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a b s t r a c t

High-resolution spectral estimation techniques are of notable interest for synthetic aperture
radar (SAR) imaging. Several sparse estimation techniques have been shown to provide
significant performance gains as compared to conventional approaches. We consider efficient
implementation of the recent iterative sparse maximum likelihood-based approaches (SMLAs).
Furthermore, we present approximative fast SMLA formulation using the Quasi-Newton
approach, as well as consider hybrid SMLA-MAP algorithms. The effectiveness of the discussed
techniques is illustrated using numerical and experimental examples.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The development of high-resolution two-dimensional
(2-D) spectral estimation algorithms is of notable interest in
forming accurate and reliable synthetic aperture radar (SAR)
images, and the topic has, as a result, attracted much interest
during recent years. Typically, SAR images are formed using
periodogram-based estimators, thereby suffering from the
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well-known limitations in resolution and high leakage levels.
Various forms of data-adaptive and often non-parametric
approaches can enhance the resolution while reducing these
shortcomings [1–5]. Generally, these methods require large
data sets to offer reliable estimates of the second-order
statistics, a requirement that is hard to satisfy in practice. To
alleviate this problem, recent work has examined various
forms of sparse estimation techniques, such as the sparse
learning via iterative minimization (SLIM) method [6], the
iterative adaptive approach (IAA) [7], and more recently a set
of iterative sparse maximum likelihood-based approaches
(SMLA) [8,9]. This class of methods have been found to offer
significant performance improvements as compared to the
traditional methods not exploiting the sparsity of the signal,
generally providing reliable high-resolution estimates with
excellent side lobe suppression [10–14]. Yet all these
approaches suffer from being computationally cumbersome,
which has resulted in a series of recent works focusing on
formulating computationally efficient implementations for the
SLIM and IAA estimates [15–18,14]. In this work, we continue
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this development, building on the recently developed efficient
algorithms and extending them to formulate implementations
for the additional matrix computations also required to form
efficient SMLA implementations. As our interest is primarily in
SAR imaging, we here focus on the 2-D formulations of these
algorithms, noting that the 1-D case will be a special case of
these, whereas higher dimensional estimates can be formed
similarly, although doing so requires additional mathematical
manipulations. Furthermore, we extend the recent work on
forming also approximative implementations using the Quasi-
Newton (QN) approach [18,19], presenting approximative
SMLA formulations, as well as considering the hybrid (max-
imum a posterior) SMLA-MAP algorithms [8,9]. The remainder
of this paper is organized as follows: in the interest of
completeness and to introduce the necessary notation, we
begin with briefly reviewing the SMLA algorithms in the
following section. Then, in Section 3, we proceed to introduce
efficient implementations of these algorithms. In Section 4,
we examine the performance of the discussed estimators and
the proposed implementations using both numerical and
experimental 1-D spectral estimation and 2-D synthetic
aperture radar imaging examples. Finally, Section 5 contains
our conclusions.

2. A brief review of the SMLAs

Let yðn1;n2Þ, n1 ¼ 0;1;…;N1, n2 ¼ 0;1;…;N2, and denote
a uniformly sampled 2-D sequence of observations for which
one wishes to compute a power spectral estimate. Let

YN1 ;N2 ¼ ½yN1
ð0Þ … yN1

ðN2�1Þ�; ð1Þ

yN1
ðn2Þ ¼ ½yð0;n2Þ … yðN1�1;n2Þ�T ð2Þ

where n2 ¼ 0;1;…;N2�1. Moreover, let

yN1N2
¼ vecfYN1 ;N2 g ð3Þ

YN1 ;N2 ¼matfyN1N2
g ð4Þ

where vecð�Þ denotes column-wise vectorization, and matð�Þ
the inverse operation, recreating the matrix from the vector-
ized matrix, and define the 2-D frequency vector

fN1N2 ðω1;ω2Þ9fN2 ðω2Þ � fN1 ðω1Þ; ð5Þ
where � denotes the Kronecker product, and

fNðωÞ9 ½1 ejω … ejðN�1Þω�T :
Without loss of generality, we here restrict our attention to
the case when the 2-D frequency vector in (5) is defined over
a uniformly spaced grid of frequencies, such that

ðωk1 ;ωk2 Þ9 ð2πk1=K1;2πk2=K2Þ ð6Þ

where k1 ¼ 0;1;…K1�1 and k2 ¼ 0;1;…K2�1, with
Ki4Niþ1, i¼1,2, and where typically Ki5Ni. To simplify
notation, define fk1 ;k2 9fN1N2 ðωk1 ;ωk2 Þ, and denote the power
of yðn1;n2Þ, at frequency ðωk1 ;ωk2 Þ, with αk1 ;k2 9 jYðωk1 ;ωk2 Þj2,
where Yðωk1 ;ωk2 Þ is the corresponding complex-valued spec-
tral amplitude. Modeling the signal as consisting of a sparse
signal corrupted by an additive Gaussian noise, an estimate of
the complex valued covariance matrix of yN1N2

is then
obtained as
RN1N2 9 ∑
K1�1

k1 ¼ 0
∑

K2�1

k2 ¼ 0
αk1 ;k2 fk1 ;k2 f

H
k1 ;k2 þΣN1N2 ð7Þ

where ΣN1N2 9s2IN1N2 denotes the covariance matrix of the
noise term with (unknown) variance s2. Then, for all the
frequencies of interest, SMLA is formed by iteratively comput-
ing an estimate of the spectral power, αk1 ;k2 , for k1 ¼ 0;
1;…K1�1, k2 ¼ 0;1;…K2�1, as well as the signal covariance
matrix, RN1N2 , and the noise covariance matrix, ΣN1N2 , until
practical convergence. As shown in [8,9], the family of SMLAs
consists of four separate algorithms, termed SMLA-ℓ, for
ℓ¼ 0;…;3, formed as

