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Abstract

Cities are the pinnacle of human change to the environment, creating unique types
of ecosystems which present many challenges to local organisms: habitat
fragmentation, introduced species, and various pollutants. Being crucibles of
anthropogenic effects, urban ecosystems offer opportunities to understand how
humans impact nature. Moreover, since a majority of the world’s population resides
in cities today, urban nature has become the most frequently encountered type of
nature in everyday life. Studying urban ecology therefore has the potential to shed
light on both sides of the interaction between people and nature. In this thesis, I used
an interdisciplinary approach to explore the effects of urbanization on vegetation,
arthropods, birds, and people. Studying several taxa, and using methods from
Ecology, Physiology, Sociology, and Aerosol technology, I aimed to develop a
holistic and multifaceted understanding of the urban ecosystem. Specifically, I
investigated urban trophic interactions, how air pollution and nutrition may affect
animal physiology, and how local wildlife influences children’s well-being and
perception of nature. I outline three key findings from the six papers forming the
basis of my thesis: (1) plant origin is a strong determinant for urban arthropod
abundance and breeding success of birds. Namely, non-native trees show a negative
effect, with a magnitude and consistency over years, which indicates that vegetation
composition is a key driver limiting animal populations in cities. (2) urban birds are
constrained by food quality (specific nutrients) during breeding, likely due to low
abundances of certain arthropods in cities. Moreover, high quantities of low-quality
food (e.g., from human sources) do not compensate for the urban birds’ dietary
deficiency and may instead lead to reduced capacity to mount physiological
responses to deal with air pollutants or infections. (3) children’s relation to nature
(attitude and knowledge) is not impacted by urbanization but predicted instead by
socioeconomic factors and the quality of nature close to their homes. These local
differences call for more detailed approaches when studying cities since both social
and environmental variation within urban areas can be more consequential than
general divides. In this thesis, I demonstrate the importance of native vegetation in
cities and food quality for urban animals. Local wildlife influences people and by
better understanding the urban ecosystem, we are one step closer to building cities
that will allow future generations to learn about species and enjoy nature near their
homes.



Popularvetenskaplig sammanfattning

En stad &r resultatet av otaliga ménskliga fordndringar av miljon. Fororeningar,
mindre gronska och ett varmare lokalt klimat &r typisk for stadsmiljo, men pa trots
av detta finns det fortfarande natur hir. Aven om stadsnaturen &verlag 4r vildigt
fordndrad kan det finnas hoga naturvirden och biologisk méngfald i vara stader,
sarskilt 1 storre parker. En av anledningarna till detta &r att stider har byggts i
omriden som historiskt sett haft ménga naturresurser och ddrmed ofta ocksa
biologisk méngfald. Eftersom stider koncentrerar ménga miljofordndringar pé en
plats &r staden en utmérkt arena for att studera hur ménniskor paverkar natur och
miljo. Dessutom bor en majoritet av jordens befolkning i stéder, vilket betyder att
stadsnatur idag dr den vanligaste naturtypen att méta i vardagen. Det innebér att
stadsnaturen har en viktig roll att spela i naturupplevelser, vilka bade kan paverka
vart vilméende och véara generella uppfattningar om djur och véxter.

Att studera hur stider paverkar och formar lokal natur kallas urban ekologi, vilket
refererar till samspelet mellan djur, véxter och den fysiska miljo som urbanisering
har skapat (t.ex. luftféroreningar och hérdgjorda ytor). I den hér avhandlingen
undersokte jag det urbana ekosystemet: hur djur och vixter paverkas av stider, men
dven hur vi ménniskor kan bli péverkade av den natur som skapats hér.
Avhandlingen syftar till att framstélla en dvergripande och sammanhéingande bild
av det urbana ekosystemet och hur det fungerar. Mina studier omfattade dérfor olika
organismer och metoder fran flera forskningsfilt: ekologi, fysiologi, sociologi och
aerosolteknologi. Giéllande studieorganismer fokuserade jag fridmst pa
niringskedjan fran trad till faglar, vilken ocksé inbegriper insekter och spindlar.
Storst fokus lag dock hos figlarna, som ar en mycket vélstuderad djurgrupp, inte
minst i urban ekologi. Mer specifikt undersokte jag hur frimmande tradarter, vilka
ar vanliga 1 stadsplanering, péverkade sméafaglars hdckning och méngden lokala
insekter samt spindlar. Jag testade dven vilket ndringsémne som stadsfaglar kan
tinkas ha brist pd och hur effekten av bade diet och vegetation kan paverkas av
luftféroreningar. Hér anvinde jag mig av fysiologiska markdrer, det vill séga
mitningar som gav insikt i faglarnas fysiska tillstind och hilsa, till exempel
blodvirden. Dértill studerade jag ocksd hur barns védlméende och uppfattning av
natur (kunskap och attityd) péverkas av interaktioner med vilda djur i och utanfor
stader.



Resultaten av de sex forskningsartiklarna som min avhandling bygger pé, visar att
inhemska vixter (arter som har funnits i ekosystemet i 6ver 700 ér) &r mycket viktiga
for djur i staden. Frimmande trdd hyser patagligt farre insekter och spindlar;
sméfaglar (bldmes och talgoxe) undviker att hdcka i omrdden med maénga
fraimmande trdd och ungarna véger mindre om faglarna trots allt bositter sig dér.
Effekten av trddens ursprung var stor och ihdllande over flera ar, vilket tyder pé att
just vixtsammanséttning dr en av huvudforklaringarna till varfor ménga djur klarar
sig sdmre i stdder. Jag kunde &ven visa att det dr kvaliteten (ndringsimnena) av
fdglarnas foda som sannolikt gor att ménga figelarters ungar &r i sémre skick i
stader: en sdrskild omega-3 fettsyra (DHA) visade sig vara viktigare for
stadstalgoxars tillvixt &n méngden mat. Den sannolika kéllan till fettsyran i naturen
ar spindlar. En stor mingd mat av lidgre kvalitet, till exempel matrester eller vanlig
fdgelmat, verkar inte kunna kompensera for néaringsbristen och kan istéllet minska
féglars kapacitet att klara av luftféroreningar. Att mata figlar kan ddremot vara ett
sdtt att skapa ett band till naturen for ménniskor, ett band som forskare tidigare har
resonerat kan ha notts ut pd grund av urbanisering. Mina resultat visar daremot att
det inte &r ndgon tydlig skillnad i barns kunskap eller uppfattning av natur beroende
pa om de bor i stader eller ¢j. Istéllet dr det socioekonomiska faktorer, som inkomst
och utbildningsniva, tillsammans med kvaliteten pa gronomrddena nérmast dér
barnen bor, som styr deras kunskap och attityd till natur. Sammantaget visar min
avhandling vikten av inhemsk vegetation i stdder och behovet av kunskap kring
ekologiska samband for att bygga stider som gynnar bade natur och ménniskor,
nagot som &r avgorande for att framtida generationer ska kunna lira sig om arter
och gliddjas av natur néra deras hem.
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Introduction

Cities are both hotspots for human changes to the environment and junctures
between people and nature. In terms of changes, urbanization alters local habitats
for plants and wildlife through numerous processes, including habitat
fragmentation, introduction of non-native species, and increased temperature and
levels of pollutants. It is clear that human-mediated changes impact the local
ecosystem as a whole, but the individual effects caused by specific factors and their
relative importance are still not well-understood. Cities are however projected to
grow both in size and numbers, and the impact of urbanization on nature is therefore
bound to increase. Today, a majority of the world’s population already resides in
cities, which means most people also meet urban nature daily and rely on it for
ecosystem services. From this, we can identify three core subjects in urban ecology:
first, we may view urban areas as laboratories of anthropogenic changes. High
concentrations of widespread pollutants, e.g., air pollutants and artificial light at
night, make cities excellent arenas to study the impacts of environmental pollution
on physiological responses, species-interactions, and evolutionary processes.
Second, urbanization is an ongoing land-use change and threat to biodiversity,
which is further amplified by the trend of cities being settled in areas with high
species richness. Urban ecology therefore has a role in conservation efforts and in
creating applicable management advice. Finally, cities serve as meeting points
between people and nature, making it highly relevant to understand how the urban
ecosystem might influence human perceptions of, interactions with, and benefits
derived from nature.

