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Abstract 

Anthropogenic stressors such as agricultural intensification, climate change, and 
increased densities of non-native managed bees used for crop pollination are 
contributing to bee declines. Understanding how and why bees have responded to 
past environmental changes is crucial for predicting future ones and enabling 
mitigation to maintain the functioning of both natural and agricultural ecosystems. 
The anthropogenic stressors are expected to put demand on the ability of bees to 
respond to future change. Thus, the ability of bee populations to persist in a 
particular area may require adaptive responses via either phenotypic plasticity or 
evolutionary adaptations in functional traits (e.g. physiological, morphological, and 
life-history traits). However, for bumblebees, it is not fully understood how gene 
flow and environmental differences affect such adaptations. In this thesis, I studied 
the bumblebee Bombus terrestris in a native (Sweden) and novel (Tasmania, 
Australia) setting, aiming to investigate: (1) if the introduction of commercial B. 
terrestris of a different sub-species affects wild Swedish B. terrestris via 
introgressive hybridization using whole-genome sequencing (WGS), and what the 
evolutionary consequences are; (2) if wild native B. terrestris in Sweden is 
genetically structured and shows selection signatures in relation to land use and 
climate variables, using double digest restriction-site associated DNA (ddRAD) 
sequencing; (3) if the recently introduced B. terrestris in Tasmania shows 
morphological variation in relation to the island’s heterogeneous environment and 
climate, facilitating its invasion success; and finally, (4) if there is evidence for 
selection on functional genes and morphology in B. terrestris given the novel 
environmental and climatic conditions across Tasmania, using RADseq. From these 
four chapters, I outline several interesting key findings. In Chapter I, I found 
genomic differences between wild Swedish and commercial B. terrestris but no 
evidence for recent genomic introgression between the two even though feral 
commercial bumblebees were present in the wild. Although, non-native B. terrestris 
are likely ill-adapted to the Swedish environment but may under future climate 
change be able to persist and mate. Chapter II showed that wild B. terrestris in a 
native range consists mainly of a homogeneous population, but with evidence for 
weak genetic structuring, separating southern Sweden from the central and more 
northern regions. Our results showed no evidence for signatures of adaptation to 
agricultural landscape simplification (i.e. the proportion of semi-natural habitat and 
the length of uncultivated agricultural field borders). Instead, weak, local genetic 
adaptation was documented in genes related to insecticide resistance and immune 
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response and associated with higher proportions of agricultural cover and latitude 
of sites. Range expansion of B. terrestris was evident via negative Tajima’s D, 
suggestively in a northward direction and more inland into densely forested areas as 
evidenced by more recent observational data. We suggest that the species’ generalist 
and mobile characteristics allow B. terrestris to exploit various environments with 
limited genetic local adaptation and suggest this generalist species may not be as 
severely affected by land-use change as more specialist bumblebees. In contrast, 
Chapters III and IV show how B. terrestris in its novel range has locally adapted 
to the selection pressures of a novel heterogeneous environment in Tasmania, 
Australia, specifically to precipitation and wind. Candidate loci found were 
annotated to genes involved in cuticle differentiation and cuticle-regulated water 
loss prevention, immune response, olfactory system, functions relating to flight 
muscles, and fatty acid metabolism. Our results shed further light on how B. 
terrestris successfully colonized and invaded Tasmania despite the genetic 
consequences of a founding bottleneck. Taken together, the four chapters in this 
thesis demonstrate how the generalist bumblebee B. terrestris in both its native and 
invasive ranges is able to thrive in the face of anthropogenic change and novel 
heterogeneous environments. This thesis is a testament to the capacity of B. 
terrestris to be a successful pollinator in native ranges while also being one of the 
world’s most successful invasive bee species. 
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Populärvetenskaplig sammanfattning  

Gruppen bin, som innefattar sociala humlor och honungsbin, och solitära bin, är 
oerhört viktiga pollinerare av både vilda blommor och odlade grödor. Men de 
pågående mänskligt orsakade förändringarna bidrar dock till minskningen av bin 
jorden runt. Just därför är det viktigt att förstå hur bin reagerar på dessa förändringar 
och om de kan anpassa sig för att fortleva och kunna fortsatt bidra med viktiga 
ekosystemtjänster inom både naturliga och jordbruksekosystem. Orsakerna bakom 
minskningen av bin är många, men intensifieringen av jordbruket har i hög grad 
bidragit. Odlingslandskapet som förut bestod av en spatial blandning av 
betesmarker, blomrika fältkanter och odlingsfält har på många platser i landskapet 
ersatts av fler och större odlingsfält. Fälten odlas intensivare och innehåller färre 
blomresurser i form av ogräs. Dessutom har klimatförändringarna i form av ökade 
temperaturer och oförutsägbara väderomställningar, ökad urbanisering, samt 
oavsiktliga konsekvenser ifrån användandet av kommersiella humlor till pollinering 
av grödor bidragit till minskningen av bin jorden runt.  

Alla dessa förändringar förväntas ställa krav på binas förmåga att kunna anpassa 
sig, men alla bin förväntas inte reagera på samma sätt. Det kan bero på olikheter 
inom så kallade funktionella egenskaper så som fysiologiska och morfologiska 
egenskaper, samt livsegenskaper som påverkar hur pass känsliga bin är för 
exempelvis förändrad markanvändning och klimatpåverkan. Vissa bi-arter kan 
förflytta sig till bättre livsmiljöer medan andra anpassar sig till sin lokala miljö, 
antingen genom fenotypisk plasticitet eller evolutionär anpassning om 
kombinationen av rätt omständigheter så som selektionstryck, genetisk variation 
och genflöde finns.  

Det har nyligen skett en konceptuell förändring av vårt synsätt på evolutionen, att 
anpassningar till mänskligt orsakade förändringar kan ske snabbare än vi tidigare 
trott. Det finns många exempel inom gruppen insekter på snabb evolutionär 
anpassning men för humlor är bevisen inte kompletta. Dessutom för många arter, 
inklusive humlor, är det osäkert hur genflöde och landskapsskillnader påverkar 
deras förmåga att anpassa sig. Genflöde kan både vara negativt för en arts 
anpassningsförmåga, genom ett inflöde av neutrala eller missanpassade gener, men 
även positivt, då ett inflöde av fördelaktiga gener upprätthåller genetisk variation 
som kan ligga grund för framtida anpassningar. Därför förutsätts genflöde i många 
fall bidra till anpassning av förändrade livsmiljöer, om de nya generna bidrar till 
ökad fitness. Dessutom anses fenotypisk plasticitet som svar på förändrade 
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livsmiljöer vara ett viktigt och snabbt sätt för arter att hantera mänskligt orsakade 
förändringar och ge arter tid att kunna genetiskt anpassa sig. Följaktligen är 
sambandet mellan genflöde, fenotypisk plasticitet och genetiska anpassningar till 
mänskligt orsakade förändringar viktigt att förstå om bin ska fortleva i framtiden.  

Vissa humlearter verkar klara miljöförändringar bra. Den mörka jordhumlan 
(Bombus terrestris), som är en viktig pollinatör i både naturliga och jordbruks 
ekosystem, har inom vissa områden ökat i antal, sannolikt på bekostnad av andra 
humlearter. Den har dessutom utökat sitt utbredningsområde inom Skandinavien 
som svar på ökade temperaturer. Den mörka jordhumlan kan bosätta sig och 
födosöka i flera olika landskapstyper. Den är en utav de mest varmanpassade 
humlearterna och är förutspådd att göra bra ifrån sig under framtida 
klimatförändringar. Dessa egenskaper bidrar till att den mörka jordhumlan förväntas 
vara mindre känslig för just mänskligt orsakade landskaps-och 
temperaturförändringar, och har förmågan att anpassa sig till dessa förändringar.  

Den mörka jordhumlan används även i stor utsträckning för kommersiell pollinering 
av grödor, till exempel tomater, på grund av dess förmåga att effektivt kunna frigöra 
pollen med hjälp av vibrationer från vingarna (Buzz pollinering). Men i samband 
med kommersialiseringen har humlan även spritt sig som en invasiv art i områden 
där risken för konkurrens med vilda bin och hybridisering med vilda humlor finns. 
På Tasmanien, Australien, har den mörka jordhumlan lyckats bra och blivit invasiv, 
där selektionstrycket från den nya miljön kan ha format olikheter inom humlans 
morfologi som har hjälpt göra den mörka jordhumlan så framgångsrik. 
Sammanfattningsvis påverkas den mörka jordhumlan av mänskligt orsakade 
förändringar och har möjligtvis anpassat sig, men samtidigt påverkar den andra 
pollinatörer negativt inom både vilda och nya områden.  

I min avhandling studerar jag den mörka jordhumlan i dess naturliga miljö i Sverige 
och som en invasiv art på Tasmanien, Australien. Inom dess naturliga miljö 
undersöker jag om kommersiella mörka jordhumlor hybridiserar sig med svenska 
vilda mörka jordhumlor och vilka eventuella genetiska konsekvenser sådan 
introgressiv hybridisering kan ha. Dessutom undersöker jag i Sverige om den vilda 
mörka jordhumlan uppvisar genetiska skillnader till förändrade landskaps- och 
klimatförhållanden. Inom Tasmanien undersöker jag om den invasiva mörka 
jordhumlan uppvisar morfologiska skillnader och skillnader i antal i förhållande till 
olika miljöer. Dessutom under söker jag om det finns bevis för selektion till de nya 
miljöerna trots begränsad genetisk variation resulterat av en genetisk flaskhals 
(’bottleneck’) vid introduktionen till Tasmanien. 

