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A B S T R A C T   

Indoor radon represents a health hazard for occupants. However, the indoor radon measurement rate is low in 
Sweden because of no mandatory requirements. Measuring indoor radon on an urban scale is complicated, 
machine learning exploiting existing data for pattern identification provides a cost-efficient approach to estimate 
indoor radon exposure in the building stock. Extreme gradient boosting (XGBoost) models and deep neural 
network (DNN) models were developed based on indoor radon measurement records, property registers, and 
geogenic information. The XGBoost models showed promising results in predicting indoor radon intervals for 
different types of buildings with macro-F1 between 0.93 and 0.96, whereas the DNN models attained macro-F1 
between 0.64 and 0.74. After that, the XGBoost models trained on the national indoor radon dataset were 
transferred to fit building registers in metropolitan regions to estimate the indoor radon intervals in non- 
measured and measured buildings by regions and building classes. By comparing the prediction results and 
the statistical summary of indoor radon intervals in measured buildings, the model uncertainty and validity were 
determined. The study ascertains the prediction performance of machine learning models in classifying indoor 
radon intervals and discusses the benefits and limitations of the data-driven approach. The research outcomes 
can assist preliminary large-scale indoor radon distribution estimation for relevant authorities and guide onsite 
measurements for prioritized building stock prone to indoor radon exposure.   

1. Introduction 

Indoor radon is a universal health hazard and the second leading 
cause of lung cancer worldwide. Approximately 15% of lung cancers in 
Sweden are induced by indoor radon in dwelling buildings, corre
sponding to 500 lung cancer cases every year [1,2]. The exposure to 
residential radon is particularly severe in cold climates, given the long 
time spent indoors in buildings with insufficient ventilation. To address 
the health risk of indoor radon and monitor its exposure in the indoor 
environment, most European countries adopt three indoor radon refer
ence thresholds: (i) 200 Bq/m3 for residential and public buildings and 
as the highest acceptable level for new buildings, (ii) 400 Bq/m3 for 
existing buildings, (iii) above 1,000 Bq/m3 for immediate decontami
nation [3]. From available measurement records, it is estimated that 
around 16% of single-family houses and 19% of workplaces exceed the 
indoor radon reference level in the Swedish building stock [2]. No re
quirements on the measured frequency have been put in place 

nowadays; measurements are, however, recommended every ten years 
or after an extensive renovation that may affect the indoor radon con
centration. For buildings whose indoor radon concentrations exceed the 
reference limit of 200 Bq/m3, their indoor radon sources must be 
identified before decontamination. The indoor radon measurements and 
remediation are the responsibility of property owners and are supervised 
by the county’s and municipality’s environmental and health protection 
committees. 

In light of the new Swedish National Action Plan [4], the nationwide 
average of indoor radon levels and the extent of the buildings in Swedish 
dwellings and workplaces should be determined. It is estimated that 
around 400,000 dwellings exceed the reference limit nowadays [5]. A 
recent report by the Swedish Radiation Safety Authority (SSM) [2] 
analyzed indoor radon measurement records from the past two decades 
and compared the results with the previous surveys: the ELIB in 
1991/1992 [6], the Radon Survey in 2000 [6], and the BETSI study in 
2007/2009 [7]. The concluding outcomes from the latest report and 
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surveys were that indoor radon concentration above 200 Bq/m3 occurs 
more frequently in single-family houses (ELIB: 16–18%; Radon Survey: 
35%; SSM: 19%) than in multifamily houses (ELIB: 5–8%; Radon Survey: 
28%). The average indoor radon in single-family houses (ELIB: 141 
Bq/m3; BETSI: 124 Bq/m3; SSM: 128–136 Bq/m3) is almost twice as high 
as the concentration in multifamily houses (ELIB: 75 Bq/m3). The 
varying values reported by former studies reflect the complexity of in
door radon estimation in heterogeneous building stocks. 

Although a descriptive overview of the indoor radon situation in the 
building stock can be obtained from these cross-sectional investigations, 
the uncertainty of the statistical inference for specific building typol
ogies and regions is still high due to the low share of buildings in which 
indoor radon measurements have been conducted, which represents 
around 16% single-family houses and 17% apartments in multifamily 
houses in 2020 [2]. The low indoor radon measurement rates could 
possibly be attributed to a lack of health risk awareness, ignorance of 
conducting measurements, affordability to decontamination costs, 
house ownership, and concern for future property selling [8]. Never
theless, the limited amounts of empirical indoor radon measurements 
hinder the accurate evaluation of indoor radon levels in the existing 
buildings. The current knowledge of indoor radon statistics remains on 
the national and individual building scales for regulatory and decon
tamination purposes. However, the information on the detailed distri
bution of the indoor radon level in non-residential regional buildings is 
lacking [2]. To encourage effective indoor radon monitoring and miti
gation interventions by local municipalities, predictive analysis at a 
lower aggregation level for unmeasured buildings is needed. The pre
diction outcomes could also advise property owners of radon risk-prone 
buildings to conduct thorough and consecutive indoor radon 
measurements. 

2. Literature review 

Indoor radon prediction powered by statistics and machine learning 
has shown promising results and gained a growing interest in recent 
years. Machine learning, derived from statistical modeling, was 
explored in indoor air quality assessment and indoor radon is one of the 
most studied substances [9–12]. The primary focus of indoor radon 
prediction in previous studies can be classified into short-term active 
monitoring using time series models and long-term concentration esti
mation based on regression models. Studies that represented the former 
research purpose are, for example, indoor radon concentration devel
opment forecasts [13] and real-time monitoring along a short timeframe 
[11]. By utilizing recurrent neural networks, more specifically, long 
short-term memory networks, indoor radon level evolvement over time 
could be projected [11,13]. The latter objective was exemplified by 
employing artificial neural networks for determining the influence of 
environmental variables on indoor radon concentrations [14], mapping 
indoor radon-prone areas using Bayesian spatial quantile regression 
[15] and extreme learning machine [10], kernel regressions [16] and 
ensemble regression trees [17]. Besides the use of deep learning and 
machine learning models, statistical methods were also explored to 
obtain spatial inference of indoor radon levels. For instance, interpola
tion techniques were investigated to predict the mean indoor radon 
concentration of spatial grids. Among different interpolation techniques, 
regression kriging showed the best performance and was used to develop 
a European indoor radon map [18]. A summary of the literature on in
door radon prediction is presented in respective model categories and 
algorithm types in Table 1. 

