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Symbol Description Units
X solid aerosol species (X = mineral dust, black carbon,

insoluble biological aerosols, and primary organic mat-

ter

-

AX Fitting constant for the temperature shift in the solid

aerosols

-

e vapour pressure Pa

es saturation vapour pressure Pa

Eu Entrainment rate s−1

Q Passive tracer to calculate the age of the parcel since

entering the subzero part of the cloud

kg−1

Q0 Initial passive tracer value when the parcel is outside the

glaciated part of the cloud

1 kg−1

qv Vapour mass mixing ratio kg kg−1

qc Cloud droplet mass mixing ratio kg kg−1

qi Cloud-ice mass mixing ratio kg kg−1

qs Snow mass mixing ratio kg kg−1

qr Rain mass mixing ratio kg kg−1

qg Graupel/hail mass mixing ratio kg kg−1

t̃ time since the start of the isothermal phase of the labor-

atory experiment Jakobsson et al. (2022)

s

Xcld Conserved variables such as mass and number mixing

ratio of cloud liquid, cloud-ice, rain, snow, graupel/hail

and actual number mixing ratio for each size bin of the

aerosols in any given chemical species (e.g., sulphate,

dust, sea salt)

when Xcld represents

mass mixing ratio, then

the unit is kg kg−1

and when X represents

number mixing ratio,

the unit is kg−1

SXcld source/sink term corresponding to subscript Xcld units of Xcld
Xenv Environmental value of cloud hydrometeor correspond-

ing to Xcld

units of Xcld

β Fitting constant for temperature shift in time-dependent

freezing of INP

-

ΔT̃X Temperature shift due to time-dependent INP freezing K

Δt Time step for the parcel ascent 0.025 s
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Chapter 1

Introduction

The Earth’s climate system is driven by the radiative energy balance at the top of at-

mosphere (TOA) between the incoming shortwave radiation and outgoing longwave

radiation. The complex processes within the atmosphere, land, ocean, and biosphere

work over time-space scales to modulate the distribution of absorbed, scattered and

emitted radiation.

Clouds play a crucial role in the Earth’s climate system by influencing Earth’s energy

budget and hydrological cycle. Clouds reflect the incoming shortwave radiation (cool-

ing effect) and absorb or re-emit the outgoing longwave radiation (greenhouse effect).

The globally averaged radiative energy resulting from these two effects determines the

net impact on the Earth’s energy budget. At present climate, clouds provide a cooling

effect by reducing the net downward radiation at TOA by 20 Wm−2 (Harrison et al.,

1990; Forster et al., 2021).

In the present climate system, almost 70% of the globe is covered by clouds (Stuben-

rauch et al., 2013; Eytan et al., 2020). Modern aerosol emissions indirectly impact

cloud albedo by increasing the droplet number concentration and decreasing the aver-

age droplet size (Twomey, 1974; Albrecht, 1989). This enhances cloud albedo, off-

setting an uncertain fraction, perhaps, approximately half of the global warming at-

tributed to greenhouse gas emissions since pre-industrial times (Lohmann, 2006). A

warm cloud or, liquid-only cloud, or low-level cloud has a high albedo, which means

such clouds are effective at reflecting incoming sunlight back to space (Hartmann et al.,

1992). As a result, low-level clouds can cool the Earth’s surface. In contrast, high-level

clouds can warm the surface as they have a lower albedo than low-level clouds and en-

hance the greenhouse effect by trapping longwave radiation (McFarquhar et al., 2000;

Hang et al., 2019).
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Since the pre-industrial period, the Earth’s surface and atmosphere have warmed, al-

tering the macrophysical (e.g. altitude, cloud fraction) and microphysical properties

(phase, cloud ice number concentration, particle size) of clouds. Changes in the cloud

properties and extend induces climate change by creating a "cloud feedback". The

cloud feedback can either amplify or offset future warming. According to the Sixth

Assessment Report (AR6) of the Intergovernmental Panel on Climate Change (IPCC)

(Forster et al., 2021), the equilibrium climate sensitivity estimates from general cir-

culation models (GCMs) is likely to lie in the range 2◦to 5◦C. The most significant

contribution to overall uncertainty is from the cloud feedback. For cold clouds (mixed-

phase or ice-only) the partitioning of supercooled cloud-liquid between ice and liquid

phases affects the climate sensitivity (Tan et al., 2018; Sherwood et al., 2020; Zelinka

et al., 2023). Therefore, understanding the factors that govern clouds and how they

will behave in a changing climate is essential for accurately predicting future climate

scenarios.
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Chapter 2

Background and Literature Review

1 Atmospheric aerosols

Atmospheric aerosols are solid or liquid particles suspended in air. Typically, their

concentration is 1 to 106 per cm3 of air, with high concentrations over continents

(Takemura, 2012; Pringle et al., 2010). These particles exhibit a wide size range, span-

ning from nanometers to tens of micrometres.

Aerosols significantly influence the climate system through both direct and indirect ra-

diative effects. The "direct effect" involves the scattering and absorption of shortwave

and longwave radiation contingent on aerosol properties (Forster et al., 2021). Indirect

effects pertain to how aerosols modulate cloud formation and properties, subsequently

impacting Earth’s atmospheric radiation balance (Twomey, 1977; Albrecht, 1989). Hu-

man activities, including greenhouse gas emissions and aerosol emissions, substantially

contribute to alterations in the climate system. Understanding the augmented aerosol

emissions resulting from increased human activity is pivotal for comprehending aero-

sols’ role in the climate system.

Aerosols emanate from diverse sources, including natural sources such as volcanic

eruptions, seaspray, and anthropogenic sources like vehicular traffic. They enter the

atmosphere as either primary particulate or secondary particulate matter.

Aerosols can be categorised into primary particles, comprising dust from deserts or

arid regions, pollen, and soot from incomplete fossil fuel combustion, and secondary

particles formed in the atmosphere through gas-to-particle conversion processes. These

processes encompass nucleation, condensation, and coagulation from vapour, known

as aerosol precursors, which include sulfur dioxide, nitrogen oxides, volatile organic
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compounds, and ammonia.

Various processes contribute to aerosol removal from the atmosphere, including grav-

itational settling, dry deposition, and wet deposition, the latter of which is further

classified into in-cloud scavenging and below-cloud scavenging. In-cloud scavenging

involves aerosols being taken up into cloud droplets, while below-cloud scavenging

pertains to their removal from the atmosphere through precipitation events.

1.1 Cloud condensation nuclei (CCN)

Hygroscopic aerosols are expected to nucleate cloud droplets (Petters and Kreidenweis,

2007). They mostly comprise of sulfates, soluble organic matter, ammonium, and sea

salt (Pruppacher and Klett, 2010). The majority of CCN consist of aerosols with sizes >
0.1μm because aerosols with sizes < 0.1μm require higher supersaturation to nucleate

(Köhler, 1936).

1.2 Ice nucleating particle (INP)

INP particle can nucleate ice in four different modes, condensation, deposition, immer-
sion and contact nucleation (Meyers et al., 1992; Phillips et al., 2008). The chemical

composition, temperature and size determine the effectiveness of an INP to nucleate

ice.

2 Basic Clouds types

"Clouds are the sleeping giant of the climate system: David Archer"

Clouds form when moist air ascends and cools below its dew point, causing water va-

pour to condense into droplets or ice crystals. The ascent of moist air occurs through

various mechanisms, such as orographic lifting, frontal lifting, convection, or conver-

gence of air masses Rogers and Yau (1996).

Since early scientific research (Lamarck, 1802; Howard, 1803) clouds have been primar-

ily classified into three categories, namely, stratiform, convective and cirrus clouds

based on their visual appearance (Lohmann et al., 2016).

Stratiform clouds are characterised by their layered or sheet-like structure, often cov-

ering large horizontal distances (Houze, 2014). They have a weak vertical velocity,
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leading to extended durations and continuous precipitation. Stratocumulus develops as

a result of the convective processes, often capped by a stable layer of air aloft, which

acts as a lid, preventing further vertical development of the clouds, making them similar

to stratus clouds (Wood, 2012, 2015; Houze, 2014).

Cirrus clouds are wispy, high-altitude clouds that are composed of ice crystals. They

are commonly found at high levels in the atmosphere. The outflow of the anvils from

the deep convective clouds can lead to the formation of cirrus clouds, which then spread

laterally in the troposphere (Mace et al., 2006; Sassen et al., 2008; Houze, 2014).

Convective clouds, in contrast to the widespread nature of cirrus and stratus clouds,

are more localised and have a vertical extent similar to their horizontal extent. They

are characterised by strong vertical velocities and rapid evolution, leading to shorter

lifetimes compared to stratiform clouds (Houze, 2014). Various categories of con-

vective clouds exist based on the evolution of their vertical extent. Shallow cumulus

clouds, driven entirely by warm-phase processes, typically have lifetimes of a few tens

of minutes and are commonly seen in temperate latitudes as "fair-weather clouds." Cu-

mulus congestus exhibits stronger vertical motions and the development of individual

towers reaching the lower troposphere but still mainly consists of liquid water droplets

as the buoyant air rises and comes to the layers of the atmosphere with temperatures

below 0◦C; further latent heat is released due to the freezing of liquid water. This trans-

forms cumulus congestus clouds into fully developed deep convective cumulonimbus

clouds. These clouds are characterised by their towering vertical extent and are asso-

ciated with strong updrafts and downdrafts, intense precipitation, thunderstorms, and

sometimes severe weather conditions.

