
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

From Monte Carlo PET Simulations to Reconstructed Images

Modelling and Optimisation for 68Ga Theragnostics
Kalaitzidis, Philip

2023

Document Version:
Other version

Link to publication

Citation for published version (APA):
Kalaitzidis, P. (2023). From Monte Carlo PET Simulations to Reconstructed Images: Modelling and Optimisation
for 6 8Ga Theragnostics. [Doctoral Thesis (compilation), Medical Radiation Physics, Lund]. Tryckeriet i E-huset,
Lunds universitet.

Total number of authors:
1

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://portal.research.lu.se/en/publications/d9af6d00-aa54-4ded-89a2-dd3ff4ec9f64


From Monte Carlo PET Simulations

to Reconstructed Images

Modelling and Optimisation for 68Ga Theragnostics

PHILIP KALAITZIDIS

MEDICAL RADIATION PHYSICS, LUND

FACULTY OF SCIENCE | LUND UNIVERSITY

Prin
ted

 b
y Tryckeriet i E-h

u
set, Lu

n
d

 2023

PH
ILIP K

A
LA

ITZID
IS

Fro
m

 M
o

n
te C

arlo
 PET Sim

u
latio

n
s to

 R
eco

n
stru

cted
 Im

ag
es —

 M
odelling and O

ptim
isation for 68G

a Theragnostics

Medical Radiation Physics, Lund
Faculty of Science

ISBN 978-91-8039-879-4 (print)
ISBN 978-91-8039-878-7 (electronic)

             
2023





1 

From Monte Carlo PET Simulations to Reconstructed Images 

  



2 

  



3

From Monte Carlo PET Simulations 
to Reconstructed Images

Modelling and Optimisation for 68Ga Theragnostics

Philip Kalaitzidis

DOCTORAL DISSERTATION
Doctoral dissertation for the degree of Doctor of Philosophy (PhD) at the Faculty of Science at Lund 

University to be publicly defended on the 01 of December, 2023, 09.00, at Skåne University 
Hospital, Lund, in lecture hall F1 Blocket.

Faculty opponent
Professor Mark Lubberink

Department of Surgical Sciences, Radiology; Nuclear Medicine and PET, Uppsala University, 
Sweden.



4

Organization: LUND UNIVERSITY

Document name: DOCTORAL DISSERTATION Date of issue: 2023-11-01

Author(s): Philip Kalaitzidis Sponsoring organization:

Title and subtitle: From Monte Carlo PET Simulations to Reconstructed Images: Modelling and Optimisation for 
68Ga Theragnostics.

Abstract:

In nuclear medicine, radiopharmaceuticals can be administered for both diagnostic and therapeutic purposes. In recent years, there 
has been an increasing interest in theragnostics, a strategy that combines both diagnosis and therapy. This can be achieved by using 
similar radiopharmaceuticals for imaging and radionuclide therapy, which enables highly personalised disease management. One 
theragnostic application is for the diagnosis and management of neuroendocrine tumours, where the diagnosis and subsequent 
therapy stratification often relies on a qualitative evaluation following [68Ga]Ga-DOTA-TOC PET imaging, with [177Lu]Lu-DOTA-
TATE radionuclide therapy being a potential treatment option. In this case, peri-therapeutic SPECT imaging enables for the disease 
to be closely monitored during therapy. There is growing interest in utilising quantitative metrics to identify the most suitable 
candidates for radionuclide therapy and to subsequently perform individualised dosimetry. Consequently, it is important to 
understand potential limitations in the image acquisition process that will impact the accuracy and precision of quantitative 
estimates, and one effective method to do so is through Monte Carlo simulations.

This thesis is based on four papers utilising Monte Carlo simulations, with a focus on modelling and optimising for 68Ga-PET 
theragnostics. Paper I explores the possibility of modelling and simulating a clinical GE Discovery MI PET system and coupling 
simulated data with a reconstruction software, entirely in silico, to enable further simulation-based studies. The implementation of 
correction factors emulates the process used in clinical scanners for a more realistic approach. The model successfully generates 
results comparable to those obtained from a corresponding measurement on a clinical scanner. Papers II, III, and IV focus on 68Ga-
PET imaging of neuroendocrine tumours, with Papers III and IV also incorporating 177Lu-SPECT imaging. Anthropomorphic 
phantoms were utilised to enable the simulation of [68Ga]Ga-DOTA-TOC PET and [177Lu]Lu-DOTA-TATE SPECT exams with 
patient-like geometries and activity distributions. In Paper II, it was shown that a non-linearly scaled administered activity based on 
patient weight harmonises image quality, regardless of patient body size. A harmonised image quality is important to ensure that 
all patients receive an equal standard of care. Paper III investigated the potential impact of respiration on quantitative estimates in 
[68Ga]Ga-DOTA-TOC PET and [177Lu]Lu-DOTA-TATE SPECT imaging. The extent of lesion motion substantially influenced the 
recovered lesion activity concentration, with deviations exceeding 30% from the simulated activity concentration. Furthermore, 
differences in quantitative bias were observed between PET and SPECT imaging, primarily attributed to the different imaging time 
points. In Paper IV, efforts were undertaken to elevate the realism of simulated patient models, enabling the creation of highly 
realistic simulated images. The ability to generate realistic images holds great future potential, as it allows for the construction of 
databases of simulated reconstructed images with known ground truth. These databases can serve various purposes, including 
software performance evaluation and integration with machine learning. In conclusion, the use of a computational pipeline that 
connects Monte Carlo simulations with a reconstruction software enables simulation-based studies of entire PET-exam procedures 
to be conducted. Access to the underlying data driving the simulations makes it possible to isolate individual parameters and track 
their impact on the results, allowing for a systematic evaluation of in vivo confounders entirely in silico.

Key words: Anthropomorphic phantoms, Monte Carlo modelling, Nuclear medicine, PET, SPECT, Theragnostics, 
Tomographic Reconstruction 

Classification system and/or index terms (if any) Supplementary bibliographical information

Language English ISSN and key title: 

ISBN: ISBN 978-91-8039-879-4 (print)

       ISBN 978-91-8039-878-7 (electronic)

Recipient’s notes Number of pages: 86

Price Security classification

I, the undersigned, being the copyright owner of the abstract of the above-mentioned dissertation, hereby grant to 
all reference sources permission to publish and disseminate the abstract of the above-mentioned dissertation.

Signature Date 2023-11-01



5

From Monte Carlo PET Simulations 
to Reconstructed Images

Modelling and Optimisation for 68Ga Theragnostics

Philip Kalaitzidis



6 

  

Coverphoto by Philip Kalaitzidis (Cross-section of an XCAT phantom positioned in a virtual 
PET scanner). 

Copyright pp 1-86 Philip Kalaitzidis 

 

Paper 1 © The Authors (Open Acess CC-BY 4.0) 

Paper 2 © The Authors (Open Acess CC-BY 4.0)  

Paper 3 © Submitted to Physics in Medicine and Biology 

Paper 4 © by the Authors (Manuscript unpublished)  

 

Faculty of Science, Lund University  

Medical Radiation Physics, Lund 

 

ISBN 978-91-8039-879-4 (print) 

ISBN 978-91-8039-878-7 (electronic) 

 

Printed in Sweden by Tryckeriet i E-Huset, Lund University 

Lund 2023 



7 

 

 

“Sometimes maybe good, 
sometimes maybe shit!” 

Gennaro Gattuso 



8 

Table of Contents 
 

Summary ......................................................................................................10 
Populärvetenskaplig sammanfattning...........................................................12 
List of Papers ................................................................................................14 
Author’s contribution to the papers ..............................................................15 
Abbreviations ...............................................................................................17 

1. Introduction and Aims .....................................................................................19 
Nuclear medicine imaging ...................................................................19 
Theragnostics and Monte Carlo simulations .......................................19 
Aims ....................................................................................................20 

2. Nuclear Medicine Imaging ...............................................................................23 
Positron Emission Tomography ...................................................................23 

Attenuation correction .........................................................................26 
Normalisation ......................................................................................27 
Randoms correction .............................................................................29 
Scatter correction .................................................................................30 
Deadtime..............................................................................................34 
Calibration ...........................................................................................34 

The Gamma Camera.....................................................................................35 
System Characteristics .................................................................................36 

Spatial resolution .................................................................................36 
Partial Volume Effects ........................................................................38 
Sensitivity ............................................................................................39 

3. Tomographic Reconstruction ..........................................................................41 
Analytical reconstruction .....................................................................41 
Iterative reconstruction ........................................................................43 

4. The Monte Carlo method .................................................................................49 
GATE ..................................................................................................50 
SIMIND ...............................................................................................53 

5 Anthropomorphic patient models ....................................................................55 
6. A Tool for Systematic Evaluation ...................................................................59 

Scanner model .....................................................................................59 
Patient model .......................................................................................60 
Coupling to Reconstruction .................................................................61 



9 

7. Clinical Applications ........................................................................................65 
Theragnostics with 68Ga PET and 177Lu SPECT ..........................................65 

8. Discussion and Future Outlook .......................................................................67 
9. Conclusions .......................................................................................................71 
Acknowledgements ...............................................................................................73 
References .............................................................................................................75 

 
  



10 

Summary 
In nuclear medicine, radiopharmaceuticals can be administered for both diagnostic 
and therapeutic purposes. In recent years, there has been an increasing interest in 
theragnostics, a strategy that combines both diagnosis and therapy. This can be 
achieved by using similar radiopharmaceuticals for imaging and radionuclide 
therapy, which enables highly personalised disease management. One theragnostic 
application is for the diagnosis and management of neuroendocrine tumours, where 
the diagnosis and subsequent therapy stratification often relies on a qualitative 
evaluation following [68Ga]Ga-DOTA-TOC PET imaging, with [177Lu]Lu-DOTA-
TATE radionuclide therapy being a potential treatment option. In this case, peri-
therapeutic SPECT imaging enables for the disease to be closely monitored during 
therapy. There is growing interest in utilising quantitative metrics to identify the 
most suitable candidates for radionuclide therapy and to subsequently perform 
individualised dosimetry. Consequently, it is important to understand potential 
limitations in the image acquisition process that will impact the accuracy and 
precision of quantitative estimates, and one effective method to do so is through 
Monte Carlo simulations. 

This thesis is based on four papers utilising Monte Carlo simulations, with a focus 
on modelling and optimising for 68Ga-PET theragnostics. Paper I explores the 
possibility of modelling and simulating a clinical GE Discovery MI PET system and 
coupling simulated data with a reconstruction software, entirely in silico, to enable 
further simulation-based studies. The implementation of correction factors emulates 
the processes used in clinical scanners for a more realistic approach. The model 
successfully generates results comparable to those obtained from a corresponding 
measurement on a clinical scanner. Papers II, III, and IV focus on 68Ga-PET imaging 
of neuroendocrine tumours, with Papers III and IV also incorporating 177Lu-SPECT 
imaging. Anthropomorphic phantoms were utilised to enable the simulation of 
[68Ga]Ga-DOTA-TOC PET and [177Lu]Lu-DOTA-TATE SPECT exams with 
patient-like geometries and activity distributions. In Paper II, it was shown that a 
non-linearly scaled administered activity based on patient weight harmonises image 
quality, regardless of patient body size. A harmonised image quality is important to 
ensure that all patients receive an equal standard of care. Paper III investigated the 
potential impact of respiration on quantitative estimates in [68Ga]Ga-DOTA-TOC 
PET and [177Lu]Lu-DOTA-TATE SPECT imaging. The extent of lesion motion 
substantially influenced the recovered lesion activity concentration, with deviations 
exceeding 30% from the simulated activity concentration. Furthermore, differences 
in quantitative bias were observed between PET and SPECT imaging, primarily 
attributed to the different imaging time points. In Paper IV, efforts were undertaken 
to elevate the realism of simulated patient models, enabling the creation of highly 
realistic simulated images. The ability to generate realistic images holds great future 
potential, as it allows for the construction of databases of simulated reconstructed 
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images with known ground truth. These databases can serve various purposes, 
including software performance evaluation and integration with machine learning. 
In conclusion, the use of a computational pipeline that connects Monte Carlo 
simulations with a reconstruction software enables simulation-based studies of 
entire PET-exam procedures to be conducted. Access to the underlying data driving 
the simulations makes it possible to isolate individual parameters and track their 
impact on the results, allowing for a systematic evaluation of in vivo confounders 
entirely in silico. 
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Populärvetenskaplig sammanfattning 
Nuklearmedicin är en medicinsk inriktning där radioaktiva läkemedel används för 
att diagnosticera eller behandla olika sjukdomar. Dessa radioaktiva läkemedel 
består vanligtvis av två komponenter: en radionuklid1 och själva läkemedlet. Syftet 
med läkemedlet är att fördela sig i kroppen utefter patientens hälsotillstånd. 
Radionuklider avger olika typer av strålning då de sönderfaller, och deras 
användbarhet inom diagnostik och terapi varierar beroende på typen av strålning de 
avger, främst i form av fotoner och laddade partiklar. En viktig skillnad mellan dem 
är att fotoner har förmågan att färdas längre sträckor och kan således lämna patients 
kropp, medan laddade partiklar, såsom elektroner och alfapartiklar, har en betydligt 
kortare räckvidd och avger sin energi lokalt för att orsaka biologisk skada. 

