LUND UNIVERSITY

Automated Bug Assignment: Ensemble-based Machine Learning in Large Scale
Industrial Contexts

Jonsson, Leif; Borg, Markus; Broman, David; Sandahl, Kristian; Eldh, Sigrid; Runeson, Per

Published in:
Empirical Software Engineering

DOI:
10.1007/s10664-015-9401-9

2015

Link to publication

Citation for published version (APA):

Jonsson, L., Borg, M., Broman, D., Sandahl, K., Eldh, S., & Runeson, P. (2015). Automated Bug Assignment:
Ensemble-based Machine Learning in Large Scale Industrial Contexts. Empirical Software Engineering, 21(4).
https://doi.org/10.1007/s10664-015-9401-9

Total number of authors:

General rights

Unless other specific re-use rights are stated the following general rights apply:

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.

* You may not further distribute the material or use it for any profit-making activity or commercial gain

* You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

LUND UNIVERSITY

PO Box 117
221 00 Lund

+46 46-222 00 00


https://doi.org/10.1007/s10664-015-9401-9
https://portal.research.lu.se/en/publications/0a7a873f-c93e-4846-bf92-3ab882384457
https://doi.org/10.1007/s10664-015-9401-9

Download date: 08. Nov. 2025



Empir Software Eng manuscript No.
(will be inserted by the editor)

Automated Bug Assignment: Ensemble-based
Machine Learning in Large Scale Industrial Contexts

Leif Jonsson - Markus Borg - David
Broman - Kristian Sandahl - Sigrid
Eldh - Per Runeson

Received: date / Accepted: date

Abstract Context: Bug report assignment is an important part of software
maintenance. In particular, incorrect assignments of bug reports to develop-
ment teams can be very expensive in large software development projects.
Several studies propose automating bug assignment techniques using machine
learning in open source software contexts, but no study exists for large-scale
proprietary projects in industry. Objective: The goal of this study is to eval-
uate automated bug assignment techniques that are based on machine learn-
ing classification. In particular, we study the state-of-the-art ensemble learner
Stacked Generalization (SG) that combines several classifiers. Method: We
collect more than 50,000 bug reports from five development projects from two
companies in different domains. We implement automated bug assignment

L. Jonsson

Ericsson and Department of Computer and Information Science Linkdping University
Torshamnsgatan 42

SE-16480, Stockholm, Sweden

Tel.: +46-107147215

E-mail: leif.jonsson@ericsson.com

M. Borg
Department of Computer Science, Lund University
E-mail: markus.borg@cs.lth.se

D. Broman
University of California, Berkeley
E-mail: davbr@berkeley.edu

K. Sandahl
Department of Computer and Information Science Linkdping University
E-mail: kristian.sandahl@liu.se

S. Eldh
Ericsson AB
E-mail: sigrid.eldh@ericsson.com

P. Runeson
Department of Computer Science, Lund University
E-mail: Per.Runeson@cs.lth.se



2 Leif Jonsson et al.

and evaluate the performance in a set of controlled experiments. Results: We
show that SG scales to large scale industrial application and that it outper-
forms the use of individual classifiers for bug assignment, reaching prediction
accuracies from 50% to 90% when large training sets are used. In addition, we
show how old training data can decrease the prediction accuracy of bug as-
signment. Conclusions: We advice industry to use SG for bug assignment in
proprietary contexts, using at least 2,000 bug reports for training. Finally, we
highlight the importance of not solely relying on results from cross-validation
when evaluating automated bug assignment.

1 Introduction

In large projects, the continuous inflow of bug reports' challenges the develop-
ers’ abilities to overview the content of the Bug Tracking System (BTS) (Bet-
tenburg et al, 2008; Just et al, 2008). As a first step toward correcting a bug,
the corresponding bug report must be assigned to a development team or an
individual developer. This task, referred to as bug assignment, is normally done
manually. However, several studies report that manual bug assignment is labor-
intensive and error-prone (Baysal et al, 2009; Jeong et al, 2009; Bhattacharya
et al, 2012), resulting in “bug tossing” (i.e., reassigning bug reports to another
developer) and delayed bug corrections. Previous work report that bug tossing
is frequent in large projects; 25% of bug reports are reassigned in the Eclipse
Platform project (Anvik and Murphy, 2011) and over 90% of the fixed bugs in
both the Eclipse Platform project and in projects in the Mozilla foundation
have been reassigned at least once (Bhattacharya et al, 2012). Moreover, we
have previously highlighted the same phenomenon in large-scale maintenance
at Ericsson (Jonsson et al, 2012).

Several researchers have proposed improving the situation by automating
bug assignment. The most common automation approach is based on classi-
fication using supervised Machine Learning (ML) (Anvik et al, 2006; Jeong
et al, 2009; Alenezi et al, 2013) (see Section 2 for a discussion about machine
learning and classification). By training a classifier, incoming bug reports can
automatically be assigned to developers. A wide variety of classifiers have been
suggested, and previous studies report promising prediction accuracies rang-
ing from 40% to 60% (Anvik et al, 2006; Ahsan et al, 2009; Jeong et al, 2009;
Lin et al, 2009). Previous work has focused on Open Source Software (OSS)
development projects, especially the Eclipse and Mozilla projects. Only a few
studies on bug assignment in proprietary development projects are available,
and they target small organizations (Lin et al, 2009; Helming et al, 2011). Al-
though OSS development is a relevant context to study, it differs from propri-
etary development in aspects such as development processes, team structure,
and developer incentives. Consequently, whether previous research on auto-

1 Other common names for bug report include issues, tickets, fault reports, trouble reports,
defect reports, anomaly reports, maintenance requests, and incidents.



Title Suppressed Due to Excessive Length 3

mated bug assignment applies to large proprietary development organizations
remains an open question.

Researchers have evaluated several different ML techniques for classifying
bug reports. The two most popular classifiers in bug assignment are Naive
Bayes (NB) and Support Vector Machines (SVM), applied in pioneering work
by Cubranic and Murphy (2004) and Anvik et al (2006), respectively. Previ-
ous work on bug assignment has also evaluated several other classifiers, and
compared the prediction accuracy (i.e., the proportion of bug reports assigned
to the correct developer) with varying results (Anvik et al, 2006; Ahsan et al,
2009; Helming et al, 2011; Anvik and Murphy, 2011; Bhattacharya et al, 2012).
To improve the accuracy, some authors have presented customized solutions
for bug assignment, tailored for their specific project contexts (e.g., Xie et al
(2012) and Xia et al (2013)). While such approaches have the potential to
outperform general purpose classifiers, we instead focus on a solution that can
be deployed as a plug-in to an industrial BTS with limited customization. On
the other hand, our solution still provides a novel technical contribution in re-
lation to previous work on ML-based bug assignment by combining individual
classifiers.

Studies in other domains report that ensemble learners, an approach to
combine classifiers, can outperform individual techniques when there is di-
versity among the individual classifiers (Kuncheva and Whitaker, 2003). In
recent years, combining classifiers has been used also for applications in soft-
ware engineering. Examples include effort estimation (Li et al, 2008), fault
localization (Thomas et al, 2013), and fault classification (Xia et al, 2013).
In this article, we propose using Stacked Generalization (SG) (Wolpert, 1992)
as the ensemble learner for improving prediction accuracy in automated bug
assignment. SG is a state-of-the-art method to combine output from multiple
classifiers, used in a wide variety of applications. One prominent example was
developed by the winning team of the Netflix Prize, where a solution involving
SG outperformed the competition in predicting movie ratings, and won the $1
million prize (Sill et al, 2009). In the field of software engineering, applications
of SG include predicting the numbers of remaining defects in black-box test-
ing (Li et al, 2011), and malware detection in smartphones (Amamra et al,
2012). In a previous pilot study, we initially evaluated using SG for bug assign-
ment with promising results (Jonsson et al, 2012). Building on our previous
work, this paper constitutes a deeper study using bug reports from different
proprietary contexts. We analyze how the prediction accuracy depends on the
choice of individual classifiers used in SG. Furthermore, we study learning
curves for different systems, that is, how the amount of training data impacts
the overall prediction accuracy.

We evaluate our approach of automated bug assignment on bug reports
from five large proprietary development projects. Four of the datasets origi-
nate from product development projects at a telecom company, totaling more
than 35,000 bug reports. To strengthen the external validity of our results, we
also study a dataset of 15,000 bug reports, collected from a company devel-
oping industrial automation systems. Both development contexts constitute



4 Leif Jonsson et al.

large-scale proprietary software development, involving hundreds of engineers,
working with complex embedded systems. As such, we focus on software engi-
neering much different from the OSS application development that has been
the target of most previous work. Moreover, while previous work address bug
assignment to individual developers, we instead evaluate bug assignment to
different development teams, as our industrial partners report this task to
be more important. In large scale industrial development it makes sense to
assign bugs to a team and let the developers involved distribute the work in-
ternally. Individual developers might be unavailable for a number of reasons,
e.g., temporary peaks of workload, sickness, or employee turnover, thus team
assignment is regarded as more important by our industry partners.

The overall goal of our research is to support bug assignment in large pro-
prietary development projects using state-of-the-art ML. We further refine this
goal into four Research Questions (RQ):

RQ1 Does stacked generalization outperform individual classifiers?

RQ2 How does the ensemble selection in SG affect the prediction accuracy?
RQ3 How consistent learning curves does SG display across projects?

RQ4 How does the time locality of training data affect the prediction accuracy?

To be more specific, our contributions are as follows:

— We synthesize results from previous studies on automated bug assignment
and present a comprehensive overview (Section 3).

— We present the first empirical studies of automated bug assignment with
data originating from large proprietary development contexts, where bug
assignments are made at team level (Section 4).

— We conduct a series of experiments to answer the above specified research
questions (Section 5) and report the experimental results and analysis from
a practical bug assignment perspective (Section 6), including analyzing
threats to validity (Section 7).

— We discuss the big picture, that is, the potential to deploy automated sup-
port for bug assignment in the two case companies under study (Section 8).

2 Machine Learning

Machine learning is a field of study where computer programs can learn and
get better at performing specific tasks by training on historical data. In this
section, we discuss more specifically what machine learning means in our con-
text, focusing on supervised machine learning—the type of machine learning
technique used in this paper.

2.1 Supervised Machine Learning Techniques and their Evaluation

In supervised learning, a machine learning algorithm is trained on a training
set (Bishop, 2006). A training set is a subset of some historical data that is



Title Suppressed Due to Excessive Length 5

collected over time. Another subset of the historical data is the test set, used
for evaluation. The evaluation determines how well the system performs with
respect to some metric. In our context, an example metric is the number of bug
reports that are assigned to correct development teams, that is, the teams that
ended up solving the bugs. The training set can, in turn, be split into disjoint
sets for parameter optimization. These sets are called hold-out or validation
sets. After the system has been trained on the training data, the system is then
evaluated on each of the instances in the test set. From the point of view of
the system, the test instances are completely new since none of the instances
in the training set are part of the test set.

To evaluate the predictions, we apply cross-validation with stratification
(Kohavi, 1995). Stratification means that the instances in the training sets
and the test sets are selected to be proportional to their distribution in the
whole dataset. In our experiments, we use stratified 10-fold cross-validation,
where the dataset is split into ten stratified sets. Training and evaluation are
then performed ten times, each time shifting the set used for testing. The final
estimate of accuracy of the system is the average of these ten evaluations.

In addition to 10-fold cross-validation, we use two versions of timed evalu-
ation to closely replicate a real world scenario: sliding window and cumulative
time window. In the sliding window evaluation, both the training set and the
test set have fixed sizes, but the time difference between the sets varies by
selecting the training set farther back in time. Sliding window is described in
more details in Section 5.5.4. The sliding window approach makes it possible
to study how time locality of bug reports affects the prediction accuracy of a
system.

The cumulative time window evaluation also has a fixed sized test set, but
increases the size of the training set by adding more data farther back in time.
This scheme is described in more details in Section 5.5.5. By adding more bug
reports incrementally, we can study if adding older bug reports is detrimental
to prediction accuracy.

2.2 Classification

We are mainly concerned with the type of machine learning techniques called
classification techniques. In classification, a software component, called a clas-
sifier, is invoked with inputs that are named features. Features are extracted
from the training data instances. Features can, for instance, be in the form of
free text, numbers, or nominal values. As an example, an instance of a bug
report can be represented in terms of features where the subject and descrip-
tion are free texts, the customer is a nominal value from a list of possible
customers, and the severity of the bug is represented on an ordinal scale. In
the evaluation phase, the classifier will—based on the values of the features of
a particular instance—return the class that the features correspond to. In our
case, the different classes correspond to the development teams in the organi-
zation that we want to assign bugs to. The features can vary from organization



6 Leif Jonsson et al.

to organization, depending on which data that is collected in the bug tracking
system.

2.3 Ensemble Techniques and Stacked Generalization

It is often beneficial to combine the results of several individual classifiers. The
general idea to combine classifiers is called ensemble techniques. Classifiers can
be combined in several differet ways. In one ensemble technique, called bag-
ging (Breiman, 1996), many instances of the same type of classifier are trained
on different versions of the training set. Each classifier is trained on a new
dataset, created by sampling with replacement from the original dataset. The
final result is then obtained by averaging the results from all of the classifiers
in the ensemble. Another ensemble technique, called boosting, also involves
training several instances of the same type of classifier on a modified training
set, which places different weights on the different training instances. The clas-
sifiers are trained and evaluated in sequence with subsequent classifiers trained
with higher weights on instances that previous classifiers have misclassified. A
popular version of boosting is called Adaboost (Freund and Schapire, 1995).
Both bagging and boosting use the same type of classifiers in the ensemble
and vary the data the classifiers are trained on.

Stacked Generalization (SG) (Wolpert, 1992) (also called stacking or blend-
ing) is an ensemble technique that combines several level-0 classifiers of differ-
ent types with one level-1 classifier (see Figure 1) into an ensemble. The level-1
classifier trains and evaluates all of the level-0 classifiers on the same data and
learns (using a separate learning algorithm) which of the underlying classifiers
(the level-0 classifiers) that perform well on different classes and data. The
level-1 training algorithm is typically a relatively simple smooth linear model
(Witten et al, 2011), such as logistic regression. Note that in stacking, it is
completely permissible to put other ensemble techniques as level-0 classifiers.

In this study (see Sections 5 and 6), we are using stacked generalization
because this ensemble technique meets our goal of combining and evaluating
different classifiers.