SMLA-0:

αk1 ;k2 ¼ α2k1 ;k2 jf
H
k1 ;k2R

�1
N1N2

yN1N2
j2 ð8Þ

RN1N2 ¼ ∑
K1�1

k1 ¼ 0
∑

K2�1

k2 ¼ 0
αk1 ;k2 fk1 ;k2 f

H
k1 ;k2 þs2IN1N2 ð9Þ

s2 ¼ jR�1
N1N2

yN1N2
j2

TrðR�2
N1N2

Þ
ð10Þ

SMLA-1:

αk1 ;k2 ¼
�����f

H
k1 ;k2R

�1
N1N2

yN1N2

fHk1 ;k2R
�1
N1N2

fk1 ;k2

�����
2

ð11Þ

RN1N2 ¼ ∑
K1�1

k1 ¼ 0
∑

K2�1

k2 ¼ 0
αk1 ;k2 fk1 ;k2 f

H
k1 ;k2 þs2IN1N2 ð12Þ

s2 ¼ jR�1
N1N2

yN1N2
j2

TrðR�2
N1N2

Þ
ð13Þ

SMLA-2:

αk1 ;k2 ¼ αk1 ;k2
jfHk1 ;k2R

�1
N1N2

yN1N2
j2

fHk1 ;k2R
�1
N1N2

fk1 ;k2
ð14Þ

RN1N2 ¼ ∑
K1�1

k1 ¼ 0
∑

K2�1

k2 ¼ 0
αk1 ;k2 fk1 ;k2 f

H
k1 ;k2 þs2IN1N2 ð15Þ

s2 ¼ jR�1
N1N2

yN1N2
j2

TrðR�2
N1N2

Þ
ð16Þ

SMLA-3:

αk1 ;k2 ¼ β2k1 ;k2 jf
H
k1 ;k2P

�1
N1N2

yN1N2
j2 ð17Þ

βk1 ;k2 ¼
1

fHk1 ;k2R
�1
N1N2

fk1 ;k2
ð18Þ

RN1N2 ¼ ∑
K1�1

k1 ¼ 0
∑

K2�1

k2 ¼ 0
αk1 ;k2 fk1 ;k2 f

H
k1 ;k2 þs2IN1N2 ð19Þ

PN1N2 ¼ ∑
K1�1

k1 ¼ 0
∑

K2�1

k2 ¼ 0
βk1 ;k2 fk1 ;k2 f

H
k1 ;k2 þs2IN1N2 ð20Þ

s2 ¼ jR�1
N1N2

yN1N2
j2

TrðR�2
N1N2

Þ
ð21Þ

wherein, for all the four approaches, αk1 ;k2 is initialized using
the 2-D Discrete Fourier Transform (DFT) coefficients, with,
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usually, only 10–15 iterations being required for conver-
gence. As noted, direct implementations of the SMLAs are
computationally intensive, requiring roughly

CSMLA�0 ¼mð2N3
1N

3
2þN2

1N
2
2K1K2Þ ð22Þ

CSMLA�1 ¼mð2N3
1N

3
2þ2N2

1N
2
2K1K2Þ ð23Þ

CSMLA�2 ¼mð2N3
1N

3
2þ2N2

1N
2
2K1K2Þ ð24Þ

CSMLA�3 ¼mð3N3
1N

3
2þ4N2

1N
2
2K1K2Þ ð25Þ

operations, where m denotes the number of SMLA iterations
performed. As shown in the following, these figures can be
drastically reduced by taking into account the structural
properties of the covariance matrices and the pertinent
trigonometric polynomials involved in each of the SMLA
algorithms.

3. Fast implementations of the SMLAs

Compared to the earlier efficient implementations intro-
duced for the SLIM and IAA algorithms [14–18,20], it can be
noted that SMLAs exhibit several similarities to these, and can
without modification exploit the previously formulated effi-
cient Gohberg–Semencul (G–S) type factorizations of the
estimated inverse covariance matrix, as well as for the
required products of inverses. The part lacking in these
aforementioned implementations is the efficient computation
of the factor TrðR�2

N1N2
Þ. Fortunately, using the displacement

representation of this expression, G–S factorizations of this
factor may also be formulated, thereby enabling it to be
efficiently computed using the Fast Fourier Transform (FFT).

