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Popular summary in English

When we use the term ¨granular material¨ we are not talking about a single particle,
but rather piles of solid particles that can be either dry, wetted as in sandcastles (with
liquid bridges), or immersed in a fluid, with the latter called suspensions. There are
many examples of granular materials everywhere from corn starch and flour in our
kitchen to wet cement and cement powder used in building resilient structures, to
debris flows known as a common natural hazard. So, it is important to have a deeper
understanding of the physics of granular materials both to be able to predict their
behavior and to produce materials of desired properties.

Granular material is a collection of dif
ferent types of materials that can be
very diverse considering particle prop
erties, interactions, and process dynam
ics. While particle properties and inter
actions can define what kind of mate
rial we are dealing with, process dynam
ics can show different states of packing
depending on the boundary conditions,
energy input, etc. Models to study gran
ular materials are generally based on the
simplest types of materials as reference
cases, for instance, a continuous steady

flow of isotropic particles (i.e. discs or spheres) of nearly the same size, only interact
ing through elastic repulsion and friction.
These simple models help us understand the simplest particle flows, a small subset of
all granular systems. Nevertheless, they serve as a good reference case, allowing us to
disentangle the effect of other parameters, like shape anisotropy, polydispersity in size,
different suspending fluids, etc. Furthermore, some phenomena are casespecific and
are not observed in simple configurations. Therefore, to improve our understanding
of more realistic flows we here study the rheology (the science of measurement of de
formation and flow of matter) of packings consisting of elliptical particles with a focus
on the effect of the shape anisotropy on the mechanical response of the system. We
also study a common complex phenomenon in granular flows referred to as segrega
tion. Any small differences in particle properties such as size, shape, density, friction,
etc can lead to flowinduced segregation. Here, we investigated size segregation in
mixtures of big and small discs.
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Chapter 1

Introduction

Granularmaterials are conglomerations of discrete solid particles larger than the atomic
scale in a sense that their surfaces are well defined and distinct from their volumes,
and that thermal agitation can be ignored. At ambient conditions this corresponds to
lower size limit of 1 μm. Particles below this limit is instead referred to as colloids.

Such materials can either be dry or suspended in a viscous liquid, with the latter
being called wet granular materials or suspensions. Granular materials are ubiquitous,
from natural processes to various industries. We can find examples of them in daily
home products (paint, tooth paste, cornstarch), biological systems (blood), industrial
processing (waste slurries), construction materials (cement), and geological processes
(land sliding). They are a class of complex fluids that can be further categorised based
on the physical and chemical properties of the suspended particles and the suspending
fluid. Such systems have emerged as an important field of study not only due to their
rich physics but also because of their various practical applications [1, 2, 3].

For a single solid particle, Newton’s second law can well describe the particle’s motion
or in the case of two solid particles in contact or a particle immersed in a fluid, there are
several theories available to describe the forces. However, when it comes to granular
materials, these apparently simple systems, not all of their features can be predicted by
available physics theories, such as Newton’s second law. So, their behaviour still resists
basic understanding and raises many open questions e.g. existence of a consolidated
constitutive law, and what can gives rise to it, i.e. how microscopic parameters and
fluctuations lead to a certain rheological behaviour is still an unsettled challenge.

In the present work, I studied numerically both dry and wet granular flows utilizing
discrete element method (DEM), where the particles are described individually. For
the dense suspensions the fluid is considered as a continuum. I specifically focus both
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on the effect of the shape anisotropy of the particles (compared to the isotropic case)
on the system’s rheology in oscillatory shear flows, and also on the phenomena that
can result from differences in particles’ sizes e.g., segregation. I study two dimensional
particles that are rigid discs with and without friction. Particles are nonBrownian
(i.e. the particles have large enough radius for thermal fluctuations to be neglected),
repulsive. In the case of dense suspensions the particles are also neutrally buoyant (i.e.
having the same density as the fluid, so no creaming/sedimentation in the suspension).
The suspending fluid in case of a suspension is Newtonian i.e. shear stresses depends
linearly on the shearrates/deformationrates.
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Chapter 2

Theory

While the behavior of a single grain is governed by the laws of mechanics, which have
not changed much since Coulomb and Newton, the collective physics of a sand pile
still resists our understanding. Dealing with granular materials, we encounter many
difficulties among which we can mention: 1) Large number of particles in granular
media which makes it challenging to simulate the system even with present computer
power. 2) Granular materials being athermal, since the particles in a granular medium
are too large to have Brownian motion, applying statistical thermodynamics on the
system is a bit problematic (due to the lack of temperature). Even though a granular
temperature and an Edwards ensemble can be defined. 3) Lack of a clear scale sep
aration between the microscopic scale, i.e. the grain size and the macroscopic scale,
i.e. the size of the flow to have a wellfounded continuum description of the system.
4) Complex graingrain and grainfluid interactions. 5) Dissipation (inelastic colli
sions, frictional dissipation) at the microscopic level, which makes it not possible to
apply the classical concepts developed in statistical mechanics to granular materials.
6) Different states of matter (such as solid, liquid, and gas) are possible for granular
materials, which differ very significantly from those of their molecular counterparts.
Among other things, practically all states of granular matter are metastable. Clearly,
the root cause of these and other properties peculiar to granular matter is the dissipa
tive nature of the particle interactions.

2.1 Interactions at the particle scale

The contact force between two dry granules is usually divided into a normal and a
tangential part. The dominating macroscopic laws of the contact forces are elastic
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repulsion (Hertz or harmonic contact) and solid friction (Coulomb’s law). There
might sometimes also be inelastic normal forces needed for dry grains, as otherwise,
we would heat the system, where we have a viscous damping at contact (leading to
a coefficient of restitution). In many problems when there is also a suspending fluid
present in the system, hydrodynamic forces need to be taken into account as well.
There would also be the Buoyancy/Archimedes force, which is the force resulting
from the stress that would be exerted on the particle as if the latter had the density
of the fluid. Another existing force in the case of having an interstitial fluid, is the
Lubrication force. Establishing a contact between the grains, needs that the fluid be
drained out across quite narrow fluid films. These strong gradient flows lead to hy
drodynamic forces called lubrication [4]. A detailed expression of the forces comes in
the following chapter.

2.2 Granular packing, jamming, RCP and RLP

Packings of particles are initially identified by a property called packing fraction,
which is described as the ratio between the volume occupied by the particles and
the total volume occupied by the packing [4]:

ϕ =
Vparticles
Vtotal

(2.1)

while packings of simple objects like squares, rectangles, cubes, etc, are spacefilling,
packings of monodisperse discs or spheres will always have voids. There exist a range
of packing fractions, from a loosest to a densest, where we find stable packings of
such particles. Generally the volume fraction lies between these minimum and max
imum values. Maximum packing fraction for monodisperse discs is ∼ 0.9069 and is
∼ 0.7405 for spheres of equal size [5]. Considering more realistic packings with non
isotropic particles, one can look at equally sized ellipses (twodimensional) or ellip
soids (threedimensional). The densest known packing of ellipses is the same as discs
[6], while ellipsoids have been found to pack denser than spheres at packing fraction of
∼ 0.7707 [7]. The value was found for aspect ratios equal to or greater

√
3 (prolate

ellipsoids) or smaller than 1/
√
3 (oblate ellipsoids). Increasing polydispersity leads

to amorphous packings rather than crystalline packings. An amorphous configura
tion is composed of a set of configurations that can (initially) withstand mechanical
deformation such as shear [5]. These configurations are denoted jammed which are
usually represented by their average packing fraction. Random close packing (RCP) is
the jamming point obtained from isotropic compaction. In case of nearly frictionless
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particles, RCP occurs at∼ 0.84 and∼ 0.64 for discs and spheres, respectively, which
are both smaller than their corresponding crystalline packing. In the case of polydis
perse ellipses and ellipsoids, RCP depends on the aspect ratio [5]. It is also possible
to find RCP for monodisperse ellipses and ellipsoids. The value for monodisperse
ellipses is ∼ 0.895 at aspect ratio of 1.4, the same value as for polydisperse ellipses
[8, 9]. For monodisperse ellipsoids, RCP varies in the range∼ 0.70−0.74 depending
on the type of the ellipsoid [10, 11].

Considering frictional particles instead, the jamming points occur at looser packings,
referred to as random loose packing (RLP) [12]. Corresponding RLP values for fric
tional discs and spheres are∼ 0.8 and∼ 0.6, respectively. For frictional equally sized
ellipses and ellipsoids, there exist similar fashion, however precise values depends on
the aspect ratio [9, 13].

If the above systems undergo shearing, they might shear jam. Shear jamming packing
fraction usually occurs at packing fractions lower than the corresponding RLP for fric
tional configurations. Upon shear, anisotropy is induced in the system via anisotropic
forces and contact networks. By that, the number of forcebearing particles increases
compared to the RCP at the same packing fraction. While for frictionless grains
RCP and shear jamming occur at the same packing fraction, for frictional grains the
shearjamming is considerably lower than RLP, leading to a dilatency of a granular
packing under shear (wherein the volume of a granular packing increases upon shear
deformation)[14, 15, 16]. Recent studies, however, show that dillatancy can happen
for frictionless packings as well[17]. I will throughout the thesis look at ϕ.