Thesis aims

In this thesis, I used an interdisciplinary approach to explore the effects of
urbanization on vegetation, arthropods, birds, and people. I aimed to identify
specific environmental factors that impact urban arthropods and birds and to study
trophic interactions in cities. More precisely, I set out to shed light on the
consequences of altered vegetation in urban areas and how such an effect might
carry across the ecosystem through diminished food resources to birds (Chapters I-
).
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Additionally, I studied how other factors, mainly air pollutants, may interact with
urban vegetation in their effects on birds, or interact with certain nutrients associated
with humans through food waste and bird feeding (Chapters IV-V). To this end, 1
used physiological measures in birds, aiming to create a detailed and mechanistic
understanding of the urban ecosystem and its processes. Since cities are built by
humans and for humans, I also investigated the relationship between people and
nature, aiming to better understand the forces that shape urban nature. More
specifically, I studied urban and rural children’s attitudes to and knowledge of birds,
which factors modulate this, and how bird feeding potentially can benefit people
(Chapter VI). In general, I tried to identify and use the variation of environmental
factors within cities, to generate applicable and general knowledge of urban
ecosystems. By using multiple methods and studies of different taxa, my
overarching goal was to create an encompassing picture of the urban ecosystem.

Chapter IV

K

Chapter V

Chapter | Chapter VI

Chapter 111

a

Figure 1. A schematic overview of the connection between thesis chapters and themes.
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The chapters of my thesis cover the following individual research questions
(Figure 1):

Chapter I How does the altered tree composition of cities impact higher trophic
levels, namely arthropods? What is the magnitude of this effect compared to other
urban effects and is the phenology of non-native trees a potential cause?

Chapter II: Can local tree composition explain the lower reproductive success of
passerine birds in cities? Which tree species are beneficial for urban birds in terms
of nestling survival and growth?

Chapter III: Are urban bird populations food-limited and if so, is it the quantity or
quality of food that is lacking? What specific nutrient might be deficient in the urban
diet?

Chapter 1V: How do we quantify the numerous factors that define the urban
environment in a meaningful way? Which physical or biotic aspects of the urban
environment impact nestling physiology and are there interactions between these
factors?

Chapter V: Do nutrients interact with air pollution in their effect on avian health?
Does the skewed diet of urban birds impact their response to ozone, and are there
any interactions with the immune system?

Chapter VI: Is urbanization leading to an eroded connection between humans and
nature? Can a simple wildlife interaction, such as bird feeding, strengthen nature
connection in children? Which factors modulate the impact of wildlife interactions?

17



The urban habitat
“The future of the world’s population is urban.” (United Nations, 2018).

The first cities are believed to have emerged over 8 000 years ago in Mesopotamia,
with population numbers in the low thousands. Since then, urbanization has
proceeded in waves resulting in historic cities such as Babylon and Rome, but it was
not until the industrial revolution of the 18" century that the rise of cities began on
the scale we know today (Chandler and Fox 1974, OECD 2015). Presently, the
majority of the world’s population (~56%) resides in urban settlements and the
number and size of cities are projected to increase during the present century (Figure
2; United Nations 2018).

1004

Figure 2. The world population in urban areas, divided by settlement size, based on population
projections by the United Nations (data from United Nations 2018, 2022b).

\,
bt

Settlement size

]/ >10million MW

____—5to 10 million M

| 1to5million M
500 000 to 1 million W
300 000 to 500 000

Proportion of
world population (%)
o
o

e

n
(%)

| ——<300000 [

The definition of a city may seem clear — built-up areas where large numbers of
people reside — but a general and international definition of what constitutes an
urban area has long been lacking (United Nations 2018). A contributing factor to
this is that while a city generally is defined as a settlement with over 50 000
inhabitants, what constitutes the population threshold for towns, and thus urban
areas in general, vary greatly on a country basis (United Nations 2022a). The United
Nations has recently presented ‘Degree of Urbanization’ as an international
definition of urban areas, with 5 000 residents being the cut-off point between urban
and rural settlements (United Nations 2022a), but it is important to note several
nations have other definitions (e.g., Sweden with > 200 inhabitants being considered
urban; SCB 2020). Moreover, the United Nations (2022a) argue urbanization should

18



be considered a continuum, something which ecological studies long have practiced,
with the concept of urbanization gradients (McDonnell and Pickett 1990).

Ecological gradients rest on the idea that biologically relevant landscape
characteristics will vary in intensity spatially, and urbanization should therefore be
studied on such scales (McDonnell and Pickett 1990, Seress et al. 2014). What these
landscape characteristics are, depend on study species and question, but in practice
urbanization intensity is generally calculated based on easily quantifiable
parameters in ecological studies, such as the relative proportion of buildings, hard
surfaces, and vegetation cover (Seress et al. 2014). Although definitions may vary,
cities are in essence epicenters for anthropogenic changes to the environment. In
this thesis, I therefore use the terms ‘cities’, ‘urbanization’, and ‘urban areas’
interchangeably to refer to the general and intense land-use changes associated with
modern human settlements (Grimm et al. 2008). The focus of my research is on the
resulting effects on the ecosystem.

From an ecological standpoint, cities are still a very recent habitat type. Being
characterized by fragmentation and loss of vegetation, together with an increase in
several types of pollution (e.g., air, light, and noise), urbanization poses a
challenging environment for most species to thrive in (Grimm et al. 2008, Seto et
al. 2012). Cities tend to have been settled in areas with historically high natural
productivity and urban areas are thus often located in biodiversity hotspots (Faeth
etal. 2011, Ives et al. 2016). The loss and change of habitats caused by urbanization
is therefore of particular concern since cities tend to impact valuable habitats.
Moreover, urban nature today also provides the majority of the world’s population
with ecosystem services and everyday experiences of nature (Figure 2).
Impoverished ecosystems in cities have therefore raised concerns about the so-
called ‘extinction of experience’, where people are further removed from nature and
may eventually lose their connection to nature, and ultimately their will to conserve
the environment in general (Pyle 1978, Dunn et al. 2006).

Simply put, cities are hotspots for anthropogenic changes, and studying the
ecosystems that have formed here has potential to yield results highly relevant to
conservation and society in general. Below, I summarize three key aspects that
shape urban ecosystems, and their effect on wildlife, with particular focus on birds:
diminished and altered vegetation, shifted food availability, and increased levels of
various pollutants. I conclude with a summary of research on human-nature contact
in an urban setting to contextualize these changes to the environment.
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Vegetation

Vegetation is one of the most important factors in supporting urban biodiversity
(Beninde et al. 2015). In addition, vegetation is one of the few biotic components of
cities that is managed to an impactful degree, meaning it has special importance in
conservation questions (Faeth et al. 2011). Natural vegetation is however sparse in
cities: urbanization results in fragmented habitats interspersed in a matrix of hard
surfaces and buildings, creating a mosaic-type landscape. Urban greenspaces can
still host a variety of species, partly due to historical biodiversity, but also because
urban parks can hold ecological values (Faeth et al. 2011, Nielsen et al. 2014, Ives
et al. 2016). For example, city parks often contain old-growth trees, which in turn
can provide important microhabitats and promote species richness of birds
(Fernandez-Juricic 2000, Nielsen et al. 2014). The general determinants for urban
biodiversity are however patch-size and vegetation structure (Nielsen et al. 2014,
Beninde et al. 2015). Namely, large areas of greenery, and vegetation complexity
(e.g., dead wood, canopy layers, and closure) are positively associated with
biodiversity in cities (Beninde et al. 2015, Felappi et al. 2020). These qualities are
however not the most common characteristics of urban vegetation due to intense
management regimes, exemplified by the large proportion of greenspace that urban
lawns account for (Ignatieva and Hedblom 2018). A study of Swedish cities found
that over 50% of all urban greenspace consisted of lawns, which is a much-used
feature in city designs worldwide (Hedblom et al. 2017, Ignatieva and Hedblom
2018).

In turn, the decrease of vegetation (canopy layers in particular) and increase in hard
surfaces lead to higher local temperatures in cities (Ziter et al. 2019). This effect is
called the urban heat island (UHI) and is a well-documented consequence of
decreased evaporation and increased heat retention from light absorption caused by
the substitution of greenery (Oke 2006, Peng et al. 2012). The UHI effect
subsequently impacts the remaining local vegetation and can alter the phenology of
plants in cities, e.g., by advancing bud burst (Wohlfahrt et al. 2019). Phenological
mismatches between plants and animals have been suggested to occur in urban
ecosystems, similar to disruptions observed in response to climate change, but such
mismatches are still not well-studied in an urban context (Both et al. 2009, Fisogni
et al. 2020).