Inom den diagnostiska grenen kan det radioaktiva läkemedlet spåras genom att 
detektera fotoner från det radioaktiva sönderfallet med hjälp av specialdesignade 
kameror. Genom att återskapa fördelningen av det radioaktiva läkemedlets upptag i 
kroppen kan man få en uppfattning om huruvida patientens hälsotillstånd avviker 
från normal fysiologisk funktionalitet. Den terapeutiska delen använder samma 
principer för att låta det radioaktiva läkemedlet fördela sig inom patienten, men med 
avsikt att orsaka biologisk skada. Vissa radioaktiva läkemedel har egenskaper som 
är lämpliga både för att ta bilder och behandla sjukdomen, eftersom de emitterar 
både fotoner och laddade partiklar. 

Positron emission tomography (PET) och single photon emission computed 
tomography (SPECT) är två kameror som frekvent används för diagnostik inom 
nuklearmedicin. Den huvudsakliga skillnaden mellan PET och SPECT är dess 
detektionsprincip, vilket i sin tur begränsar vilka radioaktiva läkemedel som kan 
användas med respektive kamera. Tyvärr är kamerorna inte perfekta, och 
avbildningen av det radioaktiva läkemedlet tenderar att vara suboptimal. 

För att förstå, förbättra och optimera prestandan hos nuklearmedicinska kameror 
och undersökningar kan man använda sig av Monte Carlo simuleringar. Monte 
Carlo metoden är en teknik som baseras på slumpmässiga urval för att uppskatta 
lösningar eller utfall av komplexa system, såsom strålningens interaktion och 
transport. Inom nuklearmedicinsk bildtagning kan Monte Carlo simuleringar 
användas för att skapa virtuella kamerasystem och studera undersökningsprocessen 
under olika förutsättningar. Monte Carlo simuleringar spelar en viktig roll inom den 
nuklearmedicinska forskningen genom att möjliggöra virtuella undersökningar av 
faktorer som är svåra att separerar i en klinisk undersökning. Genom simuleringar 
kan man således arbeta mot en förbättrad och optimerad undersökning, eftersom 
man har komplett kontroll över de parametrar man vill studera och den 
underliggande data som ger upphov till resultaten finns tillgänglig från 

 
1 En radionuklid är en instabil atomkärna som med tiden genomgår ett radioaktivt sönderfall. 
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simuleringarna. Dessa möjligheter finns inte i kliniska undersökningar där 
komplexa system interagerar med varandra och avsaknaden av den underliggande 
data försvårar möjligheten att reda ut orsakssamband för en parameter. Således kan 
Monte Carlo simuleringar användas för att på ett systematiskt sätt utforska olika 
faktorer som påverkar bland annat bildkvalitet och kvantifiering. 

En typ av sjukdom som berörs av både diagnostisk och terapeutisk nuklearmedicin 
är neuroendokrina tumörer. I detta sammanhang används ett 68Ga-märkt läkemedel 
under en PET undersökning för att fastställa sjukdomens omfattning. Beroende på 
utfallet så kan behandlingen sedan genomföras med ett liknande 177Lu-märkt 
läkemedel. Effekten av behandling kan sedan följas genom SPECT-bildtagning av 
177Lu-läkemedlet. Användningen av liknande läkemedel för både diagnos och 
behandling kallas teragnostik2 och erbjuder en unik möjlighet att skräddarsy 
behandlingen för varje individ. 

Dock med teragnostiken kommer många utmaningar som behöver lösas. Hur kan vi 
säkerställa att bilderna är av tillräcklig kvalitet för en högkvalitativ diagnos? Hur 
kan vi öka precisionen i våra mätningar? Hur bäst identifierar vi de patienter som är 
lämpliga för radionuklidterapi? Hur minska vi stråldosen till friska organ samtidigt 
som vi maximalt strålar tumörer? Dessa är komplexa frågor att besvara, men Monte 
Carlo simuleringar kan vara en hjälpsam del av lösningen. 

  

 
2 Teragnostik är en sammansättning av orden terapi och diagnostik. 
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Author’s contribution to the papers 
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TOC PET and [177Lu]Lu-DOTA-TATE SPECT through simulations. In Paper IV, 
efforts were made to enhance the realism of the patient model with a primary focus 
on applications for the theragnostic pair [68Ga]Ga-DOTA-TOC and [177Lu]Lu-
DOTA-TATE. 

Paper I: Validation of a computational chain from PET Monte Carlo 
simulations to reconstructed images 
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manuscript, serving as the corresponding author. 
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I participated in part of interpreting and analysing the data. I was one of the main 
authors of the paper. 
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Abbreviations 
BGO Bismuth germanium oxide 
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SPECT Single photon emission computed tomography 

SSS Single scatter simulation 

SSTR Somatostatin receptor  

TOF Time of flight 
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1. Introduction and Aims 

Nuclear medicine imaging 
Nuclear medicine imaging non-invasively generates functional information for 
diagnostic purposes. A radioactive molecular agent (radiopharmaceutical) is 
administered to the patient, which is then distributed within the patient’s body based 
on the patient’s physiology and the agent’s physiological mechanisms. Imaging 
typically occurs after some time to allow the radiopharmaceutical to distribute 
within the patient’s body. Information regarding the radiopharmaceutical 
distribution is used to evaluate the patient’s current physiological functionality 
through various intermediate indicators, including but not limited to tissue blood 
flow, metabolism, and cell receptor expression. Deviations from typical 
physiological patterns are an indication of pathological functionality. 

The radiopharmaceutical is detected and reconstructed into volumetric images 
through gamma camera imaging or positron emission tomography (PET). The 
gamma camera detects photons and relies on a physical collimator to determine lines 
along which the emitted photons originated from. PET, on the other hand, requires 
the detection of two annihilation photons in coincidence, and the lines along which 
the annihilations occurred are determined through electronic collimation. 

The choice of the molecular agent is determined by the physiological mechanism to 
be studied, while radionuclide selection is based on chemical compatibility with the 
molecular agent. A prerequisite is that the introduction of the radionuclide does not 
change the physiochemical characteristics of the molecular agent, as even minor 
changes will alter its in vivo physiological behaviour (Fani et al. 2011, Fani et al. 
2012). This obviously limits the number of radiopharmaceuticals that are available 
to study a specific physiological property. The choice between gamma camera 
imaging or a PET thus primarily depends on the availability of radiopharmaceuticals 
for studying the desired physiological mechanism. 

Theragnostics and Monte Carlo simulations 
One application that has gained increasing popularity in recent years is theragnostics 
(Herrmann et al. 2020). In nuclear medicine, theragnostics involves using molecular 
agents of similar physiological targeting mechanisms for diagnosis and therapy, 
allowing the visualisation of therapeutic targets before administering the therapeutic 
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agent. This distinctive capability can be utilised in several clinical applications, 
including the visual assessment of the biodistribution of targeted drugs, visualisation 
of tumour burden, and the selection of patients for targeted therapies, enabling a 
‘treat-what-you-see’ strategy (Bodei et al. 2022). Repeat peri-therapeutic imaging 
enables dosimetric calculations which can further facilitate treatment optimisation 
by finding a balance between efficacy and toxicity (Sundlöv and Sjögreen Gleisner 
2021). 

Theragnostics thus holds the potential to generate individualised treatment strategies 
to improve therapy outcomes through pre-therapeutic and peri-therapeutic image-
based quantification. However, to fully appreciate the significance of these metrics, 
it is imperative to understand the complexities of image degradation and the risk for 
biased estimates. Dedicated efforts to deepen our understanding of these factors are 
therefore important to the advancement of the field. 

However, disentangling these factors can be challenging in a clinical setting due to 
the complexity and interplay between anatomy, physiology, fundamental physics, 
and imaging instrumentation, which all complicate the assessment of a single 
parameter’s impact. When combined with computational human phantoms, Monte 
Carlo (MC) simulations, which is a probabilistic numerical technique that can be 
used to solve non-deterministic problems, enable realistic modelling of patient 
measurements and to systematically evaluate individual parameter’s impact on the 
resulting image. Hence, the combination of MC simulations and anthropomorphic 
patient models provides a good compromise between the need for controlled 
experiments and patient-like geometry, which can help to enhance our 
understanding of parameters that are challenging to separate in clinical settings. 

Aims 
The aim of this thesis was to work with 68Ga-PET, with a primary focus on 
modelling and optimisation, towards theragnostic applications. 

A pipeline connecting PET simulations to reconstructed images for 
[68Ga]Ga-DOTA-TOC applications was constructed. Methods have also been 
introduced to enhance the realism of simulations, so that these better correspond to 
that of a patient undergoing a clinical exam. Additionally, the integration of 
[177Lu]Lu-DOTA-TATE simulations enables simulation-based studies tailored to 
theragnostics applications. 

Specifically, the aims of Papers I–IV were: 

I. To create and validate a pipeline connecting PET Monte Carlo 
simulations to reconstructed images. The connection from simulation 
to reconstructed images is highly important as it provides possibilities 
to emulate the entire PET exam chain, and, most importantly, the ability 
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to evaluate the end product, i.e., the reconstructed image. The validation 
enables the pipeline’s use in future simulation-based studies and 
ensures the reliability of the results. 

II. To evaluate various [68Ga]Ga-DOTA-TOC activity-administration 
protocols ability to achieve a harmonised image quality based on patient 
habitus. Harmonised image quality promotes an equal standard of care, 
irrespective of patient body size. 

III. To investigate the impact of respiratory motion on quantitative 
[68Ga]Ga-DOTA-TOC PET and [177Lu]Lu-DOTA-TATE single photon 
emission computed tomography (SPECT). Understanding how 
respiration affects quantitative accuracy is important if image-based 
metrics are to be used in individual treatment stratification for the 
theragnostic pair. 

IV. To propose a methodology for enhancing the realism of patient models 
for [68Ga]Ga-DOTA-TOC PET and [177Lu]Lu-DOTA-TATE SPECT 
Monte Carlo simulations. This method can generate databases of 
images more visually comparable to clinical images, which is relevant 
for tasks such as software performance assessment or machine learning. 
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2. Nuclear Medicine Imaging 

Positron Emission Tomography 
Positron emission tomography aims to reveal a patient’s current physiological status 
by mapping the distribution of an administered positron-emitting 
radiopharmaceutical. The radiopharmaceutical is mapped by detecting the 
subsequent photon emission following positron-electron annihilation. 

After a positron is emitted through a radioactive decay, it gradually decelerates until 
it comes to rest. Subsequently, an interaction with an atomic electron results in the 
annihilation of the two particles. In this annihilation process, the positron and 
electron are converted into two opposite-directed annihilation photons, each with an 
energy of 511 keV, due to conservation of mass-energy and momentum. 
Annihilation can occur before the positron is completely at rest, leading to a slight 
angular deviation between the two photons. 

Data formation in PET relies on detection in coincidence, and this detection is made 
possible by opposing scintillator-based detectors often arranged in a circular 
configuration. Common scintillator materials include cerium-doped lutetium-based 
crystals (LSO:Ce/LYSO:Ce) or bismuth germanium oxide (BGO). 

A coincidence window is triggered when an annihilation photon impinges on a 
detector and deposits its energy, and a coincident event will be registered if two 
coincidence windows are opened simultaneously by different detectors. In practice, 
simultaneous detection implies the detection of two annihilation photons within a 
predefined time window. 

The detection of a coincident event indicates the occurrence of a positron-electron 
annihilation at some point along a fictitious line called a line of response (LOR) that 
spans between the two registering detectors. If the difference in detection time could 
be measured precisely enough, the exact position along the LOR could be 
determined, potentially eliminating the need for tomographic reconstruction (Lecoq 
et al. 2020). 

However, the annihilation’s position can only be narrowed down within a few 
centimetres along the LOR due to the detectors finite temporal resolution, which  
then still necessitates tomographic reconstruction (Surti 2015). Nevertheless, the 
introduction of time of flight (TOF), i.e., measuring the time difference between the 
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two detections, leads to improved noise characteristics in the reconstructed image 
(Budinger 1983, Lois et al. 2010). 