As the focus is on implementing a new parameterisation for deep convective clouds

in this thesis, salient aspects of their structure and evolution are described in detail in

the following sect. 2.1, before introducing the most important aspects of the detailed

microphysical processes in sect. 4

2.1 Deep convective clouds

Deep convective clouds vertically transport heat, humidity, and momentum in the at-

mosphere, thus affecting the large-scale atmosphere. Deep convection plays a crucial

role in tropical climate systems, including the formation of Hadley cells (Bony et al.,

2015) and tropical cyclones (Tory et al., 2006). They affect the mid-latitude affect the

mid-latitude weather patterns, including the formation of extratropical cyclones and the

movement of weather systems (Smull, 1995; Doswell, 2001).

The updrafts in intense convective clouds can reach vertical velocities of 10 to 20 m/s
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(Heymsfield and Hjelmfelt, 1984; Heymsfield et al., 2005). Depending on the geo-

graphical location, these clouds can go up to 10 to 17 km altitude above mean sea level

and rarely extend 1.5 km above the tropopause (Gettelman et al., 2002). At the cloud

top, the air mass spreads out in the shape of a striated anvil composed of only ice hy-

drometers, that can cover large areas, while the lower portion resembles a mountain of

individual towers.

Convective parameterisations describe the collective impact of all convective clouds

within a grid box on the large-scale variables because of their localised nature (Arakawa,

2004).

3 Cloud parameterisations

The cloud hydrometeors are categorised into cloud liquid, rain, cloud ice, snow and

graupel/hail. The two approaches to treating cloud parameterisation are bulk micro-
physics scheme and bin microphysics scheme (Khain et al., 2015).

The first approach is bulk parameterisation, which represents particle size distribu-

tions (PSDs) of each hydrometer, commonly by a gamma or exponential distribution.

Single-moment bulk schemes consider only mass mixing ratio of each hydrometer

species(Kessler, 1969; Lin et al., 1983; Tao and Simpson, 1993; Walko et al., 1995;

Kong and Yau, 1997). Double-moment bulk schemes include prognostic treatment of

a mass mixing ratio and number mixing ratio (Ziegler, 1985; Wang and Chang, 1993;

Ferrier, 1994; Meyers et al., 1997; Seifert and Beheng, 2001; Morrison et al., 2005;

Morrison and Gettelman, 2008). Double-moment schemes generally perform better

than single-moment schemes because of the inclusion of the effect of aerosols on the

number concentration and sizes of hydrometeors (Igel et al., 2015; Khain et al., 2015).

Three-moment bulk schemes include mass mixing ratio, number mixing ratio, and radar

reflectivity (Milbrandt and Yau, 2005a,b).

The second approach is spectral bin microphysics (SBM), also known as size-resolving

microphysics. SBM resolves particle size distributions on a mass grid containing many

discrete size bins, ranging from tens to hundreds. SBM provides a more accurate rep-

resentation of various physical processes, including different collection processes. The

main advantage of SBM is that it treats the liquid phase, eliminating the need for sep-

arating cloud droplets and raindrops as required in bulk schemes. Due to complex

shapes and properties, ice-phase hydrometeors are generally classified into individual

categories, similar to bulk schemes. The computation of numerous microphysical inter-

actions results in an increased number of advected prognostic variables, about 200-300,

whereas the bulk schemes have 6-18 variables. The detailed description makes SBM
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computationally expensive compared to bulk schemes.

A third approach, involves the emulating bin schemes which represents cloud mi-

crophysical processes by combining SBM and bulk approaches (Cotton et al., 2003;

Saleeby and Cotton, 2004; Kudzotsa et al., 2016). This scheme involves the size dis-

tribution of hydrometeors being represented with temporary grid of discrete size bins

for specific microphysical processes while reducing the size distribution to double- or

three-moment for advection and diffusion.

4 Cloud microphysical processes

Cloud microphysical processes involve the interactions between the cloud hydromet-

eors, aerosols, and phase change within cloud systems. These processes occur at micro

to centimetre scales within the cloud. Cloud microphysics is parameterised to represent

the overall effect on cloud dynamics and precipitation processes in numerical weather

models, ranging from high-resolution large eddy simulations with grid box sizes of tens

of meters to global models with grid box sizes of hundreds of kilometres (Khain et al.,

2015; Rio et al., 2019). These processes exert feedback to the dynamic development of

clouds by latent heat release that increases the buoyancy and are influenced by the dy-

namics and thermodynamics of the environment (Rogers and Yau, 1989; Khain et al.,

2015).

4.1 Warm microphysical processes

Warm phase processes determine the boundary and initial conditions relating to hydro-

meteors, moisture, and heat transfers to the mixed and cold phases of clouds.

Aerosols in the atmosphere are crucial for the formation of cloud droplets. As air rises

and cools, water vapour condenses on aerosols to form cloud droplets called hetero-

geneous nucleation. Water soluble aerosols act as CCN, and their activation depends

on their chemical composition and size. Köhler’s theory describes the CCN activation.

The theory combines the Raoult and Kelvin effect.

The Raoult effect refers to the impact of solute molecules on the saturation vapour

pressure of a solution droplet. According to the Raoult effect, the presence of solute

molecules in the liquid reduces the saturation vapour pressure of the solution compared

to pure water. This reduction in saturation vapour pressure means that the droplet must

be at a lower vapour pressure than its surrounding environment to maintain equilibrium.

As a result, the droplet requires a higher relative humidity to achieve saturation and
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continue growing.

The Kelvin effect states that the saturation vapour pressure of a droplet is influenced by

its curvature. For a tiny droplet, the saturation vapour pressure is higher on the curved

surface than the surrounding air. As the droplet grows, its curvature decreases, and

the difference in saturation vapour pressure between the droplet and the surrounding

air diminishes. This implies that larger droplets require lower relative humidity to

maintain saturation than smaller droplets.

The Köhler theory is given as,

e
es

= 1+
a
r
− b

r3
(2.1)

where e
es

is supersaturation ratio, a
r is Kelvin effect and b

r3 is Raoult effect (Lamb and

Verlinde, 2011; Houze, 2014)). Hygroscopic or solute aerosol particles with large sizes

(> 0.2μm) would activate to become cloud droplets.

Droplets grow by water vapour diffusion and condensation reaching up to about 0.1mm
in diameter (Rogers and Yau, 1989).

Raindrops grow by accretion, which involves a collision between cloud droplets and

raindrops. Accretion is more efficient than autoconversion and significantly contributes

to overall rain production (Kogan, 2013; Hill et al., 2015).

The autoconversion parameterisation describes the raindrop formation from the col-

lision between cloud droplets. In bin schemes and emulating bin schemes, autocon-

version is expressed through numerical solutions of the stochastic collection equation

(SCE) for various bin sizes (Benmoshe and Khain, 2014; Khain et al., 2015). In bulk

schemes, the parameters for the autoconversion are derived from regression analysis

of the solution to SCE using results from numerous detailed bin-microphysics simula-

tions (Seifert et al., 2010; Khain et al., 2015). Morrison and Gettelman (2008); Song

and Zhang (2011); Kudzotsa et al. (2016) implements a semiempirical formulation

based on results from LES simulations with a bin-microphysics from Khairoutdinov

and Kogan (2000). The parameterisation represents an increased transfer from droplets

to rain with increased cloud water content but a decrease with increased cloud droplet

number concentration (CDNC). These relationships represent the increase in autocon-

version rate with increased cloud water content and a reduction with increased CDNC.

4.2 Mixed- and ice-phase microphysics

The mixed phase refers to cloud layers containing liquid particles and ice crystals.

Cold-phase or ice-phase refers to cloud layers consisting of only ice crystals. Ice crys-
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Figure 2.1: Schematic representation of homogeneous and four mechanisms of heterogeneous ice nucleation (from Khain
and Pinsky (2018a) after Vali (1999)). processes

tals. Cold microphysical processes deal with microphysical processes involving ice

crystals. Representation of cold microphysics in numerical models is challenging be-

cause it consists of a transition between three phases (gas, liquid, and solid), and ice

crystals exhibit a wide variety in shape and density (Pruppacher and Klett, 2010; Khain

and Pinsky, 2018b). In most microphysics schemes, ice crystals are separated into dif-

ferent categories, such as cloud-ice, snow, graupel/hail (Kudzotsa et al., 2016; Waman

et al., 2023).

Liquid hydrometeors (cloud droplets and rain) can exist as supercooled drops below

freezing. They can reach up to levels with temperatures as low as −35◦C and remain

unfrozen (Anderson et al., 1980; Hirst et al., 2001). Ice formation occurs from primary

and secondary ice processes.

Primary ice production mechanisms

The primary ice production mechanisms involves homogeneous and heterogeneous
freezing of liquid hydrometeors (Rogers and Yau, 1989; Khain and Pinsky, 2018b).

Homogeneous freezing Homogeneous freezing refers to the spontaneous freezing

of cloud droplets in the absence of nucleating particles at very low temperatures (∼
−35◦C). Typical temperatures used in microphysics schemes are −40◦C Morrison and

Gettelman (2008); Song and Zhang (2011) and −36◦C by Phillips et al. (2007).

Heterogeneous ice nucleation Supercooled droplets freeze in the presence of INPs

to form ice crystal (Vali, 1996; Vali et al., 2015). The first ice crystal in the cloud
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is formed from this process. The are four mechanisms of heterogeneous freezing are

(Rogers and Yau, 1989; Khain and Pinsky, 2018a; Kanji et al., 2017):

• Water vapour directly deposits on the INPs to form ice crystals, referred to as

deposition freezing.

• Water vapour condenses on the surface of water covered INPs and freezes to

form ice crystals, referred to as condensation freezing.

• Supercooled droplets come into contact with active INPs and freeze to form ice

crystals, referred to as contact freezing.

