
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

On Offensive and Defensive Methods in Software Security

Jämthagen, Christopher

2016

Document Version:
Publisher's PDF, also known as Version of record

Link to publication

Citation for published version (APA):
Jämthagen, C. (2016). On Offensive and Defensive Methods in Software Security. [Doctoral Thesis
(compilation), Department of Electrical and Information Technology]. The Department of Electrical and
Information Technology.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/4edb87ef-1d07-49b2-8b34-a669a6395995

Download date: 17. Oct. 2025

On Offensive and
Defensive Methods
in Software Security

Christopher Jämthagen

Doctoral Dissertation
Electrical Engineering
Lund, November 2016

Christopher Jämthagen
Department of Electrical and Information Technology
Electrical Engineering
Lund University
P.O. Box 118, 221 00 Lund, Sweden

Series of licentiate and doctoral dissertations
ISSN 1654-790X; No. 89
ISBN 978-91-7623-942-1

c© 2016 Christopher Jämthagen
Typeset in Palatino and Helvetica using LATEX 2ε.
Printed in Sweden by Tryckeriet i E-huset, Lund University, Lund.

No part of this dissertation may be reproduced or transmitted in any form or
by any means, electronically or mechanical, including photocopy, recording,
or any information storage and retrieval system, without written permission
from the author.

Abstract

This thesis presents new methods contributing to the area of software
security. Both offensive and defensive methods are proposed, where
the offensive methods presented in this thesis mostly deal with how

an attacker can embed malicious code in a stealthy manner, and the defensive
methods aims at detecting some form of attack.

The first approach deals with how a virtual machine can be detected and
we discuss its use as both an offensive as well as a defensive method. We
develop a proof-of-concept that aims to demonstrate how the technique works
in practice.

Next we implement a GlobalPlatform compatible RPC mechanism utiliz-
ing both a hypervisor and SELinux and provide some benchmarks for both
solutions.

Following this we will look at timestamping of data on a massive scale and
how by utilizing the blockchain of the Bitcoin network, we can gain Byzantine
fault tolerance for the Keyless Signing Infrastructure.

Then we will look at methods for obfuscating code by overlapping assembly
instructions in machine code. We do this both by crafting custom no-operation
instructions in the binary, but also provide a method to accomplish this in
the source code when that source code will be compiled via a deterministic
building process to produce the expected binaries.

Finally this thesis will conclude with a method for detecting Return Ori-
ented Programming attacks by analyzing the raw data of a network stream.

Contents

Contents v

Preface xi

Popular Scientific Summary in Swedish xiii

Acknowledgments xvii

1 Introduction 1
1.1 Complexity . 2

1.2 Offense and Defense . 3

1.3 Trust . 4

2 Security through Compartmentalization 7
2.1 Virtualization . 7

2.1.1 Hypervisors . 8
2.1.2 Paravirtualization . 9
2.1.3 Full Virtualization . 10
2.1.4 Virtualization on x86 . 10

2.2 Mandatory Access Control Schemes 11
2.2.1 SELinux . 11

2.3 Trusted Execution Environments 13

2.4 Other Solutions . 14

3 Blockchain 15

3.1 Background . 15
3.1.1 Cryptographic Hash Functions 15
3.1.2 Merkle Trees . 16
3.1.3 Byzantine Fault Tolerance 16

3.2 Blockchain and Proof-of-Work 16
3.2.1 Transactions . 19

3.3 Use Cases of Blockchain Technology 23
3.3.1 Decentralized DNS . 23
3.3.2 Smart Contract Expressiveness and Sidechains 24

3.4 Security of Blockchains . 25

4 Software Security 27
4.1 The x86 Architecture . 27

4.1.1 Anatomy of an x86 Instruction 28
4.1.2 No-Operation Instructions 28
4.1.3 Overlapping Instructions 30

4.2 Reverse Code Engineering . 31
4.2.1 Disassembly . 31
4.2.2 Anti-Disassembly . 32

4.3 State of Software Security . 34
4.3.1 Backdoors . 34
4.3.2 Deterministic Builds . 35
4.3.3 Offensive Techniques . 36
4.3.4 Defensive Techniques . 39

4.4 Conclusions . 41

5 Virtual Machine Detection 43
5.1 Introduction . 43

5.2 Virtual Machine Detection Techniques 44
5.2.1 Timing Analysis . 45

5.3 A New Technique for Remote and Passive VMM Detection . . 45
5.3.1 Network Address Translation (NAT) and Network Pro-

tocols . 46
5.3.2 Prerequisites . 47
5.3.3 Time-To-Live (TTL) . 47
5.3.4 IP Identification (IP ID) 48

5.3.5 TCP Control Flags . 49

5.4 Proof of Concept . 49

5.5 A Note on IPv6 . 50

5.6 Conclusions . 50

6 Secure RPC Mechanisms for Embedded Systems 53
6.1 GlobalPlatform . 54

6.1.1 The Client API . 54

6.2 Hypervisors . 55

6.3 Implementation . 56
6.3.1 Linux Shared Memories 57
6.3.2 Implementing GlobalPlatform with SELinux 57
6.3.3 The Hypervisor as a GlobalPlatform TEE 58

6.4 Evaluation . 60
6.4.1 Evaluated Implementations 61
6.4.2 Performance Results . 61
6.4.3 Implementation Effort . 62
6.4.4 Security Considerations 64

6.5 Conclusions . 65

7 Blockchain for the Keyless Signing Infrastructure 67
7.1 Keyless Signing Infrastructure 68

7.1.1 Limitations of KSI . 69

7.2 Design . 70
7.2.1 Broadcasting CRHs . 72
7.2.2 Complex Spending Conditions 72

7.3 Further Considerations . 75
7.3.1 Merkleized Abstract Syntax Trees 75
7.3.2 Relative Locktime . 76

7.4 Discussion . 76

7.5 Conclusion . 77

8 Creating Hidden Code Using NOP Instructions 79
8.1 A New Technique for Overlapping Instructions 80

8.1.1 Requirements . 80
8.1.2 Overview of the Main Idea 80

8.2 Suitable MEP Instructions . 82

8.3 Assembling the Hidden Execution Path 83
8.3.1 Hiding Code in a Linear Stream of NOPs 83

8.4 Additional Practical Considerations 86
8.4.1 Hiding Code in Scattered NOPs 86
8.4.2 Normalization of MEP instructions 88

8.5 Detection . 89
8.5.1 Anti-Analysis . 89
8.5.2 Detection Algorithm . 92

8.6 Conclusions . 93

9 Exploiting Trust in Deterministic Builds 95
9.1 Hiding Instructions in Binary Code 95

9.1.1 Main and Hidden Execution Paths 96
9.1.2 Basic Design . 96
9.1.3 MEP-to-HEP Mappings 97

9.2 Constructing the HEP from Source Code 98
9.2.1 Structs Allocated on the Stack 102
9.2.2 Control Flow . 103

9.3 Evading Analysis . 105
9.3.1 In the Source Code . 105
9.3.2 In the MEP . 106
9.3.3 In the HEP . 106

9.4 A Proof of Concept . 107

9.5 Discussion . 109
9.5.1 Maintainability . 109
9.5.2 Stealthiness . 110
9.5.3 Strengths and Weaknesses 110
9.5.4 Prevention and Detection 111

9.6 Conclusion . 112

10 Detecting ROP Payloads in Data Streams 113
10.1 Overview of Approach . 114

10.2 A More Detailed Description . 116
10.2.1 Optional Data Pre-Filter 116

10.2.2 Cluster Detection . 117
10.2.3 Pattern Matching . 119
10.2.4 Statistical Test . 123

10.3 Performance . 128
10.3.1 Detecting Exploits . 129

10.4 Strengths and Limitations . 130
10.4.1 Strengths . 130
10.4.2 Limitations . 131

10.5 Conclusions . 132

References 133

Preface

This thesis contains results from research performed by the author at the
Department of Electrical and Information Technology at Lund Univer-
sity. Parts of the material have been presented at international confer-

ences. Publications and reports have appeared as follows.

‚ C. Jämthagen, M. Hell, B. Smeets, »A technique for remote detection
of certain virtual machine monitors,« International Conference on Trusted
Systems, pp 129-137, Springer, 2011.

‚ A. Vahidi, C. Jämthagen, »Secure RPC in embedded systems: evaluation
of some GlobalPlatform implementation alternatives,«, Proceedings of the
Workshop on Embedded Systems Security, ACM, 2013.

‚ C. Jämthagen, P. Lantz, M. Hell, »A new instruction overlapping tech-
nique for anti-disassembly and obfuscation of x86 binaries,«, Anti-malware
Testing Research (WATeR), pp 1-9, IEEE, 2013.

‚ C. Jämthagen, L. Karlsson, P. Stankovski, M. Hell, »eavesROP: Listen-
ing for ROP Payloads in Data Streams,«, International Conference on Infor-
mation Security, pp 413-424, Springer, 2014.

‚ C. Jämthagen, M. Hell, »Blockchain-based publishing layer for the Key-
less Signing Infrastructure,«, The 13th IEEE International Conference on Ad-
vanced and Trusted Computing, IEEE, 2016.

‚ C. Jämthagen, P. Lantz, M. Hell, »Exploiting trust in Deterministic Builds,«,
International conference on computer safety, reliability and security, Springer,
2016.

xi

CONTRIBUTION STATEMENT

The author of this dissertation is the main author of all but one of the listed
publications.

The idea behind the publication titled »A technique for remote detection
of certain virtual machine monitors« come from results found in the author’s
master’s thesis. The author of this thesis was responsible for the proof-of-
concept code that demonstrated the technique in question. All authors con-
tributed equally to the writing of the final publication.

The publication titled »Secure RPC in embedded systems: evaluation of
some GlobalPlatform implementation alternatives« arose from collaboration
with the SICS institute, whom the main author’s affiliation was with. SICS
provided implementation and analysis of the hypervisor implementation of
the publication. This thesis’s author contributed with implementation and
analysis of the SELinux part of the research. Both authors contributed equally
to the writing of the final publication.

In »A new instruction overlapping technique for anti-disassembly and ob-
fuscation of x86 binaries« the author of this thesis provided an implemen-
tation of the proof-of-concept code and accompanying scripts related to the
detection of the technique. All author’s contributed equally to the discussion
of the ideas and analyses of the idea and the writings of the final publication.

The implementation in »eavesROP: Listening for ROP Payloads in Data
Streams« was a collaborative effort of the PhD students. All authors partici-
pated in discussions, design, analysis and writing of the paper.

The author of this thesis provided the design presented in the publication
titled »Blockchain-based publishing layer for the Keyless Signing Infrastruc-
ture«. Both authors contributed to the discussion, analysis and writing of the
final publication.

The basic idea and design principles presented in »Exploiting trust in De-
terministic Builds« was conceived by the main author. The main author also
provided the proof-of-concept code that was published. All of the authors
contributed to the discussion, analysis and writing of the final publication.

xii

Popular Scientific Summary in
Swedish

A vhandlingen tar upp flera aspekter som relaterar till säkerhet i mjuk-
vara. Fokus ligger på både offensiva och defensiva metoder, där de
offensiva bidragen handlar om hur exekverbar kod kan gömmas på

ett sätt som gör det svårt att upptäcka. De defensiva bidragen relaterar till
tidsstämpling av data och detektering av skadlig kod.

DOLDA EXEKVERINGSVÄGAR

När vi skriver texter inkluderar vi ofta ord vi aldrig menat ska vara del av
texten. Ord som döljer sig bakom andra ord eller som är en kombination
av flera ord. Ta exempelvis ordet "premiss". I detta ord kan vi hitta flera
andra ord som "rem", "remiss", "miss" och "is". Ord som inte nödvändigtvis
har någonting med sammanhanget i texten att göra. På samma sätt jobbar
processorn i en dator med ord i maskinkod, och som den läser och exekverar
en efter en. Ett ord i maskinkod kallas för en instruktion och varje instruktion
manipulerar värden på ett sätt som programmeraren ämnade den att göra.
En instruktion kan också innehålla andra instruktioner beroende på vilken
bokstav, eller byte, i instruktionen vi startar exekvering från.

När vi läser en text så vet vi att den ska läsas sekventiellt, ord efter ord, och
inte avbrytas mitt i en mening för att hoppa till ett annat stycke och sedan
återvända. En dator däremot lyder vår minsta vink och kommer följa alla
invecklade instruktioner på ett deterministiskt vis. Denna absoluta lydnad
kan utnyttjas för att få den att exekvera instruktioner som programmet aldrig
ämnade finnas tillgängligt, men som ändå finns där implicit. På detta viset
kan vi skapa dolda meningar, eller exekveringsvägar, som innehåller skadlig
kod ämnad att ta kontroll över datorn som koden exekveras på. Detta är en

xiii

form av steganografi, vilket är konsten att dölja meddelanden så att det inte är
uppenbart att det finns något meddelande över huvud taget. Istället för med-
delanden avsedda för en mottagare så kan vi skapa dolda exekveringsvägar
avsedda för datorn att exekvera, givet inkörsporten.

Vår forskning visar att det är möjligt att introducera dolda exekveringsvä-
gar direkt via källkoden. Källkoden är den kod som skrivs i läsbar form
och som sedan omvandlas, eller kompileras, till maskinkod. Problemet är
att den här omvandlingen oftast resulterar i exekverbara filer som skiljer sig
jämfört med om någon annan kompilerar samma källkod. Detta är ett prob-
lem som resulterar i att användare måste lita på att den som kompilerade och
distribuerade den exekverbara filen ej har ändrat i den innan kompileringen
skedde. Deterministisk kompilering gör att kompileringsprocessen blir de-
terministisk och att oavsett vem som kompilerar källkoden så kommer det
resultera i identiska exekverbara filer. Genom att en stor mängd användare
som själva kompilerat via den här processen intygar att inget har gått snett,
kan övriga användare känna sig tryggare i att ingen har manipulerat med
källkoden innan kompilering. Det skulle krävas att samtliga användare som
kompilerade källkoden var i maskopi för att producera samma skadliga vari-
ant av den exekverbara filen och gå i god för den. Eftersom processen är
öppen för alla är det liten risk att någon skulle lyckas smyga in skadlig kod i
källkoden.

Om deterministisk kompilering används för ett projekt så kan vi utnyttja
det för att skriva källkod som efter kompilering inkluderar dolda exekver-
ingsvägar. Om vi kan bekräfta att en dold exekveringsväg finns när vi kompil-
erar den, så kan vi vara säkra på att den finns där om någon annan kompilerar
samma kod.

Resultaten visar att det är fullt möjligt att introducera dessa dolda exekver-
ingsvägar på ett relativt enkelt sätt, men att de samtidigt är ömtåliga då min-
sta lilla ändring i källkoden till programmet skulle kunna förstöra hela den
dolda exekveringsvägen. Genom att arrangera om instruktioner i program-
met på ett sätt som bevarar semantiken, på samma sätt som vi kan bygga om
meningar och bevara innebörden av den. Alternativt kan vi ersätta instruk-
tioner med synonyma motsvarigheter. Då skulle man kunna göra den här
typen av attack harmlös.

TIDSSTÄMPLING

Att bevisa att viss information fanns tillgänglig vid en viss tidpunkt var tidi-
gare svårt utan att blanda in en notarius publicus. Tidsstämpling har ofta
varit förknippat med uppvisande av informationen för en tredje part som
agerat som vittne när vi vill bevisa det för någon annan vid ett senare tillfälle.

xiv

Detta kräver att den vi vill bevisa tidsstämpeln för litar på att vittnet faktiskt
talar sanning.

Sedan 2009 har ett decentraliserat nätverk existerat, kallat Bitcoin, vars
främsta funktion har varit att tillhandahålla en form av digitala kontanter. Det
fungerar genom att alla transaktioner registreras i en öppen databas, kallad
blockkedjan, som var och en själv kan verifiera att de transaktioner som berör
dom faktiskt stämmer. Samma databas kan användas som ett vittne till in-
formation som ska tidsstämplas. Genom att ta en signatur av datan som ska
tidsstämplas och lägga in den i blockkedjan får den en tidsstämpel med ett
par timmars precision, samt att du inte behöver avslöja den data du lägger in
i blockkedjan. Signaturen av datan är unik för din information, och när du
väljer att offentliggöra din tidsstämplade data kan andra parter skapa samma
signatur och verifiera att den finns i blockkedjan.

Anledningen till att blockkedjan fungerar som ett vittne för tidsstämpling
är den sammanlagda mängden energi som krävs för att kunna lägga in infor-
mation i den. Blockkedjan består av länkade block, och när ett nytt block med
data ska läggas till måste ett kryptografiskt pussel lösas för att blocket ska ses
som giltigt av resten av nätverket. Det enda sättet att lösa detta pussel är med
rå datorkraft. Blocket kommer även att innehålla den ungefärliga tiden då det
skapades. Om skaparen av blocket skulle sätta en helt felaktig tidsstämpel
så skulle blocket avvisas av resten av nätverket, och inte bli en del av block-
kedjan. Eftersom det kostar att skapa block finns incitament att inte avvika
från de regler systemet måste följa för att block ska ses som giltiga. Varje
block betalar ut en viss summa av dess interna valuta, även dessa kallade bit-
coin, vilket gör incitamenten ännu starkare att inte avvika från reglerna då ett
förlorat block innebär ett inkomstbortfall för dess skapare.

På grund av dessa incitament kan vi få goda garantier på att på att blocken
som skapades för länge sedan faktiskt skapades omkring den tidpunkt som
deras tidsstämpel vittnar om. Detta innebär också att informationen som finns
i det blocket också måste ha existerat vid den tidpunkten.

Dessvärre så kan vi inte få bättre finkornighet på tidsstämpeln än ett par
timmars precision. Anledningen till detta är att distribuerad konsensus är
en långsam process. För att få tidsstämplar med en sekunds precision krävs
betrodda tredje parter. Vår forskning visar att centraliserade system som kan
tidsstämpla data per sekund, kan utnyttja blockkedjan för att tidsstämpla sina
tidsstämplar. Genom att kombinera betrodda tredje parters tidsstämplar med
en tidsstämpel i den decentraliserade blockkedjan så kan vi få det bästa av
båda världar. Vi kan få starka garantier på att informationen som finns i
blockkedjan stämmer och att den mer exakta tidsstämpeln som tillhandahålls
av den betrodda tredje parten ligger i närheten av den tidsstämpeln i blocket.

xv

DETEKTERING AV VIRTUELLA MASKINER

När angripare ska ta över en dator vill de helst komma åt icke ont anande
användare som sällan har koll på säkerheten på sina system. På det viset
kan angriparen ha tillgång till systemet en längre tid. Forskare försöker imit-
era osäkra system för att locka till sig angripare i syfte om att studera deras
metoder. För att göra detta skapar de ofta vad som kallas virtuella maskiner,
ett operativsystem som körs som en applikation i ett annat operativsystem.
Denna virtuella maskin ska vara omedveten om sin omgivning, och från det
yttre operativsystemet kan forskarna se i detalj vad angriparen sysslar med.
Genom isolering kan forskarna hålla angriparen ute från deras system.

Detta har fått angripare att utnyttja metoder som ämnar att detektera om
systemet de är inne på är en virtuell maskin eller inte. Om de upptäcker att
de är inne i en virtuell maskin kan de bestämma sig för att inte gå längre då
det finns en risk att de kan vara övervakade.

Vår forskning presenterar en teknik som gör det möjligt för angripare att
upptäcka om en maskin är virtuell eller inte. Metoden kräver att angriparen
ansluter till en speciell webbserver som analyserar paketen för att avgöra om
de härstammar från en virtuell maskin.

Andra användsområden för tekniken kan vara för angripare att rikta in sig
på virtuella maskiner som är sårbara på något vis. Om de försöker angripa
en maskin som inte är virtuell riskerar de att avslöja sina hemligheter. Genom
detektering kan deras metoder användas med minimal risk för att avslöjas.

xvi

Acknowledgments

Iowe a debt of gratitude to so many people whom have helped me through-
out my time as a PhD student. First and foremost I am very grateful for
the support received from my supervisors Martin Hell and Ben Smeets.

Without your help and encouragement, this work would not have been possi-
ble.

Many thanks goes out to my colleagues in the crypto group, with whom
I have had many insightful discussions with, and which have led to better
results in my research.

My family, whom have stood by me my entire life - My mother Anna,
my father Constantine, my brothers Alexander, Kevin and Andre and my
grandmother Rut - thank you for all the love and support throughout all these
years.

The love of my life, Maria; Thank you for encouraging me and standing by
me, even when I had to work through weekends and evenings. I promise that
I will make it up to you sweetheart.

Finally, the little ones I think about whenever I am about to do something,
and whom I want to make the world a better place for; my children, Isabella
and Vincent. Thank you for always putting a smile on my face. I love you.

Christopher
Lund, November 2016

xvii

1
Introduction

S ecurity solutions for IT systems have evolved immensely as we have
come to rely on those systems in our daily lives. From financial institu-
tions keeping track of stock trades to the home user buying something

online, everyone is reliant on the confidentiality, integrity and availability of
their data and services.

One example of security solutions is Anti-Virus (AV) software. AV software
was long the norm, and still is, to protect users against malicious code. Tra-
ditional AV software is not optimal though, as it is based on static signatures
of malicious code. Malware authors would simply slightly rewrite their code,
and the AV software would be unable to detect it. AV software is most effec-
tive against malware that spreads on a larger scale and not so effective against
directed attacks.

For enterprise users there is a plethora of tools to secure their IT perimeter,
i.e., the boundary between private and public parts of a target system. Some
of the available tools include stateful firewalls and Intrusion Detection/Pre-
vention Systems. Despite such tools and the defense in depth applied, the
number of breaches are staggering [sta16]. Defense in depth is a strategy
where multiple defenses are deployed in order to maximize cost and effort
for an attacker to be successful, while simultaneously increasing our chances
of detecting the attacker due to the increased time the attacker must spend for
a successful breach.

This thesis will discuss some new ideas on both the defensive as well as
offensive aspects of computer security practices. We discuss how complexity
in software can hurt the security of systems. Our efforts of exploiting some of
these complexities can be found in Chapter 8 and 9 and are based on the pub-
lications »A new instruction overlapping technique for anti-disassembly and

1

2 Introduction

obfuscation of x86 binaries« and »Exploiting trust in Deterministic Builds«.
These publications look at the general complexities found in some proces-
sor architectures and how they can be abused for nefarious purposes. The
publication titled »Blockchain-based publishing layer for the Keyless Signing
Infrastructure« relates in general to the area of trust. It considers how times-
tamping of data can be done even with minimal trust requirements. Publica-
tions »Secure RPC in embedded systems: evaluation of some GlobalPlatform
implementation alternatives« and »eavesROP: Listening for ROP Payloads in
Data Streams« relates to defensive research and covers how execution can be
safely contained from some other part of the system and how a specific type of
attack can be detected respectively. The publication »A technique for remote
detection of certain virtual machine monitors« describes a technique that we
show can have both offensive and defensive uses.

1.1 COMPLEXITY

Unnecessary complexity can often be detrimental to the security of an appli-
cation. More features, more intertwined code and generally a larger Trusted
Computing Base (TCB), the more difficult it will be to secure and properly
test the intended functionality of a compute system. The more complex an
implementation is, the more likely it is that a malicious third party can sub-
vert the intended functionality of that implementation to do something it was
never intended to do. The attack surface of an implementation describes how
exposed the implementation is to attacks. In software, more functionality,
more lines of code and more complexity increases the attack surface by giv-
ing an attacker greater opportunities of successfully finding vulnerabilities,
i.e., weaknesses that can be exploited to compromise a system.

One such complexity that we exploit in this thesis is that of the instruction
set of Intel’s x86 processor architecture, which we will refer to as x86. x86
is a so called Complex Instruction Set Computing (CISC) architecture. CISC
provides a large set of complicated instructions that pack functionality in indi-
vidual instructions. This comes at the cost of added complexity to implement,
and because CISC provides many different instructions and configurations, a
complicated scheme is necessary to encode and decode such instructions. As a
consequence, this makes the size of instructions variable in order to minimize
space requirements, which is a property we exploit in Chapters 8 and 9.

The other dominant type of architecture is the Reduced Instruction Set
Computing (RISC) architecture. In RISC, an instruction will only do one thing
and it is up to the programmer (or rather the compiler) to use the necessary
instructions to accomplish the desired functionality. This is in contrast to
CISC architectures that aims to provide the programmer with one instruction

1.2. Offense and Defense 3

to do much of the desired functionality. Since RISC is relatively simple, the
encoding of instructions are fixed, and in that way the techniques presented in
this thesis that exploits the property of executing instructions from unaligned
offsets are not applicable, due to RISC not allowing that to happen.

1.2 OFFENSE AND DEFENSE

John Lambert, General Manager at Microsoft’s Threat Intelligence Center,
once said "If you shame attack research, you misjudge its contribution. Of-
fense and defense are not peers. Defense is offense’s child." [Lam14]. Re-
search in offensive techniques is sometimes misconstrued as something that
only benefits malicious players without realizing that those malicious players
may already be aware of the newly described offensive technique. By look-
ing for new ways to break things, researchers can simultaneously study how
to defend against any new potential offensive techniques. By ignoring the
offensive part of research and leaving it up to malicious actors, while only
focusing on the defensive aspects of already known vulnerabilities, will limit
the security community’s ability to respond to new threats.

When an attacker discovers a new attack vector, i.e., a specific way an at-
tack can be executed, it will often be met with a patchwork defense. A defense
which adds an additional layer of complexity on top of the vulnerable com-
ponent. This added complexity may open up further attack vectors, or not
completely solving the problem which may end up giving users a false sense
of security. Rarely is the underlying problem solved, probably because that
would incur a greater initial cost and a longer time to deploy. As an exam-
ple, an early defense against buffer overflow attacks was the Address Space
Layout Randomization feature (ASLR) which made it more difficult for the
attacker to know at what address his shellcode, or malicious code, will be
located. Nowadays ASLR is routinely bypassed by attackers [Ada15] as it did
not solve the underlying problem of buffer overflow attacks, in which a pro-
gram fails to check the boundary of a buffer which may lead to overwriting
adjacent memory locations.

The cat-and-mouse game between attackers and defenders is not going to
stop anytime soon, and new ways to defend against unknown attacks need to
be considered. One interesting technology here is the Qubes operating sys-
tem [RW10] that allows the user to seamlessly create new virtual machines
on-the-fly and contain applications that may be more vulnerable from other,
more security-sensitive, applications. Compromise of one virtual machine
would leave the others secure, barring some compromise of the underly-
ing virtualization technology. Functionality to automatically open new and
unknown pdf-files can, as an example, be done in a so-called "disposable"

4 Introduction

VM [RW13], that is created for the only purpose of opening that file, after
which it is disposed. This new way of thinking is going to be necessary to
minimize damages of attacks, as it is unlikely that one is able to counter all
attacks in general.

1.3 TRUST

We must trust that the software we run on our devices is free from bugs that
could enable an attacker to gain access to our machine. We must trust that
the applications running on our devices are not backdoored. We must trust
that a Certificate Authority (CA) that attests to the identity of our bank has
done its job, and the list goes on. In security, much boils down to trust. Even
hardware must be trusted where the manufacturing process has become so
complex due to the huge amount of transistors, an attacker located at the
factory that produces the integrated circuits can sneak in one gate in order
to create a stealthy backdoor which is only triggered with a specific sequence
of events which is unlikely to be triggered accidentally [YHD`16]. It would
not matter much if all the software on the machine was 100% bug-free if the
hardware it is running on is compromised.

The main issue with trust is often that we need to apply it to a third party,
and often we do not have any choice (or at least a very limited choice) in who
to trust for a particular use case. One approach to create trustworthiness starts
with that we should aim to distribute trust over as many entities as possible.
If we retrieve some data from a single entity, it is much easier for that entity to
play tricks on us, whereas if we retrieve data from multiple entities, a majority
of them must have been corrupted or be colluding and provide us with the
same faulty data for us to be cheated.

Open source software is an excellent area where trust is widely distributed.
From developing to testing to using it, everyone can see the code that is run-
ning and independently verify it. Of course not everyone is savvy enough to
parse computer code, but those that do can provide guarantees to others that
no irregularities were found. This provides users with a more dynamic set of
witnesses of the code than that of a company’s proprietary software, which
likely only is tested by their own engineers. Of course, there is another inter-
mediary we must trust in open source, namely the compilation process. What
turns the human-readable code into machine-readable code. A lot of things
can happen during this transformation, and is another point we must trust
to do its thing. We can compile it ourselves, but again, most users are not
tech-savoy enough to do this and will more likely rely on binaries pre-built
by third parties that will easily be double-clicked and installed. To solve this
problem a technique called "deterministic building" (see more in 4.3.2) was

1.3. Trust 5

developed which aims to make the compiled binary identical no matter who
built it. This enables a set of builders to attest to the hash digest of a binary
and let users gain greater confidence that if all these builders produced the
same binary, then it is more likely to be the product of the open source code.
With deterministic building we have distributed the trust of the compilation
process from one builder, to many builders. In this thesis we show that the
trust in even deterministically built binaries can be subverted. See Chapter 9.

At the end of the day we want the entities we rely on to be trustworthy. By
extension this requires these entities to build a reputation of being trustworthy
through their course of action. Either by developing code with minimal flaws,
issuing certificates in a correct manner or allow extensive security reviews
of their products and development processes. The reputation of an entity
that fails to operate according to users expectations can find their reputation
quickly deteriorating. Whether its failure is due to malice, incompetence or
inaction does not matter when the end result makes the trustworthiness of
that entity questionable.

Better yet, we can make the level of trust in third parties to an absolute min-
imum for some use cases by utilizing Bitcoin’s blockchain. Bitcoin solves the
Byzantine generals problem [LSP82] in which a system can continue to oper-
ate normally even under the influence of some malicious actors. We explore
Bitcoin’s blockchain in Chapter 3 and utilize it for timestamping in conjunc-
tion with the Keyless Signing Infrastructure in Chapter 7.

2
Security through

Compartmentalization

Isolating running programs makes it harder for a compromised program
to affect the correct functioning of other programs. A basic type of iso-
lation has existed in many operating systems for a long time in that the

memory allocated to one process is not reachable by another. The concept of
isolation has been expanded upon ever since and in this background chap-
ter we will look at a couple of common technologies used to achieve security
through isolation.

2.1 VIRTUALIZATION

Virtualization is, in essence, a process of abstracting away the physical charac-
teristics of the underlying hardware from the OS and having an intermediate
layer, called the Virtual Machine Monitor (VMM) or hypervisor, which dis-
tributes resources to the virtual machines in some manner. This will isolate
entire operating systems, not only processes, from each other. The technol-
ogy has been around since the 1960’s [Ros04], initially used to divide system
resources between different applications on a mainframe.

Isolating through virtualization is a common practice today for a wide
range of use cases including analyzing malware, which give the analyst the
possibility to take a snapshot of the system before infection, and ability to
revert back to that state when analysis is completed. In this way the analyst
will not have to re-install the system from scratch, which saves a lot of time.
Normal users can benefit from the technology as well, for example by utiliz-
ing the Qubes operating system [RW10] which allows an arbitrary number of
virtual machines to be run with the goal of allowing the user to partition their
tasks into different domains in an isolated manner.

7

8 Security through Compartmentalization

Virtualization can also provide benefits such as load balancing, by taking
full advantage of the available resources, and hardware multiplexing. Another
useful feature of virtualization is easy migration. If a system must upgrade
its hardware, the virtual machine could retain compatibility if the hypervisor
handles the communication between OS and hardware, making such a move
much more frictionless.

2.1.1 HYPERVISORS

The hypervisor is one way to enable virtual machines. The computer on which
a hypervisor is running is called the host, and any virtual machine running
under this hypervisor is called a guest. The notion of a hypervisor was first
described by Popek and Goldberg in [PG74], and the authors classified two
different types of hypervisors.

Type-1 This type of hypervisor runs directly on the host’s hardware in order
to control resource management to guests. Another name for this type
of hypervisor is bare-metal hypervisor. Examples of type-1 hypervisors
are Xen, Microsoft’s Hyper-V and VMware ESX/ESXi.

Type-2 This type of hypervisor is executed as any other program on the
main operating system of the host. Examples of type-2 hypervisors
are VMware Workstation/Player, Oracle’s VirtualBox and QEMU.

The responsibilities of hypervisors range from memory management to
CPU scheduling for all VMs. In order for a CPU to be virtualizable, Popek
and Goldberg set forth a set of requirements that should be met. They divided
instructions into three categories.

Privileged instructions are defined as instructions that can be executed in a
privileged mode only. If a privileged instruction is executed in non-
privileged mode, it will fail.

Control sensitive instructions are defined as instructions that attempt to change
the configuration of different resources.

Behavior sensitive instructions are defined as instructions that have different
behavior depending on the configuration of different resources.

With these definitions they said that for a CPU to be virtualizable, the sen-
sitive instructions must be a subset of the set of privileged instructions, i.e.,
the sensitive instructions must also be privileged. This is necessary for the
hypervisor to be able to intercept those instructions that change the state of
the CPU, otherwise the isolation between guests could become compromised.

2.1. Virtualization 9

As an example, the x86 architecture does not fulfill these requirements for
virtualization. x86 has a set of 17 instructions which are sensitive, but not
privileged. Thus, since these instructions do not cause faults when executed
in user mode, they cannot be intercepted by the hypervisor. The hypervisor
cannot manage virtual machines because inconsistencies can occur when one
guest modifies configurations and does not notify the hypervisor.

One example of these virtualization-incompatible instructions is the SIDT
instruction, which stands for Store Interrupt Descriptor Table. This instruc-
tion can be executed in user mode and will copy the contents of the Interrupt
Descriptor Table Register (IDTR) into the destination operand of the instruc-
tion. If the system is virtualized, the hypervisor cannot intercept the SIDT
when made on a guest, and leave the hypervisor unable to serve the guest
with the correct information.

Popek and Goldberg also listed three properties that should be fulfilled for
virtualization

The Equivalence property says that an application executed inside a virtual
machine should be indistinguishable from the same application being
run in a real machine. This property is also known as the fidelity prop-
erty.

The Resource control property says that the hypervisor must have complete
control over the virtualized resources. This is also known as the safety
property.

The Efficiency property says that most of the instructions should be executed
without interference of the hypervisor. This is also known as the per-
formance property.

2.1.2 PARAVIRTUALIZATION

In paravirtualization, the process of virtualization is greatly simplified by hav-
ing strategic changes made to the guest operating system to maximize its per-
formance. An API is provided for guests to access certain hardware resources.
Obviously this requires the guest OS to be modified and aware of the hypervi-
sor in order to use the interface provided.This often brings performance gains
for paravirtualized guests compared to other virtualization techniques.

One popular product that provides paravirtualization is Xen [BDF`03]. It is
their hypervisor that is utilized in the Qubes OS mentioned earlier. Xen allows
one VM (dom0) to have full access to the hardware, from which management
of all the other VMs (domains) happens. A paravirtualized operating system
is loaded in dom0 at boot time.

Xen has suffered from many vulnerabilities over the years [xen16], some
of which could have allowed an attacker to escape a guest OS and enter the

10 Security through Compartmentalization

host [Rut16]. A so called ’VM escape’ attack is the ultimate break from the
isolation that virtualization provides [SML10].

2.1.3 FULL VIRTUALIZATION

With Full virtualization, the aim is to completely abstract away all hardware
capabilities and provide them via the hypervisor such that the guest OS can
stay unmodified, unlike the case with paravirtualization. Modern CPUs usu-
ally support hardware assisted full virtualization modes. This type of virtu-
alization is especially suitable when running proprietary systems which have
no paravirtualized version available to them, such as Windows operating sys-
tems. It is also the best choice for when you do not want the user of the
system to know he or she is running in a virtual machine. This is important
when creating honeypots, which is a type of isolated environment aimed at
luring in attackers in order to study their tools and techniques. In such an
isolated system you do not want the attacker to be able to tell that he is in
an isolated and potentially surveilled environment. The subject of detecting
whether or not a process is running in a virtualized environment is explored
in Chapter 5.

2.1.4 VIRTUALIZATION ON X86

Even though x86 is not virtualization-compatible according to Popek and
Goldberg [PG74], some CPU models include hardware support to achieve
virtualization anyway. Intel call their technology VT-x (Virtualization Technol-
ogy for x86), while AMD call their technology SVM (Secure Virtual Machine).
They work similarly, but we will focus on the details of VT-x.

Some of the difficulties that x86 virtualization faces, and that VT-x aims to
solve, are listed below.

Address-space compression: Even though the hypervisor resides in its own
address space for the most time, it must allocate a small part of the
guest’s memory for itself. It is paramount that the guest cannot write to
this memory allocated by the hypervisor. To solve this, VT-x allows the
virtual address space to be changed at every transition via a new data
structure called the Virtual Machine Control Structure (VMCS) which
resides entirely in physical memory. By having segment and control
registers which handle logical to virtual and virtual to physical memory
translations to be saved and restored in a proper way, the problem of
address-space compression can be solved.

Non-faulting access to privileged state: When instructions that access regis-
ters with CPU state information does not cause a fault to allow the

2.2. Mandatory Access Control Schemes 11

hypervisor to intervene, the guest may be handed incorrect informa-
tion. VT-x will cause a VM exit transition to occur when a guest tries to
access a privileged state, making sure the correct data is handed to the
guest.