Title Suppressed Due to Excessive Length 7

Legend

Level -1
Classifier
Final Prediction

Level -0
Classifier

Stacked
Generalizer

Decision Tree
Classifier

Bayes Net
Classifier

Fig. 1: Stacked Generalization

3 Related Work on Automated Bug Assignment

Several researchers have proposed automated support for bug assignment.
Most previous work can either be classified as ML classification problems or In-
formation Retrieval (IR) problems. ML-based bug assignment uses supervised
learning to classify bug reports to the most relevant developer. IR-based bug
assignment on the other hand, considers bug reports as queries and developers
as documents of various relevance given the query. A handful of recent studies
show that specialized solutions for automated bug assignment can outperform
both ML and IR approaches, e.g., by combining information in the BTS with
the source code repository, or by crafting tailored algorithms for matching bug
reports and developers. We focus the review of previous work on applications
of off-the-shelf classification algorithms, as our aim is to explore combinations
of readily available classifiers. However, we also report key publications both
from IR-based bug assignment and specialized state-of-the-art tools for bug
assignment in Section 3.2.

3.1 Automated Bug Assignment using General Purpose Classifiers

Previous work on ML-based bug assignment has evaluated several techniques.
Figure 2 gives a comprehensive summary of the classifiers used in previous
work on ML-based bug assignment. Cubranic and Murphy (2004) pioneered
the work by proposing a Naive Bayes (NB) classifier trained for the task.
Anvik et al (2006) also used NB, but also introduced Support Vector Machines
(SVM), and C4.5 classifiers. Later, they extended that work and evaluated also
rules-based classification and Expectation Maximization (EM) (Anvik, 2007),
as well as Nearest Neighbor (NN) (Anvik and Murphy, 2011). Several other



8 Leif Jonsson et al.

researchers continued the work by Anvik et al by evaluating classification-
based bug assignment on bug reports from different projects, using a variety
of classifiers. Ahsan et al (2009) were the first to introduce Decision Trees
(DT), RBF Network (RBF), REPTree (RT), and Random Forest (RF) for
bug assignment. The same year, Jeong et al (2009) proposed to use Bayesian
Networks (BNet). Helming et al (2011) used Neural Networks (NNet) and
Constant Classifier (CC). In our work, we evaluate 28 different classifiers, as
presented in Section 5.

Two general purpose classification techniques have been used more than
the others, namely NB and SVM (cf. Figure 2). The numerous studies on NB
and SVM are in line with ML work in general; NB and SVM are two standard
classifiers with often good results that can be considered default choices when
exploring a new task. Other classifiers used in at least three previous studies
on bug assignment are Bayesian Networks (BNET), and C4.5. We include both
NB and SVM in our study, as presented in Section 5.

Eight of the studies using ML-based bug assignment compare different
classifiers. The previously largest comparative studies of general purpose clas-
sifiers for bug assignment used seven and six classifiers, respectively, (Ahsan
et al, 2009; Helming et al, 2011). We go beyond previous work by compar-
ing more classifiers. Moreover, we propose applying ensemble learning for bug
assignment, i.e., combining several different classifiers.

Figure 2 also displays the features used to represent bug reports in previous
work on ML-based bug assignment. Most previous approaches rely solely on
textual information, most often the title and description of bug reports. Only
two of the previous studies combine textual and nominal features in their
solutions. Ahsan et al (2009) include information about product, component,
and platform, and Lin et al (2009) complement textual information with
component, type, phase, priority, and submitter. In our study, we complement
textual information by submitter site, submitter type, software revision, and
bug priority.

Figure 3 shows an overview of the previous evaluations of automated bug
assignment (including studies presented in Section 3.2. It is evident that pre-
vious work has focused on the context of Open Source Software (OSS) de-
velopment, as 23 out of 25 studies have studied OSS bug reports. This is in
line with general research in empirical software engineering, explained by the
appealing availability of large amounts of data and the possibility of replica-
tions (Robinson and Francis, 2010). While there is large variety within the OSS
domain, there are some general differences from proprietary bug management
that impact our work. First, the bug databases used in OSS development are
typically publicly available; anyone can submit bug reports. Second, Paulson
et al (2004) report that defects are found and fixed faster in OSS projects.
Third, while proprietary development often is organized in teams, an OSS
development community rather consists of individual developers. Also, the
management in a company typically makes an effort to maintain stable teams
over time despite employee turnover, while the churn behavior of individual
developers in OSS projects is well-known (Asklund and Bendix, 2002; Robles



Title Suppressed Due to Excessive Length 9

ASSIGNMENT TECHNIQUE FEATURES
Classification R Textual Nominal

Bayesian NETworks
MNearest Neighbor
Neural Networks

= |RBF Network
Constant Classifier

Expect. Maximization
Algebreic

= |C4.5
Probabilistic
Description
Comments
|dentifiers

= [Product

Rules
RSSE

s [ [ [3e [3¢ [5¢ [3¢ 3¢ |5 |5¢ |5 |5 |Title
Version
Type
Phase
Priority
Submitter

= |Decision Trees
= |= |[Naive Bayes

= |Random Forest

= |REPTree

> [SWM

= [Component
= |Platform

Ahsan et al. (2009)

Alenezi et al. (2013)

Aljarah et al. (2011) X

Anvik and Murphy (2011)
Anvik et al. (2006)| |x X X

Baysal et al (2009) X
Bhattacharya et al. (2012)] |X|x X X
Canfora and Cerulo (2006) X
Chen et al. (2011) X

Cubranic and Murphy (2004) X
Helming et al. (2011)| x
Jeong et al. (2009) x| X

Kagdi et al. (2012) X x| x

Lin et al. (2009) X X
Linares-Vasquez et al. (2012) X X X
Matter et al. (2009) X

Nagwani and VYerma (2012) X X
Park et al (2011) X
Shokripour et al. (2012) X X
Xuan et al (2010)

| Jonsson etal. (2015)| x| x| x x| x| X]|x x| X X|x X|x

>
=
=
>
Ed
=

>
52
=
>
=

AL A LA L L R L A L A A R
Ed

=

> [ | [

>

Fig. 2: Techniques used in previous studies on ML-based bug assignment.
Bold author names indicate comparative studies, capital X shows the classifier
giving the best results. IR indicates Information Retrieval techniques. The last
row shows the study presented in this paper.

and Gonzalez-Barahona, 2006). Consequently, due to the different nature of
OSS development, it is not clear to what extent previous findings based on
OSS data can be generalized to proprietary contexts. Moreover, we are not
aware of any major OSS bug dataset that contains team assignments with
which we can directly compare our work. This is unfortunate since it would
be interesting to use the same set of tools in the two different contexts.

As the organization of developers in proprietary projects tend to be dif-
ferent from OSS communities, the bug assignment task we study differs ac-
cordingly. While all previous work (including the two studies on proprietary
development contexts by Lin et al (2009) and Helming et al (2011)) aim at
supporting assignment of bug reports to individual developers, we instead ad-
dress the task of bug assignment to development teams. Thus, as the number
of development teams is much lower than the number of developers in nor-
mal projects, direct comparisons of our results to previous work can not be



10 Leif Jonsson et al.

made. As an example, according to Open HUB? (Dec 2014), the number of
contributors to some of the studied OSS projects in Figure 3 are: Linux kernel
(13,343), GNOME (5,888), KDE (4,060), Firefox (3,187), NetBeans (893), gcc
(534), Eclipse platform (474), Bugzilla (143), OpenOffice (124), Mylyn (92),
ArgoUML (87), Maemo (83), UNICASE (83), jEdit (55), and muCommander
(9). Moreover, while the number of bugs resolved in our proprietary datasets
is somewhat balanced, contributions in OSS communities tend to follow the
“onion model” (Aberdour, 2007), i.e., the commit distribution is skewed, a few
core developers contribute much source code, but most developers contribute
only occasionally.

Bug reports from the development of Eclipse are used in 14 out of the
21 studies (cf. Figure 3). Still, no set of Eclipse bugs has become the de facto
benchmark. Instead, different subsets of bug reports have been used in previous
work, containing between 6,500 and 300,000 bug reports. Bug reports origi-
nating from OSS development in the Mozilla foundation is the second most
studied system, containing up to 550,000 bug reports (Bhattacharya et al,
2012). While we do not study bug repositories containing 100,000s of bug re-
ports, our work involves much larger datasets than the previously largest study
in a proprietary context by (Lin et al, 2009) (2,576 bug reports). Furthermore,
we study bug reports from five different development projects in two different
companies.

The most common measure to report the success in previous work is ac-
curacy®, reported in 10 out of 21 studies. As listed in Figure 3, prediction
accuracies ranging from 0.14 to 0.78 have been reported, with an average of
0.42 and standard deviation of 0.17. This suggests that a rule of thumb could
be that automated bug assignment has the potential to correctly assign almost
every second bug to an individual developer.

3.2 Other Approaches to Automated Bug Assignment

Some previous studies consider bug assignment as an IR problem, meaning
that the incoming bug is treated as a search query and the assignment op-
tions are the possible documents to retrieve. There are two main families of
IR models used in software engineering: algebraic models and probabilistic
models (Borg et al, 2014). For automated bug assignment, four studies used
algebraic models (Chen et al, 2011; Kagdi et al, 2012; Nagwani and Verma,
2012; Shokripour et al, 2012). A probabilistic IR model on the other hand, has
only been applied by Canfora and Cerulo (2006). Moreover, only (Linares-
Vasquez et al, 2012) evaluated bug assignment using both classification and IR
in the same study, and reported that IR displayed the most promising results.

2 Formerly Ohloh.net, an open public library presenting analyses of OSS projects
(www.openhub.net).

3 Equivalent to recall when recommending only the most probable developer, aka. the
Top-1 recommendation or Rc@1



Title Suppressed Due to Excessive Length 11

CONTEXT BESTRESULTS
c: % £ Cases (#bug reports) Accuracy Other eval.
o O D
Ahsan et al. (2009) X Mozilla (1,983) 0.44
. Eclipse (7,561, 6,791), Netbeans (11,311), F@1:0.34, 0.35,
Alenezi et al. (2013) X Maemo (3,508) 0.20, 0.48
Aljarah et al. (2011) X Eclipse (38,843) F@1: 0.57
. Eclipse (8,500), Firefox (3,400), gcc (2,600), F@1:0.22, 0.02,
Anvik and Murphy (2011)) | X MyLyn (700). Bugzilla (850) 0.06.0.46.0.10
Anvik et al. (2008) X Eclipse (8,655), Firefox (9,752), gcc (2,629) 0.58, 0.64 F@1: 0.008
Baysal. et al. (2009) Mot evaluated
Bhattacharya et al. (2012) X Mozilla (550,000), Eclipse (306,286) 0.70,0.70
Canfora and Cerulo (2006) X Mozilla (12,477), KDE (14,396) 032,059
Chenetal (2011) | X Eclipse (115,058), Mozillz (119,852) Sign. reduced
bug tossing
Cubranic and Murphy (2004) X Eclipse (15,859) 0.3
Helming et al. (2011)] X X |King's Tale (256), UNICASE (1,181), DOLLI {411)] 0.40, 0.30, 0.40
Jeong etal. (2009) | X Eclipse (211,822), Mozilla (429 903) R“‘%iéms’
Kagdi et al. (2012) X ArgoUNL, Eclipse, Koffice Qualitative
Lin etal. (2009)| X SoftPM (2,576) 0.78
. o F@1:0.05,0.31,
Linares-Vasquez et al. (2012) X jEdit (200), ArgoUML (100), muCommander (100) 0.60
Matter et al. (2009) X Eclipse (130,769) F@1:0.3
Nagwani and Verma (2012) X Mozilla Qualitative
Apache (656), Eclipse (47,862), Linux kernel 0.70, 0.40, 0.30,
Parkcetal (2011)) | X (968), Mozilla (48,424) 0.65
Servant and Jones (2012) X AspectJ (889) 0.35
. Eclipse (35,140), Mozilla (9,917),
Shokripour et al. (2012) X GNOME (119.176) 0.31,0.27,0.28
Firefox (188,139), Eclipse (177,637), Apache |0.30, 0.39, 0.40, Sian faster than
Tamrawi et al. (2011) X (43,162), NetBeans (23,522), FreeDesktop 0.29, 0.53, 0.46, gn- ML
(17,084), Gee (19,430), Jazz (34,228) 0.30
Wu etal. (2011) Firefox (5,185) 0.17
) ] Re@5: 0.80
. Eclipse (34,399), Mozilla (26,046), gcc (5,742), ;
Niaetal (2012) | X OpenOffice (15,448), NetBeans (26,240) 0.56, %5;} 0.48,
Xie et al. (2013) X Eclipse (2,558), Firefox (3,174) 0.14 (Ecl.) [Rc@2: 0.20 (Ff.)
Xuan et al. (2010) X Eclipse (20,000) 0.2
Jonsson et al. (2015)| X Telecom (=35,000) + Automation (15,113) D'TS’T%ES’S%ST’

Fig. 3: Evaluations performed in previous studies with BTS focus. Bold author
names indicate studies evaluating general purpose ML-based bug assignment.
Results are listed in the same order as the systems appear in the fourth column.
The last row shows the study presented in this paper, even though it is not
directly comparable.

Most studies on IR-based bug assignment report F-scores instead of accu-
racy. In Figure 3 we present F-scores for the first candidate developer suggested
in previous work (F@1). The F-scores display large variation; about 0.60 for a
study on muCommander and one of the studies of Eclipse, and very low values
on work on Firefox, gcc, and jEdit. The variation shows that the potential of
automated bug assignment is highly data dependent, as the same approach
evaluated on different data can display large differences (Anvik and Murphy,
2011; Linares-Vasquez et al, 2012). A subset of IR-based studies reports nei-
ther accuracy nor F-score. Chen et al (2011) conclude that their automated
bug assignment significantly reduces bug tossing as compared to manual work.
Finally, Kagdi et al (2012) and Nagwani and Verma (2012) perform qualitative



12 Leif Jonsson et al.

evaluations of their approaches. Especially the former study reports positive
results.

Three studies on automated bug assignment identified in the literature
present tools based on content-based and collaborative filtering, i.e., techniques
from research on Recommendation Systems (Robillard et al, 2014). Park et al
(2011) developed an RS where bug reports are represented by their textual
description extended by the nominal features: platform, version, and devel-
opment phase. Baysal et al (2009) presented a framework for recommending
developers for a given bug report, using a vector space analysis of the history
of previous bug resolutions. Matter et al (2009) matched bug reports to devel-
opers by modelling the natural language in historical commits and comparing
them to the textual content of bug reports.