Climate change, in conjunction with the relatively hotter local temperatures caused
by current city-planning, has also led to concerns about survival of urban trees
(Esperon-Rodriguez et al. 2022). Based on this, arguments have been put forth to
further increase the proportion of non-native plant species in cities (Sjoman et al.
2016). Other factors, such as aesthetic values and commercial availability, also
influence the vegetational composition of cities (van Kleunen et al. 2015, Avolio et
al. 2018). Consequently, over a quarter of plant species in cities worldwide today
are non-native, making mixed plant origin a striking characteristic of urban
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vegetation (Aronson et al. 2014). In fact, the global exchange of species leads to a
homogenization of city nature, making the urban ecosystems more akin to each
other across the world (Aronson et al. 2014). Additionally, since plants are typically
sourced from commercial nurseries, urban flora can show unique traits from
artificial selection, although little is known about the genetic diversity of urban
plants today (Avolio 2023). Genetic diversity of urban trees is however likely low:
for example, a single tree clone has been planted throughout 250 years in the city of
Copenhagen (7ilia *x europaea; Hansen et al. 2014). Taken together, urban
vegetation is not only altered in amount and configuration but also holds several
unique characteristics in terms of composition that are likely to affect the resources
it provides to local animal populations.

Box 1: Responses to urbanization

The many changes to habitats that urbanization is associated with create a novel ecosystem,
challenging for many species to thrive in. Certain species however, commonly referred to as urban
exploiters, possess traits that are well-matched to the habitat characteristics of cities (Blair 1996).
For example, avian urban exploiter species are typically omnivorous and thus able to utilize the
variety of unique food sources found in cities (Croci et al. 2008). Other traits that are adaptive in
urban environments are nesting on cliffs and gregarious behavior. In comparison, ground nesting
birds and migratory species typically either belong to the group urban adapters, which can breed in
urban environments and may thrive in suburban areas, or urban avoiders, which are typically not
found in cities (Blair 1996, Croci et al. 2008). According to a global analysis, cities support
approximately 20% of the world’s bird species, meaning that a majority of species fall into the urban
avoider category (Aronson et al. 2014). It is however important to note that it is not single traits of
species, but several biotic and abiotic filters, that shape urban community assemblies (Kraft et al.
2015, Aronson et al. 2016). Factors such as climate, past land-use, urban configuration, local human
facilitation (introduced species), and species interactions such as predation, can all influence which
species are found in cities (Rodewald et al. 2013, Aronson et al. 2016, Haddou et al. 2022).
Moreover, phenotypic variation can aid species in dealing with the habitat changes associated with
urban environments (Watson et al. 2017) and recent studies have begun to reveal evolutionary
processes of local adaptation to cities in arthropods and birds (Theodorou et al. 2018, Salmoén et al.
2021). Urban evolutionary biology is still an emerging field with many unanswered questions (Szulkin
et al. 2020), but it is important to note that although some processes can be rapid, modern cities are
a very recent phenomenon from an evolutionary standpoint. In other words, we should not expect
adaptation to drastically mitigate the risk of local extinctions of species posed by urbanization.
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Nutrition

Many insects are closely linked to specific host plants (Ehrlich and Raven 1964),
which means the novel vegetation of cities is bound to impact arthropod populations
(Chatelain et al. 2023). Low availability of arthropods has been proposed to have
cascading effects to higher trophic levels, namely insectivorous birds, limiting their
reproduction in cities (Chamberlain et al. 2009, Seress et al. 2020). Nevertheless,
while natural food items such as caterpillars may be scarcer in cities, human activity
is also linked to novel food sources, through food waste and direct provisioning,
particularly to birds (Jones and Reynolds 2008, Stofberg et al. 2019). Given the
scale of bird feeding in many countries (e.g., the United Kingdom with 150 000 tons
of wild bird food sold annually; PFMA 2018), impacts on bird populations in
proximity to human settlements are to be expected. Motivations for bird feeding
often include a sense of stewardship and wanting to help birds (Cox and Gaston
2016, Brock et al. 2017). The reliability of food provided by humans is also likely
positive to individuals that can utilize this resource (Box 1; Oro et al. 2013, Watson
et al. 2023). The ecological effects from bird feeding can however be more complex
than simply being a beneficial increase in food quantity. At a community level, bird
feeding will favor species that can utilize the food provided, but the resulting
population growth of some species may skew interspecific competition for other
resources than food (e.g., nesting sites); bird feeding can thus indirectly have
negative impacts on species that do not rely on the feeders (Shutt et al. 2021). Other
studies have found direct negative effects on future reproduction from winter
provisioning of blue tits (Cyanistes caeruleus), possibly caused by a sub-optimal
nutritional status of adults caused by an unbalanced winter diet (Plummer et al.
2013a, 2013b). In terms of the urban ecosystem however, it is important to recognize
that bird feeding may not be the most intense in highly urbanized areas since birds
are typically fed in private gardens (PFMA 2018). Still, taken together with shifted
urban diets from lower prey availability (Narango et al. 2018, Jarrett et al. 2020), a
picture of a significantly altered nutritional landscape caused by human activities
emerges.

Studying how interactions between organisms and the environment are formed
through nutritional needs has a long history, although little is known about how
urbanization shapes such interactions (Coogan et al. 2018). General findings in
nutritional ecology however suggest that it is not necessarily a common currency
(i.e., energy) that drives effects, but instead the relative composition of
macronutrients (proteins, carbohydrates, and lipids), together with micronutrients
(vitamins and minerals), that explain nutrition related patterns (Raubenheimer et al.
2009, Coogan et al. 2018). For example, the fat-provisioned blue tits mentioned
above were likely not energy-limited, but instead lacked the needed composition of
nutrients for successful breeding (e.g., fatty acids, Box 2; Plummer et al. 2013a,
2013Db).
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Urban birds have been shown to improve their breeding performance, close to that
of rural conspecifics, when supplemented with food during nestling rearing, which
underscores that some aspect of the urban diet is in fact deficient (Seress et al. 2020).
Additionally, pollution from human activities has been proposed to impact the
nutritional ecology of animals: heavy metal exposure could, for example, interact
with nutrient uptake or requirements for birds (Eeva et al. 2003, Birnie-Gauvin et
al. 2017). In summary, nutrient availability in cities differs vastly from most natural
ecosystems, both through an increase of novel food sources (direct provisioning and
food waste), but also through the decrease or shift in naturally occurring prey due
to altered vegetation. Little is still known about how nutrition influences the ecology
of urban birds or possibly interacts with other co-occurring anthropogenic changes
to the environment.

Box 2: Polyunsaturated fatty acids

Fatty acids are a type of lipid, consisting of a carbon chain ending in a carboxyl group (COOH) and
a methyl group (CH3; Figure 3). Based on the number of double bonds in the carbon chain, fatty
acids can be divided into saturated fatty acids (no double bonds), monounsaturated fatty acids (one
double bond), and polyunsaturated fatty acids (PUFAs; two or more double bonds). PUFAs are
involved in several physiological processes in animals, including immune function and growth. For
immune responses, the further subdivision of w6 and w3-PUFAs (based on the location of the first
double bond) is important, as w6-PUFAs are linked to pro-inflammatory responses, while w3-PUFAs
are linked to anti-inflammatory responses (Calder and Grimble 2002). Current human diets, which
are available to urban birds through food waste, typically have high proportions of w6-PUFAs
compared to w3 (Simopoulos 2011, Stofberg et al. 2019). Some bird food, such as sunflower seeds,
also contain high levels of w6 compared to w3-PUFAs. Certain long-chained w3-PUFAs, i.e.,
eicosapentaenoic acid (EPA; 20:5n3) and docosahexaenoic acid (DHA; 22:6n3), are especially
important to avian development and growth: dietary access to these PUFAs can have stronger
positive effects than food quantity on nestling growth and condition (Twining et al. 2016). DHA is, for
example, involved in brain and muscle development and has been linked to cognition (Speake and
Wood 2005, Lauritzen et al. 2016). However, only two PUFAs are strictly essential to birds and must
be obtained through diet: the short-chained linoleic (18:2n6) and a-linolenic acid (18:3n3). Still, the
efficacy to biosynthesize other PUFAs from these appears to vary between species (Twining et al.
2018, 2021b, 2021a), and dietary access to long-chained w3-PUFAs can clearly be beneficial to
birds.

