.

06
0.

89
4

1.
02

1
0.

95
7

1.
02

5∗
1.

25
0.

89
8

1.
05

7
0.

96
3

0.
96

3
18

.2
0.

89
0

1.
06

3
0.

94
0

0.
94

0
15

.9
1

5
0.

89
0

1.
01

1
0.

92
2

0.
98

3
1.

96
0.

89
4

1.
01

1
0.

94
8

1.
00

8∗
2.

25
0.

89
8

1.
02

6
0.

95
4

0.
95

4
17

.6
0.

89
0

1.
03

9
0.

92
9

0.
92

9
20

.8
1

6
0.

89
0

1.
01

2
0.

92
0

0.
97

5
4.

36
0.

89
4

1.
01

6
0.

94
2

0.
99

5
3.

68
0.

89
8

1.
01

6
0.

94
6

0.
94

7
20

.9
0.

89
0

1.
02

3
0.

92
7

0.
92

7
25

.8

2
3

0.
98

3
1.

14
8

1.
12

4
1.

12
4

0.
67

0.
95

6
1.

15
2

1.
08

5
1.

08
5

0.
80

0.
95

3
1.

14
5

1.
03

4
1.

03
9

4.
45

0.
98

2
1.

14
8

1.
07

0
1.

07
6

5.
91

2
4

0.
96

0
1.

15
5

1.
07

9
1.

07
9

0.
74

0.
92

7
1.

16
0

1.
03

9
1.

03
9

0.
86

0.
92

2
1.

16
5

1.
03

3
1.

04
0

23
.9

0.
95

8
1.

16
7

1.
07

9
1.

08
6

24
.2

2
5

0.
93

9
1.

15
6

1.
03

9
1.

14
2

2.
09

0.
90

5
1.

15
6

1.
00

2
1.

10
5

1.
58

0.
89

8
1.

18
6

0.
99

9
1.

00
5

77
.8

0.
93

7
1.

18
2

1.
03

8
1.

04
3

58
.1

2
6

0.
92

0
1.

15
0

1.
00

7
1.

09
6

12
.3

0.
90

3
1.

14
5

0.
97

4
1.

08
0

19
.2

0.
90

7
1.

18
4

–
1.

00
7

–
0.

91
7

1.
18

2
–

0.
99

1
–

3
4

0.
99

0
1.

18
6

1.
13

3
1.

13
3

0.
76

0.
96

7
1.

19
2

1.
09

8
1.

09
8

1.
69

0.
96

7
1.

17
7

1.
07

2
1.

08
2

6.
59

0.
99

0
1.

19
1

1.
10

6
1.

11
7

5.
02

3
5

0.
97

5
1.

21
0

1.
10

9
1.

10
9

0.
77

0.
94

6
1.

21
5

1.
07

1
1.

07
1

1.
74

0.
94

2
1.

23
4

1.
07

1
1.

08
0

34
.3

0.
97

5
1.

23
3

1.
11

6
1.

12
5

35
.2

3
6

0.
96

0
1.

24
7

1.
08

2
1.

22
7

2.
61

0.
92

8
1.

25
2

1.
04

3
1.

18
2

3.
25

0.
92

1
1.

24
6

–
1.

11
8

–
0.

95
9

1.
24

2
–

1.
07

2
–

4
5

0.
99

4
1.

19
8

1.
13

0
1.

13
0

1.
06

0.
97

6
1.

20
6

1.
09

9
1.

09
9

0.
82

0.
97

4
1.

18
9

1.
12

2
1.

13
4

5.
43

0.
99

3
1.

12
1

1.
08

8
1.

10
0

5.
16

4
6

0.
98

3
1.

26
0

1.
12

0
1.

12
0

0.
68

0.
95

7
1.

26
7

1.
08

4
1.

08
4

0.
64

0.
95

3
1.

26
7

–
1.

14
3

–
0.

98
3

1.
26

5
–

1.
10

0
–

166

7 Conclusion

at the cost of potential accuracy loss. Bold values represent stable systems under
their corresponding EWHC, strategy, and actuator mode. Starred values represent
stable systems inferred from Corollary 1. The JSR toolbox provides an accurate
lower bound and a coarse upper bound. In contrast, the dense SOS method finds
a better upper bound but takes more time. We compare the time to run both SOS
methods, indicating with “×” the speedup factor to obtain the sparse bound w.r.t. the
dense.

All the upper bounds computed by JSR toolbox are greater than 1, while
all lower bounds are below 1, thus we cannot draw any conclusion using the JSR
toolbox. For all EWHC,

(x
`

)H where x= 1 and 2< `≤ 6 the SOS upper bounds al-
low us to infer that the system is stable for all combinations of strategy and actuator
mode, and also for `= 2 under the Skip strategy. From Theorem 1, the stability will
hold also for all constraints that are harder to satisfy; in particular, Corollary 1 im-
plies stability for all

(x
`

)H with x= 1 and `> 6. The speedup ratio is growing when `
increases, yielding a particularly high benefit of exploiting sparsity for Skip&Zero.

7. Conclusion

This paper proposes a switching stability analysis framework for LTI systems with
arbitrary weakly-hard constraints, extending the weakly-hard model and providing
an analytic stability bound. The analysis allows us to assess whether computational
errors (present in industrial controllers) affect the stability of the controlled systems.
Future work will focus on the performance loss due to the presence of deadline
misses following the extended weakly-hard model.

Acknowledgements

Nils Vreman and Martina Maggio are members of the ELLIIT Strategic Research
Area at Lund University. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agreement
Number 871259 (ADMORPH project). This publication reflects only the authors’
view and the European Commission is not responsible for any use that may be made
of the information it contains.

References

Akesson, B., M. Nasri, G. Nelissen, S. Altmeyer, and R. Davis (2020). “An empir-
ical survey-based study into industry practice in real-time systems”. In: Real-
Time Systems Symposium.

167

Paper IV. Stability under Extended Weakly-Hard Constraints

Bernat, G., A. Burns, and A. Liamosi (2001). “Weakly hard real-time systems”.
IEEE Transactions on Computers 50:4, pp. 308–321. DOI: 10 . 1109 / 12 .
919277.

Cervin, A. (2005). “Analysis of overrun strategies in periodic control tasks”. IFAC
Proceedings Volumes 38:1. 16th IFAC World Congress, pp. 219–224. ISSN:
1474-6670. DOI: 10.3182/20050703-6-CZ-1902.01076.

Choi, H., H. Kim, and Q. Zhu (2019). “Job-class-level fixed priority scheduling of
weakly-hard real-time systems”. In: Real-Time and Embedded Technology and
Applications Symposium.

Dai, X. (2012). “A gel’fand-type spectral radius formula and stability of linear con-
strained switching systems”. Linear Algebra and Applications.

Gaukler, M., T. Rheinfels, P. Ulbrich, and G. Roppenecker (2019). “Conver-
gence rate abstractions for weakly-hard real-time control”. arXiv preprint
arXiv:1912.09871.

Hertneck, M., S. Linsenmayer, and F. Allgöwer (2021). “Efficient stability analysis
approaches for nonlinear weakly-hard real-time control systems”. Automatica.

Huang, C., K.-C. Chang, C.-W. Lin, and Q. Zhu (2020). “Saw: a tool for safety
analysis of weakly-hard systems”. In: International Conference on Computer
Aided Verification. Springer.

Huang, C., W. Li, and Q. Zhu (2019). “Formal verification of weakly-hard systems”.
In: Proceedings of the 22nd ACM International Conference on Hybrid Systems:
Computation and Control.

Kozyakin, V. (2014). “The berger–wang formula for the markovian joint spectral
radius”. Linear Algebra and its Applications 448.

Lasserre, J. (2001). “Global optimization with polynomials and the problem of mo-
ments”. SIAM Journal on optimization 11:3.

Liang, H., Z. Wang, R. Jiao, and Q. Zhu (2020). “Leveraging weakly-hard con-
straints for improving system fault tolerance with functional and timing guaran-
tees”. In: Conference On Computer Aided Design.

Liang, H., Z. Wang, D. Roy, S. Dey, S. Chakraborty, and Q. Zhu (2019). “Security-
driven codesign with weakly-hard constraints for real-time embedded systems”.
In: International Conference on Computer Design.

Linsenmayer, S. and F. Allgower (2017). “Stabilization of networked control sys-
tems with weakly hard real-time dropout description”. In: 56th IEEE Confer-
ence on Decision and Control (CDC), pp. 4765–4770.

Linsenmayer, S., M. Hertneck, and F. Allgower (2020). “Linear weakly hard real-
time control systems: time-and event-triggered stabilization”. IEEE Transac-
tions on Automatic Control.

168

References

Maggio, M., A. Hamann, E. Mayer-John, and D. Ziegenbein (2020). “Control-
system stability under consecutive deadline misses constraints”. In: 32nd Eu-
romicro Conference on Real-Time Systems (ECRTS). Leibniz International Pro-
ceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik.

Parrilo, P. and A. Jadbabaie (2008). “Approximation of the joint spectral radius
using sum of squares”. Linear Algebra and its Applications.

Pazzaglia, P., A. Hamann, D. Ziegenbein, and M. Maggio (2021). “Adaptive design
of real-time control systems subject to sporadic overruns”. In: Design, Automa-
tion & Test in Europe Conference Exhibition.

Pazzaglia, P., C. Mandrioli, M. Maggio, and A. Cervin (2019). “DMAC: Deadline-
Miss-Aware Control”. In: 31st Euromicro Conference on Real-Time Systems
(ECRTS). Vol. 133. Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 1:1–1:24. ISBN: 978-3-
95977-110-8.

Philippe, M., R. Essick, G. Dullerud, and R. Jungers (2016). “Stability of discrete-
time switching systems with constrained switching sequences”. Automatica 72.

Rota, G. and W. Strang (1960). “A note on the joint spectral radius”.
Schenato, L. (2009). “To zero or to hold control inputs with lossy links?” IEEE

Transactions on Automatic Control 54:5, pp. 1093–1099.
Vankeerberghen, G., J. Hendrickx, and R. Jungers (2014). “Jsr: a toolbox to com-

pute the joint spectral radius”. In: International Conference on Hybrid Systems
Computation and Control.

Vreman, N., A. Cervin, and M. Maggio (2021). “Stability and Performance Analy-
sis of Control Systems Subject to Bursts of Deadline Misses”. In: 33rd Euromi-
cro Conference on Real-Time Systems (ECRTS). Vol. 196. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. ISBN: 978-3-95977-192-4. DOI: 10.4230/LIPIcs.ECRTS.2021.
15.

Vreman, N., R. Pates, and M. Maggio (2022). “Weaklyhard.jl: scalable analysis of
weakly-hard constraints”. In: 2022 IEEE 28th Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pp. 228–240. DOI: 10 . 1109 /
RTAS54340.2022.00026.

Wang, J., M. Maggio, and V. Magron (2021a). “SparseJSR: A Fast Algorithm to
Compute Joint Spectral Radius via Sparse SOS Decompositions”. American
Control Conference.

Wang, J., V. Magron, and J.-B. Lasserre (2021b). “TSSOS: A Moment-SOS hierar-
chy that exploits term sparsity”. SIAM Journal on Optimization 31:1.