Recall that, given a matrix AN1N2 ACN1N2�N2N2 , the dis-
placement of AN1N2 with respect to ZN1N2 and ZT

N1N2
is

defined as [21–24]

∇Z;ZT ðAN1N2 Þ9AN1N2�ZN1N2AN1N2Z
T
N1N2

ð26Þ

where ZN1N2 9ZN2 � IN1 , with

ZN2 9
0T
N2�1 0
IN2�1 0N2�1

" #
ð27Þ

whereas IN1 and IN2�1 are identity matrices of appropriate
dimensions. Clearly, ZN2

N1N2
¼ 0. Suppose there exist integers

ρ and γiAf�1;1g, i¼ 1;2…ρ, such that

∇Z;ZT ðAN1N2 Þ ¼ ∑
ρ

i ¼ 1
γit

i
N1N2

siHN1N2
ð28Þ

Then, AN1N2 can be expressed using a G–S factorization as

AN1N2 ¼ ∑
ρ

i ¼ 1
γiLðtiN1N2

ÞLðsiN1N2
ÞH ð29Þ

where, given xACN1N2�1, LðxÞ is the Krylov matrix of
dimensions ðN1N2Þ � N2, defined as

LðxÞ9 ðxZN1N2x…ZN2�1
N1N2

xÞ: ð30Þ

Clearly, LðxÞ is a block lower Toeplitz matrix of block
dimensions N2 � N2 having block entries of size N1 � 1
each. Let

TN1N2 ;ρ ¼ ½t1N1N2
… tρN1N2

� ð31Þ
ΓN1N2 ;ρ ¼ ½s1N1N2
… sρN1N2

� ð32Þ

Γρ ¼ diagðγ1…γρÞ ð33Þ
Then, the triplet ðTN1N2 ;ρ; SN1N2 ;ρ;ΓρÞ is called the displace-
ment representation of AN1N2 with respect to ZN1N2 and
ZT
N1N2

. Thus, given the generator vectors tiN1N2
, siN1N2

, and
scalars γi, i¼ 1;2…ρ, the matrix AN1N2 can be reconstructed
using the G–S factorization in (29).

Lemma 1. Given a Hermitian matrix AN1N2 ACðN1N2Þ�ðN1N2Þ,
specified by the displacement representation ðTN1N2 ;ρ;TN1N2 ;ρ;

ΓρÞ, and a vector aN1N2 ACðN1N2Þ�1, the matrix vector product
AN1N2aN1N2 can be computed using (29) at a cost of
ð3ρþ2ÞN1ϕð2N2Þþ2ρN1N2 operations, where ϕðNÞ denotes
the operations required for the computation of the 1-D FFT or
inverse FFT (IFFT).

Lemma 2. Given AN1N2 , the coefficients of the trigonometric
polynomial defined by

φðω1;ω2Þ9fHN1N2
ðω1;ω2ÞAN1N2 fN1N2 ðω1;ω2Þ

¼ ∑
N1�1

κ1 ¼ �N1 þ1
∑

N2�1

κ2 ¼ �N2 þ1
φκ1 ;κ2e

�jðω1κ1 þω2κ2

can be computed at a cost of 2ðρþ1Þϕð2N1;2N2Þ operations,
where ϕðN;MÞ denotes the number of operations required for
the computation of the2-D FFT or IFFT.

The proofs of these lemmas are given in [22,25,26].

Lemma 3. The trace of AN1N2 can be estimated as

TrðAN1N2 Þ ¼ δTN1N2
∑
ρ

i ¼ 1
γit

i
N1N2

� snN1N2

 !
ð34Þ

where

δN1N2 9

N2

N2�1
⋮
1

2
6664

3
7775 � 1N1

with 1N1 denoting a N1 � 1 vector with all elements equal to
one, and with � denoting the Hadamard (elementwise)
product of two vectors.

Proof. Using the G–S representation in (29), the diagonal
of AN1N2 can be computed as

DiagðAN1N2 Þ ¼ ∑
ρ

i ¼ 1
γiZ

i�1
N1N2

ðtiN1N2
� sinN1N2

Þ; ð35Þ

which, using the structure of ZN1N2 and the fact that the
trace of matrix equals to the sum of its diagonal elements,
results in (34). □

It is worth noting that [27] can be seen as a special case
of Lemma 3.

Further, it can be noted that the covariance matrices
involved in the SMLAs all share the following generic
form:

RN1N2 ¼ Ro
N1N2

þs2IN1N2 ð36Þ

Ro
N1N2

¼ ∑
K1�1

k1 ¼ 0
∑

K2�1

k2 ¼ 0
αk1 ;k2 fk1 ;k2 f

H
k1 ;k2 ð37Þ
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implying that Ro
N1N2

has a Toeplitz block Toeplitz (TBT)
structure (see also [16,17]), and as an immediate conse-
quence, that RN1N2 also has a TBT structure of the form

RN1N2 ¼

R0
N1

R1H
N1

… RðN2�1ÞH
N1

R1
N1

R0
N1

… RðN2�2ÞH
N1

⋮ ⋮ ⋱ ⋮
RN2�1
N1

RN2�2
N1

… R0
N1

2
666664

3
777775 ð38Þ

where the matrix entries Rℓ
N1
, for ℓ¼ 0;1;…N2�1, are

Toeplitz matrices of size N1 � N1. For completeness and
to introduce the further needed notation, we now proceed
to form the displacement of R�1

N1N2
. As shown in [15–17],

this can be done by noting that Ro
N1N2

may be extracted
from a circulant block circulant (CBC) matrix of higher
dimensions as (see also [25])

CK1K2 ¼WH
K1K2

DK1K2WK1K2 ¼ SK1K2

Ro
N1N2

�
� �

" #
STK1K2

; ð39Þ

where DK1K2 ¼ diagfα0;0;…; αK1�1; K2�1g, with WK1K2 denot-
ing the 2-D DFT matrix, SK1K2 being a suitable permutation
matrix, and symbol � denoting terms of no relevance.
Given the TBT structure of (38), RN1N2 may be partitioned
as