Interrupt virtualization: Guests must not be allowed to mask and unmask ex-
ternal interrupts. The hypervisor needs full control of this to, for exam-
ple, make sure that a keyboard action is not delivered to the guest until
it is its turn to run. VT-x includes a special external-interrupt which if
enabled hands over execution to the hypervisor when a guest tries to
mask or unmask interrupts.

Ring compression: Since the x86 architecture’s paging functionality makes
no distinction of rings 0, 1 and 2, the guest must be run in ring 3 to-
gether with user mode applications. To solve this VT-x makes sure that
the kernel can be executed in ring 0 again, while the hypervisor is run
in ring -1.

Frequent access to privileged resources: When a guest tries to access privi-
leged resources, a fault must be generated and control handed over to
the hypervisor. Since this is a regular occurrence, faulting every access
will cause severe performance degradation. By using the VMCS struc-
ture provided by VT-x to only invoke the hypervisor when necessary,
we can minimize performance degradation.

2.2 MANDATORY ACCESS CONTROL SCHEMES

The most common access control mechanism for operating systems are discre-
tionary in nature, meaning that access permissions/restrictions on an object
is defined by the owner of that object. This type of access control is called
Discretionary Access Control (DAC) [Li11].

Mandatory Access Control (MAC) is another means of access control, which
follows a pre-defined policy on how objects and subjects are allowed to inter-
act. The policy commonly applies a rule which denies access to everything
for everyone and then have rules for specific cases that must be possible. This
makes MACs difficult to manage.

2.2.1 SELINUX

The Mandatory Access Control provided by SELinux is the foundation to one
of the implementations in this thesis. SELinux uses the Linux Security Module
(LSM) in the Linux kernel to achieve mandatory access control.

12 Security through Compartmentalization

Figure 2.1: The main SELinux components

It should be mentioned that SELinux is not the only solution utilizing
LSM. There are several other solutions including AppArmor [VC09], SMACK
[Sch08] and Tomoyo Linux [THT05]. We chose to work with SELinux since it
is a widely used solution for Mandatory Access Control for Linux systems.

SELinux supports three different forms of MAC; type enforcement, role-
based access control and Multi-Level Security. For our purposes in Chapter 6
we will only use type enforcement. With type enforcement we assign security
labels to all objects and subjects on the system and create rules based on these.

The main components of SELinux are subjects, objects, object managers, the
security server, the Access Vector Cache (AVC) and the security policy. Figure
2.1 shows how these components interact with each other.

When an access request from a subject, e.g., a process requests permission
to write to a file, the access request is sent to the object manager dealing with
that particular resource. The object manager then queries the Access Vector
Cache (AVC) to see if the same request was recently made. If that is the case,
the object manager receives an answer from the AVC. Otherwise the access
request is forwarded to the security server which checks the security policy
for a decision. The answer is cached in the AVC for future requests and then
forwarded to the object manager which grants or denies access to the subject
accordingly.

Before SELinux decides whether an access request should be granted or
denied, the DAC is consulted and only if it passes the DAC check will SELinux
proceed checking with the security server.

SELinux with type enforcement allows us to confine applications within
domains and limit their privileges to the bare minimum necessary to do their
job. If the application should later require additional permissions, these have
to be specified explicitly in the policy and then loaded in the system.

In a Role-Based Access Control (RBAC) setting, users in a system are as-
signed roles according to which they have certain access rights. This type of
access control enables an organization to efficiently enforce security policies
specific for their enterprise. As an example, in a hospital setting, doctors can
assume the role with access to patients journals while nurses have no such
access. By assigning new employees with their appropriate roles with pre-
specified access rights, the overhead of setting specific access rights for new

2.4. Trusted Execution Environments 13

employees is minimized.
With Multi-Level Security (MLS) individuals are granted clearance for some

specific level in order to access objects classified at that level. The levels are
’Top Secret’, ’Secret’, ’Classified’ and ’Unclassified’, from most privileged to
least privileged. A subject with clearance to ’Top Secret’ information will
have access to all the other levels as well, while someone with clearance for
the ’Secret’ level will have access to ’Secret’, ’Classified’ and ’Unclassified’
information, they will not have access to those labeled ’Top Secret’.

2.3 TRUSTED EXECUTION ENVIRONMENTS

The Trusted Execution Environment (TEE) is a small part of a system which is
considered to be trustworthy. The TEE integrity is guaranteed by a subset of
the system (possibly the same) that is trusted (more formally, a Trusted Com-
puting Base [Rus81]). Some notable modern hardware approaches to Trusted
Execution Environment (TEE) are the Intel Trusted Execution Technology (TXT)
(which itself builds upon the Trusted Platform Module) and the ARM Trust-
Zone technology [Gre12] [Gro11a] [td09]. TrustZone is a security extension
to some of ARMs processors that provides a cheaper alternative to adding
a second physical CPU to gain security through isolation from an untrusted
environment.

Intel’s Software Guard eXtension (SGX) [AGJS13] provides an extension of
the instruction set to allow users to create so called enclaves, which provides
private regions of memory that is protected from other processes, even those
that run at higher privileges than the target process. Even if a system is com-
promised, including the kernel, a process running within an enclave would
still be isolated from the attacker, in that the data in that enclave would be
protected. SGX can be seen as an extension of TrustZone, which provides
only one enclave, namely the secure world, and SGX can provide an arbitrary
amount of enclaves.

SierraTEE [Sie13a] is a GlobalPlatform compliant TEE implementation that
utilizes ARM TruztZone technology to achieve isolation between trusted and
untrusted components. SierraTEE borrows a number of design elements from
the SierraVisor Hypervisor by the same company [Sie13b].

The ST-Ericsson NovaThor platforms [SE11] make use of various security
technologies such as TrustZone to provide a trusted execution environment
which communicates with a rich OS using the GlobalPlatform API. Other
similar products are MobiCore by Giesecke & Devrient, Trusted Foundations
by Trusted Logic and OP-TEE by Linaro.

In [WHS12] Weiss et al. discuss a system inspired by the GlobalPlatform
TEE which is build upon the Fiasco.OC microkernel and its L4Re runtime

14 Security through Compartmentalization

environment [Gro11b].

2.4 OTHER SOLUTIONS

Other interesting solutions that relate to security through compartmentaliza-
tion is Docker [Mer14] which provides isolation for Linux applications by
containing everything that application needs inside a software container, and
Wine (Wine Is Not an Emulator) [AJ94] which is a compatibility layer to allow
Windows applications to run in a Linux Environment. Wine achieves this by
implementing alternatives to the Dynamically Linked Libraries (DLLs) which
exist in Windows operating systems in order to run Portable Executable (PE)
files under Linux.

3
Blockchain

The blockchain is a recent innovation, dating back to the invention of the
cryptographic currency Bitcoin [Nak08]. The blockchain can be seen
as an append-only database where entries are costly to modify due

the nature of the mechanism of how they are added. This mechanism, called
proof-of-work (PoW), and other features provided by the blockchain will be
explored in-depth in this chapter. We focus on Bitcoin’s blockchain, since
it is the most secure blockchain to date given the amount of computational
resources utilized to create blocks [btc16]. In Chapter 7 we will utilize Bit-
coin’s blockchain to achieve Byzantine fault tolerance for the Keyless Signing
Infrastructure.

3.1 BACKGROUND

This section aims to provide some basics on cryptographic hash functions and
Merkle Trees, since these are basic building blocks used in blockchains. We
also cover Byzantine fault tolerance here.

3.1.1 CRYPTOGRAPHIC HASH FUNCTIONS

A cryptographic hash function is a one-way function that takes data of arbi-
trary length as input, also referred as a message, and outputs a string of fixed
length, referred to as hash digest. Pragmatically speaking one should not be
able to find two different messages that have the same hash digest as their
output. It should also not be possible to retrieve the message given the hash
digest, hence a one-way function.

In order for a cryptographic hash function to be deemed secure, it will need

15

16 Blockchain

to have the following three properties:

Pre-image resistance Given hash digest x, it must be difficult to find a mes-
sage, m, such that h(m) = x.

Second pre-image resistance Given message m, it must be difficult to find a
message, m’ where m’ != m, such that h(m) = h(m’).

Collision resistance It must be difficult to find any two messages, m and m’,
where m’ != m, such that h(m) = h(m’).

3.1.2 MERKLE TREES

In a Merkle tree [Mer80] every node is a hash digest of its concatenated chil-
dren. This structure allows for efficient verification of data inclusion given
only the root hash and the intermediate hash values along the path to the
data item to be proven to be a part of the tree. Proving that a leaf node is part
of the tree has logarithmic complexity in both time and space, providing high
scalability. Figure 3.1 illustrates a Merkle tree and the necessary data to verify
inclusion of data.

3.1.3 BYZANTINE FAULT TOLERANCE

A Byzantine fault tolerant system can properly function even when Byzan-
tine failures are happening. A byzantine failure [DHP`04] [DHSZ03] occurs
when the system fails in arbitrary ways, e.g., when some part of the system
is processing requests incorrectly and corrupts the local state. A Byzantine
fault tolerant system will continue to function given a certain threshold of
byzantine failures is not breached.

Byzantine fault tolerance is a sub-field of error tolerance based on the two
generals problem, or the more general Byzantine generals problem [LSP82],
in which a number of generals plan to attack a city and must reach consensus
with everyone else on the time to attack. If too few generals attack at the
same time, the attack will fail. The problem is provably unsolvable [AEH75]
and solutions aim at making the consensus-making process as difficult and as
costly as possible to disrupt. In the next section we will see how proof-of-work
for blockchain systems provides Byzantine fault tolerance.

3.2 BLOCKCHAIN AND PROOF-OF-WORK

A blockchain can be viewed as a database where data entered into it has
strong guarantees of immutability and where these guarantees grow stronger
as more data is appended. These guarantees are what makes a blockchain,

3.2. Blockchain and Proof-of-Work 17

Figure 3.1: Given the root hash and intermediate node hashes, any-
one can verify the particular data item was included in
the tree. By computing the hash digest of the data item
and pairing that digest with its sibling, intermediate hash
and continuing in this fashion until pairing the final in-
termediate hash with the currently held hash digest and
verifying that the hash digest of those two nodes equals
the root hash, we have effectively verified that the data
item was included in the Merkle tree.

among other things, ideal for timestamping applications, because they pro-
vide assurances that any attempt to change the data will be detected.

A blockchain consists of linked blocks, which in turn contain transactions.
A block contains a block header and a set of transactions as its payload. The
set of transactions are commited in the block header via the Merkle tree hash
root of all transactions as leaves. Additionally the header contains a Unix
timestamp, defined as the number of seconds elapsed since 00:00:00 UTC,
1 January 1970, and the hash of the previous blocks’ header. This makes
sure that each new block commits to all previous ones as well, thus forming
a chain of blocks, where the order of them cannot be manipulated without
being detected.

18 Blockchain

The blockchain is secured with proof-of-work, where the block header is
repeatedly hashed until the hash value fulfills some condition. The condi-
tion is that the value of the hash digest, interpreted as an integer, must be
below some target value, also specified in the block header. This form of
block signing allows anyone to try to create a block without discrimination,
because all that is needed is access to resources that can perform these hash-
ing operations. The target value is regularly adjusted such that the average
time between the issuance of two blocks is fixed. The security guarantees are
derived from the assumption that if a majority of the computational power
is honest and always builds on the chain with most work, then an attacker
trying to modify data in older blocks will not be able to accumulate enough
work to become the chain everyone else recognizes as the correct one.

Proof-of-work makes modification of data in existing blocks expensive since
the hash digest of the block header must be recalculated to satisfy the condi-
tion. Additionally, every subsequent block header will need to be recalculated
since they depend on the previous block header, going all the way back to the
block that was modified. Unless the attacker possesses more than half of the
computational power of the entire network, he is unlikely to be able to catch
up and create a longer chain. The deeper the data to be modified is, the
more expensive it will be. It is the chain of proof-of-work that helps overcome
Byzantine failures by allowing participants of the system to share an identical
state of the database.

Since bitcoin tokens are issued to the creator of a block, also called a miner,
the incentives are aligned with extending the chain with most work attached
to it. Otherwise there is a risk that the block will never be part of the chain,
and the block creator cannot claim the tokens rewarded in that block. There
are some exceptions to this rule where a single entity possessing a large
enough share of the hashing power of the network can benefit from with-
holding valid blocks in an attack called selfish mining [ES14] [SSZ15].

A fork occurs when one block in the blockchain has two parent nodes. This
is a common occurrence where two miners find a valid block simultaneously.
In such a case, when another block is found the rest of the network will start
working on top of the block they hear about first. When another block is
found, all other miners working on the alternative block should abandon it
and continue working on top of the block in the longest chain. The valid chain
is the one with most work attached to it. When a different fork overtakes an-
other one and replaces it, blocks no longer part of the chain will be orphaned.
The process of rearranging the blockchain, undoing transactions in orphaned
blocks and so on, is referred to as a chain reorganization and is performed
by nodes that followed the particular fork. There are no guarantees that a
transaction included in an orphaned block is included in the new fork. As
such, relying on important data in blocks with only a few blocks on top of it

3.2. Blockchain and Proof-of-Work 19

have lower guarantees of staying in the chain.
Proof-of-work incentivises miners to act honestly since it costs them re-

sources to create blocks. Proof-of-work is not the only thing necessary to
create valid blocks though. Apart from the proof-of-work, several other con-
sensus rules exist which must be followed for blocks to be considered valid.
The most important consensus rule is arguably that a specific token must not
be spent more than once. This rule against double-spending allows deter-
ministic tracking of transaction outputs in a transaction chain, which will be
useful to track hash commitments embedded by the Keyless Signing Infras-
tructure, described in more detail in Chapter 7.

Another important consensus rule is that the timestamp in the block header
must not be ahead more than 2 hours of the time of the local machine that
receives it, nor must it be earlier than the median timestamp of the previous
11 blocks. Should the timestamp not be within these boundaries, the block
is deemed invalid by the receiving peer. This provides rough assurances of
what time the data in the block were commited at. The reason for having
such wide ranges acceptable is that it is difficult to synchronize time with
unknown, potentially malicious peers.

Other consensus rules include a limit of 1MB of transaction data and halv-
ing the reward in each block each 210,000 blocks. There are many more rules,
many of which are bugs that need to be followed in order to not drop out
of consensus with the other peers. These bugs were introduced when Bitcoin
bootstrapped, and if they are fixed it would cause old software to become
incompatible. One example of such a bug can be seen in Section 3.2.1, where
an extra, unnecessary, element on the stack have to be added. Fixing this bug
would make older clients incompatible which would cause a permanent split
of the blockchain.

3.2.1 TRANSACTIONS

A transaction specifies how tokens in the blockchain get reallocated. A trans-
action must include one or more inputs and outputs. Each input will refer-
ence an output with unspent tokens and each output will specify conditions
for how to spend the amount of tokens locked in it. The amount in the out-
puts referenced by the inputs must be equal to or more than the amount set
in the outputs of the new transaction. If the outputs spend less than what is
available, the difference can be collected as a fee by the miner that includes
the transaction in a block. Fees are essential to get transactions included in a
block. Since any entity can begin mining, i.e., attempt to create a new valid
block, it is also up to them what transactions they include in a block. If we as-
sume there will be more transactions available than can fit into a block at any
given time, the rational miner would look to maximize profits by including

20 Blockchain

the transactions that pays the highest fees.
To decide whether a transaction is eligible for inclusion in a block, inputs

and outputs include scripts which are executed and must return TRUE in order
to be valid. When a new transaction is created, each input script will be paired
with the referenced outputs script. Only transactions that can provide a valid
input script will be able to spend that specific output. Additionally, there is a
locktime field in the transaction, the value of which must be below the median
timestamp of the previous eleven blocks in order to be valid. If the value of the
locktime field is below 500,000,000 it is interpreted as a block height, i.e., the
number of blocks created in total, and the transaction must not be included
in any block prior to the height specified. If the value is above 500,000,000, it
is regarded as a Unix timestamp and the transaction must not be included in
a block unless the median timestamp of the previous eleven blocks are above
the locktime value.

The language Bitcoin transactions utilizes is called Script. Script is stack-
based with a list of instructions and data items processed from left to right.
If at any point during execution a verify operation sees a FALSE value at the
top of the stack, the execution stops and the transaction is marked as invalid.
When the transaction script executes, the top stack value must not be FALSE
for the transaction itself to be valid. Below are some examples of some stan-
dardized ways scripts are currently being used in Bitcoin to give the reader,
both an idea of how scripts are executed, and what constructs we will use
later on.

PAY-TO-PUBLIC-KEY-HASH (P2PKH)

In a P2PKH type of transaction, the script in the output to be spent is formed
to force the spender to supply the raw public key in the input script to be
hashed and matched to the hash digest supplied in the output script. Should
the hashes match, the script goes on to validate a signature of the transaction
with that public key. The scripts look like this:

output script: OP_DUP
OP_HASH160
<hash_of_public_key>
OP_EQUALVERIFY
OP_CHECKSIG

input script: <signature>
<public_key>

The following happens when this script executes.

3.2. Blockchain and Proof-of-Work 21

• The <signature> and <public_key> are pushed to the stack from the
input script

• The OP_DUP instruction duplicates the top stack value, i.e., public_key,
so there are now two instances of public_key on the top of the stack

• OP_HASH pops the top stack value, hashes it and pushes the hash to the
stack

• <hash_of_public_key> is pushed to the stack

• The two top values of the stack are compared to make sure they are
equal via the OP_EQUALVERIFY instruction

• If they are not equal, execution stops and the transaction is deemed
invalid

• If they are equal, execution continues and OP_CHECKSIG will try to verify
that <public_key> validates <signature> correctly

• If it is valid, the transaction is valid and it may be included in a block

PAY-TO-SCRIPT-HASH (P2SH)

In the same way that a P2PKH requires a public key to hash to a specific
hash digest, P2SH requires an entire serialized script to be hashed to match
the specific digest in the output. This provides much more flexibility for the
receiver to specify the conditions he wants in his script without burdening the
sender with the details. The serialized script that must be provided to spend
a P2SH output is called a redeem script and is executed if the hashes match.
It also has the advantage of script confidentiality until it is spent.

Scripts presented later will be embedded in P2SH transactions.

MULTISIGNATURE TRANSACTIONS

Multisignature encumbered outputs forces the spender to supply M valid sig-
natures from N given public keys, where M ď N. This allows the security of
that output to be distributed among many keys, where loss or theft of one of
the keys does not necessarily mean that the output is compromised, i.e., the
output cannot be spent with only one key. Below is an example multisignature
script.

output script: OP_2
<public_key1>

22 Blockchain

<public_key2>
<public_key3>
OP_3
OP_CHECKMULTISIG

input script: OP_0
<signature1>
<signature3>

The following happens when this script executes

• The data items from the input script and the output script are pushed
to the stack

• OP_CHECKMULTISIG is then executed which takes the top stack value,
OP_3, to know how many public keys to pop

• After the public keys are popped off the stack, the value OP_2 is popped
and tells the instruction how many signatures it will need

• OP_CHECKMULTISIG tries all combinations of the public keys to verify all
signatures and will push OP_TRUE to the stack if it finds enough valid
signatures, otherwise it will push OP_FALSE

• OP_0 is there due to a bug in OP_CHECKMULTISIG, where it always pops
one extra value from the stack

OP_CHECKLOCKTIMEVERIFY

OP_CHECKLOCKTIMEVERIFY can be used to make the locktime field of transac-
tions much more powerful. Instead of just pre-signing transactions with the
locktime requirements, an output can include a locktime requirement on the
stack together with the instruction OP_CHECKLOCKTIMEVERIFY, which will only
mark a transaction as valid if the locktime field of the transaction trying to
spend the output is above the locktime requirement specified in the output
script. We will utilize this instruction and multisignature scripts to create
spending conditions that prioritizes some groups in Section 7.2.2.

OP_RETURN

OP_RETURN is an opcode that fails the script execution immediately and makes
any attempt to spend such an output invalidate the transaction. In practice
it makes the specific output unspendable, and this is used when you want a
hash value embedded in the blockchain, or for some reason burn tokens. The

3.3. Use Cases of Blockchain Technology 23

reason for using OP_RETURN is that it marks that output as unspendable and
allows clients to stop tracking it, thus not requiring unnecessary resources for
running a client. These types of outputs can also be pruned and deleted from
permanent storage in some modes of operation to save disk space. Since it is
unspendable, the associated value with the output should be zero.

OP_RETURN is the way we will embed CRHs in the blockchain.

3.3 USE CASES OF BLOCKCHAIN TECHNOLOGY

With the invention of Bitcoin and the blockchain [Nak08], blockchains have
been proposed as a solution for many of today’s problems relying on trust.
From reforming the financial system by taking advantage of the immutability
and transparency provided by blockchains, to tracking ownership of digital
assets [Gro16] as well as physical property, so called smart property [sza97].
There have been proposals for protocols to operate directly on top of exist-
ing blockchains for entirely new purposes than what they were originally
intended for, such as Counterparty [cou], which is a platform for P2P finan-
cial applications on top of the Bitcoin blockchain, and Colored Coins [Ros12]
which is a technique for associating assets with addresses, also on the Bitcoin
blockchain.

Brand new blockchains have also been bootstrapped to fill the need of these
new solutions, like Namecoin [nam] as a censorship-resistant alternative to
the DNS system, and Ethereum [Woo14] which provides feature-rich scripting
capabilities to do smart contracting.

The blockchain is finding new use cases every day, which shows the versa-
tility of the system. Below are some other uses for the blockchain in a little
more detail.

3.3.1 DECENTRALIZED DNS

Namecoin is an interesting example, and one of the first alternative chains
created next to Bitcoin, that still utilizes and receives security from the com-
putational power available to the Bitcoin network. So called merged-mining
allows Bitcoin-miners to simultaneously mine blocks on the Namecoinchain
by committing to the state of it in a Bitcoin block. This proved to have some
serious security issues when it showed that not all Bitcoin miners were min-
ing Namecoin blocks, and the centralization of computational power was even
worse with one entity having control of more than half of the computational
power in Namecoin, theoretically allowing them to perform 51% attacks,
where rewriting the history of blocks is possible in order to reverse or cen-
sor a specific transactions. It was especially bad with merge-mining since the
pool doing merge-mining would not lose any income on Bitcoin’s blockchain,

24 Blockchain

making the attack essentially free. Attacking merge-mined blockchains have
occurred previously where a pool attacked a cryptocurrency called Coiled-
Coin [att12], because the pool operator felt it was a scam.

Alternatives to Namecoin have popped up, the most notable being Block-
stack [ANSF16]. Blockstack provides secure and decentralized naming and
identity services. They also utilize the Bitcoin blockchain, but in a more
resilient way compared to Namecoin. Name operations on Blockstack are
embedded in underlying bitcoin transactions that are marked as Blockstack
transactions so that they can be easily identified by other Blockstack nodes.
Unlike Namecoin, which stores all records directly on the blockchain, Block-
stack will store such data in other ways and only provide commitments to
that data in the blockchain, making that approach more scalable.

3.3.2 SMART CONTRACT EXPRESSIVENESS AND SIDECHAINS

Ethereum raised the question on whether the scripting language for doing
smart contracts can be too expressive, as the Decentralized Autonomous Or-
ganization (DAO) [Jen16] was released as a very complex piece of smart con-
tract, and even after multiple security reviews was exploited [dC16] due to a
missed bug in the code allowing an attacker to siphon of tokens worth tens of
millions of dollars. The DAO was supposed to allow a diverse set of people
to pool their capital and fund various projects through voting proportional to
their stake.

Decentralizing prediction markets with the help of blockchains have also
been a topic of research [CBF`14]. Two of the most interesting projects in this
area is Augur [PK15] which operates on top of the Ethereum blockchain, and
Hivemind [Szt15] which aims to launch a prediction market as a so called Bit-
coin sidechain. The concept of a sidechain [BCD`14] was presented by a com-
pany called Blockstream and essentially allows feature extensions to be added
to a different blockchain, but will still utilize the underlying token of a dif-
ferent blockchain. In that way bitcoins can be locked on Bitcoin’s blockchain
and be redeemed/created on the sidechain and will only be unlocked on the
main chain if the corresponding coins on the sidechain are locked/destroyed
with proof of that provided in the main chain. Experimental features can be
implemented on the sidechain with hard guarantees that if something goes
wrong, only the sidechain will suffer and those that do not opt to use that
sidechain will stay unaffected.

Another interesting sidechain project is the Rootstock [DL15] sidechain,
which plans to create a sidechain with the same functionality as Ethereum,
but which uses the bitcoin currency instead of a newly created one. In this
way it can utilize the network effects of the bitcoin token, provide a more
expressive smart contracting language while simultaneously not having to

3.4. Security of Blockchains 25

expose the underlying Bitcoin blockchain to new experimental features.

SECURITY OF SIDECHAINS

Initially the idea was to secure sidechains by utilizing merge-mining, where
Bitcoin miners can add their computational power to secure the sidechain at
no extra cost to them. As we discussed in Section 3.3.1, merge-mining could
provide less security to the chain if not a significant majority of the existing
miners perform the merge-mining, leaving the sidechain open to 51%-type
attacks.

On the opposite side, there are sidechains that are secured by a federation
of signers. In this configuration blocks are valid if a certain threshold of prede-
fined signers have signed the block, making this type of sidechain inherently
more centralized because of the fixed set of signers.

In between merged-mined and federated sidechains are a combination of
the two, where a federation secures the chain during bootstrap and as more
miners starts securing the sidechain, the influence of the federation decreases.
When, or rather if, all Bitcoin miners support the sidechain, the federation
will have lost its power of the sidechain. Similarly if the hashing power on the
sidechain decreases, the federation will regain power.

3.4 SECURITY OF BLOCKCHAINS

A blockchain makes sense if it is widely distributed and used among a di-
verse set of people. By having a large set utilizing the blockchain, they are
contributing to the redundancy of where the data is stored. It also makes that
particular platform more valuable because of its usage, as its network effects
are larger. From this we can say that fragmentation, i.e., multiple blockchains,
will reduce the effective security of all of them. If it costs 100 million dollars to
attack a blockchain in an environment where there is only one, it would only
cost one million dollars to attack a blockchain in an environment where there
are 100 blockchains each with the same amount of computational power. It
is the computational power behind a blockchain that provides it with its se-
curity, and fragmenting that to multiple blockchains makes as much sense as
dividing a password into substrings and hashing them separately [Mic].

Bitcoin is the single most secure blockchain to date, with an overwhelm-
ing [bit16b] 80% of the market capitalization of all blockchains at the time
of writing. Market capitalization and security are closely linked due to the
mining game being fiercely competitive and the cost of creating a bitcoin is
roughly its market value. Thus, the amount of energy expelled to create a
block will, on average, equal the amount rewarded. Basic economics tells

26 Blockchain

us that should the price of one token increase by 100%, then more hashing
power would enter the network to reap some of those profits until the net-
work reaches an equilibrium where the cost to create that token is equal to its
value.

The computational power in cryptocurrencies that rely on proof-of-work
can come from many different types of hardware. CPUs, GPUs, FPGAs and
ASICs. When Bitcoin first bootstrapped, the reference client included mining
functionality that utilized the CPU. However, the CPU was very limited in the
amount of security it added to the network compared to how much energy it
used. This was not very efficient, and soon software that utilized GPUs made
its entrance, giving the security of the network a real boost. The end of the line
is of course Application Specific Integrated Circuits (ASIC) where hardware
was specifically designed for the sole purpose of mining for bitcoins. The use
of ASICs has received a lot of criticism, with arguments being that it is not
something everyone has in their own home and thus hurts the decentraliza-
tion of the network. Any reasonable proof-of-work scheme is however always
subject to be implemented in specialized hardware at some point. Thus, rather
than rejecting it, it should be embraced. Any manufacturer of such hardware
has an incentive not to give itself too much computational power, as the con-
fidence in the network would decrease if a single entity had too much power.
It could be difficult to properly identify the creator of blocks since no identity
is required to start mining and a brand new identity is created for each new
block.

Another interesting point in favor of ASICs is that botnets cannot affect the
network as much. If ASICs are not available, then a botnet with hundreds of
thousands of machines could effectively attack the network at no cost to the
attacker [PGP12]. The most common approach to restricting ASICs on alter-
native blockchains is to make the proof-of-work algorithm memory hard, thus
making ASICs less effective. The problem with this approach is that making
the algorithm more complex increases the likelihood of there being potential
for optimizations. If there is room for optimization, then the ones with most
resources are likely to be first to discover them, and keep that optimization to
themselves. This would make others who do not apply that optimization to
run at a loss, because the optimized miner will be more profitable and even-
tually price out their competitors. Bitcoin is using double sha256 hashes as
its proof-of-work algorithm. Hardware specs for it is freely available online
and the algorithm is simple, making any attempt to implement it into ASICs
a relatively low-cost affair compared to more complicated alternatives. Even
a simple hashing algorithm such as sha256 is not free from optimizations
though, as AsicBoost [Han16] was proposed and patented to provide miners
with optimization techniques with up to 10% improvement.

4
Software Security

S oftware security encompasses measures taken to secure code from flaws,
both intentional and with malicious intent in mind. It is a broad field
dealing with, among other things, validation of user input, authentica-

tion, cryptography and much more.
In this chapter we will discuss some topics to aid in understanding Chap-

ters 8,9 and 10 which are based on the publications titled »A new instruction
overlapping technique for anti-disassembly and obfuscation of x86 binaries,«
»Exploiting trust in Deterministic Builds« and »eavesROP: Listening for ROP
Payloads in Data Streams,« respectively.

4.1 THE X86 ARCHITECTURE

The x86 architecture pioneered by Intel remains one of the most widely used
Instruction Set Architectures (ISA) today. It is a Complex Instruction Set Com-
puting (CISC) architecture meaning that it provides instructions that them-
selves may execute several low-level operations as one. The alternative to
CISC is Reduced Instruction Set Computing (RISC), where instructions nor-
mally only perform one low-level operation. Most implementations of the
RISC architecture have fixed-length instructions whereas in the x86 architec-
ture instructions can be between 1 and 15 bytes [int]. A consequence of this
is that instructions in a RISC architecture are executed on a fixed alignment,
whereas x86 instructions can be executed from any byte alignment, with the
possibility of executing an instruction from a byte never meant to be the start-
ing byte of an instruction, also denoted as unintended or overlapping instruc-
tions.

27

28 Software Security

4.1.1 ANATOMY OF AN X86 INSTRUCTION

An x86 instruction, as illustrated in Figure 4.1, is divided into six fields where
the opcode is the only mandatory field for all instructions. Below follows a
short description of these fields.

Figure 4.1: Illustration of a x86 instruction

An instruction can have up to four prefixes where each Prefix is one byte
in length. A prefix changes the behavior of the instruction it is applied to, for
example changing or overriding the operand or address size.

The Opcode is the instruction code that defines the main behavior of the
instruction. The most common opcodes have a length of one byte, but using
the expansion code, 0x0f, the opcode can become two bytes. There are addi-
tional extensions that can make the length three bytes in total. For one-byte
instructions the opcode includes 3 bits that specifies which register to perform
the specific operation on.

The mod-r/m byte defines the addressing mode and operands of the in-
struction. It is divided into the 2-bit mod field and two 3-bit fields called Reg
and r/m. The mod field specifies direct or indirect addressing, i.e., directly reg-
ister to register or if one of the registers are to be dereferenced. The mod field
also specifies if there is a displacement field or SIB-byte for this instruction.
Table 4.1 shows how the reg and r/m fields are decoded and Table 4.2 shows
how the mod field is decoded.

The Scale-Index-Base byte (SIB-byte) is used for indexed addressing, for
example in arrays. It is illustrated as
[Base + Index*Scale] where Base and Index are registers and Scale can
assume the value 1, 2, 4 or 8.

The Displacement field specifies an offset for a memory dereferencing in-
struction. It can also specify an absolute address to be used by the instruction.
The length of the address displacement field can be 0, 1, 2 or 4 bytes.

The Immediate field contains any constants used in instructions and can
be of 0, 1, 2 or 4 bytes.

4.1.2 NO-OPERATION INSTRUCTIONS

No-operation (NOP) instructions can have many uses, despite the fact that the
only effect it has on the CPU state is the update of the program counter. The

4.1. The x86 Architecture 29

most common use of the NOP instruction is for memory alignment of machine
code, for the purpose of more efficient instruction handling by the CPU. Mod-
ern x86 instructions, for instance, fetches instructions at DWORD boundaries.
If the target instruction of a branch would be in the middle of a DWORD, then
the CPU would fetch the preceding WORD as well in addition to the target
instruction. Another use is to prevent hazards in the CPU pipeline.

The most commonly used NOP instruction for the x86 architecture is en-
coded within a single byte, 0x90, and it is an alias for the instruction XCHG
EAX,EAX, which simply switches the values between the registers in the two
operands.

Compiled binaries often have multiple single-byte NOPs after each other to
achieve memory alignment. If these NOPs are executed, they will take one
clock cycle each to execute. An alternative solution would be to replace mul-
tiple single-byte NOPs with one multi-byte NOP instruction.

NOP instructions on the x86 architecture should, according to Intel’s x86
manual [Int13], vary between one and nine bytes. In reality though, we can
construct valid NOP instructions up to the maximum instruction size, 15 bytes,
by using multiple instruction prefixes. Below, the recommended encoding of
each multi-byte NOP instruction can be seen.

Instruction Encoding
NOP 66 90
NOP DWORD PTR [EAX] 0F 1F 00
NOP DWORD PTR [EAX+00] 0F 1F 40 00
NOP DWORD PTR [EAX+EAX + 00] 0F 1F 44 00 00
NOP WORD PTR [EAX+EAX + 00] 66 0F 1F 44 00 00
NOP DWORD PTR [EAX+00000000] 0F 1F 80 00 00 00 00
NOP DWORD PTR [EAX+EAX + 00000000] 0F 1F 84 00 00 00 00 00

Table 4.1: Decoding what register is used in the reg and r/m fields
for various data-sizes used. Also applicable to some other
instructions that encodes this into the opcode.

Value 32-bit 16-bit 8-bit
000 EAX AX AL
010 ECX CX CL
011 EDX DX DL
100 ESP SP AH
101 EBP BP CH
110 ESI SI DH
111 EDI DI BH

30 Software Security

Table 4.2: Interpretation of the mod field

00 Indirect addressing mode, meaning that the register specified in
r/m is interpreted as an address and the contents in that address
is fetched. There are some exceptions here: 1. When r/m is
100, the processor will switch to SIB mode, and 2. When r/m
is 101 the CPU switches to 32-bit displacement mode where the
displacement is interpreted as an absolute address, and not only
an offset.

01 Same as with 00, but with 8-bit displacement added to the value
before dereferencing

10 Same as with 01, but with 32-bit displacement added to the value
before dereferencing

11 Direct addressing mode where the instruction operates on two
registers directly without any memory dereferencing

NOP WORD PTR [EAX+EAX + 00000000] 66 0F 1F 84 00 00 00 00 00

For the nine-byte NOP, the first byte (66) is an instruction prefix for over-
riding the operand-size. The following two bytes (0F 1F) is the opcode. The
fourth byte (84) is the mod r/m byte. The last five bytes (00 00 00 00 00)
describe the memory operand. Note that even though the NOP has a memory
operand, when executed it does not access that memory in any way. This is
simply how the NOP is represented in assembly code.

Since no memory is accessed, the last five bytes can be set however we
want and this would have no effect on how the instruction is executed com-
pared to its recommended configuration. In Chapter 8 we use this behavior to
create custom overlapping instructions for malicious purposes. Overlapping
instructions are described next.

The use of NOP instructions for unconventional purposes has been shown
to have many applications as well. The most famous example may be the NOP
sled used to ease the exploitation of buffer overflow vulnerabilities [One96].
Another example is when the insertion of NOP instructions in strategic places
in a malicious program’s executable code could prevent AV-software from
detecting it [CJ03].

4.1.3 OVERLAPPING INSTRUCTIONS

Overlapping instructions exist in all compiled x86 code. The variable-length
instructions accommodates different interpretations of the code depending on
what byte decoding starts from. An example of this phenomenon is shown

4.2. Reverse Code Engineering 31

below where the jmp instruction will jump to the latter half (0xff) of its own
instruction and execute from that point.

eb ff jmp -1
c0 c3 00 rol bl, 0x0
;The jump will execute
ff c0 inc eax
c3 retn

This can be used in application exploitation attacks based on return-oriented
programming (ROP) discussed in Section 4.3.3. In order to find more useful
instructions for the gadgets used in this attack, unintended instructions can
be discovered by looking for appropriate overlapping instructions by trying
to decode instructions at different byte offsets.

4.2 REVERSE CODE ENGINEERING

Reverse engineering software is the process of analyzing a binary to deduce
what functionality it provides. Analysis can occur through observation of
the execution of the program through a debugger, disassembly of the raw
machine code or even decompilation of the machine code which attempts
to translate the assembly code into a high-level language that is easier for
humans to analyze.