• INP is immersed in a droplet at warm temperatures (> 0◦C). At cold temperatures

(< 0 ◦C), freezing is initiated by the immersed INPs. This mechanism is referred

to as immersion freezing

Nucleation rate is an important parameter for parameterising homogeneous freezing.

In SBM, the nucleation rate is used to derive the number of ice crystals produced by

droplets in each size bin (DeMott et al., 1994). In bulk parameterisation, total number

of ice crystals is calculated from the homogeneous freezing rate (Liu and Penner, 2005;

Phillips et al., 2007). The freezing rates for the bulk parameterisation were derived

from fitting the results of a spectral microphysics parcel model, run over a wide range

of aerosol concentrations and vertical velocities in upper troposphere.

Secondary ice production (SIP) mechanisms

SIP mechanisms enhance ice crystal concentration from preexisting ice crystal without

the action of INPs (Yang et al., 2016; Field et al., 2016; Korolev and Leisner, 2020)

under suitable conditions. Observations show that ice number concentrations are or-

ders of magnitudes higher than the INP concentrations Gardiner and Hallett (1985);

DeMott et al. (2003); McFarquhar et al. (2006); Ladino et al. (2017). The proposed

SIP mechanism are (Field et al., 2016) are as follows:

Hallett-Mossop (HM) or Rime-splintering process Hallett and Mossop (1974) ob-

served small ice splinters were produced during the riming of supercooled drop with

size > 24μm in the temperature range −3◦to −8◦C. For levels above −3◦C, super-

cooled drops do not form ice shells (Dong and Hallett, 1989). Additionally, for levels

below −8◦C, hard ice shell cannot be fractured from internal pressure (Griggs and

Choularton, 1983).
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Field experiments and aircraft observations (Harris-Hobbs and Cooper, 1987; Blyth

and Latham, 1993; Rangno and Hobbs, 2001; Crosier et al., 2011; Lasher-Trapp et al.,

2016) observed graupel/hail or rimed ice in the HM region.

The activity of HM process varies with cloud types and depends on temperature, pres-

ence of rimed ice and size of supercooled drops. For a cloud with high CCN concen-

tration, there would be numerous small drops, which would result in a reduced activity

of the HM process.

SBM calculates the number of collisions between graupel/hail and drops at each time

step (Qu et al., 2020). Cotton et al. (1986) provided a bulk parameterisation for the

number of ice splinters produced per gram of the accreted liquid drop, according to

Hallett and Mossop (1974). Various microphysics scheme (Song and Zhang, 2011;

Kudzotsa et al., 2016) utilities the formulation by Cotton et al. (1986).

Fragmentation during ice-ice collisions Fragmentation during ice-ice collisions is

another important microphysical process in ice-phase clouds. Ice crystals collide,

which may result in mechanical breakup, leading to the production of secondary ice

(Langmuir, 1948). Several field and laboratory studies later confirmed this theory

(Hobbs and Farber, 1972; Takahashi et al., 1995; Vardiman, 1978). A study by Schwar-

zenboeck et al. (2009) pointed out 20% - 80% of the ice crystals are naturally fragmen-

ted, possibly due to collisions of ice crystals. Their simulations for crystal break-up

showed a good agreement with the experimental data.

Hobbs and Farber (1972); Yano and Phillips (2011); Yano et al. (2016); Phillips et al.

(2017a,b) conducted theoretical studies and demonstrated multiplication in ice number

from this process. Sullivan et al. (2017) demonstrated from their parcel model simula-

tions that rime splintering and breakup in graupel-graupel collisions enhance ICNC up

to 4 orders of magnitude. Sullivan et al. (2018b) showed that ice-ice collisional breakup

is the most significant SIP mechanism. Sotiropoulou et al. (2020) observed that the

high ice crystal number concentration (ICNC) cannot be explained by primary ice pro-

cesses. They conclude including rime splintering and collisional break-up provides

better agreement with observations in the summer Arctic stratocumulus cloud. Sotiro-

poulou et al. (2021) found that model with ice-ice collisonal breakup improves the

prediction of ICNC and suggested this mechanism can generate significant fragments

from 0.1 L−1 of primary ice.

Fragmentation during raindrop freezing Another SIP mechanism is the fragment-

ation of a freezing drizzle or raindrop. It involves the process by which ice particles are

formed as a result of the freezing of supercooled liquid droplets. When a supercooled
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droplet freezes, water may be trapped inside the ice shell around the droplet. As the wa-

ter turns into ice, it expands which generates mechanical pressures inside the droplet.

If these pressures are high enough, they can result in the droplet’s shell fracturing and

ejecting small ice fragments. These fragments act as secondary ice particles, which can

continue to grow and multiply in the cloud.

Laboratory studies (Mason and Maybank, 1960; Pruppacher, 1967; Johnson and Hal-

lett, 1968; Bader et al., 1974; Pruppacher and Schlamp, 1975) observed shattering of

drops during freezing.

4.3 Precipitation formation

Warm rain process

The warm rain process is the production of rain at all levels above 0◦C by the collisio-

coalescence of liquid particles ( cloud droplet, drizzle drop and raindrop). The warm

rain process involves the growth of liquid particles by collision-coalescene, and the

growth is impeded by droplet breakup.

Additionally, this process can produce supercooled raindrops that freeze and form

graupel, essential for glaciating convective tops by generating secondary ice crystals. In

thunderstorms, the warm rain process converts condensed water into precipitable water

(as drizzle droplets and raindrops) through collision-coalescence (Gao et al., 2021). In

tropical and midlatitude regions, the warm rain process is significant for shallow and

convective clouds (Lau and Wu, 2003; Kodama et al., 2009; Qin and Fu, 2016). The

warm rain process is affected by aerosol loading and properties and, therefore, is essen-

tial for aerosol-cloud interactions (Rosenfeld et al., 2008; Stevens and Feingold, 2009;

Dagan et al., 2015; Khain et al., 2015).

Cold rain process

Ice crystals in clouds form snow by aggregating and riming processes. Aggregation

is the process by which ice crystals collide and stick together, forming larger snow-

flakes. Riming is a growth process in which supercooled water droplets collide with

ice crystals and freeze onto their surfaces, leading to the formation of a layer of ice

(Rogers and Yau, 1996; Khain and Pinsky, 2018b). Snow can rime to produce graupel.

Hail is formed from the prolonged riming of ice crystals. Melting of graupel and hail

below freezing levels can lead to the formation of cold rain. Cold precipitation con-

tributes almost half of the global surface precipitation and plays a significant role in
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both tropical and mid-latitude regions (Field and Heymsfield, 2015). Ice crystals can

also grow through the Wegener-Bergeron-Findeisen (WBF) process (Wegener, 1912;

Findeisen, 1938; Findeisen et al., 2015; Storelvmo and Tan, 2015), where the vapour

pressure inside mixed-phase clouds falls between the saturation vapour pressures over

ice and water surfaces. This allows ice particles to gain mass rapidly at the expense of

supercooled droplets through deposition transfer.
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Chapter 3

Aims and Scientific Hypotheses

Sect. 2 discusses the importance of representing cloud parameterization with known

sources and sinks in a global model. Aerosol-cloud interactions are essential to define,

and the cloud microphysical processes that predict the liquid and ice phases are also

necessary. Correctly predicting the phase of the clouds is crucial since it can affect the

radiation. These feedback processes motivate us to provide a more realistic represent-

ation of these cloud processes in the model.

This study aims to improve the processes and mechanisms that govern the formation

and evolution of clouds using the CESM model. The thesis is divided into successive

steps with implementations of the new microphysics in the model, and the valuations

of the simulations are conducted, where each step aims to address a challenge.

1 Hypotheses

The following hypotheses will be either proven/disproven in this thesis.

1. SIP mechanisms can contribute to form ice number concentrations comparable to

the observed values in convective clouds. The intensity of these SIP mechanisms

varies, and these intensities are affected by environmental changes.

2. Time-dependence of INP freezing acts as a source for continuous ice nucleation

and can increase the activity of INPs by a factor of about 2 (Jakobsson et al.,

2022). For deep convective clouds, SIP and time-dependent INP activity con-

tribute to the ice number concentrations.
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3. Ice multiplication can dampen the impact of altering INPs and is always present

when there is some precipitation.

4. Precipitation in clouds is formed from warm and cold rain processes. In deep

convective clouds, the majority of the contribution to surface precipitation is from

the cold rain processes.

The hypotheses will be evaluated with simulations using the new cloud scheme presen-

ted in the thesis and simulations from the Aerosol-cloud (AC) model.

2 Objectives

1. Implement the convective cloud microphysics scheme based on treatment in the

high-resolution aerosol cloud model (Phillips et al., 2007, 2009, 2015, 2017a,b,

2018, 2020) in the SCAM6 version of the global model. Validate the predicted

cloud properties against observational data for a convective storm in Oklahoma

to assess the accuracy and reliability of the model in single-column mode.

(a) Assess and quantify the role of aerosols in activating cloud droplets and

cloud-ice.

(b) Evaluate SIP processes with tagging tracers after including the overlooked

representations in the cloud scheme.

2. Quantify the impact on the activity of SIP mechanisms from varying cloud-top

temperatures.

(a) Evolution of the SIP mechanism and its dependency on time and cloud-top

temperature

3. Elucidate the contribution of the warm rain and ice crystal process to the overall

precipitation in the simulated mesoscale convective system.

4. Implement the stratiform cloud microphysics scheme and harmonize it with the

new convection microphysics scheme (e.g., dealing with convective outflow).

The predicted cloud properties were validated against observational data.