To date, some progress has been achieved in predicting indoor radon 
proxy on an urban scale; however, more refinements should be made to 
improve the models’ generalization. Previous studies tended to use 
aggregated data, such as postcode areas or DeSO (demographic statis
tical areas)/ RegSO (regional statistical areas) areas but lacked indi
vidual property or building information due to privacy regulations [20], 
which led to a limited opportunity for data coupling between indoor 

Table 1 
Summary of state-of-the-art studies on indoor radon prediction.  

Reference Purpose Data size Model Performance 

Statistical models 
1. Spatial inference 
[18] Predict indoor 

radon 
concentration 
at the ground- 
floor level of 
buildings 

1.2 million 
indoor 
radon 
records in 
Europe 

Interpolation 
techniques, i.e., 
inverse distance 
weighting, 
ordinary kriging, 
collocated 
cokriging, 
regression kriging 

R2 
IDW =

0.1001 
R2 

OK =

0.3457 
R2 

CCK =

0.3512 
R2 

RK =

0.3687 

Machine learning models 
1. Regressions 
[16] Predict and 

map national 
indoor radon 
concentrations 

238,769 
indoor 
radon 
records from 
148,458 
houses in 
Switzerland 

Kernel regression, 
probability 
estimation 

R2 = 0.28 

[15] Delineate 
spatial clusters 
of radon-prone 
areas 

2,382 
indoor 
radon 
records from 
the Abruzzo, 
Italy 

Bayesian spatial 
quantile 
regression, 
stepwise analysis 

N/A 

[19] Estimate the 
indoor radon 
concentrations 

123,000 
indoor 
radon 
records from 
Sweden 

Multivariate 
adaptive 
regression splines 

R2
All = 0.13 

R2
Singlefamily 

= 0.14 
R2

Multifamily 

= 0.13 
R2

School =

0.08 
R2

Others =

0.03 
2. Decision trees 
[17] Classify 

lithological 
units 
automatically 
and improve 
radon 
prediction 

238,769 
indoor 
radon 
records from 
148,458 
houses in 
Switzerland 

Random forest, 
Bayesian additive 
regression trees, 
k-medoid 
clustering 

R2 
RF = 0.33 

R2 
BART =

0.29 

[20] Estimate the 
indoor radon 
concentrations 

123,000 
indoor 
radon 
records from 
Sweden 

Random forest R2
All = 0.24 

R2
Singlefamily 

= 0.21 
R2

Multifamily 

= 0.28 
R2

School =

0.06 
R2

Others =

0.02 
3. Artificial neural networks 
[14] Predict and 

benchmark 
indoor radon 

192 indoor 
radon 
records from 
tertiary 
institutions 
in Nigeria 

Feed-forward 
backpropagation 
neural network 

AVE = 0.05 
MAE = 0.02 
RMSE =
0.04 
MAPE =
3.64% 
G = 83.71% 

4. Recurrent neural networks 
[13] Forecast 

indoor radon in 
Canadian and 
Swedish 
dwellings by 
2050 

Indoor 
radon 
records from 
25,489 
Canadian 
and 38,596 
Swedish 
properties 

Long short-term 
memory 

N/A 

[11] Predict indoor 
radon based on 
the current Rn 

12,000 
indoor 
radon 
records from 
a building in 
Spain 

Long short-term 
memory 

RMSE = 28 
Bq/m3 

(continued on next page) 
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radon measurements, geogenic factors, and dwelling characteristics 
[10]. Models trained with indoor radon measurements sampled from a 
substantial variety of buildings may not be accurate and interpretable; 
on the other hand, models built on input data from single buildings are 
barely transferable. Hence, careful data stratification should be 
considered in developing large-scale predictive models for various 
building types. 

Indoor radon prediction is traditionally formulated as regression 
problems; however, the prediction performance of models is not satis
factory. Kropat et al. [16] reported R2 = 0.28 using kernel regression 
and probability estimation methods and Wu et al. [19] reported R2 =

0.14 using multivariate adaptive regression splines. Subsequently, their 
attempts with indoor radon concentration prediction using random 
forest models attained R2 = 0.28 [19] and R2 = 0.33 [17]. To enhance 
the model’s performance while elevating the model’s granularity to the 
property level, more advanced machine learning algorithms were 
required to untangle the complexity [18]. Taking the existing regulative 
indoor radon thresholds into account, i.e., 200 Bq/m3 and 400 Bq/m3, 
the problem formulation of the study investigated multi-class classifi
cation for indoor radon interval prediction. 

The Extreme Gradient Boosting (XGBoost) and Deep Neural Network 
(DNN) algorithms were considered given their capability for efficiently 
handling large amounts of high dimensional, non-linear, imbalanced 
datasets with mixed data types [21,22]. Therefore, they were regarded 
as promising to model large and intricate national indoor radon mea
surements and have the potential to overcome the limited performance 
of simplified supervised learning models used in former studies for 
long-term indoor radon prediction. The XGBoost algorithm exploits the 
ensemble boosting method of multiple decision trees and adjusts pa
rameters iteratively [23]. Thus, it is less likely to be overfitting than the 
ensemble bagging method owing to the sequential training procedure, 
and also more regularized than the gradient boosting approach. On the 
other hand, deep learning features deep neural networks with multiple 
hidden processing layers for learning highly abstracted data represen
tations and relationships [24]. It has a self-learning capability of auto
matic feature generation and selection. By utilizing hidden layers and 
supplying parameterized weights in DNN in model optimization, the 
inputs (X) can be mapped out to the outputs (Y = f (X)) with assigned 
functions automated in a one-directional data flow. Although the ways 
of fitting data are different, tuning tree booster parameters in XGBoost 
models and hyperparameters in the DNN model have some similarities 
and both can be done through grid search. Besides, instead of predicting 
indoor radon concentrations in regression, classifying indoor radon in
tervals can be a research opportunity given the complicated synergies 
between climate, geogenic, and anthropic factors. Exploiting prediction 
approaches for the multi-class classification problem have not yet been 
investigated in the context of indoor radon prediction. The study aims to 
fill the gap by probing the application of advanced machine learning 
models trained and validated on a comprehensive and high-granular 
indoor radon dataset in Sweden. 