RN1N2 ¼
RN1ðN2�1Þ Rb

N2�1

RbH
N2�1 R0

N1

2
4

3
5¼

R0
N1

RfH
N2�1

Rf
N2�1 RN1ðN2�1Þ

2
4

3
5 ð40Þ

where Rb
N2�1 and Rf

N2�1 denote block matrices of dimen-
sions N1ðN2�1Þ � N1. Applying the matrix inversion
lemma for partitioned matrices to (40) yields (see, e.g.,
[28])

R�1
N1N2

¼ R�1
N1ðN2�1Þ 0

0T 0

" #
þBN2B

H
N2

¼
0 0
0T R�1

N1ðN2�1Þ

" #
þAN2A

H
N2

ð41Þ
where BN2 and AN2 are block matrices of dimensions
N1N2 � N1 defined by

BN2 ¼
BN2�1

IN1

" #
A�b=2
N1

ð42Þ

AN2 ¼
IN1

AN2�1

" #
A�f =2
N1

ð43Þ

BN2�1 ¼�R�1
N1ðN2�1ÞRb

N2�1 ð44Þ

AN2�1 ¼�R�1
N1ðN2�1ÞRf

N2�1 ð45Þ

Ab
N1

¼ R0
N1

þRbH
N2�1BN2�1 ð46Þ

Af
N1

¼ R0
N1

þRfH
N2�1AN2�1 ð47Þ

with Ab=2
N1

and Af =2
N1

denoting the Cholesky factors of Ab
N1

and Af
N1
, respectively. Using (41), the displacement of R�1

N1N2

with respect to ZN1N2 and ZT
N1N2

is estimated as

∇Z;ZT ðR�1
N1N2

Þ ¼AN2A
H
N2
�ZN1N2BN2B

H
N2
ZT
N1N2

ð48Þ

implying that a displacement representation of R�1
N1N2

has
the form TN1N2 ;2N2 ;TN1N2 ;2N2 ;Γ2N2

� �
, where
TN1N2 ;2N2 9 ½AN2ZN1N2BN2 � ð49Þ

Γ2N2 9diagfIN2 ;�IN2 g ð50Þ
In this case the displacement rank of the representation
equals ρðR�1Þ ¼ 2N2. With these results, we are now ready
to introduce the displacement of R�2

N1N2
, noting that this

particular form is a special case of more general matrix
products studied recently in the context of the efficient
implementation of 1-D and 2-D Magnitude Squared Coher-
ence estimators [29–31]. Using (41),

R�2
N1N2

¼ R�2
N1ðN2�1Þ 0

0T 0

" #
þBN2C

H
N2

þDN2B
H
N2

ð51Þ

where

DN2 ¼ R�1
N1N2

BN2 ð52Þ

CN2 ¼DN2�BN2B
H
N2
BN2 ð53Þ

and, using (41),

R�2
N1N2

¼
0 0
0T R�2

N1ðN2�1Þ

" #
þAN2E

H
N2

þF N2A
H
N2

ð54Þ

where

F N2 ¼ R�1
N1N2

AN2 ð55Þ

EN2 ¼F N2�AN2A
H
N2
AN2 ð56Þ

Using (51) and (54) yields

∇Z;ZT ðR�2
N1N2

Þ ¼AN2E
H
N2

þF N2A
H
N2

�ZN1N2BN2C
H
N2
ZT
N1N2

�ZN1N2DN2B
H
N2
ZT
N1N2

ð57Þ
which indicates that a displacement representation of
R�2
N1N2

with respect to ZN1N2 and ZT
N1N2

has the form

ðTN1N2 ;4N2 ; SN1N2 ;4N2 ;Γ4N2 Þ ð58Þ
where

TN1N2 ;4N2 9 ½AN2F N2ZN1N2BN2ZN1N2DN2 �
SN1N2 ;4N2 9 ½EN2AN2ZN1N2CN2ZN1N2BN2 �
Γ4N2 9diagfIN2 ; IN2 ;�IN2 ;�IN2 g

implying that the displacement rank of the representation
equals ρðR�2Þ ¼ 4N2.

It is worth remarking that the displacement represen-
tation of R�1

N1N2
can be computed using the celebrated

Levinson–Whittle–Wiggins–Robinson (LWWR) algorithm
(see, e.g., [32]), where (44) and (45) may be interpreted as
multichannel backward and forward predictors, (46) and
(47) as the associated prediction error power matrices, and
(42) and (43) as the power normalized backward and
forward predictors counterparts respectively. The LWWR
algorithm requires approximately CLWWR ¼ 1:5N3

1N
2
2 opera-

tions. This figure may be reduced to CLWWR1 ¼N3
1N

2
2, if the

persymmetric property of the TBT matrix RN1N2 is taken
into account, according to which

JN1N2
RN1N2 JN1N2

¼ RT
N1N2

ð59Þ
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where the block exchange matrix, JN1N2
, is defined as a

block anti-diagonal matrix with the exchange matrix JN1

along the (block) anti-diagonal, resulting in [33]