Figure 3. Molecular structure of docosahexaenoic acid (DHA). As indicated by the lipid number
(22:6n3), DHA is long-chained (22 carbon), and polyunsaturated (6 double bonds) fatty acid,
belonging to the w3-group (first double bond located on the third carbon, counting from the methyl-
end [red circle]).
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Pollution

The intense human activity in cities leads to high concentrations of pollution.
Pollution takes many different forms, including increased levels of artificial light
and noise, but perhaps most notably: the release of chemical pollutants in ambient
air. There are several types of airborne pollutants linked to human activities,
including carbon monoxide (CO), nitrogen oxides (NOx), sulfur dioxide (SO»),
ground-level ozone (O3), and particulate matter (PM). Many air pollutants are
directly generated from traffic and industries, with others forming as secondary
pollutants from these, leading to particularly high levels in urban areas (Hill 2020).
For example, a major source of NOx is the combustion of fuels from traffic, which
leads to high concentrations in urban areas. NOx, together with volatile organic
compounds (VOCs; of which motor traffic also is a major source), are precursors to
ground-level ozone, which forms through reaction to sunlight, and is a major
component of photochemical smog. Although less common, NOx can also convert
to nitrate particulates and then contribute to the levels of particulate matter, a general
term for microscopic, airborne matter (e.g., PMas: air-suspended particles, with a
diameter of 2.5 pm or less). PM also has several direct anthropogenic sources,
including the burning of fossil fuels and wood, as well as construction and road dust
(Hill 2020).

Negative health effects caused by air pollution in cities are well-documented for
humans, including increased risk for disease and death (West et al. 2016, World
Health Organization 2022), but the effects of air pollutants on an ecosystem level
are much less studied. Pollutants can impact both urban plants and wildlife, as well
as the interactions between them: for example by interfering in plant-insect
interactions, potentially obscuring chemical cues (Blande 2021). Conversely,
increased herbivory has been documented on street trees highly exposed to air
pollutants, likely through a suppression of phytochemical defense compounds
(Meineke et al. 2023). Air pollutants also have direct impacts on wildlife, for
example by negatively affecting avian reproduction, immune function, and
increasing respiratory distress (Sanderfoot and Holloway 2017). Moreover,
oxidative stress is generally increased for wild animals in urban ecosystems
(Isaksson 2010). Oxidative stress is a state of imbalance between pro and
antioxidants, causing damage to biomolecules and subsequently increasing risk for
various diseases, and is recognized as a unifying consequence of exposure to
chemical pollutants (Isaksson 2010). The relatively higher oxidative stress in urban
areas suggests a general physiological toll from pollutants on wildlife residing in
cities.
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More than chemical pollution, urbanization is also linked to increased intensity of
artificial light and noise pollution. Artificial illumination is strongly correlated to
human settlements and currently less than 40% of Europeans are able to see the
Milky Way due to artificial light at night, a type of pollution which is increasing in
both extent and intensity (Falchi et al. 2016, Kyba et al. 2017). Light pollution can
affect the phenology of vegetation and interact with temperature to advance
reproduction in passerine birds (French-Constant et al. 2016, Dominoni et al. 2020).
Light pollution has been suggested as a key driver of insect declines and is
associated with lower abundances of caterpillars, linking back to food availability
for birds (Owens et al. 2020, Boyes et al. 2021). Artificial light at night can also
directly impact the physiology of birds by affecting immune function and hormone
levels (Sanders et al. 2021, Ziegler et al. 2021). Light exposure correlates to
behavioral changes as well, for example advanced onset of activity and singing in
the morning, at least in some bird species (Da Silva et al. 2016, De Jong et al. 2017,
but see Da Silva et al. 2017). The increased noise associated with urbanization, e.g.,
from traffic, has similarly been suggested to affect the behavior of birds, with urban
birds changing their vocalizations in cities, seemingly to be heard over the
disturbance of noise pollution (Halfwerk and Slabbekoorn 2009). Taken together,
there are many forms of human-generated pollutants that can disturb individual
organisms, or ecological processes in cities, with possibility of interactions between
pollutants, or different effects between trophic levels. Comprehensive
understanding of the specific pollutants and their potential interactions is vital to
mitigate adverse effects on the urban ecosystem.
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Human-nature relationship

While one can study biotic and abiotic effects shaping urban ecosystems in isolation,
it is important to keep in mind that cities are an environment type designed and
managed by humans, with human interests at hand. Hence, the relationship between
people and nature in many ways sets the frame for the urban ecosystem. Although
nature conservation often positively influences local residents by creating
ecosystem services (e.g., vegetation improving air quality), there is also potential
for conflicts between urban nature and people (Felappi et al. 2020). On a local level,
this can be between the need for visibility in parks due to security concerns, while
animal populations benefit from thick undergrowth and low levels of light at night,
as discussed above (Beninde et al. 2015, Felappi et al. 2020). On a planning level,
studies suggest land-sparing, i.e., concentrating nature in large parks rather than
intermingling it with other infrastructure, is beneficial for supporting urban
biodiversity (Soga et al. 2014, Ekroos et al. 2020). Here, the conflict of interests
could arise on a societal level, where a city designed to concentrate nature in specific
areas is likely to lead a shift in access to nature and ecosystem services towards
higher socio-economic strata, the so-called ‘luxury effect’ (Hope et al. 2003). This
is of importance since there are several, and increasingly well-documented, positive
effects of access to nature on human health (Hartig et al. 2014). For example, the
number of trees close to city homes has been found to positively and significantly
impact how local residents evaluate their well-being (ten trees on the city block had
a similar magnitude of effect as being seven years younger; Kardan et al. 2015).
Other studies have shown the importance of greenspace in the vicinity of schools
for children’s cognitive development (Dadvand et al. 2015). This effect has in part
been explained by a decrease in air pollutants associated with higher proportions of
greenspace, but other mechanisms are at play too: exposure to a diverse microbiota
increases the immune function of children (Roslund et al. 2020) and access to nature
has positive effects on the mental well-being of both adults and children (Fuller et
al. 2007, Hartig et al. 2014, Chawla et al. 2014). Moreover, perceived biodiversity
enhances the effects on well-being spending time in e.g., a city park, will have
(Fuller et al. 2007, Dallimer et al. 2012). Similarly, our appreciation of urban
landscapes increases if we hear a diversity of birdsong (Hedblom et al. 2014).

With the current extent of urbanization (Figure 2), most of the world’s population
relies on urban nature for local ecosystem services, and everyday interactions with
nature, to reap the benefits described above. As stated before, this is an important
prerequisite to consider when studying the urban ecosystem, which is designed to
meet human preferences. Moreover, it is also important to recognize urban nature
from a conservation perspective, as it has been argued that decimated urban
ecosystems will decrease the public’s will to further conserve nature in general,
since people cannot relate to biodiversity in their everyday lives (the ‘pigeon
paradox’; Dunn et al. 2006).
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A similar trend, called the ‘extinction of experience’, suggests the removal of
everyday nature could alienate people in a downward spiral, where few previous
nature interactions decrease the likelihood of gaining future experiences (Pyle 1978,
Soga and Gaston 2016). Being exposed to nature, especially at an early age, is a key
factor for engaging in environmental questions later in life (Chawla 1999), and local
stewardship is another important motivation for conservation, as people tend to care
most about nature in their vicinity (Shwartz et al. 2012, Brock et al. 2017). Thus,
the relationship between people and urban nature is a fundamental aspect of the local
ecosystem and is also consequential for both human well-being and biodiversity
conservation in general.

In summary, gaining a better ecological understanding of our cities is highly
relevant and has received growing attention during the last decades (Marzluff 2017).
Today, the impacts of urbanization on plants and wildlife are increasingly well-
documented and the emergence of larger and longer-term studies has helped identify
general effects of urbanization. There are however still many questions that remain
to be answered in our progression towards fully understanding the urban ecosystem.
These include isolating and disentangling specific pollutants and adverse effects on
wildlife linked to urbanization. Exploring how the effects vary in intensity and
importance throughout the urban landscape is also key, as well as investigating
potential interactions between them. Lastly, combining methodologies from several
different fields is needed to fully understand the ecological consequences of
urbanization. In this thesis, I aim to provide new knowledge to the field by exploring
these questions with multiple methods and study-species, striving to create an
encompassing picture of the urban ecosystem.
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Material and methods

Study sites

All fieldwork was carried out in the province of Scania, in southern Sweden. The
biological fieldwork (Chapters I-1V) was primarily focused on city-center parks
within Malmo, the third largest city of Sweden with approximately 350 000
inhabitants (Figure 4). The study parks range in size from 3 to 45 ha and are
characterized by a mixture of trees, managed lawns, and smaller waterbodies, as
well as infrastructure such as paths, paved roads, and lampposts. Based on the local
municipality tree database, there are over 150 tree species in the parks, a majority
of which are non-native to Sweden. The parks are however dominated by native
trees in absolute numbers, such as European beech (Fagus sylvatica), while non-
native trees account for around 23%.