3. Scope of the paper 

The research aims to screen existing building stock with onsite in
door radon measurement priority by predicting indoor radon intervals 
(level indicators) as the proxy for long-term exposure estimation. 

Considering this research objective, the prediction granularity of indoor 
radon intervals based on the current legislative requirement was 
considered sufficient. The dependent variable of “indoor radon in
tervals” was clustered from the long-term estimated annual average 
indoor radon concentrations, which are aggregated values from indi
vidual measurements in the same dwellings according to the method 
description of indoor radon measurements in buildings [25,26]. Thus, 
multi-class classification was more suitable than regression in the 
context of long-term indoor radon exposure assessment given the 
inherited data uncertainty. The machine learning and deep learning 
multi-class classification models were trained on the national indoor 
radon measurement records, property registers, and geogenic informa
tion to estimate the indoor radon intervals for buildings without indoor 
radon measurements. The research outcomes contribute to an improved 
understanding of variable dependency on indoor radon in various 
building types and an overview of the present indoor radon situation in 
the building stocks for relevant authorities. To realize the overarching 
research goals, research questions are formulated as follows: 

RQ 1: How accurately can extreme gradient boosting and deep 
neural network models predict the indoor radon intervals on the 
property scale? 
RQ 2: What are the estimated shares of buildings prone to high in
door radon intervals in the Swedish metropolitan building stocks? 

4. Materials 

The dataset comprised multiple data sources, including indoor radon 
measurement records, property registers, and geogenic and geograph
ical information. These data were extracted and linked at the property 
level to obtain predictive variables for modeling. 

4.1. Indoor radon measurement records 

The indoor radon measurement records were retrieved from the 
Swedish Energy Performance Certificates (EPCs) and municipalities’ 
open databases and APIs. The latest EPCs of the 2022 version contain up- 
to-date information on property usage, building features, energy con
sumption and sources, ventilation types, and indoor radon records, 
where 167,468 random indoor radon measurements from different 
building classes across Sweden were also included. Afterward, an 
additional 23,084 indoor radon measurements from municipalities’ 
databases were appended to the indoor radon subset and ensured that 
each observation represented an individual building. These indoor 
radon records provide comprehensive information on the measured 
dates, periods, locations, methods, and annual average indoor radon 
concentrations to guide the retrieval of valid observations. Most mea
surements were conducted after 1999 during the heating season using 
passive alpha-track detectors [3]. 

4.2. Property registers and geogenic information 

The property register database from the Swedish Cadastral and Land 
Registration Authority contains the municipal cadastral register, of 
which unique building IDs and parameters are documented, described in 
Appendix A. Then the spatial joins between SWEREF 99 TM (Swedish 
geographical reference system) from property registers, a standard plan 
coordination system used among many public authorities, and the 
Geological Survey of Sweden (SGU) databases, i.e., geophysical aerial 
measurements and soil types. The radiometric grids of K-40 (potassium), 
U-238 (uranium), and Th-232 (thorium) concentrations were requested 
from the geophysical aerial measurement database. The concentrations 
were calculated from the measurements made by aircraft at low alti
tudes, where the emitted gamma radiation is made with 200 m line 
spacing with denser and sparser measurements. The interpolation had 
been made into a grid with squares of 200 m times 200 m with a 

Table 1 (continued ) 

Reference Purpose Data size Model Performance 

[10] Map geogenic 
radon potential 

1,452 
indoor 
radon 
records in 
Danyang- 
Gun, South 
Korea 

Long short-term 
memory, Extreme 
learning machine, 
Random factor 
function link 

AUC =
0.824 
RMSE =
0.209 
StD = 0.207  
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blanking distance of 1000 m to avoid gaps in the image where the line 
distance is 800 m. The measured values in a measuring point repre
sented the weighted average of three mean values over a larger area on 
the ground using the inverse distance weighting interpolation [27]. 
Similarly, the soil types were acquired from the SGU soil type database 
in the spatial measurement formats scaling between 1:25 k-1:100 k. 
These polygons were described by soil type code, specification, and 
collection methods for upper and foundation layers [28]. The matching 
uncertainty was minimized by evaluating the number of measurements 
when combining the geological data and the property registers. 

5. Methods 

The acquired data were processed according to a three-fold proced
ure presented in Fig. 1. 

5.1. Data assembling and preprocessing 

Assembling and preprocessing the raw data were performed with the 
FME (Feature Manipulation Engine) and Python’s libraries Numpy and 
Pandas, which is a data integration platform enabling spatial data 
transformation [29]. Using the real estate index and the address in the 
indoor radon records, the property registers and the geogenic informa
tion of the measured buildings could be extracted and matched. After 
that, based on the building use type code from the municipal cadastral 
register, the data were grouped into four building classes – single-family 
houses, multifamily houses, school buildings, and other buildings (i.e., 
commercial and office buildings) – to ensure relatively homogeneous 
building characteristics in each subgroup. When evaluating the validity 
of the indoor radon measurements, the method descriptions of indoor 
radon measurement for residential buildings, workplaces, and public 
premises [25,26,30] were referred to. The indoor radon measurements 
that did not conform with the guideline, such as those measuring less 
than two months or during the non-heating seasons and those conducted 
before 2000, were removed. Buildings built before 1930 and after 2020 
were also eliminated to decrease the uncertainty of the measurement 
data. 

Moreover, Swedish building stock built between 1930 and 1980 
containing possibly radioactive concrete, which releases 20–25 times 
more radon gas than ordinary concrete, is a limitation of this study due 
to insufficient records in property registers [3]. The 270 properties 
known to be built with radioactive concrete based on the inspection 
records in municipality indoor radon datasets were removed, but the 

situation of radioactive concrete in most of the buildings in the compiled 
indoor radon dataset remained unknown. Afterward, the interquartile 
range (IQR) method was carried out on the radioactive substances 
concentrations to detect the outliers in the data analysis and visualiza
tion. This results in 114,857 observations, and a subset of 34,983 indoor 
radon measurements after 2015 with higher certainty in registers 
matching were retrieved for modeling. The rest of the data were cate
gorized into three intervals: low (0–200 Bq/m3), medium (200–400 
Bq/m3), and high (above 400 Bq/m3), corresponding to the existing 
regulatory indoor radon thresholds [3]. 