The collection of all coincident events is called prompt coincidences and includes 
true, scattered, and random coincidences. Random and scattered coincidences will 
misplace the LOR in relation to the annihilation site. Scattered coincidences arise 
when at least one of the annihilation photons undergoes incoherent scattering before 
detection, resulting in the emission of new a photon with decreased energy and 
deflected by an angle relative to the incident photon. Scattered coincidences have a 
relatively low-frequency distribution around the annihilation site. Random 
coincidences, on the other hand, occur when two uncorrelated photons are detected 
within the coincidence timing window. Thus, random coincidences only shares an 
indirect relation with the radiopharmaceutical distribution, resulting in a relatively 
uniform background. Figure 2.1 illustrates true, random, and scattered coincidences. 

 

 

Figure 2.1: True, scattered, and random coincidences and how the LOR is misplaced depend on the coincidence 
type is shown. The distribution of random coincidences is uncorrelated with the site of annihilation, while scattered 
coincidences share some relation to the site of annihilation. 

The presence of mispositioned LORs degrades image quality and hampers accurate 
quantitative estimations. As a result, electronic collimation is imposed whereby 
constraints are implemented in the signal-processing chain to prevent unwanted 
photons from forming coincidences. One part of the electronic collimation is the 
coincidence timing window, i.e., a predefined time window in which photons must 
be detected to be able to form coincidences. The coincidence window is kept as 
narrow as possible to reduce the number of random coincidences while at the same 
time ensuring that true coincidences can be detected within the scanner’s field of 
view (FOV). The minimum width is chosen so that annihilation photons generated 
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at the very edge of the FOV will have sufficient time to traverse and be detected in 
the very opposite part of the scanner, i.e., the longest valid LOR indirectly sets the 
minimum coincidence window width. Energy discriminators attempts to reject 
scattered and high- and low-energy photons, by only allowing photons that fall 
within a predefined energy range around the annihilation photopeak to form 
coincidences. Reducing the width of the energy window increases the rejection of 
scattered photons. However, if set to narrow, the finite energy resolution imposed 
by the detector would result in a substantial number of true unscattered annihilation 
photons being erroneously rejected. Additionally, factors such as attenuation and 
non-uniform sensitivity also impact PET data formation. However, electronic 
collimation cannot address these factors; they are handled separately. 

Lines of responses are characterised by their angle, radial distance from the 
scanner’s centre, and axial location. These LORs collectively represent the spatial 
distribution of annihilation sites, and they are subsequently reconstructed into a 
volumetric image that depicts regional radiopharmaceutical concentration to 
facilitate the diagnostic interpretation process. Initially, the reconstruction provides 
a semi-quantitative representation of the radiopharmaceutical intensity. However, 
after compensating for image-degrading effects, the reconstructed images can be 
calibrated to provide quantitative voxel values since the number of true coincidences 
within the LORs is proportional to a line integral of the activity along the LORs 
(Meikle and Badawi 2005). 

The evaluation is in many cases qualitative without the need for absolute voxel value 
quantification. Nonetheless, quantitation in PET is less observer-dependent and can 
provide added benefits in theragnostics, precision medicine, and PET biomarkers 
(Lammertsma 2017, Kinahan et al. 2020, Meikle et al. 2021). However, 
standardisation is essential as minor instrumental and physiological differences can 
lead to substantial differences in quantification (Boellaard 2009), and understanding 
the bias and its dependence on technical, physiological, and scanner settings is 
essential. 

Modern PET scanners are combined with computed tomography (CT) or magnetic 
resonance imaging (MRI) to enhance diagnostic capabilities. The combined 
imaging provides an anatomical reference to the physiological information while 
also providing necessary data to perform attenuation and scatter correction. 

Some common PET isotopes include 18F, 68Ga, 15O, and 11C. These isotopes have 
distinct characteristics that influence the logistics and quality of the PET exam, such 
as half-life and positron energy. Table 2.1 lists some important properties of a few 
common PET isotopes. 
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Table 2.1 
Properties of some positron-emitting radionuclides and medical applications. Data acquired from the Laboratoire 
National Henri Becquerel database (Be et al. 2004, Be et al. 2013). Some isotopes have multiple decay transitions, 
e.g., 68Ga, and listed is the most common transition. The positron range is shown in the continuous slowing down 
approximation (CSDA) in water for the listed max and mean positron energies (ICRU 1984). 

Nuclide  Half-life 
[min] 

Positron 
fraction 
[%] 

Emax 
[keV] 

Emean 

[keV] 
Max 
range  
[mm] 

Mean 
range 
[mm] 

11C 20.36 99.75 960.5 385.7 4.18 1.20 
13N 9.97 99.82 1198.5 493.0 5.49 1.72 
15O 2.04 99.89 1735.0 736.7 8.48 2.97 
18F 109.73 96.86 633.9 249.5 2.43 0.62 
68Ga 67.83 87.68 1899.1 836.0 9.39 3.50 

 

Attenuation correction 
The number of registered coincidences is typically reduced due to photon 
interactions in which either of the two photons are absorbed within the object or 
scattered outside the imaging FOV. This attenuation effect is spatially dependent, 
with photons traversing more material having a lower likelihood of reaching a 
detector. Consequently, the effect of attenuation is more pronounced in large 
objects, which leads to a spatially variable intensity in the reconstructed image. 
Nevertheless, computation of attenuation correction factors for PET is 
straightforward (Kak and Slaney 1988). 

Consider two annihilation photons heading towards the detector pair (D1, D2) from 
the annihilation point AP. The probability of each photon reaching its respective 
detector is given by exp[ ( ) ] and exp[ ( ) ], where Z(x) is 
the linear attenuation coefficient at 511 keV. The probability of both photons 
reaching their detectors is determined by the product of probabilities of reaching 
their respective detector, i.e.,  

exp ( ) = exp ( ) exp ( ) . (2.1) 

Hence, the probability of attenuation is the same for all sources independent of 
position along an LOR. The attenuation correction factor for an LOR is obtained by 
computing the reciprocal of equation (2.1), with the ray sums computed from an 
image of linear attenuation coefficients of the object. 
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Normalisation 
The sensitivity of a PET scanner varies across the FOV due to differences in, e.g., 
detector efficiency, differing solid angle subtended by LORs, and summation of 
adjacent detector elements. Correcting for these variations is essential; otherwise, 
the non-uniform sensitivity will propagate to the reconstructed image, leading to 
biased quantitative estimates and unwanted artefacts. Normalisation of the data is 
typically performed using a component-based method (Hoffman et al. 1989, Badawi 
and Marsden 1999), which estimates the impact of individual factors contributing 
to the sensitivity variation in each unique LOR. 

In a block-detector system, a systematic efficiency variation occurs due to the 
crystal’s position in the block, resulting in significant sensitivity fluctuations. The 
sampling of LORs tightens near the edges of the FOV, leading to a reduced 
acceptance angle and, consequently, reduced sensitivity. However, this effect is 
partially mitigated transaxially since the detectors are closer together, as illustrated 
in Figure 2.2. Furthermore, a photon entering a crystal at an angle typically has more 
material to traverse than a photon entering normally. This increases the probability 
of detection and results in measurable sensitivity changes based on the LOR’s radial 
position. Notwithstanding, a photon entering a detector block near its edge and at 
an angle usually has less material to traverse, which increases the likelihood that the 
photon escapes the crystal before interacting. This leads to a sensitivity pattern that 
varies with both the LOR’s radial position and the crystal’s location within the 
block. Other factors affecting the non-uniformity, such as accurate detector 
alignment, time window alignment (i.e., synchronicity between timing signals), and 
variations in crystal composition are not included within the context of this thesis 
as they are not expected to be present in the Monte Carlo simulations. 
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Figure 2.2: The acceptance angle decreases at the edge of the FOV, both transaxially and axially, leading to a 
reduced sensitivity. However, the sensitivity increases as the detectors are positioned closer together in the 
transaxial plane. 

The normalisation factors computed within the context of this thesis include the 
intrinsic detector efficiency ( ) and the axial block profile factor (b) to account for 
systematic sensitivity variations due to the crystal’s transaxial and axial position in 
the scanner. The axial geometric factor (g) and the radial profile factor (r) are 
incorporated to account for the axial and transaxial variations in LOR efficiency 
related to the photon’s angle of incidence on the crystal face, respectively, and lastly, 
the crystal interference factor (f) is considered to account for changes in the radial 
profile factors due to the crystal’s relative position within the block. Hence, the 
normalisation coefficient for an LOR spanned by two detectors, D1 and D2, is 
computed as = % . (2.2) 

The individual normalisation components are shown in Figure 2.3. Figure 2.4 shows 
the impact of omitting individual transaxial normalisation factors on the 
reconstructed image. 
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Figure 2.3: The individual normalisation factors used in equation (2.2) are presented. The crystal interference 
factors are offset from each other to demonstrate sensitivity variations based on the LOR’s radial position and the 
crystal’s transaxial position within a block. The intrinsic detector efficiency factors are shown for the first 65 
transaxial crystals and exhibit a clear systemic variation in sensitivity. 

 

 

Figure 2.4: Reconstructed images of a source covering the entire transaxial FOV: without any normalisation (a); 
without compensation for intrinsic detector efficiency (b); without compensation for the radial profile factors (c); 
without compensation for the crystal interference factors (d); and fully normalised (e). High-frequency artefacts 
appear as the intrinsic detector efficiency factor is not compensated for (b); a pronounced intensity drop occurs 
radially inwards as the radial profile factor is omitted (c); and without compensation for the crystal interference the 
appearance of ringing artefacts occurs (d). 

Randoms correction 
The finite width of the coincidence window introduces the risk of detecting two 
uncorrelated photons closely in time, resulting in the formation of random 
coincidences as the electronic collimation cannot distinguish them from true 
unscattered annihilation photons. Random coincidences lack spatial information and 
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result in a fairly uniform distribution across the FOV (Hoffman et al. 1981), 
reducing image contrast and leading to inaccurate activity concentration estimation. 

The rate by which random coincidences are formed depends on the singles count 
rate onto each detector and the width of the coincidence window. A coincidence 
timing window with a duration of  is opened when a photon is detected. Another 
coincidence window is opened if another photon is detected, and a coincidence is 
registered if the two coincidence windows overlap. Therefore, the time during which 
a coincidence can be recorded is 2 . Assuming that the photons are uncorrelated, the 
rate of detecting random coincidences will be = 2 , (2.3) 

where r1 and r2 are the singles rate onto detectors D1 and D2, respectively. 

Scatter correction 
There is a risk that one or both of the annihilation photons will interact with the 
imaged object before detection, and the most common interaction at the energy of 
annihilation photons is Compton scattering. Due to scintillation detectors’ inherent 
energy resolution limitations, some scattered photons cannot be distinguished from 
unscattered ones. Consequently, if a coincidence is registered after one or both 
annihilation photons have scattered, the coincidence will no longer be colinear with 
the annihilation site. Scattered coincidences account for a substantial fraction of the 
recorded coincidences (Cherry and Huang 1995) and depend on the size and 
composition of the imaged object and the PET scanner configuration and settings. 
Scattered coincidence leads to a loss of image contrast and inaccuracies in activity 
concentration estimation. 

Scatter correction in PET is typically handled using a model-based approach 
(Ollinger 1996) and a common implementation is the single scatter simulation (SSS) 
algorithm (Watson 1996). This algorithm exploits the characteristics of the 
scattering phenomenon to approximate its distribution and intensity, and the 
fundamental concept behind the SSS algorithm is to estimate the scattered 
coincidences based on potential scatter points within the imaged object. 

 



31 

 

Figure 2.5: The geometry of the scatter model is presented in a two-dimensional representation, but the underlying 
concept operates within a three-dimensional framework. The LOR (green dashed line) is no longer colinear with 
the annhilation site after one of the annihilation photons scatters at S by an angle . 

The scatter contribution to an LOR, spanned by the detectors D1 and D2, from a 
scatter point S, can be estimated by considering (based on the geometrical 
representation in Figure 2.5): 

1. The attenuation along SD1 for the unscattered photon. 

2. The integrated source intensity along SD1. 

3. The probability of scattering at S towards D2. 

4. The attenuation along SD2 for the scattered photon. 

5. The detection efficiency of the scattered and unscattered photon. 

The events that resulted in a scattered coincidence could have occurred with the 
scattered and unscattered rays reversed. Hence, the scatter coincidence rate for an LOR  is calculated as , = , + , , where ,  is calculated as  

, = ( ) exp ( , ) exp ( , )
( ) ( ) 4  ( ) , (2.4) 

and ,  as   
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, = ( ) exp ( , ) exp ( , )
( ) ( ) 4  ( ) , (2.5) 

where  is the source intensity, Z is the linear attenuation coefficient, E and Esct 
represent the unscattered and scattered photon energy, respectively,  is the detector 
efficiency,  and  are the detector geometric cross-sections, l is the distance 
from the scatter point to the detector, c and ( )/  are the total and differential 
Compton interaction cross-sections. Equation (2.4) accounts for emissions 
contributing to the scattered coincidences originating from the SD1 side of S, while 
equation (2.5) accounts for the contributions originating from the SD2 side of S. The 
ray sums in equations (2.4) and (2.5) are computed by ray tracing through images 
of the source distribution and the object’s linear attenuation coefficients. 