Xu, W., Z. Hammadeh, A. Kröller, R. Ernst, and S. Quinton (2015). “Improved
deadline miss models for real-time systems using typical worst-case analysis”.
In: Euromicro Conference on Real-Time Systems.

169

Paper IV. Stability under Extended Weakly-Hard Constraints

Xu, X. and B. Acikmese (2020). “Approximation of the constrained joint spectral
radius via algebraic lifting”. Transactions on Automatic Control.

Xu, X. and Y. Hong (2012). “Matrix expression and reachability analysis of finite
automata”. Journal of Control Theory and Applications 10:2.

170

Paper V

Stochastic Analysis of Control Systems
Subject to Communication and Computation

Faults

Nils Vreman Martina Maggio

Abstract

Control theory allows one to design controllers that are robust to external dis-
turbances, model simplification, and modelling inaccuracy. Researchers have
investigated whether the robustness carries on to the controller’s digital imple-
mentation, mostly looking at how the controller reacts to either communication
or computational problems. Communication problems are typically modelled
using random variables (i.e., estimating the probability that a fault will occur
during a transmission), while computational problems are modelled using de-
terministic guarantees on the number of deadlines that the control task has to
meet. These fault models allow the engineer to both design robust controllers
and assess the controllers’ behaviour in the presence of isolated faults. Despite
being very relevant for the real-world implementations of control system, the
question of what happens when these faults occur simultaneously does not yet
have a proper answer. In this paper, we answer this question in the stochastic
setting, using the theory of Markov Jump Linear Systems to provide stability
contracts with almost sure guarantees of convergence. We apply our method
to two case studies from the recent literature and show their robustness to a
comprehensive set of faults.

Submitted to ACM SIGBED International Conference on Embedded Software
(2023).

171

Paper V. Stochastic Analysis of Control Systems Subject to Faults

1. Introduction

Two important objectives in the design of control systems are guaranteeing robust-
ness to disturbances and modelling inaccuracy [Åström and Wittenmark, 1997], and
the joint verification of the computer program implementing the controller logic, to-
gether with the physical system this program acts on [Bohrer et al., 2018]. The out-
come of the verification process is a certificate of correctness for the cyber-physical
system that comprises both the controller and the physical plant it controls.

However, during its actual execution, the controller operation can be affected
by faults such as computational delays and communication loss. Researchers have
been trying to quantify how much of the inherent controller robustness carries over
to tolerate communication [Ahrendts et al., 2018; Linsenmayer and Allgower, 2017;
Yang and Ozay, 2021] and computational [Pazzaglia et al., 2018; Maggio et al.,
2020; Hobbs et al., 2022] faults. The main appeal with these results is the ability to
guarantee properties of the closed-loop systems in worst-case conditions.

In real-world controller implementations, worst-case conditions are rare. The
results obtained to certify worst-case conditions may be exceedingly conservative
under normal operation [Vreman et al., 2021]. Furthermore, the process of obtaining
computational models (such as the weakly-hard [Bernat et al., 2001] task model)
that enable these analyses is still complex [Sun and Natale, 2017], restricting the
applicability of the controller analyses. On the contrary, typical fault models are
probabilistic. If some risk is tolerated, or if the worst-case is extremely rare, soft
real-time task models [Buttazzo et al., 2005] (i.e., probabilistic or stochastic) can
significantly improve typical-case performance analysis. These probabilistic models
aim to optimise the average-case performance rather than the worst-case robustness,
and can also be used to provide stochastic safety guarantees.

There exists a vast literature on stochastic stability for control systems, includ-
ing [Fang and Loparo, 2002; Liberzon, 2014; Blair Jr. and Sworder, 1975; Lincoln
and Cervin, 2002; Bolzern et al., 2010; Åström, 1970]. These results are typically
providing guarantees on the safe operation of a control system in the presence of
stochastic disturbance signals, rather than to guarantee the safe operation of a con-
trol system in the presence of computational problems. Moreover, the literature on
fault tolerance typically answers questions such as when is the first fault occur-
ring [Safari et al., 2022]. However, predicating over the safety of the control system
in the presence of faults should also take into account that multiple components can
fail at the same time. For example, a networked control system can experience a
channel dropout simultaneously with the controller code stalling and thus not com-
pleting its execution before its deadline.

Although some literature indicate that tolerating packet losses is enough for net-
worked control systems to function also in the presence of other fault types [Kauer
et al., 2014; Ghosh et al., 2018; Horssen et al., 2016; Ling and Lemmon, 2002;
Linsenmayer and Allgower, 2017], this can only be true for static controllers, e.g.,
LQ-regulators. For such controllers, a lost packet is equivalent to a missed deadline

172

2 Problem Formulation

if the controller waits indefinitely for a sensor packet to arrive. Even with the re-
striction of using a static controller, the assumption that the controller would wait
for sensor data indefinitely is both conservative and unrealistic.

In this paper we aim to resolve the misconception that packet losses in net-
worked control system can be used to analyse control deadline overruns (and vice
versa). We formulate the problem of analysing a control system in the presence of
simultaneous failures of three different types: (i) packet losses on the sensor chan-
nel, (ii) computational overruns of the control task, and (iii) packet losses on the
actuator channel. In solving this problem, we aim at bringing the control analysis
one step closer to the implementation of control tasks, considering actual control
skeletons that include, among other things, timeouts for communication channels.

To analyse the simultaneous presence of faults in computational units and com-
munication channels, this paper casts the problem into the formalism of Markov
Jump Linear Systems [Costa et al., 2005] and provides a stochastic analysis of the
controller behaviour. Specifically, we provide the following contributions:

• We compile a model of what happens to the control system when the differ-
ent faults are experienced. This model includes both the discrete state (which
encodes whether data transmissions and control computation have been suc-
cessful) and the dynamical state of the physical part of the system (which
describes the quantities that are affected by the controller execution both in
the controller itself and in the physical world).

• We leverage the literature on stochastic control to provide a probabilistic anal-
ysis of control systems subject to simultaneous communication and computa-
tion faults. The analysis aims to provide a certificate of mean square stability,
i.e., the simultaneous convergence of the average value of the state vector to
a precise point, and of its covariance (and hence standard deviation) to zero.

• We apply the analysis to two different case studies taken from the literature,
showing how resilient their controllers are to faults that may occur during the
lifetime and execution of the controller.

The rest of this paper is outlined as follows. Section 2 contains the necessary
background and a more precise problem statement. In Section 3 we propose an
analysis of control systems subject to both packet losses and computational over-
runs. In Section 4 we evaluate the analysis on two different case studies taken from
the literature, and show that we can assess the (stochastic) stability of the controlled
systems under a variety of simultaneous faults. Section 5 summarises the related
literature and Section 6 concludes the paper.

2. Problem Formulation

This section provides the necessary background and introduces the cyber-physical
system models used in the remainder of the paper. In particular, Section 2.1 provides

173

Paper V. Stochastic Analysis of Control Systems Subject to Faults

a brief overview of the models used in the design of linear control systems and
Section 2.2 discusses the implementation choices made in the realisation of the
controller code, and the faults that can be experienced by the controller. Finally,
Section 2.3 formalises the problem addressed in this paper.

2.1 Control System Synthesis
The objective of a feedback control system is to make a physical process (denoted
plant) behave according to some predetermined requirements. Such requirements
generally include stabilising the plant, rejecting disturbances, and tracking a desired
trajectory. Stability is essential to guarantee that physical quantities stay bounded.

In their most general form, the plant dynamics are continuous-time and non-
linear. However, for control analysis and synthesis purposes [Åström and Witten-
mark, 1997], a simpler model of the plant is generally devised and discretised, gen-
erally obtaining a discrete-time Linear Time-Invariant (LTI) state-space system. The
system typically takes the form

P :
{

xk+1 = Axk +Buk
yk =C xk +Duk

(1)

In the equation, k counts the discrete number of samples elapsed since system
startup, xk ∈ Rnx is the state vector, uk ∈ Rnu contains the control commands used
to affect the plant, and yk ∈ Rny is the sensor measurements. The plant dynamics is
encoded in the matrices A ∈ Rnx×nx , B ∈ Rnx×nu , C ∈ Rny×nx , and D ∈ Rny×nu . The
eigenvalues of A, determine if the system is inherently stable (max |eig (A)|< 1) or
not.

To satisfy the requirements, a controller is designed for and implemented on
digital hardware. Generally, controllers are designed and implemented following the
Logical Execution Time (LET) paradigm [Henzinger et al., 2003], i.e., the sensor
messages are received at the beginning of the control computation and the actuator
messages are sent at the end of the control period.1 Similarly to plants, controllers
are generally described using discrete-time, LTI state-space systems

C :
{

zk+1 = F zk +Gyk
uk+1 = H zk +K yk.

(2)

Here, zk ∈ Rnz is the controller’s internal state vector. The controller dynamics is
described by the matrices F ∈ Rnz×nz , G ∈ Rnz×ny , H ∈ Rnu×ny , and K ∈ Rnu×nz .2

Combining the dynamical models of the plant and controller we obtain the
closed-loop system Scl

Scl : x̃k+1 = Φ x̃k. (3)

1 The LET paradigm increases timing predictability and reduces jitter at the cost of introducing a
one-step delay in the control signal, i.e., uk+1.

2 A controller is stateless when nz = 0 and stateful otherwise, i.e., nz > 0. Stateless controllers can
always be written as C : uk+1 = K yk .

174

2 Problem Formulation

I C O P
zk xk

yk uk+1

Figure 1. Block diagram representing the interconnection of different components
in a control system. The controller C receives input from the sensor I and sends data
to the actuator O, which in turn acts on the plant P .

Here, x̃k is the closed-loop system’s state vector (with initial state x̃0) and Φ encodes
the closed-loop system’s dynamics. For the plant and controller models used in this
paper, the closed-loop state vector can be reduced down to x̃k = [xT

k ,z
T
k ,u

T
k]

T, where
T is the transpose operator. The nominal behaviour of Scl can then be described byxk+1

zk+1
uk+1


︸ ︷︷ ︸

x̃k+1

=

 A 0 B
GC F GD
KC H KD


︸ ︷︷ ︸

Φ

xk
zk
uk


︸ ︷︷ ︸

x̃k

. (4)

To assess whether a closed-loop system is stable under nominal conditions, it is
sufficient to check whether all eigenvalues of Φ lie inside the unit disc [Åström
and Wittenmark, 1997]. Denoting with ρ (Φ) the largest absolute magnitude of an
eigenvalue of Φ, then Scl is stable if and only if

ρ (Φ) = max |eig (Φ)|< 1. (5)

A schematic implementation of a closed-loop real-time control system Scl can
be seen in Figure 1. Starting from the sensors I, the plant is sampled at discrete
time instants k. The controller C then polls the sensor channel for the latest sampled
measurement signal to use in the calculation of the new control command uk. When
the new control command is computed, the controller stores it in memory before
sending it to the actuator O at the beginning of the next control iteration. Finally,
the actuator acts upon the plant P , based on the command it received from the
controller.