AN2�1 ¼ JN1ðN2�1ÞBn

N2�1JN1
ð60Þ

Af
N1

¼ JN1
AbT
N1
JN1

: ð61Þ

As a further remark, we note that given the displacement
representation of R�1

N1N2
, the displacement representation

of R�2
N1N2

can efficiently be computed at a cost of approxi-
mately 12N2

1N2ϕð2N2Þ operations since (52) and (53) are
TBT vector products and they can be computed using
Lemma 1. Extra computational savings can be achieved,
cutting the computational cost to half, by noting that using
(42) and (55) may be rearranged as

F N2 ¼ ~F N2A
�f=2
N1

ð62Þ

~F N2 ¼ R�1
N1N2

IN1

AN2�1

" #
ð63Þ

which, in turn, allows (52) to be expressed equivalently as

DN2 ¼ JN1N2
~F n

N2
JN2

A�b=2
N1

ð64Þ

In summary, to form the SMLA-ℓ estimates, the perti-
nent covariance matrices RN1N2 given in (9), (12), (15) and
(18), as well as the matrix PN1N2 , given in (19), are
computed using the block Toeplitz block to block circulant
block embedding approach described by (39), where the
first block column is computed using the 2-D FFT, at a cost
of ϕðK1;K2Þ operations. These matrices are then used by
the LWWR algorithm for the computation of the displace-
ment representations of R�1

N1N2
and PN1N2 , which are sub-

sequently utilized for
�
 the computation yRN1N2
9R�1

N1N2
yN1N2

and yPN1N2
9P�1

N1N2

yN1N2
, appearing in (8), (10), (11), (13), (14), (16), (17), and

(20), using Lemma 1,

�
 the computation of the displacement representation of

R�2
N1N2

using (52), (53), (55), and (56), which is subse-
quently utilized for the computation of TrðR�2

N1N1
Þ, that

appears in (10), (13), (16), and (21), and finally,

�
 the computation of the coefficients of the 2-D trigono-

metric polynomials φðω1ω2Þ9fHN1N2
ðω1;ω2ÞR�1

N1N2
fN1N2

ðω1;ω2Þ that appear in the denominator of (11), (14),
and (18), using Lemma 2.

Then, the estimated power spectra formed by (8), (11),
(14), (17), and (18) can be evaluated on the uniformly
spaced grid of 2-D frequencies by applying the 2-D FFT
either on the vectors yRN1N2

and yPN1N2
, or on the coefficients

of the 2-D trigonometric polynomial φðω1;ω2Þ, associated
to each method, at a cost of ϕðK1;K2Þ operations, where K1

and K2 denote the size of the grid of the 2-D frequencies of
interest. Summarizing, the computational complexity of
the proposed efficient implementation of the SMLA algo-
rithms is approximately, keeping the dominant factors,

CFSMLA 	mðc1N3
1N

2
2þc2N

2
1ϕð2N2Þþc3N1ϕð2N1;2N2Þ

þc4ϕðK1;K2ÞÞ ð65Þ
where variables c1, c2, c3, and c4 depend upon the proces-
sing units required by each particular algorithm. We note
that, among them, the fast SMLA-3 is the most computa-
tionally intensive and its complexity is detailed as

CFSMLA�3 	mð3N3
1N

2
2þ12N2

1ϕð2N2Þ

þ4N1ϕð2N1;2N2Þþ4ϕðK1;K2ÞÞ ð66Þ

operations. Finally, it is worth noting that the proposed
fast implementation of the SMLA algorithms has a reduced
memory requirement, since the memory needed is of a
size proportional to N2

1N2, which is a major improvement
compared to the amount of N2

1N
2
2 required by the direct

brute force approach.
Further computational savings can be achieved, without

more than a marginal sacrificing of performance, by using
approximate estimates in place of RN1N2 , defined by (9), (12),
and (15), and RN1N2 and PN1N2 , defined by (19) and (20).
Reminiscent of the results recently introduced in [15], where a
fast approximative CG-based 1-D IAA algorithm was pre-
sented, and later extended in [34] to a block-recursive (1-D)
formulation applied to blood velocity estimation in ultrasound
imaging, we here propose approximative estimates for the
covariance matrices involved in all the SMLAs. The imple-
mentation is motivated by the Quasi-Newton (QN) algorithm
formulated in [19], and then further developed in [35–38],
wherein an efficient implementation scheme of approximate
recursive least squares algorithms is formed by imposing a
low order AR approximation on the input signal of the
adaptive algorithm. The approximation is formed by noting
that the inverse of the covariance matrix RN1N2 , defined by
(36), can be built up recursively using the LLWR algorithm,
iterating (41) as

R�1
N1M2

¼ R�1
N1ðM2�1Þ 0

0T 0

" #
þBM2B

H
M2

¼
0 0
0T R�1

N1ðM2�1Þ

" #
þAM2A

H
M2

ð67Þ

for M2 ¼ 1;…N2�1, where BM2 and AM2 are block matrices
of dimensions N1M2 � N1 corresponding to lower order
backward and forward predictors, propagated during the
recursive procedure imposed by the LWWR algorithm. An
approximative inverse covariance matrix is then constructed,
denoted hereafter by Q�1