Tillsammans visar mina studier hur både den vilda svenska och invasiva mörka 
jordhumlan har anpassat sig morfologiskt och genetiskt till mänskligt orsakade 
landskaps- och klimatförändringar, och nya miljöer men även hur kommersiell mörk 
jordhumla påverkar vild mörk jordhumla. Mer specifikt visar min avhandling att det 
finns genetiska skillnader mellan kommersiella mörk jordhumla och svensk vild 

13



 

14 

mörk jordhumla. Dessa skillnader mellan dem skulle kunna ha en negativ framtida 
påverkan om hybridisering sker. Dock hittade vi inga bevis för att hybridisering 
sker. Den mörka jordhumlan i Sverige verkar vara ganska homogen, men uppvisar 
trots detta skillnader i genetisk struktur mellan dess södra och centrala 
utbredningsområde. Våra resultat visar även att den mörka jordhumlan lokalt har 
anpassat sig till högre andel jordbruksmark och latitud. Den mörka jordhumlan har 
även utökat sitt utbredningsområde, förslagsvis mer norrut och inåt landet till 
skogsmiljöer. Inom dess nya utbredningsområde uppvisar den mörka jordhumlan 
både morfologiska och genetiska skillnader som svar på den nya varierande miljön 
på Tasmanien, trots att den tasmanska populationen förlorat genetisk variation vid 
introduktionen. Sammantaget, bidrar min avhandling med en utökad förståelse för 
hur en generalistisk humleart har anpassat sig till mänskligt orsakade förändringar 
och till nya miljöer.  
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Introduction  

Anthropogenic environmental and climate change 
Insect pollination is essential for ecosystems and the maintenance of global 
biodiversity (IPBES, 2016). The most important group of insect pollinators are bees, 
where wild and domesticated bees are the main pollinators of the majority of wild 
flowering plants and crops worldwide (Klein et al., 2007; Ollerton et al., 2011; Potts 
et al., 2016). Among bees, wild bumblebees (Bombus sp.) are well recognized for 
their pollination services of flowers in natural ecosystems (Belsky & Joshi, 2019) 
and crop pollination (Klein et al. 2007), with bumblebees such as Bombus terrestris 
being important pollinators of oilseed rape (Goulson, 2003). Managed bumblebees 
are also efficient crop pollinators (Nayak et al., 2020; Rollin et al., 2016), and have 
in some systems been shown to be more efficient pollinators than honeybees (Nayak 
et al., 2020; Zhang et al., 2022).  

However, there are concerns about declines in both the abundance and diversity of 
bees on local to global scales (Chagnon, 2008; Goulson et al., 2008; IPBES, 2016; 
Kosior et al., 2007) as well as resulting changes in bee community composition 
(Bommarco et al., 2012; Fourcade et al., 2019). While many bee species have 
declined, some species have expanded or are predicted to expand their distributions, 
are stable or have even increased in relative abundance (i.e. relative to other bee 
species) (Dew et al., 2019; Herbertsson et al., 2021; Huml et al., 2021; Kammerer 
et al., 2021; Kerr et al., 2015; Martinet et al., 2015).  

Losses have been attributed to anthropogenic impacts (IPBES 2016) (Figure 1). 
Understanding how this will ultimately affect global food security and ecosystem 
resilience is urgent to resolve (Marshman et al., 2019). Although many of the drivers 
of the observed declines are known, knowledge about what is causing the declines 
is still incomplete. Agricultural intensification has in many cases acted as a driver 
of observed bee declines (Goulson et al., 2015; Kremen et al., 2002) due to resulting 
changes in, for example, landscape composition as crop fields increase in size and 
replace more or less natural habitats (Robinson & Sutherland, 2002). This has led 
to loss and increased spatial fragmentation and temporal discontinuity of flower-
rich habitats suitable for foraging and nesting, in particular for habitat specialists 
(Goulson et al., 2015; Smith et al., 2014). In addition, intensive agriculture often 
relies on pesticides for crop protection, which have been proven harmful to bees and 
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may lead to widespread insect mortality (Lu et al., 2020; Rundlöf et al., 2015; Tosi 
et al., 2022; Tsvetkov et al., 2023). 

The global use and mass transport of managed bees for agricultural crop pollination 
services outside of native ranges have contributed to pollinator declines and 
biological invasions (Potts et al., 2016), where feral managed bumblebees, such as 
B. terrestris, may outcompete local native bees (Hingston & McQuillan, 1998b; 
Ings et al., 2005, 2006; Morales et al., 2013) and spread pathogens (Dafni et al., 
2010; Evans et al., 2017; Meeus et al., 2011, but see Trillo et al., 2021). As a result, 
native plant-pollinator relationships have been negatively affected (Aizen et al., 
2019; Hingston & McQuillan, 1998a). There is also increasing concern about the 
evolutionary consequences of managed bumblebees for native pollinator health and 
genetic integrity (Seabra et al., 2019). The use of non-native bumblebee species and 
sub-species for crop pollination has repeatedly created conditions for hybridization 
and introgression (the exchange of genetic material between species or subspecies 
through hybridization and repeated backcrossing, McFarlane & Pemberton, 2019) 
between native and non-native bumblebees (Bartomeus et al., 2020; Cejas et al., 
2018, 2020; Seabra et al., 2019). This has raised concerns that locally adapted genes 
in wild populations are disrupted by introgression of maladapted alleles originating 
from escaped commercial bumblebees (Kanbe et al., 2008; Tsuchida et al., 2010; 
Yoon et al., 2009).  

Another form of human-induced land-use change is urbanization (A. Bates et al., 
2011). The consequences of urbanization are many, for example, habitat structural 
changes and loss (Liu et al., 2016), heat island effects, or changes in air pollution 
and nutrient cycling and primary production (Grimm et al., 2008). The urban 
environment is generally highly fragmented (i.e. a matrix of pervious surfaces and 
green spaces), such that bees may experience longer foraging distances to 
ecologically relevant patches (Theodorou et al., 2020). This may limit the 
connectivity to surrounding patches and the resources gathered at each patch, 
potentially affecting the bees’ fitness. On the other hand, the matrix of different 
environments in cities may be more complex than adjacent rural landscapes (e.g. 
intensively farmed land), providing sufficient habitat for organisms to live in 
(Sattler et al., 2010). Urban cities may even function as refuges for bees (Baldock 
et al., 2015; Fortel et al., 2016).  
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The effects of climate change are also contributing to bee declines (Kerr et al., 2015; 
Potts et al., 2016). Effects may be related to mean temperatures, but also 
unpredictable weather conditions such as more frequent droughts (Descamps et al., 
2021; Soroye et al., 2020). Climate change may result in changes to local 
community compositions through both the declines and increases in bee species 
with different life-history traits (Pardee et al., 2022). Climate changes may 
ultimately result in range shifts or range contractions when species no longer can 
expand northwards or to higher elevations to track their thermal limits (Kerr et al., 
2015; Vanbergen et al., 2013). Effects of climate change may also be indirect, such 
as via increased inter-specific competition between resident species and from range-
expanding species (Bocedi et al., 2013).  

 

Figure 1. Different drivers of anthropogenic change that has been recognized to cause bee declines. 
Examples include landscape simplification and pesticide use due to agricultural intensification, 
competition from feral non-native commercial bumblebees and introgressive hybridization with wild 
conspecifics, urbanization, and climate change.  
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Bee responses to anthropogenic change 
Bee species respond differently to anthropogenic impacts, which may partially be 
explained by differences in functional traits, such as physiological, morphological, 
and life-history traits that affect their resilience to land use and climate change (Hall 
et al., 2019; Kammerer et al., 2021; Pardee et al., 2022). Further, in the face of 
anthropogenic pressures, the persistence of bee species at large spatial scales may 
be secured by range shifts to more suitable areas. In contrast, persistence at local 
scales may require adaptive responses by either phenotypic plasticity or 
evolutionary adaptations in functional traits (e.g. Bocedi et al., 2013; Colgan et al., 
2022). As a first step towards mitigating the negative effects of anthropogenic 
change, we need to better understand which bee traits respond to environmental and 
climatic pressures. Subsequently, understanding the adaptive potential of bees and 
whether evolutionary responses are an important mechanism for bees to cope with 
anthropogenic change should be sought. Lastly, implementing measures to uphold 
the evolutionary potential should be considered.  

