
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

On the Challenges of Software Performance Optimization with Statistical Methods

Couderc, Noric

2023

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Couderc, N. (2023). On the Challenges of Software Performance Optimization with Statistical Methods. [Doctoral
Thesis (compilation), Department of Computer Science]. Department of Computer Science, Lund University.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

Download date: 04. Jul. 2025

https://portal.research.lu.se/en/publications/285d8a2d-79ea-488f-96dd-dbe768ac5ed4

On the Challenges of
Software Performance

Optimization with
Statistical Methods

Noric Couderc

Doctoral thesis, 2023

Department of Computer Science
Lund University

ISBN 978-91-8039-691-2 (electronic)
ISBN 978-91-8039-692-9 (print version)
ISSN 1404-1219
Dissertation 72, 2023
LU-CS-DISS 2023-03

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: noric.couderc@cs.lth.se

Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2023

© 2023 Noric Couderc

noric.couderc@cs.lth.se

Abstract i

Abstract
Most recent programming languages, such as Java, Python and Ruby, include
a collection framework as part of their standard library (or runtime). The Java
Collection Framework provides a number of collection classes, some of which
implement the same abstract data type, making them interchangeable. Developers
can therefore choose between several functionally equivalent options. Since
collections have different performance characteristics, and can be allocated in
thousands of programs locations, the choice of collection has an important impact
on performance. Unfortunately, programmers often make sub-optimal choices
when selecting their collections.

In this thesis, we consider the problem of building automated tools that would
help the programmer choose between different collection implementations. We
divide this problem into two sub-problems. First, we need to measure the perfor-
mance of a collection, and use relevant statistical methods to make meaningful
comparisons. Second, we need to predict the performance of a collection with as
little benchmarking as possible.

To measure and analyze the performance of Java collections, we identify
problems with the established methods, and suggest the need for more appropriate
statistical methods, borrowed from Bayesian statistics. We use these statistical
methods in a reproduction of two state-of-the-art dynamic collection selection
approaches: CoCo and CollectionSwitch. Our Bayesian approach allows us to
make sound comparisons between the previously reported results and our own
experimental evidence. We find that we cannot reproduce the original results, and
report on possible causes for the discrepancies between our results and theirs.

To predict the performance of a collection, we consider an existing tool called
Brainy. Brainy suggests collections to developers for C++ programs, using ma-
chine learning. One particularity of Brainy is that it generates its own training
data, by synthesizing programs and benchmarking them. As a result Brainy can
automatically learn about new collections and new CPU architectures, while other
approaches required an expert to teach the system about collection performance.
We adapt Brainy to the Java context, and investigate whether Brainy’s adaptability
also holds for Java. We find that Brainy’s benchmark synthesis methods do not ap-
ply well to the Java context, as they introduce some significant biases. We propose
a new generative model for collection benchmarks and present the challenges that
porting Brainy to Java entails.

Acknowledgements iii

Acknowledgements
I thank Christoph Reichenbach and Emma Söderberg for being excellent super-
visors. They are talented, driven, and supportive people, and provided a lot of
insight and help.

I thank the members of the SDE group at Lund University, for the stimulating
conversations, about anything and everything. I thank Görel Hedin for her support
and wisdom. I thank Alexandru Dura for his intelligence and honesty. I thank
Momina Rizwan for reminding me of all the meetings I had forgotten, and Faseeh
Ahmad for his advice about ice cream. I thank Idriss Riouak for challenging
me when we went bouldering, and Anton Risberg Alaküla for asking me absurd
questions.

Je remercie ma mère, Dominique Couderc, pour son soutien indéfectible, et
pour m’avoir inspiré par son courage et sa persévérance. Je remercie mon père,
Jean-Jacques Couderc, pour avoir, depuis toujours, stimulé ma curiosité et mon
intérêt pour les sciences. Je remercie ma sœur, Camille Couderc pour sa simplicité,
et son ouverture d’esprit. Ces personnes m’ont appris que les sciences, les arts et
les sports sont trois composantes d’une vie riche, et qu’à ce titre, elles méritent
tout notre respect et toute notre attention.

Popular Summary v

Popular Summary

If you have ever used a computer, you probably noticed something: In a way,
computers are really fast, but sometimes, they are really slow. Why is it that
video games get more impressive every year, while a simple web-page can stall
for seconds, displaying a frustrating spinning wheel?

This question is at the heart of performance engineering. Everything a computer
does takes at least two resources: time, and memory. Since the very invention of
the computer, engineers have worked to do things more efficiently, that is, using
less time and less memory. When they are successful, we get exciting games,
when they fail, we get… well, frustrated.

One way to make programs faster is to look at collections. When programmers
want to group some data together, they use a collection. One example of collection
is the list of contacts in a phone.

Each collection supports a few operations we can use in programming, to
modify it. We can add to a collection, delete from it, and search for certain values
in the collection. In the last fifty years, people have come up with different types
of collections, which have different performance properties. For some, inserting
is very cheap, but deleting is expensive. For some others, deleting is cheap, but
it’s search that is expensive.

So, if we want programs to be fast, we need to consider how a collection is
used, and choose carefully. Software developers can think very hard about what
collection to use, but because code is complicated, choosing wisely is difficult. The
program still works, but it is slower than intended.

In this thesis, we try to speed up programs by suggesting to the developer
which collections they should use, based on how they use them. We try to build a
tool akin to a “code spellchecker”, which will suggest fixes to the developer’s code,
so that the program runs faster. We focus on the Java Programming language,
because it is very popular. To build such a tool, we need to answer a couple of
questions.

The first one seems trivial, but it is not: How do we even measure how long
a program takes? We can take a stopwatch and measure the time it takes to run
the program. The problem is that computers are very complicated, so if wemeasure
twice, we’ll get different numbers. Indeed, there are so many things influencing
our results! Worse, if we measure on another machine, we might get completely
different numbers! A significant part of this thesis is about what influences the
execution time of a program, and how to make meaningful comparisons between
running times.

The second question is: Can we predict the performance of a collection?
Indeed, if we want a tool that suggests option A over option B, it needs to have
a rough idea of how long A and B would take to run. The tricky part is that we
want to know that without running the programs, because running a program can

vi Popular Summary

take seconds, minutes, hours, or days. Therefore, we would prefer the computer
to guess.

To be able to guess, the computer needs to learn. This our third question: How
can we learn effectively about collections’ strengths and weaknesses? In
this thesis, we ask the computer to generate artificial (short) programs, run them,
and learn from them.

Here’s a metaphor. To learn about the strength and weaknesses of collections,
we’ll build a “race-track” for collections. This race-track is a list of operations
(insert this, delete that, search for something) in sequence. Then, we organize a
race. We try different collections on the same race-track, to see how well they do.
Usually, people might write these by hand. Small programs like these are called a
micro-benchmark. Instead, we have the computer generate them. It makes a lot of
them.

So, how well does this work? In our case, we run into a problem: some
collections beat the competition in many, many cases. That sounds great: Then,
why not use those all the time? It turns out that when we plug those collections
into some real programs (that people have written), we do not observe significant
differences. So in practice, the tool we’ve built is not effective at optimizing those
programs.

We finish this thesis by looking at other approaches that people have tried
in the past. We investigate how some real programs use collections, and try to
reproduce the results that others have found earlier. We see that even if their
methods worked when they published their studies, they do not seem to work
very well anymore.

Contributions of the Author vii

Contributions of the Author

This thesis is a compilation consisting of an introduction, and four papers.

Peer-reviewed Publications by the Thesis Author

Paper I

Noric Couderc, Emma Söderberg, and Christoph Reichenbach. “JBrainy: Micro-
benchmarking Java Collections with Interference (Work in Progress Paper)”. In:
ICPE ’20: Companion of the ACM/SPEC International Conference on Performance
Engineering. 2020, pp. 42–45

The thesis author did all of the technical work and is the main author of sections
3-4.

Paper II

Noric Couderc, Christoph Reichenbach, and Emma Söderberg. “Performance
Analysis with Bayesian Inference”. In: ICSE-NIER ’23: Proceedings of the 45th
International Conference on Software Engineering: New Ideas and Emerging Results.
2023

The thesis author suggested the article, did all of the technical work, and is the
main author of the paper.

Paper III

Noric Couderc, Christoph Reichenbach, and Emma Söderberg. “Classification-
based Static Collection Selection for Java: Effectiveness and Adaptability”. In:
EASE ’23: Proceedings of the International Conference on Evaluation and Assessment
in Software Engineering 2023. June 2023

The thesis author implemented most of the system described, and wrote the main
argument, which has however been significantly edited by secondary authors

Drafts

Paper IV

Automatic Collection Selection for Java: Comparing Static Approaches with Adap-
tive Collections.

To be submitted.
The thesis author implemented most of the system described, and wrote the core

argument, with revisions from the co-authors.

viii Contributions of the Author

Reponsibilities
The table below indicates the responsibilities the author had in each paper.

Paper Writing Concepts Implementation Evaluation

I 1/4 3/4 4/4 4/4
II 3/4 4/4 4/4 4/4
III 2/4 3/4 3/4 4/4
IV 3/4 4/4 3/4 4/4

Contents

Introduction 1

I The Collection Selection Problem 3
1 Research Questions . 4
2 Outline . 4

II Background 5
1 Collection Type . 5
2 Collection Usage, Program and Input Data 9
3 Hardware . 10
4 Java Virtual Machine . 11
5 Summary . 15

III Related Work 17
1 Target Programming Language . 18
2 Performance Metrics . 18
3 Replacement Strategy . 18
4 Collections and Optimizations . 21
5 Evaluation . 22
6 Comparison of Collection Selection Tools 23
7 Summary . 24

IV Machine Learning and Collection Performance Prediction 27
1 Architecture . 28
2 Modeling Collection Usage . 29
3 Predicting Collection Performance 31
4 Summary . 36

V Evaluating Java Programs 37
1 Design of Experiments . 37
2 Design of Experiments and Causal Inference 39
3 Summary . 41

VI Analyzing Experimental Results 43

x Table of Contents

1 Hypothesis Testing . 43
2 Confidence Intervals . 45
3 Bayesian Statistics . 46
4 Linear Regression . 47
5 Hierarchical Models . 54
6 Summary . 61

VII Contributions 63
1 JBrainy: Micro-benchmarking Java Collections with Interference

(Work in Progress Paper) . 63
2 Performance Analysis with Bayesian Inference 64
3 Classification-based

Collection Selection for Java:
Effectiveness and Adaptability . 65

4 Automatic Collection Selection for Java: Comparing Static Ap-
proaches with Adaptive Collections 66

VIII Threats to Validity 69
1 Internal Validity . 69
2 External Validity . 71
3 Summary . 72

IX Conclusions and Future Work 73
1 Collection Selection . 73
2 Benchmarking and Experimental Design 74
3 Conclusions . 75
4 Final Words . 75

Included Papers 85

Included Papers 85

I JBrainy: Micro-benchmarking Java Collections with Interfer-
ence (Work in Progress Paper) 87

1 Introduction . 87
2 Methods . 88
3 Experiments . 89
4 Discussion . 93
5 Related work . 94
6 Conclusions and Future Work . 95
7 Acknowledgements . 95
References . 95

Table of Contents xi

II Performance Analysis with Bayesian Inference 99
1 Introduction . 99
2 Example: Collection Selection in Java 100
3 Model with interactions . 105
4 Discussion . 107
References . 108

III Classification-based Collection Selection for Java: Effective-
ness and Adaptability 111

1 Introduction . 111
2 Related work . 113
3 Brainy . 114
4 Porting Brainy to Java: Brainy4J 116
5 Effectiveness of Brainy4J . 118
6 Adaptability of Brainy4J . 124
7 Obstacles to Effectiveness . 127
8 Threats to Validity . 129
9 Discussion . 130
10 Conclusions . 131
11 Acknowledgements . 132
References . 132

IV Automatic Collection Selection for Java: Comparing Static
Approaches with Adaptive Collections 137

1 Introduction . 137
2 Related Work . 139
3 Background: What Influences Execution Time? 141
4 Methods . 148
5 Statistical Analysis . 151
6 Results . 155
7 Discussion . 163
8 Threats to Validity . 164
9 Conclusion and Future Work . 165
References . 166

Introduction

The Collection Selection
Problem

From a distance, all software looks the same: it reads data, processes it and stores
the results. This similarity can be misleading: even two programs that compute
exactly the same result can be different. How can two programs that compute the
same thing be different? The difference lies in a key property of computers: every
action do has a cost. How two algorithms compute a result is important: what
operations are performed, and in what order, both affect how much time, and how
much memory the process takes. Since computers have limited resources and
people have limited time, both are important aspects of software quality [Noa].

One way to make processing faster and storage more efficient is to look
at how a program stores data in memory. When software developers have to
group data items together (for example, making a list of all the cities the system
knows), they typically use what is called a collection. Many standard libraries for
programming languages provide different collections implementations, each with
different performance characteristics.

Unfortunately, developers often make sub-optimal choices when choosing
collections, leading to both memory bloat (using too much memory), and runtime
bloat (taking longer than optimal to finish a task) [MSS10; Xu+10]. Mitchell et
al. identify two causes for such bloat [MSS10]. First, developers sometimes lack
knowledge on how data-structures work. Second, even when they don’t, they
might have limited knowledge of how their software is going to be used: making
performance design decisions is difficult without knowing the context.

To make things worse, even very small changes have a big impact: In one study
[LR09], Google engineers noticed that changing a single line of code improved
the execution time of their program by 17%.

Choosing the wrong collection doesn’t lead to obvious failure. Two collections
from the same family (list, sets, maps) have roughly the same functional properties,

4 The Collection Selection Problem

swap one for the other, and it works anyway. This flexibility is appreciated by
developers, but has an impact on performance [MSS10].

Why would choosing the right collection be the task of the developer? Com-
pilers already automate many optimizations [WO18], why not include collection
selection too?

In this thesis, I will explore techniques to help developers choose the right
collections. Doing this requires to solve two problems: first, we need to design
optimizations, and second, we need to evaluate their effect on programs. The
design of optimizations, in my case, required to understand how different Java
collections work, and their properties regarding the cost of different operations
on these collections. The evaluation of optimizations requires to first apply the
optimization to a program, and then compare the optimized program to the original
program. Unfortunately, there are many factors that can influence measurements,
so the evaluation must be planned carefully.

1 Research Questions
In the rest of this thesis, we will focus on two main research questions, and their
sub-questions.

• How to make effective suggestions for collections to Java developers?

– How do other tools do it?
– How to predict a collection’s performance?

∗ How do we model collection usage?
∗ How can we effectively model a data-structure’s strengths and
weaknesses?

• How to evaluate our optimizations on Java software?

– How to design experiments for performance analysis?
– How to analyse benchmark results?

2 Outline
This thesis countains nine chapters, including this one. Chapter II presents the
different factors that influence execution time. Chapter III reviews the related
work on collection selection. Chapter IV discusses using machine learning to
predict collection performance. Chapter V discusses the design of experiments to
measure the performance of Java software. Chapter VI discusses the statistical
analysis of benchmark results. Chapter VII lists the contributions of this thesis.
Chapter VIII discusses the threats to validity. Chapter IX describes the future
work.

Background

To reduce the execution time of their programs, developers need to understand
what factors influence it. This is what this chapter is about. I will review how
collections influence execution time, but also how other factors influence it too.

I divide the problem in two families of factors: those who are internal to
the program under study, and those who are external. Internal factors can be
manipulated by editing the source code of the program: for example, which
collection you use, and what you do with it.

External factors concern the environment in which the software is compiled
and run. For example, hardware matters, so the CPU architecture and memory
matters. Likewise, the compiler and its options influence performance, but so does
its runtime. In the Java world, the runtime is the Java Virtual Machine (JVM):
it is the infrastructure that supports the program running, including things like
garbage collectors and JIT-compilers.

To keep track of these factors and their influences, I will use graphical causal
models [PGJ16], informally called “causal graphs”. In a causal graph each vertex
represents a factor. When a factor causes another, they are connected by an arrow.
Some factors can be marked as “unobserved”, in which case, I will display them in
a box. Unobserved factors are factors that we cannot observe directly.

Figure 1 shows one such graphs, which summarizes what I just said. It shows
the effect of the Hardware, the JVM, the collection type and collection usage on
execution time. The variable “Collection usage” is marked as unobserved, because
this is something that we cannot easily measure without disturbing the execution
time of the program.

1 Collection Type
This thesis is concerned with Java data-structures, which are roughly divided
in three families: Lists, Sets and Maps. The Java Collections Framework defines
interfaces for these three data types, which specifies methods which are mandatory

6 Background

Program

Collection type Execution time Hardware

Collection usage

Input Data

JVM

Figure 1: A causal graph of various causes of execution time for Java programs.
Each arrow - → . means - causes . . Boxed nodes denote unobserved variables,
which we cannot measure during our experiments. Collection type is the variable
we will manipulate to reduce execution time.

to implement, and their types. I tried to find a source for these definitions, but did
not find any.

The Java interface describes the type of methods of collections, but it does not
specify their semantics, nor their performance characteristics. For each interface,
there exist a number of collection implementations, which have different prop-
erties, regarding performance. We review the major collection implementations
available in the Java Collections Framework.

1.1 Array-Based Lists

Array-based lists contain arrays which are re-allocated when the size of the list
changes. When to resize is decided by the capacity of the list, which sets the initial
size of the array. They offer access to any element of the array in constant time,
while search is in linear time. Insertions are performed in constant time, but can
take linear time in the worst case, where the full list needs to be copied to a new
array. Likewise, deletions run in linear time in the worst case, where the full array
must be copied to be kept contiguous in memory.

1.2 Linked Lists

Linked lists are implemented by having each element hold a pointer to the previous
and the next element in the list. Access and search run in linear time in the worst
case. Insertion at the front runs in constant time, since one just needs to create
a new element which points to the first of the list. Deletion runs in constant
time, but often requires search, and therefore runs in linear time in the worst case
[Cor07].

Linked lists are slower than array-based lists, but they have the advantage
that it is possible to take an existing data-structure, and add a linked list to it. An
example of that is Java’s LinkedHashMap. Which is a HashMap, with a linked
list attached, which allows to speed up iteration over the map.

Background 7

1.3 Hash Tables
Hash tables are used both to implement maps and sets. They consist of an array of
slots and a hash function, which maps the key of interest into a slot. A convention
in Java is that if two objects have an equal value, the hash function for these
objects (called hashCode) should return the same result. However, the converse is
not necessarily true. For example: the strings “BBBB” and “BBAa” have the same
hashCode 1.

The load factor is a number that selects many filled slots there should be in
the hash table before we resize it. When that happens, the hash table is rehashed,
to spread the elements in the slots.

The properties of the hash function influence cost of operations on the hash
table in two ways. First, the cost of hashing matters, since every insertion, deletion
and searchwill require to hash. If the hash function runs in constant time, insertion,
deletion and search then take constant time. Second, each hash function involves
the probability of a collision. A collision is when the hash function maps the key
to a slot that is already occupied.

When collisions happen, and there are several strategies for handling them.
Cormen et al. [Cor07] present two: chaining and open addressing.

With chaining, instead of storing on single element in each slot, the hash table
stores a linked list of elements. If there is a collision during insertion, you prepend
the new element to the list. During search, if the slot contains a list, you iterate
through the elements of the list. In the worst case, where every insertion caused
a collision, a search amounts to a search in a linked list, which takes linear time.

With open addressing, instead of using a linked list, we transform the hash
function so it can generate a sequence of slots for each key. During insertions, we
try to insert in the first slot of the sequence, if there is an element there, we try
the second slot, etc. During search, we try the first slot in the sequence, and if
it does not match the key, we try the second slot in the sequence, etc. Deletion
requires to store a special element in the deleted slot, to indicate that there was
an element there (and therefore, possibly others later in the chain). Otherwise,
during a lookup, we might conclude the element is not in the map, while there is,
but it’s after the deleted element in the sequence.

Using open addressing, insertions and searches require to run the hash function
several times. If this function is expensive, collisions can become very expensive.

Because hash functions are ran often, and because collisions increase the cost
of operations, we would like to have hash functions which are fast but cause few
collisions. It is difficult to satisfy both properties: reducing the probability of
collisions requires more analysis, which takes time.

For example, take writing a hash function for strings. Analyzing the full string
takes linear time. Therefore, to reduce the cost of hashing, we would be tempted
to write a hash function which only looks at part of the string, for example, the

1I thank Louise Adolfsson for this information.

8 Background

first few characters. But if we do that, we increase the probability of collisions,
for example, Norway would collide with North Korea.

Sometimes, using comparison instead of hashing is a better option, which is
the strategy used by the next data-structure we consider.

Execution time Collision handling method

Probability of collisionsHash function

Element type

Collection usage

Load factor

Figure 2: A causal graph for hash tables (like HashMap and LinkedHashMap)

1.4 Red/Black Trees
TreeMap and TreeSet are implemented using red/black trees, which are special-
ization of binary trees. Such data-structures rely on the ordering of the elements
stored in the collection to reduce the cost of lookups.

Binary trees are composed of nodes. Each node contains the key, which is the
element stored in the node. Then, three references to other nodes. The parent is
the node above in the tree. The left child is a sub-tree which will contain nodes
whose key is lower than the current key. The right child is a sub-tree which will
contain nodes whose key is higher than the current key.

More formally, the structure of the tree is described in the binary tree property:
“ Let G be a node in the binary search tree. If ~ in a node in the left sub-tree of

G , then key[~] ≤ key[G]. If ~ is a node in the right sub-tree of G , thenkey[G] ≤
key[~].” ([Cor07])

Because of this property, we know that the cost of operations on the tree is
proportional to the height of the tree ℎ: insertions, deletions and lookups all run
in $ (ℎ) [Cor07].

Now, binary trees do not put constraints on the height of the tree, so it is
possible to end up with an unbalanced tree. For example, inserting elements in a
sorted order will create a tree that is equivalent to a linked list, so operations on
the tree will have the same cost as for a linked list.

Red/black trees are binary trees which use a balancing strategy. They have
different insertion and deletion procedures, to keep the tree balanced, so that it’s
height is the logarithm of the number of elements in the tree. Therefore, insertion,
deletion and lookups take $ (log(=)) comparisons in the worst case [Cor07]. The
cost of each comparison must however be considered too.

Background 9

Execution time Balancing strategy

Comparison function

Element type

Collection usage

Figure 3: A causal graph for binary trees (like TreeMap)

Data-structure Access Search Insertion Deletions
Array-based list $ (1) $ (=)/Θ(=)* $ (=) $ (=)
Singly-linked list $ (=) $ (=)/Θ(=)* $ (1) $ (1)
Hash table $ (1) $ (1) $ (1)
Red/Black tree $ (log(=)) $ (log(=)) $ (log(=))
Array-based map Θ(=) Θ(=) Θ(=)

Table 1: Complexity of operations for common data-structures [Cor07]. For
array-based lists, I provide amortized costs. For linked lists, the cost of insertion
assumes that we already have the position we want to insert / delete, which takes
Θ(=) time to obtain. Asterisks denote complexity in the worst case.

1.5 Summary
I described how the operations performed on different collections, what they
contain, and their size had an influence of execution time. In practice, most of
the methods performed on collections will have constant, logarithmic, or linear
complexity. Table 1 summarizes the cost of different operations on different
data-structures.

2 Collection Usage, Program and Input Data
Of all the factors in this chapter, collection usage is probably the one that has the
most impact on execution time. First, because each operation on the collection
has a cost. Second, because it has an influence on the size of the collection, and
the size of the collection influences the cost of subsequent operations, as shown
in Table 1.

Unfortunately, tracing collection usage has an impact on execution time. That
is why I marked it as unobserved: tracing collection usage will slow down the
program. So we will either need to run it again to estimate the actual execution
time, or hope that we do not disturb it too much.

10 Background

Collection usage is influenced by the source code of the program, but also the
inputs to the program. This point is important, because one can either create an
offline tool that looks at the source code and suggests static changes, but then lack
access to the inputs, or adaptive collections that can switch implementation at
runtime, and have access to the input data, but add some overhead. I will come
back to this issue in Chapter III.

3 Hardware
The “hardware” node in Figure 1 hides many details, but if we run the same
program with the same input on two different machines, we should expect some
variation in the resulting execution time. In this section, we list in more detail
what hardware factors can influence execution time.

Instructions and Cycles An instruction is an operation performed by the CPU.
CPUs have a clock which tick regularly, every tick is called a cycle. Modern
computer performance is often described in instructions per cycle which denotes
the number of instructions executed in one clock cycle. Some instructions take
more than one cycle to execute, for example, reading from RAM takes hundreds
of cycles. Two ratios have a key influence on execution time: instructions per
cycle, and time per cycle. Several factors can affect both instructions per cycle,
and time per cycle, as we will see below.

Clock Frequency The clock frequency sets the time spent per cycle, increasing
the frequency decreases the time spent per cycle, at the cost of increasing the
power consumption and temperature of the CPU. Modern CPUs can change the
frequency automatically, depending on the temperature of the CPU.

Cache Behavior Modern CPUs all have a small amount of very fast memory,
called a cache. Loading data from the cache takes very few cycles, compared to
loading from the RAM, so using this cache appropriately speeds computations up.

One example of the effect of data-structures on the cache is the difference
between array-based lists and linked lists. When iterating through an array-based
list, the list operates on an array that is contiguous in memory. As a result the
address of the next few elements is easy to predict, and the next elements will
be loaded in the cache in advance. When iterating through a linked list, this is
impossible: Each element comes with a pointer which tells where in RAM the next
element is, and one need to load it from RAM. The cache is used less efficiently,
and as a result, iterating through a linked list takes longer.

Branch (Mis)predictions CPUs have a pipeline of operations, which will be
performed in sequence. If-statements are translated in conditional jumps, which

Background 11

prevent the CPU from loading the next instructions to execute in the pipeline
(since the result of the condition changes which code to execute next). To prevent
this, modern CPU have a device called a branch predictor which will try to predict
the result of the conditional before it’s executed. If the branch predictor is correct,
the next instructions are already loaded in the pipeline and run quickly. Otherwise,
the CPU must discard the instructions, wasting cycles. As a result, increasing the
number of branch mispredictions makes the program run slower.

Parallel Architectures One way to speed up computations is by doing things
in parallel, rather than sequentially. As a result, hardware designers conceived
multi-core architectures which allow several threads to run in parallel, sharing a
central memory.

If each processor has its own memory (or cache), then the data that is in that
memory can become outdated because of the actions of other processes running
on other cores [HPAD07], a problem called cache coherence. The designer must
therefore implement a protocol to either update or invalidate the values stored in
the cache, when other processors make writes to memory, with a time penalty.

The presence of threads and cache coherence influence execution time in
unpredictable ways. As a result, running once is not enough, maybe we just
got lucky. To prevent this, we will run many replications: several runs of the
same program, to obtain a distribution of results, which takes into account the
uncertainty introduced by threads and disturbances by other processes.

Unfortunately, the speedup one could expect from parallelism is significantly
influenced by the proportion of sequential operations: “The performance improve-
ment to be gained from using some faster mode of execution is limited by the
fraction of the time the faster mode can be used” [HPAD07].

Summary Figure 4 describes the effect of hardware behavior on execution
time with a causal graph. CPU architecture and the code have an effect on the
execution time. They act through branch mispredictions and cache misses. Some
of these quantities are unobserved, they can’t be measured without disturbing
the execution time of the program. CPU temperature and other processes also
influence execution time, and because experimenters cannot easily control them,
they will observe noise in our measurements.

4 Java Virtual Machine
Compilers developers want to reduce execution times too, so they will often write
compilers which try to exploit knowledge about hardware to reduce execution
time. In the context of Java, the compiler is relatively simple, it is the Java
Virtual Machine (JVM) which serves as an intermediate layer between code and
hardware, it will perform dynamic optimizations. I will focus on Just-in-Time (JIT)

12 Background

Execution time

Clock frequency

Cache misses

Branch mispredictions

CPU temperature

CPU architecture

Collection usage

Other processes / threads

Hardware

Figure 4: A causal graph describing what hardware properties influence execution
time. The boxed nodes refer to unobserved variables, which we cannot measure
without disturbing our measurements. The blue box refers to the “hardware node”
in Figure 1

.

Execution time

Garbage collectionGC pauses

JIT-compilation

Heap size

Collection usage

Time since start

JVM

Figure 5: A causal graph describing how the JVM influence execution time. The
boxed nodes refer to unobserved quantities

compilation, and garbage collection (GC). Figure 5 is the causal graph describing
the influence of the JVM on execution time.

4.1 JIT-Compilation

One of the keys optimizations that the JVM performs is Just-in-Time compilation
(JIT). The JVM will choose code that is “hot” (executed often) and will compile it
to machine code, for quicker execution. As a result, running the same program
several times in the same process, we expect to see its execution time decrease.
Figure 6 shows an example of this behavior.

Performance engineers are often interested in so-called “steady-state per-
formance”. Which is the running-time to the right in Figure 6, that is, after
JIT-compilation has finished optimizing. At that point, performance engineers
expect the execution time to reach a plateau. To account for JIT compilation, ex-
perimenters run the program several times in the same process, [Bla+08; GBE07].

Background 13

0 2 4 6 8 10 12 14 16 18 20

number of runs

0

500

1,000

1,500

2,000

2,500

3,000

e
x
e
c
u

ti
o
n

 t
im

e
 (

m
s
)

Figure 6: Execution time for the fop benchmark, relative to number of times it
was run. Error bands show the standard deviation across 20 replications of the
same experiment. The line shows the mean running time. We can see that the
execution time of the benchmark drops significantly with warmup.

Determining when steady-state performance is reached has shown to be very
tricky [Bla+08; Bar+17; Tra+22]. Figure 7 shows my hypothesis as to what the
problem is. The problem is that JIT-compilation is unobserved : It is not something
one can measure without disturbing the execution time of the program, so exper-
imenters do not measure it. Researchers can control the number of in-process
runs, and observe the execution times, but they cannot observe if JIT-compilation
has completed or not. Therefore, they use execution time as a proxy for JIT-
compilation: they try to infer the state of JIT-compilation based on execution time
and the number of runs.

So far, scientists have focused on using cleverer statistical techniques to infer
the state of JIT-compilation from the number of runs and execution time [GBE07;
KJ13]. However, as we have seen, many other things influence execution time, so
in practice, many benchmarks never reach a plateau [Bar+17; Tra+22]. Barett et
al. for example, show how the execution times varies as garbage collection starts,
or as the benchmark is migrated between cores [Bar+17]. I do not really have a
solution yet, but I am skeptical we can talk about steady-state performance, as
long as JIT-compilation remains unobserved.

4.2 Garbage Collection

Java is a managed language, which means that memory allocation and freeing are
automatic. When starting, the JVM will claim a certain amount of memory, this is

14 Background

Execution time

Garbage Collection

JIT-compilation

Number of runs

Java Virtual Machine

Startup/Steady-state?

Unobserved

Figure 7: A causal diagram of how the JVM influences execution time. Unobserved
variables are boxed, the blue node refers to a quantity that is inferred by the
researcher. Researchers have tried to use execution time as a proxy for JIT-
compilation, but the other influences on execution time disturb the measurements.

called the heap. This memory is claimed in the sense that other processes are not
allowed to use it.

When the Java Programmer “creates” an object, a certain region of memory is
assigned to that object. The JVM looks for a location in memory considered “free”
(meaning that no important information is stored there), where information about
that specific object will be stored. When an object is not used anymore, the space
it occupied is considered free. The JVM automatically detects and marks memory
to re-use, which is called garbage collection (As Nyström points out, the garbage
collector doesn’t throw memory away. So recycling would be a better metaphor
[Nys21]).

Heap Graph How does the JVM keep track of what memory is not needed? In
short, it tracks how objects reference other objects. We can see this structure as a
graph. Objects are vertices and references are edges. We are interested in objects
which become unreachable from certain special vertices in the graph, called the
roots. A reachable object is called live.

Marking and Collection Garbage collection is divided in two phases: marking
and collection. The marking phase is the process of marking reachable objects.
Nodes that are not reachable are considered “garbage”, and will therefore be
removed. Some garbage collectors, like the Serial GC, stop the entire program
to mark the objects for removal, they are hence called stop-the-world garbage
collectors [Nys21]. The time while the program is paused is called a GC pause. In
the collection phase, the garbage collectors frees the unused (non-live) objects,
meaning that it considers this memory as available for further allocations.

Background 15

Latency and Throughput Every managed language pays a price for garbage
collection [Nys21], and Java is no exception [Len+17]. Throughput is the total
fraction of the time spent running user code instead of doing garbage collection.
Latency (also called maximum pause time) is the longest continuous chunk of time
where the user’s program is completely paused. Different garbage collectors offer
different trade-offs between those two different metrics, which is why there is a
direct arrow between garbage collection and execution time in Figure 5. For batch
jobs, throughput is more important, since it’s the total amount of wasted time.
For interactive applications, latency can be more important, otherwise the user
interface might freeze while garbage is collected.

Summary The JVM influences execution time, mostly through two aspects.
JIT-compilation speeds up programs by compiling java bytecode to machine code,
while garbage collection occasionally slows down the program, reclaiming unused
memory.

5 Summary
This chapter was a tour of how collections and other environmental factors, such
as hardware architecture and the JVM, influence execution time.

In the Chapter III, I will review the related work about collection selection, in
which we will see some optimizations that use some of the factors I mentioned
here (e.g. load factor). In Chapter IV, we will also see how my work uses some
consequences of collection usage to decide which collection to use (e.g. cache
misses).

Related Work

To design a tool that optimizes running by changing which collections are used,
there are several choices to consider. In this section, I will review what design
choices were made in existing systems. I chose to compare Chameleon [SVY09],
Brainy [Jun+11a], CoCo [Xu13], CollectionSwitch [CA18], Artemis [Bas+18], and
finally, Cres [Wan+22]. Automated collection selection dates back to 1983 with
the work of Freudenberger et al. on the SETL language [FSS83]: I chose to focus
on systems which target Java (Brainy being the exception, for reasons which will
become clear soon) and aim to improve execution time.

There are systems which target other languages and use other definitions
of efficiency, like energy usage. Perflint [LR09] improves the execution time of
C++ programs. On energy usage, the SEEDS system [MPC14] aims at improving
energy usage, while Hasan et al. [Has+16] investigated why some collections
require more energy than others.

Coming back to our comparison, I will focus on how different systems answer
the following design axes.

• Target Programming Language: What language do the tool target?

• Performance Metrics: What is the tool trying to improve?

• Collections and Optimizations: What collections and optimizations can
the tool use?

• Replacement Strategy: How does the tool perform replacements?

• Evaluation: How is the tool evaluated?

• Comparison: How is the tool compared to alternatives?

18 Related Work

1 Target Programming Language
Chameleon, CoCo, CollectionSwitch and Cres target Java. Brainy targets C++,
while Artemis supports both C++ and Java.

2 Performance Metrics
All of these works claim to improve performance. Here, performance is a trade-
off between two resources: execution time, and memory used. Artemis and
Chameleon try to optimize both simultaneously, while CollectionSwitch allows
the user to choose between optimizing one or the other. CoCo, on the other hand,
trades memory usage with better execution times (by sharing the data across
several collections). Lastly, Brainy and Cres only optimizes execution time.

3 Replacement Strategy
Developers usually work on an existing code base. The existing program likely
already uses collections. The developer therefore faces the two following questions:

• Granularity: When should collections be replaced?

• Prioritization: Which collections should be replaced first?

• Decision Making: How to select the collection to use?

3.1 Granularity
First, a collection is born in a constructor call. We call the program location of
that call an allocation site. Then, the collection receives method calls, we call the
sequence of such method calls a trace. After it has been used, the collection is
destroyed, either manually (as in C++), or automatically (in Java).

I could find three approaches to replace collections during the lifetime of
collections: at the allocation site level, at the object level, or at the method level.

Replacements at the allocation site level replace the constructor calls, just like
a software developer updated source code. Every collection that is created at the
allocation site will still be of the same type. Brainy, Artemis and Cres, Chameleon
did allocation site level replacements.

Replacements at the object level replace the constructor call by a factory
method, which was the strategy that CollectionSwitch used. Each created col-
lection carries some instrumentation to inform the factory about how they are
being used. The factory can use that information to determine if a different type
of collection should be created at the allocation site. As a result, two collections
created at the same allocation site may be of different types.