2.2 Fault Model
As anticipated, we aim at devising a stochastic analysis that determines the sta-
bility of the closed-loop system in the presence of faults. We assume that three
components in the real-time control system can experience faults (possibly simul-
taneously) (i) the sensor channel, that transmits information between the sensor I
and controller C, (ii) the control task, that executes the algorithm of the controller
C, and (iii) the actuator channel, that allows the controller C to communicate with
the actuator O. We provide a brief review of what can cause problems for both the
controller and the input/output (IO) channels, together with some common imple-
mentation details.

175

Paper V. Stochastic Analysis of Control Systems Subject to Faults

Control Task and Overruns Controllers C should periodically calculate a control
signal based on (2). They are generally implemented in control tasks, i.e., periodic
tasks with implicit deadlines. A typical implementation is the following.

1 while True:
2 y = read_sensor_ch ()
3 u, z = compute_control (y, z)
4 sleep_until (next_activation)
5 send_actuator_ch (u)

Listing 3.1. Typical control algorithm execution.

The code in Listing 3.1 performs the following operations (i) it samples the current
plant measurements in y using the sensor I (via the function read_sensor_ch),
(ii) it calculates and stores in memory the next control signal u and the controller’s
updated state z (via compute_control), (iii) it sleeps until the next activation (via
sleep_until), and (iv) it sends the control commands to the actuators O (via
send_actuator_ch).

For the control task, each iteration of the loop in Listing 3.1 is a new job, and
the k-th iteration corresponds to the job jk. The control job jk is released at time
ak = k T , where T is the period of the control task. The objective of each job is to
complete its execution before its corresponding deadline dk = ak +T = (k+ 1)T .
We denote with fk the time instant in which the control task completes the execution
of job jk. Ideally, fk ≤ dk.

If fk > dk, job jk experiences an overrun, or a deadline miss. Overruns can be
caused by many different factors, like preemption from higher priority tasks and
interrupts [Stankovic et al., 1995], timeouts due to long wait times on the sensor
channel [Ohlin et al., 2006], and cache misses that introduce delays in accessing the
controller’s stored variables [Wang et al., 2012].

Regardless of what caused the overrun, the scheduler needs to react. In the lit-
erature [Cervin, 2005], mainly three simple deadline overrun strategies have been
considered (i) Kill – i.e., killing the job that overran its deadline (and releasing
a new one), rolling back any (possibly partial) change performed by the job that
missed its deadline, thus reverting the internal task state variables to their original
value, (ii) Skip – i.e., letting the job continue its execution, skipping the subsequent
job releases, until the current one has completed its execution, or (iii) Queue – i.e.,
combining the two, and letting the job continue its execution but at the same time
queueing the subsequent job executions. In the case of Skip and Queue, the job that
continues executing operates on outdated data. On the contrary, Kill allows the
task to always work with fresh data, with the risk of throwing away near-completed
computations. The Queue strategy has been shown to create chain effects which can
severely damage control systems [Cervin, 2005; Maggio et al., 2020], hence in this
paper we only consider Kill and Skip as viable strategies.

176

2 Problem Formulation

Sensor Channel Dropouts Control systems rely on communication interfaces be-
tween the sensors/actuator and the controller code itself (i.e., the sensor and actuator
channels). A significant amount of research, including [Ling and Lemmon, 2002;
Linsenmayer and Allgower, 2017; Kauer et al., 2014; Goswami et al., 2014], anal-
ysed the problem of control system’s stability and performance when subject to sen-
sor packet losses. Losing packets over the sensor channel can lead to the controller
not updating the control command, using old measurement data, or even missing
job deadlines due to prolonged waiting times. In these cases, the time in between
two sampling instants is time-varying, and control design strategies can be applied
to optimise the control system performance [Ghosh et al., 2018; Schinkel et al.,
2002]. However, this work does not take into account that packet losses could be
combined with deadline overruns.

Furthermore, in the code snippet shown in Listing 3.1, there is no indication of
how the control task reacts to sensor packet losses. In classical controller imple-
mentations, if no sensor packet is received within a given time limit (typically a
fraction of the deadline), the function read_sensor_ch times out, and the control
algorithm can perform one of the following two actions (i) continue its execution,
without updating the value of y, thus using the previous received sensor value, or
(ii) avoid executing the remaining instructions, terminating the computation early.

The choice of continuing or avoiding is highly dependent on the system dynam-
ics. Assuming that packet losses are relatively uncommon and the control period is
typically short, using continue is advantageous. In fact, if a packet is lost, it is still
likely that the previous value reported by the sensor is a reasonable approximation
of the physical environment. We emphasise that continuing the execution is equiv-
alent to the case when the controller does not directly poll the sensor channel, but
rather reads the most recently received sensor value from memory (where it was
stored by a receiver task). On the other hand, avoiding the execution of the remain-
ing instructions also prevents the controller from evolving its state z and control
signal u in a possibly unsafe direction. Listings 3.2 and 3.3 show more realistic
versions of Listing 3.1 for the continue and avoid cases.

1 while True:
2 y, tout_triggered = read_sensor_ch (tout_seconds)
3 if tout_triggered :
4 y = y_old
5 u, z = compute_control (y, z)
6 y_old = y
7 sleep_until (next_activation)
8 send_actuator_ch (u)

Listing 3.2. Control code execution when the control computation is continued if
the sensor reading function read_sensor_ch results in a timeout.

177

Paper V. Stochastic Analysis of Control Systems Subject to Faults

1 while True:
2 y, tout_triggered = read_sensor_ch (tout_seconds)
3 if not tout_triggered :
4 u, z = compute_control (y, z)
5 sleep_until (next_activation)
6 send_actuator_ch (u)

Listing 3.3. Control code execution when the control computation is avoided if the
sensor reading function read_sensor_ch results in a timeout.

In Listings 3.2 and 3.3, when tout_seconds time units have passed
without completion, the receive function read_sensor_ch sets the variable
tout_triggered to true. In Listing 3.2, the control algorithm continues executing
its instructions using the old sensor value y_old, i.e., the controller’s internal state
z will be updated and a new control command u will be sent to the actuators. In
Listing 3.3, the control algorithm will not be run, i.e., the internal state z and the
control command u are kept constant.

Actuator Channel Dropouts Packet losses on the actuator channel have not been
studied as thoroughly as their sensor counterpart. The reason likely comes from
the fact that the actuator response is typically hardware-dependant and difficult to
detect and compensate in the control algorithm. If the actuator does not receive a
new control command when it is expecting one, it defaults to a value dependent on
the actuation mode. The actuation mode has received more attention, with differ-
ent degradation or stabilising actuation policies being proposed [Ma et al., 2018].
However, the most common approaches involve either Holding the last received
control command (i.e., uk+1 = uk) or Zeroing the output (i.e., uk+1 = 0). Similarly
to choosing between continue and avoid, the choice of actuation mode is non-trivial
and generally depend on the control system dynamic [Schenato, 2009; Vreman et
al., 2021].

2.3 Problem Formulation
Many different analysis frameworks have been proposed to evaluate the compu-
tational robustness to packet loss and deadline overruns of controllers [Ghosh et
al., 2018; Maggio et al., 2020; Linsenmayer and Allgower, 2017; Donkers et al.,
2011]. However, these analyses have two major shortcomings: (i) they are devel-
oped in isolation, and do not combine the presence of potential problems both in
the computation and in the IO channels, and (ii) they rely on knowledge about the
occurrence of events like deadline overruns or packet losses. In fact, recent works
on computational overruns [Maggio et al., 2020; Linsenmayer and Allgower, 2017]
rely on the weakly-hard task model [Bernat et al., 2001] to constraint the sequence
of deadline overruns; and recent work like [Ghosh et al., 2018] are on the contrary
working on the assumption that packet losses are detected and counteracted at the
control level. However, typical methods for deriving bounds on both packet losses

178

3 Analysis

and deadline overruns are probabilistic; for example, estimating the probability that
a specific task in a system will overrun its deadline when a particular scheduling
algorithm is employed [Chen et al., 2019; Brüggen et al., 2021].

This paper aims at providing a control-theoretical analysis for how the closed-
loop system robustness is affected by stochastic packet losses (on sensor and ac-
tuator channels), deadline overruns, and a combination thereof. Furthermore, we
want to devise an analysis method that benefits from the state-of-the-art results on
fault occurrence estimation in real-time systems implementations [Chen et al., 2019;
Brüggen et al., 2021]. We assume to receive, as input, probabilities pc, ps, and pa.
These represent respectively the probability of the control task missing its deadline,
the probability of a failure on the sensor channel and the probability of a packet
loss on the actuator channel. The analysis provides – as output – a certificate that
specifies that the system does or does not satisfy a stochastic stability requirement.
If the certificate verifies the stochastic stability of the closed-loop system, then the
average value E [x̃k] of the system state x̃k, introduced in Equation (3), converges to
a given value and its standard deviation converges to zero. This allows us to validate
the control system implementation behaviour in the presence of undesirable faults.

3. Analysis

Our analysis of the closed-loop system subject to IO channel dropouts and deadline
overruns is based on the theory of Markov Jump Linear Systems [Costa et al., 2005].
These systems combine the dynamics of the closed-loop system and the transition
probabilities of faults and errors. In Section 3.1 we provide some preliminary def-
initions and in Section 3.2 we derive the control system dynamics when (possibly
simultaneously) deadline overruns, sensor data loss, and actuator data loss occur.
In Section 3.3 we present the Markov chain that describes the probabilistic evolu-
tion of the discrete state of the system. Finally, in Section 3.4 we summarise and
apply the Markov Jump Linear Systems theory to the closed-loop system, obtaining
the stochastic stability certificates. Note that the concept of state differs between
Markov and control theory. With the word state we denote the dynamical system’s
state vector x̃k, whilst the information encoded by a sequence of events including
IO channel dropouts and computational overruns is referred to as the discrete state.

3.1 Event Outcomes
Equation (4) presented the dynamical model of the closed-loop system and the
closed-loop state matrix Φ in nominal conditions, i.e., in the absence of faults.
However, as discussed in Section 2, the system dynamics are heavily impacted by
whether the controller misses a control computation or experiences a packet loss on
a communication channel. To analyse the system dynamics, we define the outcome
set Σ for the transmission on IO channels and the computation of the controller.

179

Paper V. Stochastic Analysis of Control Systems Subject to Faults

DEFINITION 1—IO CHANNEL OUTCOME SETS
We denote the set of outcomes that each packet on the sensor and actuator channels
can experience by Σ(I) = Σ(O) = {F,T}:

• F: represents a lost packet, and

• T: represents a successfully delivered packet.

Trivially, the outcome of each packet transmission is a binary event where either:
(i) the packet is successfully received (T), or (ii) the packet is lost along its route
(F). Since the contents of the packet (e.g., measurement data from the sensors or
control commands to the actuators) is irrelevant to whether the packet is lost or not,
the same outcome notation is used for both Σ(I) and Σ(O).

Unlike the IO channels, the outcome of a control job’s computation is not neces-
sarily a binary event. In particular, the overrun strategy employed by the scheduler
determines the outcome set. We now define the control task outcome sets (for one
execution interval, i.e., for one control period) both for the Kill and for the Skip
strategy.