Scattered coincidences have a temporally varying distribution, which requires 
additional considerations when estimating the TOF scatter contribution. The 
contributions of a scattered coincidence to a specific TOF bin depend on both the 
position of the emission point and the length difference of the rays forming one 
scatter path. Consequently, there is a unique detection probability that depends on 
the detectors’ temporal resolution (or associated distance), res, and the spatial offset 
from the scatter point, s, that the scattered coincidence will be recorded in the tth 
TOF bin (Watson 2007). This TOF detection probability is typically modelled by 
sampling a Gaussian as 

( ) = ( )
(  )  , (2.6) 

where  is the standard deviation. Equation (2.6) is then incorporated into the source 
ray sums in equations (2.4–2.5) to estimate the TOF scatter contribution. The total 
scatter contribution can then be estimated by evaluating the additive contributions 
from all potential scatter points, i.e., 

, = , . (2.7) 

The ray sums in equations (2.4–2.5) are computed from an initial source and 
attenuation image. The source image can be reconstructed in various ways but must 
be corrected for attenuation, normalisation, and randoms, and a fast way to do this 
is to reconstruct using the filtered back-projection method. However, as equation 
(2.7) is sampled for every potential scatter point and ray sums are computed for 
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every detector-pair permutation, the computation becomes very time-consuming, 
and for a system like the GE Discovery MI, comprised of 19584 scintillation 
crystals, utilising the SSS algorithm for scatter estimation becomes impractical. 
Therefore, the detector system, source image, and attenuation image are down-
sampled to a sparsely defined scanner and to coarsely gridded images to accelerate 
the computation. Although down-sampling reduces the image spatial resolution, the 
effect is not detrimental to the scatter estimation, as scattered coincidences primarily 
exhibit a low-frequency distribution (Werling et al. 2002). 

After the scatter estimate has been evaluated for all potential scatter points, the 
sinogram is up-sampled and interpolated to match the original sinogram’s 
dimensions. The estimated scatter is then scaled as a linear transformation, with the 
scaling parameters determined from a linear least-squares fit of the estimated scatter 
to the randoms-subtracted measured data. Scatter estimations involving 
radionuclides with prompt gamma emission are typically accounted for during the 
scaling process (Surti et al. 2009). However, careful consideration must be taken to 
ensure that only bins situated outside the object volume are used, as the inclusion of 
any true coincidences would impact the scaling process (Thielemans et al. 2007). 

The SSS algorithm is performed iteratively to successively improve the scatter 
estimate. The scatter estimate will be overestimated in the first iteration as the initial 
reconstruction contains both true and scattered coincidences. In the subsequent 
iteration, the overestimated scatter estimate leads to an underestimated 
reconstructed image, resulting in an underestimation of scattered coincidences. 
After two iterations, the scatter estimate is averaged between the first and second 
iterations to expedite the convergence and to reduce the risk of excessive oscillation 
between successive scatter estimations (Iatrou et al. 2006). Figure 2.6 shows an 
example of the scatter estimation process for the first three iterations. 
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Figure 2.6: An example of SSS estimated scatter following a PET MC simulation. The MC simulated meta data is 
used to show the exact number of scattered coincidences. A total of three SSS iterations are shown for three different 
projection views. The estimated scatter is progressively improved as the number of iterations increases. 

Deadtime 
Deadtime refers to the period when the system is busy processing a previously 
detected event, during which the system does not properly record new events. 
Deadtime constitutes two primary mechanisms: 1) due to a finite resolving time, 
some counts will be ignored entirely, and 2) multiple photons can arrive sufficiently 
close in time at high count rates, whereby they will be processed together (pile-up). 
Pile-up results in two distinct effects: the summation of multiple photon energies 
can result in losses of unscattered photons if the summed energy falls outside of the 
energy discriminators, or the event will be registered but mispositioned in systems 
employing multiplexing (Germano and Hoffman 1990). Consequently, high count 
rates may affect the system’s uniformity and linearity. 

In practice, deadtime losses are dominated by pile-up within the crystal. Cameras 
with a larger number of discrete scintillation detectors can often operate at higher 
count rates before being affected by pile-up compared to systems employing a 
higher degree of multiplexing. 

Calibration 
Once the corrections have been computed, the reconstructed image can be calibrated 
to yield absolute units of activity concentration. The calibration is typically 
performed by imaging with a phantom with a known activity that has been measured 
within a well counter prior to imaging. After acquisition, the image is reconstructed 
and the aforementioned image-degrading components are compensated for. The 
image voxel values are then directly compared with the activity concentration 
determined by the well counter to compute a calibration factor. This is a fast and 
straightforward method for determining a calibration factor. 
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However, it is important to note that this procedure may not necessarily produce an 
accurate calibration factor if the well-counter results are biased. In the case of the 
Monte Carlo simulations described herein, the calibration was performed using this 
method, and since the exact activity concentration is known, any bias from a well 
counter will not propagate to the calibration factor. 

The Gamma Camera 
The primary components of a common type of gamma camera consist of a 
scintillation crystal with photomultiplier tubes (PMTs) attached to the back face of 
the crystal, encased within a shield casing. A fundamental requirement of the 
gamma camera is to determine the position and energy of interacting photons. 
Typically, the relative signals shared by the PMTs, weighted by their position, are 
used to determine the photon’s interaction point. However, due to the isotropic 
photon emission, the position of the photon interaction within the camera alone 
conveys no spatial information about the emission. A physical collimator is 
therefore used to restrict the detection of photons to only those directionally parallel 
with the collimator’s holes. Several types of collimators exist designed for specific 
purposes, but the most widely used and the one discussed henceforth, is the parallel-
hole collimator. With the parallel-hole collimator design, only photons that are 
normally incident (within a small acceptance angle) towards the scintillator crystal 
will be allowed to pass the collimator to be detected. For the detection to be 
registered as a count, the deposited energy from the interaction must fall within a 
predefined energy range, which is selected based on the photon’s energy and the 
scanner’s energy resolution. Similar to PET imaging, the acquisition process is 
imperfect and effects of, e.g., attenuation and scatter will impact the acquisition and 
must be compensated for. An illustration of the gamma camera and a few typical 
events are shown in Figure 2.7. 
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Figure 2.7: Illustration of the gamma camera and a few typical events. A photon parallel with the collimator holes 
can pass the collimator and interact with the crystal (a). The photon is attenuated in the object (b). The photon is 
scattered in the object, which may lead to the subsequent alignment with the holes by which the photon can be 
detected (c). The photon is not stopped by the collimator and can still be detected (d). 

The projections acquired with a parallel-hole collimator will convey information 
about the radiopharmaceutical’s distribution summed over the object’s depth. 
Consequently, the acquired projections carry no depth information as photons can 
be detected at the same position in the camera but originate from different depths. 
By rotating the gamma camera about the object, projections can be acquired from 
multiple angles, akin to a PET acquisition, by which the three-dimensional 
distribution of the radiopharmaceutical can be recovered. 

System Characteristics 

Spatial resolution 
Spatial resolution refers to the spatial limit for which a system can represent objects 
and is defined by the smallest distance needed for adjacent point sources to be 
distinguished as distinct entities. 

The fundamental PET spatial resolution is dependent on the physics of positron 
interactions and the scanner configuration. Positrons are typically ejected with non-
zero energy and interacts and travels a distance before losing its kinetic energy, 
which results in annihilations occurring away from the radionuclide’s decay site, 
leading to a blurring of the PET image. The extent of blurring depends on the kinetic 
energy of the positron and the composition of the material traversed (Sanchez-
Crespo 2013). Table 2.1 lists common isotopes used in PET imaging and positron 
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range in water of the associated ejected positron. Additionally, the annihilation can 
occur before the positron has come to rest. In such cases, the annihilation photons 
will no longer be colinear, with a mean accollinearity angle of 0.25° full width at 
half maximum (FWHM) (Colombino et al. 1965). The magnitude of this effect 
depends on the scanner’s geometry, and a wider detector ring radius, R, exacerbates 
its impact. The blurring associated with photon acollinearity, in terms of distance, 
is given by 0.0044R (Moses 2011). 

The detector size also influences the spatial resolution, and its impact can be 
assessed by examining the coincidence detection sensitivity between a pair of 
opposing detectors. Near the midpoint between the two detectors, the coincidence 
rate is characterised by a triangular response function with an FWHM equal to half 
the detector width (Levin and Hoffman 1999). However, the response function is 
better characterised by a trapezoidal function as the source is moved closer to either 
of the two detectors, i.e., the spatial resolution worsens further from the scanner’s 
centre. Photons also typically penetrate the scintillation crystal some distance before 
interacting. The photon may thus be detected by a different crystal if the photon is 
not normally incident on the crystal, which results in the LOR being assigned to the 
wrong crystal. This blurring is asymmetric and becomes more pronounced with 
increasing radial distance from the scanner’s centre, but its impact is less severe in 
scanners employing scintillator crystals with high linear attenuation coefficients 
(Derenzo et al. 1981). However, the effect is not considered fundamental as systems 
employing depth of interaction detection could alleviate its impact (de Jong et al. 
2007). Additional effects related to crystal decoding and imperfect LOR sampling 
also degrades the spatial resolution, but their effects are not considered fundamental 
(Moses 2011). 

The unavoidable fundamental PET spatial resolution limit for a point source is set 
by the positron range, photon acollinearity, and detector size (Levin and Hoffman 
1999) and can be determined as 

= 2 + + (0.0044 ) , (2.8) 

where d is the detector width, s is the blurring due to the positron range, and R is the 
scanner radius. In theory, one could potentially reduce the detector width 
indefinitely to truly reach a fundamental spatial resolution limit. Constructing 
detectors with an infinitely small width is however not practically feasible. At some 
point, the effects of positron range and accollinearity will dominate, and continuing 
to reduce the detector width at this juncture makes little sense. 

The spatial resolution limit of a gamma camera depends primarily on technical 
limitations, specifically the collimator’s design (Rahmim and Zaidi 2008). The 
configuration of a parallel-hole collimator defines the maximum acceptance angle 
by which photons can interact with the crystal if no septal penetration occurs and, 
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consequently, sets the absolute minimum resolution. The resolution is also affected 
by an intrinsic uncertainty in determining the incident photon position due to 
statistical variations in the PMTs output signals and due to contributions from 
multiple photon interactions. A gamma camera with a parallel-hole collimator also 
exhibits a distance-dependent resolution, i.e., the distance between the emission 
point and collimator impacts the resolution as photons can pass more holes when 
the source-to-collimator distance increases. Additionally, septal penetration, 
wherein the finite thickness of the septum will not be able to stop all photons and 
results in the detection of events that are not parallel with the collimator holes, which 
also affects the spatial resolution. 

Hence, the collimator design is, ultimately, a compromise between spatial resolution 
and sensitivity, with clinical gamma camera systems typically exhibiting worse 
spatial resolution than clinical PET systems (Alqahtani et al. 2022). 

Partial Volume Effects 
Limited spatial resolution has an impact on the quantitative capabilities as signal 
from different sources may blur together (Kojima et al. 1989). These spatial 
resolution-related effects are referred to as partial volume effects (PVEs). In these 
cases, the principal component of PVE arises from apparent cross-contamination of 
activity between adjacent regions, i.e., the activity appears to spill over from one 
volume to another (Erlandsson et al. 2012). Partial volume effects may further be 
exacerbated by temporal factors and, consequently, patient motion, respiratory 
motion, or heartbeat can introduce additional PVEs. 

For an object situated in a background with lower activity concentration, the PVE 
smears out its signal. The consequence of this is that the apparent activity 
concentration in the object will be lower than the actual activity concentration while 
also making the object appear bigger. Conversely, if the object is situated in a 
background with higher activity concentration, the object’s activity concentration 
will be overestimated. The effects of PVEs are typically small centrally in objects 
whose diameter is more than three times larger than the FWHM of the system’s 
point spread function (i.e., the image of a point source which characterises a 
system’s resolution) (Soret et al. 2007). However, spill-out is partly compensated 
by the fact that activity from outside the object will spill-in. The PVE is complicated 
to compensate for, as the balance of spill-in and spill-out depends on the relation 
between the object and the surrounding activity concentration. 