Related Work 19

Lastly, replacements can be done at the method level. In this case, created
collections have the ability to switch their underlying implementation at any
time. Each collection carries instrumentation for monitoring and decision making,
and each method call may trigger a switch. This approach is also sometimes
called adaptive collections. For CollectionSwitch, a switch triggers a copy to a
new collection. For CoCo however, the data stored in the collection will be lazily
copied over the new collection.

Static or Dynamic Replacements

I put the different replacement granularities in two families: static replacements
(before running the program) and dynamic replacements (while the program
is running). Static replacements replace collections at the allocation site level.
Dynamic replacements may replace collections either at the object level, or at the
method level. Both approaches have their advantages and drawbacks, and which
method is best is still an open question.

One aspect that makes static replacements attractive is the lack of run-time
overhead. Just like developers, tools that perform static replacements can think
for as long as they need 1. They can also use features which would be very ex-
pensive to get at run-time. As examples, Brainy gathers hardware performance
counters and evaluates a neural network to decide which collection to use. Simi-
larly, Artemis uses a multi-objective genetic search algorithm (NSGA-II), which
evaluates modified variants of the program, taking 3.05 hours on average [Bas+18].
Chameleon, on the other hand, uses handwritten rules, which could be cheap,
however it also uses expensive information about the state of the heap. Dynamic
replacement tools cannot afford such expensive decision making.

Now, static replacements can suffer from their lack of adaptability. Static re-
placement tools can only perform allocation-site level replacements, which might
be too coarse. For example, if the constructor is called in a loop, all collections will
have the same type. Moreover, static replacements cannot take into account the
program inputs, nor can they adapt naturally to code changes: If the developer
changes their code, they have to re-run the tool.

Brainy, Artemis and Cres make static replacements. Chameleon makes static
replacements but it can make dynamic replacements. Shacham et al report on the
static replacements, and report that dynamic replacements were also effective,
except in the case of the PMD benchmark, which was 6 times slower. CoCo and
CollectionSwitch make dynamic replacements.

3.2 Prioritization
Choosing the most important collections in the program of interest can either be
considered a problem that the tool should solve, or the developer’s responsibility.

1management might disagree with that statement

20 Related Work

Artemis and Chameleon take the most ambitious approach: every allocation
site can be optimized. CollectionSwitch optimized allocation sites from which at
least 1000 instances originated. CoCo’s authors do not state how many allocation
sites were switched to CoCo collections. Lastly, Brainy’s authors manually chose
one allocation site for each benchmark they considered. Cres uses static analysis
to identify locations where code could be optimized, in the code.

3.3 Decision Making
Most of the tools use a hand-crafted performance model to select which collection
to use. Chameleon uses hand-written heuristics to make a choice. For example,
the rule:

ArrayList: #contains > X and maxSize > Y -> LinkedHashSet

Specifies that an ArrayList should be switched to a LinkedHashSet if the
number of calls to contains and the maximum size of the instance exceed some
fixed thresholds - and . . Finding the thresholds - and . is the user’s task. CoCo
uses a similar strategy, using hand-written rules, except these are evaluated at
run-time. Cres also uses a hand-written model: they compare the complexity class
of methods, and if two have the same complexity class, they specify an ordering:
For example, we know that put on a LinkedHashMap should take longer than for
a HashMap, because the former must maintain a linked list between elements.
Perflint uses a similar model, mixing rules about asymptotic complexity, and
considerations of CPU architecture.

Brainy and CollectionSwitch use a different approach: They try to learn this
model with micro-benchmarking. Brainy , and uses neural networks to predict
the best collection to use, given hardware performance counters (like branch
mispredictions and L1 cache miss rates). CollectionSwitch evaluates the cost
of an operation as a polynomial of the size of the collection at the moment.
The parameters of the polynomial are learned offline, on hand-written micro-
benchmarks.

CollectionSwitch must make decisions at run-time, and must therefore use a
simpler model. Brainy being an offline tool, it can gather more expensive features.

Hand-written models of cost have shown to be effective, but what if the CPU
architecture has such a strong impact of performance that you may want to
use different collections? The CPU architecture was important in the case of
Brainy: their tool considers recommends different collections for difference the
CPU architectures. If the environment impact the effect of collection changes,
using a learned model of performance has advantages. Likewise, if you add a
new collection, the learned model of performance can inspect this new collection
automatically, while a human expert has to update the hand-written model.

Not all tools have cost models. Artemis takes the minimalist-maximalist
approach: it evaluates variants of the program of interest in a multi-objective

Related Work 21

optimization algorithm: NSGA-II. The fitness function evaluates the test suite of
the program, and measures how long it runs.

4 Collections and Optimizations
A major design decision revolves around what changes the tool is allowed to do.
What collections can it choose between? What are the changes the tool is allowed
to make on the program to optimize?

4.1 Collection Tuning

Several collections (e.g. ArrayList and HashMap) accept parameters that do not
change their functional behavior, but change their performance (see Chapter II).
ArrayList takes a capacity parameter, which is the initial size of the underlying
array. For HashMap, the load factor specifies when the map’s underlying array is
full enough to justify a full copy of it. Some collection selection tools set these
parameters, such as Artemis and Chameleon. Brainy, CoCo, and CollectionSwitch
do not.

4.2 Lazy Collections

Sometimes, a collection might remain empty. Even when that is the case, Hashset
and ArrayList still allocate an array, which is then wasted space [MSS10]. In
the case of the bloat DaCapo benchmark, Shacham et al [SVY09] were able to
gain 20% memory usage but switching a LinkedList to a LazyLinkedList, which
would only create a first node if one element was added to the list.

For recent versions of the JDK (after version 8), this optimization is already
implemented in standard collections. LinkedList uses lazy initialization since
OpenJDK 7. ArrayList, HashMap, LinkedHashMap, HashSet, and Linked-
HashSet support this optimization since OpenJDK 8.

4.3 Array-based Maps

When maps are small, it is faster and more memory-effective to look for the
key-value pair linearly than to use a regular hash map. This technique is common
among the tools I considered, since Chameleon, CoCo, and CollectionSwitch
all use this type of Map. CollectionSwitch’s authors implemented “Adaptive”
maps and sets, which automatically switch between the “linear-search” mode,
and the “hash-based mode”. Chameleon presented the same data-type (called
SizeAdaptingSets and SizeAdaptingMaps). In the case of Chameleon, using
ArrayMap was important in getting 13.79% of reduction in memory space used
by the program FindBugs.

22 Related Work

4.4 Hash-based Lists

Converse to using lists of pairs to implement maps is the method of coupling
an ArrayList and a HashSet in the same object, with the hope that it will
speed up calls to the contains method. Both CollectionSwitch and CoCo use this
method. CoCo’s authors call their implementation an HashArrayList, while
CollectionSwitch’s AdaptiveList also uses this technique.

4.5 Multi-Interface Replacements

Some tools must replace a list by a list, some can replace it by a member of another
abstract data type, for example a set. Chameleon can replace an ArrayList with a
LinkedHashSet. Cres can replace an collection by another which implements an-
other interface, for example, replace ArrayList by a HashSet. Cres automatically
generates the surrounding code to make the replacement.

CollectionSwitch replaces classes by a class with the same interface, but they
also provide a HashArrayList, which is essentially a wrapper for a HashSet, so
the effect the same.

5 Evaluation

Different authors take different approaches for evaluating their collection selection
tools. CollectionSwitch, CoCo, and Brainy use existing benchmarks, like the
DaCapo benchmark suite [Bla+06b], but they select different benchmarks in the
suite. Artemis and Cres run the test-suite of a number of selected repositories on
GitHub.

I am not so fond of the latter approach. I can understand the appeal of picking
GitHub repositories, which could be considered a more representative sample of
the code developers actually write. In fact, we worked on DaCapo benchmarks,
and I often wondered if there was really any performance left to squeeze out of
them, after years of scrutiny by researchers. However, I doubt that the test suite
of a program gives reliable information about its performance. I would suspect
developers to generate small collections during tests, so they run quickly.

This issue extends to tools which use machine learning to deduce their perfor-
mance model: What training data did they use? To some extent, the rules that
Chameleon and CoCo use are also up to debate, where do they come from?

Brainy provides an interesting solution to the problem: They needed a lot of
training data quickly, so they generated programs to serve as micro-benchmarks.
How representative are these benchmarks? This is one of the main questions we
will look at in this thesis.

Related Work 23

6 Comparison of Collection Selection Tools

I used to think that comparing the effect of collection selection tools would
be easy. After all, performance engineering has a clear definition of success:
we want faster, less memory-intensive programs. Different tools were tested
on different benchmarks, and they could choose different collections, but they
improved performance on average. So I used to think we can just compare the
numbers. I was wrong. We cannot compare these numbers directly, for several
reasons.

First, different tools were tested on different benchmarks. CoCo, Chameleon
and CollectionSwitch were tested on DaCapo benchmarks, but the set of bench-
marks varies. Artemis was tested on five DaCapo benchmarks, but also on a
corpus of popular GitHub projects. Only the fop benchmark was tested with every
tool. Lusearch was the benchmark that was improved the most with CoCo and
CollectionSwitch, but unfortunately, Chameleon was not tested on Lusearch.

Second, different studies measure and report different things. Chameleon does
not state if they evaluated startup performance or steady-state performance, and
does not report exact numbers, we have to read them from a plot. CoCo reports
the median running time and its standard deviation. CollectionSwitch reports the
mean speedup, for each benchmark. The authors remove results for which the
improvement is not significant. Artemis measures the execution time of the test
suite of a corpus of selected GitHub projects, as well as for a set of five DaCapo
benchmarks. The authors report the median with 95% confidence interval.

Third, one may decide to ignore that studies different benchmarks and report
slightly different statistics, and decide to compare the mean speedups between the
studies. However, the context has also changed a lot between studies. Chameleon
was released in 2009, CoCo was released in 2013, CollectionSwitch and Artemis
were released in 2018. Between 2009 and 2018, CPU architectures, the JVM, and
the the Java Collections Framework have evolved. For example, lazy collections
were added in OpenJDK 7. If we tried to reproduce Chameleon today, it seems
unlikely we would observe the same speedups. Because lazy collections are now
standard, our baseline has changed.

What can one learn from these numbers, then? Most of the observed speedups
are between 5% and 15%, even though they could be as high as 60%. Chameleon
was the most effective at reducing execution time, while Artemis yielded the most
modest improvements. Chameleon decreases execution times by between 8% and
60%. CoCo decreases execution times by 14.6% on average, but at the cost of +18.8%
of memory space. CollectionSwitch decreases execution times by between 0 to 15%.
Artemis improves the median of execution times by an average of approximately
4.6%, and memory consumption by an average of 4.6%. Their improvements range
between 41.6% and 0.9%. For memory consumption, CoCo increased it, but other
tools reduced memory consumption by roughly 10%. For completeness, Table 1
shows improvements reported by different studies. Remember that these numbers

24 Related Work

measure different things (sometimes medians, sometimes means).
Brainy found substantial improvements, up to an impressive 77% speedup.

Brainy’s authors highlight the importance of the CPU architecture, as their tool
suggests different options, depending on what architecture the software is running
on. This aspect is neglected by the works on Java.

7 Summary
In this chapter, I have described the different design decisions that building a
collection selection tool requires, reproduced below.

• Target Programming Language: What language do the tool target?

• Performance Metrics: What is the tool trying to improve?

• Replacement Strategy: How does the tool perform replacements?

• Collections and Optimizations: What collections and optimizations can
the tool use?

• Evaluation: How is the tool evaluated?

• Comparison: How is the tool compared to alternatives?

I compared the approaches of Chameleon [SVY09], CoCo [Xu13], Collection-
Switch [CA18], Artemis [Bas+18], and Cres [Wan+22].

I also included Brainy [Jun+11a], which targets C++, and not Java. Brainy can
automatically adapt its replacement strategy to new collections, and considers the
machine’s CPU architecture when making decisions. That aspect was neglected
by the works on Java, so I decided to port the Brainy approach to Java, which is
the topic of the next chapter.

Related Work 25

Benchmark Tool Execution time Memory usage
difference (%) difference (%)

Sunflow Artemis -2 -5
PMD Artemis -3 -2
Fop Artemis -5 -5
Avrora Artemis -5 -4
Xalan Artemis -5 -20

PMD Chameleon -9 0
Soot Chameleon -11 -5
Fop Chameleon -18 -8
Bloat Chameleon -29 -56
FindBugs Chameleon -54 -15
TVLA Chameleon -60 -55

Bloat CoCo -4 +81
Chart CoCo -9 +21
Avrora CoCo -11 +6
Fop CoCo -16 +2
Lusearch CoCo -34 0

Avrora CollectionSwitch 0 -10
Fop CollectionSwitch 0 -7
H2 CollectionSwitch -6 -8
Bloat CollectionSwitch -12 -8
Lusearch CollectionSwitch -15 -5

bootique Cres -4.5
mapper Cres -7.3
incubator-eventmesh Cres -4.1
google-http-java-client Cres -27.1
light-4j Cres -5.2
roller Cres -9.5
IginX Cres -3.5
sofa-rpc Cres -3.7
Glowstone Cres -13.1
dolphinscheduler Cres -5.3
dubbo Cres -7.5
iotdb Cres -6.3

Table 1: Comparison of improvements provided by different tools, for different
benchmarks. CollectionSwitch could optimize either execution time or memory,
so the numbers refer to different runs.

Machine Learning and
Collection Performance

Prediction

In Chapter III, I said that there were two approaches to collection selection. Col-
lectionSwitch and CoCo propose adaptive collections, which can dynamically
switch between collections. Brainy, on the other hand, suggest static changes.
Both approaches were effective on real-world programs.

Apart from their replacement strategies, tools also differ in their decision-
making approach. CoCo, Cres and Chameleon use a hand-written model. While
CollectionSwitch and Brainy learn parts of this model. CollectionSwitch used
some amount of micro-benchmarking to learn a size threshold for which a list
should be switched to a hash table. Brainy learned its full model, on and for the
host machine.

Learning this model automatically makes the approach quite adaptable. First,
if a new collection is added, updating the model to use this new collection is
automatic. Second, if CPU architecture matters, then being able to learn the cost
model on the target machine is valuable. This was the case in the original Brainy
study.

Given that Brainy looked promising, we decided to port Brainy to Java. In this
chapter, I will discuss two remaining research questions from the introduction:

• How can collection usage be modeled?

• Can we predict a data-structure’s performance?

28 Machine Learning and Collection Performance Prediction

Program

Source location

Collection type

Feature extractor Cost model

Suggestion

Usage features

Figure 1: A diagram describing how to use Brainy4J. Nodes in italics represent
data, boxed nodes represent programs, arrows represent data flow.

Benchmark Generator

Synthetic benchmarks
(Plan + Collection)

Time measurement Feature extraction
Benchmarks

Labels (best collection) Hardware Features

Model training

Classifier

Figure 2: A diagram of the training process of Brainy4J. Nodes in italics represent
data. Boxed nodes represent programs. Arrows represent data flow.

1 Architecture
Figure 1 describes how a user would use Brainy4J. The target program, source
location and collection type are passed to a feature extractor, which instruments
the target program, and runs it. The result is a number of usage features, which
show how the collection is used. These features are passed to a cost model, which
outputs a suggestion.

Brainy treats the problem of collection selection as a classification problem.
What collections should one use, given the collection in place behaves in a certain
way? Given the collection type, and usage features, Brainy tries to learn which
collection would be a better alternative. Doing this requires training data.

Figure 2 shows how Brainy obtains training data for its cost model. Instead of
relying on corpora of programs, Brainy synthesizes benchmarks. The synthetic
benchmarks are tested with several different collections, to obtain the labels (the
collection that yields the lowest execution times). Later, these benchmarks are

Machine Learning and Collection Performance Prediction 29

instrumented and run again, to obtain features on collection usage.

2 Modeling Collection Usage
Brainy’s generative approach requires a model of how collections are used. In our
work, we separated the generation of benchmarks in two steps. First, we generate
a plan, the sequence of methods to call, with their arguments. Second, the plan is
translated into Java bytecode, loaded as a class, and run.

A plan is similar to what I have earlier called a trace, which is a sequence of
method calls on a collection. There are two differences. First, a trace is logged
from the run of a program, while the plan is synthesized. Second, our traces
did not log method arguments, but for our plans, we had to generate them. The
generation of a plan requires to answer four questions:

1. How long is the plan?

2. Which methods are called on the collection?

3. What arguments are passed to the method calls?

4. What type of elements is stored in the collection?

I will explain our choices for each question, in turn. In ourwork on reproducing
Brainy, we followed the same choices as in Brainy, but I think there are many
opportunities for future work, here.

2.1 Length of the Plan
Longer plans take more time, and therefore take longer to benchmark. But they
also influence the maximum size of the collection during the benchmark, since
longer plans probably include more insertions.

In Paper I, we tried different plans of sizes 10, 102 and 103, while also varying
the size of the collection at the beginning of the benchmark, with 0, 103 and 104

entries. In Paper III, we used plans of length 103, since this was what Brainy
used. However, when we investigated the length of traces for collections, we
observed that the distribution has a long tail. Many traces contain very few calls
(sometimes none), and very few traces with up to 106 method calls. Table 1 shows
the distribution of trace length of avrora, bloat, fop, and lusearch.

2.2 Methods to Call
Brainy models the distribution of method counts, meaning that the probability
for a method to be called is fixed, it doesn’t depend on previous of following
method calls. In Paper I, we proposed an alternative model, using a Pólya Urn

30 Machine Learning and Collection Performance Prediction

Size of trace Count

[0, 1] 106

(1, 10] 106

(101, 102] 2.16 × 104
(102, 103] 2.34 × 103
(103, 104] 537
(104, 105] 672
(105, 106] 27
(106, 1.5 × 106] 1

Table 1: The distribution of size of traces for avrora, bloat, chart, fop and lusearch.

process: When a method is selected to be included in the plan, the same method is
more likely to be called again later. The assumption is that a method call is often
followed by a call to the same method, for example, if the collection is updated in
a loop. This model introduces bias when generating a single benchmark, but this
bias disappears when many benchmarks are generated. We argued that such a
model was more realistic that a uniform distribution, because software developers
usually use a subset of the methods available.

One argument against this type of model is that it does not consider domain-
specific knowledge. For example, it allows for a plan where the clear is called
repeatedly before the first insertion, which is not common in traces.

We tested another approach, which is to use traces to inform the generation.
We tried to model collection usage using a Markov chain, in which the probability
of the next method call depends on the current method call. We inferred the
Markov chain, based on traces from avrora, fop, and lusearch. We observed that
such Markov chain did encode some of the domain specific knowledge (e.g. the
first method that is called on a set is often add). The Markov chain often contained
loops: when a method was called, the following method call was often the same.

2.3 Method Arguments and Collection Elements
We chose to restrict ourselves to storing integers in our collections. For insertions,
we generated a random index between 0 and the size of the collection. For
insertions in maps, we picked random keys between 0 and 100, so the probability
of a collision increased with the number of insertions in the map.

In Chapter II, I discussed how the cost of an insertion in a map is related to
the cost of hashing the new key, or comparing it with those already in the map.
We have not tested this approach. Using other data-types could help making our
benchmarks more realistic (e.g. by varying the cost of hashCode). Unfortunately,
we did not instrument our code to track method call arguments, or what type of
elements were stored in collections. I suspect that storing different data-types in

Machine Learning and Collection Performance Prediction 31

collections would be an effective approach, but it opens a large design space, so
there is even more of a need for efficient sampling.

2.4 The Realism/Diversity Trade-Off

An effective generative model for benchmarks requires two properties, which I
call realism and diversity. Realism means that micro-benchmarks should match
how collections are used in practice, and test common use-cases of collections.
Diversity, on the other hand, means that micro-benchmarks should exercise all of
the collection’s API, allowing for the discovery of edge-cases where a collection
shines (e.g. prepending is fast on LinkedList). I think these two properties have
to be balanced: more realism restricts the set of possible plans to be close to the
traces seen in programs, while more diversity means that we should expand the
set of possible plans to include more unexpected plans.

2.5 Benchmark Selection

To increase the diversity of benchmarks, the original Brainy uses a selection
process. First, a benchmark is generated, and Brainy tests it with each appropriate
collection. It compare the execution times, and select the fastest collection. Then
Brainy puts the benchmark into a “bin” associated with the winning collection. If
the bin is full, the benchmark is discarded. Brainy repeats this process until there
are enough benchmarks in each bin.

We implemented the same approach, but it becomes prohibitively slow. In
our case, we tried to find 100 benchmarks for each of our 9 collections, and let
it run for a month, and still was not finished. First, measuring the execution
time of a benchmark with the Java Microbenchmarking Harness (JMH) take a
few seconds. Second, we observed that some collections win far more often than
others. In total, benchmark selection had tried 3 937 190 plans, without success. I
suspect benchmark selection is slow because benchmark synthesis does not use
data about existing benchmarks to produce new ones. It might be possible to
make benchmark selection faster by reusing existing benchmarks to create new
ones, but we haven’t tested this approach.

3 Predicting Collection Performance

3.1 Feature Extraction

Brainy4J takes decisions based on how a collection is used. However, when we
discussed influences on execution times in Chapter II, we said that collection
usage was unobserved (see Figure 1). We cannot measure collection usage without
affecting execution time.

32 Machine Learning and Collection Performance Prediction

Benchmark Normal Normal Tracing Tracing
Startup Steady Startup Steady

avrora 7.6 6.5 9.9 9.5
bloat 3.7 2.7 5.9 4.4
chart 4.9 3.2 16.9 14.6
fop 2.8 0.4 3.9 3.2
lusearch 3.3 0.8 4.4 3.5

Table 2: Execution time (in seconds) without tracing, and when we trace CPU
cycles, for 5 DaCapo benchmarks

Method callTracing

Measurements

CPU counters

External factors

Execution time

Figure 3: A causal graph describing the “observer effect” of tracing: A method call
triggers tracing code which records CPU counters in the tracing results we will
observe, but it influences the values we are measuring. Moreover, CPU counters
are also affected by factors external to the program (CPU load, etc.) When we
trace only method calls, the effect still affects the program, but the dashed arrow
is not present. Our tracing code does not affect our measurements anymore.

All collection selection methods are affected by this, except Cres, which uses
static program analysis. CoCo and CollectionSwitch count method calls, which
incurs some overhead. Inspired by Brainy, we tried tracing number of method
calls, and CPU counters such as L1-cache misses, branch mispredictions, and CPU
cycles. Tracing such features incurs more cost than counting method calls, so we
needed one run to measure execution time, and one run to measure collection
usage. Table 2, shows that tracing had an significant overhead. Execution time
increases, which is expected, but it also seems that JIT-compilation did not have
as much of an effect. For example, fop’s execution time drops a lot with warm-up,
but when we trace, it does not.

The “Observer effect” of Instrumentation

Whether the tracing overhead is tolerable or not depends on what features of
collection usage we trace. Figure 3 shows what I call the “observer effect” of
instrumentation. To observe previously unobservable variables, we add instru-
mentation. Our instrumentation is tracing code, which is triggered by method
calls. When tracing triggers, it records information that will be visible to us, as
measurements. In Brainy4J, we want to be able to observe CPU counters, but the

Machine Learning and Collection Performance Prediction 33

Collection usageCollection typeHardware

CPU countersExternal factors

Execution time Better collection

Figure 4: Causal graph describing the classification approach taken by Brainy.
Black arrows denote the causal relationships in the training set. Brainy learns the
type of collection to suggest, based on the collection type, CPU counters, and the
collection usage (dashed arrows).

problem is that the tracing code itself affects the measurements.

On the one hand, if we want to predict execution time, we should trace a
variable that is strongly correlated with it. For example, more cache misses and
more branch mispredictions unambiguously translate to more execution time.
Therefore, they give valuable information as to how well the collection is used.

On the other hand, if we trace something that we know is affected by the
tracing code, how can we trust our measurements? In our case, we suspect that
tracing affects CPU counters, because it hinders JIT-compilation. Consequently,
if we cannot measure CPU counters in steady-state, we are probably missing
on some effective optimizations. Instead, we may want to trace features that
are unaffected by the tracing code, such as method calls. Then, we can trust
our measurements, since they are unaffected by the instrumentation. When we
compared several traces of our benchmarks, the number of method calls were
stable. However, method calls are less obviously correlated with execution time,
so their influence on execution time was harder to predict.

Collection Size

In Chapter II, I mentioned the complexity of operations on collections, which
is usually related to the size of the collection. CoCo and CollectionSwitch both
used the size of the collection to predict the cost of operations. In the setting
of dynamic collection selection, the collection size at the time of the switch is a
feature that is both easy to measure and correlated with execution time.

In the static replacement setting, like in the case of Brainy, the size of the
collection is not available. For Brainy4J, we considered tracing it, but we know
that collection size also varies with time. Should one use the max size, the mean
size? As a proxy, we counted the number of cycles spent in insertions.

34 Machine Learning and Collection Performance Prediction

3.2 Classification
In Brainy, the problem of collection selection is described as a classification prob-
lem. Figure 4 shows a causal graph for the classification problem. In Paper III, we
used the collection type and CPU counters, such as L1 cache misses, branch mispre-
dictions, and clock cycles, to predict which collection would be most appropriate
as a replacement.

Normalization

Since traces are of varying size, we must normalize them before passing them to a
classifier. For software features, we divided the number of calls for each method
by the total number of calls. For hardware features, we divided each feature by
the total number of cycles.

Training

The original Brainy used neural networks for classification. In our case, we used
random forests [HTF09, p. 587]. Random forests performed as well as neural
networks in our case, while requiring fewer hyper-parameters. Moreover, they
could also estimate the importance of features, so we could report it, just as they
did in the original Brainy.

For each source collection (collection that could be replaced), we trained one
classifier. We checked the accuracy of the classifier with 10-fold cross validation,
which showed a reliable accuracy above 85% for all of them. However, these scores
are to be taken with a grain of salt, because the labels are not balanced: some
collections win more other than others.

Data Imbalance

When we generated benchmarks, we noticed that some collections win far more
often than their alternatives. In a classification context, the consequence of this is
that the classes to predict are not balanced. For example, ArrayList wins for all
of the synthesized benchmarks for lists, in this case there is no need for a classifier.
If the user uses a list, the classifier would suggest an ArrayList.

The imbalance in the data could have several causes: it could be that some
collections are just better, when it comes to decreasing execution time, but it
could also indicate a bias in the synthesized benchmarks. For example, in Paper I,
we observed that for most of our benchmarks, ArrayList is faster than Vector,
because Vector synchronizes each method call. Vector is more safe to use in
a multi-threaded context, but synchronization has too high of a cost, and as a
result, Vector is seldom used. In that sense, it seems fair to say that ArrayList
dominates Vector. On other hand, most method calls are more costly on a
LinkedList than on an ArrayList, but there is a case where LinkedList is faster:

Machine Learning and Collection Performance Prediction 35

Collection usageCollection typeHardware

Execution time

Figure 5: Causal graph describing the regression approach to collection selection.
Black arrows denote the causal relationships in the training set. A regression
approach would learn the relationship described by the arrows.

when we prepend to the list. In that case, it could be argued that a collection
selection tool should be able to find such a use case.

There exist approaches to compensate for the imbalance in the training data.
The original Brainy used benchmark selection: it kept sampling until the classes
were balanced. Otherwise, there are options where one post-processes the im-
balanced data, which I have not tried. One can under-sample the training data,
rejecting some samples. Another approach is interpolate between existing samples
to make new ones [Fer+18].

3.3 Regression
Instead of a classification approach, we can try to predict the execution time, given
a collection type and statistics about collection usage. Collection Selection then
becomes a matter of comparing the predicted execution times between different
collections, and selecting the collection yielding the lower cost. Figure 5 shows
the predicted causal graph of the relationship.

When using regression, collection selection requires an intervention: the re-
gression model predicts what would have happened if we had used a different
collection. In this case, one cannot use CPU counters as input features, because
these are a consequence of running the program, with a specific collection. Regres-
sion only works with features which are independent of the collection type that
was used in the program.

A regression-based approach has several advantages. During training, re-
gression doesn’t suffer from the problem of class imbalance. Every run yields
valuable information, so there is no need for benchmark selection. Moreover, the
regression model can be used both for prediction about collections, but also predict
what would happen if we changed the benchmark itself, so we can use the model
to generate new benchmarks. Afterwards, when we use it, a regression based
approach can also tell how much speedup is expected after a collection change,
which a classifier cannot do.

One problem that I observed with regression is that the order of method call
matters. Using only the histogram of method calls for the trace might not work.

36 Machine Learning and Collection Performance Prediction

Another problem of a regression based approach is that of normalization: we need
to normalize the inputs to the model, but also the output. Because different traces
have different sizes, how to make a model that works with any size? I suspect
that creating benchmarks of different sizes (e.g. 103, 104, . . .) and learning either a
model for all, or a model for each, could work.

We have run some experiments to test if regression was possible, but without
much conclusive results, I suspect this area could be developed further.

4 Summary
In this chapter, we considered the problem of modeling collection usage and
generating synthetic benchmarks, to learn a predictor of collection performance.

I have listed four important decisions to make when modeling collection usage:

1. How many method calls should we make?

2. Which methods are called on the collection?

3. What arguments are passed to the method calls?

4. What type of elements is stored in the collection?

I have described different statistical models of collection usage that I exper-
imented with. I mentioned the problem of realism and diversity of such a set
of benchmarks. Should our synthetic benchmarks be close to how people use
collections, or should they be different?

Once we have synthetic benchmarks, we need to extract information about col-
lection usage in the target program. I have described the issue that instrumentation
influences the features that we aim to measure.

Lastly, I compared two possible approaches to the prediction of collection
performance. The first approach is to try to predict if a better option exists, using
classification. The second approach is to predict the cost (e.g. time spent) of
running a program with a collection, and suggest the option yielding the lowest
cost.

In conclusion, collection selection can be seen as both a regression or a clas-
sification problem. However, the key problem is that of finding (or generating)
training data that resembles the data that will be available when we use the model.

Now, at this stage of the design, are the issues that I highlighted in this section
that critical? To know that, I needed to test my collection selection tool on actual
programs. In the next two chapters, I will talk about the challenge of evaluating
the effect of optimizations on Java software.

Evaluating Java Programs

Performance engineering is a bit like medecine. Engineers are interested in
manipulating variables to reach a desired outcome (in our case, lower the execution
time). To do this, they must run experiments.

I used to hate this part. In appearance, benchmarking is simple: try every
option, and compare the numbers. This is not true, because as I tried to detect
smaller and smaller effects, everything seemed to matter. Are there programs
running in the background, changing our measurements? Is the CPU hot, or cold?
Does the user-name influence the execution time, or not?

Avoiding such disturbances in my experiments required careful planning,
which I had no experience with. At the time, I did not find good sources about
experimental design in software engineering, so I looked elsewhere, in the statistics
literature. This chapter, and the next, are about what I learned.

1 Design of Experiments
In experiments, scientists are interested in the causal effect of various factors
(e.g. CPU architecture) on a response variable (e.g. execution time) [Mon01].
For each factor, one usually selects several discrete levels, which will be used
in experiments. Sometimes, factors are called independent variables, and the
response variable is called the dependent variable. Typically, computer scientists
run factorial experiments, where they try every combination of levels.

1.1 Types of Factors
Montgomery calls factors which the experimenter is not interested in nuisance
factors [Mon01]. Nuisance factors can be controllable or uncontrollable, and they
can be observable or unobservable. Nuisance factors which are both uncontrollable
and unobserved are often called noise. To derive causal relationships between
independent variables and the response, the experimenter must remove influences

38 Evaluating Java Programs

ResponseFactors

Observed nuisance factors

Unobserved nuisance factors (noise)

Figure 1: The different types of variables that can influence the response in an
experiment. The experimenter is interested in the “Factors”, which she sets, but
observed and unobserved nuisance factors (noise) can also affect the response.
The doubled dashed arrows represent influences that experiment design tries to
remove.

between such variables and nuisance factors. To do so, experimenters shall use
the three basic principles of experimental design: replication, randomization and
blocking [Mon01]. Each technique is used to remove spurious influences between
nuisance factors and factors of interest. Figure 1 displays the effect of different
families of factors

1.2 Replication

A replication is when the experiment is ran several times [Mon01]. Because noise
is not controlled nor observed, the results of the experiments will be slightly
different each time. The purpose of replications is to allow the experimenter to
separate the effect of the factors from the effect of the noise. This estimate of
experimental error is required to make statistically significant comparisons. More
replications also allow for more precise estimates of the mean effect of a treatment.

1.3 Randomization

Replications are useful for separating the factors from the noise, but factor levels
and noise can still be correlated.

It seems the established practice among performance engineers is to try to
“clean” the context, and remove noise altogether. Just like a biologist sterilizes
their tools before performing experiments, we tried to remove as many sources
of noise as possible. In our experiments, we tried to do this as well. We used
some machines specifically for benchmarking, and disabled background daemons
and some features like frequency scaling, to remove as much noise as possible.
Some authors even restart machines between runs [Bar+17]. To me, this approach
has the weakness of increasing the distance between experiments “in the lab”
and observed behaviour “in the wild”. For example, some authors turn-off CPU
features, such as hyper-threading, during experiments [Tra+22], but end-users

Evaluating Java Programs 39

will probably use hyper-threading. I think our experiments should be as close as
possible to the context that users will experience.

Instead, randomization helps by ensuring that unobserved factors are indepen-
dent of the relevant experimental factors [Mon01]. Then, unmeasured influences
can be treated as noise, which one can “average away” with enough replications.
In a randomized design, the levels of different factors are assigned at random to
experimental units (individual measurements), and performed in a random order.
For example, if I decide not to turn off hyper-threading, I should at least make
sure it does not systematically affect my measurements. One way to achieve this
would be to run experiments for different treatments in random order, and run
several replications of the experiment.

In textbooks about experimental design, randomization is absolutely funda-
mental [Mon01; BHH05]. However, it did not seem to be used by experimenters
working on collection selection. I suspect that for a computer scientist, randomiza-
tion is not as obviously necessary, because we believe we have complete control
over the machine. For example, the Java Microbenchmarking Harness can vary
different parameters, and will follow a factorial design (try every combination of
parameter values). JMH, however, does not randomize between configurations, it
will always try them in the same order. Therefore, the experiments are not fully
randomized, but JMH runs the statistical analysis as if they were.

I suspect this lack of randomization has an effect, but I haven’t empirically
tested this theory. In my research, I ran into the problem by running a benchmark
on a machine I was working on. Because the order in which we considered
treatments was always the same, treatments late in the list where favored, because
by the time they ran, I would have left the machine alone. I think that since
remove every source of noise is becoming increasingly difficult, we will rely more
and more on randomization.

1.4 Blocking
Blocking is a technique to make estimates more precise by making use of control-
lable nuisance factors [Mon01]. We can select different levels for the nuisance
factors, each level will form a block. Then we run a full randomized experiment
within the block. Including the block in the statistical analysis reduce the variance
and improve the precision of estimates. In our work, we used blocking by running
the same experiment on different machines. Each machine is a block.

2 Design of Experiments and Causal Inference
The design of experiments and causal inference both try to infer a causal rela-
tionship between variables. The difference between the two is that experimental
design is about how to collect the data, while causal inference is about how to
analyse the data.

40 Evaluating Java Programs

In their textbook about experimental design, Box, Hunter and Hunter warn
against “happenstance data”, which is not gathered through experiments. They
say (emphasis theirs),

To safely infer causality, the experimenter cannot rely on natural
happenings to choose the design. She must intervene, choose the
factors, design the experiment for herself, and, in particular introduce
randomization to break the links with possible lurking factors To find
out what happens when you change something, it is necessary
to change it. [BHH05]

Causal inference, on the other hand, says quite the opposite: We could, in
fact, infer causal relationships, if we are careful in our statistical analysis [PGJ16].
What you need is a causal graph, and to apply a set of principles.

A full introduction to causal inference is outside the scope of this thesis,
because I am not dealing with happenstance data, I’m designing and running
experiments. For interested readers, I suggest Pearl et al’s textbook [PGJ16].
However, to show why I think causal graphs are interesting, I will express the
concepts of design of experiments with causal graphs.