In Chapters I, 11, and IV, a rural reference site was used: the nature reserve of
Skrylle, located approximately 26 km northeast of the city of Malmd. The nature
reserve spans 500 ha; our study sites are located within a part dominated by native
forest, consisting mainly of European beech, silver birch (Betula pendula), and
common oak (Quercus robur), with some patches of European spruce (Picea abies),
interspersed by small gravel roads, and divided by one larger, trafficked, and
illuminated tarmac road. Within the site, we have monitored a nest box population
of 370 boxes for blue and great tits since 2017, used in Chapters III and IV. In
Malmo, we monitored a population, consisting of 400 boxes in five parks, that was
established in 2013 and used in Chapters II-1V (Figure 4).
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Figure 4. Map over the study cities in southern Sweden and nest box populations. Left panel shows
the study parks of Malmé and the 400 nest boxes within (black dots). Right panel shows the nature
reserve of Skrylle and the 370 nest boxes located there.

Chapter VI included 14 urban and rural schools located within and around three
cities in Scania: Malmo (described above), Helsingborg with 115 000 inhabitants,
and Lund with 95 000. The schools were selected to vary in urbanization degree and
socioeconomic factors of the surrounding areas. To ensure anonymity of the
teachers and children in the participating schools, their exact locations are not
disclosed. The experiment in Chapter V was conducted in the Aerosol laboratory of
the Department of Design Sciences at Lund University.

Study species and relevant taxa

In this thesis, I aimed to study multiple trophic levels of the urban ecosystem and I
therefore did not focus on a single study species, instead, my thesis encompasses
several taxa. Even so, most chapters (//-V) focused on avian ecology or physiology.
Being a conspicuous and popular taxon, birds are commonly studied in the field of
urban ecology and therefore, there is a solid and growing body of urban avian
research to expand on (Marzluff 2017).
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Chapters II-1V focused on the great tit (Parus major), a small passerine
(approximately 18 g) common in woodlands throughout Eurasia (Figure 5). The
great tit can however be found in a wide variety of habitats, including cities, and is
considered an urban adapter (see Box 1; Croci et al. 2008), making it one of the
most well-studied species in urban avian ecology (Chamberlain et al. 2009). Being
cavity nesters, great tits are also easily studied during breeding using nest box
populations; a contributing factor to their well-documented life-history, which has
been pivotal to several advances in population ecology and evolutionary biology
(e.g., Perrins 1965, Boyce and Perrins 1987, Visser et al. 1998, Charmantier et al.
2008). During breeding great tits primarily rely on caterpillars (Lepidoptera) and
spiders (Araneae) as food sources, to the extent that the peak in caterpillar biomass
generally modulates great tit breeding phenology (van Noordwijk et al. 1995, Naef-
Daenzer et al. 2000). During winter, their diet widens, and they are commonly seen
on bird feeders foraging e.g., sunflower seeds.

Zebra finch
(Taeniopygia guttata)

Great tit (Parus major)

Caterpillars Non-native trees
(e.g., Operophtera brumata) (e.g., Platanus x hispanica)

Figure 5. lllustrations of study species and relevant taxa: great tits (Parus major), zebra finches
(Taeniopygia guttata), caterpillars (Lepidoptera), and non-native trees.

In Chapter V, the zebra finch (Taeniopygia guttata) was used as a study organism.
Slightly smaller than a great tit, zebra finches commonly weigh around 14 g and are
native to Australia. Zebra finches are gregarious and granivorous and are often
found foraging in flocks on grasslands in the wild. They are also a well-studied
species and a commonly used avian study organism for laboratory studies (Griffith
and Buchanan 2010).

While not a taxonomic group, the classification of ‘non-native’ was used for trees
in Chapters I, I, and IV. Several definitions of ‘non-native origin’ have been
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proposed for plants, with varying cut-off points based on time since introduction,
geographical barriers crossed, and mode of transport (human-aided or not; Essl et
al. 2018). It is however important to note that from an ecological perspective
‘nativeness’ is a continuous scale, being determined by factors such as phylogenetic
distance to local species and time since introduction (Bréandle et al. 2008, Burghardt
and Tallamy 2015, Kérvemo et al. 2023). What the term really refers to is the length
of co-evolutionary history between a given species and other species within the
ecosystem, which is highly important for facilitating biodiversity (Ehrlich and
Raven 1964). In line with this, the single systematic review (as of writing) of
literature investigating non-native plants and biodiversity in urban areas, showed
that the negative impact of non-native plants is general regardless of exact definition
(Berthon et al. 2021). Here, we defined the cut-off point for native and non-native
plants to the 13"™ century and on a country level (Sweden). Thus, we used a
conservative definition, which is based on the time-period for large-scale European
sea travel (Essl et al. 2018), to avoid overestimating effects which could occur if
only comparing the most recent introductions with the rest of the ecosystem. Given
the scale of plant introductions, with 25% of urban plant species being non-native
globally (Aronson et al. 2014, van Kleunen et al. 2015), general and applicable
ecological knowledge is much needed. To this end, ‘non-native’ serves as a highly
relevant demarcation and group of species, although large variation is of course also
found between individual non-native species (Berthon et al. 2021).

Caterpillars, the larvae of butterflies and moths (Lepidoptera), are staple in the diet
of many insectivorous bird species during breeding (Naef-Daenzer et al. 2000).
Caterpillars were studied in Chapter I through shake-sampling of branches and
collection of frass, the feces of caterpillars. Moreover, being a preferred and
important prey for breeding great tits, the life-history of caterpillars is of importance
to Chapters II-1V as well. Herbivorous caterpillars are closely linked to the
phenology of their host plants, relying on cues from temperature and photoperiod
for hatching (van Asch and Visser 2007). Species feeding on trees typically emerge
synchronous to bud burst, as a mismatch of only a few days can have negative
impacts on caterpillar populations, with leaves quickly increasing in phytochemicals
while water and nitrogen content decreases (van Asch and Visser 2007). The
synchrony of caterpillars leads to peaks in the biomass of common species, such as
the winter moth (Operophtera brumata), which in turn insectivorous birds, relying
on caterpillars for food, modulate their own breeding phenology to match (van
Noordwijk et al. 1995). Winter moth caterpillars are very common in late spring
(from approximately April-June) and are found in the canopy of deciduous trees
such as oaks (Quercus spp.) in Sweden. The caterpillars pupate in the top layer of
the soil in summer; in late autumn the adults emerge, giving the winter moth its
name (Cuming 1961). Females are flightless and climb tree stems to deposit eggs
on the bark after attracting a mate through pheromones. Caterpillars use silk threads
to balloon as a mode of dispersal (Cuming 1961).
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Overview of methodologies

To address my research questions in a complete manner, [ not only studied multiple
taxa, but I also used a multitude of methods, drawing from different fields of study.
With cities being hotspots for many changes to the environment, as well as junctures
between people and nature, the urban ecosystem needs to be viewed from multiple
perspectives to be fully understood (Oberg 2011). Chapters I and II were
observation based, relying on traditional ecological methods: nest box population
monitoring, direct and indirect arthropod sampling, together with microhabitat
vegetation and phenology measures. In Chapter III, a field experiment was
performed, combining measures of nestling growth with physiological markers
(hemoglobin and fatty acid levels; see below). Chapters IV and V also relied on
physiological measures, here focusing on both oxidative stress and nutritional
physiology in birds. Moreover, both these chapters included air pollutants: in
Chapter IV ambient air pollutants (NO, and PM,5) were quantified through point
measures and related to the microhabitat, and Chapter V used exposure to air
pollution (ozone) as a treatment in a fully controlled laboratory experiment. Lastly,
Chapter VI was based on qualitative methods, with questionnaires, semi-structured
interviews, and brief fieldnotes, analyzed together with demographic variables. In
other words, my thesis as a whole takes an interdisciplinary approach, combining
methods from the fields of Ecology, Physiology, Sociology, and Aerosol technology
to answer the question of how urban ecosystems function, and impact both wildlife
and people.

Laboratory analysis and biomarkers

Fatty acid analysis

We quantified the composition of fatty acids (FAs) circulating in the blood plasma
of great tits in Chapters 111, IV, and for a subset of the zebra finches in Chapter V.
Given the relatively rapid turnover rate of blood, circulating fatty acids largely
mirror dietary intake, but the composition is also influenced by physiological
processes such as selective mobilization and biosynthesis of FAs (Box 2).