The interplay between neutral connectivity, local adaptation, and 
genetic diversity in light of anthropogenic change 
Recently there has been a conceptual shift in our view of evolution, suggesting that 
rapid adaptation to environmental change may be more common than previously 
thought (Reznick et al., 2019). There are several studies on insects demonstrating 
rapid evolutionary change (Colgan et al., 2022; Dudaniec et al., 2018; Yadav et al., 
2019) but for bumblebees, the evidence is still far from conclusive. Whereas the 
idea of rapid evolution focuses on change over time, evidence for adaptation to 
anthropogenic environmental change is often only possible to pursue using a space-
for-time substitution approach (i.e. assuming that spatial changes are equivalent to 
temporal changes, Pickett, 1989). However, it is currently unclear how gene flow 
constrains such adaptations and thus over which distances and time-frames 
adaptation to local landscape features and climate can be sought. For example, in 
bumblebees’ genetic differentiation between populations may be small, except 
when dispersal is constrained by environmental gradients or barriers (Jackson et al., 
2018; Lozier et al., 2013). Gene flow and local adaptation are also often described 
as opposing forces. High gene flow between populations is theorised to homogenize 
locally adapted genotypes by introducing maladapted or neutral alleles, whereas 
reduced gene flow increases the chances of genetic adaptation to the local 
environment (Wadgymar et al., 2019). However, if selective forces are stronger than 
the homogenizing effects of gene flow, local genetic adaptation may still occur 
(Tigano & Friesen, 2016). This can be particularly true if genetic differentiation 
between populations is a result of selection on specific genes whose loci are in 
strong physical linkage disequilibrium (Barton, 2000). However, gene flow also 
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maintains genetic variation by adding new (advantageous) alleles into a population, 
increasing the genetic material for which selection can act upon (Buckley & Bridle, 
2014). Thus, it is predicted that gene flow also promotes adaptation to novel 
environments or to rapidly changing environments if the introduced alleles become 
introgressed and are beneficial for fitness (Aitken & Whitlock, 2013). To this end, 
examination of the relative contribution of gene flow, adaptive genetic variation, 
and neutral genetic diversity is a crucial step toward understanding bee responses to 
anthropogenic environmental and climatic change.  

Intra-specific plastic or evolutionary trait changes in bumblebees 
related to anthropogenic change 
The occurrence of phenotypic plasticity in response to environmental change may 
initially stabilize the population, which is beneficial as a rapid response that may 
counter the consequences of environmental stressors (Bonamour et al., 2019). For 
example, plasticity may broaden trait variation of a species and hence buffer against 
rapidly changing environments, where e.g. the breadth of temperatures at which a 
population can survive increases and thus broadens the population’s tolerance and 
gives it time to further adapt (e.g. Lancaster et al., 2015). As plastic responses may 
in some cases show a more rapid response than adaptive evolutionary changes to 
anthropogenic change, phenotypic plasticity is considered an important mechanism 
for species survival (Bonamour et al., 2019). Whether observed adaptive responses 
are genetically derived, or a result of adaptive phenotypic plasticity (e.g. 
environmental, or due to developmental constraints) has in most cases not been 
demonstrated, and bumblebees are not an exception (but see Hart et al., 2022; 
Jackson et al., 2020). Nevertheless, both plastic and evolutionary responses are 
relevant for understanding species’ sensitivities and adaptive potential, not only for 
short-term survival but also for long-term survival in the face of anthropogenic 
change (Hendry, 2016). 

In bumblebees, the mean body size of queens of four bumblebee species (Bombus 
hortorum, Bombus lapidarius, Bombus pascuorum and Bombus pratorum) 
increased with increasing landscape fragmentation caused by agricultural 
intensification (Gérard et al., 2019), and a similar trend was later observed for the 
same species and Bombus balteatus (Gérard et al., 2020). In contrast, smaller B. 
terrestris workers are associated with highly intensively farmed agricultural 
landscapes (Grass et al., 2021; Nooten & Rehan, 2020; Oliveira et al., 2016; Persson 
& Smith, 2011). Mixed intra-specific body size responses in relation to urbanization 
have also been found (Austin et al., 2022; Eggenberger et al., 2019; Tommasi et al., 
2022) with bumblebees in urban areas also being found to have higher intraspecific 
phenotypic variation in body size-associated traits (inter tegular distance, proboscis 
length, wing- and corbicula length) compared to their non-urban conspecifics 
(Eggenberger et al., 2019). 
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Some studies have also documented intra-specific changes in proboscis length over 
time or differences between populations. Examples include two common alpine 
species, B. balteatus and B. sylvicola, in the U.S. where proboscis length has become 
shorter over 40 years, suggestively in response to a climate change-induced shift in 
hostplants (Christmas et al., 2022; Miller-Struttmann et al., 2015). Observations of 
intra-specific bimodality in the proboscis length of a specialist long-tongued 
bumblebee, B. pascuorum, in urban areas have also been documented (Eggenberger 
et al., 2019). Furthermore, changes in bumblebee wing size as a response to urban 
environmental stressors and flower abundance in less urbanized areas have been 
documented (Gérard et al., 2018, Tommasi et al., 2022), and lastly, lower wing-
loading (body weight in grams divided by the total wing area in cm2) was found for 
a montane bumblebee species, suggesting adaptation to elevation (Lozier et al., 
2021). 

Physiological traits are generally highly sensitive to anthropogenic change and are 
often one of the first responses that occurs for a species (Leroy et al., 2023). 
Examples from bumblebees include adaptation in regulatory mechanism and cuticle 
formation to precipitation and neuromuscular function to temperature in alpine 
habitats (Heraghty et al., 2023; Jackson et al., 2020), suggested neurodevelopment, 
muscle and detoxification-related adaptation to agricultural stress (Hart et al., 2022), 
potential selection on insecticide susceptible genes due to insecticide exposure in 
agricultural areas (Colgan et al., 2022), and heat and oxidative stress responses in 
relation to urban gradients (Burdine & McCluney, 2019; Theodorou et al., 2018).  

However, is not always easy to determine the genomic background underpinning 
the observed adaptation to novel or changing environmental conditions, especially 
in the wild (Endler, 2020). By adopting a genomic approach (e.g. such as single 
nucleotide polymorphisms (SNPs) from whole genome or reduced representation 
sequencing methods) and integrating environmental and population data, one can 
attempt to unravel if the observed adaptations are caused by phenotypic plasticity 
or evolutionary change (Balkenhol et al., 2017; Lancaster et al., 2022). For example, 
landscape genomic approaches such as Environmental Association Analyses (EAA) 
where one combines morphometric and environmental analyses to examine the 
relationship between alleles and the relevant environmental variables can be used 
(Frichot et al., 2013). More recently, the field is looking beyond SNPs to structural 
variants within the genome, such as chromosomal inversions or sequence repeats, 
which can be maintained by selection (Layton & Bradbury, 2022).  
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The interplay between morphological functional trait variation and 
invasiveness in bees 
Social and eusocial bees are particularly invasive worldwide (Ghisbain et al., 2021; 
Manfredini et al., 2019; Russo, 2016) and differential selection pressures exerted by 
novel environments may shape morphological variation that help to facilitate the 
spread of invasive species (e.g. Common et al., 2020; Yadav et al., 2018). For 
bumblebees, traits related to dispersal and foraging (Greenleaf et al., 2007; 
Klumpers et al., 2019), such as body size, wing size, and proboscis length are likely 
candidates to respond to novel heterogenous environments. Eusocial bees show high 
plasticity in body size (related to work tasks within the colony) (Chole et al., 2019), 
and body size is responsive to various environmental conditions (e.g. Theodorou et 
al., 2020). As for wing size, the trait is related to foraging and dispersal distance in 
bees (Greenleaf et al., 2007). In addition, changes to dispersal-associated traits (i.e. 
wings) have been observed for invasive species (Lombaert et al., 2014) and it has 
been suggested that dispersal capacity may be one of the first traits selection acts on 
in invasive species (Lee, 2002). Furthermore, proboscis length is suggested to be 
responsive to changes in local floral resources (Christmas et al., 2022; Miller-
Struttmann et al., 2015), which may be beneficial when experiencing novel flower 
species in novel ranges. Invasive species may also be better prepared to respond to 
anthropogenic change due to their ability to rapidly adapt to novel environments 
(e.g. Wiens et al., 2019). How morphological variation in invasive species, 
irrespective of whether it represents plastic or genetic change, is linked to novel 
environments may provide insight into how species respond and rapidly adapt to 
anthropogenic change. 

The case of Bombus terrestris 
Among the wild pollinating bees that contribute to pollination services of many of 
the world’s natural and agricultural ecosystems, the buff-tailed bumblebee, B. 
terrestris is a key player (Dafni et al., 2010; Goulson, 2003). Unlike many bee 
species, evidence shows that B. terrestris in some areas has increased in abundance, 
perhaps at the expense of other bumblebee species (Bommarco et al., 2012; 
Herbertsson et al., 2021) possibly in response to environmental and climatic changes 
(Ghisbain et al., 2021). In addition, B. terrestris has expanded its distribution range 
in Scandinavia in relation to an increase in mean temperature (Martinet et al., 2015). 
Since B. terrestris is a habitat and diet generalist (Mossberg & Cederberg, 2012; 
Rasmont et al., 2008), one of the most warm-adapted bumblebee species and 
predicted to be particularly successful under climate change (Acosta et al., 2016; 
Ghisbain et al., 2021; Martinet et al., 2021), it is anticipated that B. terrestris is less 
sensitive to land-use and temperature associated anthropogenic change. However, 
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understanding B. terrestris adaptive capacity, whether it is plastic or genetic is 
relevant for future survival under anthropogenic environmental and climate change.  