2.1 Causal Graphs in Design of Experiments
We can map types of factors to properties of factors in the causal graph. In causal
inference, the scientist is interested in one specific edge of the graph, the causal
effect on one variable on another. The dependent variable is the target of that
edge. Independent variables are called exogenous variables [PGJ16]. They are
variables which are not descendants of any other variable in the graph: they have
no incoming edges. The experimenter may set arbitrary values to them. Variables
which are descendents of other variables (they have incoming edges) are called
endogenous variables. They can be confounders, but not necessarily. It depends of
how they are connected to the dependent variable.

Nuisance factors are variables from which the dependent variable is a de-
scendent, they can be either observed or unobserved. When a nuisace factor
is unobserved, it is called “noise” or “error”. An important question is whether
nuisance factors have incoming edges. If there are edges between variables di-
rectly affecting the dependent variable, then one must be careful in the statistical
analysis of the results [PGJ16].

If two variables are connected through a sequence of arrows (e.g. - → . → /),
there is a causal path between them [McE20]. If they are connected through a path
which contains one or more arrows connected “backwards” (e.g. - ← . → /),
then they are connected through a non-causal path. Non-causal paths are the
confounders that can prevent us from inferring causal effects. Now, if we observe
a correlation between two variables which are not connected through a path, then
we know the graph is missing either some vertices or some arrows.

Evaluating Java Programs 41

To measure correlations (which might indicate edges that we missed), we need
several replications. Randomization on the other hand, is used to “cut” edges
which disturb our inferences [PGJ16].

You can certainly do experimental design without drawing a causal graph, and
classical textbooks [BHH05; Mon01] do not use such graphs. They were written
before causal inference became widespread. But now that we have causal graphs,
I think we should use them. Causal graphs clarify many informal discussions
around which variables are independent, which variable is the dependent variable,
and what the confounders are. They are simple and explicit, so researchers can
compare them, and discuss them.

3 Summary
Domain knowledge is necessary to plan meaningful experiments. In Chapter II, I
discussed it, expressing it using causal graph. In this chapter, I explained why I
did it with causal graphs.

In my case the domain was discussed in papers, but in an informal way. I was
lacking a language for compressing that information and make it usable. I think
that causal graphs fill that gap.

Inmywork, causal graphs are now a necessary step in designing an experiment.
They serve as a compact but rich framework to express the relationships at play
in my domain. In the next chapter, we will see what we need to consider after we
run an experiment, when we analyze the data.

Analyzing Experimental
Results

The result of experiments is data. In this chapter, I will consider the problem
of analyzing benchmark results. Classical statistics textbooks [BHH05; Mon01]
propose tools like hypothesis testing, confidence intervals, and the Analysis of
Variance. These tools are well established in empirical disciplines, but are getting
increasingly criticized in these fields [WSL19; Hoe+14; Nuz14].

Eventually, I also became more critical of these techniques. I now believe that
there are promising alternatives, and in Paper II, we describe a statistical model
that uses some of them. Paper II is rather short, so in this chapter, I describe the
content of the paper in more detail.

Next, I will describe how classical methods work in more detail, present
alternatives, and why I prefer them.

1 Hypothesis Testing

Imagine the example of measuring execution times for two programs, is program
A is faster than program B? An experimenter runs each program a number of
times, measuring how long they take. If they compared the means execution
times (`� and `�) directly, these will surely be different. When can one say that
the difference of means is “large enough” to conclude that, A is slower (or faster)
than B? To get a clear (yes/no) answer to that question, researchers use statistical
hypothesis testing, or confidence intervals.

In the case of statistical hypothesis testing, researchers pick a null hypothesis,
usually, that the means of the two groups are equal: �0 : `� = `� . Then, they
pick a test statistic, which is the probability of observing a difference between
means given the null hypothesis is true: % (`� − `� |�0). This value is called the
p-value. If the p-value is low enough (usually under 0.05) researchers conclude

44 Analyzing Experimental Results

that the observed difference is implausible under the null hypothesis, which is
therefore false. They then reject the null hypothesis of no difference between the
two groups, and conclude there is a statistically significant difference.

To me, rejection of the null hypothesis was very confusing. Why would I
conclude that I reject an hypothesis of no effect? The answer has to do with what
we’re trying to achieve with statistics: induction. Loosely speaking, induction is
the process of making predictions about the future, based on data about the past.
Here is a simple example: If I see a large number of white swans, when can I state
that all swans are white? In other words, when is a theory confirmed?

Karl Popper provided a simple answer to that question: A theory is never
confirmed [GS03]. In other words, according to Popper, one can never prove a
theory is true, no matter howmany cases one finds that agree with it. Experiments
can only show a theory is false, by presenting a counter-example. No matter how
many white swans I see, Popper says I can never assume that all swans are white
1. In accordance with Popper, it makes sense to build a (usually restrictive) null
hypothesis, and check if it can be rejected. Because it is the only thing I can do.

Now, It seems unlikely that Ronald Fischer, who popularized the concepts
of null hypothesis and p-values, had Popper in mind. He published his book
Statistical Methods for Research Workers in 1925, while Popper’s book, The Logic
of Scientific Discovery, was published in German in 1935, and was translated to
English in 1959. But even if Fischer did not base his design on Popper’s ideas,
they are popular among scientists [GS03], which explains why they still use null
hypotheses.

It seems that Fischer originally considered p-values to be an informal test.
It was only later included in a larger hypothesis testing framework, by authors
who were not statisticians themselves [Nuz14]. In practice, p-values have been
criticized for decades, because scientists frequently misinterpret them [Nuz14].
Some assume that p-values estimate the probability of the null hypothesis being
true (or false), while that is not what they measure. They measure the probability
of observing an event if the null hypothesis was true.

Even if scientists interpreted p-values correctly, their use is still criticized,
because scientists use them as a binary outcome: Either a result is significant,
or it is not. In practice, scientists use them to determine if a result is worth
publishing or not [WSL19]. A yes/no answer gives a sense of certainty, but it
is misleading. Like all tests, statistical significance will show true positives, but
also false positives, and false negatives. A true positive is an interesting scientific
result. A false positive is a result that fails to reproduce, and a false negative ends
up in a drawer, never to be published [WSL19].

1Yes, some swans are black, and yes, they live in Australia.

Analyzing Experimental Results 45

2 Confidence Intervals
A proposed alternative is confidence intervals. A confidence interval proposes
a range of plausible values of an unknown parameter, for example, a difference
between the means of two groups. The term confidence refers to how reliable the
procedure is: if I build 95% confidence intervals based on my data, 95% of these
intervals will contain the true mean [Hoe+14]. The confidence interval of a mean
grows with the confidence level, the variance of the samples, and shrinks with
the number of samples. Usually, researchers compute the 95% confidence interval,
and decide that if the interval does not overlap zero, the difference is significant.
There is formally no null hypothesis to select, although in practice, the effect is
the same: pass a hard threshold, and claim statistical significance.

Unfortunately, many researchers fail to correctly interpret confidence intervals
[Hoe+14; Mor+16]. Perhaps surprisingly, if I observe a confidence interval of
[0.1, 0.4], I cannot assume this interval has a 95% probability of containing the
true mean. Confidence intervals do not answer the question that scientists ask:
Scientists are interested in the probability that the parameter of interest lies in
the observed interval, but confidence describes how reliable the procedure is on
average, it says nothing about the one single interval, computed from experimental
data.

Aren’t we getting lost in perfectionistic discussions, only relevant to statisti-
cians and philosophers? In a way, yes. The meaning of our statistical inferences is
counter-intuitive, and one may wonder if we are talking about practical problems,
or philosophical details.

But we now have two problems on our hands. First, Scientists do not fully
understand the tools they use. And second, they use these tools to determine what
is published, and therefore what counts as scientific knowledge. But alternative
do exist, so I think we should seriously consider the alternatives.

2.1 What Should One Do Instead?

The proper approach to resolve the situation is still a matter of hot debate, since it
impacts large parts of the scientific community [WSL19].

One approach is to stop using hard thresholds. For example, to report contin-
uous p-values (e.g. 0.023). Other authors suggest focusing on the effect size and
its domain-specific implications: Does it really matter if A is 0.4% faster than B
with a p-value of 0.043, if the variance of A is of 20%?

One ambitious solution I find particularly promising, is that of pre-registered
(results-blind) studies [WSL19; Coc+20]. Instead of changing the statistics, it
changes the publication process. A registered report is the same as a normal
research paper, but it would be accepted or rejected before the study is conducted.
It would contain everything a research paper contains (introduction, related
work, methods) except the results and their discussion. Submissions are therefore

46 Analyzing Experimental Results

evaluated on the grounds of the research questions and the methods used, which
are the most important.

For now, however, can we find a better option to report our uncertainty about
estimates? Bayesian statistics provides promising options, which allow to answer
the type of questions that scientists are interested in, such as:

• What is the probability that A is better than B?

• What is the probability the mean of A is in a given interval?

Since these options exist, I see no reason to use them. The Bayesian approach
is what we will consider next.

3 Bayesian Statistics
To talk about Bayesian statistics, I need to discuss what a probability means.
Hypothesis testing and confidence intervals come from frequentist statistics. In
frequentist statistics, a probability meant a proportion of events as we made more
tries: If I throw a coin many times, I will eventually observe 50% of heads, says the
frequentist. For the Bayesian, a probability describes a subjective belief [GS03].
Before we throw the coin, we don’t know which side will show up, so a Bayesian
would say that we should assign a probability of 50% to each side. The rules of
probability work just as well in both definitions. The key difference is that for the
Bayesian, the researcher is allowed to give probability distributions to describe
their belief about its plausible values.

3.1 Random Variables and Events
To make things a bit clearer, I need some definitions. A random variable is any
quantity, or property we are interested in, it should be uncertain (that’s why it’s
called random). An event is a mapping of a random variable to a value or set of
values. Events are true or false, like - = 2, or . < 45. The probability of an event
expresses a belief that the event is true.

A conditional probability expresses “influences” between events. % (�|�) repre-
sent the probability that A happens, given that B has happened. If % (�|�) = % (�),
then we say that A and B are independent : the fact that B happened doesn’t
influence A.

3.2 Bayes’ Rule
The foundation of Bayesian statistics is the use of Bayes’ rule, a simple relationship
between conditional probabilities:

% (�)% (� |�) = % (�)% (�|�) (1)

Analyzing Experimental Results 47

Both sides of the equation are just different ways to write % (� ∩ �). What is
interesting in Bayes’ rule is that it relates % (� |�) and % (�|�).

If we rename A and B to H (for hypothesis) and E (for evidence), and change
the equation a bit, we get:

% (� |�) = % (�)% (� |�)
% (�) (2)

% (� |�) is called the likelihood, the probability of observing the evidence, given
the hypothesis is true. In many cases, we know or can easily determine it [PGJ16].
For example, p-values measure % (� |�0), the probability of the observed data given
the null hypothesis is true. % (�) is the probability of the hypothesis, which is called
the prior probability, it doesn’t mention � for good reason, it’s the probability of the
hypothesis being true before we observed any data. % (�) is the probability of the
evidence (independently from H being true), in many cases, we won’t estimate this
quantity, because we’re only interested comparing different hypotheses�1, �2, . . .

with the same data, in which case % (�) would stay constant.
Bayes’ rule has profound implications: it describes how one can change one’s

mind. % (� |�) is the posterior probability: The probability that the hypothesis is
true, provided the evidence � has been observed. If % (� |�) > % (�), then the
evidence confirms the hypothesis, otherwise, it refutes it. While Popper described
confirmation of theories as impossible, Bayesians answer that confirmation is in
fact quite common. This conclusion is important: philosophers of science had
struggled with the problem of confirmation for most of the twentieth century
[GS03].

Now, there is some controversy attached to Bayes’ rule [PGJ16]. In most cases,
% (�) cannot be estimated, so the statistician chooses a distribution, which means
that the posterior probability is tainted a subjective choice of prior: For example,
if some hypotheses are impossible according to the prior, then no amount of data
can change that. To prevent this, Furia et al. [FFT19] suggest to test the same
model with different priors, in what they call a prior sensitivity analysis.

I find the use of priors more sensible that picking null hypotheses. When a
researcher chooses a prior, they can express their domain knowledge, for example
by involving the related work. That is not what researchers do when picking null
hypotheses. Moreover, if a scientist report posterior distributions in their work,
Bayes’ rule allows other researchers to build on this information in a principled
way. Bayes’ rule expresses elegantly the idea that current research builds on
existing knowledge: Today’s posteriors are tomorrow’s priors.

4 Linear Regression
To show how I use the Bayesian Framework, I will present an example of a linear
regression with simulated data. The argument will be close to that of Paper II, but
in extended form, since the original paper is only four pages long.

48 Analyzing Experimental Results

0 5 10 15 20

number of runs

0

200

400

600

800

1,000

1,200

1,400

e
x
e
c
u

ti
o
n

 t
im

e
 (

m
s
)

Figure 1: Execution times for fop (20 replications). The point denotes the mean,
the error bar the standard deviation. The line denotes a linear regression. It would
make poor predictions: after 25 iterations, it would predict the execution time is
negative. But it does indicate the downward trend.

Linear regression models the relationship between factors and the response by
a straight line, hence the name. Figure 1 shows a linear regression fit to execution
times for fop. It is a simple model, but it has the advantage of being quite flexible,
and somewhat interpretable.

I pick simulated and not real-world data, becausewhenworkingwith simulated
data, I know what I’m looking for. I will compare the simulation parameters with
the inferences from different statistical methods. When using real-world data, the
full data-generation model is unknown, so I would never be sure that the inference
is correct.

Here is the simulation model. We assume we have two machines "1, "2, and
three treatments C1, C2, C3. Both machine and treatment influence the execution
time, as displayed in Figure 2. An example of a treatment could be to replace a
ArrayList by a LinkedList and some program location. The parameters of the
model are an array V of effect for each machine, and a matrix of effects U for each
combination of machine and treatment. The simulation model is described in the
equations below. - ∼ � means - is sampled for the distribution � .

Analyzing Experimental Results 49

Execution time MachineTreatment

Unobserved

Figure 2: A causal diagram describing the influences present in the simulation.

U ["1, C1] = 0.0, U ["2, C1] = 0

U ["1, C2] = −0.2, U ["2, C2] = 0.25

U ["1, C3] = 0.2, U ["2, C3] = 0.5

V ["1] = −1
V ["2] = 1

f = 0.1

`8 = V ["8] + U ["8 , C8]
execution time8 ∼ Normal(`8 , f)

If I implement this model and simulate 20 runs for each combination ofmachine
and treatment, I obtain a table similar to Table 1. I assume execution times are
relative to the mean so there are negative values. Figure 3 shows the plotted data.

Machine Treatment Execution time
1 1 -1.14584
2 1 0.846367
1 2 -0.990952
2 2 0.9508
… … …

Table 1: Example of data from a synthetic model

I will first analyze the data using ordinary least-squares regression, and then
compare it with a bayesian model. This case contains categorical variables, which
can take a finite number of values, called levels. These levels are unordered ("2

is not more machine than "1). Linear regression doesn’t support categorical
variables, which must be encoded.

4.1 Categorical Variables
There are several ways to use discrete values with linear regression. One is one-hot
encoding: For each level, create a new input variable, which takes the value 1 if

50 Analyzing Experimental Results

−2 −1 0 1 2

execution time

T1

T2

T3

tr
e
a
tm

e
n

t

M1
M2

machine

Figure 3: The results of the simulation of 20 runs. Treatment 1 is the baseline, so
its effect is considered to be zero. Treatment 2 speeds up the program on "1, but
slows it down on "2. Treatment 3 slows the program to varying degrees.

the value of the factor is of that level or 0 if it is not. For this example, I will create
one input variable per machine, called "1 and "2. For each sample, I will set the
variable associated with a used level to 1. Table 2 shows the updated data. For
treatments, the procedure is essentially the same.

"1 "2 Treatment Execution time
1 0 1 -1.14584
0 1 1 0.846367
1 0 2 -0.990952
0 1 2 0.9508
… … … …

Table 2: Example of data from a synthetic model, with dummy encoding

Quite often, the experimenter is interested in the difference between a “base”
level and other levels. In that case, there will be no column for that level, but
instead, every other column for the same feature will be set to zero. In this example,
that would correspond to removing column "1 and keeping "2. The coefficient
in the linear model of "2 will indicate the difference relative to "1. This is called
dummy coding. In a way, the base level is implicit, since there is no input variable
to represent it.

We create a first baseline linear regression model, with dummy-coded cate-
gorical variables. We set C1 as a baseline, so we have two variables: C2 and C3. V
represents the intercept, which is the mean of execution times for C1.

execution time8 = V + UC2C2 + UC3C3 + n

Ordinary least squares linear regression will pick the V, UC1 , UC3 which minimize
the mean square error. Figure 4 shows the estimated effects and their error com-
pared to the parameters set when designing the simulation. Perhaps surprisingly,
it was not necessary to add the machine to the regression to estimate to the real
value of the effects. This is because the treatment is independent from the machine
used, the two are independent.

Analyzing Experimental Results 51

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

effect

1

2

3

tr
e
a
tm

e
n
t

1

2

linear model

machine

Figure 4: The estimated effect (triangle) vs the real effects for different machines
(circles and square), for different treatments. The error bars display the error in
the estimate. The linear model estimates the mean effects of treatments. As a
result, it estimates treatment 1 has no effect on average, even if it would have a
positive effect on machine 1.

One could instead use a model that included the machine, as below,

execution time8 = V + V"2"2 + UC2C2 + UC3C3 + n

This models makes the same estimates for the mean effects. However, it makes
more precise estimates: the confidence intervals are narrower. This is the effect of
blocking, discussed in Chapter V.

With Bayesian inference, instead of dummy coding, one can use arrays of
coefficients. The model is close to the equations of the simulation. The only
difference is that parameters that took values in the simulation are now unknown,
and one must therefore assign priors to them. For each sample 8 , the treatment
C8 is assigned a coefficient U [C8], from an array U . G is an observed variable
(data provided to the model), and U denotes a parameter, which requires a prior
distribution.

execution time8 ∼ Normal(`8 , f)
`8 = U [C8]

U [C] = Normal(0.0, 0.5),∀C ∈ {C1, C2, C3}
f = Exponential(0.2)

To estimate posterior distributions, I can use an inference engine such as
Turing [GXG18]. Turing returns a vector of samples for each parameter, which
represents its posterior distribution. Figure 5 shows the posterior distributions of
the effect of treatments.

I could estimate the effect of the treatment, but I do not know if that effect
varies for different machines. In a sense, this mean effect is a more generalizable
result. It averages across different contexts, so if the effect is strong, it will be
observed in more situations. To test how the effect varies with the context, one
can add interactions.

52 Analyzing Experimental Results

Figure 5: The posterior distribution of mean treatment effects. The posterior
distributions match well the estimates in Figure 4, except in the shape of distribu-
tions instead of intervals. To report credible intervals (the Bayesian equivalent to
confidence intervals) we can take quantiles of the posterior distributions.

4.2 Interactions

An interaction is when the treatment effect varies with the value of another variable
[GHV21]. In this example, is the treatment just as effective for any machine, or is
it only effective for some?

In an ordinary least-squares model, an interaction is the product of the dummy
coded variables. For example, for a sample which used the machine "2 and the
treatment C3, we get:

execution time8 = V + V"2"2 + UC3C3 + UC3,"2C3"2

All other factors like (such as UC2C2) are set to zero, because of dummy coding.
Figure 6 shows the result of a regression with interactions.

In Bayesian inference, interactions for categorical variables are represented
by a matrix of coefficients. For a factor with : levels, and another with ; levels, I
create a : × ; matrix of coefficients. For this example, here is how a model with
interaction will look like.

Analyzing Experimental Results 53

−1 0 1 2

effect

1

2

3

tr
e
a
tm

e
n
t

1

2

machine

Figure 6: The effect of machine and the estimated effects of treatments, when
using interactions. The ground truth is displayed as red ticks. Now, the treatment
effect varies by machine, so two effects are estimated for each treatment. These
estimates are much more precise, and the confidence intervals for the parameters
overlap the values I set for the simulation. In the simulation, I set the effect of
"2 to 1.0, but in this model, the coefficients is 2, because of dummy coding: The
coefficient measures the effect of"2 relative to"1 (which was -1.0) The treatment
effects are relative to C1.

execution time8 ∼ Normal(`8 , f)
`8 = V ["8] + U ["8 , C8]

V ["] = Normal(0.0, 0.5), ∀" ∈ {"1, "2}
U [", C] = Normal(0.0, 0.5), ∀" ∈ {"1, "2}, C ∈ {C1, C2, C3}

f = Exponential(0.2)

Figure 7 shows the posterior distribution of effects for the two machines and
the different treatments. Because I used two separate coefficients for the effect of
treatment (one for each machine), I obtain different posteriors. The model seems
to infer that "2 is slower than it actually is. Since the model does not know that
C1 is our baseline, it estimates the effect of "2 to be closer to the mean of the
execution times for "2.

One can estimate the effect of treatments relative to C1. Since the posterior of
each parameter is a vector of numbers, I can estimate the difference between any
two variables by subtracting the vectors. Figure 8 shows the result: the estimates
match the ground truth.

4.3 Data Transformations

So far, our linear model estimated the effects in terms of differences in absolute
execution times. Performance engineers instead prefer to work with ratios, so
that we can express speedups in percentages (e.g. “A is 32% faster than B”). To
do that, we just need to run a linear regression on the logarithm of the execution
time. Then, coefficients can be interpreted as ratios.

54 Analyzing Experimental Results

Figure 7: The posterior distribution of the effect of each machine (1), and the
effect of treatment, for each machine (2, 3, 4). The interaction model seems to
over-estimate the effect of "2. As a result, the effects of treatments for "2 are
shifted, even if the real effect is covered by the posterior distribution. This happens
because this model infers effects relative to the mean of the effects for "2. Since
we did not define the model so that C1 is our baseline, it doesn’t estimate its effect
to be zero.

5 Hierarchical Models

So far, I used fixed priors for our effects, like Normal(0.0, 0.5). What is my justifi-
cation for such a prior? As we have seen, some might argue that priors allows the
introduction of bias in the model.

If I do not want to commit to a specific prior, I can add a parameter to its defi-
nition. For example, one can replace Normal(0.0, 0.5) by Normal(0.0, f), where f
is a new parameter. These are called a hyperparameters. Because fC is a parameter,
it needs a prior, which is then called a hyperprior. A model with hyperpriors is
called a hierarchical model.

Hyperparameters have a number of uses. First, they can be used to express
uncertainty about our priors. If Normal(0.0, 1.0) seems too “stiff”, I may replace
it with Normal(`, 1.0), and set a prior distribution for `. Plausible values of `
are learned from the data, so ` will get a posterior distribution too. Second,
hyperparameters can be used to flexibly “connect” variables together and pool
information. I will show an example soon. Third, the posterior distribution
hyperparameters can be used to gain information about the structure of the model.
I will show an example with the Bayesian ANOVA, from Gelman [Gel05].

We start with pooling information. In my model, coefficients are clustered :

Analyzing Experimental Results 55

Figure 8: The posterior distribution of the effects of C2 and C3 relative to C1. The
posterior distributions are narrow and close to the values that we expected. They
still show treatments vary by machine.

some concern effects of machines, others concern effects of treatments. I can
exploit this clustering of coefficients to prevent overfitting, by pooling information
about the parameters [McE20]. I do that by having the prior for all treatments
coefficients depend on the same hyperparameter.

In the model below, all treatment effects are linked by the common parameter
ftreatments. A treatment C 9 and another C: both depend on ftreatments. As a result,
information about C 9 influences C: through ftreatments. I assume that such treatment
effects are sampled from the same family, the family of treatment effects. What
the model learns about each treatment informs the posterior distribution of the
family, which will inform the prior for the other treatment effects.

execution time8 ∼ Normal(`8 , f)
`8 = V ["8] + W ["8 , C8]

V ["] = Normal(0.0, fmachines),∀" ∈ {"1, "2}
W [", C] = Normal(U [C], finteraction),∀" ∈ {"1, "2}, C ∈ {C1, C2, C3}

U [C] = Normal(0.0, ftreatments),∀C ∈ {C1, C2, C3}
ftreatments = Exponential(0.1)
fmachines = Exponential(1.0)
finteraction = Exponential(0.1)

f = Exponential(0.2)

This pooling of information is particularly valuable if you do not have the
same amount of data for different treatments [McE20]. But I can also use it to
study the variantion between coefficients in different groups.

56 Analyzing Experimental Results

5.1 Analysis of Variance

Bayesian ANOVA

The Analysis of Variance (ANOVA) estimates the importance of each factor by
looking at how much each factor contributes to the total variance. Bayesian
ANOVA [Gel05] estimates the importance of each factor by looking at the variation
in groups of coefficients in a linear regression. Groups of coefficients with higher
variance are more important. 2. To measure this variance, all we have to do is use a
hierarchical model, like the model presented above. Then, we look at the posterior
distributions of ftreatments, fmachines, etc. Figure 9 shows the posterior distributions
of ftreatments, fmachines and finteraction. There is more variation between machines,
so this factors contributes more to the variance of the data. Between the mean
effects of treatment and the interactions, interactions vary a little bit more, but
the difference is not very clear-cut.

Figure 9: Posterior distributions of the standard deviation of treatment effects
(orange), machine effects (blue) and interaction effects (green). This plot shows
that there is more variation between machine than there is between interactions.
It also seems like interactions vary more than the mean effect of treatments.

Classical ANOVA

In the case of classical ANOVA, the idea is essentially the same, it tries to estimate
how much each factor contributes to the variance in the data.

2In the case where factors have different scales, we should standardize them, but in the case of
categorical variables, we do not need to.

Analyzing Experimental Results 57

“ The idea is to determine whether the discrepancies between the treatment
averages are greater than could be reasonably expected from the variation that
occurs within the treatments. ” [BHH05]

Classical ANOVA achieves this through different means, so I need to introduce
new concepts. Instead of using the variance, ANOVA uses the sum of squared
deviations. The sum of squared deviations from the grand mean is decomposed as
a sum of terms. Then, the experimenter needs to compare the computed sums of
squares to a null hypothesis. In the case of ANOVA, the null hypothesis is that
there are no differences between treatments. I will start with a description of the
approach, taken from Montgomery [Mon01], and then show some examples.

I assume an experiment where I have have 0 treatments. For each treatment,
I do the experiment = times. The total number of observations is # = 0=. The
response for treatment 8 and replication 9 is noted ~8 9 .

To estimate the variance between treatments, I will look at the mean responses
for each treatment. ~8• represents the sum of responses for treatment 8 . ~̄8• is
the mean of the responses for treatment 8 . Similarly, ~•• is the grand sum of all
responses, and ~̄••, is the grand mean.

More formally,

~8• =
=∑
9=1

~8 9 ~̄8• = ~8•/= 8 = 1, 2, . . . , 0

~•• =
0∑
8=1

=∑
9=1

~8 9 ~̄•• = ~••/#

One uses the definitions above to compute the total sum of squares (TSS),
the explained sum of squares (ESS) and the residual sum of squares (RSS). The
total sum of squares is the sum of squared deviations from the grand mean. The
explained sum of squares is the sum of squared deviations between the mean of
each treatments and the grand mean. The residual sum of squares is the sum of
squared deviations between the mean of each group and each datapoint.

TSS = ESS + RSS
0∑
8=1

=∑
9=1

(~8 9 − ~̄••)2 = =

0∑
8=1

(~̄8• − ~̄••)2 +
0∑
8=1

=∑
9=1

(~8 9 − ~̄8•)2

Null Hypothesis In the case of one single factor, the null hypothesis is that
there are no differences between treatments, and all the variance is due to the effect
of the residuals. If the null hypothesis is true, one can define the distribution of the
expected TSS, ESS, and RSS. This distribution is called the chi-squared distribution,
which parameters are called degrees of freedom. A chi-square distribution with

58 Analyzing Experimental Results

Figure 10: The distribution of the sum of squares of : standard normal random
variables, called the chi-square distribution. For different values of : between 1
and 5.

: degrees of freedom represents the distribution of a sum of : squared random
variables, if these random variables are independent, and follow a standard normal
distribution. Figure 10 shows the distribution for different values of : .

Degrees of Freedom If the null hypothesis is true, all the variance in the data
is due to the residuals. If that is true, and if the residuals are normally distributed
with mean 0 and variance f2, then we can show that TSS/f2 follows a chi-squared
distribution with # − 1 degrees of freedom [Mon01].

Just like the sum of squares, the total degrees of freedom can be decomposed
as sums of degrees of freedom: ESS/f2 follows a chi-squared distribution with
0−1 degrees of freedom, and RSS/f2 follows a chi-squared distribution with # −0
degrees of freedom.

Test Statistic With the chi-square distributions, one could check if the ESS
or RSS fit the null hypothesis, but that would be two distributions, giving two
different p-values. Instead, ANOVA computes the F-statistic:

�0 =
ESS/(0 − 1)
RSS/(# − 0)

Under the null hypothesis, the F-statistic will follow a distribution called the
F-distribution which takes two parameters: The degrees of freedom (0 − 1) and
(# − 0). This distribution is used to compute the p-value of �0.

Analyzing Experimental Results 59

Adding More Factors If there is more than one factor, one needs to add sums
of squares to the decomposition. For example, in the case where there are two
factors � and � with levels 0 and 1, the sum of squares is decomposed as follows:

TSS = ESS� + ESS� + ESS�� + RSS

Where,

TSS =

0∑
8=1

1∑
9=1

=∑
:=1

(~8 9: − ~̄•••)2

ESS� = 1=

0∑
8=1

(~̄8•• − ~̄•••)2

ESS� = 0=

1∑
9=1

(~̄•9• − ~̄•••)2

ESS�� = =

0∑
8=1

1∑
9=1

(~̄8 9• − ~̄8•• − ~̄•9• + ~̄•••)2

RSS =

0∑
8=1

1∑
9=1

=∑
:=1

(~8 9: − ~̄8 9•)2

The degrees of freedom are decomposed as follows:

Effect Degrees of Freedom
� 0 − 1
� 1 − 1
�� interaction (0 − 1) (1 − 1)
Error 01 (= − 1)
Total 01= − 1

Examples

Table 3 shows the result of the ANOVA, for our simulation, as I computed it in R.
In this case, it shows that the model for treatments predicts points close to the
mean. Particularly, the F-statistic is close to 1, and the p-value is quite high, which
means the treatment does not explain most of the variance in the data.

I will now compare the previous ANOVA with the same analysis on a model
which predicts the execution time based on machine only (Table 4). Here, the

60 Analyzing Experimental Results

Feature Df Sum Sq Mean Sq F value Pr(>F)
treatment 2 3.6 1.798 1.368 0.259
Residuals 117 153.7 1.314

Table 3: ANOVA for a model which predicts the time based on treatment only.
“Df” refers to degrees of freedom. “Sum Sq” is the computed sum of squares.
“Mean Sq” is the sum of squares, divided by the degrees of freedom. “F-value” is
the F-statistic, which evaluates the ratio between the mean explained, and residual
sums of squares. “Pr(>F)” is the p-value of the F-statistic.

F-statistic is much higher, which means the machine used explains most of the
variance in the data (the residuals are low).

Df Sum Sq Mean Sq F value Pr(>F)
machine 1 151.63 151.63 3158.55 <0.001
Residuals 118 5.66 0.05

Table 4: ANOVA for a model where we predict the time based on machine only.
The “Df” value is now 118 for the residuals, because there are three treatments,
but two machines only. The p-value is low, meaning that the variance within
machines is much lower than between machines.

I can combine the two, and compute an ANOVA with both the machine used,
and the treatment used. The result is displayed in Table 5. Here, it shows that
the machine used explains most of the variance in the data, but also that once we
considered it, the treatment adds significant information.

Df Sum Sq Mean Sq F value Pr(>F)
machine 1 151.63 151.63 8499.08 < 0.001
treatment 2 3.60 1.80 100.76 < 0.001
Residuals 116 2.07 0.02

Table 5: ANOVA for model where we predict the time based on treatment and
machine. The degrees of freedom of the residuals are equal to the number of data
points (120), minus the degrees of freedom for other variables, minus 1 (120 - 2 - 1
- 1). Adding the machine to the model reduced the sum of squares of residuals,
showing that the effect of treatment is significant (as the p-value on the right,
shows).

Lastly, I add interactions. Because of the way I wrote the simulation, I know
that they play a small, but significant role. The result is displayed in Table 6.

ANOVA allows to estimate the importance of each factor, but it doesn’t tell us
which machine or treatment is the fastest. To do that, the experimenter should

Analyzing Experimental Results 61

Df Sum Sq Mean Sq F value Pr(>F)
machine 1 151.63 151.63 15446.90 < 0.001
treatment 2 3.60 1.80 183.13 < 0.001
machine:treatment 2 0.95 0.48 48.41 < 0.001
Residuals 114 1.12 0.01

Table 6: ANOVA for model with machine, treament, and the interaction between
the two. As expected, the interaction is significant.

look at the coefficients of a linear regression.
Now, to be able to use ANOVA, we’ve seen that we needed to learn several

new concepts: degrees of freedom, sum of squares, and the F-statistics. Georges
proposed the use of the ANOVA in Java performance evaluation but agreed that
“[…] their output is often non-intuitive and in many cases hard to understand
without deep background knowledge in statistics” [GBE07].

Gelman argues that computing the appropriate degrees of freedom for a given
experimental design can become difficult for example in the case of unbalanced
data [Gel05]. In this example simulation, if the experimenter cannot try every
treatment on each machine, what degrees of freedom should she use? In that case,
the order in which different factors are considered in the ANOVA influences the
result. That is why Gelman argues for the use of hierarchical models instead.

I find the Bayesian approach easier. I used a linear regression and when I
wanted to estimate other quantities (the variance of groups of coefficients), I added
hyper-parameters.

6 Summary
In this section, I’ve considered the challenge of the analysis of experimental
results. I argued that there are a number of problems with the interpretation of
the methods that were (and are) used.

I tried to list some alternatives, which I find promising. Some related to
changing the way we report our estimates, but for most of the chapter, I talked
about the Bayesian approach to inference. Bayesian statistics have the advantage
of being explicit, and inference engines like Turing allow for great flexibility in
modeling.

Now, the cost of this approach is that Bayesian inference is slow. For example,
least-squares linear regression takes seconds, while Bayesian linear regression
with aMonte-Carlo Markov Chain sampler can easily take 10-30 minutes. I suspect
that the problem of speed is not connected to what theory we use (Bayesian or
frequentist), but is a consequence of the assumptions we make. If general Bayesian
inference is slow, it is probably possible to make it much faster by restricting our
models to specific likelihoods and specific classes of priors.

62 Analyzing Experimental Results

I have now discussed both the design of tools for collection selection, and the
challenges of their evaluation. In the next chapter, I will discuss each paper in this
dissertation, and their contributions.

Contributions

In this chapter, I will review each paper in this dissertation, and its contributions.

1 JBrainy: Micro-benchmarking Java Collections
with Interference (Work in Progress Paper)

In Paper I, we consider the problem of evaluating the performance of collections
using micro-benchmarking, discussed in Chapter IV.

In their study, Costa et al. [Cos+17] evaluated collections, one method at a
time. Brainy generated micro-benchmarks with random sequences of method
calls. The latter method has an advantage over the former, in the sense that it
may capture “interference” between different operations. For example, is it worth
sacrificing a little time at insertion, if iteration is faster?

Brainy [Jun+11a] uses a random distribution to generate benchmarks. We
explain that Brainy’s model could be improved, and present an alternative, which
we call Pólya profiles. We evaluate nine collections from the Java Collections
Framework on synthetic benchmarks.

For lists, we found ArrayList to yield the best execution time in 90% of our
benchmarks, in accordance with previous results. In contrast with previous works,
we found LinkedHashSet to be the fastest set in 78% of cases, while TreeMap
and LinkedHashMap yielded better performance than HashMap in 84% of cases.

We conjecture that LinkedHashSet and LinkedHashMap work so well in our
case because our benchmarks exercise one of their strengths: They sacrifice a little
time during insertions, to gain a lot during iterations over the whole collection.

1.1 Contributions of the Paper
• A port of the Brainy benchmark generation process to Java.

• A new model for collection usage.