DEFINITION 2—COMPUTATIONAL OUTCOME SET - Kill
We denote the set of outcomes that a control job can experience in each control
period when the scheduler adopts the Kill strategy by Σ(CK) = {M,H}.

• M: a job is released, but no job is completed,

• H: a job is both released and completed.

DEFINITION 3—COMPUTATIONAL OUTCOME SET - Skip
We denote the set of outcomes that a control job can experience in each control
period when the scheduler adopts the Skip strategy by Σ(CS) = {M,N,H,R}.

• M: a new control job is released but no job is completed,

• N: no job is either released or completed,

• H: a new control job is both released and completed,

• R: no job is released, but a job (that was released in a previous period) is
completed.

For both Kill and Skip, each control period contains at most one activated and
one completed job. The main difference comes from the Kill strategy terminating
every job that overrun its corresponding deadline, i.e., each control period contains
a new control job being released and activated. Thus, the outcome set Σ(CK) consist
of only two outcomes: a job being completed or a job not being completed. On the
other hand, the Skip strategy encompasses more diverse outcomes. For instance,

180

3 Analysis

the outcomes M and N both encode an overrun deadline; but M represent the start of
a control computation while N correspond to its continuation. Finally, R is used to
identify the late completion of a job, i.e., a recovery hit. The occurrence of R and N
impose constraints on the outcome ordering. We note that if we use the Skip over-
run strategy, there is a natural valid order between the job outcomes. The following
constraint enforces that a sequence of job outcomes is valid, i.e., it can be produced
by a control task.

CONSTRAINT 1
For a sequence of job outcomes under the Skip overrun strategy, it holds that:

• both M and H are restricted to directly follow an H or R,

• an N can only follow an M, and

• an R may only directly follow an N or M.

3.2 Closed-Loop System Dynamics
From Definitions 1-3, the closed-loop system dynamics’ evolution in time can be
fully derived as (with initial state x̃0):

x̃k+1 = Φsca x̃k. (6)

As for Equation (3), x̃k is the closed-loop state vector and Φsca is the closed-loop
system matrix. The system dynamics does however depend on the outcome real-
isations, i.e., s ∈ Σ(I), a ∈ Σ(O), and c ∈ Σ(C•) (where • is either K or S). If a
fault occurs, the closed-loop system’s evolution will deviate from the nominal be-
haviour. As an example, the closed-loop system matrix ΦTHT would correspond to
a control job receiving the sensor message, completing its algorithm execution in
the same period as it was released, and the actuators would successfully receive the
new control command. Trivially, ΦTHT correspond to the nominal behaviour from
Equation (4). Instead, if an actuator packet would be lost, the control command sent
to the plant would depend on the actuator mode. Therefore, the closed-loop system
would evolve according to ΦTHF.

Note that in each control period the system experiences a new realisation of
the outcome sets, i.e., the closed-loop system matrix Φsca can switch every control
period. The resulting dynamics is generally called a switching system. Since the
closed-loop dynamics is no longer consistent between periods, the stability criterion
presented in (5) cannot be used to assess the stability of the system, and we need to
resort to a probabilistic stability result, presented in Section 3.4.

As discussed in Section 2, the system dynamics change with respect to (i) the
overrun strategy, (ii) the actuation mode, and (iii) the choice of timeout strategy. In
this paper, we focus on the stability analysis for the continue case, as the possible
outcome configurations (i.e., combinations of s, c, and a) for the avoid case are
included in the set of outcome configurations for continue, making the analysis

181

Paper V. Stochastic Analysis of Control Systems Subject to Faults

simpler in the avoid case.3 In the continue case, we provide a stability analysis for
both actuation modes (i.e., Zero or Hold) and both overrun strategies (i.e., Kill
or Skip). The difference between Zero and Hold result in variations of the closed-
loop matrices, and is encoded using the symbol ∆O, described later. However, the
difference between using Kill and Skip fundamentally changes the structure of
the outcome set of the control jobs changes. Hence, we need to analyse the Kill
and Skip cases separately.

Kill: When a fault is experienced (deadline overrun or packet loss), the physical
state of the plant xk continue its normal evolution. However, the closed-loop will
not behave according to its design specifications. In case jk overruns its deadline,
its execution is terminated and the controller’s states are rolled back, i.e., zk+1 = zk.
Furthermore, when jk overruns its deadline or the actuator channel experiences a
packet loss, the control command defaults to a value that depends on the actuation
mode, i.e., uk+1 = uk if the actuation mode is Hold, and uk+1 = 0 if the actuation
mode is Zero. On the contrary, if a sensor packet is not received, the control algo-
rithm computes a new control command and updates the controller’s internal state,
using outdated sensor measurements.

To properly describe the closed-loop behaviour under continue and Kill, we
define the closed-loop state vector x̃K

k = [xT
k ,z

T
k ,u

T
k , ŷ

T
k−1]

T. The introduced auxiliary
state ŷk−1 records the old sensor value, that is used if read_sensor_ch times out
(see Listing 3.2). The set of closed-loop matrices describing the system behaviour
for the different outcome configurations is then

A 0 B 0
GC F GD 0
KC H KD 0
C 0 D 0


︸ ︷︷ ︸

ΦK
THT


A 0 B 0

GC F GD 0
0 0 ∆O 0
C 0 D 0


︸ ︷︷ ︸

ΦK
THF


A 0 B 0
0 I 0 0
0 0 ∆O 0
C 0 D 0


︸ ︷︷ ︸

ΦK
TMT


A 0 B 0
0 I 0 0
0 0 ∆O 0
C 0 D 0


︸ ︷︷ ︸

ΦK
TMF

A 0 B 0
0 F 0 G
0 H 0 K
0 0 0 I


︸ ︷︷ ︸

ΦK
FHT


A 0 B 0
0 F 0 G
0 0 ∆O 0
0 0 0 I


︸ ︷︷ ︸

ΦK
FHF


A 0 B 0
0 I 0 0
0 0 ∆O 0
0 0 0 I


︸ ︷︷ ︸

ΦK
FMT


A 0 B 0
0 I 0 0
0 0 ∆O 0
0 0 0 I


︸ ︷︷ ︸

ΦK
FMF

.

(7)
Each outcome (s, c, and a) has 2 possible configurations in the Kill case. Hence,

there are 23 = 8 possible sca, where s∈Σ(I), c∈Σ(CK), and a∈Σ(O). The symbol
∆O in Equation (7) is used to distinguish the actuator mode, and is either ∆O = I for
the Hold mode or ∆O = 0 for the Zero mode. The variable ŷk is not updated for s =
F, i.e., ŷk = ŷk−1. Additionally, some matrices are identical (e.g., ΦK

TMT = ΦK
TMF and

ΦK
FMT = ΦK

FMF), highlighting for example that in case of Kill when the computation

3 Additionally, continue also cover the case where the controller reads sensor data directly from a
memory register instead of polling the sensor channel.

182

3 Analysis

does not complete, receiving or not receiving the actuator signal is irrelevant for the
system evolution.

Skip: Similarly to the Kill case, when the overrun mode is set to Skip, the
physical states xk continue their evolution. However, in contrast to the Kill over-
run strategy, when a job jk overruns its deadline, the job is allowed to continue its
execution, and no subsequent jobs are released until jk completes its execution.

As an example, assume that job jk, released at time ak, finishes its execution
at time fk = ak +3.7T . In this example, three subsequent jobs are skipped. During
the three periods in which jk is pending completion, no new job is released and the
actuator outputs a control command that is in line with the actuation mode, either
Hold or Zero. When jk completes its execution, the controller state is updated and
the control command is computed using the sensor value that was retrieved at time
ak, i.e., depending on whether the sensor packet at time ak was received or not. In
this case, the new control signal is sent to the actuator at the end of the control
period, at time instant ak +4T .

The closed-loop state vector for the continue and Kill case can be reused
to describe the system evolution of the continue and Skip case, i.e., x̃S

k =

[xT
k ,z

T
k ,u

T
k , ŷ

T
k−1]

T. Intuitively, there are 16 possible outcome configurations since
Σ(CS) contains four outcomes rather than two, i.e., 22 · 4 = 16. The symbol ∆O is
again used to indicate the chosen actuation mode. The closed-loop matrices are

A 0 B 0
GC F GD 0
KC H KD 0
C 0 D 0


︸ ︷︷ ︸

ΦS
THT


A 0 B 0

GC F GD 0
0 0 ∆O 0
C 0 D 0


︸ ︷︷ ︸

ΦS
THF


A 0 B 0
0 I 0 0
0 0 ∆O 0
C 0 D 0


︸ ︷︷ ︸

ΦS
TMT


A 0 B 0
0 I 0 0
0 0 ∆O 0
C 0 D 0


︸ ︷︷ ︸

ΦS
TMF

A 0 B 0
0 I 0 0
0 0 ∆O 0
0 0 0 I


︸ ︷︷ ︸

ΦS
TNT


A 0 B 0
0 I 0 0
0 0 ∆O 0
0 0 0 I


︸ ︷︷ ︸

ΦS
TNF


A 0 B 0
0 I 0 0
0 0 ∆O 0
0 0 0 I


︸ ︷︷ ︸

ΦS
FNT


A 0 B 0
0 I 0 0
0 0 ∆O 0
0 0 0 I


︸ ︷︷ ︸

ΦS
FNF

A 0 B 0
0 F 0 G
0 H 0 K
0 0 0 I


︸ ︷︷ ︸

ΦS
TRT


A 0 B 0
0 F 0 G
0 H 0 K
0 0 0 I


︸ ︷︷ ︸

ΦS
FRT


A 0 B 0
0 F 0 G
0 0 ∆O 0
0 0 0 I


︸ ︷︷ ︸

ΦS
TRF


A 0 B 0
0 F 0 G
0 0 ∆O 0
0 0 0 I


︸ ︷︷ ︸

ΦS
FRF

A 0 B 0
0 F 0 G
0 H 0 K
0 0 0 I


︸ ︷︷ ︸

ΦS
FHT


A 0 B 0
0 F 0 G
0 0 ∆O 0
0 0 0 I


︸ ︷︷ ︸

ΦS
FHF


A 0 B 0
0 I 0 0
0 0 ∆O 0
0 0 0 I


︸ ︷︷ ︸

ΦS
FMT


A 0 B 0
0 I 0 0
0 0 ∆O 0
0 0 0 I


︸ ︷︷ ︸

ΦS
FMF

.

(8)

183

Paper V. Stochastic Analysis of Control Systems Subject to Faults

When c = R or c = N, the sensor packet’s outcome is irrelevant for the system
dynamics. This follows since the control task does not poll the sensor channel for
packets if it is still executing the body of the control algorithm (unless its outcome
is M, since it is the first period that experiences an overrun). Again, note that many
matrices are identical:

ΦS
FMT = ΦS

FMF, ΦS
TMT = ΦS

TMF, ΦS
FRT = ΦS

TRT, ΦS
FRF = ΦS

TRF

ΦS
TNT = ΦS

TNF = ΦS
FNT = ΦS

FNF

which can be used to simplify the stability analysis below.
While we introduced the dynamical system change associated with different

events (i.e., with different combinations of sensor channel s, actuator channel a,
and computational outcome c), so far we only described the deterministic evolution
of the system. Provided that a specific set of events occurs during the evolution of
the discrete part of our problem, the system behaviour is deterministic. However,
the discrete state evolution of the closed-loop system is probabilistic and depends
on the outcome of s, c, and a, which is here expressed via a Markov process.