Due to the efficient buzz pollination and cost-efficiency provided by bumblebees to 
tomato pollination in greenhouses, commercialization of B. terrestris began in the 
late 1980s and quickly grew worldwide (Dafni et al., 2010). The use of B. terrestris 
grew to include international trade, and by 2006 it was estimated that more than 1 
million reared colonies were transported to numerous countries around the world 
(Velthuis & Van Doorn, 2006). Hence, B. terrestris is now one of the most 
frequently managed bumblebees (Dafni et al., 2010) and their pollination services 
have increased yields of several cultivated plants (Messinger et al., 2016). However, 
one non-intended negative side effect of the expanding industry is that B. terrestris 
is expanding as an invasive species worldwide (Dafni et al., 2010), for example, due 
to the establishment of feral populations outside of greenhouses, or due to 
intentional introductions (Schmid-Hempel et al., 2007). More than 11 countries 
have now reported the occurrence of invasive B. terrestris populations (Dafni et al., 
2010) and the magnitude of damage done by managed B. terrestris is well 
documented (e.g. Morales et al., 2013). Ecological impacts include competition with 
native pollinators (e.g. Geslin & Morales, 2015; Hingston & McQuillan, 1999) and 
parasite and pathogen spread (spill-over) to native Bombus species (Evans et al., 
2017, but see Pedersen et al., 2020; Trillo et al., 2021)  

 

Figure 2. Photos of the wild native and commercial study species (Bombus terrestris) in Sweden and 
wild invasive in Tasmania, Australia. Photo credits (left to right): Cecilia Kardum Hjort, Ola Olsson, and 
Emma Petrolo. 
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Another consequence of the expanding commercialization of B. terrestris is feral-
managed B. terrestris hybridizing with local subspecies or other Bombus species 
with potential ecological and evolutionary consequences. Examples include 
increased competitive displacement of individuals of native B. terrestris subspecies 
due to the increased prevalence of managed B. terrestris subspecies adjacent to the 
greenhouses where they were used for pollination (Trillo et al., 2019), and potential 
genetic pollution or maladaptation of introgressed hybrids (e.g. Bartomeus et al., 
2020; Cejas et al., 2020; Hart et al., 2021; Ings et al., 2010; Seabra et al., 2019; Suni 
et al., 2017). Subsequently, introgression from commercial feral B. terrestris may 
jeopardize wild population’s ability to adapt and withstand future environmental 
change and ultimately their ability to maintain biodiversity (Bartomeus et al., 2020; 
Byatt et al., 2015; Kanbe et al., 2008; Kovach et al., 2016; Tsuchida et al., 2010). 

One of the most rapid and successful establishments of B. terrestris outside of its 
native range is its invasion of the Australian island state of Tasmania. The 
bumblebee was discovered in 1992 (Hingston, 2006; Semmens et al., 1993) most 
likely as a result of an intentional, but illegal, introduction by farmers for tomato 
greenhouse pollination (Schmid-Hempel et al., 2007). The introduced Tasmanian B. 
terrestris originates from New Zealand where the bumblebee was intentionally 
introduced from the UK for crop pollination in 1881 (Schmid-Hempel et al., 2007). 
Within 30 years of its introduction, the distribution of B. terrestris now encompasses 
almost entire Tasmania (Hingston et al., 2002) and is reported to have negatively 
impacted the island’s ecosystems. For example, invasive B. terrestris compete and 
displace native bees and pollinators (Hingston & McQuillan, 1999; Hingston & 
Wotherspoon, 2017) which in turn has reduced the pollination efficiency of native 
plants in Tasmania due to nectar robbing or physical damage to flowers (Hingston 
& McQuillan, 1998b) and facilitated a faster spread of invasive weeds by increasing 
their seed production (Hingston & McQuillan, 1998a). There is also a high predicted 
risk of B. terrestris spreading further within the southern temperate and sub-tropical 
regions of Australia (Acosta et al., 2016). Information on whether adaptation in 
functional traits to the novel environmental conditions of Tasmania has aided this 
successful invasion may provide insights into the ability of B. terrestris (and other 
Bombus species) to spread and adapt beyond its current invasive range. In summary, 
B. terrestris is a species affected by anthropogenic change and may be coping by 
local (plastic or evolutionary) adaptation but is also impairing other pollinators in 
both native and novel ranges, making it an interesting species to study. 
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Thesis aims  
The overarching aim of my PhD project is to investigate how wild B. terrestris 
populations respond to anthropogenic land use and climate change, to novel 
environments, and to the use of managed conspecific bees, via examination of their 
morphological and genetic variation. I examine this in wild native (Sweden) 
(Chapter I) B. terrestris across landscape and climate gradients, and in wild invasive 
B. terrestris across novel environments (Tasmania, Australia) (Chapters III and IV), 
but also in an introduced commercially managed sub-species of B. terrestris 
(Sweden) (Chapter II).  

In Chapter I of my thesis, I investigate evidence for genomic introgression between 
wild and commercial populations of B. terrestris using whole-genome sequencing 
(WGS). Additionally, I investigate the existing genomic differences between wild 
and commercial B. terrestris. Based on differences between B. terrestris sub-species 
in e.g. phenology, foraging efficiency, colony size, and parasite resistance (Rasmont 
et al., 2008), I predicted that possible introgression events may result in maladapted 
wild B. terrestris hybrid populations or hybrids with a competitive advantage over 
wild B. terrestris populations. This study provides information on possible 
evolutionary consequences of using commercial B. terrestris when wild 
conspecifics are present.  

In Chapter II of my thesis, I address if the wild Swedish B. terrestris population is 
morphologically and genetically divergent and shows selection signatures across a 
landscape and climate gradient, despite predicted high gene flow, using ddRAD. I 
also aim to investigate effective migration patterns and environmental barriers to 
gene flow. Due to the commonly high gene flow and low genetic structure among 
(generalist) bumblebee species (Colgan et al., 2022, Heraghty et al., 2023), I 
predicted that the Swedish B. terrestris population would show similar patterns and 
thus weak local genetic adaptation across the study gradient. However, I predicted 
that weak signs of genetic structure are present due to, for example, landscape 
spatial differences or demographic differences. The results shed light on how a 
generalist bumblebee species is coping with anthropogenic change by adapting with 
or without evolutionary responses. 

In Chapter III of my thesis, I study if the recently introduced (~1992) B. terrestris 
exhibits significant variation in morphology and abundance related to 
environmental variables across Tasmania, Australia, facilitating its invasion 
success. Based on B. terrestris being a broad habitat generalist (Mossberg & 
Cederberg, 2012), that the Tasmanian environment and climate are somewhat 
similar to its native ranges, combined with numerous examples of its rapid 
invasiveness worldwide (Dafni et al., 2010), I predicted that B. terrestris is 
displaying morphological differences that have aided its invasion success. This 
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study will help in the understanding of the role of morphological and environmental 
variation in determining invasive ranges.  

Lastly, in Chapter IV I examine if B. terrestris is showing selection in functional 
genes and morphology in relation to the novel environmental and climatic 
conditions across Tasmania, using sdRAD sequencing. Based on previous 
predictions in Chapter III combined with the already documented knowledge of low 
genetic diversity in the Tasmanian B. terrestris (Schmid-Hempel et al., 2007), I 
predicted that any morphological or environmental adaptations will be weak and 
thus low genetic differentiation and that it may be non-genetic mechanisms 
governing B. terrestris invasion success. Understanding how B. terrestris may be 
thriving and persisting in novel environments, with or without genomic adaptations, 
may help predict future range expansion beyond its current distributions. 
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Material and methods 

Study designs and data collection 
The data used in this thesis is based on three different study systems: two in Sweden 
(Figure 3, Chapter I and Figure 4a-b, Chapter II) and one in Tasmania, Australia 
(Figure 5, Chapters III and IV).  

Experimental landscape design (Sweden, Chapter I) 
For Chapter I, we set up an experimental study system in southern Sweden with a 
total of 10 sampling sites, of which six sites had long-term use of commercial B. 
terrestris used for agricultural pollination practices (‘experimental sites’) and four 
were without long-term use of commercial B. terrestris (‘control sites’). At the 
experimental sites, wild B. terrestris workers were collected between 700-1000 m 
from the closest greenhouse, open tunnel cultivation, and/ or free land with 
commercial colonies present (Figure 3). At the control sites, wild B. terrestris 
workers were collected at least 15 km from the closest commercial colony. We also 
collected commercial B. terrestris at the experimental sites and in our general study 
region (Figure 3). The experimental design was aimed to determine the occurrence 
and extent of genomic introgression of commercial B. terrestris genetic material 
into wild B. terrestris genomes. Ideally, to investigate such genomic patterns, one 
should sample bumblebees before and after commercial bees have been introduced 
to the area, however, this was not logistically feasible, and contemporary spatial 
ecological patterns are instead predicted to roughly be equivalent to changes over 
time (i.e. space-for-time substitution approach). All wild foraging or flying 
bumblebees were collected using handheld sweep nets.  
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Figure 3. Map over the study sites and system in Sweden, showing data collected for Chapter I, where 
green circles (N=18) in the map represent collected CB, purple triangles (N=6) WE, and purple diamonds 
(N=4) WC. The zoomed-in circle to the left shows the experimental sites and the three types of 
agricultural practices using commercial bumblebees (open tunnel cultivation, greenhouse, and free land). 
The zoomed-in circle to the right shows the control sites. The figure is modified from Kardum Hjort et al. 
2022. 
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Simple and complex landscape and temperature study design (Sweden, 
Chapter II) 
For Chapter II, we designed a study system across land use and temperature 
gradients from southern to central Sweden (Figure 4a-b). Our 19 study sites differed 
in the extent of landscape simplification, where high percentages of semi-natural 
habitats (SNH) (129-195 hectares) and the length of uncultivated agricultural field 
borders (FB) (280-450 km) reflected ‘complex’ landscapes (Figure 4c, top right), 
and low percentages of SNH (10-19 hectare) and FB (190-260 km) reflected 
‘simple’ landscapes (Figure 4c, bottom left). The amount of SNH was intended to 
reflect compositional landscape changes (Figure 4c, bottom panel)(Fahrig et al., 
2011) in the availability of important habitats with wildflowers and nesting sites for 
bees. Uncultivated agricultural field border length was intended as a proxy for 
agricultural field size and thus reflecting habitat availability and fragmentation (see 
Figure 6 for an example of a study site in region 1, Skåne).  