64 Contributions

• A study of how Java collections react to workloads built with the model

• A comparison of the result with previous work on micro-benchmarking
collections

2 Performance Analysis with Bayesian Inference
In Paper II, we consider the problem of analyzing benchmark data, discussed in
Chapter VI. The state of the art for analyzing benchmark results is the Analysis of
Variance (ANOVA). ANOVA has several problems.

First, the different columns of an ANOVA table can be difficult to understand:
Software engineers are not necessarily familiar with concepts like degrees of
freedom, sum of squares, the F-statistic, and p-values. Second, if ANOVA shows
which factors aremore important, it doesn’t show the scientist which levels of those
factors are higher/lower. ANOVA can tell us that some of our optimizations do
have a significant impact on performance, but it doesn’t tell uswhich optimizations
matters most, and it doesn’t say if this influence is positive or negative.

In this paper, we present an example of a Bayesian statistical model, to answer
common performance engineering questions, such as:

1. What effect does each optimization have on execution time?

2. Is this effect influenced by other things (like just-in-time compilation, or
the CPU architecture?)

3. Which factors are most important?

To study the first question, we use a linear regression on the logarithm of
the execution time. This allows us to compare ratios instead of absolute time
differences (which are not as important to performance engineers). To investigate
which factors influence the effect of an optimization, we use interactions. To
compare the importance of different factors, we use a Bayesian hierarchical model.

We conclude by arguing that Bayesian statistics are more flexible and more
explicit than classical approaches, such as ANOVA. The assumptions of Bayesian
models (e.g. if a variable is expected to follow a normal distribution) are explicitly
part of the model, and we can easily modify such models to match our statistical
assumptions.

2.1 Contributions of the Paper
A Bayesian statistical model for performance analysis, with the following proper-
ties:

• We use a log-transformation to easily reason about speedup ratios, instead
of absolute time differences.

Contributions 65

• We use interactions to determine if the effectiveness of an optimization
depends of the context.

• We can measure the importance of different factors using an hierarchical
model.

3 Classification-based
Collection Selection for Java:
Effectiveness and Adaptability

In Paper III, we test our synthetic benchmarks on real-world programs. CoCo,
Chameleon and CollectionSwitch used benchmarks from the DaCapo benchmark
suite. We ported the Brainy approach to Java, in a tool called Brainy4J. We com-
pared Brainy4J’s improvements with a greedy approach, which tries to optimize
each allocation site separately. We evaluated both tools on five benchmarks of the
DaCapo suite. Brainy4J and greedy search could use a set of 9 Java collections,
which were used in either CoCo or CollectionSwitch.

We found that Brainy4J was not effective at optimizing the programs under
study, while greedy search found one major optimization for one of our bench-
marks. Brainy4J and greedy search did not seem to be as effective as the state of
the art, including tools that make static replacements, like Artemis. We suspect
that adding more collections to the set of options that Brainy4J can use, could
help.

We mention several key challenges we encountered when porting the Brainy
approach to Java. For example, the benchmark synthesis model we borrowed from
Brainy is biased in favor of ArrayList, HashSet, and HashMap. Our port did not
find any cases where LinkedList was the most effective collection. Even if the
training data was not biased, tracing collection usage significantly hinders just-
in-time compilation, which might introduce bias when Brainy4J decides which
collection to use.

We conclude that the Brainy approach is not effective for Java. Benchmarking
in Java takes much longer than C++, and getting low-level features to characterize
collection usage is difficult. Moreover, we found that the effect of changes was
not very sensitive to the choice of CPU architecture: A change on one machine
would have roughly the same effect on another.

3.1 Contributions of the Paper
• A port of the full Brainy approach to Java.

• An evaluation on five well-known benchmarks and three difference CPU
architectures, where we compare Brainy4J with a ground truth obtained
with greedy search.

66 Contributions

• A study of the challenges of porting the Brainy approach to Java.

4 Automatic Collection Selection for Java: Com-
paring Static Approaches with Adaptive Collec-
tions

In Paper III, we noticed that greedy search failed to find significant optimizations,
except for one benchmark: bloat. However, the state of the art reported speedups
of 5% or more for most benchmarks. In Paper IV we review possible causes for
this difference.

4.1 Benchmarks
Perhaps these works used a different version of benchmarks, for which there
were more opportunities for improvements. We investigate which versions of
the DaCapo benchmarks were likely used in CoCo and CollectionSwitch. In total
both studies used avrora, bloat, chart, fop, lusearch and h2. Both studies could
have used two different versions of the fop benchmark, one of which takes six
times as long to run as the other.

To investigate the limits of possible improvements on DaCapo benchmarks,
we use our tracing framework to estimate the amount of collection usage in each
of the six DaCapo benchmarks used in CoCo and CollectionSwitch. We find
that avrora and fop do not use collections for more than 10% of their execution
time. However, h2, lusearch and bloat use collections for more than 20% of their
execution time. We find no benchmark using spending more that 35% of execution
time on collections.

4.2 Evolutions in the Java Collections Framework
Since the publication of CoCo and CollectionSwitch, the Java Collections Frame-
work has evolved. Some optimizations that were effective in CoCo are now part
of the standard library. We investigate which JDK was used in each study, and
find that CoCo probably used JDK 6, while CollectionSwitch probably used JDK
8. In our experiments, JDK 8 speeds up most benchmarks by approximately 10-
15%, which might be due to changes in the collections framework, or to other
optimizations.

4.3 Collections Options
Perhaps the limited effectiveness of greedy search in Paper III is due to not having
enough collections to choose between. To check if adding more collections can
help, we add LinkedHashSet and LinkedHashMap to the set of collections that

Contributions 67

greedy search can use. We find that greedy search is now able to speed up bloat
by approximately 50%, by switching a HashMap to a LinkedHashMap.

4.4 Replacement Strategy

In Chapter III, I have described three options for replacing collections. Greedy
search makes replacements at the allocation site level, CollectionSwitch at the
object and method levels, while CoCo makes replacements at the method level.
It is possible that making static replacements at the allocation site level is not as
effective as making dynamic replacements at the object or method level. To study
the impact of adaptive collections, we reproduce CoCo and CollectionSwitch, and
compare with greedy search.

To make a fair comparison of the results, we use a Bayesian statistical model,
and use the numbers reported in the original studies as priors. We use the Bayesian
approach described in Chapter VI, to express the idea that we are in a replication
context. Our statistical model therefore expects the speedups reported in the
original studies, and will use that information during inference. For example,
if we used too little data, our estimates of effects would be nudged towards the
previously reported effects.

We could not find evidence that dynamic collection selection significantly
outperforms a static approach. In our experiments, CoCo slows bloat down by
5 to 10% and fop by 2 to 5%, and has no other effect on the other benchmarks.
CollectionSwitch speeds up bloat by 1 to 5%, and slows down lusearch by 0.5 to
5%. In our case, our evidence overwhelms the priors, showing that our results
reliably contradict the original findings. To explain this difference, we highlight a
number of challenges we encountered during the replication.

4.5 Selected Sites

Applying a collection selection tool requires to select which allocation sites will
be modified. One of the weaknesses of our reproduction is that we do not know
which allocation sites were selected in the prior work. We report on possible
differences between our approach and the original studies.

To understand the impact of collection site selection, we break down our
analysis per allocation site, in two benchmarks: bloat and lusearch. We focus
on bloat because it is the benchmark for which we found the most effective
optimizations, and lusearch because it is the benchmark for which CoCo and
CollectionSwitch were most beneficial. For lusearch, we could not find a site for
which replacing the existing collection by a CoCo collection or a CollectionSwitch
collection was beneficial.

For each benchmark, we select 20 allocation sites and replace the collection
at each of the sites. We test with CoCo collections, CollectionSwitch collections,
alternatives present in the JDK.

68 Contributions

For bloat, for one allocation site, replacing with a CoCo collection was benefi-
cial, but was detrimental for several other sites. We could not find a site for which
CollectionSwitch sped up bloat.

4.6 Contributions of the Paper
• An investigation of collection usage of six DaCapo benchmarks, used in
state of the art studies.

• A replication of two adaptive collection tools: CoCo and CollectionSwitch.

• A demonstration of the use of Bayesian inference to analyze experimental
data in a replication context.

• An evaluation of adaptive collections compared with a static approach:
greedy search.

• A study of the effect of replacements on specific allocation sites.

Threats to Validity

In this Chapter, I will review the threats to the validity of our work. Our work
revolves around three replications, none of which succeeded. I know of several
differences between our replications and the original works. First I will start by
reviewing how these differences may have impacted our results. Second, I will
talk about what might make our work less applicable to other contexts.

1 Internal Validity
In Paper III, we see that Brainy4J does not perform as well as the state of the art.

The performance of a collection selection tooling relies on four factors:

1. The collection usage, dictated by the target program and the workload.

2. The selection of promising program location for optimization.

3. The collections that the tool can use in its replacements.

4. Its decision making procedure, which depends of its cost model and data
about collection usage.

5. How we evaluate performance of programs, to detect the impact of opti-
mizations.

1.1 Data Imbalance
In Paper III, we synthesized micro-benchmarks to build a training set for our
collection suggestion tool. Our training data was imbalanced: some collections
were far more successful in our benchmarks than others.

I can see two possible causes for this: it could be due to a legitimate superiority
of some collections against alternatives, or issues with our approach to benchmark
synthesis.

70 Threats to Validity

Benchmark Synthesis

For benchmark synthesis, there are the following aspects to take into account: the
size of the generated benchmarks, the methods selected, the arguments provided
to such methods, and the type of elements stored in the collection.

Size of Traces To reproduce Brainy, we used traces of length 1000, but there is
not much justification for this number. In actual programs, the number of method
calls varies a lot between collections. We think that for some collections, such as
ArrayMap, short traces would be better, because ArrayMap is efficient when the
map stays small, and longer traces increase the probability of insertions in the
map.

Selection of Methods The original generation scheme used in Brainy does
not use any domain knowledge. As a results, Brainy4J can generate unrealistic
benchmarks, for example, calling clear repeatedly, on an already empty collection.
We tried to extract domain knowledge by modeling traces of method calls with
Markov chains, with little success.

Generation of Method Arguments I know there is at least one case where
Brainy4J’s benchmark generator could be improved by encoding domain knowl-
edge in the generation of method arguments: prepending to a LinkedList is
less costly than for an ArrayList. In our case, it is unlikely that our benchmark
generator would test this hypothesis, because it was unlikely to generate long
sequences of insertions to the beginning of the list. As a result, our benchmark
generator did not find a single benchmark for which a LinkedList was faster than
an ArrayList.

Type of Elements Stored in the Collection Brainy4J only stores integers in
collections. However, there is evidence that the type of element in the collection
matters. For example, in Chapter II, I mentioned that hash tables call a hash
function, and tree-based maps used the comparison. Therefore, testing collections
with elements that exploit various trade-offs between the cost of hashCode and
compare could help.

1.2 Measuring Collection Usage
Impact of Instrumentation

In Paper III we rely on CPU counters for measuring collection usage. In Chapter IV,
I have mentioned the “observer effect” of instrumentation: we wanted to trace
low-level features because they promised to contain more information about a
collection’s behavior. However, such low-level instrumentation is affected by the

Threats to Validity 71

tracing code itself, and in practice, instrumentation has a significant impact on
JIT-compilation.

Tracing Iterations over Collections

In Paper III and IV, we traced method calls to collections, for example, to rank
allocation sites by importance. That approach suffers from one weakness: It
doesn’t trace how iterators on the collections are used. It is possible that we
missed a significant part of the time a collection is used, if it only iterated on, since
we did not measure that.

1.3 Selecting Allocation Sites

In Paper III, we supposed that the low performance of greedy search could be
due how we measured the potential of an allocation site. However, we traced
collection usage for each of our sites, and saw that the first 10-20 busiest sites
account for most of the collection usage. We also ran greedy search on every
allocation site of our benchmarks, but we found no important optimizations.

In Paper IV, we tried to reproduce CoCo and CollectionSwitch, but we did not
know which sites they selected. For CollectionSwitch, we know that our selection
of sites is different than the selection that they used. It is possible that we couldn’t
reproduce their results because we missed some key allocation sites that they had
selected.

1.4 Evaluation

In Paper III We used two approaches for benchmarking. For micro-benchmarking,
we used the Java Microbenchmarking Harness (JMH). JMH makes many things
easier, but there are still some traps one can fall into, we followed best-practices
[Cos+19].

For DaCapo benchmarks, we wrote our own scripts that launch the JAR file.
As I said in Chapter II, determining when steady-state performance is reached
is difficult. We inspected manually the running times of benchmarks to check if
they reached a plateau. It is probably possible to obtain more precise estimates of
the effect of changes with more runs per benchmark.

2 External Validity

In this section, I will talk about what threats the generalizability of our work.

72 Threats to Validity

2.1 Target Programs
In our articles, we focused on benchmarks from the DaCapo benchmark suite. We
analyzed the collection usage of our different benchmarks, and found significant
differences between benchmarks. The avrora and chart benchmarks, for example,
spends most of the timewriting to a file. So there is little potential to optimize them
by changing which collections they use. Existing work [Bas+18] has considered
taking many projects from GitHub, and running them. This could be a good
approach to cover the ways collections are used.

2.2 Collection Types
In Paper III, and IV, we used collections which could store any type of object, which
were less likely to break the target program. However, there exist specialized
collections for integers and floats 1, which probably perform better.

We also did not tune collections. In some cases, the most effective optimization
might be to change the initialization parameters of the collection.

3 Summary
In this chapter, I reviewed the threats to validity of this work.

In Paper III, we’ve observed that our tool, Brainy4J, sometimes misses impor-
tant optimizations. I can see two possible causes for this. First, I suspect that the
training data it uses for its cost model is not representative of collection usage,
in a number of ways. Second, Instrumentation impacted the JVM significantly,
for example by hindering JIT-compilation, and we do not know how much of an
effect that had on Brainy4J’s decision making.

In Paper IV, we could not reproduce results from the original works, possibly
because we did not select the same allocation sites.

We restricted ourselves to a set of well-known benchmarks, and used collec-
tions that could be swapped easily in such benchmarks. These aspects constraint
the generalizability of our work. Other works have found effective optimiza-
tions on other programs. Moreover, there exist collections specialized to specific
element types, which could be provide speedups, but we haven’t tested them.

1FastUtils has specialized collections for storing ints and floats https://fastutil.di.unimi.it/

https://fastutil.di.unimi.it/

Conclusions and Future
Work

1 Collection Selection

1.1 Regression Approaches
I mentioned the possibility of using a regression for collection selection, in which
we would predict the execution time, using features about collection usage.

Regression provides a number of advantages over classification, so I think it
should be explored further. First, it can tell how much an alternative is. Second,
using Bayesian methods, we can also estimate the uncertainty of predictions.
Third, it can also provide help with the synthesis of benchmarks, for example by
generating benchmarks for which the uncertainty is high, or facilitating the search
for interesting sections of the space. For example, searching for a benchmark
which maximises the predicted speedup of LinkedList over ArrayList.

What I am describing here is basically Bayesian Optimization. The regression
approach to collection selection is clearly an instance of black-box optimization. I
have an expensive function (benchmarking a program), and I could use a regression
model as a surrogate model. There is a lot of work in this area, but I haven’t had
the time to explore it.

1.2 Benchmark Selection
In Chapter IV, I said that benchmark selection is not efficient at finding relevant
benchmarks. I suspect that a way to make it more efficient would be to update
the synthesis model after each benchmark. One option could be to try to avoid
making benchmarks similar to the ones that we already tried. Another option
would be the opposite: to use existing benchmarks to generate variations of new
benchmarks.

74 Conclusions and Future Work

1.3 Benchmark Synthesis

I have explored several approaches for generating sequences of methods calls for
collections. However, I have not spend much time on the synthesis of the data to
store in the collection. I suspect that the type of element has a strong impact of
collection performance, even though that seems like a big design space to explore.

1.4 Heterogeneity of Collections

There is some overlap in the set of collections that different systems use, but
there are also discrepancies, which makes the tools harder to compare with one
another. CollectionSwitch uses OpenHashSets (sets which use a map with open
addressing) which weren’t used in Chameleon, and CoCo. Likewise, Artemis
uses synchronized collections which were not used in Chameleon, CoCo, and
CollectionSwitch. Moreover, lazy collections, array-based maps, and hash-based
lists are not popular among Java programmers [Cos+17]. An interesting line of
work would be to evaluate these methods on the same set of collections, to see how
much the decision-making matters, compared to the features of each collection.

1.5 Performance Metrics

In this work, I focused on reducting execution time. Originally, it was because
execution time seemed easy to measure: start a stopwatch when the program
starts, stop it when the program ends. As is now clear, the problem of measuring
execution time is much more complicated, because many things can influence it,
and the cause of fluctuations is not easy to pinpoint.

Many other studies have focused on memory usage instead. Memory usage is
seemingly harder to measure exactly, but I suspect that fewer factors influence it.

It is possible that Java programs suffer from more memory bloat than they
suffer from execution bloat. Likewise, energy usage is a performance metric that
has not been considered as much as memory usage and execution time.

2 Benchmarking and Experimental Design
I see some opportunities for future work, at different levels. I will start by future
work closest to my work, but also mention more general issues.

2.1 Sequential Experimental Design

One problem with my experiments is that new information does not trigger an
update of the experimental plan. In other words, I sometimes waited several hours
to obtain data that confirms something I already knew.

Conclusions and Future Work 75

There is work on sequential experiment design [BHH05], which reduces the
cost of experiments by revising the plan as we obtain new results. Similarly, the
area of Bayesian experimental design uses Bayesian methods to update the plan.

2.2 Statistical Methods in Software Engineering

Causal inference and Bayesian statistics are applied successfully to answer ques-
tions about a variety of topics, from medecine to economics. I see no reason for
software engineering not to use these techniques, whether it is to analyze the
accuracy of a classifier, or the effect of optimizations on execution time. There is
existing effort in this direction, and I consider it a very promising area of research.

3 Conclusions

In Paper I, we started with the Brainy study, by Jung et al. We ported their
benchmark synthesis method to Java, and compared the behavior of collections
from the Java Collections Framework with results by Costa et al. [Cos+17].

In Paper II, since I was skeptical of established approaches to analyze bench-
mark data (ANOVA and confidence intervals), we introduced a new Bayesian
statistical model to analyse benchmark data, inspired by Gelman [Gel05]

In Paper III, we ported the full Brainy approach to Java, and compared its
performance with greedy search on five Java benchmarks. We noticed that both
methods give somewhat disappointing results, except for one benchmark, where
greedy search finds a remarkable optimization. We highlight the challenges of
adapting Brainy. Brainy4J’s benchmark synthesis models is biased, and the tool
does not work as well as the state of the art. The original Brainy study highlights
the importance of the CPU architecture in choosing the right collection for a
program. We have seen that this doesn’t seem to be the case, for Java programs.

Since tools like CoCo and CollectionSwitch were effective. In Paper IV, we
tried to reproduce their results, and compare to greedy search, on six benchmarks.
We could not reproduce their results.

4 Final Words

Recently, at a conference, I was asked if I thought that my work would still be
relevant, ten years from now. For our work on Brainy4J, I honestly doubt it: Our
approach is not fundamentally new, and our results are mostly negative. Moreover,
we have seen that reproducing results from ten years ago was difficult: software
changes quickly. I do think however, that our proposition to use Bayesian inference
for performance analysis (and our models) have a better chance to stand the test
of time. In ten years from now, the model will still be valid, and potentially still be

76 Conclusions and Future Work

useful. Therefore, If I think that my contribution to automatic collection selection
was modest, I think I helped improve the methodology around benchmarking.

Bibliography

[Bar+17] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah
Mount, and Laurence Tratt. “Virtual machine warmup blows hot
and cold”. en. In: Proceedings of the ACM on Programming Languages
1.OOPSLA (Oct. 2017), pp. 1–27.

[Bas+18] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr.
“Darwinian data structure selection”. en. In: Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering - ESEC/FSE
2018. Lake Buena Vista, FL, USA: ACM Press, 2018, pp. 118–128.

[Bau+85] F.L. Bauer, M. Broy, B. Möller, P. Pepper, M. Wirsing, et al. The Munich
Project CIP. Vol. I: The Wide Spectrum Language CIP-L. Lecture Notes
on Computer Science 183. Berlin: Springer Verlag, Berlin, Heidelberg,
New York, 1985.

[Bla+06a] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R.
Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.
Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. “The DaCapo
Benchmarks: Java Benchmarking Development and Analysis”. In:
OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applications.
ACM Press, Oct. 2006, pp. 169–190.

[Bla+16] Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F.
Sweeney, José Nelson Amaral, Tim Brecht, Lubomír Bulej, Cliff Click,
Lieven Eeckhout, Sebastian Fischmeister, Daniel Frampton, Laurie J.
Hendren, Michael Hind, Antony L. Hosking, Richard E. Jones, Tomas
Kalibera, Nathan Keynes, Nathaniel Nystrom, and Andreas Zeller.
“The Truth,TheWhole Truth, andNothing But the Truth: A Pragmatic

78 Bibliography

Guide to Assessing Empirical Evaluations”. In: ACM Transactions on
Programming Languages and Systems 38.4 (Oct. 13, 2016), pp. 1–20.

[Bla+06b] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khan,
Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J Eliot B Moss, Aashish Phansalkar, Darko
Stefanovic, and Thomas VanDrunen. “The DaCapo Benchmarks: Java
Benchmarking Development and Analysis”. en. In: (2006), p. 22.

[Bla+08] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris
Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanovik, Thomas VanDrunen, Daniel von Dincklage, and
Ben Wiedermann. “Wake up and smell the coffee: evaluation method-
ology for the 21st century”. en. In: Communications of the ACM 51.8
(Aug. 2008), pp. 83–89.

[BHH05] George E. P. Box, J. Stuart Hunter, andWilliam Gordon Hunter. Statis-
tics for experimenters: design, innovation, and discovery. 2nd ed. Wiley
series in probability and statistics. Hoboken, N.J: Wiley-Interscience,
2005.

[Coc+20] Andy Cockburn, Pierre Dragicevic, Lonni Besançon, and Carl Gutwin.
“Threats of a replication crisis in empirical computer science”. en. In:
Communications of the ACM 63.8 (July 2020), pp. 70–79.

[Cor07] Thomas H. Cormen, ed. Introduction to algorithms. eng. 2nd. ed., 10th
pr. Cambridge, Mass.: MIT Press [u.a.], 2007.

[CA18] Diego Costa and Artur Andrzejak. “CollectionSwitch: a framework
for efficient and dynamic collection selection”. en. In: Proceedings of
the 2018 International Symposium on Code Generation and Optimiza-
tion - CGO 2018. Vienna, Austria: ACM Press, 2018, pp. 16–26.

[Cos+17] Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. “Em-
pirical Study of Usage and Performance of Java Collections”. en. In:
Proceedings of the 8th ACM/SPEC on International Conference on Per-
formance Engineering - ICPE ’17. L’Aquila, Italy: ACM Press, 2017,
pp. 389–400.

[Cos+19] Diego Costa, Cor-Paul Bezemer, Philipp Leitner, and Artur Andrzejak.
“What’s Wrong with My Benchmark Results? Studying Bad Practices
in JMH Benchmarks”. In: IEEE Transactions on Software Engineer-
ing 47.7 (2019). Conference Name: IEEE Transactions on Software
Engineering, pp. 1452–1467.

Bibliography 79

[CRS23] Noric Couderc, Christoph Reichenbach, and Emma Söderberg. “Per-
formance Analysis with Bayesian Inference”. In: ICSE-NIER ’23: Pro-
ceedings of the 45th International Conference on Software Engineering:
New Ideas and Emerging Results. 2023.

[CRSne] Noric Couderc, Christoph Reichenbach, and Emma Söderberg.
“Classification-based Static Collection Selection for Java: Effective-
ness and Adaptability”. In: EASE ’23: Proceedings of the International
Conference on Evaluation and Assessment in Software Engineering
2023. June 2023.

[CSR20] Noric Couderc, Emma Söderberg, and Christoph Reichenbach.
“JBrainy: Micro-benchmarking Java Collections with Interference
(Work in Progress Paper)”. In: ICPE ’20: Companion of the ACM/SPEC
International Conference on Performance Engineering. 2020, pp. 42–45.

[Dav10] Matthew J Davis. “Contrast coding in multiple regression analysis:
Strengths, weaknesses, and utility of popular coding structures”. In:
Journal of data science 8.1 (2010), pp. 61–73.

[Fer+18] Alberto Fernandez, Salvador Garcia, Francisco Herrera, and Nitesh V.
Chawla. “SMOTE for Learning from Imbalanced Data: Progress and
Challenges, Marking the 15-year Anniversary”. en. In: Journal of
Artificial Intelligence Research 61 (Apr. 2018), pp. 863–905.

[FSS83] Stefan M. Freudenberger, Jacob T. Schwartz, and Micha Sharir. “Ex-
perience with the SETL Optimizer”. en. In: ACM Transactions on
Programming Languages and Systems 5.1 (Jan. 1983), pp. 26–45.

[FFT19] Carlo A. Furia, Robert Feldt, and Richard Torkar. “Bayesian Data
Analysis in Empirical Software Engineering Research”. en. In: IEEE
Transactions on Software Engineering (2019). arXiv:1811.05422 [cs,
stat], pp. 1–1.

[FTF22] Carlo A. Furia, Richard Torkar, and Robert Feldt. “Applying Bayesian
Analysis Guidelines to Empirical Software Engineering Data: The
Case of Programming Languages and Code Quality”. In: ACM Trans-
actions on Software Engineering and Methodology 31.3 (July 2022),
pp. 1–38.

[GXG18] Hong Ge, Kai Xu, and Zoubin Ghahramani. “Turing: a language
for flexible probabilistic inference”. In: International Conference on
Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018,
Playa Blanca, Lanzarote, Canary Islands, Spain. 2018, pp. 1682–1690.

[Gel05] Andrew Gelman. “Analysis of variance—why it is more important
than ever”. In: The Annals of Statistics 33.1 (Feb. 2005).

80 Bibliography

[GHV21] Andrew Gelman, Jennifer Hill, and Aki Vehtari. Regression and other
stories. eng. Analytical methods for social research. Cambridge New
York, NY Port Melbourne, VIC New Delhi Singapore: Cambridge
University Press, 2021.

[GBE07] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statistically
Rigorous Java Performance Evaluation”. In: Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications. OOPSLA ’07. Montreal, Quebec,
Canada: Association for Computing Machinery, 2007, pp. 57–76.

[GS03] Peter Godfrey-Smith. Theory and reality: an introduction to the phi-
losophy of science. Science and its conceptual foundations. Chicago:
University of Chicago Press, 2003.

[GRS05] Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. “Semantic
essence of AsmL”. In: Theor. Comput. Sci. 343.3 (2005), pp. 370–412.

[Has+16] Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh,
Bram Adams, and Abram Hindle. “Energy profiles of Java collections
classes”. en. In: Proceedings of the 38th International Conference on
Software Engineering. Austin Texas: ACM, May 2016, pp. 225–236.

[HTF09] Trevor Hastie, Robert Tibshirani, and J. H. Friedman. The elements
of statistical learning: data mining, inference, and prediction. 2nd ed.
Springer series in statistics. New York, NY: Springer, 2009.

[HPAD07] John L. Hennessy, David A. Patterson, and Andrea C. Arpaci-
Dusseau. Computer architecture: a quantitative approach. 4th ed.
OCLC: ocm70830951. Amsterdam ; Boston: Morgan Kaufmann, 2007.

[Hoe+14] Rink Hoekstra, Richard D. Morey, Jeffrey N. Rouder, and Eric-Jan
Wagenmakers. “Robust misinterpretation of confidence intervals”.
en. In: Psychonomic Bulletin & Review 21.5 (Oct. 2014), pp. 1157–1164.

[Noa] ISO 25010.
[JS02] Nathalie Japkowicz and Shaju Stephen. “The class imbalance problem:

A systematic study”. In: Intelligent data analysis 6.5 (2002), pp. 429–
449.

[Jun+11a] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and
Santosh Pande. “Brainy: effective selection of data structures”. In:
ACM SIGPLAN Notices 46.6 (June 2011), pp. 86–97.

[Jun+11b] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and
Santosh Pande. “Brainy: Effective Selection of Data Structures”. In:
SIGPLAN Not. 46.6 (June 2011), pp. 86–97.

[Kah99] Wolfram Kahl. “The Term Graph Programming System HOPS”. In:
(1999), pp. 136–149.

Bibliography 81

[KJ13] Tomas Kalibera and Richard Jones. “Rigorous benchmarking in rea-
sonable time”. In: Proceedings of the 2013 international symposium on
memory management. ISMM ’13. New York, NY, USA: Association
for Computing Machinery, June 2013, pp. 63–74.

[Len+17] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus
Weninger. “A Comprehensive Java Benchmark Study on Memory
and Garbage Collection Behavior of DaCapo, DaCapo Scala, and
SPECjvm2008”. en. In: Proceedings of the 8th ACM/SPEC on Interna-
tional Conference on Performance Engineering. L’Aquila Italy: ACM,
Apr. 2017, pp. 3–14.

[LZ74] Barbara Liskov and Stephen Zilles. “Programming with Abstract Data
Types”. In: SIGPLAN Not. 9.4 (Mar. 1974), pp. 50–59.

[LW94] Barbara H. Liskov and Jeannette M. Wing. “A Behavioral Notion
of Subtyping”. In: ACM Trans. Program. Lang. Syst. 16.6 (Nov. 1994),
pp. 1811–1841.

[LR09] Lixia Liu and Silvius Rus. “Perflint: A Context Sensitive Performance
Advisor for C++ Programs”. In: 2009 International Symposium on Code
Generation and Optimization. Mar. 2009, pp. 265–274.

[Mah03] HosamMMahmoud. “Pólya Urn Models and Connections to Random
Trees: A Review”. en. In: Journal of the Iranian Statistical Society
(2003), p. 64.

[MPC14] Irene Manotas, Lori Pollock, and James Clause. “SEEDS: a software
engineer’s energy-optimization decision support framework”. en. In:
Proceedings of the 36th International Conference on Software Engineer-
ing - ICSE 2014. Hyderabad, India: ACM Press, 2014, pp. 503–514.

[McE20] Richard McElreath. Statistical rethinking: a Bayesian course with ex-
amples in R and Stan. 2nd ed. CRC texts in statistical science. Taylor
and Francis, CRC Press, 2020.

[McI68] M. D. McIlroy. “Mass-produced software components”. In: Proc. NATO
Conf. on Software Engineering, Garmisch, Germany (1968).

[MSS10] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. “Four Trends
Leading to Java Runtime Bloat”. In: IEEE Software 27.1 (Jan. 2010).
Conference Name: IEEE Software, pp. 56–63.

[Mon01] Douglas C. Montgomery. Design and analysis of experiments. 5th ed.
New York: John Wiley, 2001.

[Mor+16] Richard D. Morey, Rink Hoekstra, Jeffrey N. Rouder, Michael D. Lee,
and Eric-Jan Wagenmakers. “The fallacy of placing confidence in
confidence intervals”. en. In: Psychonomic Bulletin & Review 23.1 (Feb.
2016), pp. 103–123.

82 Bibliography

[Nuz14] Rigina Nuzzo. “Statistical errors: P values, the’gold standard’of sta-
tistical validity, are not as reliable as many scientists assume”. In:
Nature 506.7487 (2014), pp. 150–153.

[Nys21] Robert Nystrom. Crafting interpreters. eng. Daryaganj Delhi: Genever
Benning, 2021.

[OL13] Erik Osterlund andWelf Lowe. “Dynamically transforming data struc-
tures”. en. In: 2013 28th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE). Silicon Valley, CA, USA: IEEE,
Nov. 2013, pp. 410–420.

[Our+21] Zakaria Ournani, Mohammed Chakib Belgaid, Romain Rouvoy, Pierre
Rust, and Joël Penhoat. “Evaluating the Impact of Java Virtual Ma-
chines on Energy Consumption”. In: Proceedings of the 15th ACM /
IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). ESEM ’21. Bari, Italy: Association for Comput-
ing Machinery, 2021.

[Pap+21] Alessandro Vittorio Papadopoulos, Laurens Versluis, Andre Bauer,
Nikolas Herbst, Joakim von Kistowski, Ahmed Ali-Eldin, Cristina L.
Abad, Jose Nelson Amaral, Petr Tuma, and Alexandru Iosup. “Method-
ological Principles for Reproducible Performance Evaluation in Cloud
Computing”. In: IEEE Transactions on Software Engineering 47.8 (Aug.
2021), pp. 1528–1543.

[Par72] David L Parnas. “On the criteria to be used in decomposing sys-
tems into modules”. In: Pioneers and Their Contributions to Software
Engineering. Springer, 1972, pp. 479–498.

[PGJ16] Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell. Causal infer-
ence in statistics: a primer. Chichester, West Sussex: Wiley, 2016.

[Püs+05] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua,
Manuela Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti,
Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and
Nicholas Rizzolo. “SPIRAL: Code Generation for DSP Transforms”.
In: Proceedings of the IEEE, special issue on “Program Generation,
Optimization, and Adaptation” 93.2 (2005), pp. 232–275.

[R C20] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing. Vienna, Austria, 2020.

[SSS81] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. “An Au-
tomatic Technique for Selection of Data Representations in SETL
Programs”. In: ACM Trans. Program. Lang. Syst. 3.2 (1981), pp. 126–
143.

Bibliography 83

[SVY09] Ohad Shacham, Martin Vechev, and Eran Yahav. “Chameleon: Adap-
tive Selection of Collections”. en. In: Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (2009), p. 11.

[Smi90] Douglas R. Smith. “KIDS: A Semi-Automatic Program Development
System”. In: Client Resources on the Internet, IEEE Multimedia Systems
’99. 1990, pp. 302–307.

[SP14] Daniele G. Spampinato and Markus Püschel. “A Basic Linear Algebra
Compiler”. In: Proceedings of Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization. CGO ’14. Orlando, FL,
USA: ACM, 2014, 23:23–23:32.

[Szy03] Clemens Szyperski. “Component Technology: What, Where, and
How?” In: Proceedings of the 25th International Conference on Software
Engineering. ICSE ’03. Portland, Oregon: IEEE Computer Society, 2003,
pp. 684–693.

[Ter+10] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. “Col-
lecting performance data with PAPI-C”. In: Tools for High Performance
Computing 2009. Springer, 2010, pp. 157–173.

[Tra+22] Luca Traini, Vittorio Cortellessa, Daniele Di Pompeo, and Michele
Tucci. “Towards effective assessment of steady state performance in
Java software: are we there yet?” en. In: Empirical Software Engineer-
ing 28.1 (Nov. 2022), p. 13.

[Vig06] SEBASTIANO Vigna. “fastutil 5.0”. In: (2006).
[VK11] Jan Vitek and Tomas Kalibera. “Repeatability, reproducibility, and

rigor in systems research”. In: Proceedings of the ninth ACM interna-
tional conference on Embedded software - EMSOFT ’11. the ninth ACM
international conference. ACM Press, 2011, p. 33.

[Wan+22] Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and
Charles Zhang. “Complexity-guided container replacement synthe-
sis”. en. In: Proceedings of the ACM on Programming Languages 6.OOP-
SLA1 (Apr. 2022), pp. 1–31.

[WO18] Zheng Wang and Michael O’Boyle. “Machine Learning in Compiler
Optimization”. In: Proceedings of the IEEE 106.11 (Nov. 2018). Confer-
ence Name: Proceedings of the IEEE, pp. 1879–1901.

[WSL19] Ronald L. Wasserstein, Allen L. Schirm, and Nicole A. Lazar. “Moving
to a World Beyond “p < 0.05””. In: The American Statistician 73.sup1
(Mar. 2019), pp. 1–19.

84 Bibliography

[Xu13] Guoqing Xu. “CoCo: Sound and Adaptive Replacement of Java Col-
lections”. In: ECOOP 2013 – Object-Oriented Programming. Ed. by
Giuseppe Castagna. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 1–26.

[Xu+10] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and
Gary Sevitsky. “Software bloat analysis: finding, removing, and pre-
venting performance problems in modern large-scale object-oriented
applications”. en. In: Proceedings of the FSE/SDP workshop on Future
of software engineering research - FoSER ’10. Santa Fe, New Mexico,
USA: ACM Press, 2010, p. 421.