Compensation for PVE can be done by incorporating resolution modelling during 
the reconstruction with the aim of reversing the effect of the point spread function. 
While resolution modelling produces resulting images that can suffer from the 
undesirable introduction of Gibbs artefacts, (Tong et al. 2011, Erlandsson et al. 
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2012), introducing resolution modelling improves the resulting images both 
qualitatively and quantitatively (Tsui et al. 1994, Reader et al. 2003). 

A simpler method to compensate for PVEs is to utilise image-based recovery 
coefficients (RCs) (Kessler et al. 1984). The RCs can be defined as the ratio of 
apparent activity concentration to the true activity concentration, and the simplest 
method is to calculate the recovery coefficients through phantom measurements 
with spheres of various sizes in a cold background (i.e., non-radioactive) by directly 
comparing the fraction of activity recovered after reconstruction from volumes-of-
interests matching the physical size of the spheres to the known amount. The RCs 
then attempt to recover the activity lost due to PVE to provide a better estimate of 
activity concentration in individual objects. While this method only compensates 
for spill-out of counts from hot to cold regions, which inherently neglects spill-in of 
counts, spill-in can be compensated for. However, this, requires more effort, as the 
RCs are dependent on the target-to-object activity-concentration ratio (Srinivas et 
al. 2009). 

Sensitivity 
High sensitivity is important to reduce the effects of statistical fluctuations and its 
propagation to the reconstructed image. However, emission tomography often 
suffers from low sensitivity as a large portion of the imaged object is typically 
located outside the scanner’s FOV during imaging, and for the portion located 
within the scanner’s FOV, only a small fraction of the emitted photons are detected 
(Daube-Witherspoon and Cherry 2021). 

Positron emission tomography typically exhibits higher sensitivity due to larger 
usable acceptance angles compared to the gamma camera, which is limited by 
geometrical restrictions imposed by the collimator (Rahmim and Zaidi 2008). 
Consequently, the choice of collimator is a balance between spatial resolution and 
sensitivity for gamma cameras. Gamma camera imaging nevertheless has the 
advantage of utilising radionuclides with a longer half-life, and is thus able to study 
slow physiological processes, which is not readily possible with PET (Meikle et al. 
2005). 

The sensitivity in PET is contingent on the properties of the scintillator crystals 
(Eriksson et al. 2007, Daube-Witherspoon and Cherry 2021), e.g., crystal size and 
linear attenuation coefficient. Pertaining to this matter, the use of fast detectors to 
incorporate TOF measurements effectively results in an improved signal-to-noise 
ratio equal to /  compared to non-TOF measurements, where D is the diameter 
of the imaged object and x is the uncertainty in spatial localisation of the event 
along the LOR and is given by = /2 where t is the coincidence timing 
resolution, and c is the speed of light (Budinger 1983). 
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The higher sensitivity and spatial resolution have prompted a shift in certain nuclear 
medicine exams towards PET, where the radiopharmaceutical permits the change to 
a PET-compatible isotope (Miller et al. 2022), e.g., from planar 111In scintigraphy 
or 111In-SPECT to 68Ga-PET for neuroendocrine tumour imaging (Buchmann et al. 
2007, Lee et al. 2015). 
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3. Tomographic Reconstruction 

Tomographic reconstruction is a vital component in numerous diagnostic medical 
imaging procedures. The externally measured data in nuclear medicine consist of 
coincidences (PET) or single events detected within the primary energy window 
(SPECT). The fundamental desire is to map the data acquired from the imaging 
procedure back to its point of origin. 

In practice, the task is to translate the measured data into a discretised finite image 
matrix representing the three-dimensional radiopharmaceutical distribution that 
generated the measured data. Hence, following a nuclear medicine imaging 
acquisition, the primary objective is to invert the projection acquisition process. 
Mapping the measured data back to its origin thus enables a straightforward 
interpretation of whether the observed data can be attributed to normal or 
pathological mechanisms.  

A volumetric image can be considered a stack of two-dimensional images, and the 
two-dimensional reconstruction case will be considered for the section covering the 
analytical reconstructions. However, the two-dimensional case is analogous to the 
three-dimensional. 

Analytical reconstruction 
The measured signal of a parallel projection, p, acquired at an angle , can be 
thought of as the integration of signals originating from an object represented by the 
function (x, y) along straight lines defined by the position s, 

( ) = ( , ) . (3.1) 

Equation (3.1) represents a point in projection space and is known as the Radon 
transform of the object function, (x, y) (Kak and Slaney 1988). For analytical 
reconstruction, the goal is to invert the Radon transform to recover the object 
function from the measured projections. Recovering the object function from the 
projections is possible, provided a continuum of projections can be measured over 
the interval [0, ). 
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A first intuitive attempt to recover the object function from the projection would be 
to uniformly distribute the signals from the projections back along the straight lines 
for all angles. While the signals are allocated about their point of origin, it also 
misallocates signal along the straight lines. This method is known as direct back-
projection and results in a blurred representation of (x, y). 

The uniform allocation of signal along the straight line can be rectified through 
filtration of the measured projections before back-projection. Employing a ramp 
filter (Shepp and Logan 1974) in the Fourier domain effectively mitigates the 
blurring resulting from direct back-projection, yielding a better estimate of (x, y). 
However, applying the ramp filter makes the result sensitive to high-frequency noise 
in the projection data, and, it is as such common to modify the ramp filter by a user-
defined low-pass filter to de-emphasise higher frequencies (Lyra and Ploussi 2011). 
This reconstruction method with filtering prior to back-projection is referred to as 
filtered back-projection (FBP). Figure 3.1 shows the difference between inverting 
the Radon transform using direct back-projection and FBP for a noise-free 
Shepp-Logan phantom. 

 

 

Figure 3.1: Difference between direct back-projection and FBP (ramp-filter only). While the overall structure is 
recovered, the blurred representation of the object function results in the loss of fine details, rendering the direct 
back-projection unusable. Filtered back-projection manages to recover a highly detailed representation of the object 
function. 

Filtered back-projection has been the prevailing approach for tomographic 
reconstruction due to its computational speed (Bruyant 2002). However, regarding 
the expression presented in equation (3.1), analytical reconstructions are limited as 
they cannot readily compensate for image-degrading effects. Attempting to include 
such effects would result in a highly complex function, making analytical inversion 
challenging to generalise (Frey and Tsui 2006). This limitation is more pronounced 
in SPECT, where projections cannot be pre-corrected to the same extent as in PET. 
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Notwithstanding, FBP reconstructions are often hampered by streaking artefacts due 
to a limited number of angles acquired in practice. 

Iterative reconstruction 
The assumption that a unique solution through inversion of equation (3.1) exists 
does not hold in practice due to noise. Consequently, there are either no solutions or 
an infinite number of solutions to the reconstruction problem, and the challenge is 
instead shifted from finding a unique solution to finding the ‘best’ solution of (x, y) 
based on the measured projections. 

Iterative reconstruction algorithms are well suited to solving systems of linear 
equations and can thus be a suitable option in the attempt to estimate the ‘best’ 
solution. An iterative algorithm contains a feedback process, so a current estimate 
is sequentially adjusted, and each update attempts to improve the conformity 
between the projections of an estimated object function and the measured 
projections. The intuitive assumption is that if the conformity between the 
projections of the estimated object function and the measured projections is high, 
then the conformity between the estimated object function and the true object will 
also be high. 

The distinct advantage of iterative reconstructions is their capability to compensate 
for image-degrading elements during reconstruction, and the introduction of 
iterative reconstruction algorithms has significantly improved reconstructed image 
quality (Wilson and Tsui 1993, Leahy and Qi 2000). Moreover, as computational 
capabilities have improved, the clinical implementation of iterative reconstruction 
algorithms has become increasingly more feasible. 

Iterative reconstructions are constructed based on a linear model (Qi and Leahy 
2006), with the linear model connecting the measured projections to the object 
function via a system matrix (in matrix notation), = , (3.2) 

where p are the measured projections,  represents the object function, and A is the 
system matrix. The system matrix describes the physical models governing the 
emission and detection process. Essentially, each element, aij, of A describes the 
probability that an event originating from location j will be detected in sinogram bin 
i. The probability of the elements within the system matrix depends on various 
factors, such as non-uniform sensitivity and attenuation. 

The ‘best’ solution is contingent on the criteria employed to evaluate whether the 
‘best’ solution has been reached, i.e., the metric by which a cost function determines 
conformity between the measured projections and the projections of the estimated 
object function (Qi and Leahy 2006). As stated, either no solution or an infinite 
number of possible solutions exist due to the inherent presence of noise in emission 
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tomography. We therefore aim to estimate an object function based on a model of 
the mean of the measured data, i.e., q = A . One implementation of the cost function 
can be defined by maximising the likelihood under the assumption of Poisson-
distributed noisy data. The likelihood that the mean is qi for a measure of pi counts 
for a given projection bin i, or the probability that we measure pi counts given a 
mean qi, is 

L( | ) = Pr( | ( )) =  ( ) ( )! . (3.3)  
Hence, we seek to find an object function with the highest probability of generating 
p, or equivalently, find the object function that maximises the likelihood. For 
simplicity, we will estimate the Poisson log-likelihood rather than the Poisson 
likelihood (which is acceptable considering that the maximum occurs 
simultaneously given that the logarithmic function is monotonic), 

( | ) =  ln ( )  ( ). (3.4) 

As the object function  changes, so will the scalar value of . The method by which 
 is maximised can vary, but one approach is the expectation-maximisation (EM) 

algorithm (Dempster et al. 1977). The maximum-likelihood expectation-
maximisation (ML-EM) algorithm under the assumption of Poisson-distributed data 
(Lange and Carson 1984) can be expressed as,  

= . (3.5)   
The ML-EM algorithm begins with an initial object function estimate, 0, often a 
positive uniform image. The iterative process then proceeds by forward-projecting 
the current image estimate. The measured data and the forward-projected current 
estimate are compared, whereby the ratio between the measured data and the 
forward-projected estimate is back-projected (i.e., the propagation of the ratio back 
to image space) and normalised by the sensitivity image . The current 
estimate is then updated via element-wise multiplication of the normalised back-
projected ratio. This process is performed for a specified number of iterations. The 
process of the ML-EM algorithm is illustrated in Figure 3.2. 
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Figure 3.2: Flowchart of the iterative ML-EM process. The initial estimate (yellow box) typically consists of a 
positive uniform image. The algorithm will continue to update the current estimate until a predefined number of 
iterations has been performed. 

There are some limitations to the ML-EM algorithm. The convergence by which 
structures are formed is not independent of object size and its neighbouring 
structures, with smaller objects necessitating more iterations to reach convergence 
than larger ones (Liow and Strother 1993). Thus, the number of iterations typically 
used to reach convergence is large, which escalates the propagation of image noise 
(Barrett et al. 1994, Wilson et al. 1994). This interplay between convergence and 
noise ultimately leads to a point at which the algorithm must be terminated 
manually. Determining the stopping point involves finding a balance between 
reaching convergence and maintain adequate image quality, and the point at which 
the algorithm is stopped is often decided based on previous experience. Nonetheless, 
methods to introduce quantitative criteria to stop iterations have been made by 
evaluating an objective metric to limit image deterioration due to over-iterating 
(Veklerov and Llacer 1987, Gaitanis et al. 2010). Figure 3.3 shows an example of 
the Shepp-Logan phantom without noise reconstructed with 1, 3, 10, 20, and 200 
iterations. 
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Figure 3.3: ML-EM reconstruction stopped after 1, 3, 10, 20, and 200 iterations. After a few iterations, the general 
features of the original image are recovered. The ML-EM algorithm requires more iterations to adequately resolve 
the smaller fine details. 

Since the ML-EM algorithm uses all measured data during every iteration, the 
process is slow-paced as the forward-projection and back-projection steps are 
computationally demanding. One method to expedite the reconstruction process is 
to only use a subset, Sl, of the complete dataset to update the current estimate of the 
object function, as the image quality is typically contingent on the number of 
updates rather than iterations (Kamphuis et al. 1996). This method of accelerating 
the ML-EM algorithm is known as the ordered-subset expectation-maximisation 
(OS-EM) algorithm (Hudson and Larkin 1994), 

, = , , . (3.6) 

If the product of subsets and iterations equals the number of ML-EM iterations, the 
solution closely approximates the ML-EM estimate. However, it is worth noting that 
there is no proof that the OS-EM estimate converges to the same estimate as ML-
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EM or that it converges at all. Nevertheless, with noisy data typically encountered 
in clinical practice, this issue is not of particular concern (Hutton et al. 2006, Qi and 
Leahy 2006). While OS-EM has theoretical limitations, its superior speed makes it 
favourable over ML-EM in clinical practice. 