4.2.1 DISASSEMBLY

Disassembly is the process of taking machine code as input, and outputting
human-readable assembly code. There are two main ways of approaching
the problem of disassembly, namely static and dynamic disassembly. Static dis-
assembly consists of analyzing and examining the machine code in order to
construct the most probable sequence of assembly instructions. This is done
without actually executing the code, which is in contrast to dynamic disas-
sembly, where the instructions are executed and identified upon execution.
Both methods have their advantages and drawbacks. Static disassembly must
guess which instructions are executed, but will on the other hand be able to
cover all code. Dynamic disassembly, on the other hand, will know which
instructions are executed, but it will only identify those instructions that are
actually executed using the current input and environment.

Static disassembly can in turn be performed using a linear sweep algorithm
or recursive traversal. A linear sweep algorithm starts with the first executable
byte and then proceeds through the machine code, disassembling instruction
by instruction. One drawback of this method is that the disassembler can not
easily distinguish data from instructions in the code section of the executable.

32 Software Security

This can lead to errors if data is located in a stream of instructions. Another
limitation is when one instruction ends, the disassembler assumes that the
next instruction follows it immediately. In recursive traversal, the actual con-
trol flow of the program is followed. If it encounters an unconditional jump
instruction, the disassembly proceeds at the target address. This will allow the
algorithm to avoid errors based on data that is embedded in the code section.
On the other hand, it may not always be easy, or even possible, to compute
the correct target of a jump instruction.

4.2.2 ANTI-DISASSEMBLY

Anti-disassembly is the process of deliberately trying to make it more difficult
to disassemble machine code. Several techniques have been proposed in the
literature [AdJ06] [SH12] [ACdC09] and the most basic ideas are typically to
take advantage of the limitations in linear sweep algorithms and/or recursive
traversal. The fact that the linear sweep algorithm disassembles each instruc-
tion in a sequence, regardless of the control flow, can be exploited by adding
junk bytes after an unconditional jump. These junk bytes will never be exe-
cuted, but the algorithm will assume that they are part of the next instruction,
resulting in a misalignment between the executed code and the disassembly
listing. As long as the junk bytes constitute the beginning of an instruction
and the following instruction starts after the end of the junk byte instruction,
the disassembler will start producing the wrong code.

The following example will insert a junk byte with a value 0x9A in order to
confuse a linear sweep disassembler.

JMP foo EB 03
DB 0x9A 9A #This is the junk byte
foo:
XOR EAX,EAX 31 C0
XOR EBX,EBX 31 C3
INC EAX 40
INC EBX 43
INT 0x80 CD 80

This piece of code would be disassembled in the following way.

JMP foo+1 EB 03
foo:
CALL DWORD 0x4340:0xC331C031 9A 31 C0 31 C3 40 43
INT 0x80 CD 80

One limitation of using junk bytes as an anti-disassembly technique, is that
the disassembly will resynchronize with the real code after a small number of

4.2. Reverse Code Engineering 33

steps since x86 assembly instructions do not have fixed size instructions. This
can be seen in the above example where the instruction INT 0x80 is found in
both disassembly listings.

One common technique to fool recursive disassemblers is to use opaque
predicates. By having a conditional jump instruction where the condition is the
same every time a program is executed, the conditional jump works effectively
like an unconditional jump if the jump is taken, or a NOP instruction if the
jump is not taken. Recursive disassemblers will often be fooled to follow
the incorrect execution flow while disassembling. Below is an example of an
opaque predicate.

MOV EAX, 0x1
TEST EAX, EAX
JZ foo+1
foo:
CALL something

Register EAX will always contain the value 1, and the conditional jump
instruction will never be taken, but a recursive traversal disassembler will
first evaluate the target of the branch instruction, starting with the second
byte of the CALL instruction, and when evaluating the fallthrough instruction
it will notice that the bytes are already disassembled and will not include this
in its output.

To fool a dynamic disassembler the jump instruction must be able to eval-
uate to both true and false, depending on the circumstances. For instance if
the executable finds itself running within a virtual machine, it may decide to
jump to a piece of code with benign functionality, otherwise the malicious
content will be executed.

There have been much work involving anti-disassembly techniques. Some
of the more innovative ideas involves generating instructions during run-time
based on system information so that different instructions are generated de-
pending on the system it is executed on. These instructions are generated with
cryptographic hash functions in [AdJ06] and pseudo-random number genera-
tors in [ACdC09]. The idea of embedding hidden instructions within a larger
instruction is described in [LSPM12]. The first mention of overlapping instruc-
tions as a means to complicate disassembly was first described in [Coh92].
Special cases of overlapping instructions has been used as a way to increase
tamper-resistance of binaries [JJV07]. It was also mentioned in a disserta-
tion [Kin10] as a problem when developing binary-analysis techniques and
tools. Overlapping instructions also have a use in return-oriented [Sha07b]
and jump-oriented [BJFL11c] programming scenarios, where a greater amount
of gadgets (small snippets of instructions) can be found using the technique.

34 Software Security

Especially in jump-oriented programming is overlapping instructions bene-
ficial, because the necessary types of instructions needed are scarce, but the
op-code byte for it is rich.

Improvement of disassembly methods, like the differentiation of data or
junk-bytes from executable code, has also been considered in [WZH`11].

4.3 STATE OF SOFTWARE SECURITY

There is a perpetual cat-and-mouse game going on between attackers and de-
fenders. As soon as a new attack is discovered, defenders will rush to propose
countermeasures to stop that attack, and when an effective countermeasure is
deployed, attackers will find new ways to circumvent those defenses.

4.3.1 BACKDOORS

Throughout the years there have been numerous attempts by adversaries
to plant backdoors in software projects [Edg10] [bc03] [Eva11] [Sec10] [wel13].
The main goal of backdoors is to gain unauthorized access by circumvent-
ing the authentication step or simply by gaining access to a system remotely.
These are often very subtle modifications of the source code that can eas-
ily go unnoticed by code reviewers or static analysis tools. Developers of-
ten rely on static tools that inspect the source code for any programming
flaws [Cov] [Fla] [Spl]. These tools have a difficulty of identifying logical flaws
and manual review must be conducted to identify potential backdoors. Re-
viewers rely on manual reading of code, supported by checklists and coding
standards. This consists of identifying certain unsafe functions that can be the
cause of security vulnerabilities or if input is being sanitized [How06]. This
type of scan for security vulnerabilities may not be sufficient for identifying
potential backdoors, instead the reviewer may have to read and understand
each line of code in a project which is time-consuming and costly. The more
mature open source projects have adopted peer reviewing as an important
quality assurance [AJ07] [P.C11]. In some cases a code commit must first be re-
viewed before it is accepted. Depending on how trusted the developer is, i.e.,
the better reputation he/she has, it is more likely that the developer will get
code changes accepted [BC14]. There is also a lack of extensive results and re-
search on how peer reviewing reduces security vulnerabilities and backdoors
in open source community. Still there is some research initiatives addressing
these questions that have been initiated [BC13].

A backdoor can be seen as trigger-based code which is executed when spe-
cific inputs are received, denoted as trigger conditions. Discovering the trig-
ger conditions can be difficult [ZW11] [SLGL08] to automated analysis. The
actual problem of identifying trigger-based code has made recent advances,

4.3. State of Software Security 35

introducing tools for automatic detection of backdoors [SH13] for detecting
rarely exercised code paths. As a response to this, Andriesse et al. [AB14]
show how one can hide the backdoor via instruction-level steganography by
modifying the final binary.

In order to thwart tampering of binaries, the code can be signed by the com-
piler or the person in hand of publishing the binary. Lately some initiatives
have been taken to introduce secure software distribution that would enable
trusted binaries to be downloaded and verified by multiple users. This is de-
noted as deterministic, reproducible or verifiable builds [Git] [Deb16] [Tor15]
in which the build process will generate identical binaries. Whenever users
download the source code or binaries from different sources, they will be able
to verify that the same binary is used by others. This binary transparency
could protect against malicious distribution of binaries which could include
malicious code, either by planting it in third-party distributions or tampering
with the binary. The problem with this approach is based on the fact that a
trusted developer could potentially inject malicious code in the official code
repositories before the source code is actually released, therefore circumvent-
ing the trust model of deterministic builds.

4.3.2 DETERMINISTIC BUILDS

Distributing compiled binaries of open source software does not guarantee
that the binaries are in fact compiled from the referenced source code. There
is nothing stopping an attacker from adding malicious code, producing the
binaries from the modified source code and claim that it was the result of
compilation of the unmodified source code. This poses security issues for
people who do not have the knowledge or do not want to compile the source
code themselves. They basically have to put their faith into the single entity
who compiled the binary that they did not inject malicious code into it.

Deterministically built binaries allow multiple builders to produce the same
byte-by-byte binary such that a hash value of the binary is the same for all
builders. This removes the single point of failure whereby trust needs to be
put into a single builder. Instead, trust is now distributed between multiple
builders, whereby each builder individually publishes a signature of the bi-
nary. This allows anyone who wishes to install the binary directly to verify
that multiple builders have compiled the binaries from the referenced source
code and that there are no discrepancies between the hashes of the different
builders. Unless all builders are conspiring or are all controlled by another at-
tacker, the binary can be deemed safe from manipulation before compilation.

Examples of security critical applications that use deterministic building
for their binaries are the Tor projects Tor Browser Bundle [Tor15] and the ref-
erence implementation of the cryptocurrency Bitcoin [bit16a]. The operating

36 Software Security

system Debian is also aiming for a full deterministic build and the alternative
software repository for Android applications, F-Droid, also has plans to make
their packages deterministically built [Fdr15].

It is important to note that just because some application has been deter-
ministically built, it does not guarantee that there is no malicious code. It
merely solves the need of trusting a single builder. The source code would
still need to be appropriately reviewed and tested, as is the norm for secure
software.

Deterministic compilation is a reasonable security feature that removes the
need to trust a single entity. The way deterministic building achieves this
minimized trust model opens up for other attacks which we explore further
in Chapter 9.

4.3.3 OFFENSIVE TECHNIQUES

Buffer overruns [Ale96] have for a long time been a common source of soft-
ware vulnerabilities. The buffer overrun vulnerability may be exploited to
perform a code injection attack, where the goal is to inject arbitrary code and
replacing the return address with the address of the injected data. There are
several well-known and widely used mitigations against this approach. Since
the injected code should not be executable, but rather considered as data, the
memory pages corresponding to this data can be marked as non-executable.
Data Execution Prevention (DEP) [Hen09] is a hardware supported OS fea-
ture implementing this idea. A similar approach is the W ‘ X security fea-
ture [pro00] in which memory pages are either writable or executable, but not
both. While this will prevent the classic code injection attacks, it will not pre-
vent code reuse attacks. In these attacks, the adversary will not inject the code
to be executed, but instead direct the program flow to code that is already
loaded by the process, typically a shared library. One example of a code reuse
attack is the return-to-libc attack [c0n] in which the attack points to existing
code in libc, a library used by many programs.

A more powerful code reuse attack is Return-Oriented Programming (ROP),
in which the attacker identifies small pieces of usable code segments, called
gadgets, and chains them together using a ret instruction. A ret instruction
will pop an address from the stack and continue execution at that address.

RETURN-ORIENTED PROGRAMMING

Return-oriented programming [Sha07a] is an exploitation technique that al-
lows for arbitrary code execution without having to inject code into the vul-
nerable process. To achieve this, an attacker constructs a payload of addresses,
each pointing to a small sequence of instructions reachable and executable by

4.3. State of Software Security 37

77BF362C

Stack

FFFFFFFF
<junk bytes>
<junk bytes>
77CF0B7E
77BEBB36
<DEP call>
77BF3B47
<nop gadget>
77BF1891
<nop gadget>
77CEAC2B

77BEBB36 pop EBP

Library

77BEBB37 ret 0

77BF1891 pop ESI
77BF1892 ret 0

77BF362C pop EBX
77BF362D ret 8

77BF3B47 pop EDI
77BF3B48 ret 0

77CEAC2B pushad
77CEAC2C ret 0

77CF0B7E inc EBX
77CF0B7F ret 0

Figure 4.2: An example of a ROP exploit. The addresses to gadgets
are located on the stack, together with necessary integers
and junk. The junk bytes are used when the ret instruc-
tion pops several values from the stack before continuing
execution.

the affected process. These instruction sequences are called gadgets and typ-
ically consist of very few instructions, ending with a return instruction (ret).
This return instruction will pop the next dword from the stack, put it into the
instruction pointer register (EIP) and continue execution at the next gadget.
Gadgets do not have to be aligned with the intended instructions. Any byte
that represents the opcode of a ret can potentially be used as a gadget.

Not only ret instructions can be used in these types of attacks. It is also
possible to use jump-based instructions as in [BJFL11a] [CDD`10].

As an example [neg13], one frequently used ROP exploit pattern disables
DEP, which makes normal code injection possible. Figure 4.2 shows the layout
of the payload, residing on the stack, and the corresponding gadgets found in
a library. DEP call represents the address of the function to disable DEP for
the current process.

The details of the exploit can be found at [neg13]. The pushad instruction,
executed as a last step, will push all registers to the stack in the following
layout

EDI
ESI
EBP

38 Software Security

|-<pointer>
| EBX
| EDX
| ECX
| EAX
->

The <pointer> is the address to the memory location immediately after
the location of the registers on the stack. EDI and ESI are set with a nop
gadget address as execution will have to begin at the address specified by
EDI and then move through both EDI and ESI and get to EBP which will
execute SetProcessDEPPolicy with the flag value of zero found in EBX. When
this is finished execution will continue on the stack at <pointer> and succeed
as DEP has been disabled. The shellcode to be injected would be placed at the
<pointer> address.

This exploit includes six instructions and if used as in the referenced ex-
ploit, where each instruction is included in its own gadget, we will have six
gadgets each consisting of one instruction.

In [WLL`13], the inside threat of an evil developer is described. Wang et
al. present an attack where iOS applications are released with a deliberately
injected vulnerability by the developer that can be remotely exploited. The
vulnerability is placed in such way that it should pass the review and vet-
ting process of Apple. The application is introduced with a bug and when
triggered, a ROP attack is performed. In the attack, the attacker still have to
send the attack payload, i.e., the gadget addresses/offsets to the vulnerable
application while the techniques presented in Chapters 8 and 9 triggers the
backdoor directly in the code without any information required on how to
locate the attack payload.

In the dissertation [PRA], the author proposes a method to hide ROP gad-
gets in open source projects in order to evade code reviewing. The author ar-
gues that injecting backdoor code in a project is difficult and focus is instead
on introducing a vulnerability in the code. This may be true for a new de-
veloper committing code that will be peer reviewed by others and will likely
detect an attempt to plant a backdoor. However, in the scenario of a trusted
developer that introduces a backdoor it may have a different outcome. Yet an-
other potential scenario can arise if the trusted developer colludes with one or
multiple code committers to review their contribution but intentionally miss
out on the backdoor.

In a first attempt to utilize return-oriented programming in a non-malicious
context, RopSteg [LXG14] shows how it can be used for software obfuscation
by hiding code in gadgets, a property that is introduced as program steganog-
raphy. A different approach with overlapping instructions used for tamper-

4.3. State of Software Security 39

resistance in software is shown in [CVC`02] where the hidden execution path
contain code that is used for hash computations. Later this is used for verifi-
cation of the integrity of the main execution path using oblivious hashing [Y.
03]. The idea is that when the code is tampered with, the hidden code will
also be modified and the resulting verification will fail.

4.3.4 DEFENSIVE TECHNIQUES

One widely available countermeasure against code injection and code reuse
attacks is Address Space Layout Randomization (ASLR) [PaX03]. ASLR will
randomize the base address of the program’s text, stack, and heap segments
and the adversary will not know at which address a library starts, or where
the gadgets will be located. However, it has been shown that ASLR can some-
times be bypassed [SPP`04]. The addresses of certain instructions can be
leaked through other vulnerabilities and in some cases it is feasible to brute
force the start address of a library, thereby succeeding with a ROP attack even
in the presence of ASLR.

Following the introduction of ASLR in Windows XP SP2 (2004) and the
Linux Kernel (since version 2.6.12, 2005), writing exploits has become much
more difficult. Since then, the number of base addresses that are randomized
has increased, and so has the entropy of the randomization.

However, the efficiency of ASLR is limited. First, some small amount of
code is not randomized, leaving the possibility to still use gadgets in the
code where the location is predictable. Even though this code is rather small,
it has been shown that it is possible to find usable gadgets in it [SAB11].
Randomizing the application code is one kind of protection against these at-
tacks [WMHL12]. Another aspect of ASLR, as was shown in [SPP`04], is the
limited entropy in the address space, which makes it possible to brute-force
absolute locations.

Even if the address space layout is re-randomized between each attempt,
the number of required attempt is only slightly increased compared to the case
when a brute force through a fixed number of addresses is used. The number
of attempts needed in the re-randomization case is geometrically distributed
with an expected value of 2n, where n is the entropy of the randomization.
Several other techniques for bypassing ASLR has been described in [MÂĺ08].

In addition to brute-forcing the ASLR, it has been shown that information
leakage can occur through e.g., buffer and heap overrun bugs [Dur02] [Vre10]
and other types of vulnerabilities [Ser09] [SMD`13]. This could give an at-
tacker at least partial information about the location of ASLR-affected code.
Being able to read a return address on the stack is enough to deduce informa-
tion about the base address of a DLL.

The exact means by which an attacker bypasses ASLR, may it be through

40 Software Security

brute force or information leakage, are independent of our payload detection
algorithm presented in Chapter 10.

There have been several proposed defenses against ROP attacks, all taking
slightly different approaches and using different assumptions. A typical mit-
igation is to identify some specific features in the attack that distinguishes it
from benign code execution and then build a mitigation technique based on
those distinguishing features [CXS`09a] [CZM`14] [DSW11] [Fra12] [PPK13]
[PK11]. Two examples of well known defenses are kBouncer [PPK13] and
ROPecker [CZM`14], which are based on heuristics in order to detect ROP
attacks. They e.g., consider the number of instructions between consecutive
indirect branches. The heuristic rule is that ROP attacks typically use short
gadgets chained together using indirect branches. It has recently been shown
that such defenses are inadequate and that it is possible to craft attacks that
bypass these, and similar, defenses [CW14] [DSLM14] [STP`14]. Another ap-
proach is to rewrite libraries or targeted code such that it is not usable in an
attack [LWJ`10] [OBL`10a] or to randomize addresses which are needed by
an attacker [GKKB12] [HNTC`12] [PPK12a] [WMHL12].

Instead of detecting the attacks on the target systems, another goal may
be to detect ROP attacks in data. In [PK11] data was scanned and possible
exploits were speculatively executed in order to determine if they were ex-
ploits. This requires a snapshot of the virtual memory of the process that is
protected. In [SSO`13] the authors consider a detection approach where doc-
uments are analyzed to find ROP attacks. Documents are collected and sent
to a separate virtual machine, where they are opened in their native applica-
tion, and a memory dump is then analyzed for ROP payloads. This approach
has the advantage that they do not need to make any changes to, or run any
programs on, the target computers. This allows for fast deployment of the
defense.

Control Flow Integrity (CFI) [ABEL05] [ABEL09a] can also be used to stop
code-reuse attacks. While this is a robust counter-measure for many attacks,
properties such as overhead and complexity has limited its adoption. Still, it
is a promising mitigation approach which has been given much attention and
several aspects of CFI have been considered recently [BJF11] [ZWC`13] [ZS13].

As more and more utilization of code-reuse attacks like ROP happens, re-
search into defenses based on CFI intensified and one recent advancement on
this front is from a team called PaX, most famous for their security-hardened
Linux kernel. The PaX team proposed Return Address Protection (RAP) [Tea16]
which is a CFI scheme that has a low impact on performance and scales well
with the CFG of an application.

There has also been much work on how to mitigate the source of the exploit,
namely the presence of a buffer overrun vulnerability. Well known defenses
include StackGuard [CPM`98], which is a compiler extension that places a

4.4. Conclusions 41

canary value on the stack. Before returning from a function, the integrity
of the canary is verified. Stack Shield [Ven00] makes a copy of the return
address and saves it in the beginning of the data segment. Before returning
from the function, the return address is compared with the saved value. These
mitigations have been followed by other compiler based solutions, e.g., Point-
Guard [CBJW03]. An overview and comparison of several buffer overflow
prevention implementation and their weaknesses can be found in [SJ04].

Malicious code scanners [KK04] [KC04] [NKS05] have been used to detect
malicious code using pattern matching. However, since the ROP payload
does not include the malicious data, just addresses to it, they can not be used
to detect ROP attacks [WPLZ10]. Our detection mechanism, presented in
Chapter 10, looks for the addresses to gadgets and can be seen as an ad hoc
mitigation against ROP attacks, based on ideas from malicious code scanners.

4.4 CONCLUSIONS

ROP was once the state-of-the-art of exploitation techniques. It has now be-
come so common, and new more advanced techniques developed, that ROP
can hardly qualify as state-of-the-art any longer. The first defense proposed
against ROP-attacks was DROP [CXS`09b] (Detecting ROP) which is based on
dynamic runtime instruction instrumentation in order to detect patterns com-
monly found in ROP attacks. This defense had several weaknesses including a
large performance overhead and detection of gadgets only possible in a single
library. As more defenses were proposed, researchers started to find enhance-
ments to the ROP attack, like JOP (Jump-Oriented Programming) [BJFL11b].

Attackers can afford to have complicated exploitation techniques, because
they only have to work once. Once executed, system compromise happens,
the exploit has fulfilled its function. Attackers can even afford having their
exploits work probabilistically where sometimes failure may happen. An ex-
ploit is not something that need to run day and night like production system
software. The level of sophistication and ingenuity in the attacker’s toolkit
continues to increase [Ada15] with recent advancements like the DRAM row
hammering [SD15] which abuses the physical properties of RAM to flip bits
in some memory cells by "hammering" adjacent cells. Row hammer is an in-
teresting technique in that the vulnerability is in the physical nature of how
memory works, with no possibility to protect currently vulnerable systems
with a simple software upgrade.

5
Virtual Machine Detection

F ingerprinting services and operating systems have always been an inte-
gral part of an attacker’s methodologies before attempting compromise
of a system. Fingerprinting is possible because different systems imple-

ment protocols differently. By noticing discrepancies in the behavior of the
different implementations, one can gain valuable information about the target
system.

As virtualization technologies become more and more utilized, it is interest-
ing to study how the presence of these can be detected. Detecting the presence
of a virtualized execution environment can benefit both malicious and non-
malicious use, and in this chapter a technique for passive detection of some
virtualization products is described. This chapter is based on the publication
titled »A technique for remote detection of certain virtual machine monitors«.

5.1 INTRODUCTION

Virtualization is a technology that has many applications. The use of vir-
tualization can improve utilization of server farm hardware resources and
simultaneously lower energy costs.It can also be useful from a security point
of view. For more detailed information on virtualization, see Chapter 2. One
particular use case in this aspect relates to malware analysis [LS10] where vir-
tualization makes it easy for an analyst to restore the state of the operating
system in which the analysis took place, to an earlier non-infected state. With
virtualization the analyst can avoid the hassle of reinstalling the operating
system between each sample analysis and become more efficient. A malware
sample that detects it is in a virtualized environment may draw the conclusion
that it is being analyzed, and choose to stop execution of its malicious pay-

43

44 Virtual Machine Detection

load. By refusing to decrypt itself, the analyst is forced to spend more time on
the sample to study it. The malware could also decrypt itself to an alternative,
benign, piece of code which could potentially fool the analyst into thinking
that this sample is not malicious at all. There are known malwares that utilizes
virtualization detection, the most notable being the conficker worm [Con09].
In this case, the malware will not execute malicious code if it finds out it is
running within a virtual machine.

Similarly, if the attacker has an exploit that only works on some specific
virtualization product, detecting the presence of such before executing the
exploit could be the difference between detection of the exploit and longer
lifetime of it.

Honeypots and honeynets constitute a technology that provides security re-
searchers with an environment aimed to lure attackers in to, in order to study
their modus operandi, tools and techniques. Honeypots may be confined in a
virtualized environment where a potential attacker can be properly contained,
while all tools used for monitoring exist outside of the virtual machine. Vir-
tualizing the honeypot can lead to the attacker being able to detect it and halt
activities that may divulge information about his techniques. Of course, as
more virtualization is utilized the more difficult it is for an attacker to deduce
whether they are in a honeypot or a legitimate target. These are some cases
where VM detection benefits the attacker.

Some malwares are based on virtualization technology, such as the rootkit
dubbed Blue Pill [Rut06] which utilizes x86 virtualization. The idea is to
install a hypervisor and make the currently running operating system run
as a virtual machine under it. Detecting virtualization, where there should
be none, would allow an infected user to take action. Another example of
malware implemented as virtual machines is the subvirt rootkit [KC06]. In
this case VM detection technology is a defensive method.

5.2 VIRTUAL MACHINE DETECTION TECHNIQUES

Several methods to detect virtual machines have been proposed. Redpill [Rut04]
is a detection technique for VMware Workstation and Microsoft’s Virtual PC,
that reads the location of the Interrupt Descriptor Table (IDT). If the location
is one of those known to be used by the virtualization product, they are de-
tected as being in use. Since this address is returned by the hypervisor itself,
it is easy to protect against this technique. Red pill is also interesting due to
the fact that unprivileged users could retrieve the IDT location.

Detection is possible when a discrepancy in execution in, or communica-
tion from, a virtual machine can be quantified. Because of the hypervisor’s
involvement, discrepancies are a natural consequence of virtualization and

5.3. A New Technique for Remote and Passive VMM Detection 45

it can often be difficult, or even impossible, to avoid them. Several Virtual
Machine Monitor (VMM) detection techniques have been proposed, one no-
table being the previously mentioned red pill [Rut04] which, even if it is not
practically useful anymore, is a good example of how discrepancies facilitates
detection.

Remote detection of VMMs were proposed in [FLM`08]. However, root
access to at least one VM was required in order to execute the benchmarking
code with highest privilege level and interrupts turned off.

5.2.1 TIMING ANALYSIS

According to Popek and Goldberg, a virtual machine should fulfill the equiv-
alence, or fidelity, property, which states that an application should be indis-
tinguishable whether it is executed in a virtual machine or a real machine.
However, because the hypervisor must intervene with certain instructions,
this property is difficult to achieve in full. When the hypervisor intervenes
with some instructions it will incur an overhead in execution time, and the
more an application utilizes such instructions, the easier it becomes to notice
discrepancies in execution time compared to when that application is exe-
cuted in a non-virtual machine.

Timing data could also be retrieved from TCP and ICMP headers to mea-
sure discrepancies in the round trip time.

5.3 A NEW TECHNIQUE FOR REMOTE AND PASSIVE VMM DETECTION

In this chapter details will be provided to show how certain behavior of the
NAT implementation in the popular client virtualization tools VMware Work-
station/Player and Oracle’s VirtualBox will allow us to tell if a client is run-
ning a web browser in a virtualized environment. Our proposed technique
works remotely and in a passive manner. It does not require the external ver-
ifier to run benchmarking code on the target machine, nor probe the target
for open ports. It is solely based on network traffic initiated by and sent from
the target itself. A proof-of-concept implementation is provided where the
only requirement is for the target to connect to a web server that is under
the control of an attacker. This will, under some reasonable circumstances,
allow us to determine if the client is visiting from a guest in VMware Work-
station/Player or VirtualBox. In the sequel, for simplicity, we only refer to
VMware/VirtualBox, when we mean all three products.

Many times, active probing is necessary when fingerprinting a system to
gain any valuable information, because it is how the edge cases behaves that
will differ between different systems. The technique proposed here will evalu-
ate information that is available in all packets, namely the Time-To-Live (TTL)

46 Virtual Machine Detection

and IP identification (IP ID) values contained in the IP Header. This makes
passive fingerprinting easier. If the target is being used as a server, with ports
open for probing, the technique can easily be modified to perform active de-
tection. It would then be possible to check any computer if a service is running
in a virtual machine under VMware/VirtualBox. However, server virtualiza-
tion typically does not use the mentioned virtual machine monitors targeted
in this chapter, as they are primarily client-side virtualization products.

The detection technique has several malicious use cases. An attacker that
want to infect users with malicious content on a web server and at the same
time avoid detection by malware analysts could use the detection technique
to serve benign content to users connecting from a virtual machine and ma-
licious content to everyone else. This works under the assumption that the
malware analyst connects from one of the vulnerable virtualization products
with the appropriate configurations. Another case is where the attacker is in
possession of an exploit that is specifically targeting said virtualization prod-
uct. In this case malicious content would be served only when the presence
of the virtualization product can be assumed.

Virtualization detection will in this case allow an attacker to make more
informed decisions on who to try to attack, in the end making the web server
go unreported for longer and the potential vulnerabilities and exploits utilized
in the attack to stay undisclosed.

5.3.1 NETWORK ADDRESS TRANSLATION (NAT) AND NETWORK PROTO-
COLS

The proposed technique is based on the fact that the NAT device used in
VMware/VirtualBox mangle network traffic. A NAT device is used to allow a
user with a limited amount of global IP addresses (usually just one) to connect
several internal machines to the Internet by having the NAT supply a number
of local IP addresses for the internal network. Typically, a NAT only changes
the source IP address and source TCP/UDP port in outgoing packets and
destination IP address and destination TCP/UDP port in incoming packets.
Additional changes are made by the VMware/VirtualBox virtual NAT device
as these NAT engines receive the network traffic and resend it using their own
TCP/IP stack. This behavior is documented in VirtualBox user manual [Vir,
Ch. 6], but we have not found it in any VMware documentation.

We have identified three additional changes, which give rise to anomalies,
allowing us to distinguish these NAT implementations from other NATs. Each
anomaly is presented in detail in this section. Other NATs that have been
considered, and which do not have any of these anomalies, include the NATs
in the competing virtualization products Xen and Virtual PC, IPtables and the
dd-wrt firmware used in many home routers. Note that we consider default

5.3. A New Technique for Remote and Passive VMM Detection 47

installations as e.g., in IPtables it is possible to configure the IP header values
in outgoing packets. While our list of tested NATs is not exhaustive, and it
cannot be due to the large number of proprietary implementations, the fact
that only the VMware/VirtualBox NATs show this behavior indicates that the
probability for false positives are low.

5.3.2 PREREQUISITES

The proposed technique for detecting VMware/VirtualBox is based on anoma-
lies in the NAT implementations. The detection is partly facilitated by differ-
ences between how Windows and Linux sets the TTL and IP ID fields in the IP
header and thus, we need the following prerequisites in order to successfully
detect a target:

• The target must have the VMware/Virtualbox NAT device enabled.

• The target’s guest and host operating system must provide different ini-
tial TTL values and/or different IP ID generation methods. Examples of
operating systems that differ in these aspects are Windows and Linux,
which are both supported by VMware and VirtualBox.

Using bridged networking and/or the same operating system family for both
guest and host would result in a false negative.

5.3.3 TIME-TO-LIVE (TTL)

The purpose of the 8-bit TTL value in the IP header is to avoid having a
packet circulating indefinitely on the Internet in e.g., a routing loop. It is
decremented by one for each router hop. The initial value of the TTL in
outgoing packets is implementation specific. In Windows, the initial value is
128, while a typical Linux system sets it to 64. While a NAT can modify the
TTL before sending a packet out on the network, to the best of our knowledge
it has no particular reason to do so. However, the value of the TTL is changed
when using the VMware/VirtualBox virtual NAT device. Due to the fact that
the host operating systems TCP/IP stack is used to rebuild outgoing packets,
the TTL is always changed to the default value used by the host. A Windows
guest running on a Linux host will create IP packets with a TTL of 128, but it is
changed to 64 before sending the packet out on the network. A corresponding
behavior can be seen for a Linux guest on a Windows host, i.e., the TTL is
changed from 64 to 128 when passing the NAT. This modification of the TTL
value has an effect on tools that rely on the TTL. As an example, traceroute
relies on incrementing the TTL for each new packet in order to determine the
route taken for a packet to a given destination. Using traceroute in a guest
running on VMware/VirtualBox does not give the expected behavior as the
TTL is rewritten in the NAT to the initial value set by the host OS.

48 Virtual Machine Detection

5.3.4 IP IDENTIFICATION (IP ID)

The main purpose of the IP ID value is to reassemble fragmented packets.
The exact value of the IP ID value is irrelevant, instead it is important that
all packets from one host that is currently on the network have different IP
ID values. Otherwise, the reassembling of fragmented packets would be am-
biguous. The generation algorithm of IP ID values is implementation specific.
RFC 4413 [MW06] specifies three distinct ways for generating the IP ID value:

• Sequential jump: One global counter is used. All outgoing packets re-
ceives an IP ID value from this counter and the counter is incremented
by one for each outgoing packet. This generation method is used by
e.g., the Windows operating systems.

• Sequential: Each outgoing packet stream has its own counter which
is incremented by one for each outgoing packet in the stream. This
generation method is e.g., used by Linux operating systems.

• Random: Each outgoing packet is assigned a random value generated
from a Pseudo Random Number Generator (PRNG). This method is
e.g., used in the OpenBSD operating system.

Similar to the initial TTL value, the Windows and Linux operating systems
differ in the way that the IP ID in the IP header is treated. Again, similar to
the initial TTL value, the VMware/VirtualBox virtual NAT device changes the
IP ID value, by using the algorithm which is default for the host operating sys-
tem. While we have not found any other NAT implementation that changes
the IP ID for outgoing packets using a different algorithm than that of the
originating OS, there are apparent benefits of having the NAT control the IP
ID. With several guests running on one host, or alternatively, several comput-
ers behind one NAT, one guest (or computer) has no information about the IP
ID values generated by other guests (or computers). Thus, the probability of
collisions in IP ID values leaving the NAT increases. If the NAT is allowed to
control this value, collisions can be avoided. The fact that this control is im-
plemented by the VMware/VirtualBox NAT is clear when examining packets
originating from a Linux guest on a Windows host. The IP ID of these packets
are generated by the same sequential jump algorithm as packets originating
from the host itself.

It should be noted that packets from two different connections are needed
in order to reliably distinguish the generation algorithms used by Windows
and Linux operating systems. It is possible to use only one connection, but
that assumes that the guest is also using other connections and that pack-
ets are examined and compared before and after packets are sent on other
connections.

5.4. Proof of Concept 49

The IP ID has been used in many ways to extract information about a tar-
get, such as the number of hosts behind a NAT [Bel02]. The IP ID field of
packets leaving the NAT was used to count the number of hosts. A fictional
story based on incrementing IP ID values is given in [Fyo04]. In this story
the character abuses the fact that the IP ID is incremented by one for each
outgoing packet. Over time he can see patterns in the traffic to different orga-
nizations and correlate the increment in the IP ID and how much the stock of
that company has gone up or down. Based on these observations, it was pos-
sible to get a better idea of whether or not to invest. Even though this is only
a fictional story, it is an interesting idea, similar to the idea in [Jor09], where
tracking spam could give leverage on the stock market. Finally, steganogra-
phy software exists which hides data within the IP ID field [KA03].

5.3.5 TCP CONTROL FLAGS

While the TTL and IP ID fields are located in the IP header, the third anomaly
we have found is in the TCP header. More specifically, in the TCP control
flags. A connection can be terminated either by sending a FIN packet or a RST
packet, i.e., a packet with either the FIN or the RST control flag set. When a
guest terminates a connection by sending an RST packet, VMware/VirtualBox
translates this, in some cases, to a FIN packet. This can be seen as creating a
graceful shutdown of the connection instead of tearing it down with a connec-
tion reset. An interesting fact is that this behavior is more prominent when
the guest and host use different operating system families, i.e., Linux host and
Windows guest or Windows host and Linux guest. It does however happen
in some cases when the host and guest are using the same OS.

5.4 PROOF OF CONCEPT

A small detection daemon has been implemented as a proof of concept. It
looks for the anomalies in the TTL and IP ID fields in the IP header to detect
if HTTP packets originates from a VMware/VirtualBox guest. The imple-
mentation uses a web server, in our case an Apache server [Apa] on a Linux
system. On the server, a small custom packet sniffing daemon is run, col-
lecting IP ID and TTL values from connecting clients. The daemon utilizes
the libpcap packet capture library. The daemon also analyze and writes the
IP address of a detected virtual machine to a file detected.txt, which the web
server can query to decide what content to serve a particular user.

The TTL gives information about the client operating system or, in the case
of VMware/VirtualBox, the host operating system. In order to also use the
information provided by the IP ID generation algorithm, two connections are
needed. When a user connects to the default HTTP port (80) on the web

50 Virtual Machine Detection

server, it is immediately redirected to another port, 8080 in our case. Com-
paring the IP ID values in packets to different ports will allow us to make an
informed guess about the generation algorithm. We compare the IP ID value
of the last packet from the connection to port 80 and the IP ID value of the
first packet from the second connection. If the difference between those two
values are below a certain threshold value, we conclude that the sequential
jump generation method, i.e., Windows is used. The server queries the file
detected.txt and can determine the contents of the returned web page based on
the result.

However, the information given by the TTL and IP ID is not enough. It can
tell us that the client uses e.g., Linux, but it can not distinguish between a plain
Linux computer, Xen or Virtual PC with Linux guest or VMware/VirtualBox
with Linux host and Windows guest. However, looking at the user-agent string
found in the HTTP request header, we can get information about the operating
system used for the original IP packet. The user-agent string will often contain
a substring of the base operating system, and this will not be changed by the
NAT. As the VMware/VirtualBox NAT is the only NAT that translate TTL
and IP ID, as far as we are concerned, we can distinguish this from other NAT
implementations and also packets not passing through a NAT.