Included Papers

Pa
pe

r
I

JBrainy:
Micro-benchmarking Java

Collections with
Interference (Work in

Progress Paper)

1 Introduction

Java developers use collections extensively and are often faced with the task of
picking a collection class. The Java collection framework provides documentation
describing each collection’s functional properties in an interface, and supplies
several classes implementing this interface. However, it can be difficult to pick
the most appropriate implementation, and in practice software developers often
make sub-optimal choices when picking collections [SVY09].

When developers are unsure which collection class to use, they can run bench-
marks on their application and compare different solutions. This approach gives
precise insight, evaluating collection classes in the context in which they are used.
However, in practice developers may lack the time to benchmark each use of
collections in their code. Instead they turn to existing guidelines and look for
general strategies for datastructure selection.

Collections have different usage profiles, which we can think of as statistical
distributions of sequences of operations. Different collection classes perform
better for different usage profiles, e.g., a linked list may more efficiently support
insert-at-the-beginning operations than an array-based vector, whereas profiles
dominated by index-based lookup may be faster on the vector.

88 Paper I: Micro-benchmarking Java Collections with Interference

Therefore, to recommend a collection class to a programmer, we must (a)
understand what the programmer’s usage profile is, and (b) have a mechanism for
predicting the performance of a given collection class for that usage profile. Our
research question in this paper focuses on the second point: how can we obtain a
performance model that allows us to predict collection class performance with a level
of precision that is adequate for giving effective recommendations?

Related work has explored models for two kinds of profiles, which we here
call single-operation profiles and multi-operation profiles. Single-operation profiles
are the basis for the CollectionsBench study by Costa et al. [Cos+17], in which
the authors study Java collections from the standard and third-party libraries by
examining one operation at a time. Multi-operation profiles are the basis for the
Brainy approach [Jun+11a], in which the authors synthesise benchmarks for C++
to exercise random sequences of operations.

Both kinds of profiles can produce guidelines for developers for picking data
structures, but neither is perfect: single-operation profiles capture typical usage
scenarios, but cannot capture interference between different operations (one oper-
ation affecting the performance of another). Multi-operation profiles can capture
interference, but present a much larger and more challenging search space for
benchmarking. To facilitate the comparison between these two approaches this
paper makes the following contributions:

• a porting of the Brainy approach to Java via the JBrainy tool.

• Pólya Profiles, a refinement of multi-operation profiles.

• an evaluation of the JBrainy approach on Java collections.

• an initial comparison of JBrainy and CollectionsBench.

The rest of this paper is organised as follows: Section 2 describes the methods used
in the experiments presented in Section 3. We discuss results and implications of
the experiments in Section 4, review related work in Section 5, and conclude in
Section 6.

2 Methods
In this section we describe the three approaches that we consider in this paper in
terms of the usage profile they embody.

Single-Operation Profiles Costa et al.’s CollectionsBench system [Cos+17]
builds models for five hand-written usage profiles that test, respectively, element
insertion, multi-element insertion, is-element-of checks, index-based lookup (lists
only), and iteration. Except for iteration, all of these profiles capture the exclusive
use of a single operation.

Paper I: Micro-benchmarking Java Collections with Interference 89

While these single-operation profiles represent some of the real-life usage of
collections, they do not directly capture e.g. uses in which the code alternates
between adding and deleting. If there is nontrivial statistical interference between
the performance of addition and deletion operations for a given collection class,
models built from single-operation profiles may be inaccurate.

Multi-Operation Profiles To account for the possibility of interference be-
tween different operations, Jung et al.’s Brainy system [Jun+11a] explores a multi-
operation usage profile that assumes that operations occur with a certain probabil-
ity distribution but independently of any previously selected operations. Brainy
uses this profile to generate a family of microbenchmarks, each a sequence of ran-
domly selected operations, and executes the benchmarks to build a performance
model.

Thus, Brainy’s multi-operation profiles allow for construction of a model that
can directly observe interference between operations, i.e., whether one operation
coinciding with another may speed up or slow down that operation. On the
other hand, Brainy is unlikely to generate microbenchmarks that correspond
to CollectionsBench-style single-operation profiles, even though such profiles
arguably correspond to practically relevant usage patterns.

Pólya Profiles To address the limitation with multi-operation profiles, we
propose a third model, which we call Pólya Profiles. Pólya profiles are multi-
operation profiles in which the probability distribution is biased through a Pólya
urn [Mah03]: for the first operation, we are equally likely to select any of a collec-
tion’s operations, but each time we choose an operation, we increase its likelihood
of being picked again. Consequently, when we use Pólya profiles to generate
microbenchmarks, we lean towards generating benchmarks that use a small num-
ber of operations frequently. However, when we consider all benchmarks, our
approach favours no particular method, as all methods have an equal probability
of being favoured in one benchmark. An example of such a generated profile is
shown in Figure 1, in which the method addAll is called many more times than
other methods.

3 Experiments

To explore the impact of Pólya profiles in generating more accurate performance
models, we here compare the recommendations from CollectionsBench’s single-
operation profiles against recommendations from our own JBrainy system, which
uses Pólya profiles.

90 Paper I: Micro-benchmarking Java Collections with Interference

count_mean

0 100 200 300 400 500
addAll(Collection)

remove(Object)
isEmpty()

containsAll(Collection)
toArray(Object[])
contains(Object)

toArray()
iterator()

retainAll(Collection)
hashCode()

size()
removeAll(Collection)

add(Object)
equals(Object)

clear()

m
et

ho
d

Figure 1: The distribution of method calls for one synthetic benchmark

3.1 Experimental setup
Our experiments focused on collections in the Java standard library, where we con-
sidered a selection of lists (ArrayList, LinkedList andVector), sets (HashSet, Linked-
HashSet and TreeSet), and maps(HashMap, LinkedHashMap, and TreeMap). Each
collection was tested with integer elements, using the Java Microbenchmarking
Harness [Cos+19] for compatibility with CollectionsBench and to simplify our
evaluation methodology [Bla+08].

We ran our microbenchmarks on an Intel(R) Core(TM) i7-3820 CPU 3.60GHz
with 16 GB of RAM, running Ubuntu 18.04 (Linux 4.18.0-15-generic), on OpenJDK
10.0.2. Each benchmark ran as many times as possible during 250ms, with three
warm-up runs and five sampling runs.

We configured the microbenchmarks to execute 10, 100, and 1000 operations
each, and initialised the collections to initially contain 0, 1000, or 10000 entries.
Together, these two parameters yielded 3 × 3 different configurations. For brevity,
we only report results aggregated over all configurations, the impact of benchmark
size and collection size are briefly discussed in section 4.

CollectionsBench We re-ran CollectionsBench with the configuration that we
reported above. The only changes that we made were to reconfigure Collections-
Bench to use integers instead of strings as collection elements, and to analyse only
collections from the Java standard library.

JBrainy For JBrainy, we first re-implemented Jung al.’s benchmarking strategy
from their Brainy system in Java. We then augmented it to utilise Pólya profiles.
For each interface of interest, we synthesised 4500 (500 × 3 × 3) microbenchmarks
for each collection class that each exercised the methods declared in the interface.

Comparison of CollectionsBench and JBrainy To compare the two ap-
proaches, we first identified the dominant operation for each JBrainy microbench-

Paper I: Micro-benchmarking Java Collections with Interference 91

0 1 20.5 1.5

add
addAll

contains
LinkedHashSet

add
addAll

contains
TreeSet

put
containsKeyTreeMap

entrySetLinkedHashMap
addLinkedList

CollectionsBench
JBrainy speedup

Figure 2: Comparison between speedup predictions by CollectionsBench and
JBrainy for various operations

mark, i.e., the operation with the largest number of invocations in the benchmark.
Second, we computed the speedup of each benchmark, compared with a baseline
collection, for which we chose the most popular collections reported by Costa
et al.: ArrayList for lists, HashSet for sets, HashMap for maps. For each single-
operation profile in CollectionsBench, we then aggregated results from all JBrainy
microbenchmarks with a matching dominant operation and compared median
speedups for each tool.

3.2 Results

Figure 2 shows the ten largest differences between JBrainy’s and Collections-
Bench’s results (out of 26 results in total). For example, CollectionsBench reports
that LinkedList.add has roughly the same performance as ArrayList.add, while
JBrainy reports it as being slower by approximately a factor of two. Conversely
CollectionsBench reports a speedup of 0.41 for TreeSet.add compared to HashSet,
while JBrainy reports these operations as having roughly comparable performance,
and we observe a similar difference for TreeMap.put when compared to HashMap.

For completeness, we also report the recommendations that JBrainy gives for
operations that CollectionsBench does not report on. Figure 3 shows the median
speedups for each collection class and the dominant operation in each synthetic
benchmark. We report medians instead of averages as the distribution of speedups
is skewed (skewness ≈ 14.78).

In the case of lists, LinkedLists are approximately twice as slow as ArrayLists,
while Vectors are approximately 1.1 times slower than ArrayLists. In the case
of maps, LinkedHashMap is faster for most of the methods in the interface, and
particularly for methods put (speedup ≈ 1.28), hashCode (B ≈ 1.20), and remove
(B ≈ 1.10). TreeMap is only faster for benchmarks where the most common
method is clear, with a median speedup of 1.07. Similarly in the case of sets,
LinkedHashSet is faster for all of the methods that we considered, and particularly

92 Paper I: Micro-benchmarking Java Collections with Interference

for methods toArray (B ≈ 2.96), toArray (B ≈ 2.85), and add (B ≈ 2.10). TreeSet is
faster on method clear with a median speedup of 1.18.

Speedup

M
et

ho
d

0.4 0.5 0.6 0.7 0.8 0.9 1.0

LinkedList
Vector

Collection

toArray(Object[])
add(int, Object)

addAll(int, Collection)
containsAll(Collection)

remove(Object)
add(Object)
hashCode()

contains(Object)
clear()
get(int)

equals(Object)
size()

remove(int)
listIterator()

toArray()
isEmpty()

addAll(Collection)
listIterator(int)

lastIndexOf(Object)
set(int, Object)

removeAll(Collection)
retainAll(Collection)

indexOf(Object)
sort(Comparator)

iterator()
subList(int, int)

0.0 0.5 1.0 1.5 2.0

TreeMap
LinkedHashMap

Collection

values()
hashCode()

size()
get(int)
clear()

containsKey(Object)
containsValue(Object)

keySet()
put(Object, Object)

equals(Object)
entrySet()

remove(int)
isEmpty()

putAll(Map)

0 1 2 3 4 5

TreeSet
LinkedHashSet

Collection

contains(Object)
add(Object)

size()
toArray(Object[])

clear()
addAll(Collection)

containsAll(Collection)
isEmpty()

hashCode()
equals(Object)

toArray()
iterator()

retainAll(Collection)
remove(Object)

removeAll(Collection)

Figure 3: Median speedup of various collections compared to baseline (inmagenta),
with 25% and 75% quantiles

Paper I: Micro-benchmarking Java Collections with Interference 93

SetMapList

Figure 4: Count of fastest benchmarks depending on the collection class used.

Figure 4 summarises how often JBrainy found a particular collection class to
be optimal for any of its benchmarks. For lists, ArrayList is fastest in 91% of our
benchmarks, while Vector and LinkedList are the best fit in respectively 7% and
2% of all runs. This agrees with Costa et al.’s findings that ArrayList may be a
good default choice. For maps, the situation is more nuanced. LinkedHashMap
and TreeMap are the best fit for respectively 42% of benchmarks, while HashMap
is the best fit for 16% of benchmarks. For sets, LinkedHashSet is the best data
structure for 78% of our generated benchmarks, while HashSet and TreeSet are
the best fit for 11% of benchmarks each.

4 Discussion

JBrainy does not explore iteration over lists directly. However, the implementation
of the operations toArray() and hashCode() is dominated by iterating over the
underlying collection, so we use these as a proxy for iteration performance, since
adaptive inlining is likely to be equally effective for both sets of microbenchmarks.

We can conjecture why LinkedHashSet performs well on toArray() and similar
operations: These operations iterating over all the elements of the set. In aHashSet,
this iteration requires iterating over all buckets in the hash table, whereas for a
LinkedHashSet, the iteration only goes through the set’s internal linked list of
the set elements. The same considerations apply to hashCode(), which requires
iterating over all elements for both LinkedHashSet and LinkedHashMap.

94 Paper I: Micro-benchmarking Java Collections with Interference

We further note that LinkedHashMap’s put and add operations perform sur-
prisingly well. We conjecture that the additional overhead of these operations
is amortised by later calls. In the case of TreeSet and TreeMap, the performance
of the clear method comes about because clearing a tree only requires NULLing
the root node, while clearing (linked) hash maps requires iterating over all hash
buckets.

For sets, Costa et al. focus on third-party alternatives to HashSet [Cos+17],
while our results show that LinkedHashSet is faster than HashSet in a majority of
cases. For Maps, Costa et al. describe HashMap as providing solid performance,
while our results show that LinkedHashMap often performs better. For Lists,
our results confirm the findings of the CollectionsBench study: ArrayLists are
significantly faster than LinkedLists in the majority of cases.

A key insight from our work is that LinkedHashSet and LinkedHashMap,
which account for a small percentage of Java collection classes used in real-
world programs [Cos+17], can outperform more popular alternatives when the
benchmark involves calling many different methods on the object. If binning by
collection and benchmark size does have an effect on the median speedup, the
fastest collection remains the same in 84% of cases.

Our results strongly suggest that there is interference between different oper-
ations in the interfaces that we examined. This in turn means that performance
models based on Pólya profiles (or other multi-operation profiles) may provide
more accurate suggestions for collection class selection than those of single-
operation profiles.

Threats to Validity. While our initial results are very encouraging, we observe
a number of threats to validity that we will explore in future work. Regarding
internal validity, we have not yet systematically analysed the difference in recom-
mendations from JBrainy and CollectionsBench, nor have we validated our models
and recommendations by exploring their impact on the performance of existing
software. Moreover, we have not yet explored fully the impact of collection size
on results.

Regarding external validity, we have only benchmarked one hardware setup
and one virtual machine, and not considered third-party collection classes.

5 Related work
Automatic datastructure replacement for Java has been explored e.g. by Shacham
et al. [SVY09] who explored a modified Java VM that could automatically propose
or perform container class migrations, though the authors only explored automatic
migration for reducing memory footprint. Xu’s CoCo system [Xu13] similarly
enabled automatic dynamic collection class migration, but successfully targeted
performance optimisation with the ability to migrate more than once at runtime.

Paper I: Micro-benchmarking Java Collections with Interference 95

Both tools used hand-written rules for controlling migration. Recently, Costa et
al. presented a dynamic migration technique [CA18] that improves over CoCo by
utilising performance models generated from single-operation profiles [Cos+17],
for dynamic collection class selection instead of hand-coded rules. Hasan et
al. [Has+16] similarly obtain energy usage models for container classes of varying
sizes.

Similar ideas have also been explored for C++ [Jun+11a], though research in
automatic datastructure selection dates back further [FSS83].

6 Conclusions and Future Work
Developers are often faced with the need to pick a collection datastructure from
options that appear functionally equal. One way to assist them is to providing
decision support in the form of performance insights from micro-benchmarking.

We have explored one such micro-benchmarking approach in our tool JBrainy,
which builds on the benchmark synthesis approach introduced in Brainy [Jun+11a].
Using JBrainy and its novel Pólya profiles, we have run an initial performance
evaluation experiment following the setup of the CollectionsBench study [Cos+17].
While CollectionsBench focused on improvements from using third-party Java
collections, we have focused our experiment on collections in the Java standard li-
brary. For lists, our results agree with those of CollectionsBench, finding ArrayList
to be the best candidate for the vast majority of benchmarks. However, for maps
and sets, our results show that less well-used collections such as LinkedHashMap
or LinkedHashSet can improve the performance of benchmarks.

As an immediate next step we plan to include the third-party collections used
in the CollectionsBench study in our work to get a better comparison between
the two approaches, and to increase collection sizes further.

In addition, we plan to explore various threats to validity. Particularly, vali-
dating the recommendations from JBrainy on real-world software would allow to
evaluate how realistic Pólya profiles and our configurations are and how much
insight can be gained with more realism.

7 Acknowledgements
This work was partially supported by Wallenberg Artificial Intelligence, Au-
tonomous Systems and Software Program (WASP), funded by Knut and Alice
Wallenberg Foundation.

96 Paper I: Micro-benchmarking Java Collections with Interference

References
[Bla+08] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris

Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanovik, Thomas VanDrunen, Daniel von Dincklage, and
Ben Wiedermann. “Wake up and smell the coffee: evaluation method-
ology for the 21st century”. en. In: Communications of the ACM 51.8
(Aug. 2008), pp. 83–89.

[CA18] Diego Costa and Artur Andrzejak. “CollectionSwitch: a framework
for efficient and dynamic collection selection”. en. In: Proceedings of
the 2018 International Symposium on Code Generation and Optimiza-
tion - CGO 2018. Vienna, Austria: ACM Press, 2018, pp. 16–26.

[Cos+17] Diego Costa, Artur Andrzejak, Janos Seboek, and David Lo. “Em-
pirical Study of Usage and Performance of Java Collections”. en. In:
Proceedings of the 8th ACM/SPEC on International Conference on Per-
formance Engineering - ICPE ’17. L’Aquila, Italy: ACM Press, 2017,
pp. 389–400.

[Cos+19] Diego Costa, Cor-Paul Bezemer, Philipp Leitner, and Artur Andrzejak.
“What’s Wrong with My Benchmark Results? Studying Bad Practices
in JMH Benchmarks”. In: IEEE Transactions on Software Engineer-
ing 47.7 (2019). Conference Name: IEEE Transactions on Software
Engineering, pp. 1452–1467.

[FSS83] Stefan M. Freudenberger, Jacob T. Schwartz, and Micha Sharir. “Ex-
perience with the SETL Optimizer”. en. In: ACM Transactions on
Programming Languages and Systems 5.1 (Jan. 1983), pp. 26–45.

[Has+16] Samir Hasan, Zachary King, Munawar Hafiz, Mohammed Sayagh,
Bram Adams, and Abram Hindle. “Energy profiles of Java collections
classes”. en. In: Proceedings of the 38th International Conference on
Software Engineering. Austin Texas: ACM, May 2016, pp. 225–236.

[Jun+11a] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and
Santosh Pande. “Brainy: effective selection of data structures”. In:
ACM SIGPLAN Notices 46.6 (June 2011), pp. 86–97.

[Mah03] HosamMMahmoud. “Pólya Urn Models and Connections to Random
Trees: A Review”. en. In: Journal of the Iranian Statistical Society
(2003), p. 64.

[SVY09] Ohad Shacham, Martin Vechev, and Eran Yahav. “Chameleon: Adap-
tive Selection of Collections”. en. In: Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (2009), p. 11.

Paper I: Micro-benchmarking Java Collections with Interference 97

[Xu13] Guoqing Xu. “CoCo: Sound and Adaptive Replacement of Java Col-
lections”. In: ECOOP 2013 – Object-Oriented Programming. Ed. by
Giuseppe Castagna. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 1–26.

Pa
pe

r
II

Performance Analysis with
Bayesian Inference

1 Introduction
Consider the example of a researcher trying to test the efficiency of an optimization
on a given program. They might have the following research questions:

Q1 What effect does the optimization have on run time?

Q2 Is this effect influenced by just-in-time compilation?

Q3 Is this effect constant if we use another machine?

Researchers know that many factors can influence measurements and use sta-
tistical tools to understand the uncertainty and noise in their results [GBE07].
However, for a non-statistician, comparing these tools is not easy. What is the
difference between a Student’s t-test and a Welch’s test? What assumptions under-
lie ANOVA? McElreath [McE20] argues that while statisticians know how these
tools work and how they may break, scientists often do not, and instead rely on
ritualistic recipes. There is even a flowchart of 23 nodes to guide the working
scientist to choose the right test statistic [McE20].

For performance analysis, the situation is the same. In 2007, Georges sug-
gested ANOVA and Tukey’s honestly significant difference test [GBE07] for bench-
mark comparison, but warned that their results are difficult to interpret for non-
statisticians. In 2011, Vitek and Kalibera [VK11] noted that “[s]tatistical tests or
analysis of variance (ANOVA) seem to be used only in papers about how statistics
should be applied in the field”. In 2021, Papadopoulos [Pap+21] found that cloud
performance studies rarely used ANOVA and confidence intervals. In October
2022, of the 399 papers citing Georges’ work indexed in Google Scholar, only 71
mention ANOVA.

100 Paper II: Performance Analysis with Bayesian Inference

More generally, Blackburn et al. [Bla+16] cast doubt on the relevance of classi-
cal statistical procedures for performance analysis, since their hidden assumption
that samples are normally distributed does not always hold.

Recent work by Furia et al. introduced the software engineering community to
Bayesian inference [FFT19; FTF22] as an alternative to classical frequentist inference.
They argue that Bayesian inference is more flexible, more explicit, and easier to
interpret, and demonstrate regression models for relating programming languages
to program execution times and numbers of bugs.

In this paper, we show how to adapt Furia et al.’s work to fit the needs of
performance analysis. First, we highlight the connection between Bayesian hier-
archical models and ANOVA in an example (Section 2), building on the work by
Gelman [Gel05]. The example also demonstrates how performance analysts can
use log-space conversion to easily reason about speedup ratios instead of absolute
time deltas. We then show how we can adapt a Bayesian model to analyze interac-
tions between different factors that contribute to overall performance (Section 3),
without the need for additional statistical tools. We summarize the paper with
our view on the strengths and weaknesses of Bayesian statistics as a novel tool
for improved performance analysis (Section 4).

2 Example: Collection Selection in Java
As example, consider a scientist who is optimizing a Java benchmark by replac-
ing instantiations of collection classes (e.g., LinkedList) by instantiations of
potentially faster collection classes [CA18] (e.g., ArrayList). Our scientist picks
the bloat benchmark [Bla+06a] and two promising replacements, which we call
treatments (following Gelman [GHV21, p. 339]).

Our scientist wants widely applicable results. To investigate if the treatments
are machine-dependent [Jun+11b], they run all measurements on three differ-
ent microarchitectures. To investigate the role of the just-in-time compiler, they
measure performance both at program startup (“cold” JVM) and after just-in-time
compiler warm-up (“hot” JVM). To account for noise, they use 20 replications
(independent JVM runs) for each configuration. With three benchmark vari-
ants (one baseline plus two treatments) they obtain 360 data points of the form
〈" [9],, [9],) [9], running_time9 〉, representing themachine, JVMwarmup, treat-
ment, and run time (respectively) for measurement 9 .

2.1 Frequentist Inference with ANOVA
To understand the importance of our three “features” machine, warmup, and
treatment, we now follow Georges in applying ANOVA [GBE07]: we fit a linear
function to input/output values by minimizing error, using (essentially) linear
regression. For example, we model the run time of each sample 9 as the sum
of three families of coefficients that describe the effect of the machine (U" [9]),

Paper II: Performance Analysis with Bayesian Inference 101

warmup (V, [9]) and treatment (W) [9]), plus some residual noise n 9 . Since inputs
are discrete, we use a “contrast coding” to embed them (omitted for brevity).1

running_time9 = U" [9] + V, [9] + W) [9] + n 9

This is the model we obtain if we naïvely plug our data into ANOVA: each co-
efficient contributes some number of seconds to the run time. In performance
analysis, we more commonly work with speedups, so our scientist may prefer
to model running time as a product U" [9] · V, [9] · W) [9] . To adapt ANOVA to
speedups, we can use log-space coefficients:

log(running_time9) = U" [9] + V, [9] + W) [9] + n 9

Plugging our data into classical ANOVA, our scientist obtains Table 1.

Df Sum Sq Mean Sq F value Pr(>F)
machine 2 30.96 15.48 6054.87 < 0.001
warmup 1 31.44 31.44 12298.82 < 0.001
treatment 2 1.50 0.75 293.86 < 0.001
Residuals 354 0.90 0.00

Table 1: ANOVA table for training data, generated with R 4.0.3 [R C20]

Intuitively, the table indicates how fit improves as we add more features to
a linear regression model. However, to understand this table, the scientist must
understand the concepts of degrees of freedom (notated Df), sum of squares (notated
Sum Sq), and the F-value. A high F-value shows that the feature explains much of
the variance in the data. In our case, warmup matters most, followed by machine.
Treatment matters less, but remains significant, with an F-value far above 1. The
table says nothing about the efficacy of each treatment, but our scientist can
extract these from the regression coefficients WC of the linear regression model
(Figure 1, left).

We can see that switching to C2 sped up the program (since the coefficient is
less than zero). To compute speedup ratios, we exponentiate differences between
coefficients, e.g., the speedup of the hot JVM over the cold JVM is exp(Vhot − Vcold).
However, we are unaware of a method to compute confidence intervals for the
exponential of a random variable.

2.2 Bayesian Inference
We can do the same study with a Bayesian model. Instead of using contrast coding,
we can use an array of coefficients which we can index (see Figure 2).

1Davis [Dav10] describes six contrast codings; we select “dummy coding”, which encodes enumer-
ations with = options as = − 1 boolean flags.

102 Paper II: Performance Analysis with Bayesian Inference

tr
e
a
tm

e
n
t

t1

t2

0.90 0.95 1.00 1.05 1.10

speedup
−0.10 −0.05 0.00 0.05 0.10

effect

t1

t2

Figure 1: Effect of treatment, frequentist model on the left, Bayesian on the right.
The left plot shows the estimate of the effect, with a 95% confidence interval. On
the right plot, point estimate is the median of the posterior distribution. Thick
error bars are the 50% uncertainty intervals, thin error bars are the 95% uncertainty
intervals.

Machine coefficients U< : U"1 U"2 U"3

Warmup coefficients VF : Vcold Vhot

Treatment coefficients WC : WC1 WC2 Wbaseline

Figure 2: The main coefficients for our Bayesian model

We again model the log running time as depending on machine, warmup state,
and treatment, similarly to the frequentist model that implicitly underlies ANOVA,
except we explicitely state that residuals are normally distributed:

log(running_time9) ∼ Normal(` 9 , f)
` 9 = U" [9] + V, [9] + W) [9]
f ∼ Exponential(0.1)

The first line states that log(running_time) for data point 9 is a sample drawn
(noted ∼) from a normal distribution with mean ` 9 and standard deviation f . The
second line elaborates on ` 9 , with no uncertainty: the expected running time ` 9 is
the sum of the three coefficients that describe experiment 9 . Since our measured
log(running_time9) comes from a distribution rather than an equation, we need
no residual term n 9 as before. The third line describes a prior probability (or prior).

Priors in Bayesian inference Priors are key to Bayesian statistics and its
main difference to frequentist statistics: for each coefficient, we must describe
what distribution it comes from. In our model, we have made f a coefficient with
a prior of the exponential distribution with a mean of 0.1 (Figure 4). We thus state
that we do not know what f is, but our initial guess is that it must be ≥ 0, will be
≈ 0.1 on average, and unlikely to be > 0.4. Similarly, we set priors for our U , V and
W coefficients from Figure 2, following best practices from the literature [McE20].
These priors are not constraints on the distributions taken by the variables, so the
posterior distributions can be quite different, if the data warrants it.

Paper II: Performance Analysis with Bayesian Inference 103

Figure 3: Posterior distributions of the effect
of machines. The grey normal distribution
in the background is the prior of machine
effects (f = fmachines).

0 0.5 1
0
2
4
6
8
10

Figure 4: Ex-
ponential Dis-
tribution with
mean at 0.1.

Machines

We set a prior U< on the mean effect of each machine<, compared to the popu-
lation mean. For example, we could use the prior Normal(0.0, 0.4), which would
mean that approximately 68% (i.e., the 1f interval around the mean) of all ma-
chines yield a overhead between exp(−0.4) ≈ 0.67 and exp(0.4) ≈ 1.49 compared
to the observed mean. While our scientist might be comfortable with selecting
the normal distribution as a default [McE20], they may find the choice of 0.4 to be
arbitrary. Instead, we can use a model that learns how fast (or slow) machines
can be from the data: We introduce a fresh coefficient fmachines that represents
the standard deviation between coefficients U< . A large fmachines would show that
machines are very different from each other. We thus set:

fmachines ∼ Exponential(0.4)
U< ∼ Normal(0.0, fmachines)

Warmup

For simplicity, we do the same for the distribution of our two warmup coefficients,
drawing Vhot, Vcold from Normal(0.0, fwarmups) for a fwarmups ∼ Exponential(0.4).
We could alternatively use more accurate priors from prior work.

Treatments

For treatment coefficients WC , we choose to be more conservative and set WC ∼
Normal(0.0, ftreatments) with ftreatments ∼ Exponential(0.1). This roughly assigns
a 50% probability of the treatment having an effect of less than 10%.

Posteriors Our scientist can now specify the prior beliefs over all coefficients,
e.g. in the Turing language [GXG18], and run a Bayesian inference tool. Turing
specifications are short: we needed 21 lines of code to encode our model.

Given prior distributions and the data, Turing will compute a list of samples for
each coefficient, which describes its likely values, given both prior information and

104 Paper II: Performance Analysis with Bayesian Inference

0.0 0.2 0.4 0.6 0.8 1.0 1.2

variance

σ machine

σ warmup

σ treatment

σ residuals

v
a
ri
a
b
le

Figure 5: Posterior distributions of the f values in the model, with medians marked.
Horizontal lines show 50% (thick) and 95% (thin) uncertainty intervals.

evidence. We can either inspect posterior distributions directly (plots, statistics, or
compute contrasts (differences) between them), or make new predictions, which
will return distributions too.

For example, Figure 3 shows the posterior distributions of the effects of ma-
chine (U) and the “family” distribution they are sampled from: Normal(0.0, fmachines).
Information flows both ways: fmachines influences samples for U , but so does
evidence, so fmachines will grow or shrink as the evidence demands. After
inference, fmachines informs our estimate of how important machines are, similarly
to the ANOVA table.

Figure 5 shows intervals describing the posterior distribution of the various f
parameters in our model. A ?% uncertainty interval (the analogue to a confidence
interval [FFT19]) has a ?% percent probability of containing the real value of the
effect, and grows wider as ? increases. We obtain them by taking percentiles of
the posterior. We see the effects of warmup vary most, followed by the effects
of the machines. Variation between treatment effects is comparatively low. This
analysis is consistent with the ANOVA table.

One might argue that fwarmups does not make much sense. Why estimate
the standard deviation of two numbers? In this case, fwarmups also serves as
regularization, preventing under/over-fitting. For more details about how it works,
we refer to McElreath [McE20, p. 413].

Figure 1 shows the uncertainty intervals of the speedup for each treatment.
The two plots look similar, except that we can compute the distribution of exp(WC),
by exponentiating samples of the posterior. We conclude that C2 sped up the
program by at least 5%.

Discussion To validate our models, we split our data points into training and
validation sets, assigning 10 JVM runs of each configuration (50%) to each. Our
models predict running times well, with an R2 of 0.98, in both the Frequentist and
Bayesian case.2 Our Bayesian model shows minor disagreement with the ANOVA
table, as the former concluded that warmup mattered most, while in the latter
warmup and machine matter equally.

2In the Bayesian case, we use Gelman’s “Bayesian R2” [GHV21, p.170]

Paper II: Performance Analysis with Bayesian Inference 105

Figure 1 shows the effect of the treatment on average, answering our scientist’s
Q1, but we still do not know if that effect depends on warmup or machine (Q2
and Q3). To understand when the effect is strongest, we add interactions.

3 Model with interactions
We now build a model which assumes that the machine used and JVM warmup
influence the effect of the treatment. We transform what was array W into two
matrices of coefficients: W" and W, . W"<,C is the effect of treatment C on machine
<, while W,cold,C is the effect of treatment C when the JVM is starting up, and W,hot,C
is the effect of C in steady state.

log(running_time9) = U" [9] + V, [9] + W"" [9],) [9] + W
,
, [9],) [9]

When computing the ANOVA table for the second model, we find that the
F-value is influenced by the order in which the interactions appear in the model
(Table 2). When the interaction of treatment and machine comes first, its F-value
is 18× higher.3 The degrees of freedom also changed, but we are unsure why. In
the statistics literature, Gelman [Gel05] similarly reports on “many […] difficulties
in understanding and computing ANOVAs” and develops a Bayesian ANOVA
framework to resolve them.

Df Sum Sq Mean Sq F value
machine 2 30.96 15.48 19301.98
warmup 2 30.96 15.48 19301.98
warmup:treatment 4 2.09 0.52 650.38
machine:treatment 4 0.04 0.01 13.14
Residuals 348 0.28 0.00
machine 2 30.96 15.48 19301.98
warmup 1 31.44 31.44 39206.73
machine:treatment 6 1.54 0.26 321.02
warmup:treatment 2 0.58 0.29 363.97
Residuals 348 0.28 0.00

Table 2: ANOVA table for two models, permuting interaction terms

Bayesian inference We modify our Bayesian model from Section 2.2 to
support interactions:

log(running_time9) ∼ Normal(` 9 , f)
` 9 = U" [9] + V, [9] + W"" [9],) [9] + W

,
, [9],) [9]

f ∼ Exponential(0.1)
3This effect disappears if the model retains the mean effect of treatment W .

106 Paper II: Performance Analysis with Bayesian Inference

U"1 U"2 U"3 Vhot Vcold

WCbaseline W"
Cbaseline,"1

W"
Cbaseline,"2

W"
Cbaseline,"3

W,
Cbaseline,hot

W,
Cbaseline,cold

WC1 W"
C1,"1

W"
C1,"2

W"
C1,"3

W,
C1,hot

W,
C1,cold

WC2 W"
C2,"1

W"
C2,"2

W"
C2,"3

W,
C2,hot

W,
C2,cold

Figure 6: Main coefficients (excluding the f coefficients) for our model with
interactions, replacing the WC coefficients by W" and W, coefficients.

0.8 0.9 1.0 1.1 1.2

speedup

t1

t2

tr
e
a
tm

e
n
t

startup

steady-state

warmup

Figure 7: Relative effect of treatment for different warmups. Thick lines denote
50% uncertainty intervals, thin lines denote 95% uncertainty intervals.

Figure 6 visualizes the coefficients of our new model. This change grows our
specification to 25 lines of Turing code. For the priors of interactions between
machine and treatments (W"), we again use a normal distribution with a standard
deviation coefficient ftm ∼ Exponential(0.1), with W"<,C ∼ Normal(0.0, ftm), and
analogously for the interactions between warmup state and treatments (W,), we
introduce a separate coefficient. We leave U< and VF unchanged.

Figure 7 shows how treatments interact with warmup. We can see that treat-
ment C2 has almost no effect on startup, but the effect becomes much stronger
(almost −20%) when the JVM is in steady-state. Similarly, we can see that the effect
of C1 is detrimental on startup (+15%), but that effect disappears after warming up.
Figure 8 shows how treatment interacts with machine. For most treatments, we
see little difference, except for C2, which runs slightly faster (≈ −5%) on "3.

Figure 9 shows a comparison of the f values in the model: Treatment/machine
interaction matters less than treatment/warmup. This matches what we find when
comparing individual interactions: Fig. 7 spreads across the range 0.8–1.2, while
Fig. 8 shows a flat posterior outside of 0.9–1.1.

Discussion The Bayesian and Frequentist models both match the data closely,
with an R2 of 0.99 (vs 0.98 previously). Figure 7 and Figure 8 also answer questions
Q2 and Q3. Adding interactions is possible for both the frequentist and the
Bayesian approach, but as we have seen, seemingly unimportant factors (the order
of variables in the definition of the linear model) could lead us to conclude the
effect of machine is much more important than it really is.

Paper II: Performance Analysis with Bayesian Inference 107

treatment

0

10

20

d
e
n
s
it
y

t1 t2

0.8 0.9 1.0 1.1 1.2

speedup
0.8 0.9 1.0 1.1 1.2

speedup

M1
M2
M3

machine

Figure 8: Posterior distribution of the effect of treatment for each machine. We
see C2 runs slightly faster on "3, but not on "1 or "2.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

variance

σ warmup

σ machine

σ interactions warmup

σ residuals

σ interactions machine

v
a
ri
a
b
le

Figure 9: Posterior distributions of the f values in the model, with medians marked.
Horizontal lines show 50% (thick) and 95% (thin) uncertainty intervals.