The ML-EM and OS-EM adaptation is one way to estimate the object function from 
the measured projections. Other implementations of the cost function exist, with one 
popular algorithm being the block-sequential regularised expectation-maximisation 
(BSREM) (De Pierro and Yamagishi 2001, Ahn and Fessler 2003). The BSREM is 
a globally convergent algorithm that maximises a penalised version of the 
likelihood. 
While iterative reconstruction algorithms dominate clinical practice, analytical 
reconstructions are still useful. The implemented scatter correction (Paper I) 
uses analytical reconstruction techniques to reconstruct an initial source 
distribution. The main reconstructions in Papers I-IV were performed using the 
OS-EM algorithm. 
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4. The Monte Carlo method 

The Monte Carlo method is a probabilistic numerical technique that can be used to 
solve non-deterministic problems. Monte Carlo simulations rely on sampling 
random numbers to predict outcomes from known probability distributions 
associated with mathematical models representing physical systems. Monte Carlo 
simulations have proven valuable due to their inherent capability for handling the 
stochastic nature of radioactive decay, particle transportation, and detection in 
nuclear medicine (Zaidi 1999, Buvat and Castiglioni 2002). Monte Carlo 
simulations are especially useful when the problem’s dimensionality escalates, e.g., 
the computational time to analytically simulate every particle interaction quickly 
becomes practically unmanageable.  

The core of MC simulations relies on the generation of uniformly distributed 
random numbers. While truly random numbers are impractical for computational 
purposes, pseudo-random number generators, which produce a sequence of numbers 
that appears random but is deterministic, are instead used in practice. Pseudo-
random number generators will always generate the same sequence of numbers 
when given an initial starting seed. Several sophisticated algorithms are available 
for generating random numbers, such as RANLUX (James 1994), RANECU 
(Lecuyer 1988), and Mersenne Twister (Matsumoto and Nishimura 1998). 

In this context, a simulation primarily focuses on transporting and detecting 
particles within structures based on object-dependent relationships. These object-
dependent relationships are expressed as probability density functions (PDFs) and 
describe the likelihood of a particular interaction occurring. The PDFs are sampled 
based on the randomly generated number, and the simulation selects one of many 
possible outcomes. This process continues until the particle comes to rest or exits 
the simulation-world boundary. Individual outcomes or trajectories within the 
simulation are referred to as histories, and simulating multiple histories is necessary 
to obtain accurate estimates of the studied parameters. As more histories are 
simulated, the results approach the system’s average, converging to the expected 
value as the number of histories approaches infinity. 

The realisation of the usefulness of simulations may stem from the ability to create 
multiple instances of the same study with minor variations. With users in control of 
the input data driving the simulations, tracking deviations resulting from 
modifications to the input data becomes straightforward (Fahey et al. 2018). 
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Consequently, constructing imaging systems within the simulation world allows for 
the modelling of particle detection, enabling the replication of clinical imaging 
systems and exams. This complete control over the simulation enables the study of 
parameters that are inseparable in studies with physical phantoms or clinical exams. 
However, it is important to note that while the MC method is exact in the limit of 
infinity with respect to the number of simulated histories, the results of the 
simulation will still depend on the accuracy of the models used to represent the 
physical systems and the accuracy of the modelled imaging system. 

Numerous suitable MC programs are available for applications in nuclear medicine 
(Jan et al. 2004, Ljungberg and Strand 1989, Sempau et al. 1997). Monte Carlo 
programs are generally divided into general-purpose programs and specialised 
programs, and the choice of MC program depends on the user’s specific needs, as 
each has advantages and disadvantages (Buvat and Castiglioni 2002, Zaidi 2022).  
The studies underlying this thesis used two MC software programs: GATE3 (Jan et 
al. 2004) to simulate PET and SIMIND4 (Ljungberg and Strand 1989, Ljungberg 
2012) to simulate SPECT. Although both GATE (Papers I–IV) and SIMIND 
(Papers III–IV) were utilised, the focus of this chapter will primarily be on GATE 
due to personal experience with this tool. Hence, a more detailed description of 
GATE will be provided, along with a brief description of SIMIND. 

GATE 
The GATE MC software (Jan et al. 2004) is built on top of the Geant4 kernel 
(Agostinelli et al. 2003), and GATE offers extensive capabilities for the simulation 
of various medical physics-related applications. 

A GATE simulation is built through a series of macro commands defined in plain 
text files, which is subsequently provided to the GATE engine. Using macro 
commands simplifies the learning process and eliminates the need for C/C++ 
programming experience. Each GATE simulation comprises four fundamental 
components: geometry, physics, source, and actors. 

The geometry component describes the solid components within the simulation, 
such as detectors, phantoms, and collimators. These solid components can be 
represented in various ways, including voxel matrices, meshes, and analytical 
descriptions, enabling the modelling of complex geometrical shapes. Each solid 
element must be assigned material composition and density through a dedicated 
material file. 

 
3 Web page: http://www.opengatecollaboration.org/ 
4 Web page: https://www.msf.lu.se/en/research/nuclear-medicine-group/software/simind-monte-

carlo-program 
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The physics component provides the physical models used during the simulation, 
including particle interaction cross-section databases and definitions for particle 
cuts. Particle cuts refer to a distance threshold below which no secondary particles 
are produced. The physics component also encompasses the equations and data 
associated with specific physical interactions. The underlying models and options 
are sourced from Geant4, which offers well-validated and up-to-date databases and 
physics interaction models. 

The source component handles the creation and tracking of particles from their 
inception. Multiple source types are available within GATE, ranging from simple 
pencil-beam sources to complex three-dimensional distributions. 

Lastly, actors serve as a tool to engage with the simulation. In this thesis, as 
anatomical imaging was not explicitly simulated, an actor was employed to generate 
images containing linear attenuation coefficients of the simulated phantoms. These 
images were later used to compute attenuation-correction factors and within the SSS 
algorithm for scatter correction. 

Phantoms can be represented using three-dimensional matrices or a combination of 
analytical geometric primitives. If the voxel-based method is chosen, an explicit 
descriptor file that associates voxel values with material composition must be 
created. Geant4 uses a hierarchical structure for describing solid objects, where a 
parent volume must entirely encompass a daughter volume. This means that 
volumes cannot overlap, which can pose challenges in certain scenarios. For 
instance, when describing a phantom using a voxel matrix, there is a significant risk 
that the matrix’s edge will overlap with the volume of the detector system. Figure 
4.1 shows a phantom created using geometrical primitives and a voxel-based 
phantom positioned within a PET scanner. 
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Figure 4.1: Two different modes of phantom representation in GATE. The combination of geometrical primitives 
strategically arranged to create the NEMA IQ phantom (left). Volumes within other volumes must be declared as 
daughter volumes and be entirely encompassed by the parent volume to avoid any volume overlap conflict. Voxel-
based phantom representation (right). 

In PET simulations, avoiding overlap between a voxel-based phantom and the arc 
of detectors can be challenging. One solution to this issue is to crop the phantom 
matrix by removing non-contributing voxels, particularly those representing air. 
Alternatively, the simulation can be conducted in two stages. First, the simulation 
runs without detectors, and particles exiting the phantom are recorded and stored in 
the surrounding volume. In the second stage, detectors are introduced and the 
phantom removed, and the simulation resumes using the previously recorded data 
as a starting point. 

The method for particle tracking varies depending on the phantom description. In 
the case of voxel-based phantoms, dedicated navigation algorithms are used to 
improve simulation efficiency rather than standard navigation within generic 
volumes. The computational acceleration is achieved through customised tracking 
algorithms that reduce the number of steps at voxel boundaries (Sarrut and Guigues 
2008). 

While the Geant4 kernel handles the physics models, the GATE engine is 
responsible for sampling particle position, direction, energy, and type from specified 
distributions. The initial spatial source distribution can be described using analytical 
models or voxel matrices. For voxel-based source distributions, an explicit 
descriptor file must be provided, associating voxel values with an activity 
concentration in units of [Bq·vox-1]. In some applications where a distinct particle 
is desired, the most efficient simulation is to generate only the last-stage particle, 
such as the back-to-back emission of annihilation photons. Alternatively, the more 
versatile, albeit slower, approach is to simulate the entire decay chain of any ion 
directly. 
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Lastly, the detector and its response chain must be modelled for the GATE 
simulation to be applicable in nuclear medicine imaging. This part consists of two 
steps: modelling the physical detector geometry and modelling the processes that 
account for how particle interactions within the detector elements are translated into 
a recorded signal. 

The solid elements of any detector, such as the scintillator crystals, are created using 
analytical geometric primitives. Tools are available to ease and streamline the 
creation of scanner systems within GATE. 

The signal processing module, known as the digitizer, simulates the front-end 
electronics of a signal processing chain. Users construct the digitizer module by 
selecting a series of processing modules to manipulate the list of interaction events 
recorded in the detector elements. This process chain allows for modelling of spatial, 
energetic, and temporal uncertainties, thus enabling the simulation of various 
constraints inherent in a clinical scanner. Moreover, the Geant4 engine assigns 
timestamps to all particles and interactions, facilitating timing-related tasks such as 
coincidence detection and time-of-flight measurements. 

GATE makes it feasible to simulate complex and highly realistic scanner settings 
with relative ease. However, once a system has been constructed, validation of the 
model by comparing simulation results with experimental data becomes crucial. 
Yet, accurately representing a clinical scanner is contingent on obtaining precise 
information about the scanner, and access to such information often necessitates 
non-disclosure agreements, rendering validation processes an ongoing challenge. 
The GATE model and its connection to a stand-alone reconstruction software 
program were validated in Paper I. The validation of the computational chain 
allows for subsequent simulation-based studies to be conducted and increases 
confidence in the model’s ability to accurately generate results akin to those of 
the replicated clinical scanner. 

SIMIND 
SIMIND (Ljungberg and Strand 1989, Ljungberg 2012) is a specialised photon 
transport software program for simulating planar gamma camera imaging or 
SPECT. In recent developments, SIMIND has been extended to include the 
simulation of solid-state cadmium zinc telluride (CZT) cameras (Pretorius et al. 
2015, Roth et al. 2022). Moreover, to improve computational efficiency, SIMIND 
incorporates multiple variance-reduction techniques. Variance-reduction techniques 
alter the probabilities during the simulation to improve computational efficiency, 
e.g., restricting the sampling of emissions to only simulate photons impinging the 
detector. Consequently, due to the extensive use of variance-reduction techniques, 
the resulting counts in the projections do not follow a Poisson distribution. It is 
therefore advisable to continue the simulation until the projections are essentially 
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noise-free and then introduce Poisson-distributed noise. Like GATE, SIMIND 
enables simulations of voxel matrices, allowing for the modelling of highly intricate 
geometries and source distributions. 

The [177Lu]Lu-DOTA-TATE SPECT simulations in Paper III and Paper IV were 
performed using SIMIND. 
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5 Anthropomorphic patient models 

The precise models of Monte Carlo simulations enable the simulation of clinical 
applications, with one advantage of Monte Carlo simulations is the ability to isolate 
and manipulate individual parameters. Once the simulation model accurately 
replicates the camera system, it becomes possible to disentangle the effects of in 
vivo confounders in silico. 

In many nuclear medicine applications, simple geometric phantoms, e.g., spherical 
or cylindrical phantoms, may be sufficient (ICRU 1992). However, our ability to 
study phenomena occurring during a nuclear medicine exam, whether through 
physical measurements or simulations, is limited by the simplicity of these phantom 
models. A basic geometric phantom with a set of hot and cold spheres does not 
adequately represent the intricacy of human internal structures. 

Consequently, regardless of the imaging system model’s accuracy in representing a 
clinical scanner, the lack of phantom complexity may lead to a discrepancy between 
simulations and clinical measurements, resulting in an insufficient representation of 
the studied phenomena. This effectively limits the range of practical uses in which 
the obtained results can be applied. To address this limitation, anthropomorphic 
patient models have been introduced to enhance the realism and reduce the 
complexity gap between simulations and clinical exams. 

Early anthropomorphic phantoms were constructed using geometric primitives 
arranged strategically to mimic organs and overall body shape. Snyder et al. (1978) 
developed initial versions of these stylised anthropomorphic phantoms, which were 
later adapted to resemble children and pregnant women (Cristy 1980, Stabin et al. 
1995). While these phantoms offered flexibility by allowing changes to organ 
representations, they still fell short of achieving adequate patient realism. 

Voxelised phantoms, based on segmented patient images, were therefore developed 
to further enhance the patient models (Zubal et al. 1994). This approach offered 
significantly higher anatomical realism. However, these voxel-based phantoms 
demand time-consuming image segmentation (Caon 2004), which limits the 
creation of extensive databases to represent the anatomical variability found in 
patient populations. 