In Fig. 5.1 a flow diagram is given, showing the communication between
server and client when the server attempts to gain information about the
clients usage of virtualization.

5.5 A NOTE ON IPV6

The technique presented in this chapter have been based on IPv4, but it could
be utilized when IPv6 is used as well. The TTL still exists in an IPv6 header,
although it is called the hop limit. There is no IPID field in IPv6 headers
though. The same initial values seems to be in use by Windows and Linux
OSes, as they were for the TTL value in IPv4 packets.

Since IPv6 routers do not perform fragmentation of IP packets, hosts are
required to do path Maximum Transmission Unit (MTU) discovery, use the
default MMU to guarantee proper propagation of the packet, or perform frag-
mentation end-to-end. So for IPv6, we only have the hop limit to rely on under
an IPv6 setting.

5.6 CONCLUSIONS

A new passive remote detection technique for VMware Workstation, VMware
Player and VirtualBox was detailed in this chapter. It is based on the fact that
the NAT used in these VMMs rewrites information before it is sent out on

5.6. Conclusions 51

Figure 5.1: Flow diagram of communication between client and
server.

the network. The fact that this behavior has not been found in other common
NAT implementations, together with the assumption that different TTL de-
fault values and IP ID generation algorithms are used in the guest and host
machines, will allow us with high certainty to determine that one of these
VMMs is used and that the traffic originates from a guest in this VMM. If the
TTL and IP ID generation algorithm is changed on the network and the TCP
RST control flag is replaced by a FIN, then our detection will receive false pos-
itives. It is an open problem to determine under which other circumstances, if
any, that false positives occur. Possible applications could be e.g., anonymity
solutions such as Tor [DMS04], web proxies and VPNs.

Users who consider this possibility for remote detection to be a threat
should use bridged networking for their guests or mangle their packets ac-
cordingly to avoid detection. If VMware inc. or Oracle consider this a security
problem, they could consider a redesign of their NAT implementation such
that this information leakage is prevented.

6
Secure RPC Mechanisms for

Embedded Systems

Computing devices of various kinds are gradually becoming a significant
part of our lives. Today, we can use devices such as smartphones to
perform many of our job duties, perform financial transactions with

stores, banks or even stock markets, and interact with almost any part of so-
ciety. Given our dependency on such devices, one could ask what can be
done to make them more secure. Securing computer systems is a very broad
area and can involve anything from legislation to education to secure soft-
ware and hardware design. In this work, we will concentrate on two aspects
that can with relative ease be added to existing systems: isolation and secure
communication. In particular, we will consider a software architecture where
components at different security levels coexist and our objective is to protect
some components from others by using some type of isolation mechanism.
However, we would also like to introduce a secure communication channel as
the only method to bypass this absolute isolation.

As an example, consider a scenario where a smartphone contains a bank-
ing application and a web browser. For obvious reasons, we do not want the
browser to have free access to our banking data. At the same time, we may
want to use the banking application to make payments when browsing some
trusted online stores. Another example is the emerging bring-you-own-device
(BYOD) culture in organizations. In order to not leak company secrets, it
would be a good idea to separate personal and company data and functional-
ity on the phone. This can be achieved with a secure and trusted subsystem
where sensitive data and operations are stored.

In this work, we consider isolation and secure communication as an add-on
to an existing system. More specifically, we will examine the Client API spec-
ification within the GlobalPlatform architecture which defines a secure RPC

53

54 Secure RPC Mechanisms for Embedded Systems

mechanism for embedded systems [Glo11b] [Glo10]. This API will be imple-
mented in conjunction with various security and isolation mechanisms such
as virtualization. We will then discuss key attributes of each implementation
such as performance, security and complexity.

For more background on isolation technologies and SELinux, see Chapter 2.

6.1 GLOBALPLATFORM

GlobalPlatform’s specification for a Trusted Execution Environment defines a
secure RPC mechanism for communication between two components. This
can be implemented between two applications communicating over a tradi-
tional RPC channel such as pipes, sockets and shared memories. For better
control one may also move the communication mechanism into the OS layer
or even a hardened operative system or a hypervisor. These subjects will be
explained briefly in this chapter.

GlobalPlatform is a non-profit standardization organization involved mainly
in the smart card segment. The GlobalPlatform specifications are divided into
three groups: smart card, device and system.

Device specifications include a Trusted Execution Environment (TEE) at a
fairly system and platform independent level. Before this specification was
introduced, each secure device had its own API and technology for realizing
a TEE, which made development of secure applications difficult and time con-
suming. This resulted in less developers utilizing TEE technologies and in the
end less secure software. It is important to note that GlobalPlatform has not
implemented any TEE solutions themselves, but only published guidelines on
how it should be done.

The TEE specification is divided in three parts: System Architecture ex-
plains the overall software and hardware architecture of the TEE and the basic
concepts [Glo11b], Internal API defines the API used by the trusted applica-
tions [Glo11a] and Client API specifies a mechanism for secure communica-
tion between client (normal) applications and the trusted applications [Glo10].
The latter specification is the subject of investigation in this work.

6.1.1 THE CLIENT API

The Client API defines a mechanism for secure communication between client
applications (CA) within the rich world OS and trusted applications (TA) running
inside the TEE.

The specification defines a handful of operations at source code level for
remote procedure calls across the security domains. These operations can be
divided into the following groups (in the order of use):

6.3. Implementation 55

Figure 6.1: Hypervisor running two guests. The illustrated commu-
nication channels are (1) system call, (2) hypercall and (3)
RPC between guests

1. Initialize
Set up a context and initialize a communication session with the callee.

2. Prepare shared memories
Allocate or register shared memories that will be used as parameters in
remote calls.

3. Invoke command
Performs the remote call with the given parameters.

4. Release & finalize
Release memories. Free session and context and close connection to TA.

6.2 HYPERVISORS

Slightly simplified, we define a type 1 hypervisor as a lowest-level software
that regulates an operating systems access to resources. In the context of
device security, a hypervisor can be used to separate running software into
two domains: a secure guest running sensitive software (TAs) and a normal
(rich) guest running everything else (CAs) 1.

For this setup to be usable, one must also provide a well-defined and secure
communication mechanism between the guests. Normally there are commu-
nication channels between user-space applications and the OS (system calls)
and similar channels between the OS and the hypervisor (hypercalls). With a
careful combination of these two one may create a third channel for commu-
nication between applications/OS’s across guests, as illustrated in Figure 6.1,
which in this work is used to perform GlobalPlatform RPCs.

1This can of course extend to more guests and more security domains

56 Secure RPC Mechanisms for Embedded Systems

Figure 6.2: InvokeCommand parameter example

6.3 IMPLEMENTATION

Once a GlobalPlatform communication session has been established, the In-
vokeCommand is used to perform a remote procedure call to the other end:

TEEC_Result TEEC_InvokeCommand (
TEEC_Session∗ sess ion ,
u i n t 3 2 _ t commandID ,
TEEC_Operation∗ operation ,
u i n t 3 2 _ t ∗ re turnOrig in) ;

This function is given a remote procedure identifier (commandID) and up to
four parameters (in operation) with a type (None, Value, Buffer) and a direction
(In, Out, InOut). An example is shown in Figure 6.2 where three parameters
are used.

The Value type is used for small amounts of data (up to 64 bits), while
Buffer is used to pass a pointer to a memory region containing larger struc-
tures. A Buffer is partially represented by a SharedMemory structure:

typedef s t r u c t {
void∗ b u f f e r ;
s i z e _ t s i z e ;
u i n t 3 2 _ t f l a g s ;
. . .

} TEEC_SharedMemory ;

Users can use the API to allocate a new buffer:

TEEC_Result TEEC_AllocateSharedMemory (
TEEC_Context∗ context ,
TEEC_SharedMemory∗ sharedMem) ;

In some situations, it is instead desirable to register a previously allocated
memory using the following API function. Unfortunately there are some se-
curity implications with this, which we will discuss later in this work.

6.3. Implementation 57

TEEC_Result TEEC_RegisterSharedMemory (
TEEC_Context∗ context ,
TEEC_SharedMemory∗ sharedMem) ;

It is trivial to move a Value between caller and callee, for example by using
the same mechanism normal function calls utilize. Buffer parameters are more
complicated as callers memory is normally not visible in the address space of
callee. This can be handled in a number of different ways, which are described
in the remaining of this chapter.

6.3.1 LINUX SHARED MEMORIES

One method for sharing large amounts of data is to utilize shared memories,
which are memory regions that may be accessed by multiple processes simul-
taneously. A shared memory can be achieved in many ways, but for our Linux
implementation we will use the concept of memory mapped files using the
POSIX functions shm_open and mmap.

shm_open will create or open a POSIX shared memory object, while mmap
will map it to a memory region and allow other processes to do the same.
These can be incorporated into the AllocateSharedMemory function in Glob-
alPlatform as the basis for a RPC mechanism.

6.3.2 IMPLEMENTING GLOBALPLATFORM WITH SELINUX

For background on SELinux, please visit Section 2.2.1. The vanilla shared
memory implementation suffers from some security problems. For example,
we cannot guarantee that the receiving end really is the trusted callee. To
solve such issues, we will utilize SELinux.

To achieve a functional and secure TEE using SELinux we must first define
a set of subjects and objects which are essential for the solution to work prop-
erly. We must establish how shared memory should be handled and how the
transfer of execution from a CA to a TA should be done in a secure fashion.
Figure 6.3 illustrates this idea.

We assume that all CAs are executed under the unconfined_t domain.
The TA executables are labeled with the type tee_exec_t. Whenever an

operation within a TA is requested, it will be executing under the tee_t do-
main and the transition to this domain is handled by SELinux once the CA
has called the TEE client API through the function InvokeCommand. In the
SELinux policy we have the following rules:

allow unconfined_t tee_t : process transition

allow unconfined_t tee_exec_t :

58 Secure RPC Mechanisms for Embedded Systems

Figure 6.3: The SELinux setup

file { execute read getattr open }

allow tee_t tee_exec_t : file entrypoint

type_transition unconfined_t tee_exec_t :
process tee_t

The first rule specifies that the domain unconfined_t is allowed to transition
into the tee_t domain. Next rule specifies that subjects in the unconfined_t
domain are allowed to execute files labeled tee_exec_t, and thus also need
the read privilege. The third rule specifies that files labeled with tee_exec_t
have an entrypoint in the tee_t domain, i.e. only these files may make the
transition to the tee_t domain. The last item specifies that when a subject
within the unconfined_t domain executes a file labeled tee_exec_t, the newly
created process should be confined to the tee_t domain, given that the subject
which invoked the process has the proper permissions.

In our implementation, InvokeCommand calls the execl function, which ex-
ecutes the desired TA. SELinux handles the transition to the tee_t domain
where it can run isolated.

6.3.3 THE HYPERVISOR AS A GLOBALPLATFORM TEE

We have also chosen to implement a minimal TEE with the help of the SICS
Thin Hypervisor (STH), which is a virtualization software specifically created
to enhance security in resource constrained embedded systems [GDN11] 2.
The STH has the ability to run multiple operating systems on the same CPU

2 In practice, any thin hypervisor could be used here. We choose to use STH since
(1) we are familiar with it and (2) it can function even in the absence of hardware
security extensions such as ARM TrustZone and ARM virtualization extensions. The
latter seemed to be a reasonable assumption when adding secure communication to
an existing system with no previous security mechanisms.

6.3. Implementation 59

Figure 6.4: Executing trusted application as a guest on top of the STH
hypervisor. Note that all communication with this guest
is supervised by the hypervisor.

Figure 6.5: Temporary mapping of caller memory into that of callee
during a RPC.

while guaranteeing guest OS isolation. As illustrated in Figure 6.4, STH can
also host a trusted guest that provides security services to other guests.

In the hypervisor implementation the caller and callee normally reside in-
side different guests and have completely different address spaces. We handle
this by automatically mapping Buffer parameters into the address space of the
callee, as illustrated in Figure 6.5. This is similar to the temporary mapping
mechanism used in some IPC implementations such as that of L4 [Lie93], but
without using flexpages and pager hierarchies. Notice that unlike the Linux
shared memory implementation discussed earlier, the hypervisor does not
require prior definition of used memories.

This method works quite nicely as long as the shared Buffer is aligned to
page boundaries, which we could enforce in our implementation of Allocate-
SharedMemory. However, if the shared memory is not fully aligned with page
boundaries (which may happen if RegisterSharedMemory is used instead), the
virtual memory mapping created by the hypervisor will reveal adjacent data
within the same page to the callee. If this is unacceptable, the unaligned
sections must be copied into new empty pages before they are presented to
callee, as illustrated in Figure 6.6.

The maximum number of pages that are replicated is eight in either direc-
tion (i.e. all parameters are InOut buffers with first and last page unaligned).

60 Secure RPC Mechanisms for Embedded Systems

Figure 6.6: Memory re-mapping and copying for unaligned regions.

These pages must also be cleared from previous content before use. The per-
formance penalty for this depends on the system page size, as illustrated in
Table 6.1.

Table 6.1: Unaligned page usage penalty overhead per RPC.
Page size Bytes copied Bytes cleared

(worst case) (worst case)

1K 16368 8184
4K (ARM & x86) 65520 32760
16K 262128 131064
64K 1048560 524280

Fortunately, the larger page sizes are quite uncommon. Furthermore, un-
der the assumption that not all memory is always accessed by the callee, we
may use lazy copying to reduce the overhead of memory copying: If the hyper-
visor makes no effort to set up the unaligned pages, an access violation will
be reported if the callee attempts to access these pages. Only then will the
hypervisor set up the offending page and copy the corresponding data to it.
The performance impact of this will be demonstrated in Section 6.4.2

6.4 EVALUATION

For performance evaluation, we will use a simple synthetic benchmark con-
sisting of the calls shown below

NULL():
do nothing

SUM(OUT Value v1; IN Buffer b1):
v1 := sum of all bytes in B1

COPY(IN Buffer b1; OUT Buffer b2):
bytewise copy b1 to b2

6.4. Evaluation 61

Figure 6.7: Different buffer configurations used in the benchmark.

ADD(IN Buffer b1; INOUT Buffer b2):
bytewise add b1 to b2

MUX(In Value v1; IN Buffer b1, b2; OUT Buffer b3):
if v1 = 0: copy b1 to b3, otherwise copy b2 to b3

These calls have been chosen to highlight different characteristics of the im-
plementation. For example the NULL call will help us measure the remote call
overhead while MUX, which uses only one out of two input buffers, should
highlight the benefits of lazy mapping.

As illustrated in Figure 6.7, we consider three buffer types: 16KB buffers
that are fully aligned to page boundaries, 16KB unaligned buffers that start/end
in the middle of a page and small 64 byte buffers (to simulate situations where
the transmitted data is much smaller than a page).

6.4.1 EVALUATED IMPLEMENTATIONS

We consider the implementations shown in figure 6.8. Among these, shared
memory is tested with SELinux enabled or disabled (SE-Shmem and Shmem).
Hypervisor is tested in three variations with regard to unaligned pages: not
handled (HV-plain), always copied (HV-copy) and lazily copied (HV-lazy). The
native and pipe implementations are included for reference.

6.4.2 PERFORMANCE RESULTS

For measurement, we have used two Linux systems running on ARM Cortex-
A8 and Intel Core 2. All numbers have been normalized to that of an ARM
running at 200 MHz. For reference, execution time for the native case is shown
Table 6.2.

Table 6.2: Execution time of the native implementation on ARM (in
µs).

Buffer NULL SUM ADD COPY MUX

aligned « 1 411 412 575 576
unaligned « 1 412 411 575 576
small « 1 3 2.50 4.00 3.25

62 Secure RPC Mechanisms for Embedded Systems

Figure 6.8: The evaluated implementations are: Native: native call im-
plementation (local, no protection), Pipe: two processes
communicating over a pipe or a socket, Shmem: two pro-
cesses communicating using shared memories and HV:
hypervisor implementation.

Table 6.3 contains the normalized execution time for 16KB aligned buffers.
As expected, any form of RPC adds a significant overhead to the NULL call.

It should be mentioned that Native and HV have negligible session setup
time. In contrast, the setup time of Shmem and Pipe dominate the total execu-
tion time. This is very visible if we are measuring a single RPC call (denoted
N “ 1) per RPC session. This may however not be how ones embedded appli-
cation works. If we instead assume that N “ 1000 calls are made per session,
the setup time is no longer significant.

Another issue that must be mentioned is the running time fluctuation (jitter)
in Shmem and SE-Shmem. This was very visible for N “ 1 and may possibly
be attributed to internal kernel mechanisms such caches and pools of various
kinds.

Table 6.4 highlights the cost of using unaligned buffers. We initially feared
that copying buffers would significantly decrease performance but our mea-
surement showed that this was not the case.

As we already have seen, the remote procedure call adds a significant over-
head to the execution time. This is even more visible if we use small buffers,
as shown in Table 6.5.

In this case, the effect of unaligned buffers and lazy mapping is more visi-
ble.

6.4.3 IMPLEMENTATION EFFORT

It can be argued that complex code is insecure code [NBZ06] [SW11]. It is
therefore also important to evaluate the complexity of our implementations.
Furthermore, we would like to investigate how critical each implementation

6.4. Evaluation 63

Table 6.3: Aligned buffers, normalized against native. The NULL col-
umn is approximate.

Impl. NULL SUM ADD COPY MUX

N = 1
Native 1.00 1.00 1.00 1.00 1.00
HV-plain 54.75 1.14 1.14 1.10 1.10
Shmem 52.99 1.85 3.94 3.06 3.99
SE-Shmem 80.59 2.14 4.50 3.47 4.48

N = 1000
Native 1.00 1.00 1.00 1.00 1.00
Shmem 27.25 1.31 1.22 1.16 1.18
SE-Shmem 27.28 1.31 1.22 1.16 1.18
Pipe 182.00 2.75 3.04 3.21 3.37

Table 6.4: Unaligned buffers, normalized against native (N “ 1000).
Impl. NULL SUM ADD COPY MUX

Native 1.00 1.00 1.00 1.00 1.00
HV-plain 54.75 1.14 1.14 1.10 1.10
HV-copy 54.75 1.15 1.18 1.13 1.13
HV-lazy 54.75 1.15 1.17 1.12 1.13

Table 6.5: Small buffers, normalized against native (N “ 1000).
Impl. NULL SUM ADD COPY MUX

Native 1.00 1.00 1.00 1.00 1.00
HV-plain 54.75 23.30 24.40 15.19 19.23
HV-copy 54.75 25.40 29.10 18.25 24.69
HV-lazy 54.75 24.80 27.10 17.25 22.23
Shmem 58.00 37.00 45.50 18.80 35.00
Pipe 184.0 291.8 339.9 321.3 426.8

64 Secure RPC Mechanisms for Embedded Systems

is, i.e. how much damage a vulnerability can cause.
In Table 6.6, lines of code (including empty lines, comments, etc.), complex-

ity and criticality are shown. The last two are subjective estimations based on
the class of technology each component belongs to. Complexity scales from 1
(trivial) to 5 (extremely complex) and criticality ranges from 1 to 5, where 4
and 5 denote ability to bypass the OS and hypervisor security mechanisms.

Table 6.6: Implementation effort and complexity, excluding common
parts. Estimated size of related software projects is also
shown for reference.

Impl. SLOC Complexity Criticality

Native 245 1 1
Pipe 1426 3 3
Shmem 1265 2 1
HV CA 241 1 1
HV TA 67 1 2
Shared code 1505 - -
SELinux policies 74 3 3
HV (in hypervisor) 826 4 5

STH 1-4K - -
Linux kernel 12-15M - -
SELinux 23K - -

As a side-note, the SELinux policy required around 20 rules.

6.4.4 SECURITY CONSIDERATIONS

From a security point-of-view, SELinux depends on the Linux kernel and is
susceptible to vulnerabilities inside the kernel [Tin09]. For example, an at-
tacker may be able to disable SELinux and by extension the TEE, rendering
the effective security of the TEE useless.

The hypervisor on the other hand does not depend on the security of the
guest OS, and has a much smaller code base which makes development and
evaluation easier. On the other hand our RPC implementation resides inside
the hypervisor, directly manipulating the virtual memory map and overriding
the OS security. It also makes the hypervisor noticeably larger, which by some
definitions automatically decreases the security of the hypervisor.

6.5. Conclusions 65

6.5 CONCLUSIONS

Along with the traditional pipes/sockets and shared memory RPC imple-
mentations, two secure implementations of GlobalPlatform’s Client API have
been demonstrated in this chapter: one assisted by a hypervisor and the other
supervised by SELinux.

In terms of security, we note that the SELinux implementation is suscepti-
ble to kernel bugs. On the other hand, the hypervisor implementation adds
a relatively significant amount of code to the hypervisor itself, which may
translate to decreased security.

In terms of performance, the hypervisor implementation (even in presence
of unaligned buffers) was the winner. The shared memory implementation
was slightly slower (or much slower if setup time was included) and use
of SELinux made this implementation only slightly slower (or significantly
slower if setup time was included). Both implementations were however
faster than the traditional pipe/socket implementation. We also noted that
while the measured hypervisor execution times were very stable, the shared
memory and SELinux numbers fluctuated. This could make the hypervisor
implementation a better candidate for applications where real-time character-
istics is of importance.

What SELinux loses in performance it gains in flexibility and availability,
hypervisors are hardware dependent and often require changes to the Linux
kernel to achieve acceptable performance. If you are currently using a Linux
system, chances are you already have access to SELinux. These days this even
applies to small embedded systems, with the availability of SEAndroid on
Android smartphones as the prime example [SC13].

7
Blockchain for the Keyless Signing

Infrastructure

B lockchains have emerged as widely used databases of linked blocks.
While the original goal of blockchains was to secure and link transac-

tions in Bitcoin [Nak08] and other cryptocurrencies, blockchains have
developed into more general platforms, suitable for, among other things,
timestamping and signing information. Blocks are issued frequently, once
per 10 minutes on average in Bitcoin, and by linking blocks together it is prac-
tically infeasible to rearrange them or change information in them without
having access to a majority of the computational resources that secures the
blockchain. Even then there is a large cost to rewrite history, where we refer
history as data in older blocks. Blockchains are explained in more depth in
Chapter 3.

It will become clear that the goals of KSI [BKL13] can be combined with
the functionality of blockchains. Specifically, in this chapter we show how to
use a blockchain in order to mitigate some of the limitations in the KSI con-
struction. In particular, we add a publishing layer that utilizes a blockchain
which allows more frequent publication of root hashes, as well as simpli-
fied methods for verifying these hashes. Using the scripting functionality of
blockchain transactions, we also show how the KSI operator can strengthen
its operational security by requiring multiple signatures to actually publish
hashes. While the Bitcoin blockchain is the most widely used blockchain, and
will be the targeted blockchain in this chapter, our proposed solution is not
necessarily limited to this blockchain.

In Chapter 3 we discussed the details of how the blockchain works.

67

68 Blockchain for the Keyless Signing Infrastructure

7.1 KEYLESS SIGNING INFRASTRUCTURE

The Keyless Signing Infrastructure (KSI) system was proposed in [BKL13].
KSI provides a means to timestamp data on a large scale. The timestamps can
be verified by anyone and the supporting infrastructure ensures that modifica-
tions of documents or timestamps are infeasible. In that sense, the timestamps
can be seen as server-based signatures without non-repudiation. Different
from ordinary signatures, where the user can sign a document offline, here a
server must participate in the computation and publication of the signature.
Keyless, here, means that the signatures can be verified without relying on
the secrecy of a private key. A reliable and unforgeable timestamp will ensure
detection of any attempt to modify the documents.

The security of timestamps and the simplicity of implementation and veri-
fication relies on the periodic publication of root hashes in widely witnessed
media. The widely witnessed media is proposed to be, among others, news-
papers, public forums and micro-blogging platforms [BS14]. To avoid too fre-
quent publication, for example in newspapers, a frequency of once per month
has been proposed [BKL13].

The KSI is based an a set of servers, ultimately producing an unforgeable
timestamp, i.e., a proof of existence. The timestamps are constructed through
a globally distributed Merkle hash tree [Mer88], or more specifically, a hier-
archy of hash trees with roots propagating through several layers. Clients
provide data, or hashes of data, that they want timestamped to a gateway. The
data from multiple clients are aggregated in a hash tree and the root is sent
to the next layer, an aggregation layer. Several servers, typically geographically
distributed, serve as aggregation layer in order to minimize delays. The root
hash in one layer serves as a leaf of a Merkle tree in the next layer, ultimately
reaching a globally unique root hash in the core layer of the hierarchy. Such
a root hash is generated regularly, e.g, once per second in the current imple-
mentation [BKL13], building a calendar of root hashes.

When the root hash has been computed in the core layer, the hash path
needed to compute the root hash from the submitted value is propagated
down through the network. A calendar hash is the root hash of all documents
submitted for timestamping by clients for a particular second. The calendar
hash together with the hash path needed to compute the calendar hash from
the given document can be used to verify that the document has been correctly
timestamped. The hash path can be stored with the document and anyone can
query a particular calendar hash in order to verify the integrity and timestamp
of a given document. By distributing the calendar hashes to all participants,
a successful forgery by reordering or manipulation of calendar hashes will
require cooperation between all participants (or at least those that are used
when verifying timestamps). In order to obtain a trusted calendar hash, or

7.1. Keyless Signing Infrastructure 69

sequence of hashes, this has to be obtained from several sources.
To simplify this procedure, periodically, a calendar root hash (CRH), which

is the root of the Merkle tree consisting of calendar hashes, is published in
widely witnessed media. This can be newspapers, public forums or micro
blogs. The hash path from the calendar hash to the published CRH can be
added to the document hash path. Now, assuming that enough participating
servers verify the published CRH, a document can be verified only using the
published value. Thus, the published value adds important aspects to KSI.

• The KSI infrastructure is no longer needed in order to verify a document

• The need to query several participating servers in order to obtain a
trusted calendar hash is removed.

7.1.1 LIMITATIONS OF KSI

The hash paths used by KSI to verify timestamps rely on the root hashes being
trusted. This is achieved by distributing them to all participants. Storing all in
a central database would require this database to be fully trusted. Publishing
CRHs in newspapers, forums or micro-blogging platforms once per month
will simplify the procedure of verifying root hashes and it will also simplify
the trust model since anyone can verify the published value and object if it
looks manipulated.

However, publishing CRHs in newspapers is rather inefficient. First, the
frequency of publication is at best once per day. Second, verifying a hash value
printed on paper requires some form of manual process to digitize it. Using
centralized micro-blogging platforms or public forums is prone to denial-of-
service attacks [vB09] and could be the target of malicious attackers. With
infrequent publications, a verifier must trust the subset of servers that are
queried before a calendar hash path and CRH can be used for verification.
An additional disadvantage of infrequent publishing is that the timestamp on
the publishing medium, e.g., date in the newspaper, only guarantees that the
data was available before that date, but will not give more granular guarantees
about it. For more granular information, trust in a third party will be needed.

These limitations can be solved by publishing the CRHs in a blockchain.
A blockchain provides a possibility for much more frequent publication as
new blocks are typically added several times per hour. They also provide
a standardized interface to allow simple verification and retrieval of values.
Moreover, their integrity, once enough blocks have been added, is guaranteed
by a distributed consensus involving a large amount of servers and miners.

Utilizing an open-access blockchain will reduce the trust requirements of
the KSI operator and aggregators, as clients are able to independently verify
the CRHs as they are included in the blockchain.

70 Blockchain for the Keyless Signing Infrastructure

Figure 7.1: Clients track the first output in each transaction to re-
trieve a deterministic and ordered chain of transactions
with CRHs in the second output of each transaction.

We aim to solve the following limitations in this thesis:

1. No authentication of published CRHs.

2. Infrequent publication of CRHs.

3. Inconvenient to independently verify CRHs.

4. No possibility to verify CRH before publication.

7.2 DESIGN

The naive approach of embedding hashes in the blockchain is to simply cre-
ate a transaction with the commitment value included in an OP_RETURN output
and have that transaction included in a block. KSI clients are then notified of
which block and transaction the CRH is included in to allow them to inde-
pendently verify that their data has been included. This approach has two
notable drawbacks. First, nothing stops the KSI operator from including mul-
tiple variants of CRHs and reporting different values to different clients. This
would break consistency of having all hashes collected under the same tree
and may open up attack vectors. Secondly it forces clients to always keep
references to the specific block and transaction that include the hash for any
future verification needs of their data. Additionally there is no way to authen-
ticate that the KSI operator actually was the entity that included the hash in
the blockchain. Each CRH would have to be accompanied by authentication
data, which would be cumbersome to maintain. Authentication is important
for many reasons. In the case of a chain reorganization we want to make sure
that the KSI operator does not fraudulently change any of the values. If only

7.2. Design 71

they can sign transactions with the embedded CRHs, we can provide proofs
of fraud in an event where they try to alter the CRHs.

A better solution is for the KSI operator, at the start of its operations, to sig-
nal one transaction that it has control over. This transaction will be dubbed the
genesis transaction. This transaction will mark the beginning of a transaction
chain that the KSI operator will have sole control over. When a CRH should be
embedded in the blockchain, the KSI operator creates a new transaction that
spends the first output of the genesis transaction, adds a new output, which
will be the next output to track, and one additional output with the CRH
itself. For each new CRH to be added, the KSI operator creates a new trans-
action that spends the first output from the last transaction in the transaction
chain that begins with the genesis transaction.

Figure 7.1 illustrates these concepts. Transaction y is the genesis transac-
tion. Transaction y+1 spends the first output via input 0 and includes the first
CRH in output 1. When output 0 of transaction y+1 is spent, a new transac-
tion with a new CRH and a new tracking output is created. Note how it is
not necessary for a transaction to be included in every block. The KSI oper-
ator can make as many or as few transactions as they deem necessary. The
tracking of the transaction chain is unaffected. If there is a need to include
more funds in the transaction for fees, it is possible to include more inputs.
It does not matter which input spends the tracking output, as long as one of
them does. It is also possible to include more outputs after the first two. The
first output in each transaction of the transaction chain is used for tracking
the chain, while all other outputs are ignored.

With this design clients in a KSI infrastructure can deterministically track
CRHs with the only prerequisite knowledge being the genesis transaction.
Timestamps in the block headers provide a rough idea of the time when the
CRH was included, and clients can be assured, with strong guarantees, that if
a chain reorganization occurs and the KSI operator attempts to tamper with
orphaned CRHs, they can also be held accountable by providing proof of the
orphaned chain with differing values of the commited CRH.

If there are a lot of clients utilizing the services provided by the KSI, there
will be wide consensus on which transaction is the genesis transaction. Verifi-
cation of CRHs in a future where the KSI may be out of business could retain
the trust in the per-second granularity it provided during its time. It should
be easy to know and trust which transaction marked the first in the KSIs trans-
action chain. If the CRHs were commited and reported individually, outside
a transaction chain, the assurances would be weaker because only the clients
that commited data in that individual block would keep track of it. There
could also be alternative commitments. Commitments in a transaction chain
have presumably been validated by all its participants, can be authenticated
to originating from the genesis transaction and can thus be more trustworthy.

72 Blockchain for the Keyless Signing Infrastructure

7.2.1 BROADCASTING CRHS

One question is when to broadcast transactions with CRHs to be added to
the blockchain. We discuss two options here. The simplest, cheapest and
most manageable seems to be for the publisher to continue to add calendar
hashes as leaves to a tree until the previous CRH has been included in a
block, and only after that broadcast a transaction with the new CRH. When
this transaction has been broadcast to the blockchain network, the publisher
continues to work on a new hash tree, the root hash of which will be broadcast
when the previous one has been included in a block. This approach has the
advantage of only requiring one transaction and transaction fee per CRH and
a simple implementation. The disadvantage however is because block creation
is a random process, it could take a long time before the current hashes are
commited to the blockchain. For some clients it may be important to have the
CRH that commits their data included in a block as soon as possible.

To accommodate this, the KSI operator could perform transaction replace-
ment. Transaction replacement is the act of replacing a previously broadcasted
transaction, that has not been included in a block yet, with a new version. The
new version will need a higher fee attached to it compared to the previous ver-
sion in order to be reliably forwarded by nodes on the network and eventually
reach miners.

Another approach would be to spend the unconfirmed transaction over and
over, thus creating a chain of unconfirmed transactions each with their own
CRH attached to it. When a block is created the whole chain of transactions
could be included. However, this approach bloats the blockchain which is a
limited resource, and the replace-by-fee [HT15] approach should be preferred.

Figure 7.2 illustrates how the publishing layer collects calendar hashes to
create CRHs for publishing on the blockchain.

7.2.2 COMPLEX SPENDING CONDITIONS

In its most simple form, the condition to spend an output will only require a
signature of the transaction from the private key related to the specified public
key and the public key itself. These scripts can be arbitrarily complex though
to cover various failover modes like key-loss or key-theft. Most common is to
make use of multi-signature scripts, as described in Section 3.2.1, to require
a threshold of signatures for an output to be spent. This provides the KSI
operator with the ability to strengthen its operational security. Should one
of the keys be lost or stolen, the compromised key cannot by itself spend the
output. The remaining, uncompromised, keys can still spend the output and
specify a new spending condition that excludes the compromised key.

Spending conditions can be even more complex. We can assign multiple
groups, each with a set of signers, with different conditionals for when and

7.2. Design 73

Figure 7.2: Overview of KSI and the proposed publishing layer. Pub-
lisher collects calendar hashes and eventually tries to pub-
lish root hashes with the calendar hashes as leaves in a
Merkle tree. The marked nodes in the trees is everything
the client needs to verify that their document digest is part
of the CRH

how they may make a spend. Should something happen to the top prior-
ity group, the second group of signers can take over operations after some
amount of time has passed without the output having been spent. Such a
spending condition could be a 2-of-3 multisignature script from the primary
group or 3-of-4 multisignature script from a failover group, with the condition
that the output has not been spent until a specific time. The failover group
would not be able to spend the output unless the primary group fails to make
a spend until that time. Any number of groups with different priorities and
timeouts can be set to cover multiple failures.

Below follows an example redeem script of how three groups (A,B,C) have
spending permissions at different times. This redeem script will be supplied
in an input together with appropriate signatures to succeed in spending it.
Group A will always be able to spend the output, and will require 2 valid
signatures from any 3 specified public keys. Group B will be able to spend
the output only after time X, and require 3 valid signatures given from any

74 Blockchain for the Keyless Signing Infrastructure

4 specified public keys. Group C will be able to spend the output only after
time Y, where Y occurs after X, and requires only 1 valid signature from any
of the 5 specified public keys.

OP_2
<A1.pubkey>
<A2.pubkey>
<A3.pubkey>
OP_3
OP_CHECKMULTISIG
OP_NOTIF

OP_3
<B1.pubkey>
<B2.pubkey>
<B3.pubkey>
<B4.pubkey>
OP_4
OP_CHECKMULTISIG
OP_NOTIF

OP_1
<C1.pubkey>
<C2.pubkey>
<C3.pubkey>
<C4.pubkey>
<C5.pubkey>
OP_5
OP_CHECKMULTISIG
<time_Y>
OP_CHECKLOCKTIMEVERIFY
OP_DROP

OP_ELSE
<time_X>
OP_CHECKLOCKTIMEVERIFY
OP_DROP
OP_TRUE

OP_ENDIF
OP_ELSE

OP_TRUE
OP_ENDIF

The publishing layer of the KSI could be merged with other stakeholders
of the KSI. Group A could, for example, be the core cluster of the KSI, while

7.3. Further Considerations 75

group B includes participants from the aggregator layer, ready to step in if
there is a failure. Group C could be a set of trusted functionaries that will
reboot the transaction chain if and when Groups A and B fail.

An alternative setup is that group A’s conditions could require a signature
from a core cluster node and a threshold signature from several aggregator
nodes. This would increase the trust of the CRH before it is included in a
block, given that the core cluster and various aggregator nodes are indepen-
dent of each other, thus minimizing the risk of collusion. These types of
scripts address the limitation of the KSIs centralized trust model to become
more decentralized by including independent parties to sign transactions.

7.3 FURTHER CONSIDERATIONS

Blockchain technology is far from mature, and a number of development ef-
forts exist to extend and enhance them. Several proposed features could be
adopted to improve the proposed design described in this chapter.

7.3.1 MERKLEIZED ABSTRACT SYNTAX TREES

Improvements to the scripting system, such as Merkleized Abstract Syntax
Trees (MAST) [RNS], can be used to enhance our use case, including confi-
dentiality of unused spending conditions and reduced on-chain footprint. A
MAST encodes mutually exclusive spending conditions of a script as separate
branches of a Merkle tree where only the branch used will be revealed.

Currently the entire redeem script will have to be included in order for the
transaction to be verified correctly, exposing unused spending conditions in
the process. Confidentiality of unused spending conditions will allow the KSI
operator to keep critical operational security information hidden from poten-
tial attackers that will try to harvest as much information as possible. It will
also reduce the size of large redeem scripts, since only the condition used to
make the spend will have to be revealed, including intermediate hash values
to correctly verify the Merkle root of the tree. Smaller redeem scripts lowers
transaction fees and minimizes blockchain bloat. Furthermore, confidential-
ity of spending conditions can be kept even between the different groups that
have spending permissions, since they only need to be aware of their own con-
dition. One party must obviously be aware of all conditions since someone
must generate the script.