(a) Evaluating the role of aerosols in activating cloud particles and the role of

overlooked SIP mechanisms.
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Chapter 4

Methods

1 Community Earth System Model and Single Column At-
mospheric Model, version6

CESM is a fully coupled global model with components for land, atmosphere, ocean,

and sea-ice and is utilized to simulate future climate scenarios. The model’s compon-

ents provide feedback to each other, representing the complex processes of the Earth

system. The Community Atmosphere Model, version 6 simulates the atmospheric con-

ditions, radiative forcing, cloud processes and dynamics of the atmosphere. Single

Column Model (SCM)s have a single vertical column of atmosphere that uses the same

physical parameterization as the CESM to resolve the subgrid-scale processes. SCMs

are good for model code development since they provide faster debugging and error

identification.

SCAM6 is SCM version of the atmospheric component of CESM. SCAM6 utilizes

the extensive CAM6 physics package but simplifies the representation of the resolved

flow on a large scale. It simulates a single column and prescribes the large-scale flow

and related tendencies from either observations or a simulation. This setup is valuable

for studying parameterized physics behaviour without feedback involving large-scale

circulation. It is useful for parameterization development and understanding physical

processes within prescribed large-scale circulation constraints.

The clouds are represented as stratiform and convective clouds in the CAM6 physics.

The stratiform scheme by Morrison and Gettelman (2008) and convective scheme by

Zhang and McFarlane (1995); Song and Zhang (2011) are represented in the model.
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1.1 Convection Scheme

In CAM6, the convection scheme is represented by Zhang and McFarlane (1995), here-

after as ZM and the convection microphysics scheme by Song and Zhang (2011), here-

after as SZ11 scheme.

ZM scheme was modified to include a new detrainment formulation based on Bechtold

et al. (2008) and Derbyshire et al. (2011) to represent turbulent detrainment and organ-

ized detrainment, respectively.

A "new aerosol-cloud convection (ACC)" parameterization is implemented, which re-

places the SZ11 scheme. ACC is a two-moment hybrid bin/bulk scheme based on the

cloud microphysics of high-resolution 3-D cloud model (Phillips et al., 2007, 2009,

2017a, 2018; Kudzotsa et al., 2016).

The approach was to implement a buoyancy-driven Lagrangian air parcel in the bulk

plume. The cloud properties of the parcel are representative of all the deep convective

clouds in the gird box. The air parcel is integrated numerically, and there is no nu-

merical diffusion. The ascent of the parcel is determined by the vertical velocity. The

parcel ascends from the base of the plume to the convective top.

The initial vapour mixing ratio of the parcel is set to the environmental value. The

initial vertical velocity is set to 0.4 m/s. The temperature and pressure of the air parcel

follow that of the bulk plume. The air parcel is lifted vertically with a time step of

0.025 seconds.

Vertical velocity

The vertical velocity (wup(z)) is calculated by integrating the kinetic energy vertical

gradient as done by Simpson and Wiggert (1969). The vertical velocity of the parcel is

dependent on the temperature, weight of the condensate (cloud liquid, rain, cloud ice,

graupel, snow), gravity, momentum drag, and entrainment/detrainment mass flux of the

environment.

Evolution of cloud hydrometeors and aerosols

The continuous entrainment equations are numerically integrated with a fine timestep

of 0.025 s.
DXcld

Dt
=−Eu(Xcld −Xenv)+∑SXcld (4.1)
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Here Xcld is any conserved variable such as mass and number mixing ratio of cloud

liquid, cloud ice, rain, snow, graupel and actual number mixing ratio for each size

bin of the aerosols in any given chemical species(sulphate, dust, sea salt,). Eu is the

entrainment rate, and SXcld are source/sink terms.

Tagging tracers

The components of cloud liquid, which is initiated from the in-cloud activation, and

also the components of cloud-ice initiated from different primary and SIP processes

are traced and analyzed. These components are passive and do not interact with the

microphysics.

Aerosol treatment

Seven chemical species (sulphate, dust, sea salt, black carbon, soluble organics, primary

biological matter, and non-biological insoluble organics) are represented in the global

model. A lognormal aerosol size distribution over the model height is used to represent

the aerosol species given by Phillips et al. (2009) with distribution parameters of each

mode (geometric mean size, spectral width, ratio of total numbers between multiple

modes) being constrained by observations. During the ascent, the continuous entrain-

ment equation is solved for each bin of the aerosols present in the environment and

in the parcel. The aerosols are classified into two main categories: soluble and solid

aerosols.

• The soluble aerosol species are ammonium sulphate (its bi-modal distribution is

separated into two independent modes as SO41 and SO42), sea-salt and soluble

organics.

• The insoluble aerosol species comprises mineral dust, black carbon, insoluble

non-biological organic, primary biological matter and non-biological insoluble

organics

Cloud microphysics

The ACC scheme is a hybrid bin/bulk scheme. Bulk microphysics is utilized for the

representation of advection and sedimentation of cloud hydrometeor. The bin micro-

physics is used for the processes of coagulation and growth processes.
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The cloud hydrometeors represented in the ACC scheme are mass and number mixing

ratios of cloud liquid, rain, cloud-ice, graupel and snow. The bulk parameterization for

cloud hydrometeors is represented by a γ-distribution following Phillips et al. (2007).

Initiation of cloud hydrometeors

Cloud droplet activation The cloud droplets are activated at the cloud-base and in-

cloud when supersaturation is positive. Soluble aerosol species activate cloud droplets

at the cloud-base. Ming et al. (2006) scheme explicitly links the chemistry and size

distribution of aerosols, vertical velocity and CDNC. In-cloud the droplets can be ini-

tiated by soluble and coated solid aerosols following the κ-Kohler theory (Petters and

Kreidenweis, 2007).

Heterogeneous nucleation of cloud-ice Empirical parameterization (EP) developed

by Phillips et al. (2008, 2013) is implemented. EP treats four modes of heterogeneous

nucleations: deposition, condensation, and immersion. EP relies on the surface area

and chemistry of INP, with a threshold of size greater than 0.1μm. EP is based on INP

activity from Continuous Flow Diffusion Chamber (CFDC) measurements of during

the Ice Nuclei Spectroscopy (INSPECT) campaigns (DeMott et al., 2003). Jakobsson

et al. (2022) performed isothermal experiments for immersed INPs over many hours to

quantify the time-dependent freezing of INPs.EP is modified to include the temperature

shift of the INPs following the method proposed by Jakobsson et al. (2022). According

to Jakobsson et al. (2022),

�T̃X =−AXt̃−βX (4.2)

AX and βX are the fitting constants corresponding to subscript X and the values are

provided in the Jakobsson et al. (2022, Table 6).

Homogeneous freezing of cloud droplets The supercooled droplets instantaneously

freeze at about −35◦-−37◦C according to the size (Phillips et al., 2007, 2009). Larger

droplets freeze first based on the supersaturation and updraft velocity. The fraction of

cloud droplets that evaporate without freezing due to vapour growth of frozen droplets

causing subsaturation is represented with a lookup table.

Hallett Mossop process The HM process is active between the temperatures −3◦to

−8◦C following Phillips et al. (2007) and Kudzotsa et al. (2016). It is assumed 350

splinters are produced for every milligram of liquid accreted onto snow and graupel.
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Fragmentation during ice-ice collisions It follows Phillips et al. (2017a) based on

the energy conservation of colliding particles to determine the number of secondary

fragments produced. Bin microphysics is utilized in this formulation. The number and

mass mixing ratios of the two colliding ice particles are discretised into 33 size bins.

The permutations of all combinations of the size bins, ice morphology, collision kinetic

energy (CKE) are considered in the formulation.

Fragmentation during raindrop freezing This follows the formulation developed

by Phillips et al. (2018). This formulation uses the bin scheme to represent all the

permutations of the interaction between the supercooled raindrops and ice particles.

Two modes of fragmentation during raindrop freezing are treated,

1. Mode 1 : ice fragments are produced when supercooled raindrop (size between

0.05-5 mm) collides with a smaller ice particle or an immersed INP freezes it

heterogeneously.

2. Mode 2 : ice fragments are produced when supercooled raindrop collides with a

larger ice particle.

Growth of cloud hydrometeors

Condensational growth of cloud droplets Cloud droplets grow by condensation fol-

lowing the Rogers and Yau (1996, Eqs. 9.4 and 7.18). Emulated bin microphysics is

implemented to calculate the growth rate in each size bin.

Vapour growth of ice The growth rate follows Rogers and Yau (1996, their Eq. 9.4)

using the emulated bin approach. The growth rate is determined for each size bin and

then summed over the entire bin system to get the bulk number and mass mixing ratios.

Autoconversion of cloud droplet to raindrop This follows Kogan (2013) using the

bulk scheme.

Autoconversion of cloud-ice to snow The formulation developed by Schoenberg Fer-

rier (1994) and Kudzotsa et al. (2016) is implemented with the bulk scheme approach.
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Table 4.1: The microphysical conversion tendencies for mass mixing ratio (kg−1kg−1s−1). The first symbols within the
parentheses before the semicolon represent the final species in each interaction. The symbols after the semicolon
represent the interacting species. The table is a modified version of Phillips et al. (2007, Table 1.).

Symbol Meaning

Ac (qr; qc|qr) Accretion of cloud droplets by rain

Ac (qg,qi; qc|qi) Riming of cloud droplet by cloud-ice

Ac (qg,qi; qg|qc) Riming of cloud droplet by

graupel/hail

Ac (qs,qi; qs|qc) Riming of cloud droplet by snow

Ac (qc,qr,qi,qg; qr|qg ) Accretion of rain by graupel/hail.