More recently, some researchers have showed that the accuracy of auto-
mated bug assignment can be improved by implementing more advanced al-
gorithms, tailored for both the task and the context. Tamrawi et al (2011)
proposed Bugzie, an automated bug assignment approach they refer to as
fuzzy set and cache-based. Two assumptions guide their work: 1) the textual
content of bug reports is assumed to relate to a specific technical aspect of the
software system, and 2) if a developer frequently resolves bugs related to such a
technical aspect, (s)he is capable of resolving related bugs in the future. Bugzie
models both technical aspects and developers’ expertise as bags-of-words and
matches them accordingly. Furthermore, to improve the scalability, Bugzie
recommends only developers that recently committed bug resolutions, i.e., de-
velopers in the cache. Bugzie was evaluated on more than 500,000 bug reports
from seven OSS projects, and achieved an prediction accuracies between 30%
and 53%.

Wu et al (2011) proposed DREX, an approach to bug assignment using
k-nearest neighbour search and social network analysis. DREX recommends
performs assignment by: 1) finding textually similar bug reports, 2) extracting
developers involved in their resolution, and 3) ranking the developers expertise
by analyzing their participation in resolving the similar bugs. The participa-
tion is based on developers’ comments on historical bug reports, both man-
ually written comments and comments automatically generated when source
code changes are committed. DREX uses the comments to construct a social
network, and approximated participation using a series of network measures.
An evaluation on bug reports from the Firefox OSS project shows the so-
cial network analysis of DREX outperforms a purely textual approach, with
a prediction accuracy of about 15% and recall when considering the Top-10
recommendations (Rc@10, i.e., the bug is included in the 10 first recommen-
dations) of 0.66.

Servant and Jones (2012) developed WhoseFault, a tool that both assigns
a bug to a developer and presents a possible location of the fault in the source
code. WhoseFault is also different from other approaches reported in this sec-
tion, as it performs its analysis originating from failures from automated test-
ing instead of textual bug reports. To assign appropriate developers to a failure,
WhoseFault combines a framework for automated testing, a fault localization



Title Suppressed Due to Excessive Length 13

technique, and the commit history of individual developers. By finding the
likely position of a fault, and identifying the most active developers of that
piece of source code, WhoseFault reaches a prediction accuracy of 35% for the
889 test cases studied in the AspectJ OSS project. Moreover, the tool reports
the correct developer among the top-3 recommendations for 81.44% of the test
cases.

A trending technique to process and analyze natural language text in soft-
ware engineering is topic modeling. Xie et al (2012) use topic models for auto-
mated bug assignment in their approach DRETOM. First, the textual content
of bug reports is represented using topic models (Latent Dirichlet Allocation
(LDA) Blei et al (2003)). Then, based on the bug-topic distribution, DRETOM
maps each bug report to a single topic. Finally, developers and bug reports are
associated using a probabilistic model, considering the interest and ezpertise
of a developer given the specific bug report. DRETOM was evaluated on more
than 5,000 bug reports from the Eclipse and Firefox OSS projects, and achieved
an accuracy of about 15%. However, considering the Top-5 recommendations
the recall reaches 80% and 50% for Eclipse and Firefox, respectively.

Xia et al (2013) developed DevRec, a highly specialized tool for automated
bug assignment, that also successfully implemented topic models. Similar to
the bug assignment implemented in DREX, DevRec first performs a k-nearest
neighbours search. DevRec however calculates similarity between bug reports
using an advanced combination of the terms in the bug reports, its topic as
extracted by LDA, and the product and component the bug report is related
to (referred to as BR-based analysis). Developers are then connected to bug
reports based on multi-label learning using ML-KNN. Furthermore, DevRec
then also models the affinity between developers and bug reports by calculat-
ing their distances (referred to as D-based analysis). Finally, the BR-analysis
and the D-based analyses are combined to recommend developers for new bug
reports. Xia et al (2013) evaluated DevRec on more than 100,000 bug reports
from five OSS projects, and they also implemented the approaches proposed
in both DREX and Bugzie to enable a comparison The authors report aver-
age Rc@5 and Rc@10 of 62% and 74%, respectively, constituting considerable
improvements compared to both DREX and Bugzie.

In contrast to previous work on specialised tools for bug assignment, we
present an approach based on general purpose classifiers. Furthermore, our
work uses standard features of bug reports, readily available in a typical BTS.
As such, we do not rely on advanced operations such as mining developers’
social networks, or data integration with the commit history from a separate

source code repository. The reasons for our more conservative approach are
fivefold:

1. Our study constitutes initial work on applying ML for automated bug as-
signment in proprietary contexts. We consider it an appropriate strategy
to first evaluate general purpose techniques, and then, if the results are
promising, move on to further refine our solutions. However, while we ad-



14 Leif Jonsson et al.

vocate general purpose classifiers in this study, the way we combine them
into an ensemble is novel in automated bug assignment.

2. The two proprietary contexts under study are different in terms of work
processes and tool chains, thus it would not be possible to develop one
specialized bug assignment solution that fits both the organizations.

3. As user studies on automated bug assignment are missing, it is unclear to
what extent slight tool improvements are of practical significance for an end
user. Thus, before studies evaluate the interplay between users and tools,
it is unclear if specialized solutions are worth the additional development
effort required. This is in line with discussions on improved tool support
for trace recovery (Borg and Pfahl, 2011), and the difference of correctness
and wutility of recommendation systems in software engineering (Avazpour
et al, 2014).

4. Relying on general purpose classifiers supports transfer of research results
to industry. Our industrial partners are experts on developing high quality
embedded software systems, but they do not have extensive knowledge of
ML. Thus, delivering a highly specialized solution would complicate both
the hand-over and the future maintenance of the tool. We expect that this
observation generalizes to most software intensive organizations.

5. Using general purpose techniques supports future replications in other com-
panies. As such replications could be used to initiate case studies involving
end users, a type of studies currently missing, we believe this to be an
important advantage of using general purpose classifiers.

4 Case Descriptions

This section describes the two case companies under study, both of which are
bigger than the vast majority of OSS projects. In OSS projects a typical power-
law behavior is seen with a few projects, such as the Linux kernel, Mozilla etc,
having large number of contributors. We present the companies guided by the
six context facets proposed by Petersen and Wohlin (2009), namely product,
processes, practices and techniques, people, organization, and market. Also, we
present a simplified model of the bug handling processes used in the companies.
Finally, we illustrate where in the process our machine learning system could
be deployed to increase the level of automation, as defined by Parasuraman
et al (2000)%.

4.1 Description of Company Automation
Company Automation is a large international company active in the power and

automation sector. The case we study consists of a development organization
managing hundreds of engineers, with development sites in Sweden, India,

4 Ten levels of automation, ranging from 0, for fully manual work, to 10, when the com-
puter acts autonomously ignoring the human.



Title Suppressed Due to Excessive Length 15

Germany, and the US. The development context is safety-critical embedded
development in the domain of industrial control systems, governed by IEC
61511°. A typical project has a length of 12-18 months and follows an iterative
stage-gate project management model. The software is certified to a Safety
Integrity Level (SIL) of 2 as defined by IEC 61508% mandating strict processes
on the development and maintenance activities. As specified by IEC 61511,
all changes to safety classified source code requires a formal impact analysis
before any changes are made. Furthermore, the safety standards mandate that
both forward and backward traceability should be maintained during software
evolution.

The software product under development is a mature system consisting of
large amounts of legacy code; parts of the code base are more than 20 years old.
As the company has a low staff turnover, many of the developers of the legacy
code are still available within the organization. Most of the software is written
in C/C++. Considerable testing takes place to ensure a very high code quality.
The typical customers of the software product require safe process automation
in very large industrial sites.

The bug-tracking system (BTS) in Company Automation has a central
role in the change management and the impact analyses. All software changes,
both source code changes and changes to documentation, must be connected
to an issue report. Issue reports are categorized as one of the following: error
corrections (i.e., bug reports), enhancements, document modification, and in-
ternal (e.g., changes to test code, internal tools, and administrative changes).
Moreover, the formal change impact analyses are documented as attachments
to individual issue reports in the BTS.

4.2 Description of Company Telecom

Company Telecom is a major telecommunications vendor based in Sweden.
We are studying data from four different development organizations within
Company Telecom, consisting of several hundreds of engineers distributed over
several countries. Staff turnover is very low and many of the developers are
senior developers that have been working on the same products for many years.

The development context is embedded systems in the Information and
Communications Technology (ICT) domain. Development in the ICT domain
is heavily standardized, and adheres to standards such as 3GPP, 3GPP2, ETSI,
IEEE, IETF, ITU, and OMA. Company Telecom is ISO 9001 and TL 9000
certified. At the time the study was conducted, the project model was based
on an internal waterfall-like model, but has since then changed to an Agile
development process.

5 Functional safety - Safety instrumented systems for the process industry sector

6 Functional safety of Electrical/Electronic/Programmable Electronic safety-related sys-
tems



16 Leif Jonsson et al.

Various programming languages are used in the four different products.
The majority of the code is written in C++ and Java, but other languages,
such as hardware description languages, are also used.

Two of the four products are large systems in the ICT domain, one is a
middleware platform, and one is a component system. Two of the products are
mature with a code base older than 15 years, whereas the other two products
are younger, but still older than 8 years. All four products are deployed at
customer sites world-wide in the ICT market.

Issue management in the design organization is handled in two separate
repositories; one for change requests (planned new features or updates) and
one for bug reports. In this study we only use data from the latter, the BTS.

Customer support requests to Company Telecom are handled in a two
layered approach with an initial customer service organization dealing with
initial requests, called Customer Service Requests (CSR). The task of this
organization is to screen incoming requests so that only hardware or software
errors and no other issue, such as configuration problems, are sent down to the
second layer. If the customer support organization believes a CSR to be a fault
in the product, they file a bug report based on the CSR in the second layer
BTS. In this way, the second layer organization can focus on issues that are
likely to be faults in the software. In spite of this approach, some bug reports
can be configuration issues or other problems not directly related to faults in
the code. In this study, we have only used data from the second layer BTS,
but there is nothing in principle that prevents the same approach to be used
on the first layer CSR’s. The BTS is the central point in the bug handling
process and there are several process descriptions for the various employee
roles. Tracking of analysis, implementation proposals, testing, and verification
are all coordinated through the BTS.

4.3 State-of-Practice Bug Assignment: A Manual Process

The bug handling process of both Company Automation and Telecom are
substantially more complex than the standard process described by Bugzilla
(Morzilla, 2013). The two processes are characterized by the development con-
texts of the organizations. Company Automation develops safety-critical sys-
tems, and the bug handling process must therefore adhere to safety standards
as described in Section 4.1. The standards put strict requirements on how soft-
ware is allowed to be modified, including rigorous change impact analyses with
focus on traceability. In Company Telecom on the other hand, the sheer size
of both the system under development and the organization itself are reflected
on the bug handling process. The resource allocation in Company Telecom
is complex and involves advanced routing in a hierarchical organization to a
number of development teams.

We generalize the bug handling processes in the two case companies and
present an overview model of the currently manual process in Figure 4. In
general, three actors can file bug reports: i) the developers of the systems,



Title Suppressed Due to Excessive Length 17

ii) the internal testing organization, and iii) customers that file bug reports
via helpdesk functions. A submitted bug report starts in a bug triaging stage.
As the next step, the Change Control Board (CCB) assigns the bug report
to a development team for investigation. The leader of the receiving team
then assigns the bug report to an individual developer. Unfortunately, the bug
reports often end up with the wrong developer, thus bug tossing (i.e., bug
report re-assignment) is common, especially between teams. The BTS stores
information about the bug tossing that takes place. As a consequence, we can
estimate the classification accuracy of the manual bug assignment process.

New Bug Developer 1
Report
Development\> Team Leader %
N - _> Team 1 _/ /
ew Bug

J

Test ——> Bug
Tracking
System _~> Team N \
eport
BTS) hsug
Customer ( T
Automatic 0ssing
Support _/_> N L_Assignment
N /
~ -

Developer N

Fig. 4: A simplified model of bug assignment in a proprietary context.

4.4 State-of-the-Art: Automated Bug Assignment

We propose, in line with previous work, to automate the bug assignment. Our
approach is to use the historical information in the BTS as a labeled training
set for a classifier. When a new bug is submitted to the BTS, we encode the
available information as features and feed them to a prediction system. The
prediction system then classifies the new bug to a specific development team.
While this resembles proposals in previous work, our approach differs by: i)
aiming at supporting large proprietary organizations, and ii) assigning bug
reports to teams rather than individual developers.

Figure 4 shows our automated step as a dashed line. The prediction system
offers decision support to the CCB, by suggesting which development team
that is the most likely to have the skills required to investigate the issue.
This automated support corresponds to a medium level of automation (“the
computer suggests one alternative and executes that suggestion if the human
approves”), as defined in the established automation model by Parasuraman
et al (2000).



18 Leif Jonsson et al.

5 Method

The overall goal of our work is to support bug assignment in large propri-
etary development projects using state-of-the-art ML. As a step toward this
goal, we study five sets of bug reports from two companies (described in Sec-
tion 4), including information of team assignment for each bug report. We
conduct controlled experiments using Weka (Hall et al, 2009), a mature ma-
chine learning environment that is successfully used across several domains, for
instance, bioinformatics (Frank et al, 2004), telecommunication (Alshammari
and Zincir-Heywood, 2009), and astronomy (Zhao and Zhang, 2008). This sec-
tion describes the definition, design and setting of the experiments, following
the general guidelines by Basili et al (1986) and Wohlin et al (2012).

5.1 Experiment Definition and Context

The goal of the experiments is to study automatic bug assignment using
stacked generalization in large proprietary development contexts, for the pur-
pose of evaluating its industrial feasibility, from the perspective of an applied
researcher, planning deployment of the approach in an industrial setting.
Table 1 reminds the reader of our RQs. Also, the table presents the ra-
tionale of each RQ, and a high-level description of the research approach we
have selected to address them. Moreover, the table maps the RQs to the five
sub-experiments we conduct, and the experimental variables involved.

5.2 Data Collection

We collect data from one development project at Company Automation and
four major development projects at Company Telecom. While the bug tracking
systems in the two companies show many similarities, some slight variations
force us to perform actions to consolidate the input format of the bug reports.
For instance, in Company Automation a bug report has a field called “Title”,
whereas the corresponding field in Company Telecom is called “Heading”. We
align these variations to make the semantics of the resulting fields the same for
all datasets. The total number of bug reports in our study is 15,113 + 35,266
= 50,379. Table 2 shows an overview of the five datasets.