Oxidative stress biomarkers

We used several biomarkers of oxidative stress in Chapters IV and V, estimating
both antioxidant capacity and oxidative damage, to capture the full response to air
pollutants and other potential oxidative challenges. In Chapter IV, we used the ferric
reducing antioxidant power (FRAP) assay for avian plasma as a measure of total
non-enzymatic antioxidant potential (Benzie and Strain 1996). Uric acid (the end-
product of protein catabolism) can influence the FRAP measure but is unlikely to
be of ecological relevance in terms of oxidative stress physiology (Cohen et al.
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2007, Costantini 2011). We therefore measured and corrected for uric acid, using
the uricase/peroxidase method (Salmoén et al. 2018). In Chapter V, we used the total
concentration of the key cellular antioxidant glutathione (GSH) in red blood cells,
together with the levels of its oxidized form (GSSG), as a measure for oxidative
defense (Baker et al. 1990). Additionally, we also used the OXY-adsorbent assay
(Costantini et al. 2006), which measures the antioxidant barrier of plasma by
simulating a pro-oxidant attack, using hypochlorous acid (HOCI). To estimate
oxidative damage, we quantified malondialdehyde (MDA) in plasma, an end-
product of lipid peroxidation, used in Chapter IV. In Chapter V, we measured
reactive oxygen metabolites (ROMs: i.e., hydroperoxides) in the plasma, using the
dROM assay (Costantini et al. 2006).

Hemoglobin

In Chapter 1II we used hemoglobin, the oxygen binding protein of red blood cells,
as a biomarker for physiological condition. Hemoglobin concentration has been
shown to be a reliable proxy for overall condition in birds, when age and season are
taken into account (Minias 2015). We used a medical grade whole-blood absorbance
reader to measure the hemoglobin levels of great tit nestlings in the field.
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Results and discussion

Non-native trees and food limitation (Chapters I-1II)

The altered composition of urban vegetation is not without consequence: studies
have suggested non-native plants drive insect declines, and plant origin has been
found to be a deciding factor for hosted biodiversity (Tallamy et al. 2021, Berthon
et al. 2021). The mechanism linking non-native plants to lower biodiversity is not
fully clear but is likely connected to novel phytochemicals and shifted phenology
(Cappuccino and Arnason 2006, Burghardt and Tallamy 2015). Non-native trees
have also been linked to negative effects on avian populations, likely because these
trees provide less food to birds in the form of arthropods (Narango et al. 2018, Wood
and Esaian 2020). It is therefore likely that non-native plants contribute to food
limitation in cities, something which is believed to affect many urban bird
populations (Chamberlain et al. 2009, Seress et al. 2020). Diet shifts to less preferred
food have been documented for urban birds (Pollock et al. 2017, Jarrett et al. 2020),
but the nutritional consequences from this, e.g., suboptimal composition of lipids
(see Box 2), remains largely unknown (Trautenberg et al. 2022). Moreover, the
relative importance of plant origin, in comparison to other urban effects that can
negatively influence animal populations, is not well-studied.

In Chapter I, we investigated the relative impact of origin and urbanization on tree
phenology and arthropod abundances. Our results showed that non-native park trees
were associated with significantly fewer arthropods compared to native trees, both
in terms of tree-dwelling species and flying insects. Importantly, plant species origin
showed a greater magnitude of effect, compared to the ‘urban effect’ (the
differences between native urban and rural trees). As an example, we observed a
later phenology of non-native trees, reaching bud burst on average 8 days later than
native species (Figure 6); a greater and contrasting difference to the urban effect of
6-day advance in bud burst for native trees, likely caused by a heat island effect
measured to 1.4°C. Given the magnitude of the observed origin effect, and the lack
of any negative effect linked to urbanization in terms of arthropod abundance on
native trees, the results from Chapter I suggest tree origin is a major contributing
factor to the diminished arthropod communities of cities (Tallamy et al. 2021,
Chatelain et al. 2023).

34



(a

-

50

ERural native trees
EUrban native trees

Bud burst (days from March 31%)

(b) 5

BUrban non-native trees
= EUrban native trees
&
£ 40

§
—
=
£ 30
2
E
g
CEY
=
2
3
a 10
°
3
[
04
. . o o < &
RN P I PSS & *@ & b&’b & S 5
FAFF I LTI T T IS S & 5
RSN F & FF o S S & ) 2
FTFFT T ELL TS L LT
@Q\»% &\g\"\é\%‘ o5 T & v“é G ¥ o TP N
A LS @ o
¢ Y & &
DA S © o)

Figure 6. Bud burst phenology of native and non-native tree species in days from March 31,
depending on (a) environment (urban/rural) and (b) species origin (native/non-native). The bars show
mean =SE of raw data; the two right-most bars show mean values for all native and non-native species,
respectively. Significance levels are indicated by asterisks (**p = 0.01 — 0.001, ***p < 0.001). Note that
for Quercus cerris, rural Fagus sylvatica, and rural Quercus robur no error bar is visible since all
individuals reached bud burst the same day. For Sorbus intermedia, only one individual was surveyed.
Adapted from Figure 3 of Chapter I.

In Chapter Il we expanded on these findings by including another trophic level:
insectivorous birds. We set out to establish what constitutes a high-quality habitat
in the urban ecosystem in terms of tree composition, specifically looking at the
breeding performance of great and blue tits. We found that the probability of a
breeding attempt declined with the number of non-native trees in the local territory
(defined as a 35 m radius from the nest box; Jarrett et al. 2020). Moreover, we found
that great tit nestling weight decreased with a higher number of non-native trees,
which suggests the avoidance of these territories was adaptive and likely caused by
low food abundance linked to the trees (Chapter I; Narango et al. 2018). Notably,
we found that the negative effects associated with non-native trees were consistent
across the 7 years that Chapter Il encompassed, and regardless of when in the season
the birds started breeding (Figure 7a).
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The sampling for Chapter I was centered around bud burst and the breeding season
of the great tits (van Noordwijk et al. 1995), and with only data from one year, a
limitation of this study was thus its temporal scale. The results of Chapter Il
however corroborate the ecological significance of the lower arthropod abundances
on non-native trees (Chapter I), and suggest the effect is constant across years (and
habitats, see Narango et al. 2018, Wood and Esaian 2020).
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Figure 7. Correlations between local tree composition and (a) breeding probability of blue and great
tits (Cyanistes caeruleus and Parus major) and (b) probability of a great tit surviving from egg to day 14
nestling, depending on local tree composition. The probability of breeding attempts decreased with
increasing numbers of non-native trees in the vicinity of the nest box all years of the study (2013-2020).
The chance of reaching fledgling age showed an interaction between the number of oak trees (Quercus
robur) and onset of breeding: breeding earlier in oak-rich areas was especially positive for nestling
survival. While modeled as covariates, oak numbers are separated into discrete groups for ease of
visualization; corresponding trendlines represent the average model fit. Adapted from Figures 2a and
3a of Chapter Il.

The causal link between avian breeding performance and local trees being food
limitation was hypothetical in Chapter II (but based on literature: Chamberlain et
al. 2009, Seress et al. 2020). To establish whether urban great tits were food-limited
during breeding, and to disentangle what aspect of the diet might be lacking, we
performed the field experiment of Chapter 1II. Here, we divided broods into a
general food provisioning treatment, and nestlings within broods to a specific
nutrient supplement, aiming to test the polyunsaturated fatty acid DHA as a limiting
nutrient in urban ecosystems (Box 2; Twining et al. 2016). Our results revealed
positive effects of DHA supplementation on nestling development, significantly
increasing wing-length, and showing a near-significant trend of mass, but only in
urban broods (Figure 8). Moreover, DHA supplementation increased the
hemoglobin levels (a proxy for physiological condition; Minias 2015), but again
only in urban nestlings. Despite a higher depletion of the ad libitum provisioned
mealworms in urban areas, the added food availability did not seem to benefit the
nestlings. Instead, our findings in Chapter I1I suggest urban birds are limited by diet
composition and quality.
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Being involved in the development of skeletal muscle and brain tissue (Speake and
Wood 2005), a scarcity of DHA could limit growth but possibly also cognitive
development (Lamarre et al. 2021). Urban birds have been suggested to be under
selection for increased cognition (Sol et al. 2013, Salmoén et al. 2021) and our results
of higher circulating DHA in breeding urban adults could indicate that the fatty acid
is of particular importance in cities.
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Figure 8. Growth of urban and rural great tit (Parus major) nestlings depending on experimental fatty
acid supplementation. Wing-length differed significantly between habitats but increased with DHA
supplement at a low dosage for urban nestlings (solid yellow line). Error bars are +SE. Adapted from
Figure 2a of Chapter IlI.