3.3 Markov Chain
To take the discrete state evolution into account, we introduce a Markov chain. A
Markov chain is a mathematical model for a stochastic process that describes a
sequence of events or states, where the probability of transitioning from one state to
another depends only on the current state and not on any previous states.

DEFINITION 4—MARKOV CHAIN
A Markov chain is defined by:

(i) A set V of N possible states, V = {v1,v2, . . . ,vN},

(ii) A transition probability matrix Π, where the element Πi, j is the probability of
transitioning from state vi to state v j, for all i, j ∈ {1,2, . . . ,N},

(iii) The Markov property, which states that the probability of transitioning to a
future state depends only on the current state and not on any past states.

The transition probability matrix Π must satisfy the following two conditions:

(i) Πi, j ≥ 0, ∀i, j ∈ {1,2, ...,N},
(ii) ∑

N
j=1 Πi, j = 1,∀i ∈ {1,2, ...,N}.

In our case, each state of the Markov chain represents an element of the set of
outcomes, and directly maps to one of the matrices that govern the physical evo-
lution of the system. The transition probabilities of the Markov chain depend on
respectively (i) ps – the probability of not receiving sensor data correctly, (ii) pc –
the probability of not completing the calculation of the control signal within one

184

3 Analysis

period, and (iii) pa – the probability of not receiving the actuator data correctly. As
an example, the probability that in one period we transition to the state in which no
faults occur, s = T, c = H, a = T is (1− ps)(1− pc)(1− pa). In such a discrete state,
the discrete-time dynamics evolve according to ΦTHT. For compactness, we use 1x
to denote (1− px), e.g., 1s = (1− ps).

Kill: For the Kill case, in principle there are 8 states in the Markov chain (stem-
ming from the 8 possible matrices), but the equivalence between two pairs of matri-
ces reduces the discrete states in which the system can be found to 6, corresponding
to the closed-loop matrices ΦK

THT, ΦK
FHT, ΦK

THF, ΦK
FHF, ΦK

FMX and ΦK
TMX, where X indi-

cates that the outcome is irrelevant for this specific case. The Markov chain for the
Kill strategy is encoded in the transition probability matrix

Π
K =


1s1c1a ps1c1a 1s1c pa ps1c pa ps pc 1s pc
1s1c1a ps1c1a 1s1c pa ps1c pa ps pc 1s pc
1s1c1a ps1c1a 1s1c pa ps1c pa ps pc 1s pc
1s1c1a ps1c1a 1s1c pa ps1c pa ps pc 1s pc
1s1c1a ps1c1a 1s1c pa ps1c pa ps pc 1s pc
1s1c1a ps1c1a 1s1c pa ps1c pa ps pc 1s pc

 . (9)

In ΠK, the rows correspond to the dynamical system matrices: ΦK
THT, ΦK

FHT, ΦK
THF,

ΦK
FHF, ΦK

FMX, ΦK
TMX. The transition matrix is fully connected, as from each state it is

possible to reach any other state. Also, given the nature of the Kill action, every
iteration of the control loop is independent. Therefore, the probability to reach any
state in the Markov chain is the same, regardless of the current state, i.e., the rows
in ΠK are identical.

Skip: In the Skip case, the transition matrix is not fully connected. In fact, each
sequence of outcomes should satisfy Constraint 1, enforcing that H can only occur
after either another H or R. Also, N must directly follow M, and a R can only follow
a M or N. Hence, the transition matrix ΠS of the Markov chain for the continue and
Skip case is

Π
S =



1s1c1a ps1c1a 1s1c pa ps1c pa ps pc 1s pc 0 0 0
1s1c1a ps1c1a 1s1c pa ps1c pa ps pc 1s pc 0 0 0
1s1c1a ps1c1a 1s1c pa ps1c pa ps pc 1s pc 0 0 0
1s1c1a ps1c1a 1s1c pa ps1c pa ps pc 1s pc 0 0 0

0 0 0 0 0 0 pc 1c1a 1c pa
0 0 0 0 0 0 pc 1c1a 1c pa
0 0 0 0 0 0 pc 1c1a 1c pa

1s1c1a ps1c1a 1s1c pa ps1c pa ps pc 1s pc 0 0 0
1s1c1a ps1c1a 1s1c pa ps1c pa ps pc 1s pc 0 0 0


. (10)

In ΠS, the rows correspond to the following dynamical system matrices: ΦS
THT,

ΦS
FHT, ΦS

THF, ΦS
FHF, ΦS

FMX, ΦS
TMX, ΦS

XNX, ΦS
XRT, ΦS

XRF. As can be seen for example in the
fifth row, a miss can only be followed by either another miss or a recovery hit, i.e., a
period in which no new job is released, but a previously released job is completed.

185

Paper V. Stochastic Analysis of Control Systems Subject to Faults

The transition probabilities are here treated as independent identically dis-
tributed (i.e., iid) random variables. Typically this is not the case in real systems.
For example, if the sensor packet is lost, the probability of the control task over-
running its deadline likely increases. It is possible to cast said cases in our analysis
framework using the theory of conditional probabilities [Dekking et al., 2006], i.e.,
probabilities that depend on the outcome of another event. This is done by con-
sidering vectors of ps, pc, and pa in which each element represents the possibility
of having a given number of faults in the corresponding event outcome, e.g., the
second element of pc represents the probability that the controller overruns in two
consecutive periods. Then it is possible to create a Markov chain that handles every
iteration starting from the corresponding state (e.g., the second element of pc is only
used when a first deadline overrun has occurred and the transition matrix has more
zeros). Due to space limitations, we do not enter into details on this matter here.
This is in particular interesting for pc, as a deadline miss that follows another miss
is less likely than the first deadline miss to occur when Skip is used.

3.4 Markov Jump Linear Systems Analysis
Discrete-Time Markov Jump Linear Systems [Costa et al., 2005] describe systems
that can switch between different linear dynamics based on a finite set of discrete
states. Informally, these systems combine the concepts of (discrete-time) switched
linear systems and Markov chains. The system is subject to stochastic mode transi-
tions described by a probability matrix (that specifies the likelihood of transitioning
from one mode to another), i.e., the transition probability matrix of a Markov chain.

DEFINITION 5—DISCRETE-TIME AUTONOMOUS MARKOV JUMP LINEAR SYS-
TEM
A Discrete-Time Autonomous Markov Jump Linear System is a dynamical system
(with initial state {x̃0,θ0}),

x̃k+1 = Φθk x̃k, where

(i) Φθk belongs to a set of discrete-time linear state-space models describing the
evolution of the continuous dynamics, and

(ii) {θk}k is a Markov process, governed by a Markov chain with transition prob-
ability matrix Π.

In our case, the state-space models are given by the matrices derived in Section 3.2
and the Markov chain is the one described in Section 3.3.

The convergence of Markov Jump Linear Systems can be analysed using dif-
ferent tools, and in particular there are two main notions of stability: mean stability
and mean square stability. Mean stability corresponds to convergence in probability,

186

3 Analysis

while the second notion, mean square stability, corresponds to almost sure conver-
gence.4

Mean stability is an important property for ensuring the robustness and reliabil-
ity of stochastic systems, as it guarantees that the expected value of the system state
will not exhibit unbounded growth over time. We analyse the expected value of the
state x̃k, i.e., E [x̃k], and determine whether it converges to a specific value or not.

DEFINITION 6—MEAN STABILITY
The Discrete-Time Autonomous Markov Jump Linear System x̃k+1 = Φθk x̃k is mean
stable if there exists a value µ such that for every initial state {x̃0,θ0}, the expected
value of the system state E [x̃k]→ µ .

Mean square stability, on the other hand, analyses not only whether the expected
value of the discrete-time system state converges, but also whether its covariance
E
[
x̃kx̃T

k

]
goes to zero; thus, implying almost sure convergence, i.e., both the prob-

ability of the system state converging and the probability of the state covariance
going to zero goes to 1.

DEFINITION 7—MEAN SQUARE STABILITY
The Discrete-Time Autonomous Markov Jump Linear System x̃k+1 = Φθk x̃k is mean
square stable if there exists a value µ such that for every initial state {x̃0,θ0},

E [x̃k]→ µ, E
[
x̃kx̃T

k
]
→ 0.

Mean square stability is a desirable property for stochastic systems because it im-
plies mean stability, but also provides more information about the rate of decay
of the system’s fluctuations. In particular, it implies that the fluctuations experi-
enced by the system will decay exponentially fast over time. Mean square stability
is closely related to the notion of Shur stability for deterministic systems presented
in Equation (5), and is commonly used in the analysis and design of stochastic con-
trol and estimation algorithms.

We want to test that the systems subject to fault are mean square stable. As ex-
tensively discussed in the literature [Costa et al., 2005], testing for mean square
stability implies calculating the eigenvalues of the operator Ψ representing the
evolution of the Markov Jump Linear System’s covariance matrix. In particular,
a Discrete-Time Autonomous Markov Jump Linear System is mean square stable if
and only if

ρ (Ψ) = max |eig (Ψ) |< 1
Ψ = (ΠT⊗ In2) ·blkdiag

(
{ΦT

i ⊗Φi}i
)
.

(11)

Here,⊗ represents the Kronecker product. The matrix Π is one of the Markov chain
transition matrix specified either in Equation (9) or in Equation (10) depending on

4 Other notions of stability also exist, like stochastic stability and mean square exponential stability.
However, if a system is mean square stable it is also mean stochastically stable as well as mean
square exponentially stable.

187

Paper V. Stochastic Analysis of Control Systems Subject to Faults

the deadline overrun strategy adopted. Furthermore, In2 is the identity matrix of size
n2, where n = nx + nz + nu + ny is the order of the closed-loop matrices Φi (that
corresponds to the actual values of the matrices Φθk from Defintion 5, and hence
to the matrices specified either in Equation (7) or in Equation (8) depending on
the deadline overrun strategy adopted). Finally, the last term is a block diagonal
Kronecker product of the matrices in the possible closed-loop system realisations.

We analyse the mean square stability of the system by constructing the operator
Ψ and calculating its eigenvalues, and hence ρ (Ψ). The calculation of ρ (Ψ) is
not demanding for small- and medium-scale systems. The time-consuming part of
analysing the mean square stability comes from the eigenvalue decomposition.5 We
emphasise that the Markov Jump Linear Systems covariance matrix Ψ is sparse,
implying that a speedup could be achieved if this sparsity is taken into account, for
instance by utilising the Lanczsos algorithm for computing the largest magnitude
eigenvalues [Golub and Loan, 1996].

4. Evaluation

In this section we apply the Markov Jump Linear Systems stability analysis pre-
sented in Section 3 to two case studies lifted from the literature on controllers that
experience faults6:

• In Section 4.1 we apply our analysis to an automotive cruise control system
controlled with a state-feedback controller, taken from [Ghosh et al., 2018];

• In Section 4.2, we analyse a ball and beam process controlled by a Linear-
Quadratic-Gaussian (LQG) controller, taken from [Vreman et al., 2022].