We made an effort to extract similar sets of bug reports from the two com-
panies. However, as the companies use different BTSs, and interact with them
according to different processes, slight variations in the extraction steps are in-
evitable. Company Automation uses a BTS from an external software vendor,
while Company Telecom uses an internally developed BTS. Moreover, while
the life-cycles of bug reports are similar in the two companies (as described
in Section 4.3), they are not equivalent. Another difference is that Company
Automation uses the BTS for issue management in a broader sense (incl. new
feature development, document updates, and release management), Company



Title Suppressed Due to Excessive Length

19

RQ1 RQ2 RQ3 RQ4

Description Does stacked general- | How does the ensem- | How consistent learn- | How does the time lo-
ization outperform in- | ble selection in SG af- | ing curves does SG dis- | cality of training data
dividual classifiers? fect the prediction ac- | play across projects? affect the prediction

curacy? accuracy?

Rationale Confirm the re- | Explore which ensem- | Study how SG per- | Understand how SG
sult of our previous | ble selection performs | forms on different data, | should be retrained as
work (Jonsson et al, | the best. and understand how | new bug reports are
2012). much training data is | submitted.

required.
Approach Test the hypothesis: | Based on RQ1: evalu- | Using the best en- | Using the best ensem-

“SG does not perform
better than individual
classifiers wrt. predic-
tion accuracy”.

ate three different en-
semble selections.

semble selection from
RQ2: evaluate learning
curves.

ble selection from RQ2
with amount of train-
ing data from RQ3:
evaluate SG sensitivity
to freshness of training
data.

Related experi-
ments

Exp A, Exp B

Exp B

Exp C

Exp D, Exp E

Dependent Prediction accuracy

variable

Independent Individual classifier Ensemble selection Size of training set Time locality of train-
variables ing data (Exp D), size

of training set (Exp E)

Fixed variables

Preprocessing, feature selection, training size

Preprocessing, feature
selection, ensemble se-
lection

Preprocessing, feature
selection, ensemble se-
lection

Table 1: Overview of the research questions, all related to the task of auto-
mated team allocation. Each question is listed along with the main purpose of
the question, a high-level description of our study approach, and the experi-
mental variables involved.

Dataset #Bug reports | Timespan #Teams
Automation | 15,113 July 2000 — Jan 2012 | 67
Telecom 1 > 9,000 > 5 years 28
Telecom 2 > 8,000 > 5 years 36
Telecom 3 > 3,000 > 5 years 17
Telecom 4 > 10,000 > 5 years 64

[ Total [ > 50,000 [ [ ]

Table 2: Datasets used in the experiments. Note: At the request of our industry
partners the table only lists lower bounds for Telecom systems, but the total
number of sums up to an excess of 50,000 bug reports.

Telecom uses the BTS for bug reports exclusively. To harmonize the datasets,
we present two separate filtering sequences in Sections 5.2.1 and 5.2.2.

5.2.1 Company Automation Data Filtering

The dataset from Company Automation contains in total 26,121 bug reports
submitted between July 2000 and January 2012, all related to different ver-




20 Leif Jonsson et al.

sions of the same software system. The bug reports originate from several
development projects, and describe issues reported concerning a handful of
different related products. During the 12 years of development represented in
the dataset, both the organization and processes have changed towards a more
iterative development methodology. We filter the dataset in the following way:

1. We included only CLOSED bug reports to ensure that all bugs have valid
team assignments, that is, we filter out bug reports in states such as OPEN,
NO ACTION, and CHANGE DEFERRED. This step results in 24,690
remaining bug reports.

2. We exclude bug reports concerning requests for new features, document
updates, changes to internal test code, and issues of administrative nature.
Thus, we only keep bug reports related to source code of the software
system. The rationale for this step is to make the data consistent with
Company Telecom, where the BTS solely contains bug reports. The final
number of bug reports in the filtered dataset is 15,113.

5.2.2 Company Telecom Data Filtering

Our first step of the data filtering for Company Telecom is to identify a time-
span characterized by a stable development process. We select a timespan from
the start of the development of the product family to the point in time when
an agile development process is introduced (Wiklund et al, 2013). The motiva-
tion for this step is to make sure that the study is conducted on a conformed
data set. We filter the bug reports in the timespan according to the following
steps:

1. We include only bug reports in the state FINISHED.

2. We exclude bug reports marked as duplicates.

3. We exclude bug reports that do not result in an source code update in a
product.

After performing these three steps, the data set for the four products contains
in total 35,2667 bug reports.

5.3 ML Framework Selection

To select a platform for our experiments, we study features available in various
machine learning toolkits. The focus of the comparison is to find a robust, well
tested, and comparatively complete framework. The framework should also in-
clude an implementation of stacked generalizer and it should be scalable. As a
consequence, we focus on platforms that are suitable for distributed computa-
tion. Another criterion is to find a framework that has implemented a large set
of state-of-the-art machine learning techniques. With the increased attention of

7 Due to confidentiality reasons these numbers are not broken down in exact detail per
project.



Title Suppressed Due to Excessive Length 21

machine learning and data mining, quite a few frameworks have emerged dur-
ing the last couple of years such as Weka (Hall et al, 2009), RapidMiner (Hof-
mann and Klinkenberg, 2014), Mahout (Owen et al, 2011), MOA (Bifet et al,
2010), Mallet (McCallum, 2002), Julia (Bezanson et al, 2012), and Spark (Za-
haria et al, 2010) as well as increased visibility of established systems such as
SAS, SPSS, MATLAB, and R.

For this study, we select to use a framework called Weka (Hall et al, 2009).
Weka is a comparatively well documented framework with a public Java API
and accompanying book, website, forum, and active community. Weka has
many ML algorithms implemented and it is readily extensible. It has several
support functionalities, such as cross-validation, stratification, and visualiza-
tion. Weka has a built-in Java GUI for data exploration and it is also readily
available as a stand alone library in JAR format. It has some support for par-
allelization. Weka supports both batch and online interfaces for some of its
algorithms. The meta facilities of the Java language also allows for mechanical
extraction of available classifiers. Weka is a well established framework in the
research community and its implementation is open source.

5.4 Bug Report Feature Selection

This section describes the feature selection steps that are common to all our
data sets. We represent bug reports using a combination of textual and nominal
features. Feature selections that are specific to each individual sub-experiment
are described together with each experiment.

For the textual features, we limit the number of words because of memory
and execution time constraints. To determine a suitable number of words to
keep, we run a series of pilot experiments, varying the method and number
of words to keep, by varying the built in settings of Weka. We decide to rep-
resent the text in the bug reports as the 100 words with highest TF-IDF? as
calculated by the Weka framework. Furthermore, the textual content of the
titles and descriptions are not separated. There are two reasons for our rather
simple treatment of the natural language text. First, Weka does not support
multiple bags-of-words; such a solution would require significant implementa-
tion effort. Second, our focus is not on finding ML configurations that provide
the optimal prediction accuracies for our datasets, but rather to explore SG
for bug assignment in general. We consider optimization to be an engineering
task during deployment.

The non-textual fields available in the two bug tracking systems vary be-
tween the companies, leading to some considerations regarding the selection
of non-textual features. Bug reports in the BTS of Company Automation con-
tain 79 different fields; about 50% of these fields are either mostly empty or
have turned obsolete during the 12 year timespan. Bug reports in the BTS of

8 Term Frequency-Inverse Document Frequency (TF-IDF) is a standard weighting scheme
for information retrieval and text mining. This scheme is common in software engineering
applications (Borg et al, 2014).



22 Leif Jonsson et al.
[ Company Automation [ Company Telecom [ Description
Textual features
Text Title4Description Heading+Observation | One line summary and
full description of the
bug report
Nominal features
SubmitterType SubmitterClass Customer Affiliation of the issue
submitter
#Possible values | 17 >170,>50,>120,>150
Site SubmitterSite Siteld Site from where the
bug was submitted
#Possible values | 14 >250,>60,>80,>200
Revision Revision Faulty revision Revision of the prod-
uct that the bug was
reported on
#Possible values | 103 547,1325,999,982
Priority Priority Priority Priority of the bug
#Possible values | 5 3,3,3,3

Table 3: Features used to represent bug reports. For company Telecom the
fields are reported for Telecom 1,2,3,4 respectively.

Company Telecom contain information in more than 100 fields. However, most
of these fields are empty when the bug report is submitted. Thus, we restricted
the feature selection to contain only features available at the time of submis-
sion of the bug report, i.e., features that do not require a deeper analysis effort
(e.g., faulty component, function involved). We also want to select a small set
of general features, likely to be found in most bug tracking systems. Achieving
feasible results using a simple feature selection might simplify industrial adap-
tation, and also it limits the ML training times. Based on discussions with
involved developers, we selected the features presented in Table 3. In the rest
of the paper, we follow the nomenclature in the leftmost column.

A recurring discussion when applying ML concerns which features are the
best for prediction. In our BTS’es we have both textual and non-textual fea-
tures, thus we consider it valuable to compare the relative predictive power of
the two types of features. While out previous research has indicated that in-
cluding non-textual features improves the prediction accuracy (Jonsson et al,
2012), many other studies rely solely on the text (see Figure 2). To motivate
the feature selection used in this study, we performed a small study comparing
textual vs. non-textual features for our five datasets.

Figure 5 shows the results from our small feature selection experiment.
The figure displays results from three experimental runs, all using SG with the
best individual classifiers (further described in Section 6.1). The three curves
represent three different sets of features: 1) textual and non-textual features,
2) non-textual features only, and 3) textual features only. The results show
that for some systems (Telecom 1, 2 and 4) the non-textual features performs
better than the textual features alone, while for some systems (Telecom 3 and
Automation) the results are the opposite. Thus, our findings strongly suggest
that we should combine both non-textual features and textual features for bug



Title Suppressed Due to Excessive Length 23

assignment. Note that with more sophisticated text modeling techniques, such
as LDA (Blei et al, 2003), we suspect that the textual features may have a
higher impact on the final result.

Yy

S Automation
§100 TEPe
Q - - —
g s “REsFreeapy
c
5 50
B 25 . : .
©
2o r/_r
o 0 5000 10000 1500C
Dataset size
(a)
Telecom 1 Telecom 2
100 Type 100/ Type
> : = - > g _ —
& Ej §$—Pe(§<t'?—xc}n@/nly 3 nggi—pe%fe—xotn ynIy
575 575
Q Q
Q (&]
< <
.5 50 .5 50|
k3] k3]
© °
© 25 © 25 [//
a a
0 0
0 2500 5000 . 7500 100 0 2000 _ 4000 6000 8000
Dataset size Dataset size
(b) (c)
Telecom 3 Telecom 4
100 Type 100| Type
> : = - > g _ —
3 Behemgy 3 | —
575 575
(8] o
o (@]
< <
.5 50 '5 50|
3] 8
3 25 D 25
o o
0 0
0 1000 2000 . 3000 0 5000 10000
Dataset size Dataset size

(d) ()

Fig. 5: The prediction accuracy when using text only features (“text-only“) vs.
using non-text features only (“notext-only*)



24 Leif Jonsson et al.

5.5 Experiment Design and Procedure

Figure 6 shows an overview of our experimental setup. The five datasets orig-
inate from two different industrial contexts, as depicted by the two clouds to
the left. We implement five sub-experiments (c.f. A-E in Figure 6), using the
Weka machine learning framework. Each sub-experiment is conducted once
per dataset, that is, we performed 25 experimental runs. A number of steps
implemented in Weka are common for all experimental runs:

1. The complete dataset set of bug reports is imported.

2. Bug reports are divided into training and test sets. In sub-experiments
A-C, the bug reports are sampled using stratification. The process in sub-
experiments D-E is described in Sections 5.5.4 and 5.5.5.

3. Feature extraction is conducted as specified in Section 5.4.

We executed the experiments on two different computers. We conduct
experiments on the Company Automation dataset on a Mac Pro, running
Mac OS X 10.7.5, equipped with 24 GB RAM and two Intel(R) Xeon(R)
X5670 2.93 GHz CPUs with six cores each. The computer used for the ex-
periments on the Company Telecom datasets had the following specification:
Linux 2.6.32.45-0.3-xen, running SUSE LINUX, equipped with eight 2.80 GHz
Intel(R) Xeon(R) CPU and 80 GB RAM.

Classifier Training
Pre-processing&  used data
feature selection l l

Company Automation

Experiment

E Prediction
I
accuracy

Fig. 6: Overview of the controlled experiment. Vertical arrows depict indepen-
dent variables, whereas the horizontal arrow shows the dependent variable.
Arrows within the experiment box depict dependencies between experimental
runs A-E: Experiment A determines the composition of individual classifiers
in the ensembles studied evaluated in Experiment B-E. The appearance of the
learning curves from Experiment C is used to set the size of the time-based
evaluations in Experiment D and Experiment E.

As depicted in Figure 6, there are dependencies among the sub-experiments.
Several sub-experiments rely on results from previous experimental runs to



Title Suppressed Due to Excessive Length 25

select values for both fixed and independent variables. Further details are pre-
sented in the descriptions of the individual sub-experiments A-E.

We evaluate the classification using a top-1 approach. That is, we only
consider a correct/incorrect classification, i.e., we do not evaluate whether
our approach correctly assigns bug reports to a set of candidate teams. In IR
evaluations, considering ranked output of search results, it is common to assess
the output at different cut-off points, e.g., the top-5 or top-10 search hits. Also
some previous studies on bug assignment present top-X evaluations inspired by
IR research. However, our reasons for a top-1 approach are three-fold: First,
for fully automatic bug assignment a top-1 approach is the only reasonable
choice, since an automatic system would not send a bug report to more than
one team. Second, a top-1 approach is a conservative choice in the sense that
the classification results would only improve with a top-k approach. The third
motivation is technical; to ensure high quality evaluations we have chosen to
use the built-in mechanisms in the well established Weka. Unfortunately, Weka
does not support a top-k approach in its evaluation framework for classifiers.

5.5.1 Experiment A: Individual Classifiers
Independent variable: Choice of individual classifier

Experiment A investigates RQ1 and the null hypothesis “SG does not perform
better than individual classifiers wrt. prediction accuracy”. We evaluate the
28 available classifiers in Weka Development version 3.7.9, listed in Table 4.
The list of possible classifiers is extracted by first listing all classes in the
corresponding .jar file in the “classifier package and then trying to assign
them one by one to a classifier. The independent variable is the individual
classifier. For all five datasets, we execute 10-fold cross-validation once per
classifier. We use all available bug reports in each dataset and evaluated all
28 classifiers on all datasets. The results of this experiment is presented in
Section 6.1.

Table 4: Individual classifiers available in Weka Development version 3.7.9.
Column headings show package names in Weka. Classifiers in bold are excluded
from the study because of long training times or exceeding memory constraints.

bayes. functions. lazy. rules. trees. misc.