5.2. Machine learning models development 

Machine learning models for multi-class classification tailored for 
different building classes were built to predict indoor radon intervals 
using Python skikit-learn, imbalanced learn, and H2O AutoML libraries. 
In both XGBoost and DNN models, softmax was used as the output 
activation function, where logits were turned into probabilities sum
ming to 1 and the class with the highest probabilities became the pre
diction results. The objective of the training was to minimize the 
categorical cross-entropy loss function calculated based on the softmax 
outputs. Fig. 2 presents the general architecture of the machine learning 
model, including data subgroups, input variables, hidden layers or 
bootstrap samples, and prediction outputs. The predictors for the indoor 
radon levels involved geological attributes, i.e., radioactive substances 
concentrations and lithological units, and anthropic parameters, i.e., 
building information. The motivations for such feature selection were 
based on the literature [14–17] and the results from a previous study 
concerning multivariate adaptive regression splines and random forest 
regression [19]. The strong positive correlation between gamma radia
tion from uranium and indoor radon concentration was confirmed [20], 
yet the impacts of potassium and thorium required further investigation. 
Soil types also appeared to have a subtle influence on indoor radon; 
hence, the 13 most common soil types were included [2]. Among 
building parameters, exhaust and balanced ventilation regulated indoor 
radon concentration downwards substantially, while natural ventilation 
had the opposite effect [31–33]. The second influencing factor was the 
foundation [16,17,34]. However, this information was unavailable in 
the registers and could only be approximately inferred from the number 
of basements (or the number of floors below ground) and the ground 
types where the buildings were situated. Since the annual average in
door radon concentration was calculated from indoor radon measure
ments in the ground floor, basement, and selective upper floors in 

Fig. 1. Study outline.  
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multifamily houses and all measurements in single-family houses [26], 
the number of floors should be considered. Construction year and floor 
area indicated the use of building materials and construction practices, 
but also outdoor air ventilation that affected the indoor environment 
[13]. 

In view of the broad sampling of indoor radon measurements across 
the geographical stretch, time horizon, and the unavailability of indoor 
environment climate data of the observed buildings, the impact of 
meteorological attributes, such as temperature and humidity, was sur
rogated through coordinates and geographical adjustment factors 
(FGeo) [35]. The foundation of the geographical adjustment factors was 
based on Sweden’s municipal division and the four existing climate 
zones to harmonize climate conditions in various locations of the 
country with 12 scales ranging from 0.8 to 1.9. By applying the 
geographical adjustment factors to the models, the spatial dependence 
across data could be controlled, and the regional climatic variance could 
be minimized on the national scale. 

Each of the building class subgroups was first split into 80% training 
and 20% validation subsets by stratifying similar label proportions of the 
dependent variables. To extract key features for indoor radon interval 
prediction, raw and derived variables were employed in feature selec
tion algorithms based on the F-statistics, which measured the ratio of 
paired variances and correlation between labels and features [24]. The 
number of apartments and stairwells were not used as features in 
modeling school and other building subgroups due to large numbers of 
missing values. To address uneven class distribution, sample weights 
adjusted inversely proportional to class frequency in the input data were 
attached to XGBoost and DNN algorithms, and the imbalanced labels 
were resampled with Synthetic Minority Oversampling TEchnique 
(SMOTE) technique to oversample the minority classes for cost-sensitive 
learning. Meanwhile, missing values of the features were imputed by the 
five nearest neighboring values, then trained with 5-fold 
cross-validation with random grid search for optimal hyperparameter 
configurations. The training stopped when the log loss (cross-entropy 
loss, a measure to quantify the difference between predicted probabili
ties and actual values) started to increase again in the tuning process for 
model fit evaluation between training, cross-validation, and validation. 

Then lead XGBoost and DNN models with the highest macro-F1 score 

(the unweighted arithmetic mean of the F1 scores calculated per class in 
imbalanced datasets for an objective model evaluation [36]) and the 
lowest mean per class errors from the confusion matrix were employed 
in the validation subset to estimate their prediction performance for the 
unseen data. Then the ROC AUC scores (area under the receiver oper
ation curve plotting true positive against false positive rates) were 
computed using the one-vs-rest classification method, a heuristic tech
nique splitting a multi-class dataset into multiple sets of binary prob
lems, to determine the degree of separability of the labels by all possible 
thresholds for each indoor radon interval. Lastly, the feature importance 
based on prediction outputs was plotted for each building class to 
improve model interpretation. 

5.3. Indoor radon interval prediction 

The lead prediction models were applied to the rest of the building 
registers to estimate indoor radon intervals for each building class in 
buildings not yet measured. Performing such an inference was possible 
because the predictive models were trained with indoor radon mea
surements from large quantities of dwellings over decades; thus, the 
measured buildings were regarded as representative of the regional 
building stock. The metropolitan regions of Stockholm, Gothenburg, and 
Malmo regions, where most indoor radon measurements were collected, 
were used as a case study to demonstrate indoor radon interval pre
diction. The 257,781 property registers of the 48 municipalities were 
retrieved from the latest EPCs, of which duplicated and invalid entries 
were removed and supplemented with the geogenic information. The 
features of the buildings that had not yet conducted indoor radon 
measurements were supplied to the developed models for prediction. 
Further on, the models were also applied to the buildings with indoor 
radon measurements to ascertain the model uncertainty by comparing 
the prediction outcomes with the actual statistics. Compiling the sta
tistical and estimated shares, the overall indoor radon interval distri
bution was summarized by building classes for regional building stocks. 

6. Results 

The results are presented in three consecutive parts: (1) data analysis 

Fig. 2. The general architecture of the machine learning models with input data from building parameters (green), geogenic attributes (blue), and geographic factors 
(gray). The dataset was partitioned according to the building class and a DNN and a XGB model were created for each data subgroup. Indoor radon level indicators = f 
(construction year, floor area, basements, number of floors, stairwells, and apartments, ventilation type, potassium, thorium, and uranium concentrations, soil type, coordinates, 
geographical adjustment factors). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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and visualization, (2) predictive model evaluation, and (3) indoor radon 
interval estimation. 