2.2.1 Number of contacts

Let us considerN hard frictionless identical particles with diameter d at equilibrium,
where Nc is the total number of contacts in the configuration and D indicates the
dimensions of the system (2 or 3). Since the contacts are frictionless, the interparticle
forces are perpendicular to the plane of contact, so there are Nc unknown forces.
In two (three) dimensions, we can write 2N(3N) equilibrium equations. Angular
momentum balance is automatically satisfied since all forces are central. Considering
the packing is at mechanical equilibrium, there exists at least one solution for the force
distribution. So, there needs to be fewer equations than the unknowns DN ≤ Nc.
If we call the average number of contacts per particle Z = 2Nc/N , coordination
number, the above condition implies that Z ≥ 2D. Remembering that the particles
are rigid, the distance between particle i and particle j in contact should be equal
to the diameter, i.e. |ri − rj | = d. We will have Nc equations of such kind. To
be able to find a solution for these equations, the number of contacts needs to be
smaller than the degrees of freedom of the configuration, i.e. Nc ≤ DN (Z ≤
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2D). So when the frictionless pile is at rest, having both the geometrical constraints
and the number of equilibrium equations, leads to Z = 2D. Since the number of
unknowns and the number of equations are exactly the same, forces are also possible
to calculate after the positions are determined. This condition that forces can be
calculated without any redundancy is called isostaticity, which is a common property of
frictionless packings. The story changes drastically when friction is introduced to the
system. While the geometrical constraints remain the same as for the frictionless rigid
particles (Z ≤ 2D), the number of force and torque balances changes due to having
frictional contacts. In two (three) dimensions there are 2Nc (3Nc) unknown forces.
Mechanical balance givesDN equations for the force balance andND(D−1)/2 for
the angularmomentum balance. So, in two (three) dimensions we have 2Nc ≥ 3N
(3Nc ≥ 6N ) and in general we have DNc ≥ N(D + D(D − 1)/2). This means
that the coordination number should lie in the range 3 ≤ Z ≤ 4 (4 ≤ Z ≤ 6) in
two (three) dimensions. The general relation would beD+1 ≤ Z ≤ 2D [4, 18]. By
definition, particles having 2 or more contacts are called nonrattlers. For elliptical
particles, the contact plane between two particles is not necessarily perpendicular to
the vectors pointing from the center of each ellipse to the contact point [5]. So for
elliptical, the angular momentum balance is not satisfied automatically even in the
frictionless case since the interparticle forces perpendicular to the contact plane are
not central. Adding friction to the system, we will have tangential contact forces as
well similar to what happens for discs [5].

2.2.2 Force distribution

As mentioned earlier, despite having a simple definition, granular materials can ex
hibit considerably different mechanical properties under different external forces and
boundary conditions [19]. This behavior is linked to the heterogeneously distributed
force chains formed by interparticle forces [20]. Looking statistically at this hetero
geneous force field, we find a typical profile for the probability distribution P (f) of
the forces’ amplitudes indicated in Fig. 2.1. As observed initially from the figure, the
range of force amplitudes is wide. Secondly, we look at the trend of the profile, where
we detect a flat zone for forces f bellow the mean force f0, withP (f) ∝ (f/f0)

α and
α very close to zero. On the other hand, for large forces (i.e. f > f0), the distribution
has an exponential behaviour. P (f) is proportional to e−βf/f0 , with β between 1
and 2. Although varying due to statistical reasons and depending on the measuring
method, the general shape of the probability distribution for large and small forces is a
very robust characteristic for various configurations with or without friction between
the particles [4]. Looking at particle elongation (like for elliptical particles) as another
effective parameter, one expects that it mainly affect the distribution of weak forces
by making the exponential tail of the profile longer. The profile for the probability
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distribution of the forces can be described in a more general form of [21, 22]

P (f) =

{
e−β(η)(f/f0), f > f0

( f
f0
)α(η), f < f0.

(2.2)

where η = ∆R/R is a dimensionless parameter representing the deviation of the
particle shape from a circle. ∆R = R′ − R shows the difference between the major
radius R′ and the minor radius R of the particle. It was found that the force distri
butions become increasingly broader and more inhomogeneous as particles get more
elongated [21]. Hence, the exponential tail of the profile becomes longer for η ̸= 0
and the power law region corresponding to the weak forces changes slope depending
on the η parameter.

To be able to characterize the force network, we also need to know the angular dis
tribution of contacts and forces, which are called the geometrical fabric and the me
chanical fabric, respectively. In two dimensions, the geometrical fabric is given by a
πperiodic probability density function (since the contacts have no intrinsic polarity,
the probability density function is πperiodic rather than 2πperiodic). The function
gives the probability of having contact at angle θ, with θ being the angle between the
line connecting the centers of two particles in contact and a reference axis depend
ing on the system. Usually, a truncated secondorder Fourier expansion is used to
describe the geometrical fabric as :

ξ(θ) ≈ 1

π
[1 +Ac cos 2(θ − θc)], (2.3)

whereAc gives the lowest order fabric anisotropy of the material and θc is its principal
direction [4, 23, 24].

In a similar manner, the mechanical anisotropy of the average normal forces Fn(θ),
denoted as An, and the average friction forces Ft(θ), denoted as At, can be obtained
from their corresponding Fourier expansion, respectively as:

Fn(θ) ≈
f0
2π

[1 +An cos 2(θ − θf )], (2.4)

Ft(θ) ≈
f0
2π
At sin 2(θ − θf ), (2.5)
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Figure 2.1: A schematic view of the distribution of the force amplitudes. The horizontal axis shows the nor-
malized force values and the vertical axis shows the probabilities. The dashed vertical line indicates
where f equals f0.

It’s possible to distinguish between the strong and the weak contact network forces
by separately plotting the angular distribution function of forces above and below the
mean force f0. This can be done both for isotropic (such as circles) and anisotropic
(such as ellipses) particles. In a more general approach, we consider various geomet
rical and mechanical fabrics for the ¨ζ networks¨ defined as the subsets of contacts
bearing a force below a cutoff normalized value ζ, i. e. 0 ≤ f/f0 ≤ ζ, where ζ can
vary from a 0 to the maximum force in the system. Therefore, a continuous family of
angular distributions belonging to different ζ networks can be obtained that describes
the geometrical and mechanical state of the system [22].

2.3 Granular liquid

While a granular medium can behave like a solid as was discussed earlier, it can also
behave similar to a gas in the opposite limit, when subjected to strong external stimuli,
like strong shaking in a box. In this gaseous regime, particles interact mainly through
binary collisions. Development of the kinetic theories of the granular media that
can provide constitutive laws for such diluted particle flows was based on the analogy
between agitated granules and molecules in a gas [4]. Most granular flows, however,
exist between these two limits of quasistatic and gaseous regimes. Particle interactions
in this liquid dense regime are both by collisions and longlived contacts. More details
on granular flows in the dense regime come in the following sections.
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2.3.1 µ(I) rheology

When we study dense granular flows, we are primarily interested in the constitutive
laws and how the material flows under stress. From a phenomenological perspective,
granular flows belong to the family of viscoplastic materials, where there exists a flow
threshold and afterward, when the material starts to flow, there exists a quadratic
shearrate dependence which resembles a viscous behavior [4].

The rheological properties of such flows can bemeasured by different rheometers, such
as cone plates, parallel plates, and Couette rheometers. While most of the rheometers
work at constant volume, introducing a pressurecontrolled rheometer recently, was
a significant step towards having a continuous description of flowing granular media
which has long been a challenge [25].

In a pressureimposed rheometer, as in Fig. 2.2, the whole assembly of hard particles
is sheared at a given shear rate γ̇ = 2U/H and a confining pressure P . The medium
is then free to dilate or to compact with a top plate moving vertically. In the case of
a suspension, the top plate is porous allowing the suspending fluid in and out, see
Fig. 2.5. Dense suspensions will be discussed in more detail in the next section.

Now considering pressureimposed shearing of dry granular media or when the iner
tial forces are dominating compared to viscous effects in a granular suspension, there
is only one dimensionless control parameter called inertial number,

I =
γ̇d√
P/ρp

(2.6)

with d and ρp being the diameter and the density of the particles. This inertial number
I , can be interpreted in terms of the ratio between two time scales I = tmicro/tmacro,
where tmicro = d/

√
P/ρ is the inertial time of rearrangement and tmacro = 1/γ̇ is

the time scale related to the mean shear rate [4, 25]. The granular rheology is charac
terized by two functions of the inertial number [4]:

τ = µ(I)P (2.7)

ϕ = ϕ(I) (2.8)

Fig. 2.3 depicts an illustrative view ofµ(I) andϕ(I) functions. As seen from the figure
both µ and ϕ reach plateau values, denoted as µc and ϕc, respectively, as I approaches
zero. µc represent the flow threshold and ϕc is the jamming packing fraction.
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Figure 2.2: Paradigmatic configurations of pressure-imposed shear of dry granular media.