N1N2
, by imposing a specific structure

in the forward and backward predictors involved in (67)
detailed as

BQ
M2

¼
0N1

BQ
M2�1

2
4

3
5; AQ

M2
¼ AQ

M2�1

0N1

2
4

3
5 ð68Þ

for M2 ¼MQ
2 þ1;MQ

2 þ2;…N2, which is initialized by

BQ
MQ

2
¼BMQ

2
; AQ

MQ
2
¼AMQ

2
ð69Þ

and where

BMQ
2
¼

�R�1
N1ðMQ

2 �1ÞRb
MQ

2 �1

IN1

2
4

3
5A�bðMQ

2 Þ=2
N1

ð70Þ
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Fig. 1. Computational complexity of the SMLA-3 algorithm using brute force, the proposed fast G–S implementation and the proposed QN G–S fast
implementation where the number of SMLA iterations is set equal to m¼10, for (a) the 1-D case where the number of frequency points is K ¼ 10N, and the

Q
2 ¼ 5N, and MQ ¼N2=4.

1 In order to estimate the noise variance, we use IAA-R (a regularized
IAA algorithm which accounts for the additive noise [12]).

2 In the examined examples, no significant further improvement was
achieved after the specified number of iterations.
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AMQ
2
¼

IN1

�R�1
N1ðMQ

2 �1ÞR
f
MQ

2 �1

2
4

3
5A�f ðMQ

2 Þ=2
N1
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A
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2 Þ
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¼ R0
N1
�RbH

MQ
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A
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2 Þ
N1

¼ R0
N1
�RfH

MQ
2 �1
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N1ðMQ
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f
MQ
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imposing a recursive estimate of Q�1
N1N2

as

Q�1
N1M2

¼ Q�1
N1ðM2�1Þ 0

0T 0

" #
þBQ

M2
BQH

M2

¼
0 0
0T Q�1

N1ðM2�1Þ

" #
þAQ

M2
AQH

M2
ð74Þ

for M2 ¼MQ
2 þ1;MQ

2 þ2;…N2, which is initialized by

Q�1
N1MQ

2
¼ R�1

N1M
Q
2
. Using (74), the displacement representation

of Q�1
N1N2

with respect to ZN1N2 and ZN1N2 takes the form

ðTN1N2 ;2N2 ;TN1N2 ;2N2 ;Γ2N2 Þ ð75Þ

where TN1N2 ;2N2 9 ½AQ
N2
ZN1N2B

Q
N2
� and Γ2N2 9diagfIN2 ;�IN2 g,

and where

AQ
N2

¼
AMQ

2

0N1ðN2�MQ
2 Þ

2
4

3
5; BQ

N2
¼

0N1ðN2�MQ
2 Þ

BMQ
2

2
4

3
5 ð76Þ

The advantage of using the approximative inverse covariance

matrices in place of the exact counterparts R�1
N1N2

and P�1
N1N2

required by the SMLAs, resulting in the approximative algo-
rithms here termed the QN-SMLA SMLAs, stems from the fact
that the complexity of computing the displacement represen-
tation of the approximate inverse covariance in (75) using the

LWWR algorithm requires approximately 1:5N3
1ðMQ

2 Þ2 opera-

tions as opposed to the 1:5N3
1N

2
2 operations required by the

QN order is M ¼N=4, and (b) for the 2-D case with N1 ¼N2 ¼N, K1 ¼ K
displacement representation of R�1
N1N2

, where, typically,

MQ
2 5N2.
The computational complexity of the proposed imple-

mentations of the SMLA-3 algorithm is depicted in Fig. 1(a)
for the 1-D and 1(b) for the 2-D case (the 1-D case results
from the 2-D counterpart by setting N1 ¼ 1). Compared to
the brute force implementation, the proposed implemen-
tation offers a speed up of several orders of magnitude.

4. Numerical and experimental examples

We now proceed to evaluate the discussed algorithms
and proposed implementations using several 1-D spectral
estimation and 2-D SAR imaging examples.

4.1. Spectral estimation

The power spectrum of a mixture of sinusoidal signals
corrupted by additive zero-mean complex Gaussian noise
is estimated using various techniques. The signal is com-
posed by four sinusoids located at frequencies 0.05, 0.065,
0.27, and 0.28, with all except the fourth sinusoid having
unit amplitude (the fourth sinusoid has an amplitude of
0.5). The noise variance s2, the data length N, and the
number of the equally spaced frequency grid points K are
set equal to 0.01, 100 and 1000, respectively. The perfor-
mance of the spectral estimation algorithms is illustrated
in Fig. 2, where superimposed spectra over 100 indepen-
dent experiments are shown for each one of the spectral
estimation methods used. The iterative numbers for all
iterative approaches, including SLIM, IAA-R,1 and the SMLA
variants, are fixed to ten.2 From Fig. 2(a), it is clear that the



Fig. 2. Simulation results obtained via periodogram, SLIM, IAA-R, and the SMLA variants: superimposed spectra estimated using 100 independent
realizations for a mixture of sinusoids using N¼100 and K¼1000 equally spaced frequency points. The red triangles indicate the location of the true
frequencies. (a) FFT, (b) SLIM-0, (c) SLIM-1, (d) IAA-R, (e) SMLA-0, (f) SMLA-1, (g) SMLA-2, (h) SMLA-3, (i) QNSMLA-0, (j) QNSMLA-1, (k) QNSMLA-2,
(l) QNSMLA-3, (m) SMLA-1-MAP, (n) SMLA-2-MAP and (o) SMLA-3-MAP. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this article.)