4 Discussion
We presented a method to investigate benchmark results, and argue that Bayesian
methods helped us in several ways:

More flexible: Bayesian inference allows us to start with a simple model, and
extend it as we face more research questions. We started with a linear model, and
extended it with interactions. ANOVA was not a post-processing step, but was
always part of the model.

More explicit: Each of our models explicitly presented their statistical assump-
tions, there is no need to be aware of hidden, tool-specific assumptions.

More intuitive: We argue that focusing on probability distributions is easier
than learning a vocabulary specific to some statistical technique. We illustrate
this argument by comparing ANOVA and our hierarchical linear model. We also
see posterior distributions as a more informative tool than confidence intervals,
but leave the reader to judge.

One drawback of Bayesian inferences is speed. Classical statistical procedures
are optimized for common use cases, while Bayesian tools rely on statistically
rigorous sampling. Analyzing our model with interactions (Section 3) takes 1ms
via frequentist ANOVA, and 353s via Bayesian inference.

108 Paper II: Performance Analysis with Bayesian Inference

We have shown howBayesianmethods agree with frequentist ones in in simple
performance analysis tasks, but argue that they are better equipped to handle the
challenges outlined by Blackburn et al. [Bla+16]: Bayesian methods support a
variety of distributions (multimodal, long-tailed, …), are easy to adapt, and offer
considerable flexibility. For instance, we can trivially index any coefficient: we
can even partition noise (our f), to model machine- or treatment-specific variation
in noisiness.

Future Plans Bayesian inference offers the opportunity to increase the rigor
and precision in how we communicate about performance analysis, and allows us
to identify and exploit the statistical distributions behind the factors that impact
real-life performance behavior. We expect that exploring the distributions of
common factors will shed new light on the how and why of performance in
modern systems.

References
[Bla+06a] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R.

Bentzur, A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A.
Hosking, M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović,
T. VanDrunen, D. von Dincklage, and B. Wiedermann. “The DaCapo
Benchmarks: Java Benchmarking Development and Analysis”. In:
OOPSLA ’06: Proceedings of the 21st annual ACM SIGPLAN conference
on Object-Oriented Programing, Systems, Languages, and Applications.
ACM Press, Oct. 2006, pp. 169–190.

[Bla+16] Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F.
Sweeney, José Nelson Amaral, Tim Brecht, Lubomír Bulej, Cliff Click,
Lieven Eeckhout, Sebastian Fischmeister, Daniel Frampton, Laurie J.
Hendren, Michael Hind, Antony L. Hosking, Richard E. Jones, Tomas
Kalibera, Nathan Keynes, Nathaniel Nystrom, and Andreas Zeller.
“The Truth,TheWhole Truth, andNothing But the Truth: A Pragmatic
Guide to Assessing Empirical Evaluations”. In: ACM Transactions on
Programming Languages and Systems 38.4 (Oct. 13, 2016), pp. 1–20.

[CA18] Diego Costa and Artur Andrzejak. “CollectionSwitch: a framework
for efficient and dynamic collection selection”. en. In: Proceedings of
the 2018 International Symposium on Code Generation and Optimiza-
tion - CGO 2018. Vienna, Austria: ACM Press, 2018, pp. 16–26.

[Dav10] Matthew J Davis. “Contrast coding in multiple regression analysis:
Strengths, weaknesses, and utility of popular coding structures”. In:
Journal of data science 8.1 (2010), pp. 61–73.

Paper II: Performance Analysis with Bayesian Inference 109

[FFT19] Carlo A. Furia, Robert Feldt, and Richard Torkar. “Bayesian Data
Analysis in Empirical Software Engineering Research”. en. In: IEEE
Transactions on Software Engineering (2019). arXiv:1811.05422 [cs,
stat], pp. 1–1.

[FTF22] Carlo A. Furia, Richard Torkar, and Robert Feldt. “Applying Bayesian
Analysis Guidelines to Empirical Software Engineering Data: The
Case of Programming Languages and Code Quality”. In: ACM Trans-
actions on Software Engineering and Methodology 31.3 (July 2022),
pp. 1–38.

[GXG18] Hong Ge, Kai Xu, and Zoubin Ghahramani. “Turing: a language
for flexible probabilistic inference”. In: International Conference on
Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018,
Playa Blanca, Lanzarote, Canary Islands, Spain. 2018, pp. 1682–1690.

[Gel05] Andrew Gelman. “Analysis of variance—why it is more important
than ever”. In: The Annals of Statistics 33.1 (Feb. 2005).

[GHV21] Andrew Gelman, Jennifer Hill, and Aki Vehtari. Regression and other
stories. eng. Analytical methods for social research. Cambridge New
York, NY Port Melbourne, VIC New Delhi Singapore: Cambridge
University Press, 2021.

[GBE07] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statistically
Rigorous Java Performance Evaluation”. In: Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications. OOPSLA ’07. Montreal, Quebec,
Canada: Association for Computing Machinery, 2007, pp. 57–76.

[Jun+11b] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and
Santosh Pande. “Brainy: Effective Selection of Data Structures”. In:
SIGPLAN Not. 46.6 (June 2011), pp. 86–97.

[McE20] Richard McElreath. Statistical rethinking: a Bayesian course with ex-
amples in R and Stan. 2nd ed. CRC texts in statistical science. Taylor
and Francis, CRC Press, 2020.

[Pap+21] Alessandro Vittorio Papadopoulos, Laurens Versluis, Andre Bauer,
Nikolas Herbst, Joakim von Kistowski, Ahmed Ali-Eldin, Cristina L.
Abad, Jose Nelson Amaral, Petr Tuma, and Alexandru Iosup. “Method-
ological Principles for Reproducible Performance Evaluation in Cloud
Computing”. In: IEEE Transactions on Software Engineering 47.8 (Aug.
2021), pp. 1528–1543.

[R C20] R Core Team. R: A Language and Environment for Statistical Comput-
ing. R Foundation for Statistical Computing. Vienna, Austria, 2020.

110 Paper II: Performance Analysis with Bayesian Inference

[VK11] Jan Vitek and Tomas Kalibera. “Repeatability, reproducibility, and
rigor in systems research”. In: Proceedings of the ninth ACM interna-
tional conference on Embedded software - EMSOFT ’11. the ninth ACM
international conference. ACM Press, 2011, p. 33.

Pa
pe

r
II
I

Classification-based
Collection Selection for

Java: Effectiveness and
Adaptability

1 Introduction
Most recent programming languages include a collection framework as part of
their standard library (or runtime). For example, Java, C#, Python and Ruby all
provide a collection framework. Collections typically implement an Abstract
Data Type (ADT), which defines operations that the collection supports, and their
semantics. In Java, the List, Map, and Set interfaces describe the associated ADTs,
which are implemented in several classes. Collections that implement the same
ADT are largely interchangeable.

However, even when collections are semantically interchangeable, their re-
spective performance characteristics may vary. Liu and Rus [LR09] found that
changing a single collection initialization parameter yielded a 17% run time re-
duction, while Jung et al. [Jun+11a] reduced one benchmark’s run time by 77% by
swapping one collection datastructure for another.

The performance impact of collection selection, i.e., the choice between equiva-
lent collection datastructures, depends on a complex interplay of factors. Develop-
ers may be aware of some factors, e.g., data structure size, but others (e.g., cache
size) can be hard to grasp. Jung et al. [Jun+11a] showed that CPU architecture
had a strong influence on running time for C++ programs, so that the optimal
collection(s) for a task would be different for different machines. For Java pro-
grams, two additional factors could matter: the JVM implementation [Our+21],
and Just-In-Time (JIT) compilation and its “JVM warmup” [Bla+08] effect.

112
Paper III: Classification-based Collection Selection for Java: Effectiveness and

Adaptability

To decide which collection to use, existing approaches for Java use different
models of collection performance. CoCo [Xu13] and Chameleon [SVY09] use
expert specifications as their models, and observe collection usage (e.g., method
call counts) to take decisions. CollectionSwitch [CA18] uses micro-benchmarking
to learn the cost of each operation in relation to collection size.

However, if CPU architecture has a strong influence on which collection is
best, as Jung et al. report [Jun+11a], our tools should adapt to the environment
when making suggestions. Their Brainy approach is promising, as it automatically
builds a model that factors in CPU behavior. However, the Brainy approach has so
far only been realized for C++, and not for any languages whose implementations
utilize just-in-time compilation, like Java.

In this paper, we report on our experience of using the Brainy approach for
Java, focusing on the following research questions:

RQ1 What are the technical challenges in porting the Brainy approach to Java?

RQ2 How effective is the Brainy approach at optimizing Java programs?

RQ3 How adaptive is the Brainy approach when applied to Java?

RQ4 What obstacles impair the effectiveness of the Brainy approach in Java?

To find answers to these questions, we have ported Brainy to Java in an imple-
mentation we call Brainy4J. We have replicated the Brainy approach as far as
possible, based on details available in the original paper [Jun+11a] and from cor-
respondence with the authors. In some cases we had to fill in missing details
ourselves, or to make larger adjustments to adapt the approach to the needs of
the Java environment.

We evaluate our system on five benchmarks from the DaCapo benchmark
suite [Bla+06b], on three different CPU architectures. We compare our imple-
mentation against a ground truth, constructed from a brute-force approach to
collection selection. We find Brainy4J to be less effective at selecting collections
than our ground truth. Brainy4J runs faster, but misses the most impactful opti-
mization available. We note weaknesses in the Brainy approach that manifest in
our setting, we highlight key challenges to overcoming them. We find Brainy4J
highly adaptive to different environments, but find no strong evidence for the
significance of CPU architecture details to Java collection selection.

The contributions of this paper are the following:

• Brainy4J, a port of the Brainy approach to Java.

• an evaluation of Brainy4J’s effectiveness and adaptability.

• a list of challenges found when porting Brainy. along with an exploration
of the design space for overcoming them.

Paper III: Classification-based Collection Selection for Java: Effectiveness and
Adaptability 113

2 Related work

Table 1 lists the most closely related tools. covering static collection replace-
ment [SVY09; Bas+18; Jun+11a] and dynamic replacement via adaptive collec-
tions [Xu13; OL13; CA18]. We further divide approaches between those that use
hand-written performance models (“Manual”), and those that construct models
via machine learning (“Automatic”).

Static collection replacement. Shacham et al.’s 2009 Chameleon sys-
tem [SVY09] uses traces, heap information, and hand-written rules to select the
collections to use. Basios et al’s 2018 Artemis [Bas+18] uses a genetic algorithm
to optimize the program directly, without a cost model. Instead, it explores
possible variants by executing them in the cloud. Our work is a direct port of
Jung et al.’s 2011 Brainy [Jun+11a], which uses a machine learning model instead
of hand-written heuristics (as in Chameleon) and running purely locally, with
knowledge about the underlying architecture (unlike Artemis).

Adaptive collections. Xu [Xu13] and Österlund et al. [OL13] present col-
lections that switch implementations adaptively, based on usage. Österlund et
al. present lists that switch between array and hashmap representations based
on a state machine that tracks method calls. CoCo [Xu13] minimizes copies by
moving elements between different collections on demand. Costa et al.’s 2018
CollectionSwitch [CA18] builds on these tools to introduce smart constructors
that select which type to instantiate. Similarly to Brainy, CollectionSwitch learns
the relationship between the size of a data structure and its cost of operations via
regression on micro-benchmarks. However, Brainy uses more complex models
and suggests static changes.

Related approaches. The notion of re-usable software components dates to
the early days of software engineering, with McIlroy proposing “catalogues of
standard parts” that software engineers should be able to choose from [McI68].
This intuition sees components as units of functionality that should adhere to well-
defined interfaces [Szy03; Par72; LZ74; GRS05]. For object-oriented programming,
this idea matches Liskov’s behavioural contracts for substitutability in subtype
interfaces [LW94]. We here exploit that parts of the Java Collections Framework
follow such contracts, but note that some aspects of their semantics are left to
implementers, limiting substitutability.

At the language level, SETL [SSS81] entirely hides the choice of data structure
from developers to allow its compiler to effect speedups. For model-based or

Manual Automatic Other
Static Chameleon [SVY09] Brainy [Jun+11a] Artemis/NSGA-II [Bas+18]

Dynamic CoCo [Xu13] CollectionSwitch [CA18]

Table 1: Overview of collection selection assistance tools.

114
Paper III: Classification-based Collection Selection for Java: Effectiveness and

Adaptability

Benchmark Generator
Synthetic benchmarks
(Plan + Collection)

Time measurement
seed selection

Feature
ExtractionSelected benchmarks

Hardware Features

Model training
Labels (best collection)

Neural Network
Figure 1: Overview of Brainy’s classifier training process

program refinement techniques [Smi90; Kah99; Bau+85] and for domain-specific
languages like Spiral [Püs+05], prior research has shown the effectiveness of data
structures selection, up to library-level auto-tuning [SP14]. While some modern
dynamically typed languages similarly hide data structure details from their users
and could use similar techniques, statically typed languages like Java or C++
require users to utilize explicit abstractions, such as the factory APIs exposed by
CollectionSwitch.

3 Brainy
Wefirst discussmain aspects of Brainy’s approach to data structure selection. Later,
we discuss our adaptations to port the C++ implementation to Java (Section 4).

Brainy tries to answer the question: “what data-structure should I use, when
the original data-structure behaves a certain way?” [Jun+11a]. Its premise is that
developers provide Brainy with a program and source location, and it suggests
the collection to use.

Brainy’s centerpiece is a machine-learned classifier that takes information
about (a) the current data structure, (b) collection usage, and (c) the CPU architec-
ture, and proposes a replacement datastructure. To train this classifier (illustrated
in Figure 1), Brainy collects training data from synthetic micro-benchmarks specific
to each ADT. Brainy runs each micro-benchmark with each known datastructure
for the ADT, both to determine execution time and to extract collection usage fea-
tures, using instrumentation. To optimize a given target program, Brainy extracts
the same types of features from one or more target program executions and asks
the classifier for a recommendation.

3.1 Building Brainy’s training set

For each ADT, Brainy generates micro-benchmarks to examine how different
datastructures behave in different use cases. We identify each micro-benchmark
with this ADT and with a random seed, from which Brainy synthesizes a plan —
a sequence of operations to execute on one datastructure instance. Brainy fixes
the length of all plans at 1000 methods. It first assigns a random weight to each

Paper III: Classification-based Collection Selection for Java: Effectiveness and
Adaptability 115

ADT operation, then selects the 1000 operations one at a time with a probability
proportional to their weight.

Phase I: Time measurements and benchmark selection. For each
datastructure that implements the ADT, Brainy measures how long the micro-
benchmark takes to run, i.e., how well the datastructure performs for this specific
plan. If one datastructure is at least 5% faster than all the alternatives, we say it
wins the micro-benchmark. If a winner is found, Brainy includes the winner and
the micro-benchmark in its training set. Brainy ensures that all datastructures
win equally often: once Brainy has collected a fixed number of wins for a given
datastructure (1000 in their evaluation), it discards any additional plans in which
the same datastructure wins. We call this process benchmark selection. We
hypothesize that the authors’ motivation behind this step is to avoid the class
imbalance problem [JS02], which in our context means that an imbalance in the
number of wins will disproportionately penalize datastructures with fewer wins.

Phase II: Obtaining collection usage features. After Phase I has computed
a set of benchmarks with clear “winner” datastructures, Phase II revisits each
benchmark to extract collection usage features, i.e., information that Brainy can
use to categorize how the micro-benchmark is using the datastructure. Brainy
instruments the plan and re-executes it with each datastructure to collect features
from four different categories: hardware performance counter features, specifically
branch prediction and L1 cache miss rates, one memory size feature, the ratio
between each collection element and the cache block size, operation counts, for
each ADT operation, and three cost features, as we describe below.

Cost Features. Choosing the right data-structure requires knowing what opera-
tions we want to execute, and how much time these cost. Brainy therefore gathers
the cost associated with insertions, deletions, searches (look-ups and iterations)
during the benchmark. The authors measure this cost as follows: insertion and
deletion (number of data elements moved forwards or backwards by the inser-
tion), and search (number of data elements accessed before finding the element of
interest).

Training data. At the end of Phase II, Brainy has collected training data in
the form of micro-benchmarks, annotated with the winning data structure, and
collection usage features for each datastructure. Brainy trains a family of artificial
neural networks1 with this data: one network per datastructure to replace.

3.2 Classification

For classification, Brainy obtains collection usage features and records the datas-
tructure that it should replace, and queries the appropriate classifier. For example,
if the user wants to replace a hash_set, Brainy will feed the features into a classifier
specialized for hash_set replacement, the set ADT, and the user’s current machine.

1We were unable to obtain details about the structure or size of these networks.

116
Paper III: Classification-based Collection Selection for Java: Effectiveness and

Adaptability

3.3 Evaluation of Brainy
The authors apply Brainy to nine datastructures (vector, list, deque, set, AVL_set,
hash_set, map, AVL_map, and hash_map) and six ADTs (set, map, list, vector, and
order-oblivious list and vector), and train it on two distinct Intel microarchitec-
tures.

To test the training accuracy of Brainy, the authors generate a test set of
1000 benchmarks, one for each datastructure. They report an accuracy between
80% and 90% for the 2006 Intel Core microarchitecture, and an accuracy between
70% and 80% on the 2008 Intel Bonnell microarchitecture (Intel Atom).

The authors also compare Brainy’s suggestions and their effect on four bench-
mark programs, each of them on three different workloads. On average, Brainy
reduces execution time by 27% on the Core microarchitecture, and by 33% on the
Bonnell (Atom) microarchitecture. All benchmarks report at least 10% execution
time reduction, with a maximum of 77% in one case.

4 Porting Brainy to Java: Brainy4J
In this section we address RQ1 by describing our strategy for implementing
Brainy4J (Brainy for Java) and highlighting our design decisions in this process.

4.1 Selection of Collections
Following prior work [SVY09; Xu13; CA18], we selected collections from the
Java Collection Framework’s List, Set, and Map ADTs. After initial experiments,
we concluded that we could not reproduce several of the optimizations from
prior work purely with datastructures from the standard library, and added data
structures from CollectionSwitch [CA18].

For lists, we selected ArrayList, LinkedList and HashArrayList from Col-
lectionSwitch. For sets, we selected HashSet, TreeSet, and ArraySet from FastU-
til [Vig06], as used in CollectionSwitch (Chameleon [SVY09] also reports using an
ArraySet). For maps, we selected HashMap, TreeMap and ArrayMap [Vig06].

These data structures are both the ones we consider as targets of a transforma-
tion, and as sources. We additionally configured LinkedHashSet and Linked-
HashMap as sources (only). We did not explore transformations e.g. from custom
user-defined map implementations to standard library map datastructures.

4.2 Datastructure Adaptability
We automatically replace data structures at the Java bytecode level. To enable
replacement, we introduce suitable shared super-interfaces for all affected col-
lections as needed, e.g. LinkedListInterface. Since two data structures may
not offer the same different APIs even if they both implement the same ADT,

Paper III: Classification-based Collection Selection for Java: Effectiveness and
Adaptability 117

we also added “universal” adapter subclasses for each data structure that inherit
the shared super-interfaces and offer suitable adapter functionality. For example,
LinkedList exposes a method pop() that ArrayList does not offer. The adapter
subclass ArrayListUniversal, which inherits from ArrayList and implements
LikedListInterface, implements this feature. Other methods we expose through
default methods in the super-interfaces. Our measurements show that these
changes by themselves have no significant effect on execution time.

4.3 Feature Selection and Extraction

In their original study, Jung et al. selected one set of features for each collection
using genetic algorithms. In our case, we used the features that they reported as
being important for all collections.

To gather features we need to instrument benchmarks. We use our adaptability
transformations as the foundation for our tracing framework. For each adapter
interface, we synthesize wrapper classes that obtain call counts for each method,
and the same hardware performance features used in Brainy (via JNI invocations
to the PAPI C library [Ter+10]). The wrappers support concurrent operations via
lock-free datastructures and discount recursive calls (e.g., calls from addAll to
this.add). This instrumentation gives us two of the four feature categories used in
Brainy, excluding the memory size and cost categories. We do not use the memory
size feature, since Java’s generic collections use boxed element representations.
Our minimally invasive instrumentation strategy makes it challenging to obtain
cost features. Instead, we aggregate cycle counts for four families of operations
(insertions, deletions, iterations, look-ups) as proxy metrics. When tracing the
target program, we average features over two replications of ten runs, and dis-
card data for the first three iterations. To measure running time and hardware
performance counters needed to train our models, we followed best practices in
using the Java Microbenchmarking Harness (JMH) [Cos+19].

4.4 Benchmarking and Model Training

To keep a balanced training set, Brainy rejects new benchmarks if they do not add
new information. If collection � wins for benchmark 1, but Brainy already has
enough benchmarks for which collection � wins, 1 is rejected. In our case, this
process was too slow to be practical, so we do not reject benchmarks (Section 7).
We therefore explored a fixed number of 1000 seeds per ADT, and restricted
exploration to datastructure elements of type Integer.

In their original study, Jung et al. used neural networks. We used random
forests with 100 decision trees, which were as effective as neural networks at
classification, while making it easy to measure the importance of each feature.

118
Paper III: Classification-based Collection Selection for Java: Effectiveness and

Adaptability

4.5 Allocation Site Selection

In their original study, Jung et al. manually selected an interesting allocation site
for evaluating Brainy. However, typical Java programs often have hundreds of
relevant allocation sites. To use a systematic, reproducible approach, we selected
the ones we expected to be most significant for overall performance. We selected
the 10 “busiest” allocation sites. To measure busyness, we instrumented our
benchmarks to count the number of operations on each datastructure (including
constructor calls), and summarized those per allocation site, counting only the
ADTs that we are tracking and excluding allocations within the Java Standard
Library.

5 Effectiveness of Brainy4J
To address RQ2, we examine how effective Brainy4J is at reducing the running
time of Java programs. We structure this exploration around the following research
questions:

RQ2.1 What are the model characteristics of Brainy4J?

RQ2.2 What are the costs in terms of time for using Brainy4J?

RQ2.3 How effective is Brainy4J compared to the ground truth?

5.1 Experimental Setup

For our experiments, we need a selection of environments, a selection of Java
benchmarks, a configuration of Brainy4J, and a ground truth to compare to.

Selection of Environments. As environmental factors, we considered the
Java Virtual Machine and hardware configuration. We tested with various Java
Virtual Machines but observed no significant differences. Therefore, all machines
used OpenJDK 8.0.292 with a JVM heap size of 12 GB. To reduce noise in our mea-
surements, we ran each system with CPU frequency scaling and hyperthreading
disabled. Table 2 summarizes the systems we evaluated on.

Selection of Benchmarks and Allocation Sites. We evaluate the effective-
ness of Brainy4J on the default workloads of five DaCapo [Bla+06b] benchmarks,
selected based on use in prior collection replacement studies (shown in Table 1).
For each benchmark we considered the ten busiest allocation sites (Section 4.5)
for replacement. Figure 2 shows the distribution of datastructure method calls for
the top ten sites for the selected benchmarks. The top ten sites comprise 64% of
all calls for fop, 73.3% for bloat, and > 99.8% for avrora, lusearch, and chart. We
validated this selection mechanism by collecting the number of CPU cycles spent
per allocation site and observed no substantial difference.

Paper III: Classification-based Collection Selection for Java: Effectiveness and
Adaptability 119

System CPU Cores CPU Freq. Microarch.
Sandy Intel i7-3820 4 × 2 3.6–3.8 GHz Sandy Bridge
Cypress Intel i7-11700K 8 × 2 3.6–4.9 GHz Cypress Cove
Zen3 AMD EPYC 7713P 64 × 2 2.0–3.675 GHz Zen 3

System RAM OS: Ubuntu Kernel: Linux
Sandy 16 GiB DDR3-1600 18.04.6 LTS 5.4.0
Cypress 128 GiB DDR4-3200 22.04.01 5.15.0
Zen3 512 GiB DDR4-3200 22.04.01 5.15.0

Table 2: Our benchmarking environments.

Brainy4J Configuration. For training, we generated 1000micro-benchmarks
per ADT, with 1000 operations each. For execution time, we used 3 replications
(independent JVM runs), 2 warmup iterations lasting 500 ms each, and 5 mea-
surement iterations, lasting 500 ms. Each micro-benchmark took 5ms to run. To
extract hardware features, we ran each micro-benchmark 10 times. We provide
each sample to the classifier. For classification, we used a random forest with
100 trees. Our training data consisted of 9 × 1000 micro-benchmarks, iterated
10 times, for 90, 000 training samples with 35 features.

Benchmarking. We ran 20 in-process iterations of each benchmark. For
fop, this number was not sufficient to reach steady-state, so we ran 150 iterations.
We replicated this measurement 20 times. The last 10 runs are used to estimate
steady-state performance.

Ground Truth: Greedy Search. To understand how Brainy4J compares
against the “best possible solution” given our search space, we performed a limit
study, i.e., we estimate the maximum improvement we could hope to obtain.

Since the effort for exploring all possible combinations of replacements is
exponential in the number of allocation sites (e.g., 59049 variants for fop just
for the top ten allocation sites, each of which would take several minutes to
benchmark), we selected the top ten allocation sites (sorted after number of calls)
and opt for a ‘greedy’ strategy: we optimized each allocation site independently,
and merged the results to produce an “expected best” candidate (requiring only

Tools
Artemis Coco CollectionSwitch Chameleon

B
en

ch
m

ar
ks avrora x x x

bloat x x x
chart x
fop x x x x

lusearch x x

Table 3: DaCapo benchmarks used in our work, and their use in prior studies on
collection selection.

120
Paper III: Classification-based Collection Selection for Java: Effectiveness and

Adaptability

Figure 2: Cumulative collection operations and constructors aggregated for the
top ten allocation site. For chart, two allocation sites account for more than 99%
of the calls

21 variants per benchmark). To compare two variants, we measured the 95%
confidence interval of the difference in running times, in steady-state. We picked
the variant for which the confidence interval shows a significant improvement.
If not, we keep the original collection. This greedy search would yield the same
result as a full exhaustive search (for the top ten allocation sites) if the impact of
all datastructure replacements were independent of each other.

5.2 Results
We present the results structured around the research questions presented at the
beginning of this section.

RQ2.1: Model characteristics Brainy4J. To evaluate our model, wemeasured
accuracy on 10-fold of cross-validation, while making sure the test set contains
data only about benchmarks which are not in the training set. The model learns
effectively, with an accuracy of more than 85% for all collections and machines.
However, this is partially explained by an imbalance problem in the training data.
We come back to this issue in Section 7.

RQ2.2: Cost of Brainy4J (time). Brainy4J’s end-to-end optimization time is
much shorter than that of greedy search. Once the classifier is trained, building
a variant of a benchmark takes between 60 and 90 seconds, including tracing,
classification, and building the optimized program. Greedy search takes much
longer, since optimizing a program requires building roughly twenty variants
of the program, and running each variant roughly 400 times (20 replications, 20
iterations until steady-state). As a result, greedy search takes between one (fop)
and 14 hours (avrora) to optimize one benchmark.

RQ2.3: Effectiveness Brainy4J vs. Greedy Search.
Figure 3 show the 95% confidence intervals of average speedup associated with

different changes, as well as the speedup of the optimization by Brainy4J. We show

Paper III: Classification-based Collection Selection for Java: Effectiveness and
Adaptability 121

Shorthand Collection

AL ArrayList
LL LinkedList
HAL HashArrayList
HM HashMap
TM TreeMap
AM ArrayMap
HS HashSet
TS TreeSet
FUAS ArraySet

Table 4: The shorthand labels we use for collection names in our notation for
changes in figure 3

each variant in three environments: for each of our three environments (Table 2),
for steady-state performance [Bla+08].

We denote single-change variants as 〈from〉 → 〈to〉@〈alloc-site〉 to identify
the datastructures we transform from and to. For example, AL→LL@1 switches
an ArrayList to a LinkedList at the first (highest-ranked) allocation site.

We see that for 3 out of 5 benchmarks, the original programwas well optimized,
in that neither Brainy4J nor greedy search managed to optimize the benchmark
significantly. For chart and avrora, we observed statistically significant changes,
but the effects were below 1%. For lusearch, we did not observe any statistically
significant improvement. For fop, greedy search found an optimization which
yielded between 1 and 2% of speedup on Zen3 and Sandy, and Brainy4J finds it as
well. For bloat, greedy search finds one effective optimization (HM→AM@2) that
improves the running time by approximately 20% in steady-state by changing a
HashMap to an ArrayMap. However, Brainy4J did not suggest this optimization,
it either suggests to keep the HashMap, or suggests to use a TreeMap instead.
Using a TreeMap does not work as the elements stored in the map are not
comparable, so Brainy4J discards that suggestion.

Our plots show the running times of the greedily and Brainy4J-optimized
variants, but these include several changes. To understand the effect of one single
change on performance, we took each change suggested by either greedy search
or Brainy4J, and plotted the running time of a variant making that single change.

Using an ArrayMap is effective for steady-state performance, but has a detri-
mental effect on performance at startup, we discuss this in Section 6.2.

122
Paper III: Classification-based Collection Selection for Java: Effectiveness and

Adaptability

−20 −15 −10 −5 0

Difference (%)

brainy4j

greedy

AL->LL@1

HM->AM@2

HS->FUAS@5

LL->AL@7

LL->HAL@7

HS->FUAS@8

HM->AM@10

tr
e
a
tm

e
n

t

cypress

sandy

zen3

machine

cypress

sandy

zen3

machine

Effect of changes for bloat

(a)

−2 −1 0 1 2 3 4

Difference (%)

brainy4j

greedy

TM->HM@1

V->AL@4

AL->LL@5

AL->HAL@6

AL->LL@8

HM->TM@9

tr
e
a
tm

e
n

t

cypress

sandy

zen3

machine

cypress

sandy

zen3

machine

Effect of changes for fop

(b)

Figure 3: Effect of changes for bloat (a) and fop (b). Points denote the mean
speedup, error bars denote the 95% confidence intervals. Greedy search finds an
important optimization for bloat, but Brainy4J misses it. For fop, Greedy search
and Brainy4J find a small optimization for Sandy and Zen3.

Paper III: Classification-based Collection Selection for Java: Effectiveness and
Adaptability 123

@ From Brainy4J M Greedy M
avrora

1 HM → HM S → TM Z
2 LL → AL C → AL Z
2 LL → HAL Z, S → AL Z
3 LL → AL C → AL Z
3 LL → HAL Z,S S, C
5 LL → AL all all
6 HS all → TS Z
7 HM all → AM Z
8 HM → TM S all
9 HM all → AM Z
10 HM → TM S all

bloat
1 AL → LL all
2 HM → AM all
5 HS → FUAS C, S
7 LL → AL C all
7 LL → HAL Z,S → HAL S
8 HS → FUAS C, S
10 HM → AM S

@ From Brainy4J M Greedy M
chart

3 AL all → HAL S
6 AL all → LL S
7 TM → HM C → HM S
8 AL all → LL S
9 TM → HM C all

fop
1 TM → HM C → HM C, S
3 AL all → LL C
4 V all → AL S
5 AL all → LL S
5 AL all → HAL C
7 AL → LL all → LL C
8 AL all → LL S
9 HM → TM S → TM S

lusearch
4 TM → HM C all
5 TM → HM C all
10 HM → TM S all

Table 5: Transformations used by Brainy4J/greedy search on different machines
(M), with Z=Zen3, C=Cypress, S=Sandy

Examining the individually selected transformations (Figure 5), we find no
matches between the suggestions by Brainy4J and suggestions by Greedy search.
None of the changes suggested by Brainy4J has a significant impact on running
time. We suspect that the difference between Brainy4J and Greedy search is due
to our difficulties in generating a balanced training data-set. We come back to this
issue in Section 7.

124
Paper III: Classification-based Collection Selection for Java: Effectiveness and

Adaptability

6 Adaptability of Brainy4J
To address RQ3, we examine how adaptive Brainy4J is to changes in the envi-
ronment (CPU, JVM) and the configuration (e.g., adding a new collection). We
structure this exploration around the following research questions:

RQ3.1 What is the effect of the CPU on recommendations?

RQ3.2 What is the effect of the JVM on recommendations?

RQ3.3 What is the cost of changing environment?

RQ3.4 What is the cost of changing collections?

6.1 Experimental Setup
Understanding the effect of the CPU and JVM on recommendations hinges on two
aspects: do the recommendations change, and if so, how does this change impact
performance? In our case, we can look for recommendations in the training data,
and in Brainy4J’s recommendations for the DaCapo benchmarks.

To test if Brainy4J adapts to new CPU architectures, we ran the experiments
from Section 5 on our three benchmarking machines. If CPU architecture matters,
as in the original Brainy study, we should see different suggestions on different
machines, both in the training data and in suggestions offered by greedy search.

To test if JVM implementation and warmup impacted collection suggestions,
we ran greedy search on our different machines, with four different JVM imple-
mentations. To test if reaching steady state impacted the effect of changes, we
measured the speedup of a greedy-search optimized variant in both startup and
steady-state.

To evaluate the cost of changing environments (e.g. running Brainy4J on a new
machine) and changing collections, we report on the time we spent performing
such tasks.

6.2 Results
We present the results structured around the research questions.

RQ3.1: Effect of the CPU. For our DaCapo benchmarks, we observe some
differences between machines, and see some variation in greedy search’s sugges-
tions too, but they concern changes that had little effect on performance. For
important changes, like for bloat, greedy search suggest the same things on all
machines.

For Brainy4J, we observe that suggestions are not the same between different
machines, but in practice the changes do not have significant effects. As far as
training and classification are concerned, we observed many similarities between
different machines.

Paper III: Classification-based Collection Selection for Java: Effectiveness and
Adaptability 125

Figure 4: Importance of different features to the classifier, per machine.
BR_MSP_rate is not available on Zen3.

We compared the suggestions given in Brainy4J’s training data for Cypress
and Sandy, we see that they agree for 93.5% of benchmarks (n = 9000). This could
show that CPU architecture does not matter, but it could also indicate that the
architectures of both machines are quite similar. We compared on machines with
two different CPU architectures: Cypress and Zen3 (one with an Intel CPU, one
with an AMD CPU), and see that they also agree for 95.7% of benchmarks (n =
9000).

We looked at which features Brainy4J considers important for classifications,
and also observed similarities between machines. Figure 4 shows the five most
important features for classifiers specialized in each collection (x-axis), for all
three machines. It displays what the classifier considers when analysing the
behavior of the collection. The color denotes the importance of the feature, as
reported by the random forest classifier. On the y axis, BR_MSP refers to branch
mispredictions, while BR_MSP_rate refers to the ratio of misprediction per
branch instructions. Notably, the classifier for ArrayList does not consider any
feature, because the training data always suggests to keep the ArrayList. Several
sets of features are important on all three machines. Cycles spent in methods
that insert in the collection (“cycles in insertions” in the figure) and number of
calls to Collection.addAll and the corresponding Map operation Map.putAll are
important. The number of branch mispredictions is also an important feature
for maps and sets. For lists, the number of cycles spent in insertions is the most
important feature.

RQ3.2: Effect of the JVM. We report all our results in this paper for Open-
JDK 8.0.292. We validated the results on OpenJDK 18.0.1.1 and 11.0.12, and on
GraalVM 22.1.0.r17 (excluding the bloat benchmark, which crashes2 on the other
JDKs), and observed no significant differences: both suggestions and running

2We suspect that it fails due to a problem in a custom class loader, likely due to changes in class
loader semantics introduced in Java 9 or later.

126
Paper III: Classification-based Collection Selection for Java: Effectiveness and

Adaptability

startup steady interface proportion

ArrayList ArrayList List 99.4
ArrayList HashArrayList List 0.6
HashMap HashMap Map 94.3
HashMap TreeMap Map 5.1
HashMap ArrayMap Map 0.6
HashSet HashSet Set 79.1
HashSet TreeSet Set 20.8
TreeSet TreeSet Set 0.01
TreeSet ArraySet Set < 0.01

Table 6: Suggestions of best collection for training data, for startup and in steady
state. When the tables agreed, the proportion is in bold.

times are similar.
To study the effect of the JVM, we thus put focus on the impact of JVMwarmup

on the choice of collections, we examined (a) training data and (b) benchmark
variants under both hot and cold JVMs.