Fragments of cloud-ice fragments and

splashes are produced

Ac (qs; qi|qs) Accretion of cloud-ice by snow

Ac (qc,qs,qg,qi; qs|qr) Accretion of snow by rain

Ac (qg,qi; qi|qr) Accretion of cloud-ice by rain

Ag (; qi|qi) Aggregation of cloud-ice and

cloud-ice

Ag (qi; qs|qs) Aggregation of snow and snow.

Fragments of cloud-ice are produced

Ag (qi; qg|qg) Aggregation of graupel/hail and

graupel/hail. Fragments of cloud-ice

are produced

Ag (qg,qs,qi;qg|qS) Aggregation of graupel/hail and snow.

Fragments of cloud-ice are produced

Ag (qg,qi; qg|qi) Aggregation of grauple/hail and

cloud-ice. Fragments of cloud-ice are

produced

Autoconversion of snow to graupel Graupel/hail is formed by riming of snow using

a bin scheme approach (Phillips et al., 2017b). The riming rate is determined following

Gautam Martanda (2022).

Accretion, riming and aggregation processes The precipitation in the air parcel

grows by the interactions between particles (accretion, riming and aggregation). The

different combinations of the interactions included in the model are shown in Table

4.1. The accretion of cloud liquid by rain is treated using the bulk parameterization

following Kogan (2013). All the other processes in Table 4.1 are treated using the

emulated bin approach.

Sedimentation of cloud hydrometeors Bulk microphysical formulae are used to

number and mass-weighted fall velocities of rain, and an emulated bin approach is

used for graupel/hail. The fall velocities of graupel/hail depend on the density and ice

morphology.
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1.2 Stratiform scheme

In CAM6, the stratiform scheme is represented by Morrison and Gettelman (2008),

hereafter as MG08. The study modified the stratiform scheme to include new mi-

crophysical formulations. This work involved modifying the existing scheme. The

following modifications were made to the stratiform scheme

1. Cloud base droplet activation follows Ming et al. (2006) (sect. 1.1).

2. Heterogeneous ice nucleation is represented by EP (sect. 1.1).

3. Homogeneous freezing of supercooled droplets follows Phillips et al. (2007,

2009).

4. Graupel/hail is added during the microphysical conversion processes. The mass

and number mixing ratio of snow is divided into two categories: snow and

graupel/hail, according to a lookup table. Since graupel is not a prognostic vari-

able in the model, the graupel tendencies are added to the snow tendencies for

advection into the large-scale model grid.

5. The accretion of cloud liquid by rain is not changed. Otherwise, all the growth

processes of accretion, aggregation and riming in Table 4.1 are added in the

stratiform scheme (sect. 1.1).

6. The stratiform scheme now represents 3 SIP mechanisms: HM process (sect.1.1,

fragmentation during ice-ice collisions (sect.1.1) and fragmentation during rain-

drop fragmentation (sect.1.1).

The warm rain process, WBF process and heterogeneous freezing of rain have not been

modified and are used as is when doing the simulations. The modified version of the

MG08 scheme is referred to as the LLS24 scheme.

2 Analysis of the role of time-dependent freezing of INPs

The role of time-dependent freezing of immersed INPs was studied. Jakobsson et al.

(2022) proposed a temperature shift approach to implement time-dependent freezing in

numerical models. This approach was implemented in EP.

The temperature shift is given by,

�TX(t̃) =−AXt̃−βX (4.3)
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Jakobsson et al. (2022, Table 6) provided the values of the fitting constants AX and βX

subscript X

t̃ is the time of the parcel since entering the cold parts of the cloud. The exponential

decay of a passive tracer (Q) with time determines t̃. The evolution of the passive tracer

Q is given as,

DQ
Dt

=

{
−Q/τQ, T < 0°C and IWC > 10−6 kg m−3.

0 kg m−3, otherwise.
(4.4)

Q = Q0 = 1 kg−1, everywhere outside the glaciated part of the cloud, both in the en-

vironment and the parcel. τQ = 1800 s is an arbitrary relaxation time. The analytical

solution of the Eq. 4.4 is given as

t̃ ≈−τQln(Q/Q0) (4.5)

3 Aerosol-cloud (AC) model

AC model uses the general framework of the Weather Research and Forecasting (WRF)

model with a hybrid bin/bulk spectral microphysics scheme (Phillips et al., 2007, 2009,

2013, 2015, 2017a,b, 2020). AC uses a double-moment approach to represent cloud

hydrometeors. It represents cloud droplets, rain, snow and graupel/hail as prognostic

variables. AC represents eight aerosols species, mineral dust, black carbon, sea-salt,

insoluble organics, sulphates in two independent modes, soluble organics and Primary

Biological Aerosol Particles (PBAPs).

4 Mid-latitude Continental Convective Clouds Experiment
(MC3E) Campaign

The Mid-latitude Continental Convective Clouds Experiment (MC3E) campaign was

carried over Oklahoma from April to June 2011. The Central Facility (CF) was located

at 36.695◦ N and 97.485◦ W with 20 extended facilities. The field campaign incorpor-

ated a comprehensive sounding array, remote sensing, and in situ aircraft observations,

along with National Aeronautics and Space Administration (NASA) Global precipita-

tion measurement (GPM) ground validation remote sensors (Jensen et al., 2016).
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Figure 4.1: A Skew-T Log-P diagram showing the atmospheric profiles of temperature (solid black line), dew point
temperature (solid blue line) for the initial simulation time of 00 UTC on 10 May 2011

4.1 11 May 2011 mesoscale convective system.

A surface cold front initiated organized severe convection as it moved across the Texas-

Oklahoma panhandle. The mesoscale convective system (MCS) was moving northeast

with a stratiform precipitation region located north of it. The MCS had already matured

and transitioned to a trailing stratiform region as it passed over the CF.

Figure 4.1 shows the vertical profiles of air and dew point temperature at 00 UTC on

10 May 2011. The wind speed was intense for the depth of the atmosphere (∼ 10 m/s).

Figure 4.1 shows the Lifting condensation level (LCL) is at 827 hPa.

4.2 Airborne measurement

National Aeronautics and Space Administration (NASA) ER−2 and the University of

North Dakota (UND) Cessna Citation II aircraft sampled the MCS system. The Cita-

tion II sampled the weaker stratiform region in coordination with the ground facilities.

The Citation II carried the meteorological instruments described in Table 4.2, and its

focus was to sample the ice-phase hydrometeor at altitudes of ∼ 4−13km.
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Table 4.2: Meteorological instruments carried on Citation II aircraft

Instrument Range

Cloud Imaging Probe (CIP) 0.025−1.5 mm

2D Cloud imaging probe

(2DC)

0.03−1.0 mm

High-volume precipitation

spectrometer, version 3

(HVPS-3)

0.15−19.2 mm

Cloud droplet probe (CDP) 2−50 μm

King hot-wire Liquid water

content probe

0.01−5 g m−3

Nevzorov probe 0.03−3 g m−3

2DC and HVPS-3 probe had anti-shatter tips, while CIP did not have them. Field et al.

(2006) introduced a method to minimize the effect of shattered ice on the probes. This

method of considering ice particles with sizes > 200μm is implemented in analysing

the aircraft data to remove the shattered particles.

4.3 Ground based observation

The MC3E campaign consisted of 20 central facilities, which covered an area of about

150km. The spatial variability of moisture, surface fluxes, momentum, temperature,

humidity, and wind properties were measured by the radiosonde array (Jensen et al.,

2016). Xie et al. (2014) used the constrained variational analysis approach to obtain

large-scale forcing, surface heat, and moisture.
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Chapter 5

Results

1 Implementation of new convective microphysics

The new convective parameterization, referred to as ACC, was implemented in the

model. Simulations were carried out to study an observed case of the MC3E storm on

11 May 2011, comparing the performance of the new scheme with that of the original

unmodified version. Comparing the simulation results in SCAM6 with observations

reveals that the ACC scheme effectively reproduces key characteristics of the storm.

The ACC_24 simulations included the new ACC convection microphysics scheme and

the original MG08 stratiform scheme. SZ11 simulations included the original deep

convective microphysics by Song and Zhang (2011) and the original MG08 stratiform

scheme.

Figure 5.1a shows that the predicted cloud droplet number concentration (CDNC) at

14◦C and −28◦C differs by 10% from the observations. Also, around −10◦C, where

observations are present, ACC_24 accurately predicts CDNC. At cloudbase, SZ11 un-

derpredicts CDNC by an order of magnitude. Above the cloud base, the predicted

CDNC values differ from observations up to a factor of 10 for the SZ11 run.

Figure 5.1b shows that the liquid water content (LWC) agrees well with the observa-

tions at the cloud base, reaching a maximum of 1.6 gm−3 near the freezing level. The

discrepancy between predicted LWC by ACC_24 and the observation is less than a

factor of 2. However, at -11◦C, where most observations are present, the SZ11 scheme

predicts levels higher than those observed by a factor of 3. Additionally, SZ11 forecasts

cloud liquid above the homogeneous freezing level.

The vertical velocities predicted by the SZ11 attain a maximum of 5 m/s at a homogen-
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eous freezing level. However, the ACC_24 run predicts a maximum vertical velocity

of 15 m/s at −15◦C.

In Figures 5.1d and e, the filtered ice particle concentrations have been plotted to avoid

the shattering bias. ACC_24 performs better in predicting ice particle concentration

compared to the SZ11 run. The predicted total ice particle concentration for particles

larger than 0.2 mm closely matches the observed data, except at −10◦C and −11◦C

levels, where it differs by a factor of about 10 from observations. However, at −15◦C,

the results from ACC_24 run align well with the observed data. Ice particles are absent

below the −15◦for the SZ11 run.

Figure 1b predicted that the total ice particle number concentration for ice particles

with sizes greater than 1mm is of the same order as the observations at all levels where

observations are present. The predicted total ice particle concentrations differ from the

observations by about a factor of 4 or 5.