Table 1
The noise variance estimates averaged over 100 realiza-
tions obtained by IAA-R, SLIM, the (QN-) SMLAs.

Algorithm s2

SLIM-0 0.0095
SLIM-1 4.5�10�28

IAA-R 0.0016
SMLA-0 0.01
SMLA-1 (-MAP) 3.3�10�4

SMLA-2 (-MAP) 0.0024
SMLA-3 (-MAP) 0.0085
QN-SMLA-0 0.01
QN-SMLA-1 0.0037
QN-SMLA-2 0.0040
QN-SMLA-3 0.0093

Table 2
Computation times needed for the 1-D spectral estima-
tion on 100 realizations.

Algorithm Time (s)

FFT 0.016
SLIM-0 3.598
SLIM-1 3.558
IAA-R 3.961
SMLA-0 3.712
SMLA-1 (-MAP) 3.836
SMLA-2 (-MAP) 3.921
SMLA-3 (-MAP) 4.234
QN-SMLA-0 1.531
QN-SMLA-1 1.545
QN-SMLA-2 1.745
QN-SMLA-3 2.014
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Fig. 3. Slicy object and benchmark SAR image. (a) Photograph of the object (taken at 451 azimuth angle), and (b) benchmark SAR image formed with
a 288�288 (not 80�80) data matrix.

Fig. 4. Modulus of the SAR images of the Slicy object obtained from an 80�80 data matrix via FFT, SLIM, IAA, and the SMLAs. (a) FFT, (b) SLIM-0, (c) SLIM-1,
(d) IAA, (e) SMLA-0, (f) SMLA-1, (g) SMLA-2, (h) SMLA-3, (i) QNSMLA-0, (j) QNSMLA-1, (k) QNSMLA-2, (l) QNSMLA-3, (m) SMLA-1-MAP, (n) SMLA-2-MAP
and (o) SMLA-3-MAP.
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periodogram suffers from the low resolution and high
sidelobe level problems. Due to the high sidelobe levels,
the fourth spectral line at frequency 0.28 fails to be
detected. In comparison, SLIM, IAA-R, and the SMLA
variants provide improved resolution and clearly identify
all spectral lines as shown in Fig. 2(b)–(o). Specifically, IAA
provides dense estimation results while both SLIM-0 and
SLIM-1 achieve notably lower sidelobe levels. Also, SLIM-1
is inferior to SLIM-0 and IAA in that its spectral estimates
are significantly biased downward. Among the SMLA
variants, the estimation results obtained by SMLA-0 and
SMLA-1 are similar to those obtained by SLIM-0 and IAA,
respectively. SMLA-2 attenuates the sidelobe further com-
pared with SMLA-1 and we conclude that the performance
of SMLA-2 is between those of SMLA-0 and SMLA-1.
We also remark that the estimate of the fourth spectral
line given by SMLA-3 is notably biased downward. By
comparing Fig. 2(i)–(l) with Fig. 2(e)–(h), we can see that
the QN-SMLA variants (with MQ¼32) reduce the compu-
tational time at the cost of slight performance degrada-
tions as compared to their SMLA counterparts. In order to
Table 3
Computation times for SAR imaging of the Slicy data (second column)
and the GOTCHA data (third column).

Algorithm Time (s) Time (s)

FFT 0.01 0.3
SLIM-0 3.89 143.7
SLIM-1 2.01 123.0
IAA-R 39.62 4091.0
SMLA-0 85.05 7933.6
SMLA-1 (-MAP) 88.2 8151.2
SMLA-2 (-MAP) 89.0 8246.5
SMLA-3 (-MAP) 123.76 11623.4
QN-SMLA-0 22.63 2022.1
QN-SMLA-1 25.55 2312.0
QN-SMLA-2 25.57 2289.2
QN-SMLA-3 33.53 3038.6

Fig. 5. 2-D SAR image (a) and photograph of Chevrolet M
achieve sidelobe levels comparable to those of SLIM-0, we
consider hybrid approaches that first use the SMLA var-
iants to obtain dense spectral estimates, which are then,
upon convergence, followed by a single step of SLIM-0.
Since SLIM achieves sparsity based on solving a hierarch-
ical Bayesian model through maximizing a posteriori
probability density function [6], this single step of SLIM-
0 is referred to as a MAP step, and the resulting algorithms
as the SMLA-MAP algorithms. Fig. 2(m)–(o) shows the
estimation results obtained via SMLA-1-MAP, SMLA-2-
MAP, and SMLA-3-MAP, respectively, suggesting the effec-
tiveness of the MAP step. Moreover, the noise variance
estimates averaged over 100 realizations obtained by SLIM,
IAA-R, and the SMLA variants are shown in Table 1, where
SMLA-0 (as well as QN-SMLA-0) gives the most accurate
estimate. The computation times needed by the aforemen-
tioned algorithms to generate the spectral estimates from
100 independent realizations on an ordinary workstation
(Intel Xeon E5520 processor 2.26G Hz, 24GB RAM, Win-
dows 7 64-bit, and MATLAB R2009b) are summarized in
Table 2 showing that the proposed fast implementations
make the computational complexities of the SMLA
approaches comparable to those of the fast-implemented
SLIM and IAA methods.