6.1. Data analysis and visualization 

The spatial and statistical distribution of the indoor radon mea
surement records were investigated to determine the representativeness 
of the training dataset in relation to the Swedish building stock. Fig. 3 
below illustrates the spatial characteristics of the indoor radon dataset, 
including the distribution of measurements against geographical 
adjustment factors, the mean annual average indoor radon concentra
tions, and the ground uranium concentration across municipalities. The 
results showed that the indoor radon measurements in the study were 
distributed approximately according to the density of the built-up areas. 
The majority of the samples were derived from the Stockholm region, 
followed by southwest coast regions and some along the east coastline to 
the north. Further comparing the nationwide mean indoor radon con
centrations and the average uranium concentrations, their spatial as
sociation was confirmed in the locations of corresponding color patches. 
Municipalities with a higher ground uranium concentration could 
possibly imply higher indoor radon levels, which could be seen in some 
municipalities located in the middle south part of Sweden with larger 
sample sizes. Nevertheless, some exceptions existed and thus uranium 
concentration could not be regarded as a single indicator for indoor 
radon inference. 

The subsequent multivariate analysis explored variable interaction 
and underlying patterns in the dataset. Table 2 presents a statistical 
description of the 114,857 indoor radon measurements based on their 
building classes. The confidence interval of the annual average indoor 
radon concentration lay at 110 ± 1 Bq/m3 and around 12% of obser
vations exceeded the reference limit of 200 Bq/m3. Among building 
classes, single-family houses were measured at a higher mean indoor 
radon concentration of 118 Bq/m3 and the share above limit was also 
the largest, nearly 14%. The largest standard deviations of the mean 
indoor radon concentration were found in other buildings. In general, 
the statistics of indoor radon measurements in multifamily houses 
aligned with those of the total observations. The mean indoor radon 

concentration in school buildings tended to be the lowest, which is 
probably related to constant indoor radon monitoring under the Act of 
Environmental Goals [7]. 

Fig. 4 below illustrates the average indoor radon concentration for 
all buildings and respective building classes in relation to the con
struction year. The distribution of the sample in gray staples conformed 
to the historical timeline of building production in Sweden with the 
construction peak between 1960 and 1970 and the 1990s, indicating the 
samples were representative of the national building stock. Each bin 
implied a year and the sample size could be used to evaluate the cer
tainty of the calculated mean. The line chart showed a mild downward 
trend of the mean indoor radon concentration for all buildings since 
1960. Among building classes, post-war dwellings built between 1950 
and 1980 tended to have higher indoor radon concentrations. The in
door radon concentrations in single-family houses and multifamily 
houses were nearly parallel to the baseline. For schools and other 
buildings, the variation of indoor radon concentration was higher, in 
particular, in hose buildings built before 1945 and after 1995, which 
entailed a higher measurement uncertainty of these subgroups in the 
dataset. 

The impact of building parameters on the indoor radon concentra
tion for each building class is illustrated in Fig. 5. The sample random
ness was examined by plotting the kernel density, quantile summary, 
and data distribution. The findings showed long-tailed value distribu
tions irrespective of building class. From the distribution of the median 
values in the boxplots, it was observed that buildings with basements are 
generally prone to have higher indoor radon concentration than those 
without, especially in single-family houses and school buildings. 
Compared to natural ventilation, balanced and exhaust ventilation could 
slightly mitigate indoor radon concentration. The effect of ventilation on 
regulating indoor radon concentration was more evident in buildings 
without the basement, and the findings were consistent across building 
classes. Lastly, the scale of the heated area did not seem to correlate with 
indoor radon concentrations given random distribution of the values in 
the strip plots. 

Fig. 3. Spatial characteristics of the available indoor radon measurements: (i) distribution of the indoor radon measurements across geographical adjustment factors; 
(ii) mean annual average indoor radon concentration in decile intervals; (iii) mean uranium concentration in decile intervals. 
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6.2. Predictive models evaluation 

Fig. 6 summarizes the performance evaluation of the predictive 
models from cross-validation and validation. Overall, the XGBoost 
models had significantly better performance than the DNN models with 

an average of 0.93 macro-F1 for single-family houses, 0.95 for multi
family houses, 0.94 for school buildings, and 0.96 for other buildings. 
The corresponding log loss and mean-per-class errors lay between 0.15- 
0.20 and 0.05–0.07. In comparison, DNN models only attained 
0.64–0.74 macro-F1, and their log loss and mean per class error were 

Table 2 
Statistics of the indoor radon measurements at the property level by building classes.  

Building class Single-family house Multifamily house School building Other building Total 

Count (%) 53,533 (47%) 49,139 (43%) 5,660 (5%) 6,525 (5%) 114,857 (100%) 
Radon range (Bq/m3) [0–26,025] [0–21,750] [1–2610] [1–65,424] [0–65,424] 
Avg. radon (Bq/m3) 118 ± 2 105 ± 1 98 ± 3 105 ± 20 110 ± 1 

Above limit 13.9% 11.7% 9.4% 8.9% 12.4% 

Low level 86.1% 88.3% 90.6% 91.1% 87.5% 
Medium level 11.1% 9.3% 7.0% 6.2% 9.9% 

High level 2.8% 2.4% 2.4% 2.7% 2.6%  

Fig. 4. The development of the mean annual average indoor radon concentration in Sweden by building classes with data count at the property level.  

Fig. 5. The impact of building parameters on the indoor radon concentrations by building class: (i) density distribution of indoor radon concentration; (ii) the 
quantile value distribution of indoor radon concentration clustered by basements and ventilation types; (iii) the distribution of the heated floor area intervals. 

Fig. 6. Average performance of the prediction models from cross-validation and validation subsets adjusted with sample weights and resampling.  

P.-Y. Wu et al.                                                                                                                                                                                                                                  



Building and Environment 245 (2023) 110879

8

substantially higher. Both algorithms performed coherently better in 
predicting indoor radon intervals in multifamily houses and other 
buildings than in single-family houses and school buildings. Higher 
mean-per-class error rates were observed for medium labels than the 
average error rates in the confusion matrix. Considering the model 
robustness and performance, the subsequent upscaling prediction was 
conducted with the lead XGBoost models with the hyperparameter set
tings in Appendix B. 