BayesNet Logistic 1Bk DecisionTable | DecisionStump | InputMappedClassifier
NaiveBayes MultilayerPerceptron | KStar | JRip J48

NaiveBayesMultinomial SimpleLogistic LWL | OneR LMT

NaiveBayesMultinomialText SMO ZeroR | PART RandomForest
NaiveBayesMultinomialUpdateable RandomTree

NaiveBayesUpdateable REPTree

net.BayesNetGenerator
net.BIFReader
net.EditableBayesNet




26 Leif Jonsson et al.

5.5.2 Ezxperiment B: Ensemble Selection
Independent variable: Ensemble selection

Experiment B explores both RQ1 and RQ2, i.e., both if SG is better than
individual classifiers and which ensemble of classifiers to choose for bug as-
signment. As evaluating all combinations of the 28 individual classifiers in
Weka is not feasible, we restrict our study to investigate three ensemble selec-
tions, each combining five individual classifiers. We chose five as the number of
individual classifiers to use in SG at a consensus meeting, based on experiences
of prediction accuracy and run-time performance from pilot runs. Moreover,
we exclude individual classifiers with run-times longer than 24 hours in Ex-
periment A, e.g., MultiLayerPerceptron and SimpleLogistic.

Based on the results from Experiment A, we select three ensembles for each
dataset (cf. Table 4). We refer to these as BEST, WORST, and SELECTED.
We chose the first two ensembles to test the hypothesis “combining the best in-
dividual classifiers should produce a better result than if you choose the worst”.
The BEST ensemble consists of the five individual classifiers with the highest
prediction accuracy from Experiment A. The WORST ensemble contains the
five individual classifiers with the lowest prediction accuracy from Experiment
B, while still performing better than the basic classifier ZeroR that we see as a
lower level baseline. The ZeroR classifier simply always predicts the class with
the largest number of bugs. No classifier with a lower classification accuracy
than ZeroR is included in any ensemble, thus the ZeroR acts as a lower level
cut-off threshold for being included in an ensemble.

The SELECTED ensemble is motivated by a discussion in Wolpert (1992),
who posits that diversity in the ensemble of classifiers improves prediction
results. The general idea is that if you add similar classifiers to a stacked
generalizer, less new information is added compared to adding a classifier based
on a different classification approach. By having level-0 generalizers of different
types, they together will better “span the learning space”. This is due to the
fundamental theory behind stacked generalization, claiming that the errors of
the individual classifiers should average out. Thus, if we use several similar
classifiers we do not get the averaging out effect since then, in theory, the
classifiers will have the same type of errors and not cancel out. We explore this
approach by using the ensemble selection call SELECTED, where we combine
the best individual classifiers from five different classification approaches (the
packages in Table 4). The results of this experiment is presented in Section 6.1.

Some individual classifiers are never part of a SG. This depends on either
that the classifier did not pass the cut-off threshold of being better than the
ZeroR classifier, this case occurs for instance for the InputMappedClassifier
(see Table 4). Alternatively the classifier was neither bad enough to be in the
WORST ensemble nor good enough to be in the BEST or SELECTED, this
is the case with for instance JRip.



Title Suppressed Due to Excessive Length 27

In all of the ensembles we use SimpleLogistic regression as the level-1 clas-
sifier following the general advice of Wolpert (1992) and Witten et al (2011)
of using a relatively simple smooth linear model.

We choose to evaluate the individual classifiers on the whole dataset in
favor of evaluating them on a hold-out set, i.e., a set of bug reports that would
later not be used in the evaluation of the SG. This is done to maximize the
amount of data in the evaluation of the SG. It is important to note that this
reuse of data only applies to the selection of which individual classifiers to
include in the ensemble. In the evaluation of the SG, all of the individual
classifiers are completely retrained on only the training set, and none of the
data points in the test set is part of the training set of the individual classifiers.
This is also the approach we would suggest for industry adoption, i.e., first
evaluate the individual classifiers on the current bug database, and then use
them in a SG.

5.5.8 Experiment C: Learning Curves
Independent variable: Amount of training data

The goal of Experiment C is to study RQ3: How consistent learning curves
does SG display across projects? For each dataset, we evaluate the three en-
sembles from Experiment B using fixed size subsets of the five datasets: 100,
200, 400, 800, 1600, 3200, 6400, 12800, and ALL bug reports. All subsets are se-
lected using random stratified sampling from the full dataset. As the datasets
Telecom 1-3 contain fewer bug reports than 12800, the learning curves are
limited accordingly. The results of this experiment is presented in Section 6.2.

5.5.4 Experiment D: Sliding Time Window
Independent variable: Time locality of training data

Experiment D examines RQ4, which addresses how the time locality of the
training set affects the prediction accuracy on a given test set. Figure 7 shows
an overview of the setup of Experiment D. The idea is to use training sets
of the same size increasingly further back in time to predict a given test set.
By splitting the chronologically ordered full data set into fixed size training
and test sets according to Figure 7, we can generate a new dataset consisting
of pairs (z,y). In this dataset, « represents the time difference measured in
number of days (delta time) between the start of the training set and the start
of the test set. The y variable represents the prediction accuracy of using the
training set z days back in time to predict the bug assignments in the selected
test set. We can then run a linear regression on the data set of delta time
and prediction accuracy samples and examine if there is a negative correlation
between delta time and prediction accuracy.

We break down RQ4 further into the following research hypothesis formu-
lation: “Is training data further back in time worse at predicting bug report



28 Leif Jonsson et al.

assignment than training data closer in time”? We test this research hypoth-
esis with the statistical method of simple linear regression. Translated into a
statistical hypothesis RQ4 is formulated as:

“Let the difference in time between the submission date of the first bug
report in a test set and the submission date of the first bug report in the
training set be the independent variable x. Further, let the prediction accuracy
on the test set be the dependent variable y. Is the coefficient of the slope of
a linear regression fit on x and y statistically different from 0 and negative at
the 5 % « level?

To create the training set and test sets, we sort the complete dataset in
chronological order on the bug report submission date. To select suitable sizes
to split the training set and test sets, we employ the following procedure.
For the simple linear regression, we want to create enough sample points to
be able to run a linear regression with enough power to detect a significant
difference and still have as large training and test sets as possible to reduce
the variance in the generated samples. Green (1991) suggests the following
formula : N > 50 4+ 8m as a rule of thumb for calculating the needed number
of samples at « level of 5 % and S level of 20 %, where m is the number
of independent variables. In our case we have one independent variable (delta
time) so the minimum number of samples in our case is 58 = 50 + 8 * 1. We use
a combination of theoretical calculations for the lower and upper bounds on
the number of training samples given that we want an 80/20 ratio of training to
test data. We combine the theoretical approach with a program that calculates
the number of sample points generated by a given training and test set size,
by simulating runs. This combination together with Green’s formula let us
explore the most suitable training and test sets for the different systems.

We also know from Experiment C that the “elbow* where the prediction
accuracy tends to level out is roughly around 1,000-2,000 samples, this together
with the calculations for the linear regression guided our decision for the final
selection of sample size.

We arrived at the following dataset sizes by exploring various combinations
with the simulation program, the theoretical calculations and the experience
from Experiment C. For the smallest of the systems, the maximum sizes of
training and test sets that gives more than 58 samples amounts to 619 and 154
bug reports respectively. For the larger systems, we can afford to have larger
data sets. For comparison we prioritize to have the same sized sets for all the
other systems. When we calculate the set sizes for the smallest of the larger
systems, we arrived at 1,400 and 350 bug reports for the training and test set
sizes, respectively. These values are then chosen for all the other four systems.
The results of this analysis is presented in Section 6.3.

5.5.5 Experiment E: Cumulative Time Window

Independent variable: Amount of training data



Title Suppressed Due to Excessive Length 29

Run Testset  Training set

1 e ikl Tel =Testsetl
2 Tel Tr12 -
L cet Tr 16 = Training set 6 for test set 1
1 Te2 Tr21
P
2 Te2 Tr22
Older Bugs Newer Bugs
Time
Tri6 Tri5 Tri4 Tri3 Tr12 Tril Tel
Tr25 Tr24 Tr23 Tr22 Tr21 Te2
Tr34 Tr33 Tr32 Tr3l Te3
Tr43 Trd2 Tr41 Ted
Tr52 Tr51 Te5
Trél Te6

Fig. 7: Overview of the time-sorted evaluation. Vertical bars show how we split
the chronologically ordered data set into training and test sets. This approach
gives us many measurement points in time per test set size. Observe that the
time between the different sets can vary due to non-uniform bug report inflow
but the number of bug reports between each vertical bar is fixed.

Experiment E is also designed to investigate RQ4, i.e., how the time local-
ity of the training set affects the prediction accuracy. Instead of varying the
training data using a fixed size sliding window as in Experiment D, we fix the
starting point and vary the amount of the training data. The independent vari-
able is the cumulatively increasing amount of training data. This experimental
setup mimics realistic use of SG for automated bug assignment.

Figure 8 depicts an overview of Experiment E. We sort the dataset in
chronological order on the issue submission date. Based on the outcome from
Experiment C, we split the dataset into a corresponding number of equally
sized chunks. We used each chunk as a test set, and for each test set we vary the
number of previous chunks used as training set. Thus, the amount of training
data was the independent variable. We refer to this evaluation approach as
cumulative time window. Our setup is similar to the “incremental learning”
that Bhattacharya et al (2012) present in their work on bug assignment, but
we conduct a more thorough evaluation. We split the data into training and
test sets in a more comprehensive manner, and thus conduct several more
experimental runs. The results of this experiment is presented in Section 6.4.



30 Leif Jonsson et al.

Run Testset  Training set

i Ve s Tel =Testset1
2 Tel Tri2 L
b oot Tr 16 = Training set 6 for test set 1
1 Te2 Tr21
2 Te2 Tr22
Older Bugs Newer Bugs

Time

Trll

Trl2

Tri3

Tel
Trl6

Tr21
L —

Tr23

Te2
Tr25

Fig. 8: Overview of the cumulative time-sorted evaluation. We use a fixed test
set, but cumulatively increase the training set for each run.

6 Results and Analysis

6.1 Experiment A: Individual Classifiers and Experiment B: Ensemble
Selection

Experiment A investigates whether SG outperforms individual classifiers. Ta-
ble 5 shows the individual classifier performance for the five evaluated systems.
It also summarizes the results of running SG with the three different configura-
tions BEST, WORST, and SELECTED, related to Experiment B. In Table 5
we can view the classifier “rules.ZeroR” as a sort of lower baseline reference.
The ZeroR classifier simply always predicts the class with the highest number
of bug reports.

The answer to RQ1 is that while the improvements in some projects are
marginal, using reasonable ensemble selection leads to a better prediction ac-
curacy than using any of the individual classifiers. On our systems, the im-
provement is 3% better than the best of the individual classifiers on two of
the systems. The best improvement is 8% on the Automation system and the
smallest improvement is 1% on system Telecom 1 and 4, which can be consid-
ered negligible. This conclusion must be followed by a slight warning; mindless



Title Suppressed Due to Excessive Length 31

Table 5: Individual classifier results (rounded to two digits) on the five systems
use the full data set and 10-fold cross validation. Qut of memory is marked
O-MEM and an execution that exceeds a time threshold is marked O-TIME.

Classifier Accurac.y Accuracy Accuracy Accuracy Accuracy
Automation  Telecom 1 Telecom 2 Telecom 3 Telecom 4
bayes.BayesNet 35 % (B,S) O-MEM O-MEM O-MEM O-MEM
bayes.NaiveBayes 15 % (W) 25 % (W) 18 % (W) 35 % 17 %
bayes.NaiveBayesMultinomial 22 % 34 % (W) 32 % 53 % (W) 26 % (W)
bayes.NaiveBayesMultinomial Text 6 % 13 % 16 % 43 % 19 %
bayes.NaiveBayesMultinomialUpdateable 26 % 34 % 32 % (S) 61 % (W) 28 % (W)
bayes.NaiveBayesUpdateable 15 % 25 % 18 % 35 % 17 %
bayes.net.BIFReader 35 % O-MEM O-MEM O-MEM O-MEM
bayes.net.BayesNet Generator 35 % 41 % (S) 31 % (W) 66 % (S,\W) 37 % (S)
bayes.net.EditableBayesNet 35 % O-MEM O-MEM O-MEM O-MEM
functions.SMO 42 % (B,S) 70 % (B,S) 54 % (BS) 86 % (B,S) 78 % (B.S)
lazy.IBk 38 % (B) 58 % (S) 44 % (B) 77 % (B) 63 %
lazy.KStar 12% (B.S) 50 % 46 % (B,S) 77 % (S) 60 % (S)
lazy. LWL 9 % (W) 21 % (W)  O-MEM O-MEM O-MEM
misc.InputMappedClassifier 6 % 13 % 16 % 43 % 19 %
rules.DecisionTable 26 % 52 % 31 % (W) 65 % (W) 55 %
rules.JRip 23 % 51 % 36 % 3% 55 %
rules.OneR 13 % (W) 43 % (W) 30 % (W) 71 % 50 % (W)
rules.PART 29 % (8) 61 % (B,S) 38 % (S) 76 % (S) 64 % (B,S)
rules.ZeroR 6 % 13 % 16 % 43 % 19 %
trees.DecisionStump 7% (W) 21 % (W) 22 % (W) 44 % (W) 20 % (W)
trees.J48 30 % 62 % (B) 40 % (B) 78 % (B) 66 % (B)
trees. LMT O-MEM O-MEM O-MEM O-MEM O-MEM
trees. REPTree 29 % 62 % (B) 34 % 79 % (B) 67 % (B)
trees.RandomForest 39 % (B,S) 63 % (B,S) 49 % (B,S) 84 (B,5)% 67 % (S)
trees.RandomTree 27 % 52 % 32 % 69 % 49 % (W)
functions.Logistic O-MEM O-MEM O-MEM O-MEM O-MEM
functions.SimpleLogistic 40 % O-TIME 52 % O-TIME O-TIME
functions.MultilayerPerceptron 20 % (W) O-TIME O-TIME O-TIME O-TIME
SG BEST (B) 50 % 1% 57 % 89 % 7%
SG SELECTED (S) 50 % 1% 57 % 89 % 79 %
SG WORST (W) 28 % 57 % 45 % 83 % 62 %

ensemble selection together with bad luck can lead to worse result than some
of the individual classifiers. In none of our runs (including with the WORST
ensemble) is the stacked generalizer worse than all of the individual classifiers.

Experiment B addresses different ensemble selections in SG. From Table 5
we see that in the cases of the BEST and SELECTED configurations the
stacked generalizer in general performs as well, or better, than the individual
classifiers. In the case of Telecom 1 and 4, there is a negligible difference
between the best individual classifier SMO and the SELECTED and BEST
SG. We also see that when we use the WORST configuration the result of
the stacked generalizer is worse than the best of the individual classifiers, but
it still performs better than some of the individual classifiers. When it comes
to the individual classifiers we note that the SMO classifier performs best on



32 Leif Jonsson et al.

all systems. The conclusion is that the SG does not do worse than any of the
individual classifiers but can sometimes perform better.