4.2. 2-D SAR imaging

We proceed to examine the performance of the discussed
estimators on the simulated Slicy data set and the experi-
mentally measured GOTCHA data set. We begin by examin-
ing the 2-D phase-history Slicy data generated at 01 azimuth
angle using XPATCH [39], a high frequency electromagnetic
scattering prediction code for complex 3-D objects. A photo
of the Slicy object taken at 451 azimuth angle and a SAR
image benchmark obtained via the periodogram from a
complete 288�288 data matrix are shown in Fig. 3(a) and
(b), respectively. In the following, we examine a lower
dimensional subset formed using only the N1 ¼N2 ¼ 80
alibu (b) form the GOTCHA scene. Image from [40].
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center block of the phase-history data, with K1 ¼ K2 ¼ 400
uniformly spaced 2-D frequency points. Fig. 4 shows the SAR
images obtained by periodogram, SLIM, IAA, and the SMLAs
using the same parameter settings as specified in Section 4.1.
One again observes from Fig. 4(a) that the periodogram has
low resolution and high sidelobe problems. In comparison,
SLIM-0, SLIM-1 and IAA provide improved resolution and
performance as shown in Fig. 4(b), (c) and (d), respectively.
Specifically, SLIM-0 yields a higher resolution yet preserves
less details than IAA and the performance of SLIM-1 is in
between. Similar observations can be made about the
performance of the SMLA variants as in Section 4.1. We also
remark that the QN-SMLA variants (with MQ

2 ¼ 32) generate
slightly denser images with much reduced computation
times compared to their SMLA counterparts. By comparing
Fig. 6. Comparison of the reconstructed Malibu images obtained by FFT, SLIM, IAA
SMLA-1, (g) SMLA-2, (h) SMLA-3, (i) QNSMLA-0, (j) QNSMLA-1, (k) QNSMLA-2, (l
the images obtained via the SMLA variants (see Fig. 4(f)-(h))
with those of the corresponding SMLA-MAP variants (Fig. 4
(m)–(o)), we can see that the MAP step effectively converts
the original dense images into much sparser ones. We
remark that the images formed by the SMLA-3 and SMLA-
1-MAP are sparser than that of SLIM-1 yet denser than that
of SLIM-0. It appears that both SMLA-3 and SMLA-1-MAP
satisfactorily balance the tradeoffs between the image reso-
lution and detail preservation compared to SLIM-0 and SLIM-
1. Table 3 summarizes the computation times needed by the
aforementioned algorithms to form the K1 � K2 SAR image
from the Slicy data. As previously mentioned, the QN
approach applied to the SMLA variants reduces the compu-
tation cost significantly with only slight performance degra-
dations compared to their SMLA counterpart.
, and the SMLA variants. (a) FFT, (b) SLIM-0, (c) SLIM-1, (d) IAA, (e) SMLA-0, (f)
) QNSMLA-3, (m) SMLA-1-MAP, (n)SMLA-2-MAP and (o) SMLA-3-MAP.
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We proceed to examine the methods' performance for the
GOTCHA Air Force Research Laboratory data set. The GOTCHA
volumetric SAR data set, Version 1.0, consists of SAR phase
history data collected at X-band with a 640MHz bandwidth
with full azimuth coverage at eight different elevation angles
with full polarization [40]. The imaging scene consists of
numerous civilian vehicles and calibration targets, as shown in
Fig. 5(a). Here, we examine the performance on the phase
history data with full azimuth coverage collected at the first
pass for a HH polarization channel of a Chevrolet Malibu,
parked in the upper corner of the parking lot as shown in
Fig. 5(b). We use 41 subapertures from 01 to 3601 with no
overlap, which results in a total of 90 subapertures. For each
subaperture, one 2-D spatial image is formed by using a 2-D
FFT on the corresponding phase history (k-space) data.
An 80�80 block of the spatial data centered about the
Chevrolet Malibu is then chipped out and transformed back
into k-space using an IFFT operation. The discussed spectral
estimation techniques are then applied to the so-obtained
80�80 phase history data to get one image for each
subaperture, which are then, using the auxiliary information
provided by the GOTCHA data set (e.g., the antenna locations,
range to scene center, azimuth and elevation angles), pro-
jected onto the ground plane and interpolated to form a 2-D
ground image. The resulting 90 2-D ground images are then
combined using the non-coherent maxmagnitude operator to
yield the reconstructed Malibu image, whose dimensions are
½5;15� � ½�10;0� meters with grid size 0.05 meters in both
dimensions. Fig. 6 illustrates the resulting images for the
discussed methods, clearly showing the superior performance
of the introduced algorithms as compared to the FFT based
approach. As before, SMLA-3 and SMLA-1-MAP provide well-
balanced image resolution and detail preservation and are
thus preferred. The computational times of forming the 90
images are listed in Table 3, showing a comparable relative
complexity as in the Slicy data example.

5. Conclusions

In this work, we have presented fast implementations of
the 2-D SMLA algorithms, exploring the rich internal structure
of the estimators. The proposed implementations are found to
offer a significantly reduced computational complexity, with
the proposed approximative implementations offering even
further computational reductions, at the cost of only slight
performance degradations. By including a sparsity promoting
final step at the conclusion of the iterations, notable sidelobe
level reductions are achieved, allowing for a satisfactory
balance between the image resolution and detail preservation.
The effectiveness of the algorithms has been verified using
both simulated and experimentally measured data sets.
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