We assume that both computational overruns and IO channel packet losses are
Bernoulli distributed [Schenato et al., 2007], i.e., that the outcomes s, c, and a are
independent and identically distributed random variables. We denote with ps the
probability of losing a packet on the sensor channel; with pc the probability of the
control task overrunning a deadline; and with pa the probability of losing a packet
on the actuator channel.

For each case study, we perform the following three sets of experiments:

(i) We fix two of the probabilities ps, pc, and pa to 0 and vary the remaining one
between 0 and 1 (excluded) with a step of 0.01, i.e., px ∈ {0, 0.01, . . . 0.99},
x ∈ {s,c,a}.

5 The computational complexity of eigenvalue decomposition using the Coppersmith and Wino-
grad algorithm is O(n2.376). For mean square stability, we compute the eigenvalues of a matrix
with dimension n2 m, where m is the dimension of transition matrix Π. The complexity is thus
O(n4.752m2.376)≈ O(n4.752) (since m is a constant). Based on empirical tests, for eight-dimensional
systems (i.e., systems in which n = 8) the analysis takes at most 1 second.

6 A third case study was investigated, but it was excluded due to space limitations.

188

4 Evaluation

(ii) We fix one of the probabilities ps, pc, and pa to 0 and vary the remaining two
between 0 and 1 (excluded) with a step of 0.01.

(iii) We analyse the closed-loop system dynamics when the sensor channel expe-
riences 15% traffic (packet) loss, the controller executes in a busy real-time
operating system and thus overruns 40% of its deadlines, and the actuator
channel has a probability of losing 5% of its packets. This corresponds to
ps = 0.15, pc = 0.4, and pa = 0.05.

We analyse controllers that are implemented with Kill and Skip as deadline over-
run handling strategy and Zero and Hold as actuation modes. For all experiments,
we calculate ρ (Ψ) to determine the closed-loop mean square stability according to
Equation (11).

4.1 Automotive Cruise Control Evaluation
Ghosh et al. [Ghosh et al., 2018] present a method to derive a fault-tolerant state-
feedback controller to address stochastic computational faults. Additionally, the per-
formance and stability of said controller are validated on the model of an automotive
cruise control system, which we denote with P1. The plant is inherently stable, i.e.,
ρ (A)< 1. In this paper, we analyse the automotive cruise control system controlled
by a baseline state-feedback controller C1, also presented in [Ghosh et al., 2018].

P1 :

{
xk+1 = Axk +Buk

yk = xk
, C1 : uk+1 = K xk,

A =

 1 0.01 0
−0.0003 0.9997 0.01
−0.0604 −0.0531 0.9974

 , B =

0.0001
0.0001
0.0247


K =

[
−872.54 −131.49 −10.097

]
Experiment (i) Figure 2 shows the results of experiment (i). Each plot corresponds
to a particular strategy combination (e.g., Kill&Zero) and the x-axis shows the
probability that is varied, px ∈ {0,0.01, . . . ,0.99}, while the y-axis shows the result
of the analysis, ρ (Ψ). A value of ρ (Ψ) that exceeds 1 implies that the system with
the given px is not mean square stable.

When the sensor channel’s packet loss probability ps increases, so does the mag-
nitude of the closed-loop system’s eigenvalues, no matter the choice of strategy to
handle the deadline miss and the actuation mode. In the case of the sensor packet
loss plot, ps 6= 0 and pc = pa = 0. Hence, the controller will never miss a deadline
and the actuator will always output a new control signal, implying that losing pack-
ets on the sensor channel are invariant to the choice of deadline overrun strategy
and actuation mode.

189

Paper V. Stochastic Analysis of Control Systems Subject to Faults

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

ρ
(Ψ

)

Kill&Zero

ps
pc
pa

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2
Kill&Hold

ps
pc
pa

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

px

ρ
(Ψ

)

Skip&Zero

ps
pc
pa

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

px

Skip&Hold

ps
pc
pa

Figure 2. Results of Experiment (i) on the cruise control plant [Ghosh et al., 2018].

When ps = pc = 0 and pa 6= 0, the stability of the system depends on the choice
of actuation mode, but is agnostic to the deadline overrun strategy. When the Hold
actuation mode is favoured, the actuator outcome is comparable to missing a sensor
packet and continuing the controller execution, since the sensor packets always ar-
rive (ps = 0) and the controller never overruns its deadline (pc = 0). Additionally,
we deduce that the automotive cruise control system tolerates a higher probability
of losing actuator commands before going unstable under the Zero actuation mode
than under Hold. This likely follows from the system being inherently stable.

For the Kill overrun strategy, the eigenvalue of Ψ with the largest magnitude is
identical for computational overruns and lost actuator packets. Since the controller
is a static state-feedback law, as soon as a deadline is hit a new control signal is
computed without any residual problems originating from a diverged control state
(state-feedback controllers are stateless). However, when computational overruns
occur and the scheduler has adopted the Skip strategy, the computed control signal
is based on old plant states, thus negatively impacting the robustness of the system.

The shape of the curve representing the computational overruns, i.e., the case
when pc 6= 0, ps = pa = 0, is strongly dependent on the system dynamics. When the
probability of overrunning a deadline goes to 1, the system runs in open-loop, i.e.,
without any feedback. Since the plant is stable, running in open-loop system would
preserve the stability of the system, with ρ (Ψ) being close to 1. In fact, the switch-

190

4 Evaluation

0
0.5

0
0.5

1

1.2

ps
pc

ρ
(Ψ

)

0.9

1

1.1

1.2

Figure 3. Results of Experiment (ii) on the cruise control plant [Ghosh et al., 2018]
for (continue) Skip&Hold.

ing between meeting and overrunning deadlines is the cause of destabilisation in
the closed-loop system. This is consistent with observations presented in [Vreman
et al., 2021] about how the closed-loop robustness can improve with an increased
number of computational overruns. We do however emphasise that despite the value
of ρ (Ψ) decreasing, it is still above 1, thus indicating that the system is not mean
square stable.

Experiment (ii) Figure 3 displays a 3d plot of ρ (Ψ) when both sensor packet
losses and computational overruns may occur, but the actuator packets are always
delivered correctly, i.e., ps 6= 0, pc 6= 0, and pa = 0, for Skip&Hold.7 The x- and
y-axes show the probabilities ps and pc, while the z-axes corresponds to ρ (Ψ). It
is possible to recognise the curves of ps = 0 and pc = 0 from Figure 2. For config-
urations where both sensor channel losses and computational overruns are present,
the system robustness is degraded. As an example, individually when ps = 0.51 or
pc = 0.51 the system is stable (see Figure 2), but when both values are set to 0.51,
the system is unstable, as can be seen in Figure 3.

Experiment (iii) Table 1 shows the results of Experiment (iii).

Table 1. Results of Experiment (iii) on the automotive cruise control.

Kill&Zero Kill&Hold Skip&Zero Skip&Hold

ρ (Ψ) 0.9313 0.9006 0.9274 0.9638

Regardless of deadline overrun strategy and actuation mode, the Markov Jump
Linear System is stable when ps = 0.15, pc = 0.4, and pa = 0.05. The results con-
firm that the cruise control system is robust to simultaneous occurrences of multiple

7 Experiments with different configurations or strategies do not provide additional insights and are
hence not reported due to space limitations.

191

Paper V. Stochastic Analysis of Control Systems Subject to Faults

fault types. It is interesting to note that the outcome configuration (ps, pc, pa) =
(0, 0.4, 0) leads to ρ (Ψ) = 0.9108 for the Skip&Hold strategy. In other words, de-
spite the faults on the IO channels appearing to be inconsequential for the system
stability (for ps < 0.5 and pa < 0.5) in Figure 2, they significantly affect the dy-
namics of the system. In fact, perturbing the probabilities on the IO channels from
Experiment (iii) by 8% to (ps, pc, pa) = (0.23,0.4,0.13), the system is unstable
with a value of ρ (Ψ) = 1.0014.

4.2 Ball and Beam Evaluation
Vreman et al. [Vreman et al., 2022] propose a controller implementation method
that aims at improving the performance of systems where the controller is sub-
ject to probabilistic deadline overruns. The implementation method is evaluated on
a physical ball and beam plant, P2, controlled using a linear-quadratic-Gaussian
(LQG) controller C2.

P2 :

{
xk+1 = Axk +Buk

yk =C xk
, C2 :

{
zk+1 = F zk +Gyk

uk+1 = H zk +K yk

A =

 1 0 0
−0.1 1 0
−0.0005 0.01 1

 , B =

 0.045
−0.0023
−7.5 ·10−6

 , C =

[
1 0 0
0 0 1

]
,

F =

0.709 0.054 0.041
0.011 0.997 −0.219
0.004 0.010 0.934

 , G =

 0.152 0.001
−0.104 0.217
−0.004 0.066

 ,

H =
[
−2.433 1.201 0.562

]
, K =

[
−0.672 0.368

]
.

Note that the ball and beam plant is modelled as a triple integrator, i.e., there are
three eigenvalues with magnitude ρ (A) = 1, making the system unstable.

Experiment (i) Figure 4 shows the results of Experiment (i). Unlike the cruise
control system, there now exists a clear distinction between the three different cases
of Experiment (i). It is evident that the sensor, actuator, and controller all affect
the Markov Jump Linear System stability individually, and can thus not be seen as
equivalent outcomes.

The contrast between the behaviour of the ball and beam system and the prior
setup come from the controller dynamics in C2. While C1 is stateless, the LQG
controller C2 does have an internal state, meaning that if the controller overruns a
deadline or an IO channel packet is lost, it will also impact the system negatively for
some time after the event. Despite the introduced controller dynamics, the closed-
loop ball and beam system appear to be robust to both IO channel packet losses (up
to ps and pa around 0.85) and computational overruns (up to pc around 0.35 for the
Zero actuation mode and 0.5 for Hold actuation mode).

192

4 Evaluation

0 0.2 0.4 0.6 0.8 1
0.95

1

1.05

1.1

ρ
(Ψ

)

Kill&Zero
ps
pc
pa

0 0.2 0.4 0.6 0.8 1
0.95

1

1.05

1.1
Kill&Hold
ps
pc
pa

0 0.2 0.4 0.6 0.8 1
0.95

1

1.05

1.1

px

ρ
(Ψ

)

Skip&Zero
ps
pc
pa

0 0.2 0.4 0.6 0.8 1
0.95

1

1.05

1.1

px

Skip&Hold
ps
pc
pa

Figure 4. Results of Experiment (i) on the ball and beam plant [Vreman et al.,
2022].

Experiment (ii) The surface plot in Figure 5 shows ρ (Ψ) with varying ps and pa,
assuming that the controller always succeeds in meeting its computational deadline
(pc = 0) and that the Zero actuation mode is adopted. It is easy to see that even for
high values of both ps and pa, the system remains mean square stable as long as the
controller does not miss its deadlines. This is likely a result of the controller being
designed with robustness as a design objective.

Experiment (iii) Table 2 presents the results acquired from Experiment (iii) on
the ball and beam system.