The 19 study sites also differed in the maximum temperature of the warmest month 
(°C, hereafter ‘MaxTempWarmestMonth’), averaged between 1970-2000 from 
WorldClim v2.1 and with a resolution of 1km2 (Fick & Hijmans, 2017) to reflect 
local temperature differences between the study regions (Figure 4b). The study was 
designed as a paired design, to reduce local effects across the design, where we 
matched simple and complex landscapes in the same region, with each pair having 
approximately the same MaxTempWarmestMonth, but with temperature variation 
from the southernmost to the northernmost landscape pairs. Wild B. terrestris 
workers were collected using sweep nets at pre-existing flower-rich habitats such as 
linear elements (e.g. road verges) and in SNH at different locations within the circle 
and between two time points (June and July 2019).  

Other environmental and climate variables 
We also extracted information for environmental variables previously identified as 
important to several Bombus species’ abundances and distributions (Geue & 
Thomassen, 2020; Herbertsson et al., 2021; Kardum Hjort et al., 2023a; Kardum 
Hjort et al., 2023b; Penado et al., 2016; Rasmont et al., 2008; Svensson et al., 2000) 
and used them to investigate additional potential gene-environment associations. 
The variables included: mean annual temperature (hereafter ‘MeanAnnualTemp’ in 
ºC), mean annual precipitation (‘MeanAnnualPrecip’ in mm), precipitation 
seasonality (‘SeasonPrecip’, the difference between the wettest and driest month, 
measured as a percentage), averaged values for June to August of the monthly 
variables of mean annual wind speed (m/s) (‘AvgSummerWind’ in m/s), percentage 
of urban land cover, percentage of forest land cover, percentage of agricultural land 
cover, and canopy height (m) (see Chapter II for details). 
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Figure 4. Maps over the study sites and systems in Sweden, showing data collected for Chapter II, 
where a) simple sampling sites are shown as blue circles and complex sampling sites as orange circles 
across the geographical gradient. The zoomed-in circles show an example of a complex and simple 
sampling site. The light green in the zoomed-in circles represents semi-natural habitat (SNH) and the 
brown lines represent uncultivated agricultural field borders (FB); b) the maximum temperature of the 
warmest month (°C) across the study regions is presented; c) Landscape heterogeneity is shown as 
differences in composition and configuration of agricultural fields (beige and brown) and SNH habitats 
(green). 
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Environmental and climatic study design (Tasmania, Australia, 
Chapters III and IV) 
We used the same study design for Chapters III and IV, where we selected the 
sampling sites based on previous recordings of B. terrestris across Tasmania 
(Hingston et al. 2002, Hingston 2006a) and additional new sites. The sites naturally 
differed in land use, a wide range of climatic conditions, topography, and vegetation 
structure and height (see Figure 5 for an example of different land use classes). At 
each site, B. terrestris workers were generally sampled in open areas with flowers 
present (e.g. along road verges, in patches of grass with flowers, gardens, and parks) 
using sweep nets during February 2020 (Figure 6).  

 

 
Figure 5. Map over the study sites (N=16) and system in Tasmania, Australia, showing data collected 
for Chapters III and IV. The three zoomed-in circles show examples of different land use; (left) production 
of native forest, nature conservation, reservoir/dam, rural residential and farm infrastructure, plantation 
forests, urban residential, grazing modified pastures, (middle) urban services, urban transport and 
communication, river, nature conservation, (right) cropping, grazing native vegetation and production of 
native forest. 
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Overview of methodologies 

Morphological measurements  
In all four chapters, the collected bumblebees were placed in 5 ml plastic tubes that 
were kept in cooling boxes (5°C) to induce chill coma (loss of flight muscle 
function, MacMillan and Sinclair 2011). They were subsequently euthanized in a 
freezer (−20°C) for approximately 3 hours before preservation in 70% ethanol. 

In Chapters II-IV, we measured a suite of morphological variables from the 
collected and euthanized bumblebees (Figure 6). Measurements entailed: body 
length (mm), body weight (g), inter-tegular distance (ITD) (mm), proboscis length 
(prementum and glossa, mm), length and area of one small and large wing (mm and 
mm2, for total wing area one wing pair, was multiplied by two) and wing loading 
(body weight in grams divided by the total wing area of four wings in cm2) (see 
Chapter III for details on measurements).  

Laboratory work 

DNA extractions, barcoding, and sequencing 
For Chapter I, genomic DNA was extracted from the head and two legs of each 
bumblebee using a Qiagen Blood & Tissue Extraction Kit (QIAGEN GmbH) 
following a modified version of the manufacturer’s Supplementary Protocol. Firstly, 
to confirm species identification, the COI mitochondrial gene was amplified using 
the protocol of Wahlberg and Wheat (2008) and sent to Macrogen Europe for Sanger 
sequencing. DNA from the correct species (i.e. B. terrestris), was sent for whole 
genome sequencing (WGS) to SciLifeLab (Stockholm). For Chapter II, DNA was 
extracted from one leg of each bumblebee using a HotSHOT protocol (in-house), 
and the same procedure was adopted to confirm species identification as in Chapter 
I. In addition, the head and two legs of the correctly identified species were sent for 
DNA extraction at the Diversity Arrays Technology sequencing (DArTseq) facility 
(Canberra, Australia). At the DArTseq facility, extracted DNA was sequenced using 
double digest restriction-site associated DNA (ddRAD). Lastly, for Chapter IV, 
DNA was extracted following the same modified Qiagen Blood & Tissue Extraction 
Kit protocol as in Chapter I. DNA was subsequently sent to Floragenex, Inc. 
(Portland, OR, USA), where they were sequenced using a single digest restriction-
site associated DNA (sdRAD). 
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Bioinformatics, gene annotations and statistical analyses 

For Chapters I, II, and IV we used different bioinformatic pipelines because of the 
different DNA sequencing techniques used to generate data (i.e. WGS data, 
sdRADseq data, and ddRADseq) for dataset quality controls, SNP variant calling 
and SNP filtering to create the final SNP datasets used for analyses in this thesis. 
The bioinformatics computations and some of the analyses (see below) were run on 
a supercluster through the Uppsala Multidisciplinary Centre for Advanced 
Computational Science (UPPMAX). 

Summary of whole-genome assembly, alignment to reference genome and SNP 
calling 
For Chapter I, WGS sequencing reads were mapped to the B. terrestris reference 
genome (Sadd et al., 2015) (assembly accession: GCF000214255.1) using the 
portable workflow for whole-genome sequencing analysis in ‘Sarek’ (Garcia et al., 
2020). Reads were mapped using Burrows-Wheeler Aligner (BWA- mem) (Heng 
Li & Durbin, 2009). SNP calling was performed using two softwares, 
HaplotypeCaller (Poplin et al., 2017) and FreeBayes (Garrison & Marth, 2012), and 
subsequently intersected to create a final SNP dataset. For Chapters II and IV, 
reads were aligned to the B. terrestris reference genome (assembly accession: 
GCF000214255.1 and GCF_910591885.1, respectively) using the BWA- mem. For 
Chapter II, the sequencing facility Diversity Arrays Technology sequencing 
(DArT) (Canberra, Australia) performed the SNP calling, quality check, and initial 
SNP filtering. The dataset was further filtered by me using the dartR package 
(Mijangos et al., 2022) in R v4.3.1 (R Core Team, 2022). For Chapter IV, the 
dataset was filtered using Stacks v2.60 (Catchen et al., 2013) (see each chapter for 
detailed SNP filtering steps and filtering parameters). 

Gene annotation 
In Chapter I, to explore the candidate genes, gene ID, start and end position, 
accession IDs, and gene names were extracted from the B. terrestris reference 
genome. The gene names and potential functions of the genes were identified using 
the National Centre for Biotechnology Information (NCBI) gene information 
database. In addition, a gene ontology enrichment analysis (GO) was performed 
using the R package biomaRt via Bioconductor v. 3.12 (Durinck et al., 2009) on the 
identified candidate genes. The candidate genes were also matched with the KEGG 
(Kyoto Encyclopaedia of Genes and Genomes) ENZYME database to identify 
potential enzymes and their function using biomaRt. 

In Chapters II and IV, the aligned candidate reads were intersected with the 
reference genome annotation file, and gene information was extracted. The gene 
names and potential functions of the genes were also identified using the NCBI gene 
information database as in Chapter I. We also annotated the candidate genes against 
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the B. terrestris reference genome using the Ensembl Variant Effect Predictor tool 
(VEP) in the EnsemblMetazoa database to identify any protein-coding genes and 
the type of effect (e.g., intron, missense variant, and synonymous variant). For 
Chapter IV, we also performed a GO analysis, while it could not be done for 
Chapter II. The database within the biomaRt R package used for GO analysis had 
been updated to include gene information based on the newest B. terrestris reference 
genome (GCF_910591885.1) while the reads had been aligned by DArT to a 
previous version.  