One additional improvement that MASTs can provide for our use case is
that the CRH commitment can be bundled in the tracking output, hiding
the fact that hash commitments are occurring in that transaction for non-
participants, as well as enabling additional reduction of the transaction foot-
print on the blockchain.

76 Blockchain for the Keyless Signing Infrastructure

7.3.2 RELATIVE LOCKTIME

The OP_CHECKLOCKTIMEVERIFY enables spending conditions to be valid at some
absolute time in the future. A relative locktime, where an output becomes
spendable some specific amount of time after it has entered the blockchain
can improve our proposed solution.

With an absolute locktime, such as with OP_CHECKLOCKTIMEVERIFY, we have
to calculate a new absolute time to use in all newly created transactions. With
a relative locktime variant we can select an appropriate relative time for the
specific conditions and reuse them without having to recalculate absolute
times for each new transaction.

Relative locktime has been implemented [MFk15] [BL15] and deployed on
the Bitcoin network.

7.4 DISCUSSION

The functionality provided by the proposed publishing layer of the KSI could
be merged with the core cluster and other parts of the KSI. Since the core
cluster consists of many servers that run their own agreement protocol to
decide what value to commit to, each of them could hold one signing key and
sign transactions including these CRHs directly, rather than outsourcing this
work to some other set of servers. The publishing layer can also be merged
with aggregators and gateways and form complex spending conditions to
assure clients further that no single independent organization has control over
the values embedded on the blockchain. There are incentives for the KSI
operator and other parties to not try tampering with values in circumstances
such as chain reorganizations. Since transactions are basically flooded to the
blockchain network, and a spend from a tracking output enumerates exactly
which spending condition was utilized, the responsible party/parties can be
held accountable. Such an attempt at fraud could make people question the
integrity of the operators.

There are some disadvantages to using a chain of transactions which in-
cludes the CRHs. Since the transaction chain can be uniquely identified, min-
ers could choose to force the KSI operator to pay larger fees, or even outright
try to censor transactions that is trying to spend from these outputs. Such a
scenario could seriously degrade the reliability of the system. If the computa-
tional power of the network is sufficiently decentralized, censorship by some
of the miners should not be a problem. There is also a potential bootstrap-
ping attack where the KSI operator could signal multiple genesis transactions
to different clients. As time passes and as more clients connect to the system,
this should be less of an issue. Clients can verify the genesis transaction with
other peers if necessary.

7.5. Conclusion 77

Blockchain technology is still in its infancy, and it is an open question as to
how such a system will be secured in the future when block rewards dimin-
ish. An idea is that transaction fees will provide the incentive for miners to
continue building blocks. Since the KSI wants to make many transactions per
day, it could pose an economical issue in the future if transaction fees become
more expensive than they are today.

Using the approach of transaction replacement for CRH propagation on
the blockchain solves the problem of having to let clients wait unnecessarily
long for a block to be found to send out a new transaction. It does however
come with some its own set of drawbacks. The cost is greater since more
transaction fees need to be added for each transaction replacement. This could
be mitigated by allowing clients to pay premiums to have their data embedded
earlier. Additionally, at the time of writing the replace-by-fee [HT15] policy is
somewhat controversial, and should it not be widely adopted, this approach
could prove to be unreliable to use. Should an old version of a transaction
be included instead of the latest one, the publisher should start the next tree
beginning with the excluded values.

The tracking of CRHs on the blockchain can be implemented utilizing
low resources for client-side implementations. If a client is not using the
blockchain for something other than verifying CRHs, they only need to down-
load the block headers in order to verify the proof-of-work, and the specific
transactions they are interested in. The transactions are provided with Merkle
branches to prove that they in fact are commited in a specific block header
and all other transactions in that block can be ignored. We can be sure that
all transactions have been provided since missing transactions will be evident
due to breaks in the tracking outputs in the transaction chain.

Timestamping documents with minimal trust requirements, including secu-
rity from back-dating and forward-dating, using Merkle trees to prove inclu-
sion of a document was studied in [MAQ99] [HS90] [BHS93]. New signature
schemes utilizing quantum-immune primitives for KSI clients is discussed
in [BLT14]. It provides extensions where clients can authenticate themselves
via one-time keys using hash-chains. Revealing such OTKs could be prob-
lematic if the signed data is not sufficiently secure from tampering. Commit-
coin [CE12] presents the use of the Bitcoin blockchain as a means to publish
proof of a document’s existence at a specific point in time.

7.5 CONCLUSION

Several limitations related to the previously proposed publishing channels for
calendar root hashes (CRHs) in the keyless signing infrastructure have been
identified. We have shown that by using a blockchain as a publication channel

78 Blockchain for the Keyless Signing Infrastructure

for these root hashes, these limitations have been mitigated and the proposed
solution additionally introduces new features to the KSI. The time window
in which trust in calendar hashes, and queries of these, are required can be
lowered and we can, by using the scripting functionality of transactions, make
sure that only one entity is able to publish new CRHs. Moreover, by using
multisignatures, it is possible to require explicit verification of a CRH prior to
its inclusion in a block. It also adds a fallback if the primary signing group
fails.

If KSI clients have no use for the per-second timestamping that KSI pro-
vides, they could utilize the blockchain by themselves and timestamp what
they need without involving any third parties. If everyone did this, however,
it would bloat the blockchain to the point where either fees will be too high
for individual pieces of data to be timestamped, or the blockchain grows so
large that few people validate its contents and it becomes more dependent on
third parties for validation. There is software available [cha] for anyone to run
a federated timestamping service on the blockchain which includes document
digests from all interested participants and aggregates them into a hash tree,
of which the root is the only value included in the blockchain, and proofs are
sent back to all clients at that time. This saves blockchain space, as well as
transaction fees.

The use of a blockchain has its own limitations, such as transaction fees, and
possible attacks on the system in itself, but our proposed publication layer
constitutes a viable alternative to newspapers, forums and micro-blogging
platforms. It adds simplicity, flexibility and security to KSI and from the
perspective of the emerging blockchain technology, it shows yet another ap-
plication which can take advantage of its properties and power.

8
Creating Hidden Code Using NOP

Instructions

The application of analysis evasion techniques has both benign and ma-
licious purposes. License validation code can be protected in order to
make it more difficult to analyze the validation procedure. This can

delay the development of illegal copies that bypass the license validation. At
the other end, there are malware authors that want to prevent analysis of their
malware. One way to accomplish this is to confuse the software or the analyst
into making wrong conclusions about the code and its behavior. New analy-
sis evasion techniques often also require new, and sometimes ad hoc, ways of
testing software for the presence of evasion attempts, e.g., hidden code. For
an analyst there is much time to gain from automated detection.

In this chapter we focus on the problem of correct disassembly, and in
particular an anti-disassembly technique that aims to trick the disassembler
into recovering benign, valid and executable code, which will host the hidden
code. The idea is based on using certain instructions in which several bytes
can be chosen arbitrarily. We identify several such instructions, but focus on
the no-operation (NOP) instruction. We show that a large set of instructions can
be embedded inside a linear stream of NOP instructions. This technique allows
a great flexibility in the hidden code and almost any sequence of instructions
can be hidden inside the NOPs. Furthermore, we discuss how our basic tech-
nique can be extended to avoid certain heuristic detection techniques. Some
well-known disassemblers, both simple and advanced, are used to test the
proposed technique and we show that using our technique, we can success-
fully hide code from all these tools. Finally, we discuss a testing approach
that is tailored to detect the hidden code. We test this detection technique
on a proof-of-concept implementation and we successfully detect the hidden
instructions with good accuracy.

79

80 Creating Hidden Code Using NOP Instructions

This chapter is based on the publication titled »A new instruction overlap-
ping technique for anti-disassembly and obfuscation of x86 binaries«.

8.1 A NEW TECHNIQUE FOR OVERLAPPING INSTRUCTIONS

In this section we give the requirements and the main ideas for our proposed
way of overlapping instructions.

8.1.1 REQUIREMENTS

In order to successfully overlap instructions to trick the disassembler into
reconstructing the wrong execution path, as described in Section 4.2.2, two
requirements must be met.

1. The instructions must overlap each other and must never be aligned
such that two instructions end at the same byte.

2. Both execution paths must consist of valid instructions.

Fulfilling both of these requirements is very difficult since an instruction in
one path always puts heavy restrictions on the overlapped instruction in the
other path. The proposed anti-disassembly technique will meet these two
requirements by choosing instructions with certain properties that make it
much more manageable to overlap and embed instructions. It will even allow
us to choose the instructions in one execution path with much freedom.

In a situation where the program, depending on external or run-time prop-
erties, will execute one of the paths, it is crucial that both paths not only
produce valid code but that the code is also executable. This will add a third
requirement.

3) Both execution paths must consist of executable instructions.

By executable we mean instructions that will, to some extent, guarantee not
to crash the program.

8.1.2 OVERVIEW OF THE MAIN IDEA

The goal is to assemble a stream of bytes such that when decoding from two
different offsets, two different sets of instructions will emerge, i.e., two dif-
ferent execution paths. The two paths will be denoted Main Execution Path
(MEP) and Hidden Execution Path (HEP) respectively. A static disassembler
should only recover the MEP up until the point where the two paths converge.
A dynamic disassembler, which will decode the actual executed instructions,
will in the case when the MEP is executed recover the MEP. Clearly, in the sit-
uation when the HEP is executed, for example when the presence of a virtual

8.2. Suitable MEP Instructions 81

machine is not detected, the HEP will be executed and recovered. As malware
is often analyzed in a VM, this adds an additional layer of obfuscation for the
analyst.

The HEP is the most important execution path, since it should be able
to hide arbitrary instructions. Therefore we will put as few restrictions as
possible on it and allow it to be as flexible as possible. At the same time, the
exact effects the MEP has are not important since its primary function is to
hide the HEP. To be able to do this efficiently we identify instructions that
have as many bytes that can be arbitrarily chosen as possible. The MEP will
consist only of these instructions and they will be coded as XX YY ZZ.

XX represents instruction prefixes, the opcode and other static bytes part
of the instruction that cannot be changed. YY includes the dynamic bytes,
often describing a memory operand or an immediate value of the instruction.
The bytes in YY should be large enough to be able to embed a large set of
instructions. The YY bytes will form the most important part of the HEP. ZZ
should, just as YY, be possible to have any value assigned to it with the only
difference that the combination of ZZ followed by XX must encode to a valid
and executable instruction. ZZ should preferably consist only of one byte,
leaving as many free bytes for YY as possible. The combination of ZZ and XX is
denoted the wrapping instruction. The wrapping instruction will be executed
as part of the HEP and should have little influence over the hidden code. The
wrapping instruction is used to glue together the HEP instructions and to
separate the MEP and HEP by overlapping two consecutive MEP instructions.
Finally, the last HEP instruction should end with ZZ, creating a convergence
point for the different execution paths.
The MEP will be decoded and executed as

Instruction 1: XX YY ZZ
Instruction 2: XX YY ZZ
Instruction 3: XX YY ZZ

while the HEP will be executed as

Hidden instruction sequence 1: YY
Wrapping instruction 1: ZZ XX
Hidden instruction sequence 2: YY
Wrapping instruction 2: ZZ XX
Hidden instruction sequence 3: YY ZZ

By starting execution in the first bytes of XX, MEP will be executed, while
starting execution at YY will execute the HEP.

The next section will describe some instructions that could be used to
achieve this.

82 Creating Hidden Code Using NOP Instructions

8.2 SUITABLE MEP INSTRUCTIONS

The largest instruction that has the most bytes that can be arbitrarily chosen
and still assemble to a valid instruction is a MOV instruction where the source
operand is a 32-bit immediate value and the destination operand is a memory
address specified by a register and a 32-bit immediate value as offset.

Encoding: C7 80 10 20 30 40 50 60 70 80
Instruction: MOV DWORD PTR [EAX + 0x40302010], 0x80706050

This instruction allows the last eight bytes to be chosen arbitrarily and was
used in [LSPM12] to embed a hidden instruction. While this is a valid instruc-
tion it is rarely executable since it will typically point to a memory location
that is unavailable to the process, resulting in a program crash. Thus, it does
not fulfill the third requirement in Section 8.1.1, meaning that it is easily found
using dynamic analysis. If VM detection is used by the malware, avoiding
HEP execution inside VMs, an analyst using a VM would detect the crash,
simplifying the analysis. Allowing executable instructions that do not risk the
program to crash will put more restrictions on the possible instructions. We
give four other instructions that can be used to this end.

All have several bytes that can be set arbitrarily and have the additional ad-
vantage of being executable without failing. These instructions all have four
bytes available for the HEP, plus an extra byte for the wrapping instruction.

LEA. Load Effective Address will calculate the memory address in the sec-
ond operand and store that value in the first operand. Since we can specify a
memory operand here without actually doing any memory accesses, it can be
used to insert any byte values in the last five bytes.

#Example, load address into AX

LEA AX,[EAX+EAX+0x80] 66 66 8D 84 00 80 00 00 00

CMOVcc. This instruction performs a MOV operation if a condition is met.
For this instruction to be applicable for this technique, the condition must be
chosen such that it always fails. Otherwise it may try to access memory that
does not exist and result in a segmentation violation.
#Example, perform MOV if overflow flag is set

CMOVO AX,[EAX+EAX+0x80] 66 0F 40 84 00 80 00 00 00

SETcc. Similar to CMOV in that it will set a byte to the value 1 if a condi-
tion is met. It has the same problem as CMOV as any illegal memory accesses
will result in a segmentation violation when the MEP is executed. Caution
must be taken to assure the correct conditional is used.

8.3. Assembling the Hidden Execution Path 83

#Example, perform SET if overflow flag is set

SETO BYTE [EAX+EAX+0x80] 66 0F 90 84 00 80 00 00 00

NOP. A No-Operation instructions can consist of several bytes since it can
additionally include e.g., a memory operand. Since no memory is accessed
when the instruction is executed, the bytes specifying this operand can be ar-
bitrarily chosen.

#Example, 9-byte NOP instruction

NOP WORD PTR [EAX+EAX + 00000000] 66 0F 1F 84 00 00 00 00 00

Which instruction to use in the MEP can be situation dependent as they
have different properties. Since the HEP instructions will influence the behav-
ior and effects of the MEP instructions, it is most convenient if the MEP has
as little side effects as possible. In the remainder of this chapter, we will use
the 9-byte NOP instruction since it provides features that are not present in the
other instructions.

• NOP only increments the program counter. The other instructions can
affect the CPU state beyond the program counter.

• For CMOVcc and SETcc, an illegal memory access is likely to arise if the
condition is not set to false.

• LEA will always update the value of its destination register.

Other instructions that can be used are PUSH DWORD, MOV EAX,DWORD and so
on, but these limits the number of bytes for hidden instructions (length of YY)
in the HEP to three and will thus not be described any further.

8.3 ASSEMBLING THE HIDDEN EXECUTION PATH

By choosing multi-byte NOP instructions in the MEP, we have one valid and
executable path. In this section, we show how to properly choose hidden and
wrapping instructions such that the HEP is executable and easily manageable.

8.3.1 HIDING CODE IN A LINEAR STREAM OF NOPS

Since the number of bytes at our disposal in a single 9-byte NOP instruction is
quite limited, we must use multiple NOPs to be able to hide any meaningful
piece of code. A wrapping instruction between two consecutive NOP instruc-
tions is needed to assure the correct execution flow of the HEP. The wrapping

84 Creating Hidden Code Using NOP Instructions

Table 8.1: Possible wrapping instructions.
Category Instruction ZZ

I CMP EAX, 0x841F0F66 3D
TEST EAX, 0x841F0F66 A9

II

PUSH 0x841F0F66 68
MOV EAX, 0x841F0F66 B8
MOV ECX, 0x841F0F66 B9
MOV EDX, 0x841F0F66 BA
MOV EBX, 0x841F0F66 BB
MOV ESP, 0x841F0F66 BC
MOV EBP, 0x841F0F66 BD
MOV ESI, 0x841F0F66 BE
MOV EDI, 0x841F0F66 BF

III

ADD EAX,0x841F0F66 05
OR EAX, 0x841F0F66 0D
ADC EAX, 0x841F0F66 15
SBB EAX, 0x841F0F66 1D
AND EAX, 0x841F0F66 25
SUB EAX, 0x841F0F66 2D
XOR EAX, 0x841F0F66 35

IV

MOV AL, BYTE PTR [0x841F0F66] A0
MOV EAX, DWORD PTR [0x841F0F66 A1
MOV BYTE PTR [0x841F0F66], AL A2
MOV DWORD PTR [0x841F0F66], EAX A3
CALL 0x841F0F66 E8
JMP 0x841F0F66 E9

instruction will in most cases not be of any use for the HEP and should be
chosen to influence the CPU state as little as possible.

To find all possible wrapping instructions, we generated a list of all instruc-
tions of the form (ZZ 66 0F 1F 84).

instruction := ZZ 66 0F 1F 84
for each possible value of ZZ

disassemble(instruction)

In order to have a NOP for a wrapping instruction, ZZ would have to take up
four bytes, leaving only one byte instructions to fit in the HEP. Since we value
the flexibility of larger hidden instructions, we will look for alternative wrap-
ping instructions. There are no suitable instructions which have no influence
on the state of the machine, when having ZZ consist of one byte. However,
there are several other instructions that still can be used. Table 8.1 lists the
possible wrapping instructions divided into four categories.

Category I includes instructions that change the EFLAGS register. These
instructions are suitable when the HEP does not use any jumps or other in-
structions that relies on evaluation of information in the EFLAGS register. Only
two instructions belong to this category, namely TEST and CMP.

8.3. Assembling the Hidden Execution Path 85

TEST EAX, 0x841F0F66 A9 66 0F 1F 84
CMP EAX, 0x841F0F66 B1 66 0F 1F 84

CMP will use subtract to test the operands, while TEST will perform a logical
AND operation. It can be noted that the TEST instruction is faster since the
logical AND operation is executed faster than subtraction. If efficiency is im-
portant this should be taken into consideration. To form the TEST instruction
properly for our needs we will have to assign the last byte of the first NOP
instruction with the value 0xA9. This byte paired with the first four bytes of
the following NOP instruction (66 0F 1F 84) will form the instruction TEST
EAX,0x841F0F66. There are four bytes left within each NOP instruction that
can include instructions from the HEP. See below for a stream of NOPs and its
embedded HEP representation.

MEP:
NOP WORD PTR [ESI-0x56FFFE45] 66 0F 1F 84 66 BB 01 00 A9
NOP WORD PTR [ECX+ESI-0x7F32BF40] 66 0F 1F 84 31 C0 40 CD 80

The HEP displayed below will be executed if we start executing at the fourth
byte of the first NOP. In the example, it is simply a call to the exit system call
for any Linux OS with a return value of 1.

HEP:
MOV BX,0x0001 66 BB 01 00
TEST EAX,0x841F0F66 A9 66 0F 1F 84
XOR EAX,EAX 31 C0
INC EAX 40
INT 0x80 CD 80

Category II includes instructions that change the values of general purpose
registers or valid memory, like the stack, without updating the EFLAGS register.
Using the PUSH instruction or any of the MOV instructions with the source
operand being an immediate value does not alter the EFLAGS register. Thus,
the wrapping instruction can be placed between a comparison instruction and
the instruction evaluating the EFLAGS register, without changing the semantics
of that evaluation. Instead, when using these instructions, we must take care
to limit the use of the affected register in the rest of the HEP. As an example,
MOV EBP,0x841F0F66 can be used as a wrapping instruction. This will limit
the use of register EBP in the rest of the HEP. As HEP will mostly be custom
assembly code, EBP might not be used as much here as in compiled code,
which makes this instruction particularly interesting.

Category III includes instructions that both change the EFLAGS register and
updates registers or memory. These instructions have no apparent advantages

86 Creating Hidden Code Using NOP Instructions

over those in categories I and II since they have the limitations of all instruc-
tions in those categories. Some of them could be used though, e.g., by using
the XOR instruction. Then every other time it is used, EAX will be restored to
its original value. ADD and SUB can also be used together to restore the value
of EAX if used together.

Category IV includes instructions that cannot be guaranteed to be exe-
cutable, due to the possibility of illegal memory access.

We have also generated wrapping instructions for the 8-byte and 10-15 byte
NOP, but found that the 9-byte NOP gives the best wrapping instructions in
terms of maintaining a controllable CPU state.

The main limitation of the (non-wrapping) HEP instructions is the max-
imum instruction length of four bytes. Except for the last instruction, all
instructions are required to be four bytes or less. Still, this requirement can be
significantly relaxed as many instructions larger than four bytes can be broken
down to multiple instructions of size four or smaller. Below is an example of
a MOV instruction that is too large to fit within the HEP.

MOV EAX,0x12345678 B8 78 56 34 12 #5 bytes long

The five byte MOV instruction can be translated into two 4-byte instructions
and one 3-byte instruction.

MOV AX,0x5678 66 B8 78 56 #4 bytes long
SHL EAX,0x10 C1 E7 10 #3 bytes long
MOV AX,0x1234 66 B8 34 12 #4 bytes long

This reduction in size of instructions significantly increases the flexibility
in the choice of HEP instructions, providing e.g., malware authors additional
power and possibilities.

8.4 ADDITIONAL PRACTICAL CONSIDERATIONS

As a complement to the approach discussed above, it is possible to take ad-
ditional measures in order to evade analysis. This section will discuss how
the proposed code overlapping technique can be extended in various ways,
increasing difficulty of detecting the presence of the HEP.

8.4.1 HIDING CODE IN SCATTERED NOPS

As demonstrated in Section 8.3.1, a large piece of code can be put into the HEP,
while at the same time allowing the main execution path to be not only valid
assembly code, but also represent code that is executable without crashing the
program. Thus, in initial analysis attempts using a linear sweep disassembler,

8.4. Additional Practical Considerations 87

it is not straight forward to identify the use of a HEP. Still, the potentially long
linear NOP stream that is present in the disassembly will probably stand out
and raise suspicion. We can improve the stealth of the HEP by scattering NOPs
throughout the program. Correct execution flow can be maintained by allo-
cating the last two bytes of each NOP with an unconditional jump instruction
to the next hidden instruction embedded within another NOP.

Thus, we can have several short streams of linear NOP instructions, possibly
only one at a time, where the last of the instructions contains one instruction
with a maximum size of three bytes, followed by the unconditional jump. In
this instruction there will only be three bytes available to assign a hidden
instruction, limiting the number of instructions that can be used even more
than before. It should be noted though that it is still possible to break down
some larger instructions to fit this technique. Below is the ADD example from
earlier which can be further reduced in size to two and three-byte instructions.

#MOV EAX,0x12345678
MOV AL,0x78 B0 78 #2 bytes long
SHL EAX,0x8 C1 E7 08 #3 bytes long
MOV AL,0x56 B0 56 #2 bytes long
SHL EAX,0x8 C1 E7 08 #3 bytes long
MOV AL,0x34 B0 34 #2 bytes long
SHL EAX,0x8 C1 E7 08 #3 bytes long
MOV AL,0x12 B0 12 #2 bytes long

By dividing instructions like this, it is possible to use only single NOPs scat-
tered throughout the program. The two-byte JMP instruction can jump for-
ward 127 bytes or backwards 128 bytes in the code, which means that two
consecutive NOP instructions, from the HEPs perspective, have a limit on how
far away from each other they can be.

This approach has the additional advantage of the possibility to embed
hidden instructions in NOPs already existing in compiled binaries. It is not
only limited to occurrences of single 9-byte NOP instructions, but it can also
be used when there are clusters of single-byte NOP instructions, as these could
be converted to multi-byte NOP instructions without changing the semantics
of the program. Below is an example of the scattered NOP technique.

NOP WORD PTR [ECX+ESI*4+0x4EEB01] 66 0F 1F 84 B1 01 EB 4E 00
...

NOP WORD PTR [ECX+ESI+0x21EB40C0] 66 0F 1F 84 31 C0 40 EB 21
...

NOP WORD PTR [EBP+ECX+0x80] 66 0F 1F 84 CD 80 00 00 00

88 Creating Hidden Code Using NOP Instructions

.nop1:
MOV BL,0x01 B1 01
JMP .nop2 EB 4E
...

.nop2:
XOR EAX,EAX 31 C0
INC EAX 40
JMP .nop3 EB 21
...

.nop3:
INT 0x80 CD 80

Note that all bytes in the first NOP are not filled, but since the last byte is
preceded by an unconditional JMP, this byte will never be reached and will
not cause a problem.

Using scattered NOPs requires a more detailed analysis than when using a
linear stream of NOPs.

8.4.2 NORMALIZATION OF MEP INSTRUCTIONS

So far both a linear NOP stream and the scattered NOPs work very well to
hide an alternate path of execution. An analyst will only see the NOPs in a
disassembly listing at first. An experienced analyst may however find it odd
to see NOP instructions not conforming to Intel’s recommendations and might
start disassembling from within a NOP instruction and discover the hidden
code.

We want some way to make the NOPs look legitimate and there is only
one legitimate representation of the 9-byte NOP instruction. To achieve this
normalization we will have to use self-modifying code to generate the correct
bytes during run-time. The idea is that during static analysis, an analyst
will only see the multi-byte NOP instructions in their legitimate representation
and when it is time for the hidden instructions to be executed, a decoding
routine will be called to generate the HEP and finally jump to it and continue
execution.

To be able to decode the HEP correctly we need to store a key for it some-
where. If we store it as it is, it is more likely it will be discovered as they
disassemble to valid instructions. XOR, ADD, MOV, OR and similar operations
thus cannot be used by the decoder without revealing the instruction bytes in
the data section. Instead we propose to use the SUB operation because we can
store a value of 0x100 - 0xXX for each key byte where 0xXX is one byte of the
hidden instruction sequence.

8.5. Detection 89

The addition of self-modifying code allows the NOP instructions to look
legitimate and only if the HEP is about to be executed, the HEP will be em-
bedded in the NOP stream. Otherwise the NOPs will look like normal.

To re-create the HEP, we need a key and a decoding routine.
For our proof-of-concept application [Jäm13] the decoding routine which is

included in the application looks like this:

CALL foo
foo:
POP EAX #Retrieve EIP
ADD EAX,offset_to_nop #Point to first byte of NOP stream
MOV ECX,nop_stream_size #Number of bytes in NOP stream
LEA ESI,DWORD PTR [EBP+key] #Address to key in memory
bar:
MOV EDX,BYTE PTR [ESI+ECX] #Get key-byte
SUB BYTE PTR [EAX + ECX],EDX #Subtract key-byte from code-byte
DEC ECX
CMP ECX,0xFFFFFFFF
JNZ bar
ADD EAX,4 #Adjust jump target to hit HEP
JMP EAX #Jump to HEP

To hide the decoding routine, we could embed it within NOPs as well. If
the HEP is larger than the decoder routine we would have less NOPs that look
suspicious.

8.5 DETECTION

In this section we will present how well the technique holds up against binary
analysis tools. We will test it against some different disassemblers and also
a binary analysis framework called BAP, which turns the instructions into an
intermediate language representation. We will also suggest solutions for how
this technique could be detected.

The proof-of-concept application used as an example for testing is a back-
door [Bem13] hidden within a simple "hello world" program. The executable
and details on how the backdoor is hidden can be found at [Jäm13].

8.5.1 ANTI-ANALYSIS

The following three analysis tools have been used in the testing.
Objdump [obj] is a utility, part of GNU binutils, and its disassembler employs
a very basic linear sweep disassembly algorithm and is a natural starting point

90 Creating Hidden Code Using NOP Instructions

for testing how appropriate this technique is against these types of disassem-
blers.
IDA pro [hex] is probably the most widely used and advanced disassembler,
and for the technique described in this chapter to be a viable option for hiding
code, it should hold up against an adversary with IDA pro.
BAP [BAP] is short for Binary Analysis Platform, and one feature of this tool
is that it creates an intermediate language representation of the assembly code
in the target binary.

The disassembly listings consist of five NOP instructions from the example
program’s MEP.

OBJDUMP

When testing on the objdump utility, the results are very straightforward.
Since it uses a linear sweep disassembly algorithm, no branch instruction will
be followed and the end result is that the MEP will be shown and the HEP
will be hidden.

58a: 66 0f 1f 84 6a 01 66 nop WORD PTR [edx+ebp*2-0x566f99ff]
591: 90 a9
593: 66 0f 1f 84 6a 02 66 nop WORD PTR [edx+ebp*2-0x566f99fe]
59a: 90 a9
59c: 66 0f 1f 84 89 e1 66 nop WORD PTR [ecx+ecx*4-0x566f991f]
5a3: 90 a9
5a5: 66 0f 1f 84 cd 80 66 nop WORD PTR [ebp+ecx*8-0x566f9980]
5ac: 90 a9
5ae: 66 0f 1f 84 89 c2 66 nop WORD PTR [ecx+ecx*4-0x566f993e]
5b5: 90 a9

IDA PRO

With IDA, the adversary has more options to deal with a binary showing a
suspicious disassembly output. The following is what is output by default.

.text:080485F6 66 0F 1F 84 6A 01 66 90 A9
nop word ptr [edx+ebp*2-566F99FFh]

.text:080485FF 66 0F 1F 84 52 0F 1F 00 A9
nop word ptr [edx+edx*2-56FFE0F1h]

.text:08048608 66 0F 1F 84 89 E1 66 90 A9
nop word ptr [ecx+ecx*4-566F991Fh]

.text:08048611 66 0F 1F 84 CD 80 66 90 A9
nop word ptr [ebp+ecx*8-566F9980h]

8.5. Detection 91

.text:0804861A 66 0F 1F 84 31 C0 66 90 A9
nop word ptr [ecx+esi-566F9940h]

The MEP is shown, just as we wanted. The reason the MEP is shown
is because we used an opaque predicate to execute HEP. With IDA we can
however define some bytes as data and start disassembly from the first byte
of the HEP. When doing so the following disassembly output is listed.

.text:080485FA 6A 01 push 1

.text:080485FC db 66h

.text:080485FC 66 90 nop

.text:080485FE A9 66 0F 1F 84 test eax, 841F0F66h

.text:08048603 52 push edx

.text:08048604 0F 1F 00 nop dword ptr [eax]

.text:08048607 A9 66 0F 1F 84 test eax, 841F0F66h

.text:0804860C 89 E1 mov ecx, esp

.text:0804860E db 66h

.text:0804860E 66 90 nop

.text:08048610 A9 66 0F 1F 84 test eax, 841F0F66h

.text:08048615 CD 80 int 80h

.text:08048617 db 66h

.text:08048617 66 90 nop

.text:08048619 A9 66 0F 1F 84 test eax, 841F0F66h

.text:0804861E 31 C0 xor eax, eax

.text:08048620 db 66h

.text:08048620 66 90 nop

If the analyst knows what he is looking for, the HEP will be exposed. To
combat this one or more of the techniques listed in Section 8.4 can be used
to further confuse the analyst. For instance, by using the scattered NOPs tech-
nique the NOPs will not stand out as much as if they are clustered. If the NOPs
are normalized, they will not look as suspicious either, even if gathered in a
large cluster.

BAP

With BAP the interesting thing is how our MEP and HEP are represented in
its intermediate language representation. The following output is from BAP

addr 0x8048377 @asm ‘‘nop’’
label pc_0x8048377
addr 0x8048378 @asm ‘‘nop’’

92 Creating Hidden Code Using NOP Instructions

label pc_0x8048378
addr 0x8048379 @asm ‘‘nop’’
label pc_0x8048379
addr 0x804837a @asm ‘‘nop’’
label pc_0x804837a
addr 0x804837b @asm ‘‘nop’’
label pc_0x804837b

Note that each NOP is listed as being one byte. BAP uses the MEP in its
intermediate language representation and the HEP is completely removed.
Any further analysis in BAP will not reveal anything about the HEP.

8.5.2 DETECTION ALGORITHM

A general method to find hidden code is to look for long sequences of instruc-
tions, all of which are unaligned from instructions in the main execution path.
The following algorithm can be used to do this.

find_HEP(threshold)
foreach instruction in text-segment

for i := 1; i < instruction.size; i++
count := 0
hidden := disassemble(instruction+i)
while not in_MEP(hidden) and valid(hidden)

count++
hidden := disassemble_next(hidden)

if count > threshold
add_to_HEP(instruction+i)

This algorithm will try to assemble a stream of bytes into a valid instruc-
tion from every possible offset within all instructions of the MEP in the code
section of an executable. It will continue to assemble instructions until it has
assembled an instruction that is in the MEP or is an invalid instruction. It will
look for a certain number of instructions, the threshold, before it considers
the instruction stream as a HEP. Choosing this threshold value is tricky since
legitimate code can still include a great number of hidden instructions in a
row before the disassembly resynchronizes to the MEP. [LD03] shows that the
greatest number of instructions found, which weren’t part of the MEP, is 27
instructions out of 360,000. This was found in the compiler gcc.

The larger the HEP is, the easier it is to find, as we can set the threshold
to a higher number, thus increasing our chances of avoiding false positives.
Setting the threshold too high could make the HEP go undetected as well.
The best way to avoid false negatives is to start with a high value and then

8.6. Conclusions 93

decrease the threshold by one until something is found. It is when the HEP
is small that it becomes difficult to detect, since the smaller the HEP is, more
false positives will arise and it is up the analyst to manually go through all
instructions and filter out the false positives.

This algorithm works for all kinds of MEP instructions, not just NOPs, as it
considers all possible offsets in all instructions as a possible starting point for
hidden instructions. It even works for a combination of several different MEP
instructions.

The scattered NOPs variation of our technique poses a problem for the al-
gorithm, as only two instructions, the hidden instruction and the jmp exists
linearly. To detect this we need to alter the algorithm so that it follows all
unconditional jumps. It should also take into consideration that the NOPs may
not be in order of the execution flow of the MEP. The last NOP instruction in
the MEP could for instance be the entry point of the HEP. The jump instruc-
tion could also be a conditional in which case the algorithm would have to be
modified to follow both paths.

The algorithm was implemented as an IDA pro script and tested against
our example application. The script can be found at [Jäm13].

We started with an initial threshold of 100 and the backdoor was found
and was reportedly 154 instructions long. The largest false positive that was
reported was 12 instructions long.

If we apply the algorithm on the code when applying the self-modifying
code technique to normalize the NOPs, it does not detect the HEP anymore. If
we were to hide the decoding routine in NOPs the threshold would need to be
set to a significantly lower value than 100 to be detected. This means that the
use of this additional obfuscation could delay detection further, given that the
decoding routine has a smaller number of instructions compared to the HEP.

8.6 CONCLUSIONS

We have presented a new technique for anti-disassembly. By using and ex-
tending ideas from code embedding and code overlapping we have shown
how to overlap two execution paths that are both executable. This does not
only complicate analysis using static disassembly with a linear sweep algo-
rithm, but will also make it more difficult to use dynamic analysis since both
paths can be executed. Combining this technique with e.g., opaque pred-
icates, self-modifying code and VM detection mechanisms has potential to
significantly delay correct disassembly and analysis of e.g., malware, hidden
decryption routines and license validation code. Furthermore, we give an al-
gorithm for discovering the hidden execution path by attempting disassembly
of code that is offset a number of bytes from the main execution path. This

94 Creating Hidden Code Using NOP Instructions

algorithm can successfully and automatically discover malware that uses our
proposed technique, potentially saving both time and resources for an analyst.

In the next Chapter, we will extend the technique of overlapping instruc-
tions to create hidden execution paths via the source code alone, and no tam-
pering of the binary post compilation.

9
Exploiting Trust in Deterministic

Builds

In this chapter we investigate the problem of adding hidden machine code
via the source code instead of directly modifying the binary. Such hidden
code, if undetected, would result in hashes and code signatures that are

correctly verified as genuine. We address the problem of keeping the seman-
tics of such instructions hidden in the source code as well as in the binary
so that both a code review of the source code and static analysis of the bi-
nary will not easily reveal the hidden code. This is accomplished by carefully
constructing data structures where the offset to a base address can be used to
interpret machine instructions. In the binary, these instructions will be hidden
from the main execution path and not visible in a disassembly listing.

9.1 HIDING INSTRUCTIONS IN BINARY CODE

In this section we will explain our approach to inject instructions in a program
and have its semantics hidden from an analyst in both the source code and
the compiled binaries. The semantics should be hidden against both static
and dynamic analysis techniques as well as manual and automatic analysis
methodologies. Furthermore, the attacker can implement it entirely within the
source code and not have to worry about modifying any compiled binaries.

The requirements to make this work is for the attacker to have complete
control over the part of the source code where the injected instructions are
implemented. It is also necessary to have consensus among any potential
co-developers about what configurations, optimizations and similar compiler
settings that should be applied to the building process. Finally, the project
should be compiled in a reproducible way to ensure that produced binaries
are byte-for-byte identical between builders.

95

96 Exploiting Trust in Deterministic Builds

The examples in this section are based on a 32-bit Linux system with the
compiler GCC 4.9.1 with no optimizations enabled. Some of the examples
may not be applicable to other compilers or other versions of GCC, but should
give a basic description of our approach. It should be straightforward to adapt
the techniques explained here for other compilers and configurations.

For the remainder of this chapter we also assume that the trigger con-
dition used to execute the hidden instructions is chosen and designed in
such way that it is sufficiently hard for an automated analysis to identify
it [ZW11] [SLGL08]. Therefore, we regard this topic as out of scope and focus
on hiding the trigger-based code.