Given the results of Chapters I-11I, a likely explanation for the lower reproductive
performance of urban birds is a lack of arthropod species containing specific
nutrients. DHA only occurs in low levels in the natural diet of great tits (Andersson
etal. 2015), and conversion from precursors such as EPA is therefore the most likely
source of DHA in our study system (Box 2; Twining et al. 2018, 2021b). Since
spiders contain relatively high levels of EPA, they are probable candidates as
principal sources of DHA to great tit nestlings, although further studies are needed
(Naef-Daenzer et al. 2000, Andersson et al. 2015). Availability of nutrients is
however not only mediated by prey abundance, but also by timing: phenological
mismatches may occur on a nutritional plane, where peaks of biomass can be
decoupled from peaks of specific nutrients (Twining et al. 2022). In both Chapter [
and /] we found indications of phenological mismatches taking place in the urban
ecosystem: in Chapter I, we observed caterpillar biomass peaking on non-native
trees prior to bud burst. For comparison, the biomass peak linked to native trees
tended to occur 1-2 weeks after bud burst. In Chapter II, the effects of native
vegetation on avian breeding performance varied within and between years.
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An example of one of these temporal interactions is the effect of oak trees on
fledging probability (survival from egg to day 14 nestling), which varied in strength
depending on the birds’ breeding onset (Figure 7b). Breeding earlier than the year
average was especially positive in oak-rich territories, but the local number of oak
trees however also correlated to breeding onset itself, appearing to significantly
delay the egg laying of great tits (Chapter II). Oak trees typically modulate great tit
breeding phenology in forest populations and are late in their food peak compared
to other native trees (Chapter I; van Noordwijk et al. 1995). In contrast to forest
populations, the response of delayed breeding appears maladaptive in urban
environments, based on the correlation to fledging probability discussed above
(Figure 7b). How these potential phenological mismatches impact the nutritional
ecology of urban birds is unknown, although mismatches can be amplified across
trophic levels (Both et al. 2009). Thus far, phenological mismatches have typically
been studied in the context of climate change (e.g., Both et al. 2009, Twining et al.
2022), but with both plant composition and local temperature impacting the
phenology of urban plants, similar shifts are likely to take place in urban
environments (Chapter I, Dallimer et al. 2016, Fisogni et al. 2020). Urban
phenological mismatches remain to be further explored but may prove increasingly
relevant with progressing climate change.

Taken together, Chapters I-11I showed that the composition of urban vegetation is a
key factor in the urban ecosystem. Specifically, we found non-native trees to have
strong and consistently negative impacts on higher trophic levels. Urban birds are
limited in their reproduction by specific nutrients, rather than food quantity per se,
which highlights the need for biodiversity in the urban areas, but also that detailed
knowledge of biological processes is required to truly understand the urban
ecosystem. From a practical perspective, it is important to underscore that Chapters
I-11I were carried out in city parks, which both host a significant portion of urban
biodiversity and ecosystem services (Nielsen et al. 2014, Stott et al. 2015). Parks
also constitute more benign habitats for vegetation than e.g., streetscapes, where
non-native plants (preferably carefully selected) are still required under current city
designs. Increasing native vegetation in the urban environment where it is possible,
together with efforts to minimize heat island effects (and thereby the risk for
phenological mismatches), are two general recommendations that can be derived
from the findings in Chapters I-111.
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Multiple anthropogenic factors (Chapters IV and V)

While Chapters I-1II primarily focus on biotic effects in cities, there is also a
multitude of abiotic factors that define the urban ecosystem. A current challenge in
the field of urban ecology is to disentangle these factors from each other, which is
both important to fully understand the ecosystem and to provide clear conservation
advice. Environmental gradients have been useful in identifying responses of plant
and animal populations to urbanization in general (McDonnell and Pickett 1990),
but less so in shedding light on the mechanisms behind them (Sprau et al. 2017).
Moreover, many anthropogenic factors co-occur and have the potential to interact,
e.g., temperature and artificial light at night (Dominoni et al. 2020, Tougeron and
Sanders 2023). Understanding interactions between two or more factors that
potentially magnify negative effects on urban organisms is particularly important
(Coté et al. 2016), since some factors may be more manageable to mitigate than
others (for example, it might be easier to dim artificial light in warm areas of a city,
than lowering the ambient temperature). To this end, physiological biomarkers can
be particularly useful. Not only does physiology respond more rapidly to
environmental changes than e.g., life-history (Isaksson 2020), but documenting
mechanistic responses can also help in generalizing results and identify species with
shared traits, that might be particularly vulnerable to a given anthropogenic factor
or interaction.

In Chapters IV and V, we explored multiple anthropogenic changes to the
environment and their interactions in relation to avian physiology. Chapter IV was
observational, using in situ variation of environmental factors related to
urbanization: tree composition, temperature, artificial light, and air pollutant
concentrations (NO; and PMzs). The results of Chapter IV suggest that a gradient
approach is too coarse to fully identify physiological impacts linked to the local
environment. This was exemplified by oak trees and the local level of the air
pollutant PM; 5 both being associated with decreased antioxidant capacity of great
tit nestlings, although, in terms of environmental variation, high PM, s levels were
associated with more urbanized areas, while oak trees were not (Figure 9). Given
this relationship, the effects of PM»s and oak trees on avian antioxidant capacity
were effectively masked in a generalized analysis of the environment (i.e., principal
component analysis). We however found little evidence for the hypothesized
interactions between anthropogenic factors in Chapter IV. Instead, most effects
found were directly linked either to vegetation or air pollution, both of which also
appeared to influence the nutritional status of the nestlings, with correlations to the
ratio of circulating w6:03-PUF As in nestlings, which bears consequence to immune
function (see Box 2).
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Figure 9. Graphical representation of the two principal components (PCs) summarizing the most
variance of microhabitat characteristics linked to urbanization, based on a principal component analysis
(PCA). Note that air pollutants and the density of oak trees loaded at opposing directions of PC1.
Adapted from Figure 2 of Chapter IV.

In Chapter V, we performed a controlled experiment aiming to shed light on the
potential interaction between air pollution, altered diet (specifically w6 and ®3-
PUFAs), and increased disease prevalence, in their combined effect on avian
physiology. Our results showed that zebra finches given a diet high in ®6-PUFAs,
which is typical for anthropogenic food and the commonly provisioned sunflower
seeds (Simopoulos 2011, Reynolds et al. 2017), had a relatively high ratio of the
oxidative stress measure GSH/GSSG in ambient air (Figure 10). A recycling of the
GSH/GSSG ratio (reducing GSSG back to active form GSH, through an
upregulation of the enzyme glutathione reductase) could indicate a response to meet
an oxidative challenge, incited by ®6-PUFAs through their pro-inflammatory
properties (Calder and Grimble 2002). The birds that were fed an w3-diet, typically
found in flax seeds, or arthropods such as caterpillars (Andersson et al. 2015),
showed a comparatively lower GSH/GSSG ratio under ambient air. Under the
additional oxidative pressure of ozone exposure, however, both diet groups
displayed an intermediate level of GSH/GSSG. The decrease in the ratio of
antioxidants of w6-fed birds when exposed to additional pro-oxidants likely
indicated a depletion of defenses and the beginning of oxidative stress, while ®3-
fed birds appeared able to upregulate their antioxidants in response to the air
pollutant. While we did not find statistical support for a three-way interaction, this
pattern does appear partly driven by the birds that were administered
lipopolysaccharide (LPS) to simulate an infection (Figure 10). Immune responses
are known to cause oxidative damage (Armour et al. 2020), which we also observed
in response to the LPS treatment, regardless of diet. In simple terms, w3-fed birds
appeared more prepared to meet further oxidative challenges than w6-fed birds, for
example from infection.
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Figure 10. The significant interaction between diet treatment (w6 versus w3 PUFAs) and ozone
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challenge subgroups. Means +SE of predicted values from models are shown. Note the different y-axis
scales. Adapted from Figure 2 of Chapter V.