ACC_24 and SZ11 runs are able to predict the two precipitation peaks (Figure 5.1f).

For the stronger peak, ACC_24 overestimated the precipitation about 40% more than

the observed peak, and SZ11 underestimates the second peak, which is about 79% of

the observed value. ACC_24 run predicts higher intensity than the observations for the

first peak, and the SZ11 run predicts the intensity accurately.

Figure 5.1g shows that accumulated precipitation at the end of the simulation for the

ACC_24 run is 6mm more than observed value and for the SZ11 run underpredicts by

5mm.
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Figure 5.1: Predicted (a) CDNC compared with CDP probe data, (b) LWC compared with CDP, KING and Nevzorov
probe data, (c) vertical velocity, (d) total number concentration of ice particles with sizes greater than 0.2mm
compared with 2DC, CIP, HVPS-3 probe data and COMB data, (e) total ice number concentrations of ice
particles with size greater than 1 mm compared HVPS-3 probe data (f) total ice particle mass mixing ratio
from the SZ11 (solid red line with square) and ACC (solid black line with pentagram) simulations. The
cloud microphysical properties are conditionally averaged over cloudy convective updrafts (wup > 3 m s−1).
Predicted (g) precipitation rate mm/hr and (h) accumulated surface precipitation compared with observations
(Xie et al., 2014). Predicted (i) stratiform and convective cumulative precipitation from the SZ11 and ACC_24
simulations.

1.1 SIP mechanisms

The mass and number concentration of cloud-ice initiated from each process, hetero-

geneous nucleation, homogeneous freezing and secondary ice process are tracked using

passive prognostic variables. The tagging tracer does not alter the cloud properties.
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The results from the tagging tracers, which represent the total cloud-ice concentrations

from the different sources, are conditionally averaged over convective clouds (wup > 3

m s−1) and are plotted in Fig. 5.2.

Figure 5.2a shows fragmentation during ice-ice collision is the most productive and

contributes up to 99% of the total cloud-ice in mixed-phase regions. HM process is

predicted to be active in the region −3 and −8◦C level, but the splinters generated are

not high compared to other processes. The raindrop freezing fragmentation is also less

active than the other two SIP mechanisms. At −36°C level, 99% of cloud-ice generated

is from homogeneous freezing of supercooled droplets.

Figure 5.2c shows heterogeneous ice nucleation, SIP mechanisms, and homogeneous

freezing contribute 1%, 6%, 93% respectively to the total budget of cloud-ice initiated.

Figure 5.2d shows fragmentation during ice-ice collision mechanism contributes the

most to the mass mixing ratio of cloud-ice initiated.

Figure 5.2c and e show that cloud-ice contributes the most to the ice particle number

concentrations. Cloud-ice, snow and graupel contribute 98%, 1.5% and 0.2%, respect-

ively, to the total ice particles initiated. The mass budget shows graupel/hail and snow

are the significant contributors to the total mass of ice particles initiated.
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Figure 5.2: (a) Comparison of the predicted total number of cloud-ice from the SIP mechanism in the simulation compared
with predicted total cloud-ice.(b) The contributions from cloud-ice (dotted line with diamond), graupel/hail
(dotted line with triangle) and snow (dotted line with square) are plotted, as well as total ice (solid line with
pentagram). Bar plot for the (c) budgets of the number of cloud-ice particles and (d) budget of the mass
mixing ratio of cloud-ice particles initiated from heterogeneous ice nucleation (’Het. nuc.’), homogeneous
freezing (’Hom. frz.’), fragmentation during ice-ice collisions (’Breakup’), fragmentation during raindrop
freezing (’Rfz’) and HM process. Bar plot of the (d) budgets of the number and (e) budget of the mass mixing
ratio of cloud-ice, snow and graupel particles initiated in the cloud for the ACC_24 simulation. The cloud
microphysical properties are conditionally averaged over cloudy convective updrafts (wup > 3 m s−1).

1.2 Soluble aerosol species in environment

The concentrations of the soluble aerosol species were changed in the environment

using a height-dependent factor. For the high-CCN case, the factor decreases from 10

at the ground to unity at 11km. For the low-CCN case, the factor increases from 0.1 to
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unity at 11 km. The changes in the aerosol concentrations were done to represent the

contrast between polluted and maritime aerosol conditions.

Figure 5.3a depicts that in the low-CCN run, there is a higher average cloud droplet dia-

meter with a maximum of 24μm compared to the high-CCN scenario, with an average

cloud droplet diameter reaching only 10μm.

Figure 5.3b shows an increase in LWC at Cloudbase by a factor of 2 and a decrease by

a factor of 6 for high-CCN and low-CCN run, respectively. Below the freezing level,

the LWC for low-CCN and high-CCN closely follow the ACC_24 run.

Figure 5.3c shows that at cloudbase, CDNC is increased and reduced by a factor of 3

relative to ACC_24 for high-CCN and low-CCN runs, respectively.

Figures 5.3e and f shows that in all three runs, almost 99% of ice particles are initiated

by breakup during ice-ice collisions. In mixed-phase areas, the ice particle number

concentrations are increased and decreased by a factor of 2 compared to ACC_24 run

for high-CCN and low-CCN run, respectively. Above the mixed phase regions, the ice

concentrations for the high-CCN case are increased by an order of magnitude and by a

factor of 2 for the low-CCN case compared to the ACC_24 run because of the increased

CDNC aloft (Figure 5.3).

The budget indicates that in the low-CCN scenario, there is a higher activity of HM

(3 times) and raindrop freezing fragmentation (5 times) compared to the ACC24 run.

Additionally, snow and graupel budgets show a relative increase by a factor of 4 and 2,

respectively, compared to the ACC24 run, resulting from an enhanced riming process

promoted by abundant supercooled cloud liquid aloft.

The accumulated surface precipitation at the end of the simulation for the Low-CCN

run is decreased by 15% compared to ACC_24 due to the depletion of snow by ac-

cretion onto supercooled rain and graupel (Figure 5.3e). The high-CCN run shows an

increase in the cumulative precipitation by 3% because of the prevalence of the ice

crystal process to produce precipitation.
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Figure 5.3: Vertical profiles of predicted (a) mean cloud droplet diameter, (b) LWC and (c) CDNC plotted with secondary
droplets, (d) surface precipitation rate (mm hr−1), (e) cumulative surface precipitation (mm) and (f) total ice
particle number concentration with tagging tracers for cloud-ice initiated from primary ice processes (’prim.’)
(dotted line), HM process (dash-dotted line), and (i) total ice particle number concentration with tagging
tracers for cloud-ice initiated from breakup in ice-ice collisions (’Brk’) (dotted line), raindrop freezing frag-
mentation process (’Rfz’) (dashdotted line) from the high-CCN (solid red line with squares), low-CCN (solid
blue line with diamond) and ACC_24 (solid black line with pentagram) simulations. The cloud microphysical
properties are conditionally averaged over cloudy convective updrafts (wup > 3 m s−1). Bar plot for the (g)
budgets of the number of cloud-ice particles initiated from heterogeneous ice nucleation (’Het. nuc.’), ho-
mogeneous freezing (’Hom. frz.’), breakup in ice-ice collisions (’Breakup’), raindrop freezing fragmentation
(’Rfz’) and HM process and (h) budgets of the number of cloud-ice, snow and graupel particles initiated in
the cloud for the ACC_24 (black coloured bars), high-CCN (red coloured bars) and low-CCN (blue coloured
bars) simulations.

1.3 Solid aerosol species in the environment

The concentrations of the solid aerosol species were changed in the environment using

a height-dependent factor. For the high-INP case, the factor decreases from 10 at the

ground to unity at 11km. For the low-INP case, the factor increases from 0.1 to unity at

11 km. The changes in the aerosol concentrations were done to represent the contrast

between polluted and maritime aerosol conditions.

Figure 5.4a illustrates a pattern of reduction in average droplet size as the solid aero-

sol loading increases, reaching a peak of 12 μm in the high-INP scenario. The mean

droplet size remains relatively unchanged for the low-INP case, with only a slight in-

crease of 0.5 μm compared to ACC_24.

Figure 5.4b shows that in the low-INP run, the LWC does not show much change from

the ACC_24. In the high-INP run above −10 degree C, LWC increases by up to 60%

compared to ACC_24. In Figure 5.4c, the CDNC at cloud-base is reduced by a factor

of 2 for the high-INP case compared to ACC_24 and reduced by 30% for the low-INP
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case. The CDNC profiles for the low-INP scenario closely resemble those of ACC_24.

Figure 5.4f shows that in the mixed-phase regions, both low- and high-INP runs shows

a similar profile as the ACC_24 run with only a slight increase by a factor of 2 from

ACC_24 to the high-INP case.