9.1.1 MAIN AND HIDDEN EXECUTION PATHS

We begin by defining the Hidden Execution Path (HEP) and the Main Execu-
tion Path (MEP) in the binary. The HEP is defined as a sequence of assembly
instructions hidden implicitly in the source code, i.e., the semantics of those
hidden instruction can not be seen in the source code. It is also explicitly hid-
den in the compiled source code’s disassembly listing. This is true for both
static and dynamic analysis scenarios, as long as the HEP is not executed. The
MEP is defined as a sequence of assembly instructions that is implicitly visi-
ble in the source code, i.e., the source code generates the expected assembly
instructions. The generated assembly instructions are clearly visible in the
disassembly listing of the compiled source code. The MEP shows the func-
tionality that we want to show the user and the HEP is the malicious code.

The HEP can include any instruction that is valid. The MEP is limited to the
instructions the utilized compiler and associated configurations can generate
from the given source code.

9.1.2 BASIC DESIGN

Our approach of inserting hidden instructions in the source code relies on
having the compiler generate instructions in the MEP in such a way that over-
lapping instructions are formed to a semantically correct, predetermined HEP.
One limitation is the self-synchronizing nature of x86 instructions due to the
Kruskal Count [LRV09], i.e., beginning decoding instructions from different
byte offsets will sooner rather than later result in the different execution paths
synchronizing to the same one. Designing the HEP in one continuous set of
bytes would result in limited functionality. In [JLH13] this was circumvented
with unusually formatted nop instructions which are not prevalent in com-
piled code and thus cannot be used here. In order to get around this issue we
need to avoid creating the HEP in this way and instead scatter fragments of
the HEP throughout the application, where each fragment ends with a branch
instruction pointing to the next fragment or synchronizes with the MEP if the

9.1. Hiding Instructions in Binary Code 97

HEP has finished its execution. The ideal HEP fragment includes one or more
relevant instructions for the HEP and one branch instruction that will redirect
the HEPs control flow to the next fragment, see Figure 9.1.

Figure 9.1: Control flow of the HEPs

In Section 9.1.3 we will show how mappings between MEP instruction fields
and HEP instructions fields are made with ease of implementation in mind.
We will cover how control flow between HEP fragments are handled in Sec-
tion 9.2.2 and finally in Section 9.3 we discuss what to do to evade potential
analysts, both on the source code level and binary level.

9.1.3 MEP-TO-HEP MAPPINGS

MEP instruction fields must be mapped to HEP instruction fields in a way that
keep MEP instructions relevant for the program in general and its surround-
ing instructions. It must also be formed so the relevant HEP instructions are
decoded correctly.

To achieve this we must first determine the instruction fields in the MEP
that are best suited to encode instructions in the HEP. Looking at a MEP
instruction we observe the following.

• Prefixes are very limited in the number of values they can take and will
depend heavily on the rest of the fields on whether or not they can be
generated. One prefix value can take 11 out of 256 values.

• Opcodes can assume a larger number of bytes, more precisely one-byte
opcodes can take 244 out of 256 values (excluding prefixes and the 0x0f
two-byte opcode extension code). The compiler may not be able to
generate all of them. Many of the opcodes are redundant, which is why
it is likely that compilers are just using a subset of all opcodes. We
found this to be true for GCC.

• The mod-r/m byte is only one byte and also limited by the compiler in
what values it can take. We found that making the compiler use specific
registers in the source and destination operands is difficult to achieve.

• The same applies for the SIB byte as for the mod-r/m byte, in that it is
difficult to make the compiler use the specific source and destination
operands we want.

98 Exploiting Trust in Deterministic Builds

• The displacement field can be 0, 1, 2 or 4 bytes long and is relatively
easy to use to make the compiler generate our desired values. For ex-
ample, accessing a stack variable will make the compiler generate an
instruction that dereferences memory from an offset to the base pointer
ebp. This offset is the displacement field, and depending on how we
design the stack layout and what variables we use we can control the
values in this field. When using a 32-bit displacement field we need
to consider a trade-off between the size of a data structure allocated
in memory and how much of the displacement field we can control.
In this work we limit ourselves to using only the three least significant
bytes of the 32-bit displacement field, making the maximum amount
of allocated memory 16,777,216 bytes.

• The immediate field is ideal to work with, because we can set it to
whatever we want without any practical consequences. It can be 0, 1,
2 or 4 bytes in size by using the types char, short and int respectively.
Large constants are not very common in the code section and we will
in Section 9.3 discuss how to use the immediate field.

Based on this analysis the displacement and immediate fields of a MEP
instruction will be used to create the HEP, see Fig. 9.2. Since the fields are
adjacent they can be combined to create HEP instructions.

Figure 9.2: Illustration of MEP and HEP layout in an x86 instruction

9.2 CONSTRUCTING THE HEP FROM SOURCE CODE

In this section we describe how to write code that generates the desired hid-
den code fragments. This is illustrated in Fig. 9.3 where the hidden code
fragment is introduced at the source code level to be compiled and later in-
voked as unintended instructions.

We start by defining two different structs.

struct imm8_t {
char imm8[256][256][256];

};

9.2. Constructing the HEP from Source Code 99

Figure 9.3: Introducing a HEP in the source code. Compilation of the
source code will generate unintended instructions which
are executed by decoding at certain offsets in the compiled
code

struct imm32_t {
int imm32[256][256][64];

};

For the rest of this section we will assume the structs are allocated on the heap
and when dereferencing any elements in that struct it is done with an offset
from the base address of that struct located in register eax, see Figure 9.4.

The imm8_t struct provides a simple way to assign MEP instruction
displacement fields with the desired values coupled with an 8-bit immediate
field. This is because we use struct member ’imm8’ which is of type char, the
compiler will generate assembly instructions with an 8-bit immediate field.
Likewise the imm32_t will generate instructions with 32-bit immediate fields
when assigning struct member ’imm32’ a value. As an example, assigning a
value to the first position in the ’imm8’ member in the imm8_t struct and the
first position in the ’imm32’ member of the imm32_t struct will generate the
following assembly instructions respectively.

c6 00 0a mov BYTE PTR [eax],0xa
c7 00 0a 00 00 00 mov DWORD PTR [eax],0xa

The first instruction only includes an 8-bit immediate field (0x0a) since the
variable assigned is of type char and the second instruction includes a 32-bit
immediate field (0x0000000a) because the type is int.

In order to generate 8-bit displacement fields with these structs the last two
indices of either struct member would have to be set to zero. Since the struct

100 Exploiting Trust in Deterministic Builds

is allocated on the heap, the first index of the struct member must be confined
to values between 0x00 and 0x7f. The reason is that when referencing an
element in the struct on the heap, we will do so by using a positive offset from
eax. If the displacement value exceeds 0x7f the compiler will put the value
in a 32-bit displacement field in order to not get the incorrect sign it would
get in an 8-bit value. Below is an example of two assignments of two elements
in the ’imm8’ member of the imm8_t struct, one where the displacement
only requires one byte, and the second one where the displacement need
to be zero-extended in a 32-bit displacement field in order to not become a
negative number.

c6 40 7f 0a mov BYTE PTR [eax+0x7f],0xa
c6 80 80 00 00 00 0a mov BYTE PTR [eax+0x80],0xa

The design of the 3-dimensional matrix corresponding to the struct allows the
HEP designer to set the exact bytes wanted of the displacement field directly
in the source code. For example, the following assignment of the ’imm8’
member in the imm8_t struct illustrates the process.

imm8_t *a = malloc(...);
a->imm8[0x10][0x20][0x30] = 0xa;

The compiler generates the following machine code from the assignment
statement.

c6 80 30 20 10 00 0a mov BYTE PTR [eax+0x102030],0xa

The indices chosen are seen directly in the decoding of the instruction. Note
that it is in little-endian and the bytes are thus reversed.

In Figure 9.4 we can see that when referencing an element on struct member
’imm8’, the displacement value is derived in the following way.

imm8[x][y][z] -> displacement = x<<16 + y<<8 + z

Thus, index positions will result in bytes in the displacement field.
Worth noting is that with our structs in an instruction with a 32-bit displacement,

the most significant byte will always be 0x00, as can be seen in the example
above. The reason is that our structs have not allocated enough bytes such that
indices can be chosen to specify the most significant byte of the displacement
field without going out of bounds.

The first index of the imm32_t member ’imm32’ is set to 64 because it stores
integer type values which take up four bytes of memory per element. This
means that for each index increment, there will be an increment of four for the
least significant byte of the displacement value. Thus, any value put into the

9.2. Constructing the HEP from Source Code 101

– Heap –

eax ÝÑ

displacement

$

’

&

’

%

imm8[x][y][z] ÝÑ

,

/

/

/

/

.

/

/

/

/

-

struct

.....

Figure 9.4: Memory layout of struct with displacement to wanted el-
ement

first index position must be divided by four in order to get the correct value
representation in the displacement field. One drawback of using imm32_t
for encoding HEP instructions is that the first index position cannot assume
values not divisible by four, thus limiting its use to only 25% of all byte values.
Should this one byte not be useful in the HEP fragment, it could simply be
skipped and the HEP fragment’s first byte be what is specified in the second
index. Below is an example of how the assignment of imm8[0][0][4] with
0x0a is represented in the displacement field.

c7 40 10 0a 00 00 00 mov DWORD PTR [eax+0x10],0xa

The displacement is a single byte with value 0x10 and in order to get the de-
sired value, which is 4, we have to code the assignment statement as [0][0][4>>2].
This will generate the following assembly instruction.

c7 40 04 0a 00 00 00 mov DWORD PTR [eax+0x4],0xa

Here we can see that the value of the displacement field now is 4.
We have defined a set of macros defining all one-byte opcodes and prefixes

that can be used to program the HEP. For example, if we want to create the
following HEP fragment

58 pop eax
57 push edi
c3 retn

102 Exploiting Trust in Deterministic Builds

we would define the following.

#define POP_EAX 0x58
#define PUSH_EDI 0x57
#define RETN 0xC3

struct imm8_t *a = malloc(...);
a->imm8[RETN][PUSH_EDI][POP_EAX] = 0;

This fragment generates the following machine code for the assignment state-
ment

mov eax, DWORD PTR [ebp+0x08] 8b 45 08
mov BYTE PTR [eax+0xc35758],0x0 c6 80 58 57 c3 00 00

If execution starts from the third byte in the second instruction, our desired
HEP instructions will be executed. We also assume that register edi holds
an address to some other HEP fragment such that when edi is pushed to the
stack, the retn instruction will pop that value and continue execution from
there. In this example the immediate value can be set to anything as it will
not be a part of the HEP, allowing for some flexibility in designing the MEP.

9.2.1 STRUCTS ALLOCATED ON THE STACK

It is possible to allocate the structs on the stack. This works equally well as
long as some measures are taken.

• Instead of having a positive offset from the eax register, dereferencing
a stack variable does so with a negative offset from the base pointer
register ebp.

• For 8-bit displacement fields we need the value in the first index po-
sition to be between 0x80 and 0xff. This is due to the negative offset
used to dereference stack variables.

• Similarly as for the heap, if the value of the displacement field drops
below 0x80, the compiler will generate the instruction with a 32-bit
displacement field and sign-extend it to keep the value negative.

• The first index position need to be adjusted based on what the stack
layout looks like. For example, if there is an integer variable allocated
before the struct on the stack, the first index need to be added with 4 to
make the compiler generate the desired displacement value.

9.2. Constructing the HEP from Source Code 103

9.2.2 CONTROL FLOW

Previous sections showed how we build the HEP and that it is done by frag-
menting it and providing branching instructions to direct control flow be-
tween the fragments. This section aims to explain some options on how to
navigate between these HEP fragments.

INTRA-FUNCTION CONTROL FLOW

It is possible to include all fragments that constitutes the HEP to be confined
to a single C function, but it may be difficult to design that function in any
meaningful way. The fragments in this case should only need to end with
branch instructions that jump short, i.e jmp rel8, where the jump can be
taken 127 bytes forward or 128 bytes backwards from the instruction pointer.

INTER-FUNCTION CONTROL FLOW

The HEP fragments may also be scattered between multiple functions in the C
code. This provides for greater flexibility in forming the MEP in a meaningful
way. Assuming reasonably-sized functions, the jmp rel8 could be used, but
the HEP fragments need to be included near the prologues or epilogues of
the function to make sure it can reach the next fragment. In other words
if one HEP fragment is located in the epilogue of function A then the next
fragment should be located in the prologue of function B, where function B
comes directly after function A in memory. A more flexible option is to use
jmp rel32 to control execution flow between HEP fragments. Flexibility is
provided by allowing the HEP designer to place fragments further away from
each other such that they can be placed in areas of the code where they fit
better with the MEP.

HEP-TO-MEP-TO-HEP

Jumping from a HEP fragment to the MEP and back into the HEP is possible
if the MEP can include indirect branch instructions, e.g., jmp eax or call edi.
Function pointers tend to generate these types of assembly instructions and
could be used to achieve HEP-to-MEP-to-HEP control flow. The register desti-
nation of the indirect branch instruction need to be prepared before temporar-
ily jumping into the MEP, so control flow can resume in the HEP when the
MEP is finished. Normal instructions in the program can now be designed to
be used in the HEP, and still allow control flow to resume at hidden instruc-
tions at the indirect branch. Below is an example of what such a construction
may look like.

104 Exploiting Trust in Deterministic Builds

HEP: add/sub [ebp-XX],YY ;Prepare jump back to hep
MEP: ...

...
mov eax,[ebp-XX]
call eax

ebp-XX is modified to make sure it includes an address to a HEP fragment.
After this instruction the control flow will continue executing MEP instruction
until it is time to jump back to the HEP when the HEP fragment address is
loaded in eax and then branched to with call eax.

HEP CONTROL FLOW

For branching between fragments we can use one of the following instructions
as the final instruction in a HEP fragment.

call rel32,jmp rel32,jmp rel8,retn

The call instruction is used when we want to branch to a set of HEP frag-
ments that end with a retn and provide some functionality that will be called
more than once. The call instruction is encoded in the following way.

struct imm32_t *a = malloc(...);
a->imm32[T3][T4][CALL_REL32>>2] = (T5<<16)|(JMP_REL8<<8)|T1

and will result with the following instructions

8b 45 0c mov eax,DWORD PTR [ebp+0xc]
c7 80 e8 a8 24 00 00 mov DWORD PTR [eax+0x24a8e8],0x40eb00
eb 40 00

Executing from the third byte of second instruction, the call instruction will
be executed with the an instruction pointer offset off 0x24a8, i.e., T1-T4. Fol-
lowing this instruction is a jmp rel8 with an instruction pointer offset off
0x40, i.e., T5. The jmp rel8 instruction could alternatively be shifted 24 bits
instead of 8, placing itself as the last byte of the instruction and use the first
byte of the following instruction as its target byte, thus eliminating the need
to encode T5 in the immediate field. This jmp instruction is needed to proceed
to the next HEP fragment.

The target of the call instruction will eventually return with a retn instruc-
tion and thus we need to provide another branch instruction after the call.
In this example we use a jmp rel8 instruction to branch to the next HEP frag-
ment. T5 specifies the offset from the instruction pointer which should point

9.3. Evading Analysis 105

to the next HEP fragment. It should be a power of two to keep the weight of
the immediate value as low as possible.

Note that call rel32 has opcode 0xe8 which is evenly divisible by four
and thus can be specified in the struct member ’imm32’s first index position.

9.3 EVADING ANALYSIS

In this section we will discuss some approaches to evading analysis of the
hidden code. For this to be achieved it is important that the MEP does not
appear out of the ordinary. Design decisions in the source code is discussed,
as well as how various instruction fields should be crafted to be properly
mapped from MEP to HEP in order to optimize analysis evasion.

9.3.1 IN THE SOURCE CODE

The previous section provided a straightforward and easy to implement way
of constructing the HEP from source code. However, this provides very little
stealth for the hidden code. The most obvious changes would be to rename
the defined opcode macros to something that fits the main functionality of
the application. This is not ideal either, because we have code that accesses
a seemingly arbitrary place in the matrix. The solution here is to modify the
struct to have some single variables of it at a specific offset and not rely on
multi-dimensional matrices to achieve the desired displacement layout. For
example, if we want a HEP fragment of pop eax, push edi, retn we would
redesign the struct used in the following way.

struct imm8_t {
char a[0xc35758];
char status;

};

With this struct, to generate the desired HEP instructions, we would not need
to access some seemingly random element in a huge matrix. Instead we would
access the struct member ’status’. Accessing this member would make the
compiler generate an instruction with the desired displacement field. The
filler struct member ’a’ could be divided into several variables and arrays of
different sizes, as long as the total amount of memory they occupy is the
same as the array above. This is necessary in order to make the ’status’ struct
member generate the desired displacement field. The struct is designed to fit
into the application in general.

Multiple different structs may have to be designed this way to accommo-
date for the entire HEP. Still, it is possible to use the same struct for multiple

106 Exploiting Trust in Deterministic Builds

fragments. Imagine we want the same HEP fragment as above, but with the
only difference of having pop edx instead of pop eax. We would simply add
another char member to the struct after ’status’ and reference it to set the
displacement field to include the new HEP instructions

59 pop edx
57 push edi
c3 retn

9.3.2 IN THE MEP

Improved stealthiness can also be applied to the immediate field. Large value
constants are not so common in compiled code, so we aim at using either low-
weight immediates, so they can be used as flag-fields or, in the case of 4-byte
immediates, have the three most significant bytes set to zero and the least
significant byte to anything. Focusing on the former where we want to create
low-weight immediate values that can be used to create HEP instructions we
must make sure that whatever HEP instruction fields are mapped to the MEPs
immediate field must be of low-weight. Below we explore some options and
best practices to achieve this.

9.3.3 IN THE HEP

HEP instruction fields can be designed to accommodate reasonable MEP in-
structions. In this section we only consider HEP instruction fields encoded to
MEP immediate fields.

OPCODES

Finding opcodes with a low weight limits us to one-byte opcodes, as a two-
byte opcodes always start with 0x0F, which already has four bits set. More-
over, the most common and widely used opcodes are those of one byte. Many
opcodes can have their weight lowered by disabling the direction bit, which is
the second least-significant bit and is used to reverse the operands specified
in the mod-r/m byte. Table 9.1 provide examples of some low-weight opcodes.

MOD-R/M AND SIB

The reg, r/m, scale and index bits specify the source and destination operands
of the instruction. In Table 9.2 we show how the different operands are en-
coded and their respective weight.

Clearly the register eax/al is the best choice if we want to lower the weight
of the mod-r/m byte, but we must often also work with a second operand.

9.4. A Proof of Concept 107

Table 9.1: Examples of some opcodes and their weight.
Opcode Mnemonic Weight

0x00 add r/m8, r8 0
0x20 and r/m8, r8 1
0x40 inc eax 1
0x50 push eax 2
0x80 add r/m8, imm8 1

Table 9.2: Examples of some operand encodings and their weight.
operand encoding weight
eax(al) 000 0
ecx(cl) 001 1
edx(dl) 010 1
esp(ah) 100 1
ebx(bl) 011 2
ebp(ch) 101 2
esi(dh) 110 2
edi(bh) 111 3

ecx/cl and edx/dl are the second-best choice. Although esp/ah also has a
weight of 1, esp is often not desirable to use due to it being used to keep track
of the stack.

DISPLACEMENT AND IMMEDIATE

These fields are straightforward in that they need to keep a low weight to
keep the MEPs immediate field a low weight.

9.4 A PROOF OF CONCEPT

We have implemented and released a proof-of-concept backdoor [cja] which
relies on the technique described in this chapter. The backdoor opens up a
listening TCP port and gives shell access to whoever connects to that port. The
HEP fragments are scattered throughout multiple functions of the application
and includes sequences of HEP fragments as functions that are called from
other places in the HEP multiple times.

The backdoor is a modified variant of the one found in [gey]. It was mod-
ified to make the number of bytes for each instruction as small as possible in
order to simplify encoding them in the displacement and immediate fields

108 Exploiting Trust in Deterministic Builds

of the MEP instructions. We also reduced the total number of instructions
used by placing some sequences of instructions inside functions that could be
called multiple times.

For this proof-of-concept we have not implemented any real functionality
for the application. In order to make the HEP work, we have inserted a spe-
cific amount of filler bytes, namely nop instructions such that the branches
that transfers control flow between the HEP fragments reach each other ac-
cordingly. These nop instructions may be replaced with other instructions, so
long as the replacement instruction are of equivalent size in terms of num-
ber of bytes produced by the compiler for said instructions. Any number
of functions that are needed to implement the functionality for the intended
application could be written beforehand, and only after design the backdoor
into the program.

Below is an example function from the proof-of-concept called prologue.

void prologue(byte3_jmprel8_t *c, imm8_t *a,
retn_pushedi_popeax_t *f)

{
/***************** p1 ***********///
c->popedi_popebx = JMP_REL8; // POP EDI
t1((imm8_t*)a->a,FLAG27); // POP EBX
/****************************///

FILLER84

/***************** p2 ***********/// POP EAX
f->popeax_pushedi_retn = 0; // PUSH EDI
/*****************************/// RETN

FILLER38
}

The HEP fragments in this function are called multiple times from other
places in the HEP. The HEP fragment labeled p1 includes hidden instructions
for pop edi and pop ebx. The struct member popedi_popebx is located at an
offset such that the hidden instructions are encoded in the displacement field
of the assignment instruction. Naturally, the struct members variable name
in the example can be changed to anything, in order to blend in with the
application to provide more stealth. The third byte of the displacement field
for all members of this struct is the opcode for jmp rel8. This is necessary
because the fourth displacement byte is 0x00 we will branch past it to the
next opcode that is encoded in the immediate field. The struct member is of

9.5. Discussion 109

a char type, and the value JMP_REL8 is assigned to it, encoding the immediate
field with the opcode of the jmp rel8 instruction that is designed to take us
to the next HEP fragment with the prologue function, namely p2. The jmp
instruction will derive how far it will jump based on the next byte in machine
code. This byte is derived from the machine code generated by the t1 function
call. This function call will push the last argument of the function call to the
stack and the jmp opcode will be paired with the value 0x68 which is the
opcode of the push instruction. In order to hit HEP fragment p2 we must
include some instructions in between them. FILLER84 is a macro that will
insert 84 bytes of nop instructions. These can later be replaced with whatever
code the developer chooses, as long as it is exactly 84 bytes.

HEP fragment p2 include additional instructions and a retn instruction to
return to the place where prologue was called. The immediate field is not
used in this HEP fragment and can be assigned any value.

The proof-of-concept consist of two functions, prologue and epilogue,
which include two HEP functions, i.e., functions that are used in other parts of
the HEP. There are an additional 9 functions simply labeled from 1 to 9 which
implement the entire backdoor including calls to the two HEP functions. A
total of 87 HEP fragments are created and each fragment includes at least one
assignment statement and sometimes a function call. The function calls were
mainly used to provide an offset for a preceding jmp instruction. Since func-
tion calls with arguments start by pushing these arguments to the stack, the
values 0x6a (push imm8) or 0x68 (push imm32) were used, but other state-
ments that generate other byte values can be used, if they fit better into the
application. Thus the programmer has some flexibility when designing the
backdoor.

9.5 DISCUSSION

In this section we will provide an evaluation of the methodology described
in this chapter based on its stealthiness and maintainability. We will also
enumerate its strengths and weaknesses and come up with ways on how an
attacker utilizing these methods can be detected and prevented.

9.5.1 MAINTAINABILITY

It is difficult to maintain the hidden code mainly because of the fact that if
we need to change, add or remove some HEP fragments, we must adjust the
jumping offset from any other fragment which crosses the fragment that was
changed. For a software project maintained by multiple developers this could
be problematic, as they may change code which could break the HEP. Trying
to fix the code is difficult if the immediate and displacement values used

110 Exploiting Trust in Deterministic Builds

need to change and are already conformed to make sense in the applications
source code.

To have some degree of maintainability of the HEP, the attacker should try
to confine the entire HEP to closely located functions, which offer specialized
functionality in the MEP that only the attacker is bound to change, thus max-
imizing the chances of other developers leaving that specific region of code
alone.

Other issues that may break maintainability is if the compiler configuration
changes such that the offsets between HEP fragments changes or different
instructions are generated than expected by the compiler. Due to this the
backdoor may have a limited lifetime expectancy.

9.5.2 STEALTHINESS

The HEP is well-hidden since it is not explicitly visible in either source code
nor compiled binaries. It can be detected during dynamic binary analysis,
but only if the HEP is explicitly selected for execution by whatever trigger the
attacker has implemented for it. A code reviewer may react on some coding
styles that were necessary for the attacker to implement the HEP, but should
not discover the hidden code unless delving deeper into the compiled binaries
to find the overlapping instructions that constitutes the HEP. The source code
contain no semantics whatsoever of the hidden instructions.

Many binary analysis tools (e.g, BAP [BAP]) turns the assembly code into
its own intermediate representation by lifting it to a higher-level representa-
tion and including explicitly the side-effects of each instruction. This would
enable analysis on the intermediate language no matter what platform (ARM,
x86, etc.) the binary is targeting. In these types of tools, the hidden code
should be completely removed from the intermediate representation and not
be detectable at all.

Naturally, the bigger the software project, in terms of lines of code, the
greater the chance for remaining undetected. The attacker has a greater flexi-
bility in designing the HEP because of a plethora of choice on where to imple-
ment it. Where to place the HEP in the source code may also be of importance
and is discussed in more detail in Section 9.5.4.

9.5.3 STRENGTHS AND WEAKNESSES

The obvious strengths of this approach is that it enables hiding malicious code
in deterministic builds which is not easily detectable by source and binary
code analysis.

In this chapter we assume that we have a deterministic build since we can
make an assumption on compiler software and its configurations, this makes
the attack ineffective on non-deterministic builds since each compilation could

9.5. Discussion 111

produce different binaries. Some other weaknesses relate to the difficulty of
getting such code commit accepted to a project due to the appearance of the
code. In this chapter we present one way of achieving this attack and we also
present a more stealthy-looking code of the attack, shown in Section 9.3.

Some other use-cases for this technique are software obfuscation and tamper-
resistant software. In the case of obfuscation, if large portions of the code
are constructed using this overlapping technique with many different trigger
conditions throughout the code, it will be time-consuming for manual reverse
engineering efforts to identify all the hidden code. In order to obfuscate soft-
ware further, bogus code can be inserted in some HEP segments in order to
mislead. Regarding tamper-resistance, this relates to modifications of soft-
ware during runtime since we assume that the binary is signed or part of
a deterministic build verification and cannot be tampered with statically. In
this case, so called guards, code that check the integrity of other code portions
could be implemented in the hidden code segments throughout the applica-
tion. However, for this to be feasible in terms of usability, the properties of
obfuscation and tamper resistance should be easy to achieve, preferably using
an automated transformation of the original source code.

9.5.4 PREVENTION AND DETECTION

One approach to break the attack is to utilize instruction randomization [PPK12b],
i.e., swapping instructions for semantically identical ones and rearranging in-
structions independent of each other. Doing this during the loader process
or runtime will keep all the benefits of deterministic builds. A binary can be
instrumented with CFI [ABEL09b] which ensures that runtime control-flow
transfers are valid according to the static analysis of the program, e.g., during
the compilation process. For this attack, the transfers to the HEP will not be
detected during static analysis and therefore prevented during runtime. Yet
another prevention mechanism is to eliminate during the compilation process,
all unaligned instructions that can change the program control flow, so called
unaligned free-branches as described by Onarlioglu et al. [OBL`10b].

At the source code level, frequent adding of new code or refactoring exist-
ing code can render a defect backdoor when being triggered since the hidden
assembly code is based on a snapshot of the code repository and it assumes
memory layout is static. The attacker is best of to place the code in functions
that are rarely maintained in order to preserve the backdoor functionality.
However, planting backdoor code in functions that are untouched for a very
long time might rise suspicion. Therefore, there is a tradeoff between visibility
and persistence of the backdoor that the attacker has to balance. Adding code
to functions with a medium-level of commit frequency might be the most
stealthy approach but it comes with some risk that the backdoor might be

112 Exploiting Trust in Deterministic Builds

rendered defective by any future commit. Project owners that would employ
frequent new code insertions, e.g., declaration of new variables in order to
break the attackers assumption of the memory layout, seems to be the best
strategy to prevent this type of attack at the project management level.

At the user-side, cautious users may execute untrusted programs in a NaCl [YSD`09]
type of sandbox where instructions pointers and call and jmp instructions
must point to a valid instruction boundary. A program with this type of
backdoor will be prevented to jump into a HEP with such constraints.

9.6 CONCLUSION

In this chapter we have presented a technique that allows an attacker to craft
malicious code in an applications source code and have its semantics hidden
in both the source code and compiled binaries. One requirement to achieve
this it that the software is compiled on a CISC architecture and in a repro-
ducible manner. Our proof-of-concept backdoor shows that the technique is
feasible and that a determined attacker could utilize it to compromise a soft-
ware project. Given an insider attack, like a trusted developer in a software
project, would increase the probability for a successful attack. Since this at-
tack is exploiting the increased trust in deterministic builds, it could very well
be stealthy for a long time. We also discuss how to detect and prevent this
type of attack, both at the project management level and regarding defense
that can be employed at the target platforms.

10
Detecting ROP Payloads in Data

Streams

In this chapter we present eavesROP, which is a lightweight approach to
detecting ROP attacks. We try to identify ROP payloads by looking at
network traffic only, i.e., we do not make any modifications to machines,

programs, libraries or operating systems; nor do we try to execute any of the
received data. We do not even require any kind of access to the machines.
Scenarios could be an implementation in a gateway to a corporate network,
ROP payload detection in switches or at an ISP before data is forwarded to
the end user. The question that we try to answer is: How much information
can we deduce by just looking at the data? We target ROP exploits where
gadget addresses can be explicitly found in the data sent to the application.
We assume that ASLR is enforced by the operating system, and that the at-
tacker has information about the location of libraries. Of course, our detection
mechanism has no such information. We show how to filter out possible ROP
payloads and how to determine if the candidate payload is a ROP attack or
not. Even with just a moderate number of gadgets, we can detect the payload
efficiently. This is true even if there is a large amount of noise present.

Our assumption is that the attacker can find the location of gadgets in the
memory of a target computer. This can for example happen through another
vulnerability introducing an information leak, which reveals some memory
address to the attacker.

One example of an information leak is one part of the GHOST attack
[Qua15]. In this attack, the attacker can—from a remote host—get the heap
address of a configuration structure internal to the Exim mail server. This
address is then used when performing the actual exploit. The address can be
found even though ASLR is enabled, and the executable is a PIE. Even though
the attack is not a ROP attack, it shows that it is not unreasonable to assume

113

114 Detecting ROP Payloads in Data Streams

Data
Stream

Data
Pre-filter

Cluster
Detection

Pattern
Matching

Statistical
Test

Alarm

Figure 10.1: Data flow overview.

that an attacker may have knowledge of memory addresses internal to the
application.

10.1 OVERVIEW OF APPROACH

In this section, we give a brief overview of eavesROP. The entire exploit pay-
load detection mechanism can be regarded as a black box device that takes
a data stream as input and raises an alarm if it finds a ROP payload. The
analysis of the data is based on the property that a payload consists of several
4-byte aligned addresses to gadgets within one library or chunk of executable
code. Note that not all gadgets have to be in the same library. We only re-
quire a certain number (T) to be in one known library. The rest can be located
elsewhere.

The analysis performed inside the black box is divided into four layers,
each with a distinct task, see Figure 10.1.

OPTIONAL DATA PRE-FILTER

The optional data pre-filter is a simple filter designed to discard all data that
is unlikely to represent memory addresses.

Even though eavesROP is not very noise sensitive for detection, its perfor-
mance is sensitive to data with very small variations, as this type of data could
potentially represent memory addresses that are closely grouped. Plain text
data has this near-recurring property and can thus for performance reasons
be thrown away in a data pre-filter. A well-designed data pre-filter will sig-
nificantly lower the processing requirements of the exploit payload detection
mechanism since fewer blocks of data will be passed on to the next layer—the
address cluster detection layer.

CLUSTER DETECTION

An actual exploit payload will contain several gadget addresses that lie close
together with respect to the entire addressable memory space. The purpose
of the address cluster detection is to find and isolate the congested parts of

10.1. Overview of Approach 115

the memory space for further processing. If several of the memory addresses
in a data window of maximum exploit payload size end up close together,
then this address window is worth further scrutiny. Other data will scatter
randomly over the addressable memory space, since their correlation to actual
gadget addresses in any given library is low.

The address cluster detection layer can be viewed as a transformation from
data space to address space. Given a data window of some size, the clustering
algorithm detects address windows that may contain dense memory activity.
Thus, this layer also has the task of aligning data into 4-byte chunks since ROP
gadgets are called using a 4-byte address, assuming a 32-bit architecture. After
alignment, a second filter can be used in order to sort out certain addresses.

Based on clustered address windows, this layer will output a binary address
vector, Pobs, of size L, i.e., the size of the largest targeted library. These vectors
indicate addresses found in the data.

PATTERN MATCHING

The vector Pobs from the previous step is matched with binary library vec-
tors. The relative distances of the memory addresses in an address window
form a very distinct pattern. This pattern is matched with the gadget address
patterns of libraries Plib.

Without ASLR, this pattern matching could be trivially achieved by simple
constant-time lookups into a suitable hash table (for example, see [PR04]).
However, when we allow ASLR, the precise memory location of the library
is unknown, making pattern matching more complex. Still, using limitations
of ASLR together with the relatively few addresses that passes the cluster
detection step allows for very efficient pattern matching between Pobs and
Plib.

A data window containing only actual gadget addresses will give us a per-
fect matching—all addresses will be matched to the library pattern. A data
window containing random or non-gadget related addresses will not match
very well. The output of the pattern matching layer is a quantification of the
maximum matching of an address window with respect to a library.

STATISTICAL TEST

An address window containing only gadget addresses will give a perfect
match. However, since we do not know the size of a payload, an address
window may contain addresses that are just noise. The goal of the statistical
test is to minimize false positives (α) and false negatives (β) by using a thresh-
old value for the maximum overlap between Pobs and Plib. This threshold will
depend on the Hamming weight of Pobs and the targeted values of α and β.

116 Detecting ROP Payloads in Data Streams

The maximum matching measure is the core ingredient of a distinguisher—a
decision mechanism. Statistical tests are used to decide whether a given max-
imum matching corresponds to an actual gadget address pattern or not. The
behavior of random vs. non-random addresses plays an important role here,
as does the number of addresses in the address window, the address window
weight.

10.2 A MORE DETAILED DESCRIPTION

In this section we give a more detailed overview of the different parts of
eavesROP.

10.2.1 OPTIONAL DATA PRE-FILTER

Certain input data can be expected to exhibit properties that make them look
like addresses close to each other in the memory space—thus looking like
ROP payloads—even though the data is actually non-malicious. Our goal is
to filter out these addresses before they reach later steps in the algorithm, to
reduce the total computational overhead of our system.

Of special interest are printable ASCII characters, not only because much
data is readable text, but also because large portions of adjacent ASCII data
may—when combined into 32-bit words—look like adjacent addresses. Fil-
tering is however a trade-off between performance and false negatives. There
are techniques to make ROP payloads printable [LZWG11]. Such a payload
would be removed if a filter for printable characters is enabled. This is why
the filtering step should be considered optional.

If the pre-filter is enabled, it removes blocks of UTF-8 strings. In our imple-
mentation, we define a block as a sequence of five or more adjacent, printable
UTF-8 characters. A printable UTF-8 character is defined as all ASCII char-
acters in the range from 0x20 up to and including 0x7e. We also include
the 0x09, 0x0a and 0x0d for tab separator, line feed, and carriage return, re-
spectively. Even though the last three are not printable characters, they occur
frequently in the same context as the printable characters and whitespace. All
valid multi-byte encoded UTF-8 characters are also considered printable.

When a matching block is found, the complete block is removed from the
input. This leads to potential noise as non-adjacent bytes become adjacent
after the data between them is removed. This does, however, only affect a
few addresses, which does not cause any problems in practice since our ROP
pattern matching is very precise and noise tolerant.

The filter has been designed by hand, by iteratively trying different heuris-
tics and looking at the addresses returned by the Address Cluster Detection
Algorithm described later. Initially, the filter only looked at ASCII charac-

10.2. A More Detailed Description 117

data stream

loomoon

max payload size data window

loomoon

¨ ¨ ¨¨¨¨

Figure 10.2: Data window progression.

ters in the range 0x20 to 0x7e, but by looking at the matched addresses we
could see that significant amounts of the matched addresses either contained
whitespace characters, or UTF-8 characters. By applying a new set of rules
the number of false matches decreased, and the performance of the Address
Cluster Detection Algorithm was increased.

As our approach is modular, it is possible to add other heuristic pre-filters.
Possible ideas may be to filter out specific network packets, such as ARP-
requests. Even when using a very aggressive filter, if one or a few gadget
addresses are filtered out, the detection will still succeed as long as there are
enough gadgets left in the data that passes the filter.