Urbanization has previously been shown to affect the 6:w3-PUFA ratio in birds,
specifically lowering levels of ®3-PUFAs (Andersson et al. 2015). Our findings in
Chapter IV suggest this effect is driven by specific environmental factors. Given the
findings of Chapter II on annual variation however, we are careful to not extrapolate
the results of Chapter IV (a one-year study) too far, in terms of the generality of
effects from individual factors. Nevertheless, quality of food is often more important
than quantity (Chapter IlI, Twining et al. 2016), and without dietary access to
optimal food sources, birds are less likely to handle the multiple habitat changes
associated with human activities and cities. A potential link between infection and
diet is particularly interesting, since bird feeding could both alter the nutritional
status of birds as well as increase the risk for disease transmission (Moyers et al.
2018, Lawson et al. 2018, but see Watson et al. 2023). I do however note that we
found less evidence for synergistic interactions (enhancing effects) between
anthropogenic factors in both Chapters IV and V than expected. It has previously
been proposed that the magnifying effect of multiple anthropogenic factors might
be overstated since interactions often are assumed to be synergistic (Coté et al.
2016). Indeed, as we observed for antioxidants in Chapter IV, certain changes to the
environment can be antagonistic in their effect on organisms, obscuring their
individual impact. Identifying such patterns and linking organismal responses to
specific environmental factors is central to understanding the urban ecosystem,
being a crucible of human-driven changes. Antagonistic interactions are also
important to understand in terms of conservation, since efforts to alleviate negative
impacts otherwise risk having less effect than expected.
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Cities are however heterogeneous landscapes and factors such as e.g., air pollution
and ambient temperature can vary in intensity at local scales. To identify which of
the numerous potential interactions might bear ecological relevance in urban areas,
further mapping of the actual co-occurrence of environmental factors across several
cities would make for much-needed guidance. In summary, moving the field of
urban ecology forward requires a multidimensional view of the environment to
identify specific factors for conservation and planning prioritization (Chapter 1V,
Cote et al. 2016).

Value of urban wildlife to humans (Chapter VI)

The preceding sections (Chapters I-V) focus on urbanization’s impact on plants and
wildlife, but do not consider w#y the urban environment is configured the way it is,
nor the root cause for the changes to local habitats. Understanding the forces that
shape urban nature requires knowledge about people’s perceptions and attitudes
towards it, as well as their need for and utilization of local ecosystem services. Bird
feeding is for example often motivated by a sense of stewardship and will to help
local animals (Cox and Gaston 2016, Brock et al. 2017), although as discussed
above, this may not always be the outcome (Chapter I1I, Plummer et al. 2013b).
Bird feeding still provides a valuable ecosystem service by connecting people to
local wildlife (Cox and Gaston 2016) and has been proposed as a way to ameliorate
the disconnect to nature, which is believed to impact especially urban children (Beck
et al. 2001, Soga and Gaston 2016, White et al. 2018).

In the last chapter of my thesis, Chapter VI, we explored how children’s relation to
nature is shaped. Using bird feeding as an intervention to increase nature interaction,
we aimed to evaluate its effectiveness in connecting urban children to nature, and at
the same time identify which factors modulate this connection. In contrast to the
studies proposing a disconnect from nature caused by urbanization (Dunn et al.
2006, Soga and Gaston 2016), we did not find that children from urban schools
differed in their species knowledge or attitude towards birds compared to those in
rural schools. We instead found that other area factors modulated knowledge and
attitude towards nature: higher education levels in attendance areas were correlated
to better species knowledge of the children. Higher income correlated to children
participating in more nature-based activities, which in turn positively influenced
attitudes towards nature and the bird feeding intervention itself (Figure 11). This
snowballing effect of previous nature experiences increasing the positive sentiment
toward other activities, and nature in general, is in line with the extinction of
experience hypothesis (Pyle 1978, Soga and Gaston 2016), although we did not see
the predicted decline in attitude towards nature linked to urbanization. Interestingly,
we instead found that the characteristics of the local nature (yards closest to where
the children lived) interacted with the impact of the bird feeding intervention, so

42



that children with less nature close to their homes gained more in terms of species
knowledge from the project. Additionally, we found a large variance between
schools in terms of the impact of the intervention, which is likely caused by the
teachers’ role in facilitating the project (Chawla 1999).
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Figure 11. Direct and indirect factors modulating children’s species knowledge and attitude toward
birds, as well as self-perceived well-being. Solid arrows indicate significant correlations and dashed
arrows interactive effects. Adapted from Figure 2 of Chapter VI.

While not formally included in Chapter VI, preliminary analysis of interviews
performed with participating teachers indicated that low-quality habitats (no birds)
and too few resources (time and/or personal) were common themes for challenges
in the project. Interestingly, in schools with a relatively high diversity of birds, local
nature was seldom noted as an important aspect of a successful project, but rather
the connection to research was highlighted as making the project ‘real’ and more
motivating for the pupils. Although not acknowledged, local habitat qualities that
support avian populations, such as bird-friendly trees (Chapter II, Narango et al.
2018), are clearly needed for these types of projects to be meaningful and could in
addition buffer against the potential negative nutritional influence from bird feeding
(Chapters 11l and V, Plummer et al. 2013b). In conclusion, Chapter VI shows that a
wildlife interaction, such as bird feeding, can positively influence children’s species
knowledge, but this knowledge, and ultimately attitude towards nature, is modulated
by several other factors. Bird feeding does not improve connection to nature per se,
but with the correct role models and context, it can be an important avenue for
children to learn about wildlife, especially in areas with less nature and lower
socioeconomic levels. These patterns do not appear directly coupled to urbanization,
although diverse local nature is a prerequisite for wildlife interventions to be
successful, together with sufficient support to teachers.
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Conclusion

The urban ecosystem is a crucial intersection of humans and nature. For plants and
animals, cities represent some of the most altered habitats in the world, with
numerous novel challenges and resources. For people, a majority will experience
and rely on the resulting urban nature for everyday interactions and ecosystem
services. In this thesis, I have used an interdisciplinary approach, aiming to further
our understanding of how anthropogenic changes to the environment affect local
ecosystems, and in turn, how the urban ecosystem may influence us. I found that
plant origin, namely the introduction of non-native trees, has strong negative effects
on both arthropods and birds in cities (Chapters I and II). The magnitude and
consistency over years of these effects indicate that vegetation composition is one
of the main drivers hampering urban animal populations. The diminished and
altered urban vegetation contributes to a lack of nutrients for wildlife, which cannot
be compensated for by an increase in quantity of low-quality food sources, at least
not for breeding birds (Chapter III). Furthermore, an unbalanced diet may lead to a
reduced capacity to mount a physiological response to counter other anthropogenic
factors, such as air pollution (Chapter V). Still, bird feeding can provide people with
a link to local wildlife and help foster a connection to nature. As I showed in Chapter
VI, an eroded connection to nature, which can take the form of poor species
knowledge or negative sentiments towards birds, is however not necessarily linked
to urbanization. Socioeconomic factors and access to local nature appeared as the
actual drivers, which highlights the need to account for societal questions when
studying urban nature, and the importance of city-planning which allows all children
access to nature. In accordance with these findings, I suggest that urban ecology
should move beyond sweeping definitions of the environment and instead look
further into the variance that exists within cities. Identifying main drivers and
isolating their effects is fundamental to making informed decisions in city-planning
and can also help discover otherwise overlooked ecological patterns (Chapter IV).
These patterns may take the form of interactions between co-occurring changes to
the environment, although it is important to note not all interactions will amplify
negative impacts. The field of urban ecology would benefit from mapping actual
co-occurrence of factors to identify relevant interactions. Future studies should also
further investigate the phenological interactions, and possible mismatches, taking
place in urban environments.
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Urbanization continues, especially in the Global South, which calls for more
research in cities outside Western countries (where most studies have been
performed so far), to account for local conditions and climate. Nonetheless, as
urbanization begins to slow in the West, the time-window also narrows for building
the often advocated for, but yet to be seen, green and sustainable cities here. Based
on the results I have presented, increasing the amount and proportion of native
vegetation in cities is a measure that would benefit many urban animals. Reducing
the ambient temperatures of cities is likely also of importance, especially as climate
change progresses. Perhaps most importantly, however, is to build cities that allow
future generations to learn about species and enjoy nature near their homes.
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Exotic Dangers in the Urban Forest

- A poem written by Sam Illingworth, for the podcast The Poetry of Science,
inspired by Chapters [ and 1.

In concrete jungles
nature’s pillars catch
the city’s heat,
foreign tones of green
that hug the sky with
firm, unrooted ease.
Washing ashen cloaks
with verdant, leafy lungs,
gifting shade

and life

and joy.

Hidden in our hubris
these unfamiliar buds
misstep the local beats,
delaying bursts

of slumbering boughs
and creeping feed —

a brooding doubt

to native, perching wings.

© Sam lllingworth, reprinted with the permission of the author.
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