Genetic structure, genetic diversity, and selection detection analyses 
We used UPPMAX to investigate the genetic structure for Chapter I, running 
pairwise FST using PopGenome (Pfeifer et al., 2014), Tajima’s D using the --
TajimaD option in VCFtools, ADMIXTURE (Alexander & Lange, 2011) and 
fineSTRUCTUE (Alexander & Lange, 2011). To investigate for signatures of 
selection in Chapter I, we ran the cross-population extended haplotype 
homozygosity statistical test (XP- EHH) in selscan (Szpiech & Hernandez, 2014) 
and identified overlapping regions of high FST and XP-EHH scores. In addition, we 
also ran two structural variants (SV) detection programs: Smoove, which uses 
lumpy (Layer et al., 2014), and Breakdancer (Fan et al., 2014). To assess 
intrachromosomal SNPs in linkage, we used Plink (Purcell et al., 2007).  

Using R v4.3.1 (R Core Team, 2022), we also ran Principal Component of Analysis 
(PCA) using the adegenet package (Jombart & Ahmed, 2011) to get a first look at 
the genetic structure for Chapter I. To also investigate the genetic diversity we 
calculated the number of segregating sites (Watterson's theta, θw) (Watterson, 
1975), nucleotide diversity (Nei's pi, π) (Nei, 1979) in 10kb windows genome-wide 
and per chromosome using PopGenome. In addition to the selection analyses run in 
UPPMAX, we also ran lostuct (Han Li & Ralph, 2019) to visualise local 
chromosomal deviations. 

To investigate the genetic structure for Chapters II and IV, we ran PCAs using the 
adegenet package, pairwise FST analyses using hierfstat (Goudet, 2005), Isolation 
by Distance (IBD), Discriminant Analysis of Principal Components (DAPC) 
analyses using the adegenet package, ADMIXTURE, and fineRADSTRUCTURE. 
In addition, to visualize spatial genetic structure and historic gene flow, we 
implemented the Estimated Effective Migration Surface method (EEMS) (Petkova 
et al., 2015) which generates historic effective migration rates and diversity from 
geo-referenced genetic samples. We used Hierfstat (Goudet, 2005) to calculate 
genetic diversity, allelic richness (AR), observed and expected heterozygosity (HO 
and HE), and the inbreeding coefficient (FIS) (for Chapter II, we used the --het option 
in VCFtools to calculate FIS) for Chapters II and IV.  

To correct for multicollinearity among predictor variables, we used pairs.panel 
within the R package psych. To investigate signatures of selection, we ran univariate 
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Latent Factor Mixed Modelling analyses (LFMM) (Frichot et al., 2013) using the 
lfmm package in R (Caye et al., 2019) and multivariate Redundancy Analyses 
(RDA) (Forester et al., 2018) using the rda function in the vegan package (Oksanen 
et al., 2013).  

 

Morphology X environmental analysis and relative abundance 

For Chapter III, we assessed multicollinearity among the predictor variables using 
pairs.panel within the R package psych. To assess inter- versus intra-site variation 
in bee morphology, we calculated the intra-class correlation coefficient as the site-
level repeatability (R) for each of the three dependent variables using the R-package 
rptR (Nakagawa & Schielzeth, 2010). When estimating site-level repeatability for 
proboscis length, we controlled for body size by including it as a fixed effect. To 
investigate environmental x morphology correlations, we used linear mixed-effects 
models (LMM, lme4), using Site ID as a random effect to control for non-
independence of individuals sampled at the same site. In analyses of body weight 
and proboscis length, both linear and quadratic effects of urban area were included, 
since a test of linearity indicated the relationships to urbanization were non-linear. 
To identify significant predictors we used stepwise elimination to yield a final model 
with only significant effects (p ≤ 0.05, lmertest, Kuznetsova et al., 2017). We 
examined the diagnostic plots to ensure that our data met the model assumptions, 
using the R package DHARMA (Hartig, 2022). 

To investigate the site relative abundance, we used a Poisson generalized linear 
mixed-effects model (GLMM) with a log link using the R package lme4 (D. Bates 
et al., 2015), treating the total number of bees captured per site as the dependent 
variable. We included an offset log-link in the model to account for different 
sampling efforts between the sites. Site ID was included in the model as an 
observation-level random effect to account for over-dispersion (Harrison, 2014). 
Insignificant fixed effects were pruned using likelihood-ratio tests of significance 
(calculated from chi-squared distributions) to yield a final model with significant 
fixed effects.  

For all chapters, statistical analyses and visualisation of results and data (also from 
analyses run in UPPMAX) were performed in R v4.3.1 (R Core Team, 2022) (see 
each chapter for details).  
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Results and discussion 

This thesis provides a unique understanding of how both wild native and invasive 
bumblebees respond morphologically and genetically to anthropogenic 
environmental and climatic differences and novel environments, as well as how 
commercial B. terrestris affects wild bees. My results show genomic differences 
between commercial B. terrestris and wild native B. terrestris, suggesting that 
hybridization may pose a problem, but possibly only under future climate conditions 
since I found no evidence of present genomic introgression which may reflect poor 
adaptation of commercial bees to the Swedish climate.  Across its wild native range, 
the B. terrestris population shows weak genetic structure and high gene flow, 
although with signatures of local genetic adaptation. Despite a severe founding 
bottleneck, potentially constraining adaptive potential, the invasive B. terrestris is 
experiencing novel selection pressures and shows evidence of both morphological 
and genetic adaptation across heterogeneous environments in Tasmania (Australia). 

The influence of commercial B. terrestris on wild native 
B. terrestris and genomic differences (Chapter I) 
Chapter I was based on the contention that different B. terrestris subspecies differ 
in traits related to phenology, foraging efficiency, colony size, and parasite 
resistance (Rasmont et al., 2008). These differences in combination with divergent 
selection processes in wild and commercial B. terrestris (discussed in more detail 
below), imply that introgression events could result in hybrids that have a 
competitive advantage over wild B. terrestris or lead to maladapted hybrid 
populations due to the phenological or evolutionary differences. However, our 
results demonstrated no evidence of introgression between wild and commercial B. 
terrestris (Figure 7), suggesting that the historical use (>= 25 years in certain areas) 
of commercial bees has not affected the evolutionary processes of wild bees in 
southern Sweden. The discrepancy of previously documented results of wild-native 
introgression in, e.g. the Iberian Peninsula (Bartomeus et al., 2020; Cejas et al., 
2018, 2020; Seabra et al., 2019) and no evidence of introgression in our study and 
the UK or New England, US (Hart et al., 2021; Suni et al., 2017), may have several 
explanations. For example, studies have been conducted on many B. terrestris 
subspecies and some of the subspecies are known to show preferences towards con-
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subspecific (Rasmont et al., 2008), thus pre-mating isolation barriers might be one 
explanation. In addition, post-mating isolation barriers in hybrids may also prevent 
the spread of hybrids due to inviable hybrids (Kanbe et al., 2008). However, hybrids 
of different subspecies do occur, e.g. in the Iberian Peninsula (Cejas et al., 2018, 
2020, Seabra et al., 2019, Bartomeus et al., 2020). Furthermore, the scale of 
commercial bumblebee operations in the Iberian Peninsula is much greater 
compared to, for example Sweden (~ 4500 colonies per year, Pedersen et al., 2020 
compared to ~ 300,000 colonies per year in Spain; Cejas et al., 2020), which may 
result in a genetic source-sink situation overcoming selection against commercial 
bees and hybrids in the wild. 

 

Figure 7. Genetic structure and admixture proportions of the dataset, showing a) that commercial (CB) 
and all wild (WE and WC) B. terrestris are genetically separated; b and c) no evidence of introgressed 
hybrids. The figure is modified from Kardum Hjort et al. (2022) (Chapter I). 

 

The identification of two distinct genetic clusters, separating wild bees from 
commercial bees (Figure 7), may be due to the documented highly divergent region 
on chromosome 11 in the commercial bees (Figure 8). This was indicated on 
chromosome 11 by high pairwise FST (median FST = 0.04) (Figure 8a) together with 
stretches of extended homozygotic haplotypes (i.e. positive selection) (XP-EHH 
analysis) (Figure 8b), reduced genetic diversity (Figure 8c), chromosomal 
deviations (e.g. structural variants, using Multidimensional scaling, MDS) (Figure 
8d), and SNPs in high linkage (Figure 8e). The observed selection of genes, involved 
in flight capacity and pathogen response present in this region may be related to 
environmental differences. For example, commercial B. terrestris are bred in 
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laboratory conditions for several generations which may generate genomic 
differences and subsequently result in different ecological requirements.  

 

Figure 8. a) Genetic differentiation (pairwise FST) between the two groups; b) standard mean XP- EHH 
scores for chromosome 11 for CB (red SNPs indicate the upper 99% and lower 1% confidence intervals); 
c) delta nucleotide diversity along chromosome 11; d) multidimensional scaling (MDS) plot of 
chromosome 11. Each point represents a window where the red points show windows with increased 
genetic differentiation from the rest of the chromosome; e) pairwise (wild and commercial B. terrestris) 
linkage disequilibrium (LD) heatmap, calculated using r squared. The figure is modified from Kardum 
Hjort et al. (2022) (Chapter I). 