Assuming local rheology, i.e., when the stresses only depend on the local shear rate,γ̇(y),
and on the local pressure, P (y), and also considering that particles might be of differ
ent sizes and have a diameter distribution d(y) over the slab, we can generalize Eq. 2.7
and 2.8 to describe inhomogeneous shear flows with I(y) = |γ̇(y)d(y)|/

√
P (y)/ρp.

With this assumption, the rheology can be further generalized to a tensorial form to
picture complex threedimensional flows sheared in different directions. The stress
tensor can be written as:

σij = −Pδij + τij (2.9)

In Eq. 2.15, P is the isotropic pressure, δij is the Kronecker delta matrix (further
information on how the stresses are measured comes in section 3.4 in the next chapter)
and

τij = ηeff γ̇ij (2.10)

with ηeff = µ(I)P/|γ̇| being an effective viscosity, and |γ̇| =
√

1
2 γ̇ij γ̇ij the second

invariant of the shearrate tensor γ̇ij = ∂ui
∂xj

+
∂uj

∂xi
where ui is velocity field. Modi

fying the inertial number according to the specific setup like above, µ(I) rheology is
applicable to some other configurations of particle flows, such as flows of noncircular
or polydisperse grains, flows down an inclined plane or flows of size segregated parti
cles as well (like in paper II) [4, 26].

2.3.2 Bagnold’s law

If the granular medium is instead sheared at constant volume fraction ϕ (as in tradi
tional approaches to study rheology), by keeping the distance between the two con
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Figure 2.3: Schematic profiles of (a) µ(I) and (b) ϕ(I). The horizontal axis is in log scale.

fining walls in Fig. 2.2 constant, the controlling parameters will be ϕ, γ̇, d and ρp.
Using dimensional analysis, the shear stress and the pressure will be written as:

τ = ρpd
2f1(ϕ)γ̇

2 (2.11)

P = ρpd
2f2(ϕ)γ̇

2 (2.12)

where, f1 and f2 are empirical functions of the packing fraction. Eq. 2.11 and 2.12 are
called Bagnold’s law and are valid for homogenous flows. [27]. For nonhomogeneous
flows local diameter and shear rate should be in Eq. 2.11 and 2.12.

2.4 Suspensions: immersed granular media

In the previous sections, we discussed dry granular materials. However, in many ap
plications, there exists a suspending fluid in which the particles are immersed. Such
systems are referred to as suspensions. Having an interstitial fluid, the interactions
between the particles and the continuum fluid phase need also to be accounted for.
Although the suspending fluid can be of any nature (shearthinning, shearthickening,
Bingham, etc), in this study we address incompressible Newtonian fluid, whose mo
tion is governed by NavierStokes equations, i.e. the Eulerian representation of the
continuity equation for an incompressible fluid:
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∇.u = 0 (2.13)

And the conservation of momentum equation:

ρ[
∂u

∂t
+ (u.∇)u] = f +∇.σa

= f −∇pa + ηf∇2u (2.14)

with ρ, the density of the fluid, f the external body force and ηf the dynamic viscosity
of the fluid. u is the velocity vector of the fluid and σ is the stress tensor (this stress
tensor belongs to the fluid and is different from the one in Eq. ?? which belongs to
dry granular flows). Superscript a stands for ¨absolute¨, meaning absolute pressure
and absolute stress tensor. Considering Newtonian constitutive law, which implies
symmetry of the stress tensor, we have:

σ
a
= −paI+ 2ηfE (2.15)

where I and E are the identity and the strainrate tensors, respectively. In a three
dimensional flow, where all three components of the velocity vector (ux, uy, uz) are
nonzero, E is expressed as:

E =


∂ux
∂x

1
2(

∂ux
∂y +

∂uy

∂x ) 1
2(

∂ux
∂z + ∂uz

∂x )
1
2(

∂uy

∂x + ∂ux
∂y )

∂uy

∂y
1
2(

∂uy

∂z + ∂uz
∂y )

1
2(

∂uz
∂x + ∂ux

∂z ) 1
2(

∂uz
∂y +

∂uy

∂z ) ∂uz
∂z

 (2.16)

In Eq. 2.14, the term ∂u
∂t +(u.∇)u represents inertial effects while ηf∇2u represents

viscous effects. The dimensionless number showing the comparison between these
two effects is called the Reynolds number [28, 29],

Re =
ρuL

ηf
(2.17)

whereL is a characteristic length scale and u = |u|. Themagnitude of theRe number
explains which of the effects are more dominating. If Re≪ 1, the viscous terms will
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be dominating and the inertial terms on the left side of Eq. 2.14 can be neglected. So,
Eq. 2.14 can be simplified to:

−f = ∇.σa
= −∇pa + ηf∇2u (2.18)

This regime of the fluid flow is called Stokes flow (also namedCreeping flow). There are
some special features about Stokes flow among which we can mention: linearity (i.e.
fluid velocity is linearly dependent on themagnitude of the forcing, due to eliminating
nonlinear inertial terms), reversibility (i.e. motions are reversible in the driving force)
and instantaneity (i.e. there is no time and history in stokes flow)[28, 30].

2.4.1 Single isotropic/anisotropic particle in a fluid

In order to approach the case of suspensions with many particles suspended in a fluid,
we start from a simple case of one particle in a viscous fluid. We assume the particle has
the same density as the fluid, so we don’t have any creaming or sedimentation effect.
A fluid motion near a point x0 can be approximated by a truncated Taylor expansion
u∞(x) = u∞(x0) + ∇u∞(x0)(x − x0), assuming that (x − x0) is small enough
that we can neglect the higher order terms in the expansion. The notation u∞(x)
is used to show the velocity field when there is no disturbance from the particle. In
this sense, the flow will be the superposition of a uniform flow and a linearly varying
velocity field. If we assume x0 to be at the origin and call u∞(x0) = U∞, we get
u∞(x) = U∞ + ∇u∞(0)(x). The velocity gradient ∇u∞ can be rewritten in
form of a strainrate tensor plus a rotationrate tensor, i.e. ∇u∞ = E

∞
+Ω

∞
. The

strainrate tensor was defined earlier in Eq. 2.19 and for Ω
∞

we have:

Ω =

 0 1
2(

∂ux
∂y − ∂uy

∂x ) 1
2(

∂ux
∂z − ∂uz

∂x )
1
2(

∂uy

∂x − ∂ux
∂y ) 0 1

2(
∂uy

∂z − ∂uz
∂y )

1
2(

∂uz
∂x − ∂ux

∂z ) 1
2(

∂uz
∂y − ∂uy

∂z ) 0

 (2.19)

So, we can see the problem as the superposition of three simpler cases, i.e. a particle
in a uniform flow, a particle in solid rotation, and a particle in pure straining. For
each problem, we have the linearized momentum equation 2.18 and the correspond
ing boundary conditions (at the surface of the particles and far from it) to find the
solution for the pressure and the velocity fields. For the case of a spherical particle,
solid rotation of the fluid around the particle in Stokes regime, induces no pressure
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field and leads to a velocity field that decays as r−2 (see [30] for more details). If the
uniform flow of a fluid past a particle is considered, the boundary conditions at the
surface of the particle change, and the pressure then decays as r−2 and the dominant
portion of the velocity decays as r−1. The third case of straining will lead to a pres
sure field decaying as r−3 and a velocity field decaying as r−2 in its dominant term.
Having the velocity and the pressure fields, one can get the stress field from Eq. 2.15
and the hydrodynamic force on the particle [30, 31]:

Fh =

∫
Sp

σ
a
.n dS (2.20)

We next consider the torque calculated as:

Th =

∫
Sp

x× σ
a
.n dS (2.21)

In the case of a spherical particle, it can be shown that the hydrodynamic force in the
stokes flow is:

Fh
s = 3πηfd(u

∞ − up) (2.22)

with d being the particle diameter, u∞ and up are the fluid and the particle velocity,
respectively. The subscript s shows that, this is the hydrodynamic force on a spherical
particle. Similarly, there will be a hydrodynamic torque on the spheres:

Th
s = πηfd

3(ω∞ − ωp) (2.23)

where ω∞ is the vorticity of the fluid and ωp is the angular velocity of the particles.