Figure 5.4g shows the budget for cloud-ice initiated by heterogeneous nucleation is

increased by a factor of 3 and is reduced by a factor of 6 compared to ACC_24 run

for the low-INP run. The cloud-ice initiated from breakup in ice-ice collisions shows

only a slight change by 2 from low-INP to the high-INP run, exceeding the cloud-ice

initiated from heterogeneous nucleation by up to about an order of magnitude.
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Figure 5.4: (a) Predicted mean cloud droplet diameter, (b) predicted LWC and (c) predicted CDNC plotted with secondary
droplets, (d) surface precipitation rate (mm hr−1), (e) cumulative surface precipitation (mm) and (f) total ice
particle number concentration with tagging tracers from cloud-ice from primary ice processes (’prim.’) (dotted
line), HM process (dash-dotted line), and (i) total ice particle number concentration with tagging tracers from
breakup in ice-ice collisions (’Brk’) (dotted line), raindrop freezing fragmentation process (’Rfz’) (dash-dotted
line) from the high-INP (solid red line with squares), low-INP (solid blue line with diamond) and ACC_24 (solid
black line with pentagram) simulations. The cloud microphysical properties are conditionally averaged over
cloudy convective updrafts (wup > 3 m s−1). Bar plot for the (g) budgets of the number of cloud-ice particles
initiated from heterogeneous ice nucleation (’Het. nuc.’), homogeneous freezing (’Hom. frz.’), breakup in
ice-ice collisions (’Breakup’), raindrop freezing fragmentation (’Rfz’) and HM process and (h) budgets of the
number of cloud-ice, snow and graupel particles initiated in the cloud for the ACC_24 (black coloured bars),
high-INP (red coloured bars) and low-INP (blue coloured bars) simulations.

2 Analysis of the role of time-dependent freezing of INPs

The role of time-dependent freezing of immersed INPs was studied. Jakobsson et al.

(2022) proposed a temperature shift approach to implement time-dependent freezing in

EP. Simulations were conducted with the SCAM6 and AC models to evaluate the role
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of time-dependent freezing on INP activity in the MC3E storm.

2.1 Results from SCAM6

ACC_24 are compared with the sensitivity simulation where the effect of time-dependence

is included in EP. Figure 5.5 reveals that the cloud properties are unaffected when the

time dependence is included. The tagging tracer for cloud-ice initiated by heterogen-

eous ice nucleation is plotted (Figure 5.5e), and it shows a change <0.5% compared to

ACC_24 simulations.
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Figure 5.5: Predicted (a) mean cloud droplet diameter, (b) LWC, (c) CDNC, (d) total number concentration of ice
particles, (e) tagging tracer representing the cloud-ice generated by Heterogeneous ice nucleation from the
Time dependence (solid red line with square) and ACC_24 (solid black line with pentagram) simulations.
The cloud microphysical properties conditionally averaged over cloudy convective updrafts (wup > 3 m s−1).
Predicted (f) cumulative surface precipitation from the Time dependence (solid red line with square) and
ACC_24 (solid black line with pentagram) simulations are plotted.

2.2 Results from the AC model

Waman et al. (2023) simulated various cloud types using the AC model. Figures 5.6

show the number concentration of active INPs in the MC3E storm over stratiform re-
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gions. Here, CTRL simulation includes the effect of time dependence, and NO_TDF

simulation excludes this effect. The predicted active dust INPs are increased by a factor

of 2 for the MC3E run. Waman et al. (2023) observed no significant changes in the total

ice concentrations when they included the time-dependent effect.

Figure 5.6: (left) The predicted number concentrations of active INPs conditionally averaged over stratiform regions (|w|
< 1 m/s) from mineral dust (solid line with open circles), soot (solid line with asterisks), and PBAP (solid line
with squares), and concentrations of heterogeneously nucleated ice (PRIM-ICE, forward-pointing triangles) for
the (a) MC3E, (c) ACAPEX, and (e) APPRAISE cases. The same information is shown with dotted lines for
the “no time-dependent INP” run. (right) The concentrations of total nonhomogeneous ice (total cloud ice
and snow minus total homogeneous ice; solid line with squares) and various tracer terms defining SIP processes
such as fragmentation during sublimation (FSB; solid line with asterisks), ice–ice collisions (FIIC; solid line
with pentagrams) and raindrop freezing (FRF; solid line with upward-pointing triangles), and the HM process
(HM; solid line with open circles) for the (b) MC3E, (d) ACAPEX, and (f) APPRAISE case, respectively. The
same information is shown with the dotted lines for the “no time-dependent INP” run. To compare the number
concentrations of heterogeneously nucleated ice and total nonhomogeneous ice, heterogeneously nucleated ice
(PRIM-ICE; forward-pointing triangles) is also shown in the right column. The figure is adapted from Waman
et al. (2023).
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3 Analysis of the warm and cold rain processes

Gupta et al. (2023) simulated three storm types using the AC model to study the con-

tribution of the warm and cold rain processes to the surface precipitation.

• Warm-rain: raindrops are formed by collision-coalescence of cloud droplets.

They may freeze to form ("warm") graupel, which may melt when falling.

• Cold-rain: ("cold") graupel/hail is formed by riming of ice crystals. ("cold")

graupel might melt when falling.

Figures 5.7a show that mass mixing ratio of warm graupel is less than the cold-graupel

by an order of magnitude. Figure 5.7b shows that the number mixing ratio of the cold

graupel is less than the warm graupel by an order of magnitude. Below the freezing

level, cold rain is more than the warm rain. Figures 5.7i and j show that for both con-

vective and stratiform regions of the MC3E storm, the cold precipitation dominates the

total precipitation. Gupta et al. (2023) predicts that stratiform precipitation contributes

80% of the total accumulated surface precipitation
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Figure 5.7: Temperature-resolved conditionally averaged over cloudy regions of: a mass mixing ratio (MMR) and b number
mixing ratio (NMR) of graupel with corresponding warm (red line) and cold (blue line) components; c mass
and d number mixing ratios of rain plotted similarly; e ice (orange) and snow (brown) mass mixing ratio; f ice
(light blue) and snow (magenta) number mixing ratio; and g cloud water number mixing ratio (purple) for the
MC3E case (slightly warm-based convective clouds at 17◦C) control simulation using AC during 0000–2300
UTC on 11 May 2011. Also shown is the MC3E case control simulation of the accumulated precipitation (mm)
for h the entire domain with all clouds and corresponding components from i convective and j stratiform cloudy
(and adjacent clear sky) regions for 72h (10–13 May 2011). The yellow and gray shading boxes in (a–g) are
similar to those in Fig. 2, with differences in (b) and (e). b The darkest gray shaded box represents cold rain
mass mixing ratio, while medium gray is for warm. e The darkest yellow displays the peak value of ice mass
mixing ratio, while medium yellow is for snow. The figure is adapted from Gupta et al. (2023).

4 Implementation of the modified stratiform scheme in SCAM6

SCAM6 was simulated with the stratiform scheme described in the sect.1.2 and con-

vection scheme described in sect. 1.1 for the MC3E storm from 10 May 2011 to 13

May 2011.

Figures 5.8a and b show that the LLS24 scheme shows an increase in the prediction of

stratiform precipitation compared to the MG08 scheme. The LLS24 scheme predicts a

precipitation rate higher than the observations for both the convective peaks, while the
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original unmodified version of the model underpredicts the precipitation.

Figure 5.8 shows that both the original unmodified version of the model and the new

scheme have a good agreement of LWC with the aircraft observations. Figure 5.8b

shows that the predicted CDNC from the LLS24 run agrees well with the observations

at almost all levels.
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Figure 5.8: Predicted (a) precipitation rate (mm/hr), (b) cumulative surface precipitation, (c) LWC (g m−3) with CDP,
KING and Nevzorov probes, (d) CDNC (cm−3) compared with observations from the CDP probe, from the
MG08 (dashdotted black line with square) and LLS24 (solid black line) simulations. Error bars shown are
standard errors of observation samples. The cloud microphysical properties are conditionally averaged over the
entire simulation period.

The filtered ice concentration plots for the ice particle with sizes greater than 0.2 mm

and 1 mm show a good agreement between the predicted values from the LLS24 run.
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In figure5.9d, the ice particle concentrations predicted by the MG08 run are lower than

the observations above the freezing levels up to an order of magnitude. Figure 5.9c

shows that IWC predicted by the LLS24 run is of the same order of magnitude as the

observations below −15◦C and shows an error up to 30% above it. MG08 underpredicts

the IWC by an order of magnitude at all levels except freezing.
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Figure 5.9: Predicted (a) total concentration of ice particles with sizes > 0.2mm compared with observations from the
2DC, CIP, HVPS-3 probe and COMB, (b) total ice number concentrations of all ice particles with size > 1 mm
compared with aircraft observations from the HVPS-3 probe and (c) total IWC from the MG08 (dashdotted
black line with square) and LLS24 (solid black line) simulations. Error bars shown are standard errors of
observation samples.
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Chapter 6

Discussions

The research study presented focuses on deep convective cloud parameterisations for a

global model, the role of the time dependence of INP activity in initiating ice particles,

and the distribution of the warm and cold rain processes in the MC3E storm.

A new deep convective microphysics scheme (ACC scheme) was implemented in the

SCAM6. The MC3E storm was simulated with the new convection scheme in the

SCAM6, and the results were analysed. AC model studies by Waman et al. (2023) and

Gupta et al. (2023) also simulated the MC3E case of 10 May 2011 and the results are

discussed here.

The ACC convection scheme is a hybrid bin/bulk microphysics scheme with fine ver-

tical resolution and follows the evolution of the hydrometeor. The ACC scheme shows

a good agreement of the cloud microphysical properties with the aircraft observations.

The maximum LWC predicted by ACC scheme is 2.6 g m−3. Rosenfeld and Wood-

ley (2000) demonstrated that LWC can reach up to 1.8 gm−3 in convective clouds.

Prabha et al. (2011) observed LWC between 0.5 − 2 gm−3 for convective clouds dur-

ing pre-monsoon and monsoon in India. The LWC predicted by the ACC scheme is

representative of the convective cloud.