The marginally higher genetic diversity (Π) observed in wild B. terrestris compared 
to that in commercial bees (Figure 9a) could be due to our sampling of workers from 
several different wild colonies, while the commercial B. terrestris were collected 
from individual commercial “stocks” that might be less diverse. This may also 
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explain the observed higher Watterson’s theta (θw) in the commercial bees (Figure 
9b). Both groups had a positive Tajima’s D, but it was higher for wild B. terrestris, 
which suggests that they share more of their diversity (i.e. have less rare alleles). 
Our results from Chapter II which documented low genetic structure in wild B. 
terrestris confirm this pattern. The commercial B. terrestris on the other hand comes 
from mixed European origins (Pedersen et al., 2020), which may result in a more 
diverse group (i.e. more rare alleles), thus lower Tajima’s D (Figure 9c).  

 

 
Figure 9. a) Nucleotide diversity (π) on a log10 scale; b) Watterson's theta (θw); c) Tajima's D for the 
CB (green) group and WB (purple) group. Dashed lines represent medians. The figure is modified from 
Kardum Hjort et al. (2022) (Chapter I). 

While we did not identify any current genetic threat from commercial bees, there 
may nevertheless be reason for concern for future hybridization. If the reason we do 
not observe any hybrids in the wild has to do with purging of hybrids, then if the 
size of commercial bumblebee operations grows, increasing the amount of feral 
commercial bumblebees, the selection pressure against hybrids might be overridden.  

In addition, the observed genetic differences between wild Swedish and commercial 
B. terrestris might pose a problem if successful hybridization occurs due to the 
potential genetic consequences of artificial breeding in the lab. Furthermore, if 
commercial practices start breeding on the same subspecies, which might result in 
successful hybridization, future hybrids might have traits more adapted to the local 
environment threatening the survival of the wild B. terrestris population. However, 
hybridization between local subspecies might, on the other hand, pose much less of 
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a problem than hybridization between differently adapted subspecies because it is 
assumed that differences in phenology between the subspecies lead to different 
climatic requirements (Lecocq et al., 2016). Lastly, the survival chances of 
hibernating hybrid queens in Sweden under a warming climate may increase if the 
commercial practices continue to breed on B. terrestris from southern parts of 
Europe, thus resulting in the spread and survival of hybrids.  

Landscape and climate effects on gene flow and 
selection in native bumblebees, B. terrestris (Chapter II) 
Chapter II gave us the opportunity to study the wild generalist B. terrestris in 
Sweden in the context of anthropogenic change impacts (Gérard et al., 2018; Grass 
et al., 2021; Theodorou et al., 2020; Tommasi et al., 2022) or benefits (Ghisbain et 
al., 2021). By investigating if human-induced land-use change and differences in 
local climate affect wild B. terrestris populations in Sweden, causing morphological 
and genetic divergence, my thesis sheds light on how a generalist species can cope 
under anthropogenic environmental change.  

Our results showed no evidence of gene-by-environment interactions with respect 
to agricultural landscape simplification (i.e. the proportion of SNH and the length 
of uncultivated agricultural field borders). This lack of pattern suggests that B. 
terrestris as a large and mobile species may be able to exploit fragmented 
agricultural landscapes without additional genetic adaptations. Instead, there were 
weak selection signatures to the proportion of agricultural cover related to genes 
(glutamate receptor 1, acetylcholinesterase and guanine nucleotide-binding 
proteins, cAMP-specific 3',5'-cyclic phosphodiesterase, cadherin-87A, and odorant 
receptor 82A) with potential functional effects linked to olfaction, memory, 
infection response, insecticide response, and resistance. Thus, selection pressures 
related to differences in agricultural cover that are also associated with higher and/or 
longer exposure to insecticides (Knapp et al., 2023) may have contributed to the 
observed pattern of genetic divergence. The southern region has a higher proportion 
of agricultural cover compared to the central and more northern regions sampled 
(Figure 10a). Interestingly, other studies have observed genes related to 
detoxification in insecticide-stressed bumblebees in agricultural areas (Hart et al., 
2022), and also heritable resistance to insecticides in honeybees (Apis sp.) (Tsvetkov 
et al., 2023).  
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Figure 10. a) Genetic structure of the 304 B. terrestris individuals displayed over agricultural land cover 
across our sampling design with forest cover as the background map. The circles and the proportion of 
either red or blue represent the mean assignment probability of either genetic cluster one or two (K=2, 
admixture analysis), shown at the population level for each of the 19 sites; b) surface of effective 
migration (m) plot generated by EEMS of the Swedish B. terrestris population. Log(m)= within Sweden, 
white represents average, blue represents higher-than-average, and brown represents lower-than-
average effective migration. The 19 sampling sites are represented as black circles; c) Map showing first-
year observation of B. terrestris across Sweden from 1970-2023. Yellow dots represent the first 
observations between 1970-2008, green dots between 2009-2015, and red dots from 2016-2023. The 
figure is modified from Chapter II. 
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Genetic variation and diversity within and between regions were low (HO= 0.126-
0.137, pairwise FST= -0.0009-0.0064, global FST= 0.001) despite the designed 
differences in landscape across the geographical gradient and may have prevented 
any stronger local adaptation, perhaps except to large-scale changes. Although, local 
genetic adaptation to environmental and climatic variables, despite high gene flow 
is possible and documented for other Bombus species (Hart et al., 2022; Heraghty 
et al., 2023; Jackson et al., 2020; Theodorou et al., 2018). Previous studies 
confirmed observed low genetic variation within the entire Eurasian B. terrestris 
population, suggestively caused by a historic genetic bottleneck from which the 
population did not genetically recover despite being followed by a population 
expansion (Ranjbaran et al., 2024). Adequate gene flow due to high dispersal 
abilities and little geographical barriers between the entire Eurasian B. terrestris 
population might also explain why the population is mostly homogeneous (Estoup 
et al., 1996; Woodard et al., 2015). 

We did however document restricted gene flow across an area consisting of 
predominantly dense forest (Figure 10a-b). Since B. terrestris predominately occurs 
in more open areas (Svensson et al., 2000), such a forested area might act as a 
dispersal barrier between the southern and more northern regions. As a result, two 
genetic clusters separating the southern region from the most northern region were 
observed (Figure 10a,10b). However, due to climate change, the suitability of 
habitats in Sweden for B. terrestris has increased (Martinet et al., 2015; Ranjbaran 
et al., 2024). Our results of negative Tajima’s D (i.e. population expansion) suggest 
this in addition to the results of a more inland and northwards expansion (Figure 
10c). Our findings also agree with previous predictions about B. terrestris 
expanding northwards in Europe due to climate change (Ghisbain et al., 2021; 
Ranjbaran et al., 2024). Interestingly, B. terrestris might be expanding into new 
areas without high genetic variation or strong genetic adaptations if the habitat is 
sufficiently suitable (Maebe et al., 2019). Even though B. terrestris is seemingly 
coping with climate change the low genetic diversity does make the population 
vulnerable to future climatic oscillations, which in conclusion suggests that the 
species’ survival is not yet settled.   
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Novel environmental and climatic influences on genetic 
divergence, gene flow, and adaptation in invasive B. 
terrestris (Chapters III and IV) 
Chapters III and IV focus on B. terrestris as an invasive species in Tasmania, where 
the species was introduced approximately 30 years ago. Chapter III investigated 
whether invasive B. terrestris exhibited morphological divergence and if the 
abundance varied across a novel environment in Tasmania, Australia. In Chapter 
IV we investigated for signatures of selection on functional genes associating with 
environmental variables and morphology across Tasmania. These two chapters help 
to unravel whether the success of the B. terrestris invasion is partly due to 
morphological and environmental adaptation.  

 

Figure 11. The relationship between a) log body weight (g) and % (logit) urban area with both linear 
and quadratic effects (p <0.001) fitted; b) log proboscis (mm) and (logit) % pasture (p= 0.0015), in both 
cases using the final LMM models. Marginal predictions, 95 % confidence intervals, and partial 
residuals were calculated based on the averages for the other variables for each model. 
Overdispersion was handled using site-level random effects. Each sampling site is indicated by an 
individual colour. The figure is modified from Kardum Hjort et al. (2023b) (Chapter III). 

In Chapter III, results showed evidence for morphological variation in B. terrestris 
correlating with environmental conditions across Tasmania. Body size of B. 
terrestris workers was positively related to the percentage of urban land cover, 
which however was largely driven by a single site (Hobart) with the highest 

46



 

47 

percentage of urban cover (87%) (Figure 11a). Our results conform with other 
studies of observations of larger B. terrestris and B. impatiens in areas with higher 
urban cover but are in contrast to finding smaller B. pascorum and B. pensylvanicus 
in areas with higher urban cover (Austin et al., 2022; Eggenberger et al., 2019; 
Theodorou et al., 2020). Arguably, our and previous results may reflect plastic 
responses to either high or low availability of food resources in urban areas but may 
also be an adaptive response to habitat fragmentation.  

To explore if the observed relationship is evident in more highly urbanized areas, 
we could have sampled B. terrestris in more sites with high urban cover. However, 
the second largest city after Hobart (approx. 200, 000) is Launceston (approx. 87, 
000) which is less than half the size of Hobart. Adopting an urban gradient sampling 
design, from high to low cover, is another feasible way to explore if the relationship 
between body size and urban cover changes.  