To determine the effect of resampling on the model’s efficiency for 
label distinguishment, the probability distribution and the AUC were 
computed for the original and the oversampled datasets in Fig. 7. The 
AUC improved considerably after applying resampling that implied 
effective adjustment of the class imbalance, i.e., single-family houses 
(AUC = 0.77, resampled AUC = 0.98), multifamily houses (AUC = 0.84, 
resampled AUC = 0.99), school buildings (AUC = 0.70, resampled AUC 
= 0.97), other buildings (AUC = 0.72, resampled AUC = 0.98). The 
highest AUC in the original dataset was found in multifamily houses (≈
0.85), followed by single-family houses (≈ 0.77), other buildings (≈
0.72), and school buildings (≈ 0.70), of which more low and high labels 
are predicted correctly than the medium label. 

The key features for indoor radon interval classification were ranked 
according to the aggregated feature importance of XGBoost models in 
Fig. 8. Building physical footprint (area per floor), floor area, and con
struction year were common critical features for all building classes. 
Other features such as latitude, exhaust ventilation, longitude, uranium 
concentration, basements, geographical adjustment factors, and natural 
ventilation contributed less but still played important roles. Natural 
ventilation was by far the most crucial variable for single-family houses, 
while construction year and building physical footprint were essential 
for multifamily houses. On the contrary, the key features associated with 
school buildings were basements, area, and building physical footprint. 
The features related to other buildings were less pronounced, i.e., area, 
geographical adjustment factor, building physical footprint, and exhaust 
ventilation. 

6.3. Indoor radon interval estimation in metropolitan buildings 

The models trained on the national radon measurements were 
regarded as the base models for evaluating model generability when 
transferring to the regional scale. Due to the non-existence of certain soil 
types in the metropolitan regions, the fine-tuned XGBoost models had to 
be re-adapted to fit the metropolitan dataset containing 14,419 obser
vations before predicting the unmeasured buildings in the same mu
nicipalities. To ascertain model sensitivity, the prediction performance 
was provided: single-family houses (macro-F1: 0.93), multifamily 
houses (macro-F1: 0.95), school buildings (macro-F1: 0.95), and other 
buildings (macro-F1: 0.96). These model performances were nearly 
equal to the previous results in Fig. 6 and thus the models were adopted 
for indoor radon interval estimation in metropolitan building stocks. 

To verify the prediction outcomes, a statistical summary of the his
torical indoor radon measurement records in the Swedish metropolitan 
building stocks was compiled. The retrieved properties from the Stock
holm, Gothenburg, and Malmo metropolitan regions accounted for circa 
32% of the declared building stock in terms of the number of properties. 
The average indoor radon measurement rate was around 23%, where 
the Stockholm region building stock had the highest indoor radon 
measurement rate (31%) while the Malmo region building stock had the 
lowest and the findings were consistent in all building classes. Around 
half of the multifamily houses (51%) and school buildings (49%) were 
measured, yet only 15% of single-family houses and 18% of other 
buildings had indoor radon records. The low measurement rate in single- 
family houses was in good agreement with the literature [4], confirming 
the representativeness and validity of the prediction dataset to the entire 
building stock. 

Table 3 below shows the indoor radon interval distribution by 
building classes and metropolitan regions: the statistical shares from 

historical measurements, the predicted shares for measured buildings, 
and the predicted share for non-measured buildings. The findings 
showed that the distribution of predicted shares for measured buildings 
was close to the ground truth of statistical shares. However, the models 
tended to misclassify 2–3% medium labels to low labels. Possible rea
sons for misclassification could be the low number of high indoor radon 
labels in the training data, outliers owing to measurement errors, and 
the lack of radioactive concrete records in the feature sets, thus causing 
prediction errors for certain classes. This uncertainty should be consid
ered when evaluating the estimated label distribution in the non- 
measured buildings, whose indoor radon situations were predicted less 
serious than those measured ones. The results were regarded as 
reasonable since measurements could be more likely conducted in in
door radon-prone buildings. 

7. Discussion 

The first section discusses the result implications regarding model 
training and prediction, then continues with data limitations and 
methodological challenges. Subsequently, the results of the study were 
compared with the previous study to discuss the model’s performance 
and generability. The last part of the section highlights the benefits, 
limitations, and contribution of the research outcomes to indoor radon 
interval estimation. 

Based on the nationwide indoor radon measurement records and 
property registers, critical variables to the indoor radon concentration 
and their distribution in buildings were delineated. In the past decades, 
indoor radon measurements were conducted more frequently in resi
dential and public buildings, representing circa 95% of observations in 
the training dataset. The multivariate analysis provided an in-depth 
statistical overview of the measured properties by building classes that 
complement the current indoor radon knowledge in dwelling buildings 
and contributed to a new understanding of indoor radon status in non- 
residential buildings. The measured indoor radon ranges, the average 
indoor radon concentrations, and the share above 200 Bq/m3 limit of the 
single-family houses and multifamily houses groups in Fig. 1 were in 
good agreement with the literature, i.e., the ELIB survey [6], the BETSI 
survey [7], and the SSM report [2]. Further computing indoor radon 
interval distributions between the training, the validation, and the 
metropolitan subset showed similar patterns, indicating that the training 
data, despite the concern of potential sampling bias, were still repre
sentative of the Swedish building stock. 

In this multi-class classification task, both machine learning models 
were able to predict the indoor radon interval to various extents 
depending on building classes. The cross-validation and validation loss 
decreased approximately in parallel to each other, which entailed the 
models were neither overfitting nor underfitting. The XGBoost attained 
macro-F1 of 0.93–0.96, while the DNN models only reached macro-F1 of 
0.64–0.74. The highest F1 and AUC were found in multifamily houses 
and the patterns were consistent across models. This may be explained 
by the local loss minimization in small datasets that were not deficient 
for neural network training. Several previous studies about the algo
rithm comparison between XGBoost and DNN also reached a similar 
conclusion in regression and image classification tasks [37]. Compared 
to the XGBoost models, the DNN models required more training itera
tions to reach comparable loss values [22]. 