First, we used Brainy4J’s training data, comparing the suggested collections
when only considering startup running time measurements (cold JVM) against
steady-state measurements (hot JVM), for all three machines. We found that the
suggestions agreed in 90% of all micro-benchmarks. Table 6 shows the suggested
data structures and how often each tuple was suggested by the training data. We
see that the suggestions are more diverse after warmup, but in the majority of
cases, the same collection would be suggested both at startup and after warmup.

Second, we compared the effect of a single collection change, for startup and
steady-state. We find that warmup can significantly affects different collections
differently. For bloat, one collection change (HM→AM@2) is detrimental at
startup but reduces steady-state run time by around 20%.

We find that all four instances in which we introduced HashArrayLists (two
in avrora, one each in bloat and lusearch) are reliably detrimental at startup, but the
negative effect vanishes after warmup. HashArrayList is our only datastructure
without lazy initialization and depends on the Eclipse Collections framework,
through a nontrivial chain of delegation, so that we expect it to benefit from
inlining optimizations more than other datastructures.

RQ3.3: Cost of Changing Environment. Switching to a new machine or
a new JVM does not require an expert to re-write the performance model, as
it might be the case for tools like CoCo and Chameleon [Xu13; SVY09]. It is
however necessary to re-train the classifiers. Training Brainy4J takes roughly
30-35 hours, for a training dataset of 9000 benchmarks (1000 seeds, 9 collections).
Measuring the best collection for all benchmarks takes approximately 30 hours,
and gathering the features takes between 45 and 90 minutes. Training the classifier

Paper III: Classification-based Collection Selection for Java: Effectiveness and
Adaptability 127

takes a few seconds. Measuring the running time of benchmarks takes most of the
time, because we need to warm up the JVM before we can measure the running
time [Bla+08].

RQ3.4: Cost of Changing Collections. If Brainy4J can build a new model
of collection performance, it should be relatively easy to add new collections to
Brainy4J, comparatively to tools like CoCo, in which an expert would have to
modify the performance model. We found that we need no more than a few hours
to add a new collection to Brainy4J, and have partly automated this process. Re-
running the micro-benchmark suite and training the model is then fully automatic
and takes ≈ 30ℎ for 1000 seeds. Removing a collection requires removing all
training data from benchmarks that use this collection, and re-training the model
which takes a few seconds.

7 Obstacles to Effectiveness
To address RQ4, we examine interactions between Java and Brainy that may be
obstacles to effectiveness. We structure this exploration around the following
research questions:

RQ4.1 What is the effect of JIT-compilation?

RQ4.2 How effective is benchmark selection?

RQ4.3 What is the balance of the training data?

RQ4.4 Are our micro-benchmarks too short or too long?

RQ4.5 Is the type of elements important?

RQ4.1: Effect of JIT compilation. A key challenge in adapting Brainy to
Java is the increased distance between application code and machine. Brainy
depends on measuring dynamic program features, some of which (hardware per-
formance counters and running time) can vary with external factors, like machine
architecture, but are also influenced by JIT compilation. The JIT introduces an
additional dimension to our models — how “hot” or “cold” the code that we are
optimizing is — and substantially affects micro-benchmark evaluation.

First, even if we only focus on “hot” code (which is likely to dominate perfor-
mance in long-running programs), we need to iterate the same benchmark many
times (3.5B per micro-benchmark). As a result, benchmark selection becomes
prohibitively expensive. We have experimented with parallel execution but found
that even on highly-parallel multicore systems with hyper-threading disabled,
concurrent micro-benchmarking significantly altered our measurements. For
Brainy, measuring a benchmark’s running time was fast, but obtaining features
was slow, for Brainy4J, both benchmarking and tracing are slow.

128
Paper III: Classification-based Collection Selection for Java: Effectiveness and

Adaptability

Second, we found evidence that our instrumentation interferes with JIT com-
pilation. With tracing enabled, we observed an overhead of anywhere between
4% (lusearch on a cold JVM) and 1300% (fop on a hot JVM, on Zen3). The ef-
fect on warmed-up JVMs was generally more pronounced. In three cases, the
overhead was greater than 400%, with more than 70% attributable to our general
instrumentation overhead (JNI + Java, not counting PAPI). We speculate that
these interactions are due to JIT optimizations not triggering. In almost all other
cases, the cost for PAPI calls dominates the overhead. While we expect that this
overhead causes a nontrivial amount of perturbation, we found that hardware
performance counter measurements during benchmark execution remained stable
across multiple runs of the program.

RQ4.2: Effectiveness of Benchmark Selection. Jung et al. used bench-
mark selection (Section 3.1) to gather the same amount of training data for all
datastructures. In our case, benchmark selection is ineffective. We observed that
ArrayList, HashMap and HashSet win far more often than the other collections,
so benchmark selection struggles to find good benchmarks for some datastructures.
This could indicate that some collections dominate others regardless of context,
or that our micro-benchmarks are biased towards a subset of the collections.

To check if benchmark generation was causing the imbalance, we ran bench-
mark selection with three different benchmark generation schemes. Uniform
(choose methods with a uniform distribution), Brainy (our best-effort approxima-
tion of Brainy’s selection scheme, cf. Section 3.1), and Markov (first learning a
Markov chain from traces on fop, lusearch, and avrora, and using it as generator).

Regardless of the benchmark generation scheme, benchmark selection did
not find many benchmarks for which ArrayMap won, but greedy search chose
ArrayMap as effective replacement twice, for bloat, including (HM→AM@2),
the overall most impactful replacement. We suspect that benchmark selection is
biased against ArrayMap, since ArrayMap works well on small maps, which we
rarely create with a fixed length of 1000 method calls.

We found no synthetic benchmarks for which LinkedList won. This could
suggest LinkedList is intrinsically inefficient, but Artemis [Bas+18] found 87 cases
where LinkedList was more effective than ArrayList, and reports AL → LL
as the most commonly proposed transformation. We assume that Brainy4J’s
benchmarks fail to show scenarios in which LinkedList shines and conclude that
benchmark selection is ineffective in our setting.

We observe that even if benchmark selection were effective, it would be
inefficient. If the most “unlucky” datastructure averaged one win per 100
micro-benchmarks (cf. zero wins for LinkedList), we would need 100k micro-
benchmarks on average to observe 1000 wins for that datastructure. At ∼3.5B of
CPU time per datastructure and micro-benchmark, examining three datastructures
would use over 11.5 days of CPU time, yet discard 97% of all measurements.

RQ4.3: Balance of Training Data. Since we found benchmark selection
ineffective in Brainy4J, we do not utilize it for benchmarking. As a consequence,

Paper III: Classification-based Collection Selection for Java: Effectiveness and
Adaptability 129

Brainy4J’s training data is imbalanced: our training data favors some collections
over others (Table 6); for example, LinkedList does not appear at all. Table 6
shows that the same datastructure wins for the vast majority of benchmarks:
ArrayList and HashMap win in more than 90% of cases, HashSet wins in more
than 70% of cases. Our micro-benchmarks did not find a single case in which
LinkedList wins on any of our three machines. We see the synthetic benchmark
generation algorithm, the length of benchmarks, and the elements that we store
in the collections as possible causes.

RQ4.4: Number of Method Calls. We traced how many methods are called
for each collection object in the five selected benchmarks. Over two million
method calls, 98% of objects have less than 10 method calls, 1% gets between 10
and 1000, and around 120 get much more (up to more than a million calls). Both
short traces and long traces are interesting for Brainy4J. Some of the sites we
selected allocate few collections that grow very big (long trace), while others
allocate many collections that stay small (short trace per collection). Overall, we
observe that the number of collection objects that receive 1000 or more method
calls is negligible compared to the number of objects that receive ten or fewer
calls. We note that this difference may reflect a difference in programming style
between the C++ benchmarks that Brainy investigated and the Java benchmarks
we examined.

RQ4.5: Importance of Element Types. When training Brainy4J, our syn-
thetic benchmarks only store integers in the collections they benchmark. Since
we observed that HashArrayList’s performance improved with warmup, we
suspect that the cost of hashCode and compare (which might get cheaper with
JIT compilation) plays an important role in the performance of sets and maps.

8 Threats to Validity

Internal Validity. Jung et al. used genetic algorithms for feature selection. We
used the features that they reported as being important. It is possible that another
selection could improve the results of Brainy4J. The translation of a plan into
a micro-benchmark could introduce overhead with effects on performance. To
prevent this, we generated bytecode for each micro-benchmark. All benchmarks
suffer from tracing: the program runs slower and the benefit from JIT compilation
is smaller. This may have affected the readings Brainy4J used to make a decision.
Tomake ourmicro-benchmarks comparable with their real-world counterparts, we
normalized the hardware features by the total number of cycles, and the software
features (number of calls to methods) by the total number of method invocations.
However, this normalization does not capture the size of the collection, which
showed to be important for CollectionSwitch. Various factors can affect runtime
performance when running benchmarks. To prevent noise from disturbing the
measurements, we disabled frequency scaling and hyperthreading and ran 20

130
Paper III: Classification-based Collection Selection for Java: Effectiveness and

Adaptability

replications per run. For micro-benchmarking, we relied on JMH. Classification
accuracy depends on the split between training and test data. We used 10-fold cross
validation and reported statistics on how accuracy varied on different datasets.
We also ensured that samples for the training and test sets never came from the
same micro-benchmarks.

External Validity. We used three different machines and five benchmarks.
Still, adding more machines and benchmarks would help to further generalize
the results. Similarly, we focused on types of collections used in the related work
[CA18], adding other collections could provide additional speedups.

9 Discussion

Here, we look back at our three research questions:
What are the technical challenges in porting the Brainy approach to

Java? (RQ1) In porting the Brainy approach to Java, the main technical challenge
was tracing collection usage and CPU behavior during runs without disturbing
the measurements. We needed to generate collection classes that support tracing,
and devise a scheme to substitute collection classes by tracing collections without
breaking the program. Despite our precautions we still observe that tracing has a
significant overhead.

How effective is Brainy4J at optimizing Java programs? (RQ2) Brainy
sped up C++ programs by 10 to 77%. Our greedy search found statistically signifi-
cant improvements for only one of our five benchmarks, driven by one high-impact
replacement. Brainy4J’s complex decision making mechanism failed to pick up the
most important of these replacements. We expect that there is further potential for
improvement: Artemis [Bas+18], another static selection tool, found statistically
significant improvements (around 5% run time reduction) for both avrora and fop,
though the authors do not report which changes they applied. Artemis considers
three additional (concurrent) ADTs and several datastructures that we did not
explore here, which may account for the differences. With Chameleon [SVY09],
Shacham et al. found even more dramatic improvements, but their baseline is a
modified version of the J9 JVM, which makes it difficult to compare their find-
ings to ours. One of their key findings was the importance of lazy datastructure
initialization, which has since been added to all datastructures we considered,
as of OpenJDK 8, with the exception of HashArrayList. The CoCo [Xu13] and
CollectionSwitch [CA18] approaches provide collections that can switch imple-
mentations at runtime. CoCo reports improvements on avrora by 11%, bloat by
4%, fop by 16%, and lusearch by 44%, albeit for Jikes RVM running on the Intel
Nehalem microarchitecture. CollectionSwitch did not improve avrora’s nor fop’s
running time, but improved bloat’s running time by 22%, and lusearch’s by 15%.
Both CoCo and CollectionSwitch improved lusearch’s running time by switching
some instances of HashMap to ArrayMap, reducing memory usage for small

Paper III: Classification-based Collection Selection for Java: Effectiveness and
Adaptability 131

maps. Our greedy search confirmed one such optimization for bloat, but similar
changes to lusearch did not have the same effect. We speculate that the differ-
ence may come from the tools’ dynamic nature, or from a different selection of
allocation sites.

How adaptive is the Brainy approach when applied to Java? (RQ3)
Brainy4J can adapt to new CPU architectures and different JVMs without manual
work. However, we were unable to identify cases in which switching architectures
or JVMs affected the optimal decisions of our greedy search in a significant way.
By contrast, Brainy reported different optimizations for different architectures in
their C++ benchmarks.

For adapting Brainy4J’s selection of datastructures, we found that adding a new
datastructure takes at most a few hours of work to implement adapter subclasses
and default operations (Section 4.2). We have partly automated this process but
expect that more automation is feasible.

We expect that Brainy4J could be effective at adapting to hot vs. cold JVM usage,
using a separate model for the latter case. We did not explore this direction but
note that it may be significant for Java programs with short run times: the most
effective optimization we observed (in bloat) was ineffective on cold JVMs, even
incurring a significant slowdown on one machine.

What obstacles impair the effectiveness of the Brainy approach in Java?
(RQ4) We found two challenges in adapting Brainy to Java: the composition of the
synthetic benchmarks, and the role of JIT compilation in the JVM. From what we
see in our investigations (Section 7), the generated synthetic benchmarks struggle
to exercise the strengths of some of our data-structures, like LinkedList. We
have identified several possible causes for this challenge: the size of the synthetic
benchmarks, how we generate plans and method arguments, and our selection
of elements to store in the datastructures. Brainy4J generated benchmarks with
1000 method calls, but we observed that real-world collection traces varied a lot in
size. Brainy4J only stores integers in collections, and does not model the cost of
methods like hashCode, equals or compareTo, though the cost of these methods
may be crucial for deciding which collection to select. Lastly, we observed that
JIT compilation plays a significant role in the effectiveness of collection changes,
and found indications that Brainy4J’s tracing instrumentation interferes with JIT
optimization.

10 Conclusions

We were unable to find evidence that Brainy is effective when applied to Java. We
observe two challenges caused by JIT compilation that reduce the effectiveness
of the approach: First, the cost for benchmarking is higher than for C++, which
prevented us from using benchmark selection, since it became too expensive to be
practical. To adapt the Brainy approach to Java would require a different method

132
Paper III: Classification-based Collection Selection for Java: Effectiveness and

Adaptability

to generate the set of synthetic benchmarks. A better approach could be not to
discard benchmarks (since benchmarking is expensive), and instead use the results.
For example, by using regression to estimate the cost of running a benchmark.

Second, we suspect that Java JIT compilation is more sensitive to instrumenta-
tion than static compilation, especially since wemust rely on JNI calls for gathering
hardware performance counter data. This would reduce the accuracy of our mod-
els for reasoning about the performance of uninstrumented data structures when
the JVM is hot. In summary, Brainy4J was not as effective as greedy search, and
was less effective than dynamic tools, such as CoCo and CollectionSwitch.

Future Work. To make Brainy4J more effective, a possible approach would be
to obtain more information from fewer benchmark runs. Currently, the benchmark
generator does not use any feedback to build new benchmarks. For example,
if it found a benchmark where LinkedList is very fast, it would not use this
information to find other such benchmarks.

One possible direction for future work would be to allow the benchmark
generator to take inspiration from existing benchmarks to build new ones. In
addition, our collections only contained integers, while hash maps and tree-based
maps make heavy use of methods of elements, like compare and hashCode.
One possible extension of this work would be to test different types of data for
the elements stored in the collections, and the relationship between the cost of
hashCode and compare on these elements. Finally, we do not know how tracing
interacts with JIT-compilation and this could also be explored further

11 Acknowledgements
This work was funded by Wallenberg AI, Autonomous Systems and Software
Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

References
[Bas+18] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr.

“Darwinian data structure selection”. en. In: Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering - ESEC/FSE
2018. Lake Buena Vista, FL, USA: ACM Press, 2018, pp. 118–128.

[Bau+85] F.L. Bauer, M. Broy, B. Möller, P. Pepper, M. Wirsing, et al. The Munich
Project CIP. Vol. I: The Wide Spectrum Language CIP-L. Lecture Notes
on Computer Science 183. Berlin: Springer Verlag, Berlin, Heidelberg,
New York, 1985.

Paper III: Classification-based Collection Selection for Java: Effectiveness and
Adaptability 133

[Bla+06b] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khan,
Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J Eliot B Moss, Aashish Phansalkar, Darko
Stefanovic, and Thomas VanDrunen. “The DaCapo Benchmarks: Java
Benchmarking Development and Analysis”. en. In: (2006), p. 22.

[Bla+08] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris
Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer Diwan, Daniel
Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanovik, Thomas VanDrunen, Daniel von Dincklage, and
Ben Wiedermann. “Wake up and smell the coffee: evaluation method-
ology for the 21st century”. en. In: Communications of the ACM 51.8
(Aug. 2008), pp. 83–89.

[CA18] Diego Costa and Artur Andrzejak. “CollectionSwitch: a framework
for efficient and dynamic collection selection”. en. In: Proceedings of
the 2018 International Symposium on Code Generation and Optimiza-
tion - CGO 2018. Vienna, Austria: ACM Press, 2018, pp. 16–26.

[Cos+19] Diego Costa, Cor-Paul Bezemer, Philipp Leitner, and Artur Andrzejak.
“What’s Wrong with My Benchmark Results? Studying Bad Practices
in JMH Benchmarks”. In: IEEE Transactions on Software Engineer-
ing 47.7 (2019). Conference Name: IEEE Transactions on Software
Engineering, pp. 1452–1467.

[GRS05] Yuri Gurevich, Benjamin Rossman, and Wolfram Schulte. “Semantic
essence of AsmL”. In: Theor. Comput. Sci. 343.3 (2005), pp. 370–412.

[JS02] Nathalie Japkowicz and Shaju Stephen. “The class imbalance problem:
A systematic study”. In: Intelligent data analysis 6.5 (2002), pp. 429–
449.

[Jun+11a] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and
Santosh Pande. “Brainy: effective selection of data structures”. In:
ACM SIGPLAN Notices 46.6 (June 2011), pp. 86–97.

[Kah99] Wolfram Kahl. “The Term Graph Programming System HOPS”. In:
(1999), pp. 136–149.

[LZ74] Barbara Liskov and Stephen Zilles. “Programming with Abstract Data
Types”. In: SIGPLAN Not. 9.4 (Mar. 1974), pp. 50–59.

[LW94] Barbara H. Liskov and Jeannette M. Wing. “A Behavioral Notion
of Subtyping”. In: ACM Trans. Program. Lang. Syst. 16.6 (Nov. 1994),
pp. 1811–1841.

[LR09] Lixia Liu and Silvius Rus. “Perflint: A Context Sensitive Performance
Advisor for C++ Programs”. In: 2009 International Symposium on Code
Generation and Optimization. Mar. 2009, pp. 265–274.

134
Paper III: Classification-based Collection Selection for Java: Effectiveness and

Adaptability

[McI68] M. D. McIlroy. “Mass-produced software components”. In: Proc. NATO
Conf. on Software Engineering, Garmisch, Germany (1968).

[OL13] Erik Osterlund andWelf Lowe. “Dynamically transforming data struc-
tures”. en. In: 2013 28th IEEE/ACM International Conference on Au-
tomated Software Engineering (ASE). Silicon Valley, CA, USA: IEEE,
Nov. 2013, pp. 410–420.

[Our+21] Zakaria Ournani, Mohammed Chakib Belgaid, Romain Rouvoy, Pierre
Rust, and Joël Penhoat. “Evaluating the Impact of Java Virtual Ma-
chines on Energy Consumption”. In: Proceedings of the 15th ACM /
IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM). ESEM ’21. Bari, Italy: Association for Comput-
ing Machinery, 2021.

[Par72] David L Parnas. “On the criteria to be used in decomposing sys-
tems into modules”. In: Pioneers and Their Contributions to Software
Engineering. Springer, 1972, pp. 479–498.

[Püs+05] Markus Püschel, José M. F. Moura, Jeremy Johnson, David Padua,
Manuela Veloso, Bryan Singer, Jianxin Xiong, Franz Franchetti,
Aca Gacic, Yevgen Voronenko, Kang Chen, Robert W. Johnson, and
Nicholas Rizzolo. “SPIRAL: Code Generation for DSP Transforms”.
In: Proceedings of the IEEE, special issue on “Program Generation,
Optimization, and Adaptation” 93.2 (2005), pp. 232–275.

[SSS81] Edmond Schonberg, Jacob T. Schwartz, and Micha Sharir. “An Au-
tomatic Technique for Selection of Data Representations in SETL
Programs”. In: ACM Trans. Program. Lang. Syst. 3.2 (1981), pp. 126–
143.

[SVY09] Ohad Shacham, Martin Vechev, and Eran Yahav. “Chameleon: Adap-
tive Selection of Collections”. en. In: Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (2009), p. 11.

[Smi90] Douglas R. Smith. “KIDS: A Semi-Automatic Program Development
System”. In: Client Resources on the Internet, IEEE Multimedia Systems
’99. 1990, pp. 302–307.

[SP14] Daniele G. Spampinato and Markus Püschel. “A Basic Linear Algebra
Compiler”. In: Proceedings of Annual IEEE/ACM International Sym-
posium on Code Generation and Optimization. CGO ’14. Orlando, FL,
USA: ACM, 2014, 23:23–23:32.

[Szy03] Clemens Szyperski. “Component Technology: What, Where, and
How?” In: Proceedings of the 25th International Conference on Software
Engineering. ICSE ’03. Portland, Oregon: IEEE Computer Society, 2003,
pp. 684–693.

Paper III: Classification-based Collection Selection for Java: Effectiveness and
Adaptability 135

[Ter+10] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. “Col-
lecting performance data with PAPI-C”. In: Tools for High Performance
Computing 2009. Springer, 2010, pp. 157–173.

[Vig06] SEBASTIANO Vigna. “fastutil 5.0”. In: (2006).
[Xu13] Guoqing Xu. “CoCo: Sound and Adaptive Replacement of Java Col-

lections”. In: ECOOP 2013 – Object-Oriented Programming. Ed. by
Giuseppe Castagna. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 1–26.

Pa
pe

r
IV

Automatic Collection
Selection for Java:
Comparing Static

Approaches with Adaptive
Collections

1 Introduction

Most recent programming languages include a collection framework. The Java
Collections Framework, for example, provides a number of collection classes,
which developers can use in their programs. To make it easier to swap between
different classes, some of these classes implement a common abstract data type.
For example, ArrayList and LinkedList both implement the interface List, and
so a developer can easily swap one for the other if needed. Both ArrayList and
LinkedList are a List, and they share some common functionality.

If they implement a common interface, different implementation classes can
differ by their performance characteristics. An insertion of a key-value pair in a
HashMap will have a different cost than the same operation on a TreeMap. For
developers, these differences provide opportunities for optimizations: depending
on how the collection is used, the developer can pick between different implemen-
tation classes, the one that minimizes the cost of running the program. Depending
on the overall requirements, developers may choose to optimize for different cost
metrics, such as execution time, memory usage, or energy consumption.

In practice, however, software developers do not always make optimal deci-
sions. First, they might not know very well the pros and cons of each collection

138
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

implementation, and therefore tend to pick the ones they are most familiar with.
Second, even if they do know the performance characteristics of each collection,
theymight not know in full detail how the collections are going to be used [MSS10].

There exist several tools for helping developers pick Java collections. Some
suggest replacement at the source code level [Jun+11a; SVY09; Bas+18; Wan+22],
we will call them static collection selection tools. Others provide smart constructors
or collections which use dynamic information to switch between collections at
runtime [CA18; Xu13], we will call them adaptive collections.

Both approaches have their pros and cons. On the one hand, we can expect
dynamic collection replacements reduce execution time more effectively because
they have access to runtime data (for example, the size of collection, which we
know influences the complexity). On the other hand, static tooling can use any
information necessary, and “think” for a longer time, while dynamic optimization
tools must make measurements and take decision at run time, inducing additional
costs.

So far, there has not been any comparison between the static approach and
the dynamic approach. In this paper, we compare the performance improvements
provided by implementations of the two approaches.

For the static approach, we implement a greedy collection selection approach,
which will serve as our ground truth. Greedy search selects a number of allocation
sites in the target program, and looks for the optimal collection for each site. It
then combines the locally optimal solutions to produce the optimized program.
Compared to the state of the art, it is very slow, but it has the advantage that it is
unlikely to miss a promising optimization, since it tries every option to every site.

For the dynamic approach, we reproduce the experiments of CoCo [Xu13]
and CollectionSwitch [CA18] approaches using their adaptive collections, and
compare the performance improvements against greedy search.

Most of these tools have been tested on DaCapo benchmarks [Bla+06b]. Since
some of these tools have been published a few years ago (CoCo is from 2013), the
speedups that they reported might be invalid now, since the context has changed
(e.g. the Java Collection Framework has new optimizations). We try to reproduce
their experiments to see if their numbers are still valid, after changes in the Java
standard library, CPU architectures and JVMs.

1.1 Research Questions
Our research questions are:

RQ1 What is the best possible improvement on DaCapo benchmarks?

RQ2 Howmuch improvement can we obtain from a static replacement approach?

RQ3 How much improvement can we obtain from adaptive collections, such as
CoCo and CollectionSwitch?

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 139

RQ4 What role do different program locations play in observed speedups?

1.2 Contributions

Our contributions are as follows:

• We estimate collection usage in six benchmarks from a widely used bench-
mark suite and show that two of them are unlikely to benefit from optimiza-
tions related to collection usage.

• We reproduce CoCo and CollectionSwitch, and report on several challenges
to the replication.

• We demonstrate the use a Bayesian statistical model, which allows us to
re-use the previously reported results in our statistical analysis.

• We compare the effect of applying CoCo and CollectionSwitch to our six
benchmarks with a static approach to collection selection. We find that we
cannot reproduce the results from CoCo and CollectionSwitch, while our
greedy search approach finds one important optimization.

2 Related Work

2.1 Static Collection Selection

In 2009, Shacham et al. [SVY09] proposed Chameleon, which uses a modified
IBM J9 JVM to suggest collection changes, based on tracing and heap information.
Chameleon optimizes both running time and memory usage. Their tool can
suggest changes, change collections before starting the program, or can switch
between collections at runtime. They report on the offline results, and suggest
that online replacements were as effective, with the notable exception of the
PMD benchmark, which took 6x as long in online mode. We did not consider
comparisons Chameleon for this study, since it uses a modified JVM.

Artemis [Bas+18] is a collection selection tool that makes static changes, and
optimizes both memory usage and execution time. To choose between collections,
it runs many variants of the target program, and compares their execution times.

Cres [Wan+22] is also a static collection selection tool, which operates at the
source code level. It uses static program analysis to identify promising replace-
ments, and program synthesis to suggest them. One defining feature of Cres is its
ability to replace a collection with another that supports another interface. For
example, Cres can replace an ArrayList with a HashSet.

140
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

2.2 Adaptive Collections

CoCo [Xu13] and CollectionSwitch [CA18] both provide adaptive collections that
can switch implementation at runtime. CoCo trades memory usage for execution
time, while CollectionSwitch can optimize either execution time or memory
usage. CoCo’s collections instantiate several collections at once, and lazily move
elements between the different collection implementations. CollectionSwitch, on
the other provides both adaptive collections and smart constructors which track
the collections they have instantiated, and decide which type of collection should
be created based on the behavior of previously created collections.

2.3 Benchmarking

Artemis, CoCo, CollectionSwitch and Chameleon have all been evaluated on
benchmarks from theDaCapo benchmark suite [Bla+06b]. TheDaCapo benchmark
suite is a set of Java benchmarks which has been first released in 2006. Since then,
there were two major releases, and the project is now hosted on GitHub.

We could find several different versions of the benchmark suite: As of March
2023, version 9.12-MR1 is the latest official release. It was released in 2018. It is
similar to the version 9.12-bach, which was released in 2009 1. These versions do
not include the benchmarks bloat and chart. We could find versions 2006-10-MR1
released in 2006, and 2006-10-MR2, released in 2007 2. Table 1 shows the list of
tools and on which benchmarks they have been evaluated.

CoCo and CollectionSwitch do not specify what version of the benchmark they
used. The two studies use benchmarks avrora, bloat, chart, fop, lusearch, and
h2. avrora and h2 are included since the 9.12-bach version. bloat and chart are
only included in the 2006-10-MR2 version. fop and lusearch are included in both
2006 and post-2009 versions. However, the two versions use different versions
of fop. The old version takes approximately 800-900ms, while the new version
takes 100-200ms. It is possible that CoCo and Chameleon used one of the 2006
versions, and that Artemis used one of the post-2009 versions. CollectionSwitch
used benchmarks from both versions. We refer to the 2009 version as fop and the
2006 version as fop-2006.

2.4 Experimental Design and Statistical Methods

In this work, we use structural causal models (SCMs) [PGJ16] to describe the
background and our experimental setup. A structural causal model is a directed
acyclic graph for which each vertex represents a feature of the domain of study,
and each arrow describes a causal relationship: - → . means “- directly causes
. ”.

1https://dacapobench.sourceforge.net/news.html
2https://sourceforge.net/projects/dacapobench/files/archive/2006-10-MR2/

https://dacapobench.sourceforge.net/news.html
https://sourceforge.net/projects/dacapobench/files/archive/2006-10-MR2/

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 141

Tools
Artemis Coco CollectionSwitch Chameleon

B
en

ch
m

ar
ks avrora x x x

bloat** x x x
chart** x
fop* x x x x
lusearch* x x
h2 x
xalan* x
sunflow x
pmd* x x

Table 1: DaCapo benchmarks used in our work, and their use in prior studies on
collection selection. We do not know which versions were used by the authors of
previous studies. They do not report it explicitly, and they include benchmarks
from both. Benchmarks marked with an asterisk were available in the version
2006-10-MR2. Benchmarks marked with two asterisks were only available in that
version.

We analyze our experimental data using Bayesian inference. Bayesian ref-
erence uses Bayes’ rule to make estimations based on a prior distribution and
a likelihood. The likelihood specifies the probability of the observed data (also
called evidence), given parameters, which we want to estimate. For each of those
parameters, we give a prior distribution, which describes the probable values of
the parameters, before any evidence is observed. The result of Bayesian inference
is a posterior distribution, which represents the likely values of the parameters. It
factors both the prior probability and the likelihood, and represents an update of
the prior, in the light of the evidence.

In our case, we design our priors based on the numbers reported in the original
studies. The prior distribution represents the expected effect of optimization before
we see any experimental result. The likelihood will specify how well estimates of
the speedups match the observed data.

For an introduction to Bayesian inference in software engineering research, we
refer to Furia et al. [FFT19]. For a more detailed introduction to Bayesian inference
with mention of structural causal models, we refer to McElreath’s approachable
textbook [McE20].

3 Background: What Influences Execution Time?
Figure 1 shows an SCM describing the influences at play in our experiments. We
measure execution time, but this execution time is affected by features internal to
the program (collection used, collection usage), but also external to the program
(JVM used, maximum heap size, CPU architecture, etc).

142
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

Execution timeCollection type

Computer
Architecture

Collection usage

Benchmark

Input Data JVM

GC

Max Heap Size

JIT

Number runs

Unobserved

Figure 1: An SCM of various influences on execution time for Java programs.
Independent variables are in green, and the experimenter selects them. Execution
time is the dependent variable. Variables in red are influenced by other variables.
Unobserved variables are variables that we cannot measure directly (at least not
without disturbing the measurements), and are shown in boxes. “Unobserved”
stands for the influences outside of the graph, which will influence our results
nonetheless (noise). That includes thread scheduling effects, the content of caches,
and the influence of other processes on execution time.

3.1 Benchmarks
CoCo and CollectionSwitch considered the benchmarks avrora, bloat, chart, fop,
lusearch, and h2. For bloat and chart, we use DaCapo version 2006-10-MR1.

For avrora, fop, lusearch and h2, we needed to fork the original repository.
To trace collection behavior, we needed to print the tracing results after the
benchmark is finished, but the original implementation called System.exit() when
the benchmark was finished. We forked the original repository 3 and removed
that method call. The DaCapo benchmark suite can be built into one single JAR,
but we build each benchmark in its own JAR, to make it easier to replace collection
in a benchmark’s dependencies.

3.2 Input Data
The DaCapo benchmark suite provides different workloads (small, default, large).
For the fop benchmark, only the default workload is available. For the others,
CoCo and CollectionSwitch both use the large workload, so we use the same
workload, to make comparisons easier.

3.3 Computer Architecture
We will run our experiments on three machines, which are described in table 2.
The running time of each benchmark is strongly influenced by the machine that

3The software is available at https://github.com/Noricc/dacapobench/tree/v042023

https://github.com/Noricc/dacapobench/tree/v042023

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 143

is used. For example, lusearch takes 162ms on average on Zen3, while it takes
eleven times longer on Sandy.

The effect of computer architecture on the execution time interacts with the
benchmark: If Zen3 is faster on average, it is not the fastest for all benchmarks.
For example, avrora takes 14s on Zen3 (which has the most RAM and the highest
number of cores), but takes about 8s on Cypress. As a result, we must consider
this interaction in our statistical analysis of the results.

System CPU Cores CPU Freq. Microarch.

Sandy Intel i7-3820 4 × 2 3.6–3.8 GHz Sandy Bridge
Cypress Intel i7-11700K 8 × 2 3.6–4.9 GHz Cypress Cove
Zen3 AMD EPYC 7713P 64 × 2 2.0–3.675 GHz Zen 3

System RAM OS: Ubuntu Kernel: Linux JDK

Sandy 16 GiB DDR3-1600 18.04.6 LTS 5.4.0 8.0.292-open
Cypress 128 GiB DDR4-3200 22.04.01 5.15.0 8.0.292-open
Zen3 512 GiB DDR4-3200 22.04.01 5.15.0 8.0.292-open

Table 2: Our benchmarking environments.

3.4 Java Virtual Machine
As far as we know, the choice of Java Virtual Machine can influence execution time
through the garbage collection strategy [Len+17], and JIT-compilation [GBE07].

We suspected that the standard library implementation can also influence
execution time. CoCo obtained significant speedups through the use of lazy ini-
tialization of collections. This lazy initialization was implemented in the standard
library in OpenJDK 7. We could therefore expect lower execution times with
OpenJDK 7.

To check this, we run bloat, chart, lusearch-2006 and fop-2006 with OpenJDK
6, 7 and 8, on Zen34. We run 4 replications of 20 runs per benchmark, for each
version. We keep the 10 last measurements as steady-state performance. We
then measure the standard error as a percentage of the mean. Table 3 shows
the standard error for each benchmark, we see that we could detect differences
of about 1% in execution time, except for lusearch, which is more unstable. We
observe no significant difference between replications (1 to 4), which indicates
that our results are stable.

To measure the effect of each variant, we use a linear model where the ex-
ecution time for sample 8 , the execution time C8 is the sum of the effect of the
benchmark 18 and the effect of the JDK version used E8 , plus some noise n .

log(C8) = U18 + VE8 + n8
4Post-2009 versions of DaCapo require at least JDK 8 to work, so we use the 2006 versions

144
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

benchmark mean std = std error std error (%)

bloat 1015.75 48.803 120.0 4.455 0.439
chart 1327.79 38.939 120.0 3.555 0.268
fop-2006 469.43 14.722 120.0 1.344 0.286
lusearch-2006 95.45 51.883 120.0 4.736 4.962

Table 3: Mean, standard deviation, and standard error for benchmark runs, the
last column shows the standard error as a percentage of the mean.

Figure 2: The running time of bloat relative to the number of consecutive runs,
on three machines. bloat seems to oscillate between two modes, but the mean
running time does not drop significantly over 15 runs.

Including the benchmark used is not absolutely necessary, however, we in-
clude it to get more precise estimates of the effect of each JDK version (narrower
confidence intervals).

On average, JDK 7 speeds up programs by between 2.3% and 8.0% compared
to JDK 6, while JDK 8 is between 7.8% and 13.1% faster than JDK 6. When we
detail per benchmark, we see that chart benefits the least from the change of JDK
(2.3-2.9% faster with JDK 7, 6.3-6.9% faster with JDK 8). lusearch-2006 benefits
the most, although we get larger confidence intervals (2.1-22.8% faster with JDK7,
7.8-27.3% faster with JDK 8).

Just-in-Time Compilation

Theeffect of Just-in-Time compilation on execution time is extensively documented
[GBE07; Tra+22; Bar+17; Xu13; CA18]. As we run the program for longer times,
the JVM “warms-up”, speeding up the program. Deciding exactly when a program
has reached steady-state performance is tricky [Bar+17; Tra+22]. For example, for
bloat, we observe that the benchmark does not seem to reach a stable steady-state.
The execution times oscillate between two modes, particularly for Sandy. Figure

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 145

2 shows the effect. In this case, we choose to consider the program has reached
steady-state when there is no significant downward trend.