Proboscis length showed a negative correlation with the environment. However, our 
result of shorter proboscis length in relation to higher proportions of pasture was 
weak (Figure 11b). In addition, proboscis length may be associated with intensive 
agriculture instead of pasture. The mid-central region of Tasmania with higher 
proportions of pasture does not necessarily represent a flower-rich habitat but 
instead consists of intensive pasture-based agricultural production linked to high-
intensity cropping of grasses with little value to bumblebees (Lane et al., 2015). 
Similarly, as mentioned above, we could have included more sites with higher 
proportions of pasture to explore the observed relationship further. Nevertheless, the 
morphological variation found in the invasive B. terrestris may have contributed to 
its successful invasion by being able to utilize urban areas and adapt to scarce flower 
diversity in a pasture-dominant landscape.  

Results from Chapter IV showed overall low genetic divergence (pairwise FST= 
−0.0031 to 0.014, global FST= 0.005) and diversity (HO= 0.107- 0.112) across 
Tasmania, suggestively because of the severe bottleneck of just three founding 
queens. Our results are however comparable with invasive B. terrestris in Japan 
(pairwise FST between two sites= 0.006, Nagamitsu & Yamagishi, 2009). 
Interestingly, the Tasmanian B. terrestris population has higher genetic structuring 
compared to the Swedish B. terrestris population (global FST= 0.001, Chapter II). 
Although, both populations have low genetic differentiation and the values are 
comparable with B. terrestris and other Bombus species on the European continent 
(Estoup et al., 1996; Glück et al., 2022; Maebe et al., 2019; Theodorou et al., 2018). 
The novel environmental and climatic conditions of Tasmania might exert stronger 
selection pressures on the Tasmanian B. terrestris population compared to the 
environment and climate of its native range, contributing to the observed genetic 
structure. 
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Figure 12. a) EEMS generated plot displaying estimated effective migration rates (m) of the Tasmanian 
B. terrestris population; b) population genetic structure of Tasmanian B. terrestris generated by a DAPC 
(the label for site 18 is hidden behind the label for site 20) which shows a South-North division of the 
sampling sites along DAPC1 (axis 1); c) map of sampling sites across Tasmania coloured accordingly to 
the DAPC plot plotted over precipitation seasonality (%); d) RDA analysis of the environmental variables 
showing axes 1 and 2. Grey dots indicate non-candidate SNPs and coloured dots indicate candidate 
outlier SNPs (±2.5 SD), colour-coded by the environmental variables. The longer the arrows, the stronger 
the relationship is between the outlier SNPs and the predictor variables. BIO15= SeasonPrecip, BIO01= 
MeanAnnualTemp. The figure is modified from Kardum Hjort et al. (2023a) (Chapter IV). 

 

The observed band of lower gene flow spanning across mid-central Tasmania has 
likely contributed to the subtle observed genetic structure, separating the southern 
and northern sites (Figure 12a-b) and to signatures of selection to precipitation and 
wind (Figure 12c, 12d). Parts of this area consist of intensive cropping of perennial 
grasses (i.e. pasture) with scant flower resources (around and south of site 20) and 
an area of higher elevation (around sites 6 and 23) which previously has been 
identified as less suitable habitat for B. terrestris in Tasmania (Acosta et al., 2016). 
This result alludes to the common assumption that genetically impoverished 
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invasive species have reduced adaptability in novel environments. Like our results, 
genetic adaptation in (native) Bombus species, also with low genetic divergence has 
been observed in relation to agriculture and genes relating to wing development and 
neuromuscular functions (Colgan et al., 2022; Hart et al., 2022; Heraghty et al., 
2023) which may suggest that adaptation can occur despite the homogenizing 
effects of high gene flow, perhaps if selection is strong enough.  

Our results cannot directly answer if the genetic adaptations have aided the 
successful invasion of B. terrestris across Tasmania but being able to adapt to high 
precipitation variation via cuticle-regulated water loss prevention may be important 
when environmental conditions are dryer. In addition, foraging under windy 
conditions may be more energetically costly, such that selection on fatty acid 
metabolism may have helped B. terrestris be able to forage under harsher 
conditions. Furthermore, B. terrestris ability to spread across the island may involve 
selection related to flight muscles and thus to the candidate gene titin, which is a 
muscle structure protein. We did not find support for a genetic underlying 
mechanism to the observed morphological differences in Chapter III. This suggests 
that these rather were plastic responses to urban environments and pasture-based 
agriculture, respectively. We did however find putative selection on wing-loading, 
a trait that was not associated with any environmental variables in Chapter III. Since 
higher wing-loading (i.e. larger body in relation to wing area) may put more 
constraints on the thoracic flight muscles during flight (Byrne et al., 1988) the 
observed selection on stabilising muscle-tendon attachment (mechanosensitive 
adaptor protein talin) might suggest adaptation in flying mechanisms. 

In summary, Chapters III and IV showed that both plastic and genetic adaptations 
may govern the invasion success of B. terrestris due to the novel environmental and 
climatic conditions in Tasmania. Given these results, B. terrestris most likely has 
the capacity to be successful in other introduced areas outside of its current invasive 
range and is a testament that invasive species can rapidly spread and adapt despite 
the genetic consequences following a founding bottleneck.  
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Conclusion and future perspectives 

The evolutionary consequences of commercial bee use for wild bees have not been 
investigated previously. Our results in Chapter I fill this important gap by failing 
to find observed genetic consequences of commercial bee use in B. terrestris 
northern range. Further research should aim to investigate the reason why no 
introgression (at lower commercial B. terrestris use) is occurring. The knowledge 
may be used to determine at what scale commercial bumblebee use safely can be 
practiced to avoid genetic contamination. In addition, further research should 
investigate the region under selection in commercial B. terrestris to fully 
characterize genomic differentiation between wild and commercial bees. For 
example, long-read sequencing could be adopted to investigate if the structural 
variants in the candidate region on chromosome 11 are maintained via linkage.  

To further investigate the effects of anthropogenic change on B. terrestris, which 
was one of the main focuses in Chapter II, the scale at which possible adaptations 
take place must be considered. B. terrestris is a highly mobile and migratory 
bumblebee (Fijen, 2021), as such adaptive responses to anthropogenic change might 
be occurring over large spatial scales where gene flow is reduced or over time, and 
suggestively, comparing historical samples with current B. terrestris samples might 
reveal such adaptations better than adopting a space-for-time substitution approach. 
In addition, studying a less mobile or less common bumblebee species might 
provide us with more understanding of how anthropogenic change at different scales 
affects bumblebees.  

Furthermore, future studies could consider additional environmental variables in 
their designs. For example, including the spatial and temporal arrangement of 
agricultural fields and SNH, and not only the proportions, could also inform us how 
B. terrestris (and other bee species) respond to resources varying over space and 
time. In addition, the spatial and temporal arrangement of flower resources (such as 
in SNH) in arable lands is important for bee performance in relation to landscape 
simplification (Guezen & Forrest, 2021) and may exert different selection pressures 
on bee species.  

To further investigate possible adaptations to pesticides used in agricultural 
practices, future studies could relate genetic adaptations to predicted levels of 
commonly used pesticides, looking across multiple generations to investigate the 
potential heritability of pesticide resistance and across large spatial scales to cover 
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all possible ways of exposure. In addition, in a pesticide-contaminated environment, 
comparisons between pesticide-tolerant (bee) populations with non-exposed (bee) 
populations may help inform us on the evolution of pesticide resistance.  

Finally, since B. terrestris inhabits a vast array of environments, has high dispersal 
rates and a broad dietary breadth, all of which generally favours plasticity (Snell-
Rood & Ehlman, 2021), the species most likely have a high degree of adaptive 
plasticity. Future studies should focus on how anthropogenic environmental change 
shapes adaptive plasticity in B. terrestris and if plasticity can help facilitate adaptive 
evolution in B. terrestris under rapid human-induced environmental change.  

B. terrestris was found across the whole island of Tasmania, Australia, indicating 
that the species is doing well in its invasive range, which is evidenced by both 
genetic and plastic responses to environmental and climatic conditions (Chapters 
III and IV). Thus, the Tasmanian B. terrestris population does not follow the 
expectations of low evolutionary evolvability as a consequence of the experienced 
bottleneck (cf. Rollins et al., 2013). This may be a result of phenotypic plasticity, 
which is generally higher in invasive compared to non-invasive species (Davidson 
et al., 2011), facilitating plastic and subsequently evolutionary responses to the 
novel environment (Diamond & Martin, 2016). Further studies should explore 
plasticity versus evolvability or the interplay between the two in B. terrestris and 
other invasive species. The focus may be on whether high plasticity, suggestively in 
ecologically important traits (Manfredini et al., 2019), can facilitate evolution in 
novel environments by for example looking at cryptic genetic variation (Diamond 
& Martin, 2016).  

The fast and widespread distribution of B. terrestris across Tasmania, seemingly 
unhindered by less favourable environments and low genetic diversity, is reason for 
concern. Although the Australian continent is separated by sea, B. terrestris already 
occurs on three smaller islands and two peninsulas south of Tasmania, showing that 
the species is not hindered by bodies of water. Monitoring the smaller islands north 
of Tasmania should be implemented to prevent further spread and possible 
colonization in the predicted suitable areas on the Australian continent. We have 
reason to believe that B. terrestris would be successful in these areas by adapting to 
similar environments as in Tasmania and similarly, negatively affecting the 
continental ecosystems. In addition, our results from chapters III and IV point to 
that B. terrestris will probably continue to be a successful invasive species under 
future environmental and climate change. 
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