If instead of a sphere, the particle is a prolate spheroid (ellipsoid) (see Fig. 2.4 for
a 2D illustration), with a and b as the major and the minor axes, respectively, the
equations become more complicated due to the anisotropy of the particle. However,
the superposition principle in the linear stokes flow is still valid [31]. So, we can
decompose the flow around the ellipsoid into a uniform flow plus a shear flow. Since
we are dealing with an anisotropic particle here, we also need to consider separately
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Figure 2.4: Schematic view of an elliptical particle with its major and minor axes.

the rotation of the ellipsoid in the calculation of the hydrodynamic torque, since the
particle rotation also contributes to the hydrodynamic torque. Using Eq. 2.13 and 2.18
and applying the superposition principle, the hydrodynamic force on the ellipsoid in
the Stokes flow is calculated as:

Fh
e = 6πηfa[cfa(u

∞,a − up,a) + cfb(u
∞,b − up,b)] (2.24)

In a similar fashion, the hydrodynamic torque will be [31, 32]:

Th
e = 8πηfab

2[(cMa|ep,x̂|2 + cMb|ep,ŷ|2)ω∞ − cMrω
p] (2.25)

where x̂ and ŷ are the unit vectors in x and y directions, respectively, up and ωp

are the translational and angular velocity of the particle, ep = (ep,x̂, ep,ŷ) is its unit
direction vector along the major axis and up,a = (up.ep)ep and up,b = up−up,a are
the particle’s velocity in major and minor axes directions, respectively. u∞ and ω∞ is
the fluid’s linear and angular velocities, respectively. Boundary conditions such as the
no slip condition on the surface of the ellipsoid and also the conditions far from the
particle, lead to the different c coefficients to be determined as (see Ref. [31]): cfa =
8
3e

3[−2e+(1+ e2) log(1+e
1−e)]

−1, cfb = 16
3 e

3[2e+(3e2− 1) log(1+e
1−e)]

−1, cMa =

cfa, cMb = (1 − e2)−1cfa, and cMr = 4
3e

3(2−e2

1−e2
)[−2e + (1 + e2) log(1+e

1−e)]
−1.

e =
√

(1− α−2) is the eccentricity of the ellipsoid with α = a/b being the aspect
ratio of the particle. In paper I we did 2D simulations of suspensions containing
elliptical particles and equations 2.24 and 2.25 need to be adjusted for 2D simulations
accordingly which will be discussed in more in the next chapter.

2.4.2 Towards dilute suspensions

Now we go beyond the problem of a single particle in a fluid, where we consider
dilute suspensions. In a shear flow, the particle can freely rotate which creates no
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disturbance in the flow. However, the particle’s resistance to the staining component
of the shearing flow, results in a disturbance flow, which increases the dissipation of
energy in the suspension, i.e. the effective viscosity of the of the suspension η increases
with increasing number of solid particles in the suspension ϕ. So, the suspension
viscosity can be written as:

η = ηfg(ϕ) (2.26)

where ηf is the fluid viscosity (typical values for the viscosity of water is 10−3 Pa.s
and for honey is between 1.76 and 252.6 Pa.s) and g(ϕ) is an increasing function
of the packing fraction. In order to know g(ϕ) for dilute suspensions, we start from
Eq. 2.15 with an extra term for the contribution of the particles to the stress:

σ
a
= −paI+ 2ηfE+ σ

p (2.27)

where σp is the particle contribution to the stress, which is given by fluidparticle
stress since particles in the dilute regime have no collisions:

σ
p
= 5ϕηfE (2.28)

So, the total stress is given as:

σ
a
= −paI+ 2ηf [1 +

5

2
ϕ]E (2.29)

Looking at Eq. 2.29 and the shear stress of a suspension we have g(ϕ) = 1 + 5ϕ/2,
which the expression give by Einstein[30, 33, 34]. The Einstein viscosity can only
predict the viscosity for very dilute suspension up to volume fraction of about 0.05.
If the volume fraction increases further, pair interaction between the particles become
significant and a second order contribution of ϕ needs to to be taken into account in
the viscosity calculation.

2.4.3 Dense suspensions and µ(J) rheology

In the concentrated suspensions particularly those close to jamming packing fraction,
direct particle contacts become dominant in the rheological response[34]. So, it seems
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Figure 2.5: Paradigmatic configurations of pressure-imposed shear of a suspension.

there is no direct path to reach dense suspension rheology from it mechanical response
in the dilute regime. The shear stress in the dense regime can still be written with a
linear dependence on the shear rate [34],

τ = ηfg1(ϕ)γ̇ (2.30)

In general, it’s difficult to find an analytical expression for g1(ϕ) for dense suspen
sions near jamming. However, there are empirical functions to describe the relation
between the viscosity and the packing fraction [34]. One of such functions is:

η/ηf = g1(ϕ) ∼ (ϕc − ϕ)−n (2.31)

with ϕc being the jamming packing fraction and n a positive empirical constant. A
similar relation to Eq. 2.30 can be constructed for pressure as:

P = ηfg2(ϕ)γ̇ (2.32)

So pressure also scales linearly with the shear rate.

If the dense suspension is sheared at constant particle pressure P as in Fig. 2.5, one
can construct a dimensionless number called viscous number [25]:

J =
ηf γ̇

P
(2.33)

.
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Assuming the Stokes number St = I2/J = ρd2γ̇/ηf is small (since the particles
are neutrally buoyant Stokes number is the same as Reynolds number if we use the
average particle diameter as the characteristic length), viscous forces are governing at
the particle level and the internal time is now described by a viscous scaling tmicro =
ηf/P . The system is no longer controlled by the inertial number, but rather viscous
number. In a similar manner as in the drygranular case, constitutive laws as two
functions of J are given as:

τ = µ(J)P (2.34)

ϕ = ϕ(J) (2.35)

2.5 Oscillatory shear

As mentioned earlier, granular materials belong to the family of amorphous materials.
Such systems display characteristic viscoelastic properties. While they can behave
elastically as solids (with stress being directly in phase with strain) if they are packed
highly dense, they can also respond viscous as liquids (with stress being completely
in phase with shear rate) if the grains are not sufficiently dense [35]. Oscillatory shear
flows have been widely used as a powerful tool to investigate such viscoelastic features.
Oscillatory shear can be applied to the system via a periodic strain or shear, etc. As an
example, in a planar shear setup, a sinusoidal strain, γ(t) = γ0 sin(ωt), is applied to
the sample, where γ0 is the amplitude of the strain and ω is the oscillation frequency.
The shear rate will then be, 90 degrees shifted in phase (compared to the strain), a
cosine function, γ̇(t) = γ̇0 cos(ωt), where γ̇0 = ωγ0 is the corresponding shear rate
magnitude. The stress response of the sample σ(t) is then measured. In the linear
response regime, the expected response of a pure elastic material is:

σ(t) = ωη′′γ(t) = η′′γ̇0 sin(ωt) (2.36)

and for a purely viscous material, we have:

σ(t) = η′γ̇(t) = η′γ̇0 cos(ωt) (2.37)

where η′′ and η′ are the corresponding elastic and viscous viscosities, respectively. The
response for a viscoelastic material is then a linear combination of the viscous and the
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elastic response, σ(t) = η′′γ̇0 sin(ωt)+ η′γ̇0 cos(ωt) with η′ =
∫ 2π/ω
0 σ(t) cos(ωt) dt

γ̇0
∫ 2π/ω
0 cos2(ωt) dt

,

η′′ =
∫ 2π/ω
0 σ(t) sin(ωt) dt

γ̇0
∫ 2π/ω
0 sin2(ωt) dt

, respectively. In this case we will have a complex viscosity

defined as η∗ = η′ − iη′′ [36, 37, 38]. In a manner similar to the dimensionless
viscous number for suspensions in the steady viscous regime, we can define a shear

rateweighted average viscous number J ′ as J ′ =
ηf

∫ 2π/ω
0 ( γ̇

P )γ̇(t) dt∫ 2π/ω
0 |γ̇(t)| dt

[38]. J ′ serves as

a measure of the average shear rate (formally shearrateweighted) of the suspension
and is directly related to how far one is from a suspension’s jamming point (i.e., ϕc −
ϕ).

The rheology of granular materials can be quite complicated at unsteady shear condi
tions, showing nontrivial transient behaviors [39, 40, 41]. For instance, it has been
shown that oscillatory shear perpendicular [42, 43, 44] or parallel to the primary con
stant shear [38] can increase the flowability of particle flows by reducing the viscosity
[38, 44]. The phenomenon is not yet completely understood. However, it is generally
attributed to a restructuring of the microstructure [38] which, for instance, at orthog
onal shear flows, can happen through a tilting and ultimate breakage of the force
chains [42]. It has also been found that at small oscillatory magnitudes, particles can
create reversible trajectories, meaning that they come into an absorbing state in which
they manage to avoid contact with other particles. So, the decrease in the number of
particle contacts leads to a decrease in the contact stress [44, 45, 46, 47]. Under oscilla
tion, it has also been observed that the jamming packing fraction is shifted to a higher
value, denoting that shear jammed configurations can start to flow [44]. Considering
granular materials with anisotropic particles can open new windows towards more in
teresting and complicated phenomena in oscillatory rheology, specifically related to
the particle shapes [48, 49].