Hybrid phantoms have emerged to address the need for highly realistic patient-
resembling geometries while allowing for the rapid creation of a diverse phantom 
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population (Segars et al. 2010, Kim et al. 2011, Lee et al. 2007). Hybrid phantoms 
combine concepts of mathematical and voxel-based principles, utilising non-
uniform rational B-splines (NURBS) or polygon meshes to define the phantoms’ 
organ surface contours (Kainz et al. 2019). This surface representation retains 
anatomical realism and provides flexibility for altering the size and shape of organs 
by modifying the NURBS via control points. 

The XCAT phantoms (Segars et al. 2010) are hybrid models that use NURBS to 
represent organ surfaces. With this feature, a single phantom can generate multiple 
variations of itself, making it well-suited for mimicking organ motion through 
deformations and transformations. Hence, these phantoms can be generated at 
different respiratory and heart stages once the deformations and temporal 
translations have been defined. The XCAT phantoms were initially based solely on 
the segmentation of the Visible Human dataset (Ackerman 1998), which was not 
considered sufficiently flexible to capture the anatomical variability of a patient 
population. Over time, the XCAT population has expanded to include 58 unique 
phantoms (Segars et al. 2013). Figure 5.1 shows three different hybrid phantoms 
from the XCAT population. 

 

 

Figure 5.1: Three distinct variations of hybrid computational human phantoms generated from the XCAT 
population. 

Using highly realistic anthropomorphic phantoms enables the close emulation of 
patients in silico. These improved patient models are better suited for simulating 
clinical nuclear medicine exams due to their increased complexity. This enhanced 
complexity facilitates the interplay of anatomical and physiological intricacies 
inherent in patients to be modelled, and avoids the limitations imposed by simple 
geometric phantoms. When combined with MC simulations, anthropomorphic 
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phantoms can help address the challenge of determining the most suitable approach 
to maximise standard of care for a particular medical exam (Zhang et al. 2014, 
Brolin et al. 2016, Fu et al. 2017). Physical phantoms are constrained in this regard, 
as it is neither feasible nor cost-effective to produce a comprehensive range of 
patient sizes, variations, and deformations to cover the inherent anatomical 
variability among patients. 
Anthropomorphic phantoms were used in Papers (II–IV), with the patient 
model realism improved in ascending Paper order. 
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6. A Tool for Systematic Evaluation 

Improving the efficiency and quality of medical imaging exams is crucial, and 
conducting MC simulations can help achieve this goal. To ensure reliable and 
relevant results following an MC simulation, the use of realistic patient models and 
an accurate imaging system model is essential. However, it is vital to reconstruct 
the simulated projections to make the simulation results clinically relevant, as the 
end product of a diagnostic medical imaging exam is, after all, the tomographic 
reconstructed image. Consequently, it is equally important that this step emulates 
the clinical system’s reconstruction procedures. 

A tool connecting simulations of nuclear medicine imaging systems and realistic 
patient models to a reconstruction software is thus a powerful approach for 
investigating clinically relevant issues. Such a pipeline, used in this thesis, can be 
divided into three components: the scanner model, the patient model, and the 
reconstruction software. The validation of this pipeline is described in Paper I. 
Below is a description of the efforts taken to improve the correspondence of the 
results from the pipeline with the results from clinical measurements. 

Scanner model 
The GATE scanner model is based on the Discovery MI (GE Healthcare, 
Milwaukee, WI) PET scanner with a 20 cm axial FOV. Steps were taken to replicate 
the scanner’s geometrical configuration and its front-end electronic settings. While 
the geometrical configuration can often be constructed piece by piece using 
published information (Chicheportiche et al. 2020, Oddstig et al. 2021) or through 
information obtained from the vendors, modelling the front-end electronics tends to 
be more challenging. 

Information about every constituent of the clinical scanner is not readily available, 
and some functionalities, such as Compton scatter recovery (Wagadarikar et al. 
2014), available in Discovery MI PET scanners, are not implemented in GATE. 
Hence, parts of the scanner model will not exactly replicate the clinical scanner. 
Moreover, saturation of silicon photomultipliers (SiPM) is typically low at the 
activity levels found in clinical PET exams (Wagatsuma et al. 2017, Gonzalez-
Montoro et al. 2022), and deadtime was therefore not incorporated within the GATE 
model. These omissions are effectively equivalent to an idealised rejection of these 
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phenomena, and while such omissions will ultimately affect the model’s 
correspondence with the replicated scanner, their overall impact is considered small. 
Instead, one must consider the practical trade-offs between model complexity and 
the time required to implement the additional features. 

In this context, perfect estimations of correction factors can be made based on the 
availability of underlying data following MC simulations. However, acquiring 
correction factors in this manner leads to an idealised correction, which is not 
attainable in a clinical setting. Therefore, substantial efforts were made to 
implement programs for computing correction factors as performed in a clinical 
scanner (see Chapter 2.). 

For a comprehensive explanation of the scanner model, refer to Paper I. 

Patient model 
Nuclear medicine imaging is always conducted with a specific objective in mind, 
such as lesion detection, determining activity concentration within tissue, or 
classifying pathology. In emission tomography, statistical noise often limits the 
performance of these tasks. However, for a given task, the relative impact due to 
noise will saturate at some point as the time-activity product increases. In those 
cases, the limiting performance of the task is instead set by the intrinsic randomness 
within the imaged object (Barrett 1990). 

Hence, the structural intricacy within an overtly simple geometry may not 
adequately represent to the anatomical complexity inherent in patients and the 
intricate physiological mechanisms responsible for the radiopharmaceutical’s 
distribution cannot be emulated. Evaluating the performance of certain tasks based 
on simple geometric shapes may therefore be inadequate. Hence, to ensure unbiased 
estimation of task performance, the simulation, including the patient model, should 
reflect the complexity of the emulated measurement. For instance, typical 
assumptions, such as patient models with uniform intra-organ activity 
concentration, represents a simplification of the inherent complexity found in a 
clinical setting, and such oversimplification could potentially impact task 
performance assessment (Rolland and Barrett 1992, Eckstein et al. 1997). 

While the omission of individual components may not be the sole factor that deems 
a simulation adequately realistic or unrealistic, collectively neglecting multiple 
physical or physiological aspects can create a noticeably artificial appearance in 
simulated images and introduce biased results. Figure 6.1 illustrates how enhancing 
the realism of the patient model can improve the visual appearance of the image. 
Introducing more complexity within the simulated phantom aims to more closely 
replicate the intricacy in actual patients in order to counteract biased performance 
assessment following an MC simulation. 
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A methodology to improve the realism of computational human phantoms was 
developed in Paper IV. 

 

 

Figure 6.1: Reconstructed images following the simulation of three different patient models. The NEMA IQ 
phantom (a) may be sufficient to evaluate system performance, such as image quality. However, its geometrical 
simplicity cannot adequately represent the anatomical intricacies of an actual patient. The anthropomorphic 
phantom (b) represents an improved patient model that more closely replicates the complexity of a patient. The 
refined anthropomorphic phantom (c) incorporates respiratory motion, non-spherical lesions, and non-uniform 
intra-organ activity concentration to enhance the correspondence between the patient model and actual patients. 

Coupling to Reconstruction  
The work in this thesis employed the CASToR reconstruction software (Merlin et 
al. 2018) to establish a pipeline connecting PET MC simulations to quantitative 
reconstructed images. It is worth noting that other stand-alone reconstruction 
software, such as STIR (Thielemans et al. 2012) or OMEGA (Wettenhovi et al. 
2021), could be considered for the construction of similar pipelines. 

An accurate representation of the physical model, i.e., the system matrix, must be 
defined to obtain quantitative images. It is therefore essential to implement methods 
for the computation of correction factors (e.g., attenuation and normalisation) and 
effectively integrate them into the system matrix to compensate for these effects 
during the reconstruction process. The system matrix elements can be estimated in 
a few ways (Veklerov et al. 1988, Panin et al. 2006, Chen and Glick 2007). 
However, the complete data-set is typically extensive in modern PET scanners, so 
pre-computing and storing the system matrix becomes impractical. Implementations 
of iterative reconstruction algorithms therefore often employ ray-tracing algorithms 
to compute the system matrix on the fly. 
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The approach for estimating the system matrix elements in CASToR utilises ray-
driven projectors (Joseph 1982, Siddon 1985, De Man and Basu 2004), where 
straight lines connect the detector elements in accordance with the scanner’s 
geometry. No matrix elements are thus explicitly stored in memory, but are instead 
calculated, when necessary, by the reconstruction algorithm. The difference in 
projectors lies in how geometric aspects of the projection process are handled, and 
ultimately involves a trade-off between accuracy and computational efficiency. 

Typically, the system matrix provides a detailed representation of the underlying 
physics involved in the imaging process. The system matrix can be factorised to 
describe various contributions of the image formation process (Rahmim et al. 2013, 
Qi et al. 1998). The linear model that describes the relationship between measured 
projections and the object function can further be expressed as = = + + , (6.1) 

where N and L account for normalisation and attenuation losses, X represents the 
line integral, and s and r denote additive scatter and randoms contributions. 
Additional components, such as detector resolution, positron range, and photon 
accollinearity can typically be modelled in the system matrix to improve the 
representation of the physical model. Notwithstanding, the option to perform 
resolution modelling within CASToR is implemented as an image-based 
convolution with the point spread function (Stute and Comtat 2013). The CASToR 
framework incorporates scatter and random estimates in the forward-projection. By 
incorporating scatter and random contributions during the reconstruction process, 
the assumption of Poisson-distributed data is preserved, unlike when subtracting the 
data. Furthermore, data subtraction poses the risk of introducing negative bin values, 
which is incompatible with the non-negativity constraint imposed by the ML-EM 
algorithm. 

The method employed for reconstructions in the studies underlying this thesis was 
list-mode reconstruction (Barrett et al. 1997, Reader et al. 1998) using the OS-EM 
algorithm. In list-mode reconstruction, each event is processed one by one as stored 
in the data file, as opposed to processing the data for each sinogram bin. The 
following occurs for each event retrieved from the list-mode file buffer: i) the 
system matrix elements associated with the event is computed and the object 
function is forward-projected; ii) the ratio between unity and the forward-projection 
is computed and back-projected. The key difference from equation (3.5) is that steps 
i) and ii) is performed for all recorded LORs rather than all possible LORs. After all 
LORs have been processed, the continuation of the algorithm is analogous with 
equation (3.5).  

Time of flight measurements involve associating a time difference in the arrival of 
the two photons forming an LOR with a presumed spatial distribution of the 
annihilation site along the LOR. This is modelled by approximating the system 
matrix elements through the multiplication of independent TOF weights, i.e., the 
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TOF weights estimate the contribution of each voxel to a TOF bin. Consequently, 
the incorporation of TOF means that scatter and randoms estimates must also be 
adjusted to the associated TOF measurement. For randoms, this can be achieved by 
replacing the 2  factor in equation (2.3) with the temporal width of the TOF bin, 
which is equivalent to dividing the non-TOF randoms estimate by the number of 
TOF bins. The method for estimating TOF scattered coincidences was covered in 
Chapter 2. For a comprehensive explanation of the CASToR TOF implementation, 
please refer to Filipovi  et al. (2019). 

Figure 6.2 displays a transverse slice of a PET MC simulation reconstructed with 
CASToR using list-mode OS-EM, shown after every fourth update. 

 

 

Figure 6.2: Transverse slices of a 68Ga-PET simulation using an anthropomorphic phantom. The object function is 
relatively quickly recovered, and after 20 updates, the image does not substantially change. 

The combination of an MC and a reconstruction software such as GATE and 
CASToR forms a tool that connects simulated data to reconstructed images. Access 
to the ground truth and the possibility to isolate parameters that are typically 
inaccessible in clinical measurements can improve our understanding of the issue at 
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hand. Therefore, this connection is desirable as it provides a method for 
systematically evaluating clinically relevant issues. 
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7. Clinical Applications 

Theragnostics with 68Ga PET and 177Lu SPECT 
Neuroendocrine neoplasms (NENs) are a group of heterogeneous tumours that can 
be divided into two categories: well-differentiated neuroendocrine tumours (NETs) 
and poorly differentiated neuroendocrine carcinomas (NECs) (Nagtegaal et al. 
2020). The classification of NENs is an important prognostic marker, and it forms 
the fundamental basis for subsequent treatment stratification. Neuroendocrine 
neoplasms have a body-wide distribution, with the gastrointestinal tract and lungs 
being the most common primary sites (Oronsky et al. 2017). 