Figure 9 shows the learning curves (further presented in relation to Exper-
iment C) for the five datasets using the three configurations BEST, WORST,
and SELECTED. The figures illustrate that the two ensembles BEST and
SELECTED have very similar performance across the five systems. Also, it
is evident that the WORST ensemble levels out at a lower prediction accu-
racy than the BEST and SELECTED ensembles as the number of training
examples grows and the rate of increase has stabilized.

Experiment B shows no significant difference in the prediction accuracy
between BEST and SELECTED. Thus, our results do not confirm that pre-
diction accuracy is improved by applying ensemble selections with a diverse
set of individual classifiers. One possible explanation for this result is that
the variation among the individual classifiers in the BEST ensemble already
is enough to obtain a high prediction accuracy. There is clear evidence that
the WORST ensemble performs worse than BEST and SELECTED. As a
consequence, simply using SG does not guarantee good results—the ensemble
selection plays an important role.

6.2 Experiment C: Learning Curves

In Experiment C, we study how consistent the learning curves for SG are
across different industrial projects. Figure 10 depicts the learning curves for
the five systems. As presented in Section 5.5.3, the BEST and SELECTED
ensembles yield similar prediction accuracy, i.e., the learning curves in Fig-
ure 10 (a) and (c) are hard to distinguish by the naked eye. Also, while there
are performance differences across the systems, the learning curves for all five
systems follow the same general pattern: the learning curves appear to follow
a roughly logarithmic form proportional to the size of the training set, but
with different minimum and maximum values.



Title Suppressed Due to Excessive Length 33

Automation
>\1001 e
S |= ED
375
[5)
<
_5 50
k3
B 25
&
0
0 5000 10000 15000
Dataset size
(a)
Telecom 1 Telecom 2
>\100I e >~100T e
275 37
(&} Q
< <
_5 501 5 50
S k3]
g 25 g 25
o o
0 0
0 2500 5000 . 7500 100¢ 0 2000 4000 . 6000 8000
Dataset size Dataset size
(b) (c)
Telecom 3 Telecom 4
3:I.DOI e 5‘1001— e
P e ME
375 e 375
Q Q
< / <
_5 50 _5 50
8 k3]
B 25 8 25
o o
of | | | of | ‘
0 1000 2000 . 3000 0 5000 10000
Dataset size Dataset size

(d) ()

Fig. 9: Comparison of BEST (black, circle), SELECTED (red, triangle) and
WORST (green, square) classifier ensemble.

An observation of practical value is that the learning curves tend to flatten
out within the range of 1,600 to 3,200 training examples for all five systems.
We refer to this breakpoint as where the graph has the maximum curvature,
i.e., the point on the graph where the tangent curve is the most sensitive to
moving the point to nearby points. For our study, it is sufficient to simply
determine the breakpoint by looking at Figure 10, comparable to applying the
“elbow method” to find a suitable number of clusters in unsupervised learn-



34 Leif Jonsson et al.

ing (Tibshirani et al, 2001). Our results suggest that at least 2,000 training
examples should be used when training a classifier for bug assignment.

We answer RQ3 as follows: the learning curves for the five systems have
different minimum and mazimum values, but display similar shape and all flat-
ten out at roughly 2,000 training examples. There is a clear difference between
projects.

BEST

100|

al ~
(=) [$2)

Prediction Accuracy
N
(%]

15000

5000 10000
Dataset size

(a)

WORST SELECTED

)
S
(2]
0
2o
@©
3
[N
o
o

~
a

o
o

Prediction Accuracy
a =
=
o
3
Q.
]
Prediction Accuracy

\\

N

a1
DOOD WV
L

ecom
ecom
ecom

em
B
-
-

ecom.
0 0 utomation
0 000 10000 15000 0 5000 10000 15000
Dataset size Dataset size

(b) (c)

Fig. 10: Prediction accuracy for the different systems using the BEST (a)
WORST (b) and SELECTED (c) individual classifiers under Stacking

6.3 Experiment D: Sliding Time Window

Experiment D targets how the time locality of the training data affects the
prediction accuracy (RQ4). Better understanding of this aspect helps deciding
the required frequency of retraining the classification model. Figure 11 show
the prediction accuracy of using SG with the BEST ensemble, following the
experimental design described in Section 5.5.4. The X axes denote the differ-
ence in time, measured in days, between the start of the training set and the
start of the test set. The figures also depict an exponential best fit.

For all datasets, the prediction accuracy decreases as older training sets
are used. The effect is statistically significant for all datasets at a 5% level.



Title Suppressed Due to Excessive Length 35

We observe the highest effects on Telecom 1 and Telecom 4, where the predic-
tion accuracy is halved after roughly 500 days. For Telecom 1 the prediction
accuracy is 50% using the most recent training data, and it drops to about
25% when the training data is 500 days old. The results for Telecom 4 are
analogous, with the precision accuracy dropping from about 40% to 15% in
500 days.

For three of the datasets the decrease in prediction accuracy is less clear.
For Automation, the prediction accuracy decreases from about 14% to 7% in
1,000 days, and Telecom 3, the smallest dataset, from 55% to 30% in 1,000
days. For Telecom 2 the decrease in prediction accuracy is even smaller, and
thus unlikely to be of practical significance when deploying a solution in in-
dustry.

A partial answer to RQ4 is: more recent training data yields higher predic-
tion accuracy when using SG for bug assignment.



36 Leif Jonsson et al.

Automation
g
560
Q
[5)
<
40
o
k3
Bzo
o
0 e
0 500 1000 1500 2000 250(
Delta Time
(a)
Telecom 1 Telecom 2
> >
@ @
560| 560
Q [8]
< <
40| 40
K=l RS
S k3]
gzo gzo
o o :
0 0
400 800 1200 1600 250 500 750 1000 125
Delta Time Delta Time
(b) (c)
Telecom 3 Telecom 4
> >

[e2]
(=]
[«2]
(=)

N
(=]

Prediction Accurac
N S
o (@)

PredictiorLAccurac
o

o
o

400 ?00 ) 1200 160( 0 500 1000 1500
Delta Time Delta Time

(d) ()

Fig. 11: Prediction accuracy for the datasets Automation (a) and Telecom 1-4
(b-e) using the BEST ensemble when the time locality of the training set is
varied. Delta time is the difference in time, measured in days, between the
start of the training set and the start of the test set. For Automation and
Telecom 1,2, and 4 the training sets contain 1,400 examples, and the test set
350 examples. For Telecom 3, the training set contains 619 examples and the
test set 154 examples.



Title Suppressed Due to Excessive Length 37

6.4 Experiment E: Cumulative Time Window

Experiment E addresses the same RQ as Experiment D, namely how the time
locality of the training data affects the prediction accuracy (RQ4). However,
instead of evaluating the effect using a fixed size sliding window of training
examples, we use a cumulatively increasing training set. As such, Experiment
E also evaluates how many training examples SG requires to perform accurate
classifications. Experiment E shows the prediction accuracy that SG would
have achieved at different points in time if deployed in the five projects under
study.

Figures 12 plot the results from the cumulated time locality evaluation
using SG with BEST ensembles. The blue curve represents the prediction
accuracy (as fitted by a local regression spline) with the standard error for the
mean of the prediction accuracy in the shaded region. The maximum prediction
accuracy (as fitted by the regression spline) is indicated with a vertical line.
The vertical line represents the cumulated ideal number of training points for
the respective datasets. Adding more bug reports further back in time worsens
the prediction accuracy. The number of samples (1589) and the prediction
accuracy (16.41 %) for the maximum prediction accuracy is indicated with a
text label (x = 1589 Y = 16.41 for the Automation system). The number of
evaluations run with the calculated training set and test set sizes in each run
is indicated in the upper right corner of the figure with the text “Total no.
Evals®.

For all datasets in Figures 12, except Telecom 3, the prediction accuracy
increases when more training data is cumulatively added until a point where
they reach a “hump* where the prediction accuracy reaches a maximum. This
is followed by declining prediction accuracy as more (older) training data is
cumulatively added. For Automation, Telecom 1, and Telecom 4, we achieve
the maximum prediction accuracy when using about 1,600 training examples.
For Telecom 2 the maximum appears already at 1,332 training examples. For
Telecom 3 on the other hand, the curve is monotonically increasing, i.e., the
prediction accuracy is consistently increasing as we add more training data.
This is likely a special case for this dataset where we have not yet reached
the point in the project where old data starts to introduce noise rather than
helping the prediction.

Also related to RQ4 is our observation: there is a balancing effect between
adding more training examples and using older training examples. As a con-
sequence, prediction accuracy does mot necessary improve when training sets
gets larger.



38 Leif Jonsson et al.

Automation

(Total no. Evals: 649)

2100

~
[é)]

= 1589 y=16.41

Prediction Accurac
N [8)]
a o

o

0 5000 . 10000 1500(
Trainingset Size
(a)

Telecom 1 Telecom 2
00| 100

(Total no. Evals: 326)

(Total no. Evals: 266)

~
[$;]
~
al

X= 1688 y= 47.47

Prediction Accuracy
)
Prediction Accurac
a1
o

= 1332 y=20.96
25 25 fif iy i i
n/:‘ﬁﬁ ! it
0 0 :
0 2500 . 5000 _ 7500 0 2000 . 4000 6000 8000
Trainingset Size Trainingset Size
(b) (c)
Telecom 3 Telecom 4
5‘100 (Total no. Evals: 78) 5100 (Total no. Evals: 515)
E x= 3516 y= 65.74 E
3 75 375
Q (&) . = 1613 y= 42.54
< < R
c c 50 i}
5 50 5 50 i
k& o
© 25 T 25
g g
o o .
0 | | | 0 | |
1000 . . 2000 . 3000 0 5000 10000
Trainingset Size Trainingset Size

(d) (e)

Fig. 12: Prediction accuracy using cumulatively (farther back in time) larger
training sets. The blue curve represents the prediction accuracy (fitted by
a local regression spline) with the standard error for the mean in the shaded
region. The maximum prediction accuracy (as fitted by the regression spline) is
indicated with a vertical line. The number of samples (1589) and the accuracy
(16.41 %) for the maximum prediction accuracy is indicated with a text label
(x = 1589 Y = 16.41 for the Automation system). The number of evaluations
done is indicated in the upper right corner of the figure (Total no. Evals).




Title Suppressed Due to Excessive Length 39

7 Threats to Validity

We designed our experiment to minimize the threats to validity, but still a
number of decisions that might influence our results had to be made. We
discuss the main validity threats to our study with respect to construct validity,
internal validity, external validity, and conclusion validity (Wohlin et al, 2012).

7.1 Construct Validity

Construct validity involves whether our experiment measures the construct we
study. Our aim is to measure how well automated bug assignment performs.
We measure this using prediction accuracy, the basic measure for performance
evaluations of classification experiments. As an alternative measure of the clas-
sification performance, we could have complemented the results with average
F-measures to also illustrate type I and type II errors. However, to keep the
presentation and interpretation of results simple, we decided to consistently
restrict our results to contain only prediction accuracy.

The Weka framework does not allow evaluations with classes encountered in
the test set that do not exist in the training set. For Experiments A-C (all based
on cross-validation) Weka automatically harmonizes the two sets by ensuring
the availability of all classes in both sets. However, for the time-sorted evalu-
ations performed in Experiment D and E, we do not use the cross-validation
infrastructure provided by Weka. Instead, we have to perform the harmoniza-
tion manually. To simplify the experimental design and be conservative in our
performance estimates in Experiment D and E, we always consider all teams
present in the full dataset as possible classification results, i.e., regardless of
whether the teams are present in the training and test sets of a specific run.
This is a conservative design choice since it causes many more possible alterna-
tive classes available for classification, making it a harder problem. In practice,
the team structure in an organization is dynamic. In the projects under study,
teams are added, renamed, merged, and removed over the years as illustrated
in Figure 13. While the current team structure would be known at any given
time in a real project, we do not use any such information in our experimental
runs. Thus, there is a potential that the prediction accuracy of a deployed tool
using SG could be higher.

In the projects we study, the teams are not entirely disjunct. Individual
developers might be members of several teams, teams might be sub-teams of
other teams, and certain teams are created for specific tasks during limited
periods of time. Thus, as some teams overlap, more than one team assignment
could be correct for a bug report. Furthermore, the correctness of a team as-
signment is not a binary decision in real life. Teams might be hierarchically
structured and there are dependencies between teams. An incorrect bug as-
signment might thus be anything from totally wrong (e.g., assigning a bug
report describing embedded memory management to a GUI team) to just as
good as the team assignment stored in the BTS. Again, our evaluation is con-



40 Leif Jonsson et al.

Triangle team
added, Square
removed

Square and
Circle team
added

Plus team

e a°"a a A o9
EE s 4 V' [N
g = a8 'Y a4 'Y, .
Time
Older Bug Reports Tr2 Tr3 Tra Tr5 Newer Bug Reports

Available teams:
Square, Circle,
Triangle

Available teams:
Circle , Triangle, Plus

We have seen
Square team
bug reports in
training set, but
we know the
team has been

We know Plus team
exists but have not seen
any Plus team bug
reports in training set

Fig. 13: Team dynamics and BTS structure changes will require dynamic re-
training of the prediction system. Teams are constantly added and removed
during development so a prediction system must be adapted to keep these
aspects in mind. These are all aspects external to pure ML techniques, but
important for industry deployment.

servative as we consider everything not assigned to the same team as in the
BTS as incorrect.

7.2 Internal Validity

Internal validity concern inferences regarding casual relationships. We aim
to understand how SG performs compared to individual classifiers, and how
its prediction accuracy is affected by different training configurations. Our
experimental design addresses threats to internal validity by controlling the
independent variables in turn. Still, there are a number of possibly confounding
factors.

We conduct the same preprocessing for all classification runs. It is possible
that some of the classifiers studied perform better for our specific choice of



Title Suppressed Due to Excessive Length 41

preprocessing actions than others. On the other hand, we conduct nothing but
standard preprocessing (i.e., lower casing and standard stop word removal),
likely to be conducted in most settings.

We use default configurations of all individual classifiers studied. While
most classifiers are highly configurable, we do not perform any tuning. Instead,
we consistently use the default configurations provided by Weka. The default
configurations for some classifiers might be favorable for team assignment and
others might underperform. Furthermore, we evaluated only one single level-1
classifier in SG, also using the default configuration. However, Wolpert (1992)
argues that a simple level-1 classifier should be sufficient.