2.6 Segregation effects

Granular materials segregate in separate regions when sheared, stirred, shaken, tum
bled, etc. Small differences in particle properties and dynamics of the flow can lead
to segregation, a complex and common phenomenon without parallel in fluids [50,
51, 52, 53, 54].

Despite decades of research on granular flowdriven segregation, there are still many
open questions in this area such as the existence of global segregation mechanisms
and the possibility of developing a consolidated model to describe the phenomenon
[55].
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Figure 2.6: Schematic view illustrating Brazil-nut effect with large granules accumulating on top of small
grains.

Among various mechanisms that prevent a homogeneous mixture of grains, size segre
gation turns out to be very important. Different physical mechanisms have been sug
gested for size segregation, some of which are percolation, sifting, squeeze expulsion,
convective motion of the grains and surface flow effects [50, 52, 53, 56, 57, 58, 59, 60].
Many studies have been focused on vertically shaken granular mixtures, where the
larger grains will end up on top of the smaller ones, the phenomenon referred to as
”Brazilnut effect” [61, 62, 63], see Fig. 2.6.

Although in many industrial and rheological applications, granular particles have ir
regularities in their shapes, segregation due to shape variation of the grains has not
been very frequently investigated. Most studies focused on modeling spherical (circu
lar) particles. Anisotropy of the particles can, however, drive significant macroscopic
differences with mixtures of purely spherical (circular) grains. Therefore, studying the
effect of shape anisotropy on the segregation of granular materials can help us have a
deeper understanding of the phenomenon.

Some studies use continuum segregation models which are configurationdependent
since altering the boundary conditions will change the closure schemes of the equa
tions [64, 65, 66]. However, to inspect the phenomenon at the particle scale, the latest
studies have attempted characterizing forces separately on various particle species of
the flow [67, 68] which then have led to developing segregation force models appli
cable to numerous configurations[68, 69]. What we do in our study is based on the
second approach using a “restoring force” in a bidisperse mixture of big and small
discs to help the segregated configuration return to its homogenized state. We explain
more about the details of the technique we used, in the Results chapter.
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Chapter 3

Numerical modeling and simulation
technique

Analytical solutions to the mechanical behavior of the granular materials are obtained
by solving the governing equations describing the dynamics of the system. So, a full
set of equations including Newton’s second law of motion for the particles and the
NavierStokes equations for the interstitial fluid need to be solved simultaneously.
Then the equations are interconnected through the boundary conditions, such as the
noslip condition on the surface of the particles and on the rough confining walls.
However, analytical solutions are greatly costly computationally when it comes to
studying granular and dense suspension flows with a large number of particles. There
fore, the necessity to use numerical approximations to lower the computational cost
is understandable.

3.1 Discrete element method

The discrete element method (DEM) is the most attractive numerical method used by
researchers and engineers to successfully design, analyze and optimize granular ma
terials and dense suspensions, comprising of a continuum fluid phase and discrete
particles [70, 71, 72, 73, 74]. The DEM simulation involves the assignment of co
ordinates and velocities to each particle, following which the forces acting on each
particle are determined using corresponding models. The details regarding the forces
and dynamics involved in the simulation are discussed in the subsequent section. The
calculation of forces and propagation of the system is repeatedly carried out until the
simulation ends. To ensure that unphysical configurations resulting from large time
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Figure 3.1: Sketch showing velocity profile of the fluid in simple shear simulations

steps are avoided, the time step dt is always smaller than the time taken for one col
lision. This allows for a clearer microscopic picture of each particle. In the works
presented here, twodimensional DEM simulations are run, where particles are disks
or ellipses. Fluids are simulated implicitly, represented by a simple shear velocity
profile, as illustrated in Fig. 3.1. So, instead of solving for the fluid velocity at each
point, the fluid is represented by a locally averaged velocity. However, particles are
handled individually and their equations of motion are solved separately. Although
continuumbased methods such as the finite element method (FEM) [75] and mesh
less methods [76] can also be used to describe granular materials, they are usually
difficult to model large deformations and displacements as well as segregation and
mixing of granular flows with.

3.2 Forces

3.2.1 Contact forces

Due to the high packing fractions present in dense suspensions, contact forces between
colliding particles play a dominant role. To model this contact force, a damped har
monic spring is utilized. When considering the collision of two grains, i, and j, the
contact force between them is given by the following equation [77]:

f ij = f ijn + f ijt = (knδ
ij
n + ζnδ̇

ij
n )n

ij + (ktδ
ij
t + ζtδ̇

ij
t )t

ij , (3.1)

Here, kn represents the normal spring constant, ζn represents the normal dissipation
constant, δijn is the normal overlap between the two particles, kt = kn/2 represents
the tangential spring constant, δijn represents the relative tangential displacement be
tween the grains i and j, ζt represents the tangential dissipation constant, nij denotes
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the normal unit vector, tij denotes the tangential unit vector, δ̇ijn and δ̇ijt indicate the
time derivatives. It is important to note that in our simulations, the particles are con
sidered to be nondeformable and rigid with a spring constant of kn/P > 103, where
P is the pressure in the system. Additionally, overlaps between multiple particles are
ignored due to the high rigidity of the particles and their low likelihood of occurring.

Relative tangential displacement δijt can be defined as

δijt =

∫ t

0
uijt dt , (3.2)

where uijt is the tangential projection of the relative velocity uij between two particles
i and j.

uijt = tij .uij , (3.3)

The Coulomb friction restricts the maximum value of the tangential force f ijt ,

|f ijt | ≤ µp|f ijn |, (3.4)

where f ijt is the normal force and µp is the corresponding value of the friction coef
ficient that reflects the surface properties of the particles. A standard value for µp is
0.4, which is applicable to surfaces such as steel, glass, chromium, and nylon66, as
reported in reference [78].

The normal dissipation constant ζn can be defined as follows:

ζn = −
2
√
mijknln e√
π2 + (lne)2

, (3.5)

where mij the reduced mass, denoted by mij = mimj/(mi +mj), and the resti
tution coefficient, e, which characterizes the velocity difference before and after a
collision, play key roles in describing dissipative collisions. The tangential dissipation
constant is defined analogously by replacing kn in Eq. 3.5 with kt. The dissipative
nature of collisions can be intuitively understood by considering the trajectory of a
bouncing ball, as illustrated in Fig. 3.2. For e < 1 energy is lost during each colli
sion. In our simulation of dense suspensions in the viscous regime, the contact force
is balanced by the viscous force, and we have set e = 1 for numerical reasons.
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Figure 3.2: Schematic view of a bouncing ball trajectory on a hard surface with a restitution coefficient e < 1.

3.2.2 Fluid force

In addition to contact forces, particles are subjected to hydrodynamic forces from
fluid fields, as discussed in chapter 2. In the simulations, the fluid is modeled as a
continuum, and it is assumed that the particles do not perturb the laminar flow of
the fluid. As a result, the fluid force and torque on discs are calculated using adjusted
Eq. 2.22 and 2.23, respectively for 2D simulations, yielding the following expressions.

Fh
s = 3πηf (u

∞ − up), (3.6)

Th
s = πηfd

2(ω∞ − ωp), (3.7)

and in the case of elliptical particles, Eq. 2.24 and 2.25 are adjusted for 2D simulations
to calculate the hydrodynamic force and torque as follows:

Fh
e = 6πηf [cfa(u

∞,a − up,a) + cfb(u
∞,b − up,b)], (3.8)

Th
e = 8πηfab[(cMa|ep,x̂|2 + cMb|ep,ŷ|2)ω∞ − cMrω

p], (3.9)

For the description of the parameters in the above four equations, see Eq. 2.22, 2.23,
2.24 and 2.25 in chapter 2. As observed from Eq. 3.6 to 3.9 the hydrodynamic forces
and torques in 2 dimensions slightly differ compared to those in 3 dimensions.
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3.2.3 Lubrication forces

Lubrication force refers to the force generated by the hydrodynamic pressure of the
interstitial fluid that is expelled from the region between two solid surfaces [79]. In
the suspension simulations, the particles are also subjected to pair lubrication forces.
A regularised lubrication model is employed to calculate the force. The equations
utilized for determining the lubrication forces between particle i and j are as follows
[80, 81]:

f(hij)
ij
lub,n =

[
−3

8
πηfdij

(up
i − up

j ) · nij

hij + δ

]
nij , (3.10)

f(hij)
ij
lub,t =

[
−1

2
πηf ln

(
dij

2(hij + δ)

)
(up

i − up
j ) · tij

]
tij , (3.11)

Eq. 3.10 and 3.11 indicate that the calculation of lubrication forces between particles
i and j involves the determination of gap distance, hij , as well as the effective grain
diameter, dij =

2didj
di+dj

, and the normal and tangential unit vectors, nij and tij ,
respectively. Additionally, a regularization length, denoted by δ, is incorporated into
the model, with a value equal to 5% of the particle diameter. In real suspensions, this
parameter can be linked to the slip length, grain roughness, or the range over which
elastic deformation of grains occurs [81, 82]. In paper I, the results will not change
with/without the lubrication forces. So, to reduce our computational cost we run the
simulations without considering the lubrication forces.