Numerous cloud-modelling studies and measurements have underlined the importance

of representation of SIP mechanisms in cloud microphysics to be able to accurately pre-

dict the ice particle number concentrations (Mace et al., 2009; Field et al., 2016; Ladino

et al., 2017; Sullivan et al., 2017, 2018a; Sotiropoulou et al., 2020, 2021; O’Shea et al.,

2021; Atlas et al., 2022). SZ11 microphysics only treats the HM process of rime splin-

tering. Recently Hartmann et al. (2023) did not observe the HM process in their labor-

atory experiments. Aircraft observations by Harris-Hobbs and Cooper (1987) observed

rimed ice in their aircraft observation of warm-based convective clouds. Crosier et al.
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(2011) and Lasher-Trapp et al. (2016) observed rimed ice in the regions of the HM pro-

cess and theorised that the rimed ice was produced from the HM process. The presence

of the HM process’s existence is uncertain.

In the ACC scheme, the predicted ice concentrations are of the same order of magnitude

as the observations. The contribution from the cloud-ice initiated by the three SIP

mechanisms are tracked using tagging tracers and have been plotted. Breakup during

ice-ice collisions is the most prominent SIP mechanism. In the mixed phase regions,

the cloud ice generated from the SIP mechanisms are up o two orders of magnitude

higher than the cloud-ice initiated from the heterogeneous ice nucleation. Such high

difference in the magnitude would result in the diminishing effect of the heterogeneous

ice nucleation in the mixed-phase regions.

The ACC convection scheme predicts a higher precipitation intensity than the obser-

vation. The simplified dynamics of considering a single bulk plume do not represent

the small-scale dynamic processes in nature, such as overturning and density currents

in planetary boundary layer (PBL). The simplified dynamics of the plume do not con-

sider the recirculation of homogeneously nucleated ice into the convective plumes from

downdrafts. Another issue in these simulations is that graupel/hail processes are only

considered in the ACC scheme. The implementation of a hybrid bin/bulk scheme is

more computationally expensive than the original SZ11 scheme. The computation time

for the simulations with the ACC scheme was 10 minutes for a single-column model

run, whereas SZ11 scheme took only 2 minutes to complete the run.

Deep convective clouds showed a complex response to the changes in the aerosol load-

ing in the environment. In high-CCN run, numerous cloud droplets compete for avail-

able water vapour, leading to smaller droplets. Conversely, in the low CCN condi-

tion, cloud droplets grow through condensation and effective coalescence, resulting in

larger-sized droplets. This is an expected result (Rosenfeld et al., 2008; Andreae and

Rosenfeld, 2008; Fan et al., 2016). Above −15◦C, the LWC of low-CCN run is higher

than the ACC_24 run because of the reduced riming of snow and graupel/hail. Due

to the large amount of cloud liquid, there is an increase in freezing of cloud droplets

and increased intensity of graupel-snow collisions (Seifert et al., 2012). The increased

riming and aggregation in high-CCN, leads to increased concentrations of larger ice

particles. In the Low-CCN run because of the large mean cloud droplet diameter the

HM process and raindrop freezing fragmentation produce more splinters than the high-

CCN run. The changes in the prevailing hydrometeors in different regions of the cloud

underline the importance of phase partitioning in clouds.

In high-INP run, the more significant number of initiated cloud droplets leads to re-

duced collection efficiency and consequently smaller droplet sizes, resulting in de-

creased rain formation. This increase in LWC for the high-INP occurs due to a de-

64



creased rate of collision-coalescence among cloud droplets, leading to raindrop form-

ation. In the mixed-phase regions, the number concentration of total ice particles does

not show significant change because they are influenced by the intensity of the breakup

during ice-ice collisions mechanism.

Role of time-dependent INP freezing in MC3E storm using the SCAM6 and AC sim-

ulations. Jakobsson et al. (2022) observed a temperature shift of 0.3 K after 3 minutes

of constant isothermal freezing, a weak time dependence. Aerosol samples showed

increased INP activity by 70 − 100% when they were isothermally freezed for 2-10

hours. The model simulations of ACC and Waman et al. (2023) predicted a small

effect of time-dependent on the overall ice particle concentrations due to the fast con-

vective ascent in the convective regions. The prevalence of the SIP mechanisms in the

mixed phase regions is predicted to diminish any small effect by the time-dependence.

Both ACC_24 run and simulations by Waman et al. (2023) predict that SIP mechanisms

contribute up to 99% of ice particle number concentrations in the mixed phase regions

for the MC3E storm.

The precipitation generated by the cold rain and warm rain processes was studied from

the simulating the MC3E campaign using the AC model (Gupta et al., 2023). It was

predicted that 60% of the total precipitation was from cold precipitation. Gupta et al.

(2023) observed that convective precipitation contributed up to 20% to the total accu-

mulated surface precipitation. Whereas the ACC scheme predicts the contribution to be

25%. In the Mc3E case, the cloud droplets were (∼ 15μm) smaller than the threshold

size (20 − 25μm) for coalescence . Additionally, it was predicted that cold precipita-

tion was more by one to two orders of magnitude as compared to warm precipitation.
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Chapter 7

Conclusion

The aerosol-cloud interactions are one of the sources of uncertainty in future climate

projections (Forster et al., 2021). The impact of aerosols on clouds and the effect of

these on the climate system remains uncertain. This includes the impact on the precip-

itation and the radiative fluxes at different grid-scale (Tao et al., 2012; Boucher et al.,

2013; Forster et al., 2021). The large uncertainties arise from the complex nature of the

feedback mechanisms and evaluation of physical mechanisms derived from empirical

observations and numerical modelling Boucher et al. (2013); Fan et al. (2016). Vari-

ous studies have revealed different and sometimes contrasting results of the impact of

changes in aerosol loading on the deep convective clouds Tao et al. (2012); Fan et al.

(2016).

The work presented in this thesis was to improve the aerosol-cloud representation

through a detailed hybrid bin/bulk cloud microphysics scheme and also to study the

role of various microphysical mechanisms. The conclusions of the study are presented

below

1. The validation plots of the convective ACC scheme show an improved estimation

of the deep convective cloud properties such as CDNC, LWC, and ice particle

number concentrations.

2. The addition of graupel/hail to the microphysics scheme enabled a more real-

istic representation of the convective clouds’ microphysical processes. Results

show that graupel/hail and snow mass contribute 96% of the total mass of the

ice particles. Snow and graupel/hail have heavy mass and will have higher fall

velocities, affecting the precipitation. Gupta et al. (2023) predicted in their high-

resolution simulations of the MC3E storm that most of the surface precipita-

tion in the MC3E storm was from cold rain processes. Other studies have also
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shown the importance of the representation of graupel/hail in the mesoscale mod-

els (Bryan and Morrison, 2012; Van Weverberg, 2013; Wu et al., 2013).

3. The time-dependent INP activity on heterogeneous ice nucleation does not sig-

nificantly affect the ice particle concentrations in convective clouds. The ascent

in the deep-convective clouds is typically a few minutes (5 minutes). Jakobsson

et al. (2022) showed a weak time dependence of INP activity at time scales of

a few minutes. Waman et al. (2022) showed from their simulations of various

cloud types that the effect of time-dependent INP activity < 10% for deep con-

vective clouds.

4. Simulations from AC model show that time-dependence is not significant in

long-lived clouds (Waman et al., 2022) and the persistent ice nucleation was

from reactivation and recirculation of dust particles.

5. The SIP mechanisms are prevalent in the mixed-phase regions of the convective

clouds and initiate 99% of the ice particle numbers in the mixed-phase areas. For

the MC3E storm, it is predicted that fragmentation during ice-ice collisions is

the most prolific mechanism, contributing up to 90% of the ice particles in the

mixed phase regions. In this storm case, the HM process and raindrop freezing

fragmentation are less active because of the smaller size of supercooled drops

required for such mechanisms.

6. Sensitivity simulations showed a complex response of convective clouds to the

changes in the aerosol loading. Decreasing the aerosol concentrations decreased

the accumulated precipitation by 20% from low-CCN to high-CCN. Increasing

the CCN concentration resulted in numerous and smaller cloud droplets than in

the high-CCN case, which is an expected outcome. These tiny droplets are inef-

ficient in collision coalescence and do not grow by condensation. The richness of

supercooled drops in the environment promotes the riming of snow by accretion

and increases the activity of the riming of snow in the mixed-phase region.

7. Increasing the INP concentrations increased the cloud-ice initiated from hetero-

geneous ice nucleation. However, this did not directly increase the ice particle

concentrations in the mixed-phase regions. The breakup in ice-ice collisions

dampens the effect of the changes in INP on the ice crystal number concentra-

tion.

8. In the MC3E storm, most of the precipitation is generated through ice crystal

processes. The simulations of the high-resolution AC cloud model by Gupta

et al. (2023) demonstrated how fewer INPs lead to reduced snow formation and

60% of the total surface precipitation was generated from cold precipitation.

68



9. The integration of different SIP mechanisms effectively accounts for the discrep-

ancy between the observed number concentrations of active INPs and total ice

particles in simulated clouds.

The analyses in this thesis have raised a new research question regarding the type of

parameterisation applied and the study on aerosol-cloud interactions. Conducting sens-

itivity tests involving microphysical processes such as in-cloud droplet activation and

examining the impact of preferential evaporation of supercooled drops at homogeneous

freezing levels could offer deeper insight into the observed complex response. The im-

plementation of SBM schemes for microphysical processes resulted in an increased

computational time for the model. For bulk cloud microphysics, a single column run

took 2 minutes, while with a hybrid bin/bulk scheme, this time was quadrupled. An-

other approach to enhance representation is through "superparameterisation," where

cloud-resolving models are embedded within each grid column of the GCM. These

high-resolution 2-D cloud-resolving models simulate cloud processes at a smaller scale,

representing the combined effect as heating and cooling rates in the GCMs. Finally,

performing the global model simulations with the developed cloud parameterisations

for a better representation of aerosol-cloud interactions with the aim of improving cli-

mate projections.
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