In this work, we will use 15 runs of each benchmark. For fop and lusearch,
we observe that 15 runs is not enough, and increase that number to 150 iterations
for fop, and 50 for lusearch. We use the last 10 runs as steady-state performance.

Garbage Collection

Since Java is a garbage-collected language, the JVM pauses programs to re-claim
memory, so if there is more garbage collection, programs take more time. Lengauer
et al. [Len+17] report in their study of the effect of garbage collection on DaCapo
benchmarks that avrora barely spent time doing garbage collection (0.7 to 1.5%
of running time), while lusearch spent almost all its execution time performing
garbage collection. They have not tested bloat nor chart, since these benchmarks
were removed in 2009.

We checked how different DaCapo benchmarks use the heap by manual inspec-
tion with VisualVM. We run these benchmarks with OpenJDK version 8, which
uses the G1 Garbage collector. We tested a max heap size of 12GB and a max heap
size of 1GB.

We tried to run each benchmark with 12GB of heap size, but no benchmarks
used more than 2GB. avrora uses approximately 10-30MB of RAM. bloat used
a used maximum of 480MB, chart used 670MB, fop used a maximum of 100MB,
h2 used 1.5 GB of heap, lusearch used maximum 1.1GB. In our experiments, we
therefore use a max heap size of 2GB.

3.5 Collection Types
In this study, we focus on two groups of collections: popular collections from the
Java Collections Framework, and collections which were used in existing works,
such as CollectionSwitch and CoCo.

HashArrayList is a collection that was introduced by CollectionSwitch. It
essentially works like a HashSet, but preserved the insertion order, and is wrapped
in a list interface [CA18]. ArrayMap and ArraySet come from the FastUtils
library, and we can therefore expect software developers to use them. They
are used in CollectionSwitch [CA18]. CollectionSwitch also proposes so-called
Adaptive lists, but we only use those in our reproduction of CollectionSwitch.

3.6 Collection Usage
Collections are created at many program locations, so selecting which sites to
modify is important. We estimated collection usage by replacing constructor calls
in each of our benchmarks (including its dependencies), by wrapper classes that
count method invocations. This tracing infrastructure allowed us to count how
many collections were created at each program location, and how many method

146
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

Interface Classes

List ArrayList*, LinkedList*, HashArrayList
Map HashMap*, TreeMap*, LinkedHashMap*, ArrayMap
Set HashSet*, TreeSet*, LinkedHashSet*, ArraySet

Table 4: Collections that we included in our greedy search for best collection.
Classes marked with an asterisk are sources, which we can replace.

Benchmark Number of allocation sites

avrora 41
bloat 178
chart 60
fop 653
lusearch 35
h2 18

Table 5: Number of allocation sites found in each DaCapo benchmark

calls were performed on these collections. We call these metrics the “business” of
an allocation site, which we use to rank allocation sites by importance. Figure 3
displays the percentage of method invocations for collections, per allocation site,
compared to the total for all locations that we traced.

CollectionSwitch

CollectionSwitch selects all allocation sites that generate more than 1000 col-
lections. We implemented the same strategy, but our results show significant
differences with the original study. Table 6 shows the difference in number of se-
lected sites between the two studies. We contacted the authors of CollectionSwitch,
and determined possible causes of the discrepancies.

Costa et al used JBoss’ Byteman to trace collection usage 5, while we imple-
mented our own bytecode processing tool. We inspected their tracing scripts,
written in Byteman’s domain specific language. They indicate that Costa et al.
traced the usage of any class implementing the Collection interface. In our case,
we only trace the source collections listed in Table 4. For example, Costa et al.
probably trace collection usage for collections like CopyOnWriteArrayList,
while we do not.

5https://byteman.jboss.org/

https://byteman.jboss.org/

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 147

Figure 3: Percentage of method invocations for allocation sites for different bench-
marks, sorted by rank. By the 20th allocation site, we have covered more than
80% of method calls on collections for most benchmarks.

Benchmark CollectionSwitch Our Method

avrora 7 1
bloat 17 36
fop 15 33
lusearch 12 4

Table 6: Number of sites which instantiate more than 1000 collections, for Collec-
tionSwitch and for our approach. We would expect to find the same results, but
they differ substantially.

148
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

CoCo

We could not find any indication of what methods were used to select allocation
sites in CoCo. We decided to target every allocation site that was possible to
replace with a collection from CoCo. To study the impact of our selection of sites,
we also tried to compare variants where one single site was changed.

4 Methods

4.1 Experimental Setup

Execution time

Optimization

Variant

Benchmark Computer
Architecture

JIT

Number runs

Unobserved

0

1

2

3

Figure 4: The SCM of influences on execution time in our experiments. “Computer
Architecture” has the same meaning as in Figure 1. “Benchmark” now refers
to the name of the benchmark. “Variant” refers to the result of applying the
optimization to the benchmark and packaging it in a JAR. “Optimization” refers to
the optimization applied to the program (e.g. “Original”, “CoCo”, “Greedy search”,
etc.). We account for JIT-compilation by running the program several times, which
is reflected in the “Number runs” variable.

We describe our experimental design with an SCM, displayed in figure 4.
“Benchmark” refers to the benchmark to use as a source program. We select the
benchmarks avrora, bloat, chart, fop, lusearch, and h2. “Computer Architecture”
refers to the machine used for experiments. We use three machines, described in
Table 2. On each machine, we disabled frequency scaling.

In contrast to figure 1, the input data, the JVM and garbage collection are
absent from this SCM, because we do not vary these variables. Input data is not
included because we test only one workload per benchmark. The JVM and garbage
collection are absent because we use OpenJDK version 8.0.292 and a heap size of
2GB for all our measurements.

We are interested in the causal paths between “Optimization” and “Execution
time”, through “Variant”, numbered 0 to 3. Arrow 0 represents the whole process of
applying an optimization (e.g. CollectionSwitch) to the benchmark and packaging
it in an executable JAR. It includes selecting allocation sites to make replacements.

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 149

Arrow 1-3 represent the effects of running the variant and obtaining an execution
time. Arrow 3 describes the effect of the program on JIT-compilation. To take
JIT-compilation into account, we use 15 iterations of each benchmark, except for
fop, where we use 150 iterations, and lusearch, where we use 50 iterations. We
keep the 10 remaining at steady-state performance. Arrows 1 and 2 represent the
systematic and stochastic effects that can affect execution time. To separate the
two, we run 4 replications. For each, we randomize the order in which variants
are run.

4.2 Bayesian Inference

To analyze our results for RQ2, RQ3 and RQ4, we will use a Bayesian linear model.
Bayesian inference allows us to include information from the previous works of
CoCo and CollectionSwitch into our statistical analysis.

Our analysis is implemented using Turing [GXG18]. When there are few
alternatives, we will report the full posterior distribution, and when there are
many (e.g. when comparing allocation sites for RQ4), we will use credible intervals.
Credible intervals are the Bayesian equivalent of confidence intervals. For example,
the 90% credible intervals are intervals in which the value of interest has a 90%
probability to be.

4.3 RQ1: What is the best possible improvement on DaCapo
benchmarks?

For each benchmark, we estimate the total time spent manipulating collections.
We use our tracing framework measure the percentage of total time spent in
collections. Our tracing framework tracks the time spent in method calls, but
will not consider the time spent iterating over collections, since it doesn’t track
iterators.

4.4 RQ2: How much improvement can we obtain from a
static replacement approach?

To study the impact of static collection replacements, we use a greedy approach to
collection selection. Given a benchmark, we select several allocation sites, which
are candidates for replacements. For each site, there can be several alternatives to
the collection instantiated in the original program. Greedy search replaces the
collection by each alternative, and compares the confidence intervals of running
times. The suggestion is the collection yielding the lowest execution time for the
program location. Once we gathered suggestions for each sites, we merge those
changes to produce the result. To apply the changes, we use our own bytecode
rewriting tool.

150
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

We select the 10 allocation sites with most method invocations, for each
benchmark. Because the replacements applied depend of the benchmark used, we
will run greedy search for each benchmark separately. We have tested with more
(including with all allocation sites), but observed no significant improvement past
the first 10 sites.

We do this for our three machines, but we will report the mean improvement,
since we did not observe large variations between machines (a collection that
improves execution time on one machine is likely to also work on another). We
will report both the mean effect (across all benchmarks) and the detail for each
benchmark.

4.5 RQ3: Howmuch improvement can we obtain from adap-
tive collections, such as CoCo and CollectionSwitch?

Experiments

For each benchmark, we compare the original variant with a variant optimized by
CoCo and CollectionSwitch.

Challenges to Reproduction

CoCo and CollectionSwitch lack information about which allocation sites were
selected in benchmarks, what version of the DaCapo benchmarks were used, and
what versions of the JVM they used.

The authors of CoCo and CollectionSwitch to not report on which versions
of the JDK they used. We found a JAR file for CoCo, for which we checked the
bytecode version, which indicates that they used JDK 6. For CollectionSwitch,
the Maven file indicates that the authors used JDK version 8. So far, our class
replacement tooling relies on Java 8-specific features, sowe could not run programs
with CoCo, and compare with Java 6.

They also do not report explicitly on which version of the DaCapo benchmark
they used. Both tools were tested on avrora, which is only present in the 9.12-
MR1 version, but also on bloat, which is only present in the 2006-10-MR1 and the
2006-10-MR2 versions.

4.6 RQ4: What role do different program locations play in
observed speedups?

To study the impact of each program location on the performance of an optimiza-
tion, we study the effect of collection changes to single sites. For each optimization
and benchmark, we generate variants of the benchmark that only change one
allocation site. We rank the selected allocation sites by “business”, and pick the 20
busiest sites. For CoCo and Greedy search, business is defined as the total number
of method invocations on collections instantiated at that site. In CollectionSwitch,

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 151

business is defined as the number of instantiated collections at that site, so we use
the same definition.

For example, if we take the bloat benchmark, select the busiest allocation site,
and insert a call to the appropriate CoCo collection at that site. This variant will
be called bloat/coco@1. For CollectionSwitch, we apply the same strategy. It
should be noted that bloat/coco@1 and bloat/collectionswitch@1 may target
different allocation sites, because the definition of “business” is not the same if
both cases.

Greedy search already tries several collections for each site, we reuse the
experimental data used to generate the greedy search variant. In that case, the
variant will be named after the change that was applied. Each change is noted
<source>-><target>@<site-rank>. Where source and target are collection
types. For compactness, we use shorthands for the names of collections, reported
in Table 9. For example bloat/AL->LL@1 is a variant that replaces an ArrayList
by a LinkedList at site 1.

Because there are many variants to consider, we focus on bloat and lusearch,
and run this experiment on one single machine: Zen3. We chose lusearch because
it is the benchmark for which CoCo and CollectionSwitch reported the highest
speedups. bloat is the benchmark for which we found the most effective optimiza-
tions with greedy search, so we select it as well. We selected one single machine
because we observed no major interactions between a machine and the effect of
an optimization.

5 Statistical Analysis

5.1 RQ1: What is the best possible improvement on DaCapo
benchmarks?

To compute the percentage of time spend in collections, we divide the time spent
in collections by the total runtime of the tracing variant (which accounts for the
tracing overhead). We use the geometric mean of two replications.

5.2 RQ2: How much improvement can we obtain from a
static replacement approach?

Mean Effect of Greedy Search

This model measures the average effect of greedy search, for all benchmarks.
We define our model for the mean effect of treatment as follows. The log of the
execution time for sample 8 (noted log(C8)) is distributed according to a normal
distribution, with a mean `8 and a variance f , which is common to all samples. `8
is the sum of:

152
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

• The mean execution time of the benchmark 18 used for sample 8 , and the
machine<8 used for sample 8 , noted U [18 ,<8].

• The mean effect of the variant of the program E8 used for sample 8 , noted
V [E8].

More formally, the model is:

log(C8) ∼ Normal(`8 , f)
`8 = U [18 ,<8] + V [E8]

U is a matrix of parameters, while V is an array, which is why we use the
notation U [8, 9]. f is a single coefficient. Because we use a Bayesian model, we
need to assign priors to each parameter. We denote the set of all benchmarks as �,
the set of machines as " .

f ∼ Exponential(0.1)
U [1,<] ∼ Normal(7.5, 2.5),∀1 ∈ �,< ∈ "

V [greedy] ∼ Normal(0.0, 0.2)
V [original] ∼ Normal(0.0, 0.2)

We implement this model with Turing, and use four chains of 1000 samples
from a NUTS sampler to estimate the posterior of U , V , and f . The posterior is
represented in Turing as a vector of samples. To measure the speedup of the
greedily-optimized variant over the original, we use V [greedy] − V [original].

Interaction Between Benchmarks and Greedy Search

In this section, we re-use the previous model, but instead of having one single
effect per variant, we have one effect per benchmark and variant. V is not an array,
but a matrix of coefficients.

log(C8) ∼ Normal(`8 , f)
`8 = U [18 ,<8] + V [E8 , 18]

We use the similar priors as earlier.

f ∼ Exponential(0.1)
U [1,<] ∼ Normal(7.5, 2.5),∀1 ∈ �,< ∈ "

V [greedy, 1] ∼ Normal(0.0, 0.2) ∀1 ∈ �
V [original, 1] ∼ Normal(0.0, 0.2) ∀1 ∈ �

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 153

We implement this model with Turing, and use four chains of 1000 samples
from a NUTS sampler to estimate the posterior distributions. To measure the
speedup of the greedily-optimized variant over the original, we use V [greedy, 1] −
V [original, 1] ∀1 ∈ �.

5.3 RQ3: Howmuch improvement can we obtain from adap-
tive collections, such as CoCo and CollectionSwitch?

We analyze the mean effect (averaged over machines and benchmarks), and the
interaction between the benchmark and the adaptive collections used. The study
of interactions allows us to see if there are differences in effectiveness, for different
benchmarks.

Mean Effect of CoCo and CollectionSwitch

Because there is prior work on CoCo and CollectionSwitch, we can use this prior
work to define our priors. We will start by estimating the mean effect of CoCo
and CollectionSwitch across many benchmarks, using numbers from the original
studies.

The prior work reports only the mean effects for different benchmarks. We
write a model assuming they come from a common distribution, with an unknown
mean and variance, which we try to estimate. Below is the model for estimating the
mean effect of CoCo, based on the speedups observed on different benchmarks in
the original study. The model for CollectionSwitch is the same, but with different
numbers.

log(0.96) ∼ Normal(`coco, fcoco)
log(0.84) ∼ Normal(`coco, fcoco)
log(0.91) ∼ Normal(`coco, fcoco)
log(0.66) ∼ Normal(`coco, fcoco)
log(0.89) ∼ Normal(`coco, fcoco)

`coco ∼ Normal(0.0, 0.2)
fcoco ∼ Exponential(0.1)

To return point estimates, we take the mean of the posterior distributions for
`coco and fcoco, and do the same process for CollectionSwitch. For CoCo, our prior
for the mean effect will be Normal(−0.148, 0.158). For CollectionSwitch, our prior
will be Normal(−0.044, 0.085).

154
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

Mean Effect of Adaptive Collections

We use a similar model to the model defined in section 5.2.

log(C8) ∼ Normal(`8 , f)
`8 = U [18 ,<8] + V [E8]

We set the priors based on the results from section 5.3. We denote the
set of all benchmarks �, the set of machines " , and the set of variants + =

{original, coco, collectionswitch}.

f ∼ Exponential(1.0)
U [1,<] ∼ Normal(7.5, 2.5),∀1 ∈ �,< ∈ "
V [coco] ∼ Normal(−0.148, 0.158)

V [collectionswitch] ∼ Normal(−0.044, 0.085)
V [original] ∼ Normal(0.0, 0.01)

We implement this model with Turing, and use two chains of 1000 samples
from a NUTS sampler to estimate the posterior of U , V , and f . The prior for CoCo
and CollectionSwitch is not centered at zero, which means that the model expects
CollectionSwitch to provide a light speedup, and CoCo a more important speedup.

Interactions Between Benchmark and Adaptive Collections

We re-use the previous model, but instead of one single effect per variant, we have
one effect per benchmark and variant.

log(C8) ∼ Normal(`8 , f)
`8 = U [18 ,<8] + V [E8 , 18]

We use the similar priors as earlier.

f ∼ Exponential(1.0)
U [1,<] ∼ Normal(7.5, 2.5),∀1 ∈ �,< ∈ "

V [coco, 1] ∼ Normal(−0.148, 0.158) ∀1 ∈ �
V [collectionswitch, 1] ∼ Normal(−0.044, 0.085) ∀1 ∈ �

V [original, 1] ∼ Normal(0.0, 0.01) ∀1 ∈ �

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 155

5.4 RQ4: What role do different program locations play in
observed speedups?

To analyze the results, we also use a Bayesian model. The difference is that we
instantiate one model per benchmark and tool (2 × 3). For each instance, the
prior of the effect for each location is centered around the reported effect in the
original study. For example, CoCo reported a 4% speedup on bloat, so our prior
is Normal(log(0.96), 0.1). Table 7 shows the reported effects for each tool and
benchmark.

Benchmark Tool Effect
lusearch CoCo 0.96
bloat CoCo 0.66
lusearch CollectionSwitch 0.85
bloat CollectionSwitch 1.00

Table 7: The effect of collection selection tools on bloat and lusearch, as reported
in the prior work

The statistical model infers the effect of applying to tool 2 to the benchmark 1
on the centered log execution time. The value 4 [1, 2] is the effect of the collection
selection tool 2 on the benchmark 1, as reported in table 7.

log(C8) − log(C8) ∼ Normal(`8 , f)
`8 = V [E8]
f ∼ Exponential(0.1)

V [original] ∼ Normal(0.0, 0.01),∀1 ∈ �
V [E8] ∼ Normal(log(4 [1, 2]), 0.1),∀8 ∈ {1 . . . 20}

6 Results

6.1 RQ1: What is the best possible improvement on DaCapo
benchmarks?

Table 8 shows the results of the experiments. We see that for avrora and fop,
the percentage of time spent manipulating collections is lower than 10%. bloat,
lusearch and h2 are the benchmarks which spend the most significant amount of
time manipulating collections.

156
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

benchmark startup (%) steady (%)

avrora 7 4
bloat 68 34
chart 28 17
fop 16 7
h2 36 20
lusearch 34 34

Table 8: Percentage of total running time spent in collections, for each DaCapo
benchmark.

6.2 RQ2: How much improvement can we obtain from a
static replacement approach?

We observe that the mean effect of greedy search is between 6% and 8% improve-
ment. However, this effect is very dependent on the benchmark. The strongest
effect is bloat, for which greedy search managed to obtain a mean speedup be-
tween 47-48% speedup. It has a small positive effect on fop, between 0.5% and 2%
speedup. However, greedy search fails to obtain a significant speedup for avrora,
chart, lusearch, and h2. Figure 5 shows the posterior distribution of the difference
in percentages between the original program and the greedily optimized variant.

Figure 5: Posterior difference (in %) between the original and a greedily-optimized
variant on different benchmarks, shown as a cumulative distribution function.
Greedy search finds a major optimization for bloat, and some minor speedups for
lusearch and fop.

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 157

Figure 6: The posterior of the effect of mean effect for CoCo and CollectionSwitch,
shown as a cumulative distribution function. CoCo has a effect of +1.5 to +3.5%
on average, while CollectionSwitch has an effect of -1 to +1.5% on average.

6.3 RQ3: Howmuch improvement can we obtain from adap-
tive collections, such as CoCo and CollectionSwitch?

Mean Effect of Adaptive Collections

Figure 6 shows the posterior distribution of the mean speedup vs the original, for
both CollectionSwitch and CoCo. Neither CollectionSwitch nor CoCo speed up
all benchmarks on average. For CoCo, posterior mean effect is far from its prior,
which shows that our data contradicts the original findings.

Effect of Adaptive Collection on Each Benchmark

Figure 7a and 7b show the posterior of the effect of adaptive collections on each
benchmark, as a cumulative distribution function. When we detail by benchmark,
we see that for CoCo significantly slowed down bloat by 5 to 8.5%. For the other
benchmarks, we observe no significant effect. CollectionSwitch speeds up bloat
by 2.5 to 5.5%, and slows down lusearch by 2.0 to 5.0%. For the other benchmarks,
it has no significant effect.

158
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

(a) CoCo slows down bloat by 5.5 to 10.5%, and both chart and
fop by 2 to 5%. For the other benchmarks, the posterior of the
effect does not show strong effects.

(b) CollectionSwitch speeds up bloat by 1 to 5%, and slows
downs lusearch by 0.5 to 5.0%.

Figure 7: The posterior effect of adaptive collections, shows as a cumulative
distribution function.

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 159

6.4 RQ4: What role do different program locations play in
observed speedups?

Greedy Search

Figure 8a shows the effect of different changes applied to the 10 busiest allocation
sites in bloat. Allocation site number 2 seems particularly important, since there
are two changes to it that incur a major speedup. Figure 8b shows the effect of
different changes applied to the 10 busiest allocation sites in lusearch. Greedy
search could not find any change for lusearch that incurred any strong positive or
negative effect.

Collection Shorthand

ArrayList AL
LinkedList LL
HashArrayList HAL

HashMap HM
TreeMap TM
LinkedHashMap LHM
ArrayMap AM

HashSet HS
TreeSet TS
LinkedHashSet LHS
ArraySet FUAS

Table 9: Shorthand notation for collections, used in figures 8a and 8b

160
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

(a) For bloat, switching site 2 from a
HashMap to a LinkedHashMap speeds up
the program by almost 50%.

(b) For lusearch, we do not find any change
with significant positive effects.

Figure 8: Mean difference and its 90% credible intervals for changes applied to
allocation sites in lusearch and bloat.

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 161

CoCo

Figure 9a shows the 90% credible intervals for the difference in percentages, when
CoCo is applied to different allocation sites of bloat. Among the 20 busies sites,
some sites are not used because they were not replaceable by a CoCo collection.
We see that CoCo has a positive effect of approximately 10% for allocation site 2,
but has a detrimental effect for the several other sites.

Figure 9b shows the 90% credible intervals for the difference in percentages,
when CoCo is applied to different allocation sites of lusearch. We see that CoCo
has a small positive effect for one of the sites, and a detrimental for another. For
most of the sites, we observed no effect.

(a) For bloat, CoCo has a positive effect
for one allocation site (2), but is detrimen-
tal for at least two others, which might
explain the overall negative effect.

(b) For lusearch, We observed that CoCo
was does not have a positive effect on
most allocation sites.

Figure 9: Mean difference and its 90% credible intervals for CoCo applied to
different allocation sites.

162
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

CollectionSwitch

Figure 10a shows the 90% credible intervals for the difference in percentages,
when CollectionSwitch is applied to different allocation sites of bloat. We see that
CollectionSwitch has no positive effect, when applied on individual sites.

Figure 10b shows the 90% credible intervals for the difference in percentages,
when CollectionSwitch is applied to different allocation sites of lusearch. It has a
small positive effect for site 19, and a detrimental for site 1. For most of the sites,
we observed no effect.

(a) For bloat, we could not find a positive
effect from CollectionSwitch, on individ-
ual sites.

(b) For lusearch, CollectionSwitch ap-
plied to site 19 has a small positive ef-
fect, but it is probably compensated by
the stronger negative effect on allocation
site 1.

Figure 10: Mean difference and its 90% credible intervals for CollectionSwitch
applied to different allocation sites.

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 163

7 Discussion

7.1 RQ1: What is the best possible improvement on DaCapo
benchmarks?

The time spent manipulating collections varies significantly between benchmarks.
avrora and fop use collections for less than 10% of their running time. lusearch
and bloat spend at least 34% of the time manipulating collections. h2 spends 20%
of the time manipulating collections. bloat, h2 and lusearch are therefore more
likely to benefit from collection selection than avrora and fop.

7.2 RQ2: How much improvement can we obtain from a
static replacement approach?

For bloat, greedy search found a major optimization, speeding up the benchmark
by almost 50%. For other benchmarks, greedy search could find optimizations
with a small positive effect.

For most benchmarks, the effect of optimization is below the bounds reported
in Table 8. For bloat, we expected 34% of execution time spent in collections,
but we could speed bloat up by 46 to 48%. That indicates that our approach to
estimate time spent in collections under-estimates it.

We think the discrepancy could be due to the fact that our approach to esti-
mating the time spent in collection does not trace iterators. The most effective
optimization for bloat switches a HashMap to a LinkedHashMap. Iterating on a
LinkedHashMap is faster than for a HashMap 6.

7.3 RQ3: Howmuch improvement can we obtain from adap-
tive collections, such as CoCo and CollectionSwitch?

We could not reproduce results from CoCo or CollectionSwitch. CoCo reported
speedups between 4% for bloat and 44% for lusearch. In our experiments, CoCo
slows down bloat by 5.5 to 10.5%, and has no effect on lusearch. CollectionSwitch
reported a speedup of 6% for h2 and 15% for lusearch. In our case, we observe
that CollectionSwitch slows down lusearch by 2.0 to 5.0%, but optimizes bloat by
2.5 to 5.5%. It does not seem to have an effect on h2.

Because greedy search was more effective that both CoCo and Collection-
Switch, we conclude that we could not find evidence that adaptive collections are
more effective than static approaches at reducing execution time.

6https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedHashMap.html

164
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

7.4 RQ4: What role do different program locations play in
observed speedups?

Because we could not reproduce the methods CoCo and CollectionSwitch use to
select allocation sites, we made a detailed study on the effect of these collections
for individual allocation sites. We see that for some allocation sites, adaptive
collections did have a noticeable positive effect (e.g. CoCo could speed up bloat
by 10%). For lusearch, CoCo was not effective for any of the sites that we tried,
but greedy search also failed to find major optimizations.

CollectionSwitch causes a 5% speedup on bloat, but we have been unable to
find which allocation sites were responsible for these speedups. We ran the same
experiment with the 50 most important allocation sites, but found no sites which
could explain the 5% speedup.

One possible explanation for this behavior is a positive interaction between
several changes. It is possible that each change has no positive effect, but that
several changes combined have a positive effect. For example, in the case where
collections store collections as elements.

Another possible explanation is a positive effect that only happens for some
runs. The distribution of execution times for bloat is bi-modal. In some cases,
bloat runs 30% faster than usual. We suspected that frequency scaling was the
cause of this behavior, but turning it off for our experiments did not have any
impact. Since we do not have an explanation for the modality of the distribution,
it is possible that small changes change the probability of falling in the fast or
slow mode.

8 Threats to Validity

8.1 Internal Validity
Steady-state Performance Setting a precise threshold to determine steady-
state performance is tricky [Bar+17; GBE07; Tra+22]. We manually inspected the
execution times of benchmarks and selected the lowest threshold for which we
saw that the benchmarks reached a plateau. It is possible that our benchmarks
did not reach steady-state performance.

Statistical Power We used 10 measurements, but did not observe significant
effects for most of our benchmarks. Using more benchmark runs will reduce the
variance of the posterior distributions and therefore improve the precision of the
estimates.

Variance per Benchmark Our statistical analysis assumes that unobserved
factors (“noise”) influences different benchmarks in the same way. There is there-
fore one single f term in each of our statistical models. We tried running the

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 165

statistical analysis with one variance term per benchmark. We observed that the
estimated effects were more precise, but saw no evidence of bias in the results:
the mean of the posterior distributions were approximately the same.

8.2 External Validity
JDK Version We confirmed that the version of JDK could have a significant
impact on execution time. However, we could not reproduce CoCo with JDK 6,
because our bytecode manipulation tool required default methods from Java 8,
which we used to

Selected Allocation Sites The CoCo study did not report the allocation sites
that were selected for their experiments. We tried to reproduce the strategy
used for CollectionSwitch, but differences in implementation prevented us from
selecting the same sites. For a more nuanced comparison, we showed a detail of
the effect of CoCo, for benchmarks were we observed a strong effect, to evaluated
how the choice of allocation site resulted in speedups.

Selected Benchmarks We selected six benchmarks from DaCapo, focusing on
those used in CoCo and CollectionSwitch. We have not tested with xalan or pmd.

9 Conclusion and Future Work
In this work, we investigated how much improvement we could obtain by manip-
ulating collections in six DaCapo benchmarks. We showed that for avrora and
fop, we were unlikely to obtain large speedups, because they do not spend much
time manipulating collections.

We use a greedy approach to optimize benchmarks, and observed a major
speedup in only one benchmark: the execution time of bloat was reduced by
almost 50%. For the other benchmarks, however, we did not observe such strong
effects.

We tried to reproduce previous studies which used adaptive collections. For
CoCo, we did not observe any speedup. However, in the case of bloat, CoCo could
speed up the benchmark by 10% when used on a single allocation site.

We observed a 5% improvement by CollectionSwitch on bloat. For the other
benchmarks, we did not observe significant effects. We could not find a specific
allocation site in bloat that was responsible for the 5% speedup.

9.1 Future Work
We could not reproduce results from the original works, but we used a different
selection of allocation sites, and different JDK version. Future work could try

166
Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches

with Adaptive Collections

to test if CoCo is more effective with JDK version 6 and if using the exact same
allocation sites as those in CollectionSwitch helps.

We could not explain which allocation site was responsible for the 5% speedup
observed when using CollectionSwitch on bloat. We suspect it could be due to
an interaction effect, in which individual changes do not have an effect, but their
combination does.

In our statistical analysis, we noticed that the variance of measurements
differs significantly between benchmarks. Implementing a model with benchmark-
specific variance terms is possible, and could be extended to variance specific to
the benchmark and machine.

References
[Bar+17] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah

Mount, and Laurence Tratt. “Virtual machine warmup blows hot
and cold”. en. In: Proceedings of the ACM on Programming Languages
1.OOPSLA (Oct. 2017), pp. 1–27.

[Bas+18] Michail Basios, Lingbo Li, Fan Wu, Leslie Kanthan, and Earl T. Barr.
“Darwinian data structure selection”. en. In: Proceedings of the 2018
26th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering - ESEC/FSE
2018. Lake Buena Vista, FL, USA: ACM Press, 2018, pp. 118–128.

[Bla+06b] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khan,
Kathryn S McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg,
Daniel Frampton, Samuel Z Guyer, Martin Hirzel, Antony Hosking,
Maria Jump, Han Lee, J Eliot B Moss, Aashish Phansalkar, Darko
Stefanovic, and Thomas VanDrunen. “The DaCapo Benchmarks: Java
Benchmarking Development and Analysis”. en. In: (2006), p. 22.

[CA18] Diego Costa and Artur Andrzejak. “CollectionSwitch: a framework
for efficient and dynamic collection selection”. en. In: Proceedings of
the 2018 International Symposium on Code Generation and Optimiza-
tion - CGO 2018. Vienna, Austria: ACM Press, 2018, pp. 16–26.

[FFT19] Carlo A. Furia, Robert Feldt, and Richard Torkar. “Bayesian Data
Analysis in Empirical Software Engineering Research”. en. In: IEEE
Transactions on Software Engineering (2019). arXiv:1811.05422 [cs,
stat], pp. 1–1.

[GXG18] Hong Ge, Kai Xu, and Zoubin Ghahramani. “Turing: a language
for flexible probabilistic inference”. In: International Conference on
Artificial Intelligence and Statistics, AISTATS 2018, 9-11 April 2018,
Playa Blanca, Lanzarote, Canary Islands, Spain. 2018, pp. 1682–1690.

Paper IV: Automatic Collection Selection for Java: Comparing Static Approaches
with Adaptive Collections 167

[GBE07] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statistically
Rigorous Java Performance Evaluation”. In: Proceedings of the 22nd
Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages and Applications. OOPSLA ’07. Montreal, Quebec,
Canada: Association for Computing Machinery, 2007, pp. 57–76.

[Jun+11a] Changhee Jung, Silvius Rus, Brian P. Railing, Nathan Clark, and
Santosh Pande. “Brainy: effective selection of data structures”. In:
ACM SIGPLAN Notices 46.6 (June 2011), pp. 86–97.

[Len+17] Philipp Lengauer, Verena Bitto, Hanspeter Mössenböck, and Markus
Weninger. “A Comprehensive Java Benchmark Study on Memory
and Garbage Collection Behavior of DaCapo, DaCapo Scala, and
SPECjvm2008”. en. In: Proceedings of the 8th ACM/SPEC on Interna-
tional Conference on Performance Engineering. L’Aquila Italy: ACM,
Apr. 2017, pp. 3–14.

[McE20] Richard McElreath. Statistical rethinking: a Bayesian course with ex-
amples in R and Stan. 2nd ed. CRC texts in statistical science. Taylor
and Francis, CRC Press, 2020.

[MSS10] Nick Mitchell, Edith Schonberg, and Gary Sevitsky. “Four Trends
Leading to Java Runtime Bloat”. In: IEEE Software 27.1 (Jan. 2010).
Conference Name: IEEE Software, pp. 56–63.

[PGJ16] Judea Pearl, Madelyn Glymour, and Nicholas P. Jewell. Causal infer-
ence in statistics: a primer. Chichester, West Sussex: Wiley, 2016.

[SVY09] Ohad Shacham, Martin Vechev, and Eran Yahav. “Chameleon: Adap-
tive Selection of Collections”. en. In: Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (2009), p. 11.

[Tra+22] Luca Traini, Vittorio Cortellessa, Daniele Di Pompeo, and Michele
Tucci. “Towards effective assessment of steady state performance in
Java software: are we there yet?” en. In: Empirical Software Engineer-
ing 28.1 (Nov. 2022), p. 13.

[Wan+22] Chengpeng Wang, Peisen Yao, Wensheng Tang, Qingkai Shi, and
Charles Zhang. “Complexity-guided container replacement synthe-
sis”. en. In: Proceedings of the ACM on Programming Languages 6.OOP-
SLA1 (Apr. 2022), pp. 1–31.

[Xu13] Guoqing Xu. “CoCo: Sound and Adaptive Replacement of Java Col-
lections”. In: ECOOP 2013 – Object-Oriented Programming. Ed. by
Giuseppe Castagna. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 1–26.

	Introduction
	The Collection Selection Problem
	Research Questions
	Outline

	Background
	Collection Type
	Collection Usage, Program and Input Data
	Hardware
	Java Virtual Machine
	Summary

	Related Work
	Target Programming Language
	Performance Metrics
	Replacement Strategy
	Collections and Optimizations
	Evaluation
	Comparison of Collection Selection Tools
	Summary

	Machine Learning and Collection Performance Prediction
	Architecture
	Modeling Collection Usage
	Predicting Collection Performance
	Summary

	Evaluating Java Programs
	Design of Experiments
	Design of Experiments and Causal Inference
	Summary

	Analyzing Experimental Results
	Hypothesis Testing
	Confidence Intervals
	Bayesian Statistics
	Linear Regression
	Hierarchical Models
	Summary

	Contributions
	JBrainy: Micro-benchmarking Java Collections with Interference (Work in Progress Paper)
	Performance Analysis with Bayesian Inference
	Classification-based Collection Selection for Java: Effectiveness and Adaptability
	Automatic Collection Selection for Java: Comparing Static Approaches with Adaptive Collections

	Threats to Validity
	Internal Validity
	External Validity
	Summary

	Conclusions and Future Work
	Collection Selection
	Benchmarking and Experimental Design
	Conclusions
	Final Words

	Included Papers
	Included Papers
	JBrainy: Micro-benchmarking Java Collections with Interference (Work in Progress Paper)
	Introduction
	Methods
	Experiments
	Discussion
	Related work
	Conclusions and Future Work
	Acknowledgements
	References

	Performance Analysis with Bayesian Inference
	Introduction
	Example: Collection Selection in Java
	Model with interactions
	Discussion
	References

	Classification-based Collection Selection for Java: Effectiveness and Adaptability
	Introduction
	Related work
	Brainy
	Porting Brainy to Java: Brainy4J
	Effectiveness of Brainy4J
	Adaptability of Brainy4J
	Obstacles to Effectiveness
	Threats to Validity
	Discussion
	Conclusions
	Acknowledgements
	References

	Automatic Collection Selection for Java: Comparing Static Approaches with Adaptive Collections
	Introduction
	Related Work
	Background: What Influences Execution Time?
	Methods
	Statistical Analysis
	Results
	Discussion
	Threats to Validity
	Conclusion and Future Work
	References