7.3 External Validity

External validity reflect the generalizability of our results. We study five large
datasets containing thousands of bug reports from proprietary development
projects. All datasets originate from development of different systems, includ-
ing middle-ware, client-server solutions, a compiler, and communication pro-
tocols. However, while the datasets all are large, they originate from only two
different companies. Furthermore, while the two companies work in different
domains, i.e., automation and telecommunication, both are mainly concerned
with development of embedded systems. To generalize to other domains such
as application development, replications using other datasets are required.

The fraction of bug reports originating from customers is relatively low in
all five datasets under study. In development contexts where end users submit
more of the bug reports, different natural language descriptions and informa-
tion content might be used. This might have an impact on the performance
of SG for team assignment. However, as opposed to most previous work, we
focus on proprietary development projects using closed BTSs.

We filtered the five datasets to contain only bug reports actually describ-
ing defects in the production software. It is possible that a BTS is used for
other types of issues, as is the case in Company Automation, e.g., document
changes, change requests, and changes to internal test code. We have not stud-
ied how well SG generalizes for these more generic types of issues. On the other
hand, we assume that the most challenging team assignment involves defects
in the production software where the location in source code and the related
documentation are unknown.

7.4 Conclusion Validity

Conclusion validity is the degree to which conclusions we reach about relation-
ships in our data are reasonable. For experiment A, B, and C we use 10-fold
cross validation as conventional in machine learning evaluations. However, as
argued by Rao et al (2008), evaluations should also be performed using a se-
questered test set. We accomplish this by performing experiment D and E



42 Leif Jonsson et al.

on separate training and test sets. Moreover, we evaluate the performance in
several runs as described in Section 5.5.4 and 5.5.5.

The results from 10-fold cross-validation (using stratified sampling) and
the evaluations conducted using defect reports submitted by submission date
are different. Cross validation yields higher prediction accuracy, in line with
warnings from previous research (Rao et al, 2008; Kodovsky, 2011). To con-
firm the better results when using cross validation, we validated the results
using RapidMiner (Hofmann and Klinkenberg, 2014) for the two datasets Au-
tomation and Telecom 4. We trained a Naive Bayes classifier for Automation
and an SVM classifier for Telecom 4 and observed similar differences between
evaluations using 10-fold cross validation and a sorted dataset.

8 Discussion

This section contains a discussion of the results from our experiments in the
context of our overall goal: to support bug assignment in large proprietary
development projects using state-of-the-art ML. Section 8.1 synthesizes the
results related to our RQs and discusses the outcome in relation to previous
work. Finally, Section 8.2 reports important experiences from running our
experiments and advice on industrial adaptation.

8.1 Stacked Generalization in the Light of Previous Work

We conduct a large evaluation of using SG for bug assignment, extending our
previous work (Jonsson et al, 2012). Our results show that SG (i.e., combining
several classifiers in an ensemble learner) can yield a higher prediction accuracy
than using individual general purpose classifiers (RQ1, ExpA). The results are
in line with findings in general ML research (Kuncheva and Whitaker, 2003).
However, we show that simply relying on SG is not enough to ensure good re-
sults; some care must be taken when doing the ensemble selection (RQ2, ExpB).
On the other hand, our results confirm the thesis by Wolpert (1992) that SG
should on average perform better than the individual classifiers included in
the ensemble.

We present the first study on bug assignment containing 10,000s of bug
reports collected from different proprietary development projects. Previous
work has instead focused on bug reports from OSS development projects, e.g.,
Eclipse and Firefox, as presented in Section 3. A fundamental difference is that
while bug assignment in OSS projects typically deal with individual developers,
we instead assign bug reports to development teams. As this results in a more
coarse assignment granularity, i.e., our output is a set of developers, one could
argue that we target a less challenging problem.

We achieve prediction accuracy between 50% and 85% for our five systems
using cross-validations, and between 15% and 65% for time-sorted evaluations.
Thus, our work on bug team assignment does not display higher prediction



Title Suppressed Due to Excessive Length 43

accuracy than previous work on automated bug assignment to individuals, but
is similar to what has been summarized in Figure 3. Consequently, we show
that automated proprietary bug assignment, on a team level, can correctly
classify the same fraction of bug reports as what has been reported for bug
assignment to individual developers in OSS projects. Bug assignment to teams
does not appear to be easier than individual assignment, at least not when
considering only the top candidate team presented by the ML system.

Cross-validation consistently yielded higher prediction accuracy than con-
ducting more realistic evaluations on bug reports sorted by the submission
date. The dangers of cross-validation have been highlighted in ML evalua-
tion before (Rao et al, 2008), and it is a good practice to complement cross-
validation with a sequestered test set. Our experiments show that evaluations
on bug assignment can not rely on cross-validation alone. Several factors can
cause the lower prediction accuracy for the time sorted evaluations. First,
cross-validation assumes that the bug reports are independent with no dis-
tributional differences between the training and test sets (Arlot and Celisse,
2010). Bug reports have a natural temporal ordering, and our results sug-
gest that the dependence among individual bug reports can not be neglected.
Second, we used stratified sampling in the cross-validation, but not in the
time sorted evaluations. Stratification means that the team distributions in
the training sets and test sets are the same, which could improve the results
in cross-validation. Third, as we perform manual harmonization of the classes
in the time sorted evaluation (see Section 7), all teams are always possible
classifications. In cross-validation, Weka performs the harmonization just for
the teams involved in the specific run, resulting in fewer available teams and
possibly a higher prediction accuracy.

8.2 Lessons Learned and Industrial Adoption

Two findings from our study will have practical impact on the deployment of
our approach in industrial practice. First, we studied how large the training
set needs to be for SG to reach its potential. The learning curves from 10-
fold cross-validation show that larger training set are consistently better, but
the improvement rate decreases after about 2,000 training examples. The point
with the maximum curvature, similar to an elbow point (Tibshirani et al, 2001)
as used in cluster analysis, appears in the same region for all five systems. As
a result, we suggest, as a rule of thumb, that at least 2,000 training examples
should be used when using SG for automated bug assignment (RQ3, ExpC).
The second important finding of practical significance relates to how of-
ten an ML system for bug assignment needs to be retrained. For all but one
dataset, our results show a clear decay of prediction accuracy as we use older
training data. For two datasets the decay appears exponential, and for two
datasets the decay is linear. Our conclusion is that the time locality of the
training data is important to get a high prediction accuracy, i.e., SG for bug
assignment is likely to achieve a higher prediction accuracy if trained on re-



44 Leif Jonsson et al.

cent bug reports (RQ4, ExpD). Bhattacharya et al (2012) recently made the
same observation for automated bug assignment using large datasets from the
development of Eclipse and Mozilla projects.

Finding the right time to retrain SG appears to be a challenge, as we want
to find the best balance between using many training examples and restricting
the training set to consist of recent data. In Experiment E, our last experiment,
we try several different cumulatively increasing training sets at multiple points
in time. This experimental setup mimics realistic use of SG for bug assignment,
trained on different amounts of previous bug reports. We show that for four of
our datasets, the positive effect of using larger training sets is nullified by the
negative effect of adding old training examples. Only for one dataset it appears
meaningful to keep as much old data as possible.

When deployed in industrial practice, we recommend that the prediction
accuracy of automated bug assignment should be continuously monitored to
identify when it starts to deteriorate. For four of our datasets, cumulatively
increasing the amount of training data is beneficial at first (see Figure 12), but
then SG reaches a maximum prediction accuracy. For all but one dataset, the
prediction accuracy starts to decay even before reaching the 2,000 training ex-
amples recommended based on the results from Experiment C. Furthermore,
we stress that attention should be paid to alterations of the prediction accu-
racy when significant changes to either the development process or the actual
software product are made. Changes to the team structure and the BTS clearly
indicate that SG should be retrained, but also process changes, new tools in
the organization, and changes to the product can have an impact on the at-
tributes used for automated bug assignment. In practice, the monitoring of
the prediction accuracy could be accomplished by measuring the amount of
bug tossing taking place after the automated bug assignment has taken place.

While we can measure the prediction accuracy of SG for bug assignment, it
is not clear what this means for practical purposes. How accurate do the classi-
fications have to be before developers start recognizing its value? Regnell et al
(2008) describe quality, in our case the prediction accuracy of automated bug
assignment, as continuous and non-linear. Figure 14 shows what this means
for bug assignment. The perceived usefulness of SG is on a sliding scale with
specific breakpoints. The utility breakpoint represents when developers start
considering automated bug assignment useful, any prediction accuracy below
this level is useless. The saturation breakpoint indicates where increased pre-
diction accuracy has no practical significance to developers. Figure 14 also
displays the prediction accuracy of human analysts between the breakpoints.
We argue that automated bug assignment does not have to reach the human
accuracy to be perceived useful, as the automated process is much faster than
the manual process. Our early evaluations indicate that the prediction accu-
racy of SG in Company Telecom is in line with the manual process (Jonsson
et al, 2012). Even though this study also used 10-fold cross-validation, which
we have seen can give overly optimistic estimates in this context; we believe
that our prototype has passed the utility breakpoint before we have started
any context specific tuning of SG.



Title Suppressed Due to Excessive Length 45

Benefit
N
Excessive
Saturation
breakpoint
Competitive
——— | | Differentiation
breakpoint
Useful
Useless

Quality Level

| Utility breakpoint |

Fig. 14: Perceived benefit vs. prediction accuracy. The figure shows two
breakpoints and the current prediction accuracy of human analysts. Adapted
from Regnell et al (2008).

When we implement automated bug assignment in an industrial tool, we
plan to present a handful of candidate teams to the user for each bug report
under investigation. While we could automatically assign the bug to the first
candidate, our first step is to provide decision support to the CCB. Considering
the automation levels defined by Parasuraman et al (2000), this reflects an
increase in automation from level 0 to level 3: “narrowing the selection down
to a few”. By presenting a limited selection of teams, possibly together with a
measure of the confidence level from SG, an experienced developer can quickly
choose the best target for the bug assignment. Note that the experimental
design we used in the evaluations in this study are stricter as we only considered
one single team assignment per bug report. Another recommendation is to plan
from the start to run the new ML-based system in parallel with the old way of
working, to evaluate if the prediction accuracy is good enough for a complete
roll over to a process supported by ML.

Furthermore, we must develop the tool to present the candidate teams
to the user in a suitable manner. Murphy-Hill and Murphy (2014) presents
several factors that affects how users perceive recommendations provided by
software engineering tools. The two most important factors for our tool are
transparency and the related aspect assessability. A developer must be able to
see why our tool suggests assigning a bug report to a specific team, i.e., the
rationale leading to the SG classification must be transparent. Also, our tool
should support developers in assessing the correctness of a suggested assign-
ment. We aim to achieve this by enabling interaction with the output, e.g.,



46 Leif Jonsson et al.

browsing previous bug assignments, opening detailed bug information, and
comparing bug reports.

9 Conclusions and Future Work

We conduct the first evaluation of automated bug assignment using large
amounts of bug reports, collected from proprietary software development pro-
jects. Using an ensemble learner, Stacked Generalization (SG), we train an
ML system on historical bug reports from five different projects in two dif-
ferent, large companies. We show that SG consistently outperforms individual
classifiers with regard to prediction accuracy even though the improvements
are sometimes marginal (RQ1). Moreover, our results suggest that it is worth-
while to strive for a diverse set of individual classifiers in the ensemble (RQ2),
consistent with recommendations in the general ML research field. Our results
show that SG, with feasible ensemble selection, can reach prediction accuracies
of 50% to 90% for the different systems, in line with the prediction accuracy
of the current manual process. We also briefly study the relative value of tex-
tual vs. non-textual features, and conclude that the most promising results are
obtained when combining both in SG. In future work we plan to improve the
textual features with more advanced text modeling techniques such as Topic
Modeling (LDA).

We study the SG learning curves for the five systems (RQ3), using 10-
fold cross-validation. The learning curves for all five datasets studied display
similar behaviour, thus we present an empirically based rule of thumb: when
training SG for automated bug assignment, aim for at least 2,000 bug reports
in the training set. Using time-sorted bug reports in the training and test sets
we show that the prediction accuracy decays as older training data is used
(RQ4). Consequently, we show that the benefit of adding more bug reports in
the training set is nullified by the disadvantage of training the system on less
recent data. Our conclusion is that any ML system used for automated bug
assignment should be continuously monitored to detect decreases in prediction
accuracy.

Our results confirm previous claims that relying only on K-fold cross-
vaelidation is not enough to evaluate automated bug assignment. We achieve
higher prediction accuracy when performing 10-fold cross-validation with strat-
ification than when analyzing bug reports sorted by the submission date. The
differences we observe are likely to be of practical significance, thus it is im-
portant to report evaluations also using sorted data, i.e., mimicking a real-
istic inflow of bug reports. Several authors have proposed modifications to
cross-validation to allow evaluations on dependent data, e.g., h-block cross-
validation (Burman et al, 1994). Future work could try this for bug assignment
evaluation, which means reducing the training set by removing h observations
preceding and following the observations in the test set.

When deploying automated bug assignment in industry, we plan to present
more than one candidate development team to the user of the ML system. By



Title Suppressed Due to Excessive Length 47

presenting a ranked list of teams, along with rationales of our suggestions, an
experienced member of the CCB should be able to use the tool as decision
support to select the most appropriate team assignment. Our current evalu-
ation does not take this into account, as we only measure the correctness of
the very first candidate. Future work could extend this evaluation by evaluat-
ing lists of candidates, opening up for measures from the information retrieval
field, e.g., mean average precision and normalized discounted cumulative gain.
Finally, to properly evaluate how ML can support bug assignment in industry,
the research community needs to conduct industrial case studies in organiza-
tions using the approach. In particular, it is not clear how high the prediction
accuracy needs to be before organizations perceive the system to be “good
enough”.

Future work could be directed toward improving our approach to auto-
mated bug assignment. A number of studies in the past show that tools spe-
cialized for bug assignment in a particular project can outperform general
purpose classifiers (Tamrawi et al, 2011; Xie et al, 2012; Xia et al, 2013). It
would be possible for us to explore if any enhancements proposed in previ-
ous work could improve the accuracy of SG, e.g., topic models, social network
analysis, or mining the commit history of source code repositories. Also, we
could further investigate if any particular characteristics of team assignment
in proprietary projects could be used to improve automated bug assignment,
i.e., characteristics that do not apply to OSS projects.