3.3 Dynamics

3.3.1 Equations of motion

Newton’s second law of motion can be used to depict the dynamics of particles im
mersed in a fluid

mi
dui

dt
= fhi + f exti +

∑
j

f cij , (3.12)
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The formula involves three distinct forces, namely fhi , which represents the viscous
force dependent on both the position and velocity of the particle, f exti , which is the
external force acting on the particle, and f cij , which denotes the contact force that
also depends on the particle’s position. mi is the mass of particle i and dui

dt is the
linear acceleration of particle i (sometimes shown as ai as well). If the particles are
not immersed in a fluid, as they are in the dry granular flows, the term fhi will not
exist in Eq. 3.12 and the force and the torque equations will be

mi
dui

dt
= f exti +

∑
j

f cij , (3.13)

Iiαi = τ exti +
∑
j

τ cij , (3.14)

where τ exti , and τ cij are the external and the contact torques. Ii is the mass moment
of inertia of a particle about the normal axis to x− y plane through its center of mass
and αi is the granule’s angular acceleration.

The position and velocity of the particle can be computed by integrating Eq. 3.12 using
the Verlet algorithm, as outlined in reference [83],

ri(t+∆t) = 2ri(t)− ri(t−∆t) +
1

mi

fhi + f exti +
∑
j

f cij

∆t2, (3.15)

ui(t+∆t) =
ri(t+∆t)− ri(t−∆t)

2∆t
+

1

mi

fhi + f exti +
∑
j

f cij

∆t, (3.16)

where ri(t + ∆t) and ui(t + ∆t) are the new velocity and position, ri(t) is the
current position, and ri(t − ∆t) is the old position. ∆t is the time step. For the
orientation and angular velocity of the grains, similar equations are used using the
moment of inertia of the particles.
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3.3.2 Overdamped Langevin dynamics

If the suspension flow is in the viscous regime, the dynamics of the particles are over
damped which leads to force and torque balance [84]

fhi + f exti +
∑
j

f cij = 0, (3.17)

τhi + τ exti +
∑
j

τ cij = 0, (3.18)

where fhi , f
ext
i , and f cij were described in Eq. 3.12 while τhi , τ

ext
i , and τ cij are the

torques resulting from hydrodynamic, external and contact forces, respectively.

3.4 Technical details

In the simulations, we might have discs or ellipses. Fig. 3.3, taken from size segrega
tion simulations, depicts a simulation box containing ∼ 1800 size bidisperse discs.
The average diameter of the particles is represented as d and all length scales involved
in the simulations are expressed in units of d. The walls of the simulation consist of
the same type of particles as the flowing ones but are glued together and marked in
red in Fig. 3.3. If not bidisperse disc mixtures (as in paper 11 where we study size
segregation), for elliptical particles the particle sizes are described by a flat distribu
tion with 50% polydispersity in the major axis (as in paper 1). During the pressure
control simulations, the bottom wall remains fixed along the yaxis while the top wall
is adjustable with an imposed pressure P on the yaxis that balances the normal stress
along the ydirection at steadystate. At a constant shear rate, the top wall moves at
a constant velocity along the xaxis, resulting in a strain in the system. At oscillatory
shear simulations, an oscillatory velocity is applied to the top wall resulting in an oscil
latory shear rate. The numerical unit for stress is P and the time unit is 1/γ̇. The fluid
within the simulation is modeled as a continuum with a velocity profile. The fluid
has a noslip boundary at the wall. Additionally, periodic boundary conditions are
applied along the xaxis, and interactions between the particles are calculated using
the nearest image convention, as shown in Fig. 3.4. In the segregation simulations,
we also have a gravity field g(y) present whether in y direction, which follows the
numerical unit description explained above.
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Figure 3.3: A snapshot from size segregation simulations, with x and y-axis illustrated. P is the imposed pres-
sure and U is the applied velocity on the wall. The crimson arrows illustrate the fluid velocity
profile.

In a particle system, the shear stress σxy and the pressure P = 1
2(σxx + σyy) are

calculated from the particle stress tensor

σ =
1

A

∑
i∈A

fi · ri =
[
σxx σxy
σyx σyy

]
, (3.19)

in which A is the area where the stresses are sampled, fi is the total force acting on
particle i and ri is its position. σxy = σyx are the shear stresses while σxx and σyy
are the normal stress along their corresponding axes.

For particle flows, we can measure a granular temperature, which is related to the
fluctuations in particle velocities in a granular system and is used to describe the av
erage kinetic energy associated with the random motion of particles. The granular
temperature is calculated as Tyy(y) = 1/A

∑
i∈Amiδv

2
i,yy, where δvi,yy is the ve

locity fluctuations of particle i in y direction,mi is the particle mass andA is the area
where the temperatures are sampled. The dimensionless temperature is then defined
as Θyy(y) = Tyy(y)/P (y).

For anisotropic particles like ellipses, there are some direction parameters. The ne
matic order parameter S2, which is a measure of how aligned the particles are, is taken
as the largest eigenvalue of the director tensor Qkl = 1/N

∑
i(2e

k
i e

l
i − δkl), where
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Figure 3.4: Periodic boundary condition in the x-direction between the particles in the simulation box and the
particles in the neighboring boxes.

N is the number of particles over which the measure is taken and δkl the Kronecker
delta. The value of S2 can vary between 0 and 1 for a fully amorphous configuration
and a perfect crystalline structure, respectively. ei = (ei,x̂, ei,ŷ) is each ellipse’s unit
direction vector along its major axis as also referred to in section 2.4.1.

Another direction parameter for elliptical particles is θe·ŷ, which is measured as the
average particle angle with respect to y direction, normal to the lower surface (see SI
of paper 1).

The values reported for each parameter are ensemble averages that are obtained by
sampling over the simulations. To make sure that we are not taking into account the
transient effects when we study oscillatory shear, we run at least 10 complete periods
or a minimum shear strain of 10 should be reached to do sampling. Similarly, when
we have gravity in the system, to ensure that steadystate properties are sampled, the
minimum shear strain corresponding to the minimum shear rate in the system is kept
larger than 3 before we sample the properties.
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Chapter 4

Results

4.1 Paper 1: Orientational arrest in dense suspensions of ellip
tical particles under oscillatory shear flows

Our focus in paper 1 is on investigating the effect of particle shape anisotropy on the
rheology of dense nonBrownian suspensions under oscillatory shear.

We used a discrete element method to study the rheology of twodimensional suspen
sions consisting of approximately 1000 sizepolydisperse ellipses with an aspect ratio
of α = a/b = 3. The simulations are pressurecontrolled. A macroscopic oscilla
tory shear rate γ̇(t) = γ̇0 cos(ωt) is applied to the system, with γ̇0 and ω being the
amplitude and the frequency of the oscillatory shear, respectively.

The suspension is in the viscous regime. Particles interact via harmonic forces as
explained in Eq. 3.1 with restitution parameter e = 1. The friction coefficient between
the particles is either µp = 0 (frictionless) or µp = 0.4 (frictional). The interstitial
fluid is Newtonian. The viscous force and torque by the background shear flow on the
particles are according to Eq. 3.8 and 3.9, respectively. The dynamics of the particles
are overdamped which leads to force and torque balance, as described in Eq. 3.17 and
3.18.

We select two preparation protocols for our suspensions. The first one is the pre
sheared preparation protocol. This protocol results in a welldefined orientation of the
ellipses. In the second protocol, we have suspensions with randomly oriented ellipses.
After the two initial configurations are settled, the system undergoes an oscillatory
shear. Direction parameters like the nematic order S2 and the average orientation
angle θe·ŷ of the particles are measured as explained in section 3.4 in the previous
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Figure 4.1: The figure shows the evolution of various properties for both frictional and frictionless configu-
rations at a small oscillatory strain (γ0 = 0.1) and J′ ≃ 0.1. The left column corresponds to the
frictional configuration with a coefficient of friction of µp = 0.4, while the right column corre-
sponds to the frictionless configuration with µp = 0. The properties shown are the direction angle
θe·ŷ (in degrees), nematic ordering S2, packing fraction ϕ, and number of contacts Z. The empty
and full symbols correspond to pre-sheared and non-directional preparations, respectively. The
black lines are the best fits of the relaxations, while the blue dashed lines in the direction angle
plots indicate the zero lines.

chapter.

As discussed in section 2.5, we get a viscoelastic response from the suspension under
oscillatory shear. We also use a shearrateweighted average viscous number, J ′ as a
measure of the average shear rate of the suspension (introduced in section 2.5).

Fig. 4.1 illustrates typical numerical timeevolutions of various parameters, namely
θe·ŷ, S2, ϕ, and Z, under oscillatory shear (OS) conditions. These data stem from
two distinct preparation protocols: presheared and random packings, involving both
frictional and frictionless particles, all subjected to a low oscillatory strain (γ0 = 0.1).
Initially, the packings are at rest.