To the authors’ knowledge, the paper is the first study approaching 
indoor radon prediction with multi-class classification. Former studies 
focused on indoor radon regression and could unfortunately not be used 
as a baseline for comparison. Due to this reason, two types of machine 
learning models were developed to benchmark their performance, and 
the trained models were transferred to predict indoor radon interval 
distribution for measured and non-measured buildings in comparison 
with the actual distributions. In model evaluation, the confusion matrix 
showed around 8–11% medium-level misclassification, whereas the 
corresponding error rates for low-level and high-level are 2–8% and 
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Fig. 7. Probability distribution and AUC scores for one-vs-rest classification by building classes, where the three plots on the left were computed with the original 
imbalanced dataset and the three plots on the right with the resampled dataset. 
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2–3%. These results may be attributed to the fact that models were 
trained on the training set assuming no presence of radioactive concrete; 
however, radioactive concrete buildings existed in the metropolitan 
prediction dataset and might explain the lower shares of medium levels 
in prediction. A previous study found that the average indoor radon was 
63% higher in radioactive concrete-containing buildings than those 
built without depending on the amount of radium content and the extent 
of radioactive concrete in buildings [13]. Other errors could be due to a 
lack of crucial features, such as foundation types and the presence of 
radioactive concrete [3], or inaccuracy of the response variable, such as 
measurement errors in the data source, and unavailable information 
about measurement places. To address the former issue, more extensive 

building parameters need to be collected in the registers; while for the 
latter issue, multiple measurement records and details should be made 
available for further data quality check. A possible solution to improve 
the model fit while reducing the misclassification is adding regional 
factors in data partition and model training, i.e., regional boundary, and 
more measurement records of medium and high indoor radon in model 
training. Plotting the indoor radon intervals in the metropolitan regions 
later verified the assumption as the patterns varied significantly be
tween regions than building classes, which may be attributed to regional 
governance supervising and providing subsidies for indoor radon 
monitoring and remediation. This in turn resulted in varied indoor radon 
measurement frequency and data availability causing inevitable 

Fig. 8. Variable importance of indoor radon interval classification by building classes.  

Table 3 
Estimation of the indoor radon interval distribution in the Swedish metropolitan regions by building classes in three parts-the statistical shares from historical 
measurements, the predicted shares for measured buildings, and the predicted share for non-measured buildings.  

Region Stockholm Gothenburg Malmo Stockholm Gothenburg Malmo Stockholm Gothenburg Malmo 

Class Single-family house 

Radon Actual measured Predicted measured Predicted non-measured 

%count 0.21 0.08 0.06 0.21 0.08 0.06 0.79 0.92 0.94 
N 20,769 4,014 2,580 20,769 4,014 2,580 77,000 44,457 38,868 

%low 87 94 94 91 97 95 94 99 97 
%medium 11 5 5 7 2 4 4 1 2 

%high 2 1 1 2 1 1 1 0 1  

Multifamily house 
Actual measured Predicted measured Predicted non-measured 

%count 0.66 0.38 0.22 0.66 0.38 0.22 0.34 0.62 0.78 
N 18,819 4,685 2,076 18,819 4,685 2,076 9,634 7,639 7372 

%low 91 88 97 94 85 99 97 94 100 
%medium 8 10 2 5 13 1 2 6 0 

%high 1 2 1 1 2 0 1 0 0  

School building 
Actual measured Predicted measured Predicted non-measured 

%count 0.63 0.52 0.30 0.63 0.52 0.30 0.37 0.48 0.70 
N 1,820 695 324 1,820 695 324 1,072 634 739 

%low 88 95 97 90 97 100 95 99 100 
%medium 8 4 2 7 2 0 3 1 0 

%high 4 1 1 3 1 0 2 0 0  

Other building 
Actual measured Predicted measured Predicted non-measured 

%count 0.25 0.18 0.10 0.25 0.18 0.10 0.75 0.82 0.90 
N 1,977 670 310 1,977 670 310 5,860 2,988 2815 

%low 89 95 98 93 96 100 96 99 100 
%medium 8 4 2 5 3 0 2 1 0 

%high 3 1 0 2 1 0 2 0 0  
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selection bias in the training dataset. 
The proposed approach for estimating the indoor radon intervals on 

the urban scale from the register records has its limitations and benefits 
that are mostly related to data uncertainty. As the indoor radon mea
surements were reported along with the EPC, the records were aggre
gated, and the annual average indoor radon measurement may include 
several buildings in which energy performance was calculated together. 
Such data quality problem was more likely to occur in complex building, 
for instance, multifamily houses and school buildings, but less affecting 
single-family houses. To avoid modeling duplicated measurement re
cords, the prediction was determined at the property level to keep 
unique measurements by address and real estate index. On the other 
hand, the benefit of including indoor radon measurements over the 
years for all building types was maintaining a comprehensive and 
representative training dataset that reflected the diversity of indoor 
radon measurements in reality. A large amount of training data also 
prevented the model from overfitting and retaining sufficient samples 
for the minority class. The cost-sensitive algorithms adjusted with 
sample weights and trained on the resampled dataset were found 
effective in addressing the class imbalanced problems [21,22] [37], that 
were reflected by high macro-F1 and AUC and validated through com
parable distributions of indoor radon intervals between estimated and 
statistical shares. 

The indoor radon problem is contextually diverse. Researchers of 
various domains have tried to model the geogenic and indoor radon 
development for risk screening, monitoring, and remediation. Various 
data-driven approaches were explored for specific purposes with 
required prediction performance to satisfy their application scope. 
Screening the indoor radon levels was usually performed on the national 
or regional scale, while active indoor radon monitoring and remediation 
mandates immediate action was executed within a particular building. 
Former research explored indoor radon concentration prediction using 
kernel regression [16] and random forest [17] and explained 28% and 
33% variations based on more than 238,000 observations. With more 
than 1.2 million data [18], obtained a 37% coefficient of determination 
with regression kriging interpolation. In the study, around 34,983 latest 
indoor radon measurements were split into four building class subsets to 
train XGBooost and DNN models and obtained macro-F1 of 0.93–0.96 
and AUC of 0.97–0.99 in classifying indoor radon intervals. Although 
these evaluation metrics for classification could not be directly 
compared with R2, it was still undeniable that the models attained 
exceptionally high performance. Since indoor radon prediction was 
never positioned as a classification problem, the model performance 
could not be benchmarked with those regression models in literature but 
rather provided a reference of the classification models for future 
studies. The limitations of existing regression methods were low co
efficients of determination and limited data granularity on geographical 
regions, whereas the proposed classification methods did not predict the 
exact values but rather a range for building properties. Whether to 
approach indoor radon prediction from classification or regression 
should be determined by prediction purposes and the use of prediction 
outcomes. With much fewer data amounts than the previous studies and 
less extensive feature sets, the results were fairly satisfactory for esti
mating indoor radon exposure assessment. To further improve the model 
performance for long-term prediction, models could be revised for spe
cific municipality or district applications using input data from a shorter 
measurement timeframe. This was expected to reduce measurement or 
evaluation errors related to heterogeneous regional and building attri
butes from the aggregated measurements in registers. 