Table 2. Results of Experiment (iii) on the ball and beam example.

Kill&Zero Kill&Hold Skip&Zero Skip&Hold

ρ (Ψ) 1.0000 0.9936 1.0002 0.9936

The results indicate that the choice of actuation mode is affecting ρ (Ψ) more
than the choice of deadline overrun strategy. In fact, both implementations employ-
ing the Zero actuation mode are unstable, while if the Hold actuation mode is se-
lected, the closed-loop system is mean square stable under the tested probabilities.
When we increase the probability of the IO channels experiencing packet losses,

193

Paper V. Stochastic Analysis of Control Systems Subject to Faults

0 0.2 0.4 0.6 0.8
0

0.5

1

1.05

ps
pa

ρ
(Ψ

)

0.98

1

1.02

1.04

1.06

Figure 5. Results of Experiment (ii) on the ball and beam [Vreman et al., 2022]
for (continue) Kill&Zero as deadline handling strategy and actuation mode.

the Zero actuation mode quickly becomes unstable, while the Hold actuation mode
can tolerate up to 75% packet loss on both the sensor and actuator channels simul-
taneously before becoming mean square unstable, i.e., before ρ (Ψ)≥ 1. This likely
follows from the model of the system being a triple integrator, where zeroing the
output signal in case of a packet loss or computational overrun drives the system
state away from the desired value. Instead, holding the previous control command
keeps the integrator state close to its ideal value.

5. Related Work

In recent years, probabilistic analysis techniques for real-time systems are becom-
ing more prominent [Davis and Cucu-Grosjean, 2019]. In particular, a few in-
teresting methods have been developed to compute the probability that specific
tasks miss their deadlines, e.g., [Brüggen et al., 2021]. In [Brüggen et al., 2018],
the authors propose a method to safely estimate the deadline miss rate of tasks
in a uniprocessor system under a preemptive fixed-priority scheduling policy. For
mixed-criticality systems, [Maxim et al., 2017] introduce a probabilistic analysis
method for analysing worst-case execution time distributions, and in turn worst-case
deadline miss probabilities, under fixed-priority preemptive scheduling. An efficient
and accurate convolution-based approach to calculating deadline miss probabilities
is introduced in [Chen et al., 2018]. The authors of [Markovi et al., 2021] propose
a method for down-sampling the random variables in order to improve space and
time complexity of the analysis methods.

The ratios provided by the deadline miss probability analysis can be utilised to
improve the design of control systems. In [Schenato et al., 2007], the authors derive
an optimal controller (control law and estimator) for a networked control system
where packet arrivals are modelled stochastically. The authors of [Cloosterman et

194

6 Conclusion and Future Work

al., 2010] propose a stabilising controller for networked control systems subject to
stochastic network delays and packet losses. Pazzaglia et al. [Pazzaglia et al., 2019]
derive a robust controller to be used when the control task can experience deadline
misses stochastically.

Generally, fault-tolerant controllers are designed to counteract one specific type
of fault, e.g., sensor losses or deadline overruns. To analyse whether a system is
robust to the specific type of fault or not, different analysis methods have been
proposed. A stability analysis method for control systems subject to weakly-hard
packet losses is proposed in [Linsenmayer et al., 2020]. In [Maggio et al., 2020],
the authors propose a method for analysing the stability of real-time control systems
where the control task is subject to consecutive deadline overruns.

6. Conclusion and Future Work

There exists a common misconception that analysing a control system’s robustness
to packet losses on the network is equivalent to having the control algorithm over-
run its timing budget, and vice versa. This paper proposes an approach to analyse
real-time control systems and their stability properties when subject to multiple
types of faults. In particular, we analyse simultaneous packet losses on the IO com-
munication channels and computational overruns of the task executing the control
algorithm, making the analysis more comprehensive than the state-of-the-art alter-
natives.

We envision that the analysis method and the corresponding experimental cam-
paign will be used to improve future analysis methods and correct any misconcep-
tions about how faults interact in computer-controlled systems. Finally, the paper
brings the control analysis closer to the state-of-practice compared to the research
literature, because it relies on a probabilistic failure model. In industrial setups, it
is in fact easier to get estimates of the probability of certain events from testing
campaigns, rather than to extract complex (but deterministic) guarantees like the
validity of a weakly-hard constraint.

Acknowledgements

This work was supported by the ELLIIT Strategic Research Area. This project has
received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 871259 (ADMORPH project). This (publi-
cation/report) reflects only the authors’ view and the European Commission is not
responsible for any use that may be made of the information it contains.

195

Paper V. Stochastic Analysis of Control Systems Subject to Faults

References

Ahrendts, L., S. Quinton, T. Boroske, and R. Ernst (2018). “Verifying weakly-hard
real-time properties of traffic streams in switched networks”. In: 30th Euromi-
cro Conference on Real-Time Systems (ECRTS). Vol. 106. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 15:1–15:22. ISBN: 978-3-95977-075-0.

Åström, K. J. and B. Wittenmark (1997). Computer-Controlled Systems (3rd Ed.)
Prentice-Hall, Inc., USA. ISBN: 0133148998.

Åström, K. (1970). Introduction to stochastic control theory. Vol. 70. Mathematics
in science and engineering. Academic Press, United States. ISBN: 0-12-065650-
7.

Bernat, G., A. Burns, and A. Liamosi (2001). “Weakly hard real-time systems”.
IEEE Transactions on Computers 50:4, pp. 308–321. DOI: 10 . 1109 / 12 .
919277.

Blair Jr., W. P. and D. D. Sworder (1975). “Feedback control of a class of linear dis-
crete systems with jump parameters and quadratic cost criteria”. International
Journal of Control 21:5, pp. 833–841. DOI: 10.1080/00207177508922037.

Bohrer, B., Y. K. Tan, S. Mitsch, M. O. Myreen, and A. Platzer (2018). “Veri-
phy: verified controller executables from verified cyber-physical system mod-
els”. In: 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI 2018. Philadelphia, PA, USA, pp. 617–630. ISBN:
9781450356985. DOI: 10.1145/3192366.3192406.

Bolzern, P., P. Colaneri, and G. De Nicolao (2010). “Markov jump linear systems
with switching transition rates: mean square stability with dwell-time”. Auto-
matica 46:6, pp. 1081–1088. ISSN: 0005-1098. DOI: doi.org/10.1016/j.
automatica.2010.03.007.

Brüggen, G. von der, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik (2018).
“Efficiently approximating the probability of deadline misses in real-time sys-
tems”. In: 30th Euromicro Conference on Real-Time Systems (ECRTS). Vol. 106.
Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. ISBN: 978-3-95977-075-0.

Brüggen, G. von der, N. Piatkowski, K. Chen, J. Chen, K. Morik, and B. B. Branden-
burg (2021). “Efficiently approximating the worst-case deadline failure proba-
bility under EDF”. In: 42nd IEEE Real-Time Systems Symposium, RTSS. DOI:
10.1109/RTSS52674.2021.00029. URL: doi.org/10.1109/RTSS52674.
2021.00029.

Buttazzo, G., G. Lipari, L. Abeni, and M. Caccamo (2005). Soft Real-Time Systems.
Springer.

196

References

Cervin, A. (2005). “Analysis of overrun strategies in periodic control tasks”. IFAC
Proceedings Volumes 38:1. 16th IFAC World Congress, pp. 219–224. ISSN:
1474-6670. DOI: 10.3182/20050703-6-CZ-1902.01076.

Chen, K., G. Von Der Brüggen, and J. Chen (2018). “Analysis of deadline miss rates
for uniprocessor fixed-priority scheduling”. In: 24th International Conference
on Embedded and Real-Time Computing Systems and Applications (RTCSA),
pp. 168–178.

Chen, K., N. Ueter, G. von der Brüggen, and J.-J. Chen (2019). “Efficient com-
putation of deadline-miss probability and potential pitfalls”. In: 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 896–901.
DOI: 10.23919/DATE.2019.8714908.

Cloosterman, M. B. G., L. Hetel, N. van de Wouw, W. P. M. H. Heemels, J. Daafouz,
and H. Nijmeijer (2010). “Controller synthesis for networked control systems”.
Automatica 46:10, pp. 1584–1594. ISSN: 0005-1098. DOI: doi.org/10.1016/
j.automatica.2010.06.017.

Costa, O. L. V., R. P. Marques, and M. D. Fragoso (2005). Discrete-Time Markov
Jump Linear Systems. Probability and Its Applications. Springer London. ISBN:
978-1-85233-761-2.

Davis, R. I. and L. Cucu-Grosjean (2019). “A survey of probabilistic timing analysis
techniques for real-time systems”. Leibniz Transactions on Embedded Systems
6:1. DOI: 10.4230/LITES-v006-i001-a003.

Dekking, F. M., C. Kraaikamp, H. P. Lopuhaä, and L. E. Meester (2006). A Modern
Introduction to Probability and Statistics. ISBN: 978-1-84628-168-6.

Donkers, M. C. F., W. P. M. H. Heemels, N. van de Wouw, and L. Hetel (2011).
“Stability analysis of networked control systems using a switched linear systems
approach”. IEEE Transactions on Automatic Control 56:9, pp. 2101–2115. DOI:
10.1109/TAC.2011.2107631.

Fang, Y. and K. Loparo (2002). “Stochastic stability of jump linear systems”. IEEE
Transactions on Automatic Control 47:7, pp. 1204–1208. DOI: 10.1109/TAC.
2002.800674.

Ghosh, S. K., S. Dey, D. Goswami, D. Mueller-Gritschneder, and S. Chakraborty
(2018). “Design and validation of fault-tolerant embedded controllers”. In: De-
sign, Automation & Test in Europe Conference, pp. 1283–1288. DOI: 10 .
23919 / DATE . 2018 . 8342212. URL: doi . org / 10 . 23919 / DATE . 2018 .
8342212.

Golub, G. H. and C. F. van Loan (1996). Matrix Computations (3rd Ed.) USA. ISBN:
0801854148.

Goswami, D., D. Mueller-Gritschneder, T. Basten, U. Schlichtmann, and S.
Chakraborty (2014). “Fault-tolerant embedded control systems for unreliable
hardware”. In: International Symposium on Integrated Circuits.

197

Paper V. Stochastic Analysis of Control Systems Subject to Faults

Henzinger, T., B. Horowitz, and C. Kirsch (2003). “Giotto: A time-triggered lan-
guage for embedded programming”. Proceedings of the IEEE 91:1, pp. 84–99.
DOI: 10.1109/JPROC.2002.805825.

Hobbs, C., B. Ghosh, S. Xu, P. S. Duggirala, and S. Chakraborty (2022). “Safety
analysis of embedded controllers under implementation platform timing uncer-
tainties”. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 41:11, pp. 4016–4027. DOI: 10.1109/TCAD.2022.3198905.

Horssen, E. P. van, A. R. B. Behrouzian, D. Goswami, D. Antunes, T. Basten, and
W. P. M. H. Heemels (2016). “Performance analysis and controller improvement
for linear systems with (m, k)-firm data losses”. In: 2016 European Control
Conference (ECC), pp. 2571–2577. DOI: 10.1109/ECC.2016.7810677.