Another direction for future enhancements of our approach could explore
how to adapt bug assignment based on the developers’ current work load in
the organization. The current solution simply aims to assign a bug report to
development teams that worked on similar bug reports in the past. Another
option would to optimize the resolution times of bug reports by assigning bugs
to the team most likely to close them fast. For many bug reports, more than
one team is able to resolve the issue involved, especially in organizations with
a dedicated strategy for shared code ownership. Future work could explore the
feature engineering required for SG to cover this aspect. Yet another possible
path for future work, made possible by the large amount of industrial data we
have collected, would be to conduct comparative studies of bug reports from
OSS and proprietary projects, similar to what Robinson and Francis (2010)
reported for source code.

Acknowledgements This work was supported in part by the Industrial Excellence Center
EASE - Embedded Applications Software Engineering®.

References

Aberdour M (2007) Achieving Quality in Open-Source Software. IEEE Soft-
ware 24(1):58-64

9 http://ease.cs.lth.se



48 Leif Jonsson et al.

Ahsan S, Ferzund J, Wotawa F (2009) Automatic Software Bug Triage System
(BTS) Based on Latent Semantic Indexing and Support Vector Machine. In:
Proc. of the 4h International Conference on Software Engineering Advances,
pp 216-221

Alenezi M, Magel K, Banitaan S (2013) Efficient Bug Triaging Using Text
Mining. Journal of Software 8(9)

Alshammari R, Zincir-Heywood A (2009) Machine learning based encrypted
traffic classification: Identifying SSH and Skype. In: Proc. of the Symposium
on Computational Intelligence for Security and Defense Applications, pp 1-8

Amamra A, Talhi C, Robert JM, Hamiche M (2012) Enhancing Smartphone
Malware Detection Performance by Applying Machine Learning Hybrid
Classifiers. In: Kim Th, Ramos C, Kim Hk, Kiumi A, Mohammed S, Slezak
D (eds) Computer Applications for Software Engineering, Disaster Recov-
ery, and Business Continuity, no. 340 in Communications in Computer and
Information Science, Springer Berlin Heidelberg, pp 131-137

Anvik J (2007) Assisting Bug Report Triage through Recommendation. The-
sis, University of British Columbia

Anvik J, Murphy GC (2011) Reducing the effort of bug report triage: Rec-
ommenders for development-oriented decisions. Trans Softw Eng Methodol
20(3):10:1-10:35

Anvik J, Hiew L, Murphy GC (2006) Who should fix this bug? In: Proc. of
the 28th International Conference on Software Engineering, New York, NY,
USA, 06, pp 361-370

Arlot S, Celisse A (2010) A survey of cross-validation procedures for model
selection. Statistics Surveys 4:40-79

Asklund U, Bendix L (2002) A study of configuration management in open
source software projects. IEE Proceedings - Software 149(1):40-46

Avazpour I, Pitakrat T, Grunske L, Grundy J (2014) Dimensions and Met-
rics for Evaluating Recommendation Systems. In: Robillard M, Maalej W,
Walker R, Zimmermann T (eds) Recommendation Systems in Software En-
gineering, Springer, pp 245-273

Basili V, Selby R, Hutchens D (1986) Experimentation in software engineer-
ing. IEEE Transactions on Software Engineering SE-12(7):733-743, DOI
10.1109/TSE.1986.6312975

Baysal O, Godfrey M, Cohen R (2009) A bug you like: A framework for au-
tomated assignment of bugs. In: Proc. of the 17th International Conference
on Program Comprehension, pp 297-298

Bettenburg N, Premraj R, Zimmermann T, Sunghun K (2008) Duplicate bug
reports considered harmful... really? In: Proceedings of the International
Conference on Software Maintenance, pp 337-345

Bezanson J, Karpinski S, Shah VB, Edelman A (2012) Julia: A Fast Dynamic
Language for Technical Computing ArXiv: 1209.5145

Bhattacharya P, Neamtiu I, Shelton CR (2012) Automated, highly-accurate,
bug assignment using machine learning and tossing graphs. Journal of Sys-
tems and Software 85(10):2275-2292



Title Suppressed Due to Excessive Length 49

Bifet A, Holmes G, Kirkby R, Pfahringer B (2010) : Massive Online Analysis.
J Mach Learn Res 11:1601-1604

Bishop CM (2006) Pattern Recognition and Machine Learning. Springer, New
York

Blei D, Ng A, Jordan M (2003) Latent Dirichlet Allocation.
The Journal of Machine Learning Research 3:993-1022, URL
http://dl.acm.org/citation.cfm?id=944919.944937

Borg M, Pfahl D (2011) Do better IR tools improve the accuracy of engineers’
traceability recovery? In: Proc. of the International Workshop on Machine
Learning Technologies in Software Engineering, pp 27-34

Borg M, Runeson P, Ardo A (2014) Recovering from a decade: A systematic
mapping of information retrieval approaches to software traceability. Empir-
ical Software Engineering 19(6):1565-1616, DOI 10.1007/s10664-013-9255-y

Breiman L (1996) Bagging Predictors. Machine Learning 24(2):123-140

Burman P, Chow E, Nolan D (1994) A cross-validatory method for dependent
data. Biometrika 81(2):351-358

Canfora G, Cerulo L (2006) Supporting change request assignment in open
source development. In: Proc. of the Symposium on Applied Computing, pp
1767-1772

Chen L, Wang X, Liu C (2011) An Approach to Improving Bug Assignment
with Bug Tossing Graphs and Bug Similarities. Journal of Software 6(3)

Cubranic D, Murphy GC (2004) Automatic bug triage using text categoriza-
tion. In: Proc. of the 16th International Conference on Software Engineering
& Knowledge Engineering, pp 92-97

Frank E, Hall M, Trigg L, Holmes G, Witten I (2004) Data mining in bioin-
formatics using Weka. Bioinformatics 20(15):2479-2481

Freund Y, Schapire RE (1995) A desicion-theoretic generalization of on-line
learning and an application to boosting. In: Vitanyi P (ed) Computational
Learning Theory, no. 904 in Lecture Notes in Computer Science, Springer
Berlin Heidelberg, pp 23-37

Green SB (1991) How Many Subjects Does It Take To Do A Regression Anal-
ysis. Multivariate Behavioral Research 26(3):499-510

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009)
The WEKA data mining software: an update. SIGKDD Explor Newsl
11(1):10-18

Helming J, Arndt H, Hodaie Z, Koegel M, Narayan N (2011) Automatic As-
signment of Work Items. In: Maciaszek LA, Loucopoulos P (eds) Proc. of
the International Conference on Evaluation of Novel Approaches to Software
Engineering, Springer Berlin Heidelberg, pp 236250

Hofmann M, Klinkenberg R (eds) (2014) : Data Mining Use Cases and Business
Analytics Applications. Chapman and Hall/CRC

Jeong G, Kim S, Zimmermann T (2009) Improving bug triage with bug toss-
ing graphs. In: Proc. of the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foun-
dations of Software Engineering, New York, NY, USA, pp 111-120



50 Leif Jonsson et al.

Jonsson L, Broman D, Sandahl K, Eldh S (2012) Towards Automated Anomaly
Report Assignment in Large Complex Systems Using Stacked Generaliza-
tion. Proc of the International Conference on Software Testing, Verification,
and Validation pp 437-446

Just S, Premraj R, Zimmermann T (2008) Towards the next generation of
bug tracking systems. In: Proc. of the Symposium on Visual Languages and
Human-Centric Computing, IEEE Computer Society, pp 82-85

Kagdi H, Gethers M, Poshyvanyk D, Hammad M (2012) Assigning change
requests to software developers. Journal of Software: Evolution and Process
24(1):3-33

Kodovsky J (2011) On dangers of cross-validation in steganalysis. Tech. rep.,
Birmingham University

Kohavi R (1995) A Study of Cross-validation and Bootstrap for Accuracy
Estimation and Model Selection. In: Proc. of the 14th International Joint
Conference on Artificial Intelligence - Volume 2, pp 1137-1143

Kuncheva LI, Whitaker CJ (2003) Measures of Diversity in Classifier Ensem-
bles and Their Relationship with the Ensemble Accuracy. Machine Learning
51(2):181-207

Li N, Li Z, Nie Y, Sun X, Li X (2011) Predicting software black-box defects
using stacked generalization. In: Proc. of the International Conference on
Digital Information Management, pp 294—-299

Li Q, Wang Q, Yang Y, Li M (2008) Reducing Biases in Individual Software
Effort Estimations: A Combining Approach. In: Proc. of the 2nd Interna-
tional Symposium on Empirical Software Engineering and Measurement, pp
223-232, URL http://doi.acm.org/10.1145/1414004.1414041

Lin Z, Shu F, Yang Y, Hu C, Wang Q (2009) An empirical study on bug
assignment automation using Chinese bug data. In: Proc. of the 3rd Inter-
national Symposium on Empirical Software Engineering and Measurement,
pp 451-455

Linares-Vasquez M, Hossen K, Dang H, Kagdi H, Gethers M, Poshyvanyk
D (2012) Triaging incoming change requests: Bug or commit history, or
code authorship? In: Proc. of the 28th International Conference on Software
Maintenance, pp 451-460

Matter D, Kuhn A, Nierstrasz O (2009) Assigning bug reports using a
vocabulary-based expertise model of developers. In: 6th IEEE International
Working Conference on Mining Software Repositories, 2009. MSR ’09, pp
131-140, DOI 10.1109/MSR.2009.5069491

McCallum A (2002) : A Machine Learning for Language Toolkit. Tech. rep.,
URL http://mallet.cs.umass.edu

Morzilla (2013) Life Cycle of a Bug. URL
http://www.bugzilla.org/docs/tip/en/html/lifecycle.html,  [Online; ac-
cessed 28-October-2013]

Murphy-Hill E, Murphy G (2014) Recommendation Delivery: Getting the User
Interface Just Right. In: Robillard M, Maalej W, Walker R, Zimmermann
T (eds) Recommendation Systems in Software Engineering, Springer



Title Suppressed Due to Excessive Length 51

Nagwani N, Verma S (2012) Predicting expert developers for newly reported
bugs using frequent terms similarities of bug attributes. In: Proc. of the 9th
International Conference on ICT and Knowledge Engineering, pp 113-117

Owen S, Anil R, Dunning T, Friedman E (2011) Mahout in Action. Manning
Publications, Shelter Island, New York

Parasuraman R, Sheridan T, Wickens C (2000) A model for types and levels
of human interaction with automation. Transactions on Systems, Man and
Cybernetics 30(3):286-297

Park J, Lee M, Kim J, Hwang S, Kim S (2011) : A Cost-Aware Triage Algo-
rithm for Bug Reporting Systems. In: Proc. of the 25th AAAI Conference
on Artificial Intelligence

Paulson J, Succi G, Eberlein A (2004) An empirical study of open-source
and closed-source software products. Transactions on Software Engineering
30(4):246-256

Petersen K, Wohlin C (2009) Context in Industrial Software Engineering Re-
search. In: Proc. of the 3rd International Symposium on Empirical Software
Engineering and Measurement, pp 401-404

Rao R, Fung G, Rosales R (2008) On the Dangers of Cross-Validation. An
Experimental Evaluation. In: Proc. of the STAM International Conference
on Data Mining, pp 588-596

Regnell B, Berntsson Svensson R, Olsson T (2008) Supporting Roadmap-
ping of Quality Requirements. IEEE Software 25(2):42-47, DOI
10.1109/MS.2008.48

Robillard M, Maalej W, Walker R, Zimmermann T (eds) (2014) Recommen-
dation Systems in Software Engineering. Springer

Robinson B, Francis P (2010) Improving Industrial Adoption of Software En-
gineering Research: A Comparison of Open and Closed Source Software. In:
Proc. of the International Symposium on Empirical Software Engineering
and Measurement, pp 21:1-21:10

Robles G, Gonzalez-Barahona J (2006) Contributor Turnover in Libre Software
Projects. In: Damiani E, Fitzgerald B, Scacchi W, Scotto M, Succi G (eds)
Open Source Systems, no. 203 in International Federation for Information
Processing, Springer, pp 273286

Servant F, Jones J (2012) : Automatic developer-to-fault assignment through
fault localization. In: Proc. of the 34th International Conference on Software
Engineering (ICSE), pp 36-46

Shokripour R, Kasirun Z, Zamani S, Anvik J (2012) Automatic Bug Assign-
ment Using Information Extraction Methods. In: Proc. of the International
Conference on Advanced Computer Science Applications and Technologies,
pp 144-149

Sill J, Takacs G, L M, D L (2009) Feature-Weighted Linear Stacking. CoRR

Tamrawi A, Nguyen T, Al-Kofahi J, Nguyen T (2011) Fuzzy Set and Cache-
based Approach for Bug Triaging. In: Proc. of the 19th ACM SIG-
SOFT Symposium and the 13th European Conference on Foundations of
Software Engineering, pp 365-375, DOI 10.1145/2025113.2025163, URL
http://doi.acm.org/10.1145/2025113.2025163



52 Leif Jonsson et al.

Thomas S, Nagappan M, Blostein D, Hassan A (2013) The Impact of Classifier
Configuration and Classifier Combination on Bug Localization. Transactions
on Software Engineering 39(10):1427-1443

Tibshirani R, Walther G, Hastie T (2001) Estimating the number of clusters
in a data set via the gap statistic. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 63(2):411-423

Wiklund K, Eldh S, Sundmark D, Lundqvist K (2013) Can we do useful in-
dustrial software engineering research in the shadow of lean and agile? In:
Proc. of the 1st International Workshop on Conducting Empirical Studies
in Industry, pp 67-68

Witten TH, Frank E, Hall MA (2011) Data Mining. pub, Burlington, MA

Wohlin C, Runeson P, Host M, Ohlsson M, Regnell B, Wesslen A (2012)
Experimentation in Software Engineering: A Practical Guide. Springer

Wolpert D (1992) Stacked Generalization. jour 5(2):241-259

Wu W, Zhang W, Yang Y, Wang Q (2011) : Developer Recommendation with
K-Nearest-Neighbor Search and Expertise Ranking. In: Proc. of the 18th
Asia Pacific Software Engineering Conference, pp 389-396

Xia X, Lo D, Wang X, Zhou B (2013) Accurate developer recommendation
for bug resolution. In: Proc. of the 20th Working Conference on Reverse
Engineering, pp 72-81

Xie X, Zhang W, Yang Y, Wang Q (2012) : Developer Recommendation Based
on Topic Models for Bug Resolution. In: Proc. of the 8th International Con-
ference on Predictive Models in Software Engineering, pp 19-28

Zaharia M, Chowdhury NMM, Franklin M, Shenker S, Stoica I (2010) Spark:
Cluster Computing with Working Sets. Tech. rep., EECS Department, Uni-
versity of California, University of California at Berkeley, Berkeley, Califor-
nia

Zhao Y, Zhang Y (2008) Comparison of decision tree methods for finding
active objects. Advances in Space Research 41(12):1955-1959