10.2.2 CLUSTER DETECTION

We let M denote the maximum size of a ROP payload in 4-byte words that
our detection is guaranteed to support. A naïve approach to detect the gad-
get addresses is to pick M words of data, map them to Pobs and match this
vector with a known Plib. Doing this byte by byte in the data would produce
the correct maximum matching, but it is a very slow approach. Moreover,
all words but one will repeat every 4 bytes. Another problem is that the ad-
dresses contained within the data window can be spread out over the entire
ASLR address space (N bytes), making Pobs very large. We propose to use
an algorithm that is much more efficient, and will still always find the correct
maximum matching.

Instead of considering M addresses, we pick a data window of size D “

2M. Thus, we consider twice as much data as the maximum payload, but in
return we consider M` 1 possible payloads simultaneously. This is illustrated
in Figure 10.2. Doubling the data window size introduces a little more noise
(more data in one window), so a few more data windows will pass the cluster
detection stage, but this effect is marginal compared to the significant gain in
processing efficiency.

When the data window slides over the next data chunk of size M, we begin
by extracting potentially viable addresses. As the offset of a ROP payload in
the data buffer is unknown, but we know that each address is four bytes and

118 Detecting ROP Payloads in Data Streams

data window

offset 0

sorted addr.
sorted addr.

offset 1

sorted addr.
sorted addr.

offset 2

sorted addr.
sorted addr.

offset 3

sorted addr.
sorted addr.

window
address

Figure 10.3: Memory address pattern extraction from data window.

addresses are aligned inside a payload, we create four lists, one for each offset,
see Figure 10.3. It is possible to store all such addresses in one combined list,
but the accuracy of the pattern matching is maximized by separating and
grouping the addresses as prescribed.

As Figure 10.3 further illustrates, we need to keep track of eight such ad-
dress lists, four for each of the two M-word data chunks covered by the
D-word data window. Separating the lists per data chunk allows for incre-
menting the data window in steps of M words, while reusing the four lists
corresponding to the previous M words.

The four new address lists are sorted using an efficient linear-time sorting
algorithm such as bucket sort [CLRS09]. Such efficient sorting is possible since
all addresses are of the same size. Once sorted, we slide an address window
of size L (same size as executable part of the largest library, currently only the
.text section of the executable) down the combination of the two lists for each
offset. Since each of the two lists is individually sorted, it is trivial to traverse
the combination in sorted order efficiently. The time complexity for this is
linear in the number of stored addresses, i.e., linear in D.

As mentioned before, the point of separating the addresses on offset is to
make the pattern matching stage more accurate. If the lists were combined,
we would still be able to match the pattern of the ROP addresses to the corre-
sponding library pattern. However, we achieve a higher rate of false positives
as the overlaid noise addresses are collectively more likely to trigger false
alarms.

Let T be a threshold value that determines the minimum number of gadgets
in an exploit that we want to be able to detect. A small T leads to detection
of more exploits, but it also results in more pattern matching, slowing down
the detection algorithm. In practice, the lowest value that our algorithm can
handle is T « 7, depending on the instruction size of each gadget (see Sec-

10.2. A More Detailed Description 119

Algorithm 1 – Address Pattern From Data Stream

Input: data stream, maximum payload size in words M, address win-
dow weight threshold T, size of library L, word size in bytes n.
Output: set of Pobs (address window patterns).

pos “ 0; /* current byte position in data stream */
Ap0,0q “ . . . “ Ap0,n´1q “ H; /* two address lists per offset */
Ap1,0q “ . . . “ Ap1,n´1q “ H;
while (data stream not exhausted) {

for (each byte offset i P t0, . . . , n´ 1u) {
Ap1,iq “ M words from data stream starting at pos` i;
sort Ap1,iq;

}
pos “ pos` nM;
for (each offset i P t0, . . . , n´ 1u) {

slide address window of size L over Ap0,iq Y Ap1,iq and
find clusters;
Ap0,iq “ Ap1,iq;

}
}

tion 10.2.3) and the error probabilities (see Section 10.2.4).
If we find an address window that contains at least T unique addresses,

the binary vector Pobs is constructed by entering a ’1’ in each position corre-
sponding to an address in the address window. Then we proceed to perform
pattern matching. Algorithm 1 summarizes the cluster detection procedure.

10.2.3 PATTERN MATCHING

In this section we give more details on the pattern matching layer. In order
to pattern match the Pobs vector we first need to construct a vector Plib of
gadgets.

IDENTIFYING GADGETS IN A LIBRARY

In order to find all possible gadgets in a library, the executable part of it
is scanned for the opcode of different types of return instructions, namely
0xC2 (retn imm16), 0xC3 (retn), 0xCA (retf imm16) and 0xCB (retf). For each
position of these bytes in the library we search backwards one byte at a time
and try to assemble a legal instruction flow ending with the return. We define
the entry zone, z, as the number of instructions we allow for each gadget, not
including the return instruction. This means that we can find many gadgets

120 Detecting ROP Payloads in Data Streams

21 16 0d 00 85 c0 0f 95 c3

21 16 0d 00 85 c0 0f 95 c3

21 16 0d 00 85 c0 0f 95 c3

1 1 1 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0

1 0 1 0 0 0 0 1 0

0 1 1 0 0 0 0 1 0

Figure 10.4: Translation of maximal length gadget sequences to bi-
nary pattern.

ending at the same return instruction due to the possibility of instruction
overlapping in the x86 architecture.

The starting byte of every possible gadget is used to construct the binary
vector Plib. This is the vector that is used for pattern matching with Pobs,
which is the output of the address cluster detection algorithm.

To understand how the gadget structure in a library is translated into a
binary pattern, consider the following sequence of nine bytes (hex):

21 16 0d 00 85 c0 0f 95 c3

Using an entry zone of size z “ 3 (at most three instructions), we construct
maximal gadget chains by interpreting the bytes preceding the return instruc-
tion c3 as consecutive instructions. There are three possible maximal gadget
chains in the above byte sequence, as illustrated in Figure 10.4.

The top two gadget chains are both of length three. While the top chain
begins with a single-byte instruction 16, the second chain extends this to a
two-byte instruction 21 16. The third chain is of length 1, but it is maximal
since it cannot be further extended.

A sequence of bytes belonging to a library is translated into a binary pat-
tern according to the following rules. Every byte position is designated a ’0’
or a ’1’. A ’1’ is assigned if any maximal gadget chain has an instruction that
begins at that byte position. If not, a ’0’ is assigned. Note that any unique

Table 10.1: The number of gadgets in libc for some choices of entry
zone.

entry zone (z) 1 3 5 7
Number of gadgets (G) 13175 36898 58151 77830

10.2. A More Detailed Description 121

Algorithm 2 – Gadget Pattern From Library

Input: entry zone z, library file f .
Output: library gadget pattern Plib.

Plib “ p0, . . . , 0q; /* same length as f */
for (every byte position i in f) {

if (byte i in f is not a return opcode) continue;
/* disassembly */
G = set of maximal gadget chains of length ď z ending at byte i;
for (every maximal gadget chain g in G) {

for (every instruction j in g) {
k = location of first byte position in instruction j in f ;
if (k&0xFF != 0x00) /* NUL bytes break the payload */

Plibrks “ 1;
}

}
}
return Plib;

sequence of valid instructions leading to a return counts as a gadget. Count-
ing the instruction subsets of the top two chains, there are five gadgets in
Figure 10.4. Algorithm 2 summarizes the construction of a Plib vector.

As an example, Table 10.1 shows the number of gadgets, G, found in libc
given the size of the entry zone. It should be noted that the gadget identi-
fication can be greatly optimized by filtering out useless gadgets. The only
optimization applied right now is the removal of gadgets with a least signif-
icant byte of null, since exploit payloads generally won’t work if they have
null-bytes in them.

PATTERN MATCHING OF PLIB AND POBS

Pattern matching, here, means that we want to find the maximum weight of
the overlap between two patterns that are overlaid, possibly displacing the
patterns linearly with respect to one another. We also want this matching
to be perfect, which is to say that all actual gadget addresses that are used
in an exploit will be counted. All actual gadget addresses in an exploit will
contribute positively to the weight of the maximal pattern match.

Recall that L denotes the maximum size of the executable part of the li-
braries. Focusing on one such library, Plib is a binary vector of length L. If the
ith byte of the executable part of the library can be interpreted as a gadget ad-
dress, set Plibris “ 1, otherwise set Plibris “ 0. The vector Plib now represents

122 Detecting ROP Payloads in Data Streams

the gadget pattern of the library. Correspondingly, Pobs is a binary vector of
length L from the address clustering detection step. From an address window
of length L containing at least T addresses, set Pobsris “ 1 if the ith address
appears in the address window, and set Pobsris “ 0 otherwise. The vector Pobs
now represents the address pattern of the observed data.

If both patterns are aligned, the maximum matching can be calculated as
the dot product between Plib and Pobs according to

Plib ¨ Pobs “

L´1
ÿ

i“0

PlibrisPobsris.

However, we have no way of knowing if the alignment is correct, so we rather
need to try all alignments to see which one produces the highest fit. That is,
we need to calculate the dot products for all possible shifts of the two pat-
terns. In the general case, such pattern matching can be performed efficiently
using a Fast Fourier Transform (FFT). The FFT computes the circular discrete
convolution c of two vectors a and b of length L,

c rts “ pa ˚ bLq rts “
L´1
ÿ

i“0

a ris b rpt´ iq mod Ls . (10.1)

The FFT approach (see [Bra99]) has time complexity OpL lg Lq, compared
to OpL2q for the naïve approach. Letting F denote the FFT version of the
Discrete Fourier Transform (DFT), we may compute c as

c “ F´1 pF paq dF pbqq ,

where d denotes componentwise multiplication.
We let a and b be the vectors Plib and Pobs respectively after the zero padding

as described above. The weight of the maximum matching is given as the
maximum component of c,

cmax “ max
i

c ris . (10.2)

Note that F pPlibq can be precomputed since libraries are known in advance.
Even though FFT is efficient in the general case, the naïve approach is ac-

tually (almost always) faster in our particular application. This is due to two
distinguishing properties.

1. The vector Pobs is typically of very low weight as seen in the simulation
results in Table 10.4.

2. Libraries are aligned at memory pages in memory.

10.2. A More Detailed Description 123

Plib
hkkikkj

memory page

loooooooooooooooooomoooooooooooooooooon

n pages

Pobs

hkkkkkkkkkkkkikkkkkkkkkkkkj

m pages

¨̈
¨

Figure 10.5: Optimized algorithm. Pobs slides one page at a time
along Plib and calculates at what alignment the maxi-
mum match occurs. It then returns that cmax. m ď n

The OpL2q complexity of the naïve approach is based on picking an entry in
the first vector and then count the number of overlaps when iterating over
both vectors. This is done for all entries in the first vector. Since we want
to count overlaps of ’1’s, we would instead do this for each ’1’ in the first
vector. Thus, the complexity is actually OpwLq, where w is the weight of
Pobs. Furthermore, the size of a page in memory is 4kB for most operating
systems. This means that we do not have to compute the overlap for all offset,
but only a fraction 2´12 since we known some address bits. This will give
as a resulting complexity that is w ¨ L ¨ 2´12. which is significantly smaller
than OpL lg Lq for all practically possible values of w. The mechanics of the
algorithm is illustrated in Figure 10.5.

10.2.4 STATISTICAL TEST

In order to find an expression for the maximum number of overlaps in the
pattern matching step, we make the following approximations.

• Locations corresponding to gadgets in Plib are uniformly distributed.

• The number of overlaps found for different offsets are approximated as
independent events, all with the same probability.

Using these approximations, the number of overlaps between Plib and Pobs is
binomially distributed, Xpwq „ Bin(w, G

L), where w and G denote the Ham-
ming weights of Pobs and Plib, respectively. Recall that G should here be
understood as the number of gadgets in a library for a given entry zone and
w is the number of addresses in an address window. Thus, the probability

124 Detecting ROP Payloads in Data Streams

that there are s overlaps is given by

PrpXpwq “ sq “
ˆ

w
s

˙ˆ

G
L

˙s ˆ

1´
G
L

˙w´s
, (10.3)

with expected value and variance given by

EpXpwqq “
wG
L

,

VpXpwqq “
wG
L
p1´

G
L
q.

With Plib of size L we have L{4096 such binomially distributed samples. In
order to find the probability distribution for the maximum value of the con-
volution array, we write the probability that any single value is at most s as

PrpXpwq ď sq “
s
ÿ

t“0

ˆ

w
t

˙ˆ

G
L

˙t ˆ

1´
G
L

˙w´t
.

The probability that all values are at most s is then, using the second approx-
imation above, PrpXpwq ď sqL{4096. From this it follows that the probability
distribution for the maximum value in the pattern matching cpwqmax is given by

f
cpwq

max
psq “ Prpcpwqmax “ sq “ PrpXpwq ď sqL{4096 ´ PrpXpwq ď s´ 1qL{4096 (10.4)

with cumulative distribution function

F
cpwq

max
psq “ Prpcpwqmax ď sq “ PrpXpwq ď sqL{4096.

and expected value and variance given by

EpCpaqmaxq “

a
ÿ

i“0

i
´

PrpXpaq ď iqL{4096 ´ PrpXpaq ď i´ 1qL{4096q
¯

(10.5)

VpCpaqmaxq “

a
ÿ

i“0

i2
´

PrpXpaq ď iqL{4096 ´ PrpXpaq ď i´ 1qL{4096q
¯

´ EpCpaqmaxq
2.

(10.6)

Table 10.2 shows the simulated and theoretical distributions for cpwqmax when
using random data. The theoretical distribution is given by (10.4) and the sim-
ulations are performed by taking 10,000 arrays (Pobs) with Hamming weight
w, uniformly distributed over the array. Using the optimized algorithm for

10.2. A More Detailed Description 125

Table 10.2: Histogram comparison of maximum overlap (cpwq
max) for

various address window weights over random data and
libc. Entry zone size is 3 instructions, sample size 10,000.

weight w

10 overlap 0 1 2 3 4 5 6 7 8 9 10
simulation 0 12 6479 3315 189 5 0 0 0 0 0
theory 0 0 4543 5053 389 14 0 0 0 0 0

20 overlap 0 1 2 3 4 5 6 7 8 9 10
simulation 0 0 324 6747 2653 260 16 0 0 0 0
theory 0 0 23 4693 4595 636 50 3 0 0 0

30 overlap 0 1 2 3 4 5 6 7 8 9 10
simulation 0 0 0 1884 6207 1701 192 15 1 0 0
theory 0 0 0 340 5640 3404 551 59 5 0 0

40 overlap 0 1 2 3 4 5 6 7 8 9 10
simulation 0 0 0 115 4492 4310 936 127 19 1 0
theory 0 0 0 1 1547 5718 2284 393 50 5 0

50 overlap 0 1 2 3 4 5 6 7 8 9 10
simulation 0 0 0 0 1231 5484 2659 520 94 12 0
theory 0 0 0 0 87 3481 4697 1436 257 37 5

pattern matching, the maximum overlap between the array and an array cor-
responding to libc with entry zone 3 is computed. A histogram for the 10,000
samples is used to illustrate the probability distribution.

A threshold value for cpwqmax is chosen, denoted ĉmax. If cpwqmax ě ĉmax the
payload is considered a ROP. Associated with this decision are false positives
and false negatives. The false positive rate, denoted α, is defined as the prob-
ability that non-malicious data is considered malicious (i.e., a ROP payload)
while the false negative rate, denoted β, is the probability that a malicious
payload is mistaken for non-malicious data. To write expressions for α and β,
let the Hamming weight w of Pobs be written as w “ wG ` wN , where wG is
the number of ROP gadgets and wN is the number of noise addresses. The
distribution of cpwqmax for non-malicious data is given by Eq. (10.4). The value of
cpwqmax for a ROP payload is given by

cpwqmax “ wG ` XpwNq,

126 Detecting ROP Payloads in Data Streams

where XpwNq is distributed according to Eq. (10.3). Now, we can write the two
error probabilities as

α “Prpcpwqmax ě ĉmaxq “ 1´ Prpcpwqmax ď ĉmax ´ 1q

“1´ PrpXpwq ď ĉmax ´ 1qL{4096 (10.7)

β “PrpXpwNq ă ĉmax ´wGq “ PrpXpwNq ď ĉmax ´wG ´ 1q

The false positives rate α is only for one library. If we want to test the
payload against a set of ` libraries, the total false positive rate α` is given by

α` “ 1´ p1´ αq`.

By choosing α “ 0.0001 we allow ` “ 100 libraries to be supported, still
keeping the total false positive rate α` below 0.01. (We assume here that all
libraries are of approximately equal size.) The false negative rate can only be
β ą 0 if we relax the number of gadgets needed pwGq, assuming noise will
contribute to the number of overlaps. Computing ĉmax and wG for different
values of w shows that this is only useful for very large values of w. As an
example, using β “ 0.01, for z “ 7 we are able to relax the requirement on
wG only when w ě 92 (ĉmax “ 21 and wG “ 20). For smaller z we need even
larger w. If we allow large β, the requirement can be relaxed for smaller w but
such a large false negative is typically undesirable. Note that β is not affected
by multiple libraries since the payload will only match one library. Thus, as
a rule of thumb, the number of gadgets required for successful detection can
be assumed equal to the threshold

wG « ĉmax.

To see the number of gadgets WG needed for successful detection, we com-
pute this value for some different values of α and w in Table 10.3. For all given
values β “ 0.

The standard deviation of Eq. (10.4) turns out to be very small, with almost
all probability mass concentrated to only a few values for s. This makes the
detection algorithm efficient, allowing us to choose small error rates while
still requiring few gadgets to succeed, even in the presence of a large amount
of noise.

The false positive rate has been simulated using the data from Table 10.6
and Table 10.7. The simulations show that there may be cases where cmax is
too high, such that it would be unreasonable to select a ĉmax only to remove
these instances of false positives as the false negative rate could drastically in-
crease. This is especially true if we look at the exploit analysis in section 10.3.1
where most of the exploits would go undetected if too high a value for ĉmax

10.2. A More Detailed Description 127

Table 10.3: Minimum number wG of gadgets needed for ROP pay-
load detection in an address window of weight w. Note
that β “ 0 for all cases.

entry zone entity values

1 w 6 10 15 20 25 30 50
100 200

ĉmax 6 7 7 8 9 9 11 13 17
wG 6 7 7 8 9 9 11 13 17

3 w 7 10 15 20 25 30 50
100 200

ĉmax 7 8 9 10 11 12 15 20 27
wG 7 8 9 10 11 12 15 20 26

5 w 8 10 15 20 25 30 50
100 200

ĉmax 8 9 11 12 13 14 17 24 35
wG 8 9 11 12 13 14 17 24 33

7 w 9 10 15 20 25 30 50
100 200

ĉmax 9 10 11 13 14 15 19 27 40
wG 9 10 11 13 14 15 19 26 36

128 Detecting ROP Payloads in Data Streams

Table 10.4: Average and maximum weight, w, for different types of
data. ez “ 3, D “ 200 and w ě 6. 10000 windows exam-
ined.

type of data average w max w
random 6.01 7
web 10.35 37
mp3 7.09 15
pdf 6.60 55
mkv 9.49 33

would be set. The number of windows that receive a high cmax is low, it
could be argued that those windows trigger an acceptable amount of false
positives. In an IDS setting where this would only trigger an alert, and no
active response, this could be acceptable.

10.3 PERFORMANCE

The performance of eavesROP depends on the parameters used in the various
stages of the system. All simulations have been performed on an Intel Core i7
4770 @ 3.4 GHz with 16 GB of RAM.

A more aggressive filtering in each step will reduce the amount of data
sent to the next stage, which will increase the overall performance. This is
illustrated in Table 10.5, where the throughput and input/output size ratio is
given for various types of input data when passed through the data pre-filter.

Table 10.5: Performance of data pre-filter.

type of data throughput (MiB/s) input/output size ratio

random 34.7 0.965
web (HTML, JPG,. . .) 52.7 0.068
mp3 39.5 0.956
pdf 38.6 0.811
mkv (H.264/MPEG-4) 34.5 0.965

After the optional data pre-filter—which may have reduced the total amount
of data—the data is passed to the cluster detection step. This step has a
throughput of around 10 MiB/s. The output of the cluster detection step is
multiple matched windows, i.e. multiple Pobs. Table 10.6 shows how many

10.3. Performance 129

Pobs vectors that are passed to the pattern matching layer, for some different
types of data and different choices for T and D.

Table 10.6: Number of matching address windows per GiB of input
data, for a data window of size D, and with at least T
addresses within distance L “ 1231620, for different types
of data. L is here the size of libc 2.20.

D “ 50 D “ 200 D “ 1000

type of data T “ 6 8 10 T “ 6 8 10 T “ 6 8 10

random 0 0 0 12 0 0 24749 53 0
web (HTML, JPG,. . .) 1795 689 590 5589 1878 1208 40795 8007 3292
mp3 42 8 2 631 106 10 162014 8472 1023
pdf 4068 248 61 34718 5266 1316 1011850 176992 45289
mkv (H.264/MPEG-4) 354 2 0 513 81 66 35545 841 125

Each Pobs outputted from the cluster detection stage will be passed to the
pattern matching step.

All parts of eavesROP have been implemented and tested using real-world
exploits. Those analyses are presented in subsection 10.3.1

10.3.1 DETECTING EXPLOITS

In this section we will analyze how well our technique detects real-world
exploits. A total of six exploits was tested with varied results. In order to
minimize false positives we set the threshold value to 7. Some exploits utilize
gadgets from multiple libraries. For these tests we only check against the li-
brary containing the most gadgets. Table 10.8 summarizes the results.

Two out of six exploits could not be detected due to a lack of gadgets,
four and six, clearly under our set threshold value. In the case of the Easy File

Table 10.7: Maximum cmax for different file types. ez “ 3 and w ě 6.

type of data(size) D “ 50 D “ 200 D “ 1000

random(3GiB) ă 6 ă 6 ă 6
web(150MiB) 8 10 19
mp3(487MiB) ă 6 ă 6 7
pdf(2.9GiB) 14 18 18
mkv(586MiB) 6 11 22

130 Detecting ROP Payloads in Data Streams

Table 10.8: Exploits to vulnerable applications tested by eavesROP.

Vulnerable application #gadgets #libraries detected?

BlazeDVD Pro 7.0 [Bar14] 14 1 true
DVD X Player 5.5.0 Pro [sic11] 11 1 true
Easy File Management Web Server v5.3 [Ahr14] 4 1 false
RM Downloader 3.1.3 [Nod10a] 18 1 true
The KMPlayer 3.0.0.1440 [xpl11] 21 1 true
Winamp 5.572 [Nod10b] 19 7 false

Management Web Server exploit there are no gadgets that need to handle DEP
and thus the exploit requires less gadgets to achieve its goal. If the application
was properly secured with DEP, more gadgets would have been necessary in
order for it to work and would most likely have been detected with eavesROP.

The Winamp exploit had gadgets from multiple libraries which hindered
our technique from detecting it. Our technique could however be extended to
search multiple libraries simultaneously and in that case it would have been
detected. The library with most unique gadgets used by the exploit only had
six gadgets in it.

10.4 STRENGTHS AND LIMITATIONS

In this section we summarize and highlight the different strengths and limi-
tations in our ROP payload detection approach.

10.4.1 STRENGTHS

An important feature of the detection mechanism is that it works even when
ASLR is enabled on the targeted systems, assuming the attacker manages to
bypass ASLR through e.g., information leakage or brute force.

While we have described the address cluster detection algorithm for 32-
bit systems, it can also be applied to 64-bit systems. In this case brute-force
attacks are out of scope due to the large entropy of ASLR, but absolute ad-
dresses could still be found using information leakage. The main modification
is that the address cluster detection must consider eight offsets instead of four,
but in return there will be much fewer addresses passing the cluster detection
due to the large address space.

A distinguishing feature is the ability to detect ASLR brute-force attempts.
As our detection mechanism only considers differences between gadget ad-
dresses, and not the addresses themselves, a probabilistic attack attempt will

10.4. Strengths and Limitations 131

be detected as a ROP payload.
In the optional data pre-filter, we only apply one very simple UTF8-filter.

However, filtering options are abundant, and it is easy to imagine other ad
hoc filters which will significantly reduce the computational overhead of the
detection.

While most examples have focused on one library, it is very cheap to add
support for a large set of libraries. It may also be noted that pattern matching
over a set of libraries is inherently parallelizable and can also take advantage
of dedicated hardware for computing the FFT.

Last but not least, the modular structure of eavesROP provides a flexible
framework that is easily adaptable to the characteristics of the target network.
This makes it possible to tailor the system to match the desired detection and
performance requirements.

10.4.2 LIMITATIONS

Since we do not have access to the target machine, but only consider a stream
of bytes in our search for a ROP payload, the detection mechanism has some
limitations.

First, we need to know the libraries and binaries that can be used in an
attack. In general, this could be any library or binary, but by choosing the
most commonly used ones, it is still possible to detect a significant fraction of
attacks. The FFT can be precomputed for each library and the online time for
each library will be limited to a componentwise multiplication of two vectors
and an inverse FFT computation.

The limited size D of the data window makes it possible to utilize the
ret imm16 instruction which pops imm16 bytes from the stack. Using these re-
turns with a large imm16 would leave very sparsely located gadget addresses
in the data window. This could potentially avoid detection. However, it
should be noted that we only require T gadgets in the window of max payload
size so the detection does in general not require all gadgets to succeed.

Since we do not execute any potential exploits, we will not be able to detect
exploits that obfuscate the gadget addresses such that they are not visible in
the data sent on the network. Such obfuscation would include e.g., polymor-
phic ROP attacks [LZWG11], or gadget addresses generated on the client-side
using JavaScript or ActionScript.

We also note that it is sometimes possible to construct ROP payloads that
will go undetected by not using gadget addresses in the payload. Instead, one
gadget can be used to obfuscate the addresses to other gadgets. Consider the
following gadget, or a variation of it, which could be found in a target library:

pop ESI
pop EBX

132 Detecting ROP Payloads in Data Streams

xor EBX,ESI
push EBX
ret 0

This gadget puts the next gadget’s obfuscated address in EBX and the key
for de-obfuscating it in ESI. The xor instruction de-obfuscates the next gadget
address and pushes it back on the stack. The return will direct execution flow
to the de-obfuscated gadget address. Thus, in this example only one gadget
address would be needed.

A related limitation is when an attacker can craft an exploit small enough
to avoid detection. By small enough we mean not enough gadgets to stand
out from the noise.

As the FFT is rather computationally intensive, it would also be possible to
mount a denial of service attack by sending data that would be interpreted as
adjacent addresses, triggering false positives.

10.5 CONCLUSIONS

We have investigated to which extent it is possible to detect a ROP payload by
only analyzing data, and assuming that ASLR is used on the target system. If
we have the set of libraries and binaries that can be used to find gadgets, we
show that it is possible to detect a ROP payload even in the presence of noise
and by applying suitable data filters. The exact performance will depend on
the type of data and the number of gadgets that are required for an exploit to
be detected depends on the maximum allowed size for the payload and the
amount of noise.

References

[AB14] D. Andriesse and H. Bos, »Instruction-level steganography for
covert trigger-based malware,« in International Conference on De-
tection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2014, pp. 41–50.

[ABEL05] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, »Control-flow
integrity,« in Proceedings of the 12th ACM Conference on Computer
and Communications Security, ser. CCS ’05. ACM, 2005, pp. 340–
353.

[ABEL09a] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, »Control-flow
integrity principles, implementations, and applications,« ACM
Trans. Inf. Syst. Secur., vol. 13, no. 1, 2009.

[ABEL09b] M. Abadi, M. Budiu, Ú. Erlingsson, and J. Ligatti, »Control-flow
integrity principles, implementations, and applications,« ACM
Transactions on Information and System Security (TISSEC), vol. 13,
no. 1, p. 4, 2009.

[ACdC09] J. Aycock, J. M. G. Cardenas, and D. M. N. de Castro, »Code ob-
fuscation using pseudo-random number generators,« 2012 IEEE
15th International Conference on Computational Science and Engi-
neering, vol. 3, pp. 418–423, 2009.

[Ada15] A. Adams. (2015) Research insights: Exploitation advancements.
[Online]. Available: https://www.nccgroup.trust/globalassets/
our-research/uk/whitepapers/2015/10/research-insights_
vol-7-exploitation-advancementspdf/

133

https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2015/10/research-insights_vol-7-exploitation-advancementspdf/
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2015/10/research-insights_vol-7-exploitation-advancementspdf/
https://www.nccgroup.trust/globalassets/our-research/uk/whitepapers/2015/10/research-insights_vol-7-exploitation-advancementspdf/

134 References

[AdJ06] J. Aycock, R. deGraaf, and J. Jacobson, Michael, »Anti-
disassembly using cryptographic hash functions,« Journal in
Computer Virology, vol. 2, no. 1, pp. 79–85, 2006. [Online].
Available: http://dx.doi.org/10.1007/s11416-006-0011-3

[AEH75] E. A. Akkoyunlu, K. Ekanadham, and R. Huber, »Some con-
straints and tradeoffs in the design of network communications,«
in ACM SIGOPS Operating Systems Review, vol. 9, no. 5. ACM,
1975, pp. 67–74.

[AGJS13] I. Anati, S. Gueron, S. Johnson, and V. Scarlata, »Innovative tech-
nology for cpu based attestation and sealing,« in Proceedings of
the 2nd international workshop on hardware and architectural support
for security and privacy, vol. 13, 2013.

[Ahr14] J. Ahrens. (2014) Easy file management web server 5.3
- userid remote buffer overflow (rop). [Online]. Available:
https://www.exploit-db.com/exploits/33610/

[AJ94] B. Amstadt and M. K. Johnson, »Wine,« Linux Journal, vol. 1994,
no. 4es, p. 3, 1994.

[AJ07] J. Asundi and R. Jayant, »Patch review processes in open source
software development communities: A comparative case study,«
in System Sciences, 2007. HICSS 2007. 40th Annual Hawaii Interna-
tional Conference on. IEEE, 2007, pp. 166c–166c.

[Ale96] Aleph One, »Smashing the stack for fun and profit, phrack, 49,«
1996.

[ANSF16] M. Ali, J. Nelson, R. Shea, and M. J. Freedman, »Blockstack:
A global naming and storage system secured by blockchains,«
in 2016 USENIX Annual Technical Conference (USENIX ATC 16),
2016.

[Apa] Official website of the apache http server. [Online]. Available:
http://Apache.org/

[att12] (2012) What is the story behind the attack on coiledcoin? [On-
line]. Available: https://bitcoin.stackexchange.com/questions/
3472/what-is-the-story-behind-the-attack-on-coiledcoin#3482

[BAP] »Bap: The next-generation binary analysis platform,«
http://bap.ece.cmu.edu.

http://dx.doi.org/10.1007/s11416-006-0011-3
https://www.exploit-db.com/exploits/33610/
http://Apache.org/
https://bitcoin.stackexchange.com/questions/3472/what-is-the-story-behind-the-attack-on-coiledcoin#3482
https://bitcoin.stackexchange.com/questions/3472/what-is-the-story-behind-the-attack-on-coiledcoin#3482

135

[Bar14] G. Bartolomucci. (2014) Blazedvd pro 7.0 - ’.plf’ stack
based buffer overflow (direct ret). [Online]. Available: https:
//www.exploit-db.com/exploits/34331/

[bc03] P. by corbet, »An attempt to backdoor the kernel,« https://lwn.
net/Articles/57135/, 2003.

[BC13] A. Bosu and J. C. Carver, »Peer code review to prevent security
vulnerabilities: An empirical evaluation,« in Software Security and
Reliability-Companion (SERE-C), 2013 IEEE 7th International Con-
ference on. IEEE, 2013, pp. 229–230.

[BC14] A. Bosu and J. C. Carver, »Impact of developer reputation on
code review outcomes in oss projects: An empirical investiga-
tion,« in Proceedings of the 8th ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement. ACM, 2014,
p. 33.

[BCD`14] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timón, and P. Wuille, »En-
abling blockchain innovations with pegged sidechains,« URL:
http://www. opensciencereview. com/papers/123/enablingblockchain-
innovations-with-pegged-sidechains, 2014.

[BDF`03] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, »Xen and the art of vir-
tualization,« in ACM SIGOPS Operating Systems Review, vol. 37,
no. 5. ACM, 2003, pp. 164–177.

[Bel02] S. M. Bellovin, »A technique for counting natted hosts,« in Pro-
ceedings of the 2nd ACM SIGCOMM Workshop on Internet measur-
ment. ACM, 2002, pp. 267–272.

[Bem13] G. G. Bem, »shell_bind_tcp.asm,« 2013, https://github.com/
geyslan/SLAE/blob/master/1st.assignment/shell_bind_tcp.asm.

[BHS93] D. Bayer, S. Haber, and W. S. Stornetta, »Improving the efficiency
and reliability of digital time-stamping,« Sequences II: Methods in
Communication, Security and Computer Science, pp. 329–334, 1993.

[bit16a] »Bitcoin,« https://www.bitcoin.org, 2016.

[bit16b] (2016) Bitcoin percentage of total market capitalization. [Online].
Available: https://coinmarketcap.com/charts/#btc-percentage

https://www.exploit-db.com/exploits/34331/
https://www.exploit-db.com/exploits/34331/
https://lwn.net/Articles/57135/
https://lwn.net/Articles/57135/
https://www.bitcoin.org
https://coinmarketcap.com/charts/#btc-percentage

136 References

[BJF11] T. Bletsch, X. Jiang, and V. Freeh, »Mitigating code-reuse at-
tacks with control-flow locking,« in Proceedings of the 27th Annual
Computer Security Applications Conference, ser. ACSAC ’11. ACM,
2011.

[BJFL11a] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, »Jump-oriented
programming: A new class of code-reuse attack,« in Proceedings
of the 6th ACM Symposium on Information, Computer and Commu-
nications Security, ser. ASIACCS ’11. New York, NY, USA: ACM,
2011, pp. 30–40.

[BJFL11b] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, »Jump-oriented
programming: a new class of code-reuse attack,« in Proceedings
of the 6th ACM Symposium on Information, Computer and Commu-
nications Security. ACM, 2011, pp. 30–40.

[BJFL11c] T. K. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, »Jump-oriented
programming: a new class of code-reuse attack,« in ASIACCS’11,
2011, pp. 30–40.

[BKL13] A. Buldas, A. Kroonmaa, and R. Laanoja, Secure IT Systems:
18th Nordic Conference, NordSec 2013, Ilulissat, Greenland, October
18-21, 2013, Proceedings. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, ch. Keyless Signatures’ Infrastructure: How
to Build Global Distributed Hash-Trees, pp. 313–320. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-41488-6_21

[BL15] M. F. BtcDrak and E. Lombrozo, »Op_checksequenceverify,«
https://github.com/bitcoin/bips/blob/master/bip-
0112.mediawiki, 2015.

[BLT14] A. Buldas, R. Laanoja, and A. Truu, »Efficient quantum-immune
keyless signatures with identity.« IACR Cryptology ePrint Archive,
vol. 2014, p. 321, 2014.

[Bra99] R. Bracewell, The Fourier Transform and its Applications, ser.
McGraw-Hill Series in Electrical and Computer Engineering.
McGraw-Hill Science/Engineering/Math; 3 edition, June 1999.

[BS14] A. Buldas and M. Saarepera, »Document verifica-
tion with distributed calendar infrastructure,« May 6
2014, uS Patent 8,719,576. [Online]. Available: https:
//www.google.com/patents/US8719576

[btc16] (2016) Bitcoin hash rate. [Online]. Available: http://blockchain.
info/charts/hash-rate

http://dx.doi.org/10.1007/978-3-642-41488-6_21
https://www.google.com/patents/US8719576
https://www.google.com/patents/US8719576
http://blockchain.info/charts/hash-rate
http://blockchain.info/charts/hash-rate

137

[c0n] c0ntex, »Bypassing non-executable-stack during exploitation us-
ing return-to-libc,« Available at: http://www.infosecwriters.
com/text_resources/pdf/return-to-libc.pdf.

[CBF`14] J. Clark, J. Bonneau, E. W. Felten, J. A. Kroll, A. Miller, and

A. Narayanan, »On decentralizing prediction markets and order
books,« in Workshop on the Economics of Information Security, State
College, Pennsylvania, 2014.

[CBJW03] C. Cowan, S. Beattie, J. Johansen, and P. Wagle, »Pointguardtm:
Protecting pointers from buffer overflow vulnerabilities,« in Pro-
ceedings of the 12th Conference on USENIX Security Symposium -
Volume 12, ser. SSYM’03. USENIX Association, 2003, pp. 91–104.

[CDD`10] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi,
H. Shacham, and M. Winandy, »Return-oriented programming
without returns,« in Proceedings of the 17th ACM Conference on
Computer and Communications Security, ser. CCS ’10. New York,
NY, USA: ACM, 2010, pp. 559–572.

[CE12] J. Clark and A. Essex, »Commitcoin: Carbon dating commit-
ments with bitcoin,« in Financial Cryptography and Data Security.
Springer, 2012, pp. 390–398.

[cha] »Chainpoint,« https://github.com/chainpoint/chainpoint/.

[CJ03] M. Christodorescu and S. Jha, »Static analysis of executables to
detect malicious patterns,« in In Proceedings of the 12th USENIX
Security Symposium, 2003, pp. 169–186.

[cja] »Hiding code in deterministically built binaries - Proof-
of-Concept - Linux/x86,« https://github.com/cjamthagen/
backdoor_deterministic_code.

[CLRS09] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, Third Edition. MIT Press, 2009.