Somatostatin receptors (SSTR) are ubiquitously expressed in the human body, with 
NETs commonly characterised by overexpression of SSTR frequency and density. 
It is estimated that at least 80% of NETs express SSTRs, while the SSTR expression 
is lower in NECs (Reubi and Schonbrunn 2013). The expression of SSTRs in NETs 
is often higher than in most normal tissues, a feature that can be exploited for 
imaging and therapy. Synthetic somatostatin analogues such as octreotide (DOTA-
TOC) or octreotate (DOTA-TATE) can target NETs, with binding affinity 
depending on the somatostatin analogue and the cell SSTR subtype. Attaching a 
suitable radionuclide to the synthetic somatostatin analogue makes it then possible 
to visualise the radiopharmaceutical binding to SSTRs. 

A widely used method for NET imaging is PET, using 68Ga-labelled DOTA-
conjugates, owing to its high sensitivity and specificity in lesion identification 
(Geijer and Breimer 2013, Deppen et al. 2016, Graham et al. 2017). These properties 
make [68Ga]Ga-DOTA-radiopharmaceuticals appropriate for disease staging and 
therapy stratification (Sanli et al. 2018, Hennrich and Benesova 2020). 

NETs with curative intent is primarily managed through surgical resection (Tsoli et 
al. 2019). However, surgical resection is typically restricted to tumours exhibiting 
slow progression (Schurr et al. 2007). Surgery may thus not always be a viable 
treatment option depending on metastasisation and the extent of metastases. 
Somatostatin analogues can then be used to systemically target NETs, where these 
acts as inhibitors for tumour growth. However, if tumour progression continues in 
spite of the somatostatin analogue treatment, then peptide receptor radionuclide 
therapy (PRRT) is an alternative approach (Baum and Kulkarni 2012). The concept 
is similar to 68Ga-SSTR imaging, but it involves coupling a different radionuclide 
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to the synthetic somatostatin analogue with the intent of cell damage. This approach 
serves as a highly NET-targeting therapy, with 177Lu being a common choice of 
radionuclide. The choice of radionuclides is limited, as the radiopharmaceutical’s 
pharmacokinetic properties should not deviate too much from that of the imaging 
agent by the change of radionuclide. Nonetheless, the patient must have an SSTR-
positive disease, as indicated by the 68Ga-SSTR imaging, for 177Lu-PRRT to be a 
viable NET-treatment option. 

The use of molecular agents to identify patients who are likely to benefit from PRRT 
and the corresponding therapeutic agent for treatment is well-encapsulated by the 
term theragnostics (Frangos and Buscombe 2019), which embodies the concept that 
diagnosis and therapy are inherently interconnected. This combination of using 
molecular agents with equivalent targeting mechanisms means that the diagnosis 
can be followed up with personalised treatment (Baum and Kulkarni 2012). 

In many cases, the patient selection for PRRT involves a qualitative evaluation of 
the 68Ga-SSTR images, considering factors such as disease quantity, distribution, 
progression, and SSTR expression (Mittra 2018, Sanli et al. 2018). While there is 
generally high agreement in 68Ga-SSTR PET interpretation, inter-observer 
variability still exists, leading to subjective patient selection for PRRT (Fendler et 
al. 2017). There is therefore interest in incorporating quantitative metrics into 
theragnostics to introduce objective criteria for evaluation, thereby strengthening 
the basis for PRRT selection, with efforts made to quantitatively and semi-
quantitatively assess patient suitability for PRRT (Kratochwil et al. 2015, Werner et 
al. 2018). Such metrics are desirable within this theragnostic setting, for both 
predictive and prognostic indication. Other metrics, such as total tumour volume or 
total lesion somatostatin receptor expression (Tirosh et al. 2018, Toriihara et al. 
2019, Abdulrezzak et al. 2016), have gained attention for evaluating prognosis and 
determining treatment stratification. 

Similarly, quantitative metrics following serial peri-therapeutic SPECT imaging 
may also be beneficial. In this context, the estimation of absorbed doses is of 
interest, calculated based on serial peri-therapeutic SPECT imaging. The absorbed 
dose estimations would allow for tailoring of administered activity (or the number 
of PRRT cycles) such that an optimal absorbed dose is given to tumours while 
sparing normal tissue (Sundlöv and Sjögreen Gleisner 2021). Furthermore, attempts 
have been made to predict the PRRT absorbed doses based on the pre-therapeutic 
68Ga-SSTR image (Stenvall et al. 2022, Bruvoll et al. 2023), which would 
subsequently promote a highly individualised PRRT treatment plan.  

Hence, incorporating quantitative metrics for evaluating pre-therapeutic PET and 
peri-therapeutic SPECT imaging in the context of theragnostics shows interesting 
potential. However, evaluating quantitative metrics requires that phenomena 
impacting the quantitative accuracy are well understood, something the pipeline 
described in Chapter 6 may assist with. 
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8. Discussion and Future Outlook 

Nuclear medicine imaging generates functional information non-invasively for 
disease diagnosis, assessment, and the personalisation of treatment strategies. 
Functional imaging is not limited to oncology; it is also an important tool in, for 
example, diagnosing cardiovascular disease and neurological disorders (Anand et 
al. 2009). The combination of anatomical imaging with functional imaging 
substantially enhances diagnostic capabilities, as it allows for evaluating the extent 
of the pathology while also providing an anatomical reference for the localisation 
of the disease. 

Physiological images are commonly assessed qualitatively, which is often 
sufficient. However, qualitatively evaluating the disease to predict clinical 
behaviour, determine optimal treatment strategies, or assess therapeutic response 
can be challenging. This has led to a rise in the use of quantitative cancer 
biomarkers, and selecting therapeutic strategy based on biological tumour features 
has the potential to improve disease management (Meikle et al. 2021). 

The use of cancer biomarkers as a prognostic or predictive indicator relies on 
defining quantitative thresholds to anticipate outcomes. The quantitative metrics 
one measures must be harmonised and highly reproducible to facilitate its 
translation into clinical practice (Boellaard 2009). While quantitative nuclear 
medicine imaging is appealing, achieving it in practice can be challenging. 

What are then the metrics that one reliably can measure and use to define diagnostic 
thresholds? This question quickly shifts to additional questions regarding accuracy 
and precision, given the inherent difficulty in quantifying a radiopharmaceutical 
whose distribution changes over time and varies from patient to patient. Without 
great care, studies conducted on the same subject can exhibit large variations, and 
these variations are further exacerbated when considering different scanners, 
imaging protocols, and reconstruction algorithms (Meikle et al. 2021). Achieving 
consistent and unbiased assessment of tracer distribution and intensity is therefore 
paramount. 

While significant advancements in nuclear medicine imaging have been achieved 
over the years, challenges such as motion, non-uniform and poor spatial resolution, 
and noise persist, and these are not necessarily easy to characterise. To address these 
limitations, Monte Carlo simulations can provide deeper insights into the 
phenomena that produce the observed data and its associated inaccuracies. 



68 

Additionally, Monte Carlo simulations can assist in optimising specific clinical 
objectives, such as improving image quality or reducing patient dose. In Paper II, 
Monte Carlo simulations were used to evaluate different activity-administration 
protocols to achieve a harmonised image quality, regardless of patient body size. 

In this context, the theragnostic approach for management of NETs to diagnose and 
the subsequent PRRT treatment using radiopharmaceuticals with similar targeting 
mechanisms can potentially benefit from the use of quantitative biomarkers. 
However, the combination of pre-therapeutic and peri-therapeutic imaging, as in the 
case of [68Ga]Ga-DOTA-TOC PET and [177Lu]Lu-DOTA-TATE SPECT, presents 
challenges due to the involvement of different imaging modalities, 
radiopharmaceuticals, and imaging time points, which all contribute to the 
complexity of extrapolating prognostic and predictive clinical behaviour from one 
setting to the other. Consequently, it is important that one understands potential 
limitations that will affect accuracy and precision in the metrics to be determined, 
and in Paper III, Monte Carlo simulations were performed to evaluate the impact 
of respiration as a reason for one possible quantitative bias within the context of 
[68Ga]Ga-DOTA-TOC PET and [177Lu]Lu-DOTA-TATE SPECT. 

There is a need to elevate our understanding of potential qualitative and quantitative 
limitations and inaccuracies within nuclear medicine exams, and MC simulations 
has the potential to facilitate this. However, it is important to emphasise that the 
constituents of the model should match the intricacy inherent in a clinical setting. In 
Paper I, substantial effort was introduced to certify that the pipeline is of similar 
complexity to its clinical scanner counterpart. If not, the assessment of the model’s 
performance would be biased, and the data produced may not be clinically 
comparable. Following this, in Paper IV, efforts were made to improve the patient 
models so the intricacy of the patient models better correspond to the intricacy of an 
actual patient. With such improved models, one can systematically evaluate the 
effects of individual parameters to better grasp these biases. Going one step further, 
these models and simulations could allow for the creation of databases of simulated 
images with access to the ground truth. Such databases could be valuable in many 
aspects and can, as an example, be used to assess software performance and, in light 
of the rapid expansion of machine learning, as training data (Torres-Velazquez et 
al. 2021). 

While the current pipeline in this thesis has been tailored towards oncological 
applications, and in particular, [68Ga]Ga-DOTA-TOC PET, it is important to note 
that it can be extended to cover a wide range of radiopharmaceuticals and study 
protocols and, consequently, used to study other pathologies. As an example, PET 
can be used to evaluate ischemic heart disease qualitatively and quantitatively. 
Quantitative myocardial blood flow can be calculated with compartment models 
based on dynamic scans to estimate the kinetics of the tracer and, consequently, the 
myocardial blood flow (Sciagrà et al. 2021). In this case, the benefit of quantitative 
assessment lies in the potential to reveal balanced ischemias, which are not revealed 
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by semi-quantitative analysis. Notwithstanding, any biased estimate of activity 
concentration will result in a biased assessment of the myocardial blood flow. 
Hence, extending the pipeline to incorporate associated pharmacokinetic models for 
specific radiopharmaceuticals enables time-dependent activity distributions to be 
defined and used together with realistic patient models, which would promote its 
use in various clinical applications (Brolin et al. 2013). Consequently, the pipeline 
could then be used for various PET exams to systematically evaluate the impact of, 
e.g., respiratory and cardiac motion to better understand potential bias in 
quantitative estimates or as a means to evaluate the performance of analysis software 
and correction methods. 

Ultimately, the extent to which clinical PET applications can be studied using the 
pipeline depends on the user’s willingness to expand and improve the model’s 
boundaries. However, when these modifications are in place, the simulations of 
tomorrow can facilitate answers in silico to questions that are difficult to separate in 
vivo. 
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9. Conclusions 

The overarching objective of this thesis aimed to model and optimise 68Ga-SSTR 
PET imaging with a focus towards theragnostic applications. A crucial aspect of this 
work involved creating a method that enables the simulation of a clinical PET 
scanner and the reconstruction of simulated data, entirely in silico. This is an 
important step, as nuclear medicine Monte Carlo simulation-based studies are 
seldom accompanied by a method to perform tomographic reconstruction. To ensure 
the reliability of the results, validating the pipeline was necessary, and the model 
was shown to produce results comparable to those obtained from a clinical scanner 
(Paper I), allowing for further simulation-based studies to be performed. Such an 
in silico pipeline offers flexibility to analyse various applications, such as assessing 
image quality under various conditions and simulating complex parameters like 
respiration, which is typically challenging in a clinical setting. 

An illustration of the flexibility of the pipeline is demonstrated in Papers II and III, 
one assessing image quality when considering patient body size and activity-
administration protocols in [68Ga]Ga-DOTA-TOC PET exams (Paper II), and the 
other investigating potential quantitative bias due to respiration (Paper III) for the 
theragnostic pair [68Ga]Ga-DOTA-TOC PET and [177Lu]Lu-DOTA-TATE SPECT. 
Both studies underscore the benefits of Monte Carlo simulations, in which the 
construction of multiple instances of the same simulation geometry with slight 
variations are possible, and the access to the underlying data allows the generated 
results to be understood in the context of the study. This approach allows for the 
systematic evaluation of isolated parameters concerning the issue being 
investigated. 

It is important to acknowledge the necessity of improving all constituents of the 
pipeline, including refinements of the patient model to better emulate the 
complexity of actual patients. If there is a mismatch in complexity between the 
simulation model and the actual exam, the performance assessment may be biased 
(Paper IV). Therefore, it is important to strive for refined patient-model realism in 
future simulation studies to extend the usability of the generated images, including, 
but not limited to, software performance assessment or their use in conjunction with 
machine learning. 
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As the final take-home message, this type of pipeline has proven its usefulness. It 
creates a controlled environment to test, optimise, and evaluate various aspects of 
the entire PET chain, from image acquisition to reconstruction. This reduces our 
dependence on physical scans and enhances our understanding of the impact of 
factors that are challenging to isolate in vivo. While the model is currently designed 
for 68Ga-SSTR PET imaging, extending it to other radiopharmaceuticals is feasible, 
providing an opportunity to investigate other pathologies using this pipeline. 
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