In the case of frictional particles, both starting configurations under the same J ′ con
verge to a higher packing fraction compared to their steadyshear counterparts. They
also converge to a state of directional disorder characterized by low nematic ordering,
with the average orientation fluctuating around zero. Remarkably, these orientational
values closely match, if not identical, to the initial random configuration, indicating
that the presheared samples relax towards random configurations. The number of
contacts also relaxes quite rapidly and becomes identical for both preparation proto
cols. Interestingly, this is not the case for frictionless ellipses, where all quantities,
except the number of contacts, remain distinct for the two preparation protocols,
showing no detectable relaxation within our numerical time frame.
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Figure 4.2: The rescaled relaxation parameter governing the nematic order, denoted as κ−1
S2

, is depicted as a
function of µp for the pre-sheared configuration, under the condition γ0 = 0.1, across various
J′ values. Each curve corresponding to a specific J′ has been normalized by its respective value as
µp → ∞. The dashed line signifies the best fit of the datawith the relationshipκ−1

S2
∼ aS2

µ−β
p +c.

To gain further insight, we estimate the strains over which the various quantities po
tentially relax. More specifically, to delve further into the role of frictional interaction,
we conduct simulations and measure S2 relaxation strains, starting from presheared
configurations, for systems with varying friction coefficients. In Fig.4.2, we observe
the relaxation strain in S2 plotted against the friction coefficient µp. The data suggests
that the relaxation strains in S2 might exhibit a divergence following κ−1

S2
∼ µ−β

p .
Due to the sharp divergence, it’s challenging to determine if this divergence happens
at a tiny finite critical friction coefficient µp,c or at µp,c = 0. In our study, the
smallest friction coefficient we considered was µp = 0.1, associated with the slowest
detectable relaxation strains for S2. So, the friction coefficient threshold to observe
orientational arrest must be between 0 and 0.1.

Notably, introducing a finite amount of friction aids the system in relaxing its orienta
tion, akin to a ratcheting process [85]. Beyond µp = 1, the relaxation strains stabilize
and depend solely on J ′ and γ0. Smaller J ′ values lead to smaller relaxations in terms
of strains (as seen in the inset of Fig.4.2), indicating higher packing fractions in these
cases, along with a greater number of contacts and collisions per strain.

After establishing that frictionless particles do not conform to a single unique equation
of state at low oscillatory strains, we proceed to examine how the complex viscosity
changes with packing fraction and γ0 for our two preparation protocols, in compar
ison to frictional particles (refer to Fig. 4.3 (a, b)). For both (a) frictional and (b)
frictionless ellipses, we observe that the rheological response (i.e., |η∗| vs. ϕ) behaves
similarly to their corresponding steady shear (SS) cases at high γ0 values. However,
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Figure 4.3: (a) and (b) present the normalized complex viscosities |η∗|/ηf plotted against the packing fraction
ϕ for both frictional and frictionless particles, respectively. (c) and (d) show the same viscosities in
relation to the number of contacts Z|γ̇|. In all figures, open symbols represent pre-sheared prepa-
rations, while solid symbols represent non-directional preparations. The solid grey lines and dashed
grey lines represent the steady shear viscosity curves for frictional and frictionless particles, respec-
tively. Additionally, the brown dotted vertical lines in (a) and (b) indicate the packing fractions at
which steady shear jamming occurs for frictional (ϕSS

c,f ) and frictionless (ϕSS
c,nf ) suspensions. Simi-

larly, in (c) and (d), they mark the steady shear jamming number of contacts for frictional (ZSS
c,f )

and frictionless (ZSS
c,nf ) configurations. The insets in (b) and (d) provide additional details. The

inset in (b) shows ϕ as a function of J′ for the frictionless ellipses, with the grey dashed line indi-
cating the corresponding steady shear curve. Similarly, the inset in (d) illustrates Z versus J′ for
the non-frictional particles, where the dashed line denotes the respective steady shear case.

at lower γ0 values, we observe a lower viscosity compared to the SS case at the same
packing fraction, accompanied by an increased shear jamming packing fraction for
the frictional particles, denoted as ϕSSc,f < ϕOS

c,f . These observations align with prior
reports for discs [38, 86] and spheres [42, 44].

In contrast to isotropic particles, frictionless ellipses exhibit a rheology that depends
on the preparation protocol (compare full and open symbols). Specifically, pre
sheared preparations result in higher shear jamming packing fractions compared to
nondirectional/random ones. For frictionless ellipses, the nondirectional prepara
tion yields a shear jamming point below its corresponding point in SS (i.e., ϕOS,ran

c,nf <

ϕSSc,nf ). This indicates the presence of at least two distinct oscillatory shearjamming
points for frictionless elliptical particles. Nevertheless, when the complex viscosity
|η∗|/ηf is plotted against the number of contacts Z in Fig.4.3 (c) and (d), the two
protocols for frictionless particles collapse onto each other, despite having different
packing fractions and orientational properties.
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4.2 Paper II: An iterative method for measuring spatial segre
gation forces in bidisperse granular flow mixtures under
various gravity fields

In this paper, using DEM, we study two different methods to calculate the restoring
forces in size bidisperse mixtures of big and small discs and compare the range of
applicability of the methods in pressurecontrolled simulations. The configurations
consist of approximately 1750 big and small discs. The relative average packing frac
tions of big and small discs are ⟨ ϕb

ϕtot
= ψb⟩ ∼ 0.65 and ⟨ ϕs

ϕtot
= ψs⟩ ∼ 0.35,

respectively. The system is subjected to vertical gravity as well, which can be either a
constant or a linearly increasing gravity, always starting at zero at the top. We have
periodic boundary conditions in xdirection.

The granular flow is in the inertial regime. Particles interact via harmonic forces as
explained in Eq. 3.1 with restitution parameter e = 0.1. Coulomb friction constrains
the tangential force as described in Eq. 3.4. The particles are either frictionless (µp =
0) or frictional (µp = 0.4). The dynamics of the discs follow Newton’s second law
according to Eq. 3.13 and 3.14.

Figure 4.4(a) presents a sample snapshot of the investigated mixture, specifically from
the Couette flow configuration where the mixture is in a homogeneous state. In
Figures 4.4(b) and (c), gravity and pressure profiles are depicted over the height of
the pile when a constant and a linearly increasing vertical gravity are applied to the
system, respectively. The stress tensor and the granular temperature are calculated
according to section 3.4 and the inertial number I(y) as explained in section 2.3.1.

In this investigation, we use two distinct methodologies for calculating segregation
forces. The approach involves identifying a restoring force profile that counteracts
segregation and gives a homogenized mixture, designated as Fres,s/b. The segregation
force will then be the negative of this force, expressed as Fseg,s/b = −Fres,s/b. s/b
stands for small or big discs, respectively.

All forces are presented in a rescaled format. Consequently, in the case of a system
under constant gravity, we plot F ∗

res,b/s = Fres/mb/s|g|, and if the gravity increases
linearly, we depict F †

res,b/s = Fres/mb/s|g|max, where mb/s is the mass of big or
small particles, |g| is the magnitude of constant gravity, and |g|max is the maximum
gravity in the case of linearly increasing gravity.
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Figure 4.4: a) presents a schematic representation of a granular mixture under investigation. The coordinate

axes and boundary conditions are illustrated in the figure, with a gravity field applied to the system.
b) illustrates a scenario with a constant gravity field, denoted as g(y) = g0, and the corresponding
pressure profile. c) depicts a scenario with a linearly increasing gravity field, denoted as g(y) =
− (g0/H) y + g0, and the corresponding pressure profile.

4.2.1 Harmonic Restoring Forces

The initial technique, referred to as the Harmonic Method (HM), is based on a
methodology introduced by a previous study [87] and similarly by [68]. This method
employs a springlike vertical restoring force that is proportional to the difference in
the vertical center of mass positions of the two initially mixed species.

The formula for the restoring force on each species, whether big or small (b/s), is
given by: FHM

res,b = −KrP0(ȳb − ȳs)
N
Nb

and FHM
res,s = −FHM

res,b
Nb
Ns

where ȳb =

1/Nb
∑Nb

k∈b yk represents the center of mass of big discs, and a corresponding ex
pression holds for small particles. Here, and Nb, Ns, and N are the numbers of big
particles, small particles, and the total number of particles in the bulk region. Kr is a
dimensionless constant set to 0.6. The harmonic restoring forces satisfy force balance,
i.e., FHM

res,bNb + FHM
res,sNs = 0.

4.2.2 Iterative Segregation Method

We introduce an alternative methodology that exhibits broader applicability com
pared to the initial technique, allowing for the determination of the restoring force
distribution over the slab even in the presence of a linearly increasing vertical grav
ity. In this scenario, we consider a flowing configuration that has already attained a
steadystate segregated state under the influence of both gravity and external shear.
Our iterative approach aims to estimate the required restoring force for assisting the
system in reverting to its mixed state at each update. This is achieved by leveraging the
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difference between the slopes of the relative packing fraction profiles of each species
in the nonhomogeneous configuration and the desired homogeneous mixture, cor
responding to pure Couette flow. In this work, we term this approach the Iterative
Method (IM).