[Coh92] F. B. Cohen, »Operating system protection through program evo-
lution,« 1992, http://all.net/books/IP/evolve.html.

[Con09] (2009) Conficker’s virtual machine detection. [On-
line]. Available: http://nakedsecurity.sophos.com/2009/03/
27/confickers-virtual-machine-detection/

[cou] »Counterparty,« http://counterparty.io/.

http://www.infosecwriters.com/text_resources/pdf/return-to-libc.pdf
http://www.infosecwriters.com/text_resources/pdf/return-to-libc.pdf
https://github.com/cjamthagen/backdoor_deterministic_code
https://github.com/cjamthagen/backdoor_deterministic_code
http://nakedsecurity.sophos.com/2009/03/27/confickers-virtual-machine-detection/
http://nakedsecurity.sophos.com/2009/03/27/confickers-virtual-machine-detection/

138 References

[Cov] »Coverity: Software Testing and Static Analysis Tools,« http://
www.coverity.com/.

[CPM`98] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang, »Stackguard: Au-
tomatic adaptive detection and prevention of buffer-overflow at-
tacks,« in Proceedings of the 7th Conference on USENIX Security
Symposium - Volume 7, ser. SSYM’98. USENIX Association, 1998,
pp. 63–78.

[CVC`02] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H.
Jakubowski, »Oblivious hashing: A stealthy software integrity
verification primitive,« in International Workshop on Information
Hiding. Springer, 2002, pp. 400–414.

[CW14] N. Carlini and D. Wagner, »Rop is still dangerous: Break-
ing modern defenses,« in 23rd USENIX Security Sym-
posium (USENIX Security 14). San Diego, CA: USENIX
Association, August 2014, pp. 385–399. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/carlini

[CXS`09a] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie, »Drop: De-
tecting return-oriented programming malicious code,« in Infor-
mation Systems Security, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009, vol. 5905.

[CXS`09b] P. Chen, H. Xiao, X. Shen, X. Yin, B. Mao, and L. Xie, »Drop: De-
tecting return-oriented programming malicious code,« in Inter-
national Conference on Information Systems Security. Springer, 2009,
pp. 163–177.

[CZM`14] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and R. Deng, »ROPecker:
A generic and practical approach for defending against ROP at-
tack,« in NDSS. Research Collection School Of Information Sys-
tems, 2014.

[dC16] M. del Castillo. (2016) The dao attacked: Code issue leads to $60
million ether theft. [Online]. Available: http://www.coindesk.
com/dao-attacked-code-issue-leads-60-million-ether-theft/

[Deb16] »Debian: Reproducible builds,« https://wiki.debian.org/
ReproducibleBuilds, 2016.

http://www.coverity.com/
http://www.coverity.com/
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/carlini
http://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/
http://www.coindesk.com/dao-attacked-code-issue-leads-60-million-ether-theft/
https://wiki.debian.org/ReproducibleBuilds
https://wiki.debian.org/ReproducibleBuilds

139

[DHP`04] K. Driscoll, B. Hall, M. Paulitsch, P. Zumsteg, and H. Siven-
crona, »The real byzantine generals,« in Digital Avionics Systems
Conference, 2004. DASC 04. The 23rd, vol. 2. IEEE, 2004, pp. 6–D.

[DHSZ03] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, »Byzantine
fault tolerance, from theory to reality,« in International Conference
on Computer Safety, Reliability, and Security. Springer, 2003, pp.
235–248.

[DL15] S. Demian Lerner. (2015) Rsk: Bitcoin powered smart con-
tracts. [Online]. Available: https://uploads.strikinglycdn.
com/files/90847694-70f0-4668-ba7f-dd0c6b0b00a1/
RootstockWhitePaperv9-Overview.pdf

[DMS04] R. Dingledine, N. Mathewson, and P. Syverson, »Tor: The
second-generation onion router,« DTIC Document, Tech. Rep.,
2004.

[DSLM14] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose,
»Stitching the gadgets: On the ineffectiveness of coarse-
grained control-flow integrity protection,« in 23rd USENIX
Security Symposium (USENIX Security 14). San Diego, CA:
USENIX Association, August 2014, pp. 401–416. [Online]. Avail-
able: https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/davi

[DSW11] L. Davi, A. Sadeghi, and M. Winandy, »ROPdefender: A de-
tection tool to defend against return-oriented programming at-
tacks,« in Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS ’11, 2011.

[Dur02] T. Durden, »Bypassing PaX ASLR protection, phrack, 59,« 2002.

[Edg10] J. Edge, »A backdoor in UnrealIRCd,« https://lwn.net/Articles/
392201/, 2010.

[ES14] I. Eyal and E. G. Sirer, Financial Cryptography and Data Security:
18th International Conference, FC 2014, Christ Church, Barbados,
March 3-7, 2014, Revised Selected Papers. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2014, ch. Majority Is Not Enough:
Bitcoin Mining Is Vulnerable, pp. 436–454. [Online]. Available:
http://dx.doi.org/10.1007/978-3-662-45472-5_28

[Eva11] C. Evans, »Alert: vsftpd download backdoored,«
http://scarybeastsecurity.blogspot.com/2011/07/
alert-vsftpd-download-backdoored.html, 2011.

https://uploads.strikinglycdn.com/files/90847694-70f0-4668-ba7f-dd0c6b0b00a1/RootstockWhitePaperv9-Overview.pdf
https://uploads.strikinglycdn.com/files/90847694-70f0-4668-ba7f-dd0c6b0b00a1/RootstockWhitePaperv9-Overview.pdf
https://uploads.strikinglycdn.com/files/90847694-70f0-4668-ba7f-dd0c6b0b00a1/RootstockWhitePaperv9-Overview.pdf
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/davi
https://lwn.net/Articles/392201/
https://lwn.net/Articles/392201/
http://dx.doi.org/10.1007/978-3-662-45472-5_28
http://scarybeastsecurity.blogspot.com/2011/07/alert-vsftpd-download-backdoored.html
http://scarybeastsecurity.blogspot.com/2011/07/alert-vsftpd-download-backdoored.html

140 References

[Fdr15] »F-Droid: Deterministic, reproducible builds,« https://f-droid.
org/wiki/page/Deterministic,_Reproducible_Builds, 2015.

[Fla] »Flawfinder,« http://www.dwheeler.com/flawfinder/.

[FLM`08] J. Franklin, M. Luk, J. M. McCune, A. Seshadri, A. Perrig, and

L. Van Doorn, »Remote detection of virtual machine monitors
with fuzzy benchmarking,« ACM SIGOPS Operating Systems Re-
view, vol. 42, no. 3, pp. 83–92, 2008.

[Fra12] I. Fratric, »Ropguard: Runtime prevention of return-oriented
programming attacks,« 2012.

[Fyo04] Fyodor. (2004) Return on investment. [Online]. Available:
http://insecure.org/stc

[GDN11] C. Gehrmann, H. Douglas, and D. Nilsson, »Are there good rea-
sons for protecting mobile phones with hypervisors?« in Con-
sumer Communications and Networking Conference (CCNC), 2011
IEEE, jan. 2011, pp. 906 –911.

[gey] »shell_bind_tcp.asm,« https://github.com/geyslan/SLAE/
blob/master/1st.assignment/shell_bind_tcp.asm.

[Git] »Gitian,« https://gitian.org/.

[GKKB12] A. Gupta, S. Kerr, M. Kirkpatrick, and E. Bertino, »Marlin: Mak-
ing it harder to fish for gadgets,« in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
ACM, 2012.

[Glo10] GlobalPlatform, TEE Client API Specification, GlobalPlatform,
July 2010.

[Glo11a] GlobalPlatform, TEE Internal API Specification v1.0, GlobalPlat-
form, December 2011.

[Glo11b] GlobalPlatform, TEE System Architecture v1.0, GlobalPlatform,
December 2011.

[Gre12] J. Greene, Intel Trusted Execution Technology - Hardware-based Tech-
nology for Enhancing Server Platform Security, Intel, 2012.

[Gro11a] T. C. Group, TPM specification - Design Principles, Trusted Com-
puting Group, 2011.

[Gro11b] T. D. O. S. Group. (2011) The fiasco microkernel. [Online].
Available: http://os.inf.tu-dresden.de/fiasco

https://f-droid.org/wiki/page/Deterministic,_Reproducible_Builds
https://f-droid.org/wiki/page/Deterministic,_Reproducible_Builds
http://www.dwheeler.com/flawfinder/
http://insecure.org/stc
https://github.com/geyslan/SLAE/blob/master/1st.assignment/shell_bind_tcp.asm
https://github.com/geyslan/SLAE/blob/master/1st.assignment/shell_bind_tcp.asm
https://gitian.org/
http://os.inf.tu-dresden.de/fiasco

141

[Gro16] B. Group, »Digital assets on public blockchains,«
http://bitfury.com/content/5-white-papers-research/bitfury-
digital_assets_on_public_blockchains-1.pdf, 2016.

[Han16] T. Hanke, »Asicboost-a speedup for bitcoin mining,« arXiv
preprint arXiv:1604.00575, 2016.

[Hen09] R. Hensing, »Understanding DEP as a mitigation technology,«
Available at: http://blogs.technet.com/b/srd/archive/2009/
06/12/understanding-dep-as-amitigation-technology-part-1.
aspx, 2009.

[hex] »Hex-rays ida pro disassembler,« https://www.hex-
rays.com/products/ida/index.shtml.

[HNTC`12] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. Davidson,
»Ilr: Where’d my gadgets go?« in Security and Privacy (SP), 2012
IEEE Symposium on, 2012.

[How06] M. A. Howard, »A process for performing security code re-
views,« IEEE Security & privacy, vol. 4, no. 4, pp. 74–79, 2006.

[HS90] S. Haber and W. S. Stornetta, How to time-stamp a digital docu-
ment. Springer, 1990.

[HT15] D. A. Harding and P. Todd, »Opt-in full replace-by-fee
signaling,« https://github.com/bitcoin/bips/blob/master/bip-
0125.mediawiki, 2015.

[int] »Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual,« https://www-ssl.intel.com/content/
dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-software-developer-manual-325462.pdf.

[Int13] Intel, Intel(R) 64 and IA-32 Architectures Software Developer Manu-
als, Intel, June 2013.

[Jäm13] C. Jämthagen, »Hidden execution paths project website,« 2013,
http://www.eit.lth.se/index.php?uhpuid=dhs.cej&hpuid=864&L=1.

[Jen16] C. Jentzsch. (2016) Dao whitepaper. [Online]. Available:
http://download.slock.it/public/DAO/WhitePaper.pdf

http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-amitigation-technology-part-1.aspx
http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-amitigation-technology-part-1.aspx
http://blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-amitigation-technology-part-1.aspx
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://download.slock.it/public/DAO/WhitePaper.pdf

142 References

[JJV07] M. Jacob, M. H. Jakubowski, and R. Venkatesan, »Towards
integral binary execution: implementing oblivious hashing
using overlapped instruction encodings,« in Proceedings of the
9th workshop on Multimedia & security, ser. MM&Sec ’07. New
York, NY, USA: ACM, 2007, pp. 129–140. [Online]. Available:
http://doi.acm.org/10.1145/1288869.1288887

[JLH13] C. Jämthagen, P. Lantz, and M. Hell, »A new instruction over-
lapping technique for anti-disassembly and obfuscation of x86
binaries,« in Anti-malware Testing Research (WATeR), 2013 Work-
shop on. IEEE, 2013, pp. 1–9.

[Jor09] G. Jordan. (2009) Stealing profits from stock
market spammers. [Online]. Available: https:
//www.defcon.org/images/defcon-17/dc-17-presentations/
defcon-17-grant_jordan-stock_market_spam.pdf

[KA03] D. Kundur and K. Ahsan, »Practical internet steganography:
data hiding in ip,« in Proceedings of the Texas workshop on secu-
rity of information systems, vol. 2, 2003.

[KC04] C. Kreibich and J. Crowcroft, »Honeycomb: Creating intru-
sion detection signatures using honeypots,« SIGCOMM Com-
puter Communications Review, vol. 34, no. 1, pp. 51–56, Jan 2004.

[KC06] S. T. King and P. M. Chen, »Subvirt: Implementing malware with
virtual machines,« in 2006 IEEE Symposium on Security and Pri-
vacy (S&P’06). IEEE, 2006, pp. 14–pp.

[Kin10] J. Kinder, »Static analysis of x86 executables,« 2010.

[KK04] H. Kim and B. Karp, »Autograph: Toward automated, dis-
tributed worm signature detection.« in Proceedings of the 13th
Conference on USENIX Security Symposium. USENIX Association,
2004.

[Lam14] J. Lambert. (2014). [Online]. Available: https://twitter.com/
JohnLaTwC/status/442760491111178240

[LD03] C. Linn and S. Debray, »Obfuscation of executable code to
improve resistance to static disassembly,« in Proceedings of the
10th ACM conference on Computer and communications security,
ser. CCS ’03. New York, NY, USA: ACM, 2003, pp. 290–299.
[Online]. Available: http://doi.acm.org/10.1145/948109.948149

http://doi.acm.org/10.1145/1288869.1288887
https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-grant_jordan-stock_market_spam.pdf
https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-grant_jordan-stock_market_spam.pdf
https://www.defcon.org/images/defcon-17/dc-17-presentations/defcon-17-grant_jordan-stock_market_spam.pdf
https://twitter.com/JohnLaTwC/status/442760491111178240
https://twitter.com/JohnLaTwC/status/442760491111178240
http://doi.acm.org/10.1145/948109.948149

143

[Li11] N. Li, »Discretionary access control,« in Encyclopedia of Cryptog-
raphy and Security. Springer, 2011, pp. 353–356.

[Lie93] J. Liedtke, »Improving ipc by kernel design,« in Proceedings of
the fourteenth ACM symposium on Operating systems principles, ser.
SOSP ’93, 1993.

[LRV09] J. C. Lagarias, E. Rains, and R. J. Vanderbei, »The kruskal count,«
in The Mathematics of Preference, Choice and Order. Springer, 2009,
pp. 371–391.

[LS10] B. Lau and V. Svajcer, »Measuring virtual machine detection in
malware using dsd tracer,« Journal in Computer Virology, vol. 6,
no. 3, pp. 181–195, 2010.

[LSP82] L. Lamport, R. Shostak, and M. Pease, »The byzantine generals
problem,« ACM Transactions on Programming Languages and Sys-
tems (TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

[LSPM12] C. LeDoux, M. Sharkey, B. Primeaux, and C. Miles, »Instruction
embedding for improved obfuscation,« in Proceedings of the 50th
Annual Southeast Regional Conference, ser. ACM-SE ’12. New
York, NY, USA: ACM, 2012, pp. 130–135. [Online]. Available:
http://doi.acm.org/10.1145/2184512.2184543

[LWJ`10] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, »Defeating
return-oriented rootkits with "return-less" kernels,« in Proceed-
ings of the 5th European Conference on Computer Systems, ser. Eu-
roSys ’10. ACM, 2010.

[LXG14] K. Lu, S. Xiong, and D. Gao, »Ropsteg: Program steganogra-
phy with return oriented programming,« in Proceedings of the 4th
ACM conference on Data and application security and privacy. ACM,
2014, pp. 265–272.

[LZWG11] K. Lu, D. Zou, W. Wen, and D. Gao, »Packed, printable, and
polymorphic return-oriented programming,« in Recent Advances
in Intrusion Detection, ser. Lecture Notes in Computer Science,
R. Sommer, D. Balzarotti, and G. Maier, Eds. Springer Berlin
Heidelberg, 2011, vol. 6961, pp. 101–120.

[MAQ99] H. Massias, X. S. Avila, and J.-J. Quisquater, »Design of a secure
timestamping service with minimal trust requirement,« in the
20th Symposium on Information Theory in the Benelux, 1999.

http://doi.acm.org/10.1145/2184512.2184543

144 References

[Mer80] R. C. Merkle, »Protocols for public key cryptosystems.« in IEEE
Symposium on Security and privacy, vol. 122, 1980.

[Mer88] R. C. Merkle, Advances in Cryptology — CRYPTO ’87:
Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg,
1988, ch. A Digital Signature Based on a Conventional
Encryption Function, pp. 369–378. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-48184-2_32

[Mer14] D. Merkel, »Docker: lightweight linux containers for consistent
development and deployment,« Linux Journal, vol. 2014, no. 239,
p. 2, 2014.

[MFk15] N. D. Mark Friedenbach, BtcDrak and kinoshitajona, »Rel-
ative lock-time using consensus-enforced sequence num-
bers,« https://github.com/bitcoin/bips/blob/master/bip-
0068.mediawiki, 2015.

[Mic] Microsoft. Choosing good passwords: The lmhash. [On-
line]. Available: https://technet.microsoft.com/en-us/library/
dd277300.aspx#ECAA

[MW06] S. McCann and M. West. (2006) Tcp/ip field behavior. [Online].
Available: http://www.ietf.org/rfc/rfc4413.txt

[MÂĺ08] T. MÂĺuller, »ASLR Smack & Laugh Reference,« 2008.
[Online]. Available: http://www-users.rwth-aachen.de/Tilo.
Mueller/ASLRpaper.pdf

[Nak08] S. Nakamoto, »Bitcoin: A peer-to-peer electronic cash system,«
2008.

[nam] »Namecoin,« https://namecoin.info/.

[NBZ06] N. Nagappan, T. Ball, and A. Zeller, »Mining metrics to predict
component failures,« in Proceedings of the 28th international
conference on Software engineering, ser. ICSE ’06. New York,
NY, USA: ACM, 2006, pp. 452–461. [Online]. Available:
http://doi.acm.org/10.1145/1134285.1134349

[neg13] negux, »DEP bypass with ROP,« Available at: http://www.
exploit-db.com/exploits/24944/, 2013.

[NKS05] J. Newsome, B. Karp, and D. Song, »Polygraph: automatically
generating signatures for polymorphic worms,« in IEEE Sympo-
sium on Security and Privacy, May 2005, pp. 226–241.

http://dx.doi.org/10.1007/3-540-48184-2_32
http://dx.doi.org/10.1007/3-540-48184-2_32
https://technet.microsoft.com/en-us/library/dd277300.aspx#ECAA
https://technet.microsoft.com/en-us/library/dd277300.aspx#ECAA
http://www.ietf.org/rfc/rfc4413.txt
http://www-users.rwth-aachen.de/Tilo.Mueller/ASLRpaper.pdf
http://www-users.rwth-aachen.de/Tilo.Mueller/ASLRpaper.pdf
http://doi.acm.org/10.1145/1134285.1134349
http://www.exploit-db.com/exploits/24944/
http://www.exploit-db.com/exploits/24944/

145

[Nod10a] Node. (2010) Rm downloader 3.1.3 - local seh exploit
(windows 7 aslr + dep bypass). [Online]. Available: https:
//www.exploit-db.com/exploits/14150/

[Nod10b] Node. (2010) Winamp 5.572 - local buffer overflow (windows
7 aslr + dep bypass). [Online]. Available: https://www.
exploit-db.com/exploits/14068/

[obj] »Gnu binutils,« https://www.gnu.org/software/binutils/.

[OBL`10a] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, »G-
free: Defeating return-oriented programming through gadget-
less binaries,« in Proceedings of the 26th Annual Computer Security
Applications Conference, ser. ACSAC ’10. ACM, 2010, pp. 49–58.

[OBL`10b] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, »G-
free: defeating return-oriented programming through gadget-
less binaries,« in Proceedings of the 26th Annual Computer Security
Applications Conference. ACM, 2010, pp. 49–58.

[One96] A. One, »Smashing the stack for fun and profit,« Phrack, 1996,
http://phrack.org/issues.html?issue=49&id=14#article.

[PaX03] PaX Team, »Address space layout randomization,« Available at:
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[P.C11] P.C. Rigby, M-A. Storey, »Understanding Broadcast Based Peer
Review on Open Source Software Projects,« in Proceedings of the
33rd International Conference on Software Engineering, ser. ICSE
’11. New York, NY, USA: ACM, 2011, pp. 541–550. [Online].
Available: http://doi.acm.org/10.1145/1985793.1985867

[PG74] G. J. Popek and R. P. Goldberg, »Formal requirements for vir-
tualizable third generation architectures,« Communications of the
ACM, vol. 17, no. 7, pp. 412–421, 1974.

[PGP12] D. Plohmann and E. Gerhards-Padilla, »Case study of the miner
botnet,« in 2012 4th International Conference on Cyber Conflict (CY-
CON 2012). IEEE, 2012, pp. 1–16.

[PK11] M. Polychronakis and A. Keromytis, »ROP payload detection
using speculative code execution,« in Proceedings of the 2011 6th
International Conference on Malicious and Unwanted Software, ser.
MALWARE ’11. IEEE Computer Society, 2011.

https://www.exploit-db.com/exploits/14150/
https://www.exploit-db.com/exploits/14150/
https://www.exploit-db.com/exploits/14068/
https://www.exploit-db.com/exploits/14068/
http://pax.grsecurity.net/docs/aslr.txt
http://doi.acm.org/10.1145/1985793.1985867

146 References

[PK15] J. Peterson and J. Krug, »Augur: a decentralized, open-
source platform for prediction markets,« arXiv preprint
arXiv:1501.01042, 2015.

[PPK12a] V. Pappas, M. Polychronakis, and A. Keromytis, »Smashing the
gadgets: Hindering return-oriented programming using in-place
code randomization,« in IEEE Symposium on Security and Privacy.
IEEE Computer Society, 2012.

[PPK12b] V. Pappas, M. Polychronakis, and A. D. Keromytis, »Smashing
the gadgets: Hindering return-oriented programming using in-
place code randomization,« in 2012 IEEE Symposium on Security
and Privacy. IEEE, 2012, pp. 601–615.

[PPK13] V. Pappas, M. Polychronakis, and A. Keromytis, »Transparent
ROP exploit mitigation using indirect branch tracing,« in Pre-
sented as part of the 22nd USENIX Security Symposium (USENIX
Security 13). USENIX, 2013.

[PR04] R. Pagh and F. F. Rodler, »Cuckoo hashing,« in Journal of Algo-
rithms, vol. 51. Duluth, MN, USA: Academic Press, Inc., 2004,
pp. 122–144.

[PRA] M. PRATI.

[pro00] T. P. project, Available at: http://pax.grsecurity.net/, 2000.

[Qua15] Qualys, »GHOST: glibc gethostbyname buffer overflow,« Avail-
able at: https://www.qualys.com/2015/01/27/cve-2015-0235/
GHOST-CVE-2015-0235.txt, 2015.

[RNS] J. Rubin, M. Naik, and N. Subramanian.

[Ros04] R. Rose, »Survey of system virtualization techniques,« 2004.

[Ros12] M. Rosenfeld, »Overview of colored coins,« White paper, bitcoil.
co. il, 2012.

[Rus81] J. Rushby, »The design and verification of secure systems,« in
Eighth ACM Symposium on Operating System Principles (SOSP),
Asilomar, CA, December 1981, pp. 12–21, (ACM Operating Sys-
tems Review, Vol. 15, No. 5).

[Rut04] J. Rutkowska, »Red pill,« Or How to Detect VMM Us-
ing (almost) One CPU Instruction. Internet Archive: http://web.
archive. org/web/20110726182809/http://invisiblethings. org/paper-
s/redpill. html [accessed 25 February 2014], 2004.

http://pax.grsecurity.net/
https://www.qualys.com/2015/01/27/cve-2015-0235/GHOST-CVE-2015-0235.txt
https://www.qualys.com/2015/01/27/cve-2015-0235/GHOST-CVE-2015-0235.txt

147

[Rut06] J. Rutkowska, »Introducing blue pill, 2006,« SyScan,
http://theinvisiblethings. blogspot. com/2006/06/introducing-blue-
pill. html, 2006.

[Rut16] J. Rutkowska. (2016) Critical xen bug in pv memory virtualiza-
tion code (xsa 182). [Online]. Available: https://github.com/
QubesOS/qubes-secpack/blob/master/QSBs/qsb-024-2016.txt

[RW10] J. Rutkowska and R. Wojtczuk, »Qubes os architecture,« Invisible
Things Lab Tech Rep, p. 54, 2010.

[RW13] J. Rutkowska and R. Wojtczuk, »Qubes os,« 2013.

[SAB11] E. Schwartz, T. Avgerinos, and D. Brumley, »Q: Exploit harden-
ing made easy,« in Proceedings of USENIX Security 2011, 2011.

[SC13] S. Smalley and R. Craig, »Security enhanced (se) android: Bring-
ing flexible mac to android,« 20th Annual Network and Distributed
System Security Symposium (NDSS ’13), February 2013.

[Sch08] C. Schaufler, »Smack in embedded computing,« in Proceedings of
the Linux Symposium, 2008, pp. 179–186.

[SD15] M. Seaborn and T. Dullien, »Exploiting the dram rowhammer
bug to gain kernel privileges,« Black Hat, 2015.

[SE11] ST-Ericsson, The NovaThor platforms for smartphones and tablets,
ST-Ericsson, 2011.

[Sec10] SecurityFocus.com, »ProFTPD Backdoor Unauthorized Access
Vulnerability,« http://www.securityfocus.com/bid/45150, 2010.

[Ser09] F. J. Serna, »CVE-2012-0769, the case of the perfect info leak,«
Available at: http://zhodiac.hispahack.com/my-stuff/security/
Flash_ASLR_bypass.pdf, 2009.

[SH12] M. Sikorski and A. Honig, Practical Malware Analysis, the Hand-
On Guide to Dissecting Malicious Software. no starch press, 2012.

[SH13] F. Schuster and T. Holz, »Towards reducing the attack surface
of software backdoors,« in Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security. ACM, 2013, pp.
851–862.

[Sha07a] H. Shacham, »The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86),« in Proceed-
ings of the 14th ACM Conference on Computer and Communications
Security, ser. CCS ’07. ACM, 2007, pp. 552–561.

https://github.com/QubesOS/qubes-secpack/blob/master/QSBs/qsb-024-2016.txt
https://github.com/QubesOS/qubes-secpack/blob/master/QSBs/qsb-024-2016.txt
http://www.securityfocus.com/bid/45150
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf
http://zhodiac.hispahack.com/my-stuff/security/Flash_ASLR_bypass.pdf

148 References

[Sha07b] H. Shacham, »The geometry of innocent flesh on the
bone: return-into-libc without function calls (on the x86),«
in Proceedings of the 14th ACM conference on Computer
and communications security, ser. CCS ’07. New York, NY,
USA: ACM, 2007, pp. 552–561. [Online]. Available: http:
//doi.acm.org/10.1145/1315245.1315313

[sic11] sickness. (2011) Dvd x player 5.5.0 pro / standard -
universal exploit (aslr + dep bypass). [Online]. Available:
https://www.exploit-db.com/exploits/17754/

[Sie13a] Sierraware, SierraTEE for ARM TrustZone, Sierraware LLC, 2013.

[Sie13b] Sierraware, SierraVisor Hypervisor, Sierraware LLC, 2013.

[SJ04] P. Silberman and R. Johnson, »A comparison of buffer overflow
prevention implementations and weaknesses,« IDEFENSE, Au-
gust, 2004.

[SLGL08] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, »Impeding mal-
ware analysis using conditional code obfuscation.« in NDSS,
2008.

[SMD`13] K. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and

A. Sadeghi, »Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,« in Security and Pri-
vacy (SP), 2013 IEEE Symposium on, May 2013, pp. 574–588.

[SML10] J. Sahoo, S. Mohapatra, and R. Lath, »Virtualization: A survey
on concepts, taxonomy and associated security issues,« in Com-
puter and Network Technology (ICCNT), 2010 Second International
Conference on. IEEE, 2010, pp. 222–226.

[Spl] »Splint,« http://www.splint.org/.

[SPP`04] H. Shacham, M. Page, N. Pfaff, E. Goh, N. Modadugu, and

D. Boneh, »On the effectiveness of address-space randomiza-
tion,« in Proceedings of the 11th ACM Conference on Computer and
Communications Security, ser. CCS ’04. ACM, 2004, pp. 298–307.

[SSO`13] B. Stancill, K. Z. Snow, N. Otterness, F. Monrose, L. Davi, and A.-
R. Sadeghi, »Check my profile: Leveraging static analysis for fast
and accurate detection of ROP gadgets,« in Research in Attacks,
Intrusions, and Defenses, ser. Lecture Notes in Computer Science,
S. Stolfo, A. Stavrou, and C. Wright, Eds. Springer Berlin Hei-
delberg, 2013, vol. 8145, pp. 62–81.

http://doi.acm.org/10.1145/1315245.1315313
http://doi.acm.org/10.1145/1315245.1315313
https://www.exploit-db.com/exploits/17754/
http://www.splint.org/

149

[SSZ15] A. Sapirshtein, Y. Sompolinsky, and A. Zohar, »Optimal selfish
mining strategies in bitcoin,« CoRR, vol. abs/1507.06183, 2015.
[Online]. Available: http://arxiv.org/abs/1507.06183

[sta16] (2016) State of cyber security: Implications for 2016.
[Online]. Available: http://www.isaca.org/cyber/Documents/
state-of-cybersecurity_res_eng_0316.pdf

[STP`14] F. Schuster, T. Tendyck, J. Pewny, A. MaaÃ§, M. Steegmanns,
M. Contag, and T. Holz, »Evaluating the effectiveness of current
anti-rop defenses,« in Research in Attacks, Intrusions and Defenses,
ser. Lecture Notes in Computer Science, A. Stavrou, H. Bos, and

G. Portokalidis, Eds., vol. 8688. Springer International Publish-
ing, 2014, pp. 88–108.

[SW11] Y. Shin and L. Williams, »An initial study on the use
of execution complexity metrics as indicators of software
vulnerabilities,« in Proceedings of the 7th International Workshop
on Software Engineering for Secure Systems, ser. SESS ’11. New
York, NY, USA: ACM, 2011, pp. 1–7. [Online]. Available:
http://doi.acm.org/10.1145/1988630.1988632

[sza97] »The idea of smart contracts,«
http://szabo.best.vwh.net/idea.html, 1997.

[Szt15] P. Sztorc. (2015) Peer-to-peer oracle system and prediction
marketplace. [Online]. Available: http://bitcoinhivemind.com/
papers/truthcoin-whitepaper.pdf

[td09] A. technical documentation, ARM Security Technology - Building
a Secure System using TrustZone Technology, ARM, 2009.

[Tea16] P. Team. (2016) Rap: Return address protection. [Online].
Available: https://www.grsecurity.net/rap_announce.php

[THT05] T. H. Toshiharu Harada and K. Tanaka. (2005) To-
wards a manageable linux security. [Online]. Avail-
able: http://sourceforge.jp/projects/tomoyo/docs/lc2005-en.
pdf/en/2/lc2005-en.pdf.pdf

[Tin09] J. Tinnes. (2009) Linux null pointer dereference
due to incorrect proto-ops initializations (cve-2009-
2692). [Online]. Available: http://blog.cr0.org/2009/08/
linux-null-pointer-dereference-due-to.html

http://arxiv.org/abs/1507.06183
http://www.isaca.org/cyber/Documents/state-of-cybersecurity_res_eng_0316.pdf
http://www.isaca.org/cyber/Documents/state-of-cybersecurity_res_eng_0316.pdf
http://doi.acm.org/10.1145/1988630.1988632
http://bitcoinhivemind.com/papers/truthcoin-whitepaper.pdf
http://bitcoinhivemind.com/papers/truthcoin-whitepaper.pdf
https://www.grsecurity.net/rap_announce.php
http://sourceforge.jp/projects/tomoyo/docs/lc2005-en.pdf/en/2/lc2005-en.pdf.pdf
http://sourceforge.jp/projects/tomoyo/docs/lc2005-en.pdf/en/2/lc2005-en.pdf.pdf
http://blog.cr0.org/2009/08/linux-null-pointer-dereference-due-to.html
http://blog.cr0.org/2009/08/linux-null-pointer-dereference-due-to.html

150 References

[Tor15] »Tor: Deterministic builds,« https://blog.torproject.org/
category/tags/deterministic-builds, 2015.

[vB09] E. van Buskirk, »Denial-of-service attack knocks twitter
offline,« http://www.wired.com/2009/08/twitter-apparently-
down/, 2009.

[VC09] S. V. Vugt and R. Clark, Pro Ubuntu Server Administration.
Apress, 2009.

[Ven00] Vendicator, »Stack shield: A "stack smashing" technique protec-
tion tool for linux,« Available at: http://www.angelfire.com/
sk/stackshield/, 2000.

[Vir] Oracle virtualbox vm, user manual. [Online]. Available:
http://www.virtualbox.org/manual/

[Vre10] P. Vreugdenhil, »Pwn2Own 2010 Windows 7 Internet Ex-
plorer 8 exploit,« Available at: http://vreugdenhilresearch.nl/
Pwn2Own-2010-Windows7-InternetExplorer8.pdf, 2010.

[wel13] welivesecurity.com, »Linux/SSHDoor.A Back-
doored SSH daemon that steals passwords,«
http://www.welivesecurity.com/2013/01/24/
linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/,
2013.

[WHS12] M. Weiss, B. Heinz, and F. Stumpf, »A cache timing attack on
aes in virtualization environments,« in 14th International Confer-
ence on Financial Cryptography and Data Security (Financial Crypto
2012), ser. Lecture Notes in Computer Science. Springer, 2012.

[WLL`13] T. Wang, K. Lu, L. Lu, S. Chung, and W. Lee, »Jekyll on ios:
When benign apps become evil,« in Presented as part of the 22nd
USENIX Security Symposium (USENIX Security 13), 2013, pp. 559–
572.

[WMHL12] R. Wartell, V. Mohan, K. Hamlen, and Z. Lin, »Binary stir-
ring: Self-randomizing instruction addresses of legacy x86 bi-
nary code,« in Proceedings of the 2012 ACM Conference on Computer
and Communications Security, ser. CCS ’12, 2012.

[Woo14] G. Wood, »Ethereum: A secure decentralised generalised trans-
action ledger,« Ethereum Project Yellow Paper, 2014.

https://blog.torproject.org/category/tags/deterministic-builds
https://blog.torproject.org/category/tags/deterministic-builds
http://www.angelfire.com/sk/stackshield/
http://www.angelfire.com/sk/stackshield/
http://www.virtualbox.org/manual/
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf
http://vreugdenhilresearch.nl/Pwn2Own-2010-Windows7-InternetExplorer8.pdf
http://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/
http://www.welivesecurity.com/2013/01/24/linux-sshdoor-a-backdoored-ssh-daemon-that-steals-passwords/

151

[WPLZ10] X. Wang, C. Pan, P. Liu, and S. Zhu, »Sigfree: A signature-free
buffer overflow attack blocker,« IEEE Transactions on Dependable
and Secure Computing, vol. 7, no. 1, pp. 65–79, Jan 2010.

[WZH`11] R. Wartell, Y. Zhou, K. W. Hamlen, M. Kantarcioglu, and

B. Thuraisingham, »Differentiating code from data in x86 bina-
ries,« in Machine Learning and Knowledge Discovery in Databases,
ser. Lecture Notes in Computer Science, D. Gunopulos, T. Hof-
mann, D. Malerba, and M. Vazirgiannis, Eds. Springer Berlin
Heidelberg, 2011, vol. 6913, pp. 522–536. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-23808-6_34

[xen16] (2016) List of common vulnerabilities and exposures for xen.
[Online]. Available: https://xenbits.xen.org/xsa/

[xpl11] xploitedsec. (2011) The kmplayer 3.0.0.1440 - ’.mp3’ buffer
overflow (windows 7 + aslr bypass). [Online]. Available:
https://www.exploit-db.com/exploits/17383/

[Y. 03] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, M.H.
Jakubowski, »Oblivious Hashing: A Stealthy Software Integrity
Verification Primitive,« in Revised Papers from the 5th International
Workshop on Information Hiding, ser. IH ’02. London, UK,
UK: Springer-Verlag, 2003, pp. 400–414. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647598.732027

[YHD`16] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, »A2:
Analog malicious hardware,« 2016.

[YSD`09] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, »Native client: A sand-
box for portable, untrusted x86 native code,« in 2009 30th IEEE
Symposium on Security and Privacy. IEEE, 2009, pp. 79–93.

[ZS13] M. Zhang and R. Sekar, »Control flow integrity for COTS bina-
ries,« in Proceedings of the 22Nd USENIX Conference on Security,
ser. SEC’13. USENIX Association, 2013.

[ZW11] C. J. D. G. Z. Wang, J. Ming, »Linear Obfuscation
to Combat Symbolic Execution,« in Computer Security -
ESORICS 2011, ser. Lecture Notes in Computer Science,
V. Atluri and C. Diaz, Eds. Springer Berlin Heidelberg,
2011, vol. 6879, pp. 210–226. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-23822-2_12

http://dx.doi.org/10.1007/978-3-642-23808-6_34
https://xenbits.xen.org/xsa/
https://www.exploit-db.com/exploits/17383/
http://dl.acm.org/citation.cfm?id=647598.732027
http://dx.doi.org/10.1007/978-3-642-23822-2_12
http://dx.doi.org/10.1007/978-3-642-23822-2_12

152 References

[ZWC`13] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, »Practical control flow integrity and ran-
domization for binary executables,« in Proceedings of the 2013
IEEE Symposium on Security and Privacy, ser. SP ’13. IEEE Com-
puter Society, 2013.