Another workaround is to combine human experts and soft proba
bility outputs from machine learning models in indoor radon level 
assessment [38]. More specifically, the prediction outcomes returned 
prediction probabilities of the response variables over the indoor radon 
intervals and allowed human experts to evaluate the observations with 
even probability distribution close to class thresholds. The drawback of 
the hybrid solution is that it demands extra resources to control 2–3% 

uncertain samples, however, the classification results will be more 
reliable with double evaluation. This study contributed to the initial 
assessment of the current indoor radon situation and enhanced under
standing of the indoor radon-related attributes in each building class. 
Given any individual building registers from the indoor radon unmea
sured buildings, the developed models can generate a suitable level in
dicator, and even the probability distribution across three level 
indicators with subtle alteration, to guide prioritizing onsite measure
ments for the indoor radon-prone buildings for national and local au
thorities. The proposed approach can be replicated in countries where 
indoor radon measurements, property registers, and geogenic informa
tion are available. 

8. Conclusions 

Low awareness of indoor radon concentrations simply because of low 
shares of Swedish building stock with indoor radon measurement re
cords and no mandatory requirements on indoor radon measurements, 
but also the complexity and cost of technical measures to reduce radon 
concentrations, are two major reasons for comprehensive indoor radon 
remediation. This paper proposed and investigated the applicability of 
machine learning multi-class classification models adjusted with mi
nority class resampling for the identification of indoor radon patterns in 
the Swedish building stock based on historical measurement records. 
The novelty of the paper lies in demonstrating the machine learning 
modeling workflow and enabling the estimation of the shares of building 
stock potentially prone to indoor radon exposure for prioritizing onsite 
measurements. By enhancing the prediction granularity to the property 
scale and refined machine learning models on the basis of building 
classes, the study contributed to a diagnostic overview of the status quo 
of indoor radon conditions, and also the predictive analysis for proper
ties that did not have indoor measurements. According to the tree 
booster models, the building physical footprint, heated floor area, and 
construction year were key factors for indoor radon interval prediction. 
Other factors such as latitude, exhaust ventilation, longitude, uranium 
concentration, basements, geographical adjustment factors, and natural 
ventilation were also contributing factors. The XGBoost outperformed 
DNN with high macro-F1 and AUC in all building classes based on the 
results from the cross-validation set and validation set; thus, they were 
used for upscaling prediction in the regional building stocks. To verify 
the models’ reliability, the prediction outcomes of the measured build
ing registers were benchmarked with their actual label distributions in 
statistical summary, and the results were approximately consistent with 
minor variance. Furthermore, employing the lead XGBoost models to 
unmeasured buildings in the Stockholm, Gothenburg, and Malmo re
gions, the estimation of indoor radon intervals was generated and 
compared with the rest of the historical measurements. Future studies 
are suggested to develop machine learning models tailored for smaller 
geographical areas, i.e., municipality or county, to reduce input data 
uncertainty of indoor radon measurements, as well as apply models in 
case studies for real-world validation. 

Funding 

This work has received funding from the Swedish Foundation for 
Strategic Research (SSF) [FID18-0021] and the Maj and Hilding Brose
nius Research Foundation. 

Institutional review board statement 

Not applicable. 

Informed consent statement 

Not applicable. 

P.-Y. Wu et al.                                                                                                                                                                                                                                  



Building and Environment 245 (2023) 110879

12

CRediT authorship contribution statement 

Pei-Yu Wu: Writing – review & editing, Writing – original draft, 
Methodology, Investigation, Formal analysis, Conceptualization. Tim 
Johansson: Writing – review & editing, Supervision, Investigation, Data 
curation. Claes Sandels: Writing – review & editing, Supervision, 
Methodology. Mikael Mangold: Supervision, Project administration, 
Writing - review & editing. Kristina Mjörnell: Writing – review & 
editing, Supervision, Project administration, Funding acquisition. 

Declaration of competing interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

The authors do not have permission to share data. 

Acknowledgments 

The research work is part of the PhD project “Prediction of Hazard
ous Materials in Buildings using Machine Learning”, supported by RISE 
Research Institutes of Sweden.  

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.buildenv.2023.110879. 

Appendix A  

Table A1 
Overview of the indoor radon database.  

Category Data specification Measurement type 

1. Matching keys and sorting Real estate index String + Nominal 
EPC index Nominal [7-digit] 

Coordinates Nominal [Long, Lat] 
Address String 

2. Cadestral informaiton County code Nominal [] 
County name String 

Municipality code Nominal [1–93] 
Municipality name String 

3. Building characteristics Building age Scale variable [Year] 
4. Building usage Building usage category code Nominal [1–7] 

Building usage type code Nominal [1–99] 
Building category Nominal [Single- or two-family house, Multifamily house, Other building] 

Detailed usage of the building Share of the building used for the 12 most common types 
5. Building area Building size (living space) Scale [m2] 

Heated floor area (Atemp) Scale [m2] 
Number of floors Ordinal 

Number of stairwells Ordinal 
Number of apartments Ordinal 

Number of floors below ground Ordinal 
6. Ventilation Ventilation type Nominal [Exhaust, balanced, balanced with heat exchanger, Exhaust with heat pump, natural ventilation] 

7. Indoor adon measurement Indoor radon measurement date Timestamp [Year-month-day] 
Indoor radon measurement type Scale [Long time measurement, other methods] 

Indoor radon concentration Scale [Bq/m3]  

Appendix B  

Table B1 
Configuration of the hyperparameters of the lead XGBoost classifiers for indoor radon interval prediction in the metropolitan building stocks.  

Hyperparameters Single-family house Multifamily house School building Other building 

Learning rate 0.3 0.3 0.3 0.3 
Gamma 0 0 0 0 

Max depth 10 15 15 9 
Subsample 0.6 0.6 0.8 0.6 
No. trees 124 159 109 128  
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