In essence, our approach involves iteratively updating the restoring force on big (small)
particles. So the mth update of the restoring force has the following form:

F IM,m
res,b/s(y) = F IM,m−1

res,b/s (y) + ∆Fm
res,b/s(y) (4.1)

The iterative correction to the spatially varying restoring force, denoted as∆Fm
res,b/s(y),

is determined using the following equation:

∆Fm
b/s(y) = −κP0N⟨d⟩2

Nb/s

∂
(
ψm−1
b/s (y)− ψC

b/s(y)
)

∂y
(4.2)

where ψx
b/s(y) =

ϕx
b/s

(y)

ϕtot(y)
represents the relative packing fractions, defined in terms

of the individual species packing fractions ϕs/b and the total ϕtot. Additionally,
F IM,0
b/s (y) = 0.

The superscript (m− 1) denotes the profile after a stationary flow is reached while
applying the F (m−1) force. The superscript C signifies the Couette case, in the ab
sence of gravitational forces. κ is a dimensionless prefactor set to 0.2. The iterative
restoring forces also satisfy force balance, F IM

res,b(y)Nb + F IM
res,s(y)Ns = 0.

The iterative process of adjusting restoring forces for both large and small particles
continues until the packing fraction profiles resemble those of the fully homogenized
pure Couette flow, falling within the limits defined by our noise level.

4.2.3 Constant Gravity

For both frictionless and frictional mixtures, an increasing tilt in the total and relative
packing fraction profiles is observed with rising gravity, for all the investigated rescaled
constant gravities g∗ = πρ⟨d⟩|g|/(4P0) under constant global shear rates, as depicted
in Figs. 4.5(a, e, i) and 4.6(a,d,g), respectively, in comparison to the corresponding
Couette cases. This inclination is anticipated since we now have a spatially varying
inertial number profile due to the spatially varying pressure. However, the segregation,
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quantified by ψb, cannot be solely attributed to the varying inertial number. This
is evident from the fact that the local rheology remains constant with composition.
Instead, segregation is driven by segregation forces induced by the spatially varying
pressure and shearrate profiles.

In all cases, an initial boundary effect related to particle type is observed, leading to
an accumulation of small particles at the boundaries. This is indicated by a sharp de
crease in ψb at the boundaries, where small particles better fill the gaps of the rough
walls. This boundary effect persists even in the presence of gravity, as will be further
demonstrated when restoring forces are applied.

We now apply two restoring forces, the Harmonic Method (HM) and the Itera
tive Method (IM), and observe their successful counteraction of segregation. This
is evident in Figs. 4.5(b, c, f ,g, j,k) and 4.6(b, e,h), where ψb − ψC

b is close to
zero (within noise), indicating the same relative packing fraction profile as the cor
responding Couette cases. In the frictionless case, the ϕ profile remains essentially
the same, while a small shift to higher total packing fractions is observed when ap
plying the restoring forces. Both methods yield the same profile. Although force
profiles differ slightly—HM being flat and IM showing slight slopes—the differences
are within our noise level and hence the two methods give equivalent forces and show
that Fres ∼ |g|, as reported by [68].

A more detailed examination shows that applying a restoring force homogenizes the
flowing mixture while maintaining a constant µ profile. Other profiles, such as I , ϕ,
ω/γ̇, and Z, exhibit only slight alterations when the force is applied (see more details
in paper 11). However, the granular temperatureΘyy shows a significant decrease after
applying a restoring force, particularly in the highpressure region. The perturbation
in the properties is more substantial for frictional mixtures than for frictionless ones
and increases with increasing gravity (see Fig. 4.7).

4.2.4 Linearly increasing gravity

In the scenario with linearly increasing gravity starting from zero at the top wall, repre
sented by its rescaledmaximum value at the bottom of the cell, g∗max = πρ⟨d⟩|g|max/(4P0),
our iterative method which allows for spatial variation of the calculated forces works
to find the restoring force profiles both for the frictionless and frictional mixtures as
shown in Fig. 4.8, while the harmonic method is naturally inadequate to find the
required restoring force since the harmonic method, by definition gives a constant
restoring force profile and con not take account for spatial variation of the force. The
magnitude of the restoring forces found by IM is linearly increasing from the top,
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mirroring the gravity, i.e., Fres ∼ |g|. To validate this, we apply a Test force that lin
early increases with gravity and has the max magnitude determined from the constant
gravity simulations. These Test forces also successfully homogenize the samples (see
Fig. 4.8), confirming that the restoring forces and, consequently, segregation forces
are solely functions of the local gravity, with no detectable influence from its gradient.

A more indepth analysis reveals that similar to the case of constant gravity, the ap
plication of a restoring force homogenizes the flowing mixture while maintaining a
constant µ profile. Other profiles, such as I , ϕ, ω/γ̇, and Z, experience only slight
alterations when the force is applied. However, the granular temperatureΘyy under
goes a significant decrease after the application of a restoring force, particularly in the
highpressure region. Again, the perturbation in the properties is more substantial for
frictional mixtures than for frictionless ones and increases with escalating gravity (see
appendix of paper 11). Further investigation into the changes in granular temperature
following the application of restoring forces may provide insights into the reasons for
segregation, potentially linking it to altered fluctuations in the flowing mixture.
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Figure 4.5: The upper panel ((a), (e), and (i)) depicts profiles of the total packing fraction, ϕtot, for frictionless
(µp = 0) mixtures in different scenarios: Couette flow (cf), gravity flow (gf) without restoring
forces, and after applying the Iterative Method (IM) and the Harmonic Method (HM) forces at
various constant gravities g∗. The second and third rows from the top ((b), (f), and (j)) and ((c),
(g), and (k)) illustrate the corresponding profiles of ψb and ψb − ψC

b , respectively. In the bottom
row ((d), (h), and (l)), the normalized restoring forces on the large discs, F∗

res,b, are plotted.
The shaded regions indicate either the standard deviation (HM) or the estimated error (IM) of the
calculated forces.
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Figure 4.6: The upper panel ((a), (d), and (g)) displays profiles of the total packing fraction, ϕtot, for frictional
(µp = 0.4) mixtures in different scenarios: Couette flow (cf), gravity flow (gf) without restoring
forces, and after applying the Iterative Method (IM) and the Harmonic Method (HM) forces at
various constant gravities g∗. The middle row ((b), (e), and (h)) illustrates the corresponding
profiles of ψb − ψC

b . In the bottom row ((c), (f), and (i)), the normalized restoring forces on
the large discs, F∗

res,b, are plotted. The shaded regions indicate the standard deviation (HM) or
estimated error (IM) of the calculated forces.
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Figure 4.7: Profiles of (a) and (c) depict the friction coefficient µ for frictionless (µp = 0) and frictional (µp =
0.4) mixtures, respectively at g∗ = 0.0348. (b), (d), present the rescaled granular temperature
Θyy for frictionless (µp = 0) and frictional (µp = 0.4) mixtures, respectively at the same constant
gravity field. The profiles are illustrated in the Couette flow (solid black curves), gravity flow gf
(dashed-dotted black curves), after applying the final iterative method IM restoring force (brown
curves), and after applying the harmonic method HM restoring force (cyan curves). The insets in
the figures show the ratio between each of the parameters profiles, µχ/µgf and Θyyχ/Θyygf

when applying restoring forces to without restoring forces, i.e. gravity flow, where χ is either (IM)
(brown curves) or (HM) (cyan curves). The dotted vertical lines in the I andµ profiles indicate where
the profiles are cut for use in the µ-vs-I.

44



0.2 0.4 0.6 0.8
y/H

−0.2

0.0

0.2

ψ
b
−
ψ

C b

(a)

µp = 0

g∗max = 0.0348

IM

Test

gf

0.2 0.4 0.6 0.8
y/H

−0.5

0.0

0.5

ψ
b
−
ψ

C b

µp = 0.4

(c)

g∗max = 0.0348

0.2 0.4 0.6 0.8
y/H

−0.3

−0.2

−0.1

0.0

F
† re
s,
b

(b)
F ∗IMres,b

F ∗Test
res,b

0.2 0.4 0.6 0.8
y/H

−0.7

−0.5

−0.3

−0.1

F
† re
s,
b

(d)

Figure 4.8: Profiles of ψb − ψC
b in (a) and (c) for frictionless (µp = 0) and frictional (µp = 0.4) mixtures,

respectively at g∗max = 0.0348 after applying the final IM, the Test force and in the gravity flow
without any restoring forces (gf). In (b) and (d), the respective normalized restoring forces on
the large discs in frictionless (µp = 0) and frictional (µp = 0.4) mixtures denoted as F †

res,b, are
presented. The shaded regions indicate the estimate of standard error in the calculated forces.
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