Kauer, M., D. Soudbakhsh, D. Goswami, S. Chakraborty, and A. M. Annaswamy
(2014). “Fault-tolerant control synthesis and verification of distributed embed-
ded systems”. In: Design, Automation & Test in Europe Conference Exhibition.

Liberzon, D. (2014). “Finite data-rate feedback stabilization of switched and hybrid
linear systems”. Automatica 50:2, pp. 409–420. ISSN: 0005-1098. DOI: doi.
org/10.1016/j.automatica.2013.11.037.

Lincoln, B. and A. Cervin (2002). “Jitterbug: a tool for analysis of real-time control
performance”. In: IEEE Conference on Decision and Control. Vol. 2, pp. 1319–
1324. DOI: 10.1109/CDC.2002.1184698.

Ling, Q. and M. D. Lemmon (2002). “Robust performance of soft real-time net-
worked control systems with data dropouts”. In: 41st IEEE Conference on De-
cision and Control. Vol. 2. DOI: 10.1109/CDC.2002.1184681.

Linsenmayer, S. and F. Allgower (2017). “Stabilization of networked control sys-
tems with weakly hard real-time dropout description”. In: 56th IEEE Confer-
ence on Decision and Control (CDC), pp. 4765–4770.

Linsenmayer, S., M. Hertneck, and F. Allgower (2020). “Linear weakly hard real-
time control systems: time- and event-triggered stabilization”. IEEE Transac-
tions on Automatic Control.

Ma, Y., Y. Wang, S. Cairano, T. Koike-Akino, J. Guo, P. Orlik, and C. Lu (2018). “A
smart actuation architecture for wireless networked control systems”. In: DOI:
10.1109/CDC.2018.8619831.

Maggio, M., A. Hamann, E. Mayer-John, and D. Ziegenbein (2020). “Control-
system stability under consecutive deadline misses constraints”. In: 32nd Eu-
romicro Conference on Real-Time Systems (ECRTS). Leibniz International Pro-
ceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für In-
formatik.

Markovi, F., A. V. Papadopoulos, and T. Nolte (2021). “On the Convolution Effi-
ciency for Probabilistic Analysis of Real-Time Systems”. In: 33rd Euromicro
Conference on Real-Time Systems. DOI: 10.4230/LIPIcs.ECRTS.2021.16.

198

References

Maxim, D., R. I. Davis, L. Cucu-Grosjean, and A. Easwaran (2017). “Probabilistic
analysis for mixed criticality systems using fixed priority preemptive schedul-
ing”. In: 25th International Conference on Real-Time Networks and Systems.
DOI: 10.1145/3139258.3139276.

Ohlin, M., D. Henriksson, and A. Cervin (2006). Truetime 1.4 - reference manual.
Pazzaglia, P., C. Mandrioli, M. Maggio, and A. Cervin (2019). “DMAC: Deadline-

Miss-Aware Control”. In: 31st Euromicro Conference on Real-Time Systems
(ECRTS). Vol. 133. Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 1:1–1:24. ISBN: 978-3-
95977-110-8.

Pazzaglia, P., L. Pannocchi, A. Biondi, and M. D. Natale (2018). “Beyond the
Weakly Hard Model: Measuring the Performance Cost of Deadline Misses”. In:
Altmeyer, S. (Ed.). 30th Euromicro Conference on Real-Time Systems (ECRTS
2018). Vol. 106. Leibniz International Proceedings in Informatics (LIPIcs).
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 10:1–10:22. ISBN: 978-3-
95977-075-0. DOI: 10.4230/LIPIcs.ECRTS.2018.10.

Safari, S., M. Ansari, H. Khdr, P. Gohari-Nazari, S. Yari-Karin, A. Yeganeh-
Khaksar, S. Hessabi, A. Ejlali, and J. Henkel (2022). “A survey of fault-tolerance
techniques for embedded systems from the perspective of power, energy, and
thermal issues”. IEEE Access 10, pp. 12229–12251.

Schenato, L. (2009). “To zero or to hold control inputs with lossy links?” IEEE
Transactions on Automatic Control 54:5, pp. 1093–1099.

Schenato, L., B. Sinopoli, M. Franceschetti, K. Poolla, and S. S. Sastry (2007).
“Foundations of control and estimation over lossy networks”. Proceedings of
the IEEE 95:1, pp. 163–187. DOI: 10.1109/JPROC.2006.887306.

Schinkel, M., W.-H. C., and A. Rantzer (2002). “Optimal control for systems with
varying sampling rate”. In: 2002 American Control Conference. Vol. 4, 2979–
2984 vol.4. DOI: 10.1109/ACC.2002.1025245.

Stankovic, J., M. Spuri, M. D. Natale, and G. Buttazzo (1995). “Implications of
classical scheduling results for real-time systems”. Computer 28:6, pp. 16–25.
DOI: 10.1109/2.386982.

Sun, Y. and M. D. Natale (2017). “Weakly hard schedulability analysis for fixed pri-
ority scheduling of periodic real-time tasks”. ACM Transactions on Embedded
Computing Systems 16:5s. ISSN: 1539-9087.

Vreman, N., A. Cervin, and M. Maggio (2021). “Stability and Performance Analy-
sis of Control Systems Subject to Bursts of Deadline Misses”. In: 33rd Euromi-
cro Conference on Real-Time Systems (ECRTS). Vol. 196. Leibniz International
Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. ISBN: 978-3-95977-192-4. DOI: 10.4230/LIPIcs.ECRTS.2021.
15.

199

Paper V. Stochastic Analysis of Control Systems Subject to Faults

Vreman, N., R. Pates, and M. Maggio (2022). “Weaklyhard.jl: scalable analysis of
weakly-hard constraints”. In: 2022 IEEE 28th Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), pp. 228–240. DOI: 10 . 1109 /
RTAS54340.2022.00026.

Wang, W., P. Mishra, and A. Gordon-Ross (2012). “Dynamic cache reconfiguration
for soft real-time systems”. ACM Trans. Embed. Comput. Syst. 11:2. ISSN: 1539-
9087. DOI: 10.1145/2220336.2220340.

Yang, L. and N. Ozay (2021). “Safety control synthesis for systems with missing
measurements”. In: IFAC Conference on Analysis and Design of Hybrid Systems
ADHS 2021. Vol. 54. 5, pp. 97–102. DOI: doi.org/10.1016/j.ifacol.
2021.08.481.

200

Vad är det värsta som kan
hända när datorn krånglar?
Nils Vreman
Institutionen för Reglerteknik

Populärvetenskaplig sammanfattning av doktorsavhandlingen Analy-
sis of Embedded Controllers Subject to Computational Overruns, juni
2023. Avhandlingen kan laddas ner från: http://www.control.lth.se/
publications

Datorer i olika storlekar och med olika styrka finns runt omkring oss hela tiden. Allt
från mobilen i din ficka till bilen du åker med till jobbet innehåller många små da-
torer, också kallade inbyggda system. Varje litet inbyggt system har uppgifter som
måste uträttas, t.ex., beräkna hastigheten. I de flesta fall finns det krav och speci-
fikationer på att beräkningarna måste uträttas inom en viss tidsram. Till exempel,
om bromsen trycks in förväntas bilen sakta ner direkt. I verkligheten tar det lite tid
för det inbyggda systemet att beräkna nedbromsningshastigheten innan kommandot
kan skickas till bromssystemet. Systemet är dock alltid designat med hänsyn till den
extra tiden det tar att uträtta hela uppgiften.

Exempel på ett inbyggt system. På bilden
ses en Raspberry Pi Pico där det svarta
chippet i mitten (storlek 7× 7 mm) är en
mikrokontroller, dvs., ett inbyggt system.1

Tyvärr kan inbyggda system krångla,
precis som en persondator. Bland annat
kan bakgrundsprogram, virus, och föråld-
rad hårdvara/programvara störa beräkning-
en. Det kan försena beräkningen, och i
värsta fall medföra att uppgiften inte blir
klar alls. Vad händer då om det inbygg-
da systemet krånglar på ett sådant sätt att
tidsramen för beräkningen inte respekteras?
Just den frågan besvaras i den här avhand-
lingen.

Många inbyggda system sitter i appa-
rater där det inte gör så mycket om något
krånglar. Till exempel har mycket heme-
lektronik (så som moderna stereosystem,
TV-apparater, och kylskåp) inbyggda system för att styra funktionaliteten och kom-
municera med andra smarta system. Det är irriterande om smart-TVns bild blir
oskarp, men det är inget som påverkar oss märkbart. Värre konsekvenser uppstår
om det inbyggda systemet krånglar i bilens bromssystem, en pacemaker, eller i ett

1 Laserlicht, CC BY-SA 4.0, https://creativecommons.org/licenses/by-sa/4.0/, via Wi-
kimedia Commons

http://www.control.lth.se/publications
http://www.control.lth.se/publications
https://creativecommons.org/licenses/by-sa/4.0/

flygplans styrsystem. Då kan det uppstå verklig fara för människor i närheten och
värstascenariot inkluderar även dödsfall.

Den här avhandlingen utvecklar matematiska verktyg och metoder för att för-
bättra analysen av dessa säkerhetskritiska inbyggda system. Det är livsviktigt att
ingen person kommer till skada och därför fokuserar analysen på att se till att hela
systemet är säkert, även under väldigt dåliga förhållanden. Dåliga förhållanden in-
nebär här, bland annat, att det inbyggda systemet inte lyckas beräkna något under
en väldigt lång tid på grund av, t.ex., en hacker-attack. Med förhandsinformation
om hur länge systemet är säkert när något går fel är det möjligt att utveckla metoder
för att säkert stänga av eller starta om systemet innan någon kommer till skada.

Ett säkerhetskritiskt system blir inte nödvändigtvis osäkert bara för att beräk-
ningen tar lite extra tid då och då, men det kan göra att upplevelsen blir väldigt
obehaglig för användaren. Till exempel kan bilens nedbromsning bli ryckig och
oregelbunden. På lång sikt är det då troligt att systemet bryts ner och går sönder på
grund av utförandets oregelbundenhet, och som konsument överger du antagligen
tillverkaren. Detta kan kosta tillverkaren väldigt mycket pengar och försämrar ge-
nerellt sett företagets rykte. Därför räcker det inte att enbart se till att produkten är
helt säker, den måste också nå upp till en viss kvalitet för att det ska bli lönsamt att
producera den.

I avhandlingen utformas både algoritmer för att förbättra produktkvaliteten och
metoder för att kvalitetsgranska slutprodukten. Genom att förändra beräkningarna
som utförs av det inbyggda systemet i realtid visas att det är möjligt att kompensera
för den försämrade prestandan. Nya metoder för att undersöka prestandan utvecklas
och används för att garantera att algoritmerna fungerar enligt förväntan när det in-
byggda systemet krånglar. För att bekräfta att avhandlingens bidrag går att använda
i verkligheten testas både algoritmerna, säkerhetsanalysen och prestandaanalysen
på flertalet verkliga system. Experimenten visar att metoderna både är enkla att an-
vända och ger en bra bild av hur det verkliga systemet påverkas av problem med de
inbyggda systemen.

