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Popular summary

The term ‘artificial intelligence’, Al is often used in popular culture whenever
computers do things which were previously done by humans and require some
form of reasoning beyond what we readily expect computers to be able to perform.
The most common type of such a system falls under the umbrella term ‘Machine
Learning’. These models use algorithms which we can describe and fine-tune but,
at least currently, do not fully understand. Most machine learning algorithms are
descended from early mathematical models which were inspired by last century’s
progress in describing the components of a brain. A brain, be it humanoid, rep-
tiloid or something else, consists of various types of neurons: small units which
send electrical and chemical signals to each other. Each individual piece is rather
well understood, but it is still a mystery how the combination of roughly, in the
human case, several hundred billion such pieces connected by some quadrillion
connections actually works. This thesis considers several disparate models which,
while simple to define, exhibit interesting emergent behaviours.

A computer is a good example of something which despite consisting of sim-
ple units can perform astoundingly complex operations. At the ‘bottom’ level,
you have a collection of ones and zeroes together with a few simple logical opera-
tions that combine them. At the ‘top’ level, you have a powerful machine capable
of anything from making weather predictions to sharing cute photos of kittens
wearing silly hats. In between, there are many, many layers of complexity which
each expand your available set of operations using combinations of the previously
available ones.

A brain also consists of simple units which we by now have quite a good under-
standing of. However, the levels of increasing complexity is still very mysterious.
How is it that some neurons in your brain receiving stimuli from their ‘previous’
neighbours and sending further stimulus to their ‘next’ neighbours can result in
anything from alerting you that the ground feels cold to imagining what a conver-
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sation with a sentient box girder bridge would be like? We still lack intermediary
‘programming languages’ to take us from one point to the other. These trains of
thought were partly what led to the investigations performed in this thesis. Ow-
ing to the complexity of the issue, the connections from these initial ideas to the
presented results are not necessarily straightforward. However, an important step
in trying to solve any big problem is to identify and examine the smaller problems
you encounter on the way.

Something which becomes quickly apparent when trying to probabilistically
tackle the kind of models considered in this thesis is the level of dependency be-
tween the components. Most computer algorithms, while complex, are usually
‘linear’ in that every step builds on the result of the previous one. Furthermore,
its physical makeup remains constant. A neuronal network does not work that
way. In nature every neuron continuously interacts with its surroundings, and
the surroundings change over time as a response to those interactions. A brain
is plastic, meaning that the existence and strength of connections between neu-
rons change over time. The plasticity itself is not treated in this work, and where
relevant (specifically, in Paper II), the model components update synchronously.
Even then, the behaviour is quite difficult to describe. In Paper II we derive results
which describe the behaviour of a so called cellular automaron in certain special
cases where this dependency is less impactful and discuss the behaviour observed
via simulations in the remaining cases. Papers III and IV deal with a model which
is less related to neuronal networks but where a similar dependency structure ap-
pears. There, a line of charged particles is considered where each particle only
senses the charge of a given number of its nearest neighbours. Despite this, all
particles are indirectly affecting each other. A range of methods (which are in-
teresting in themselves) are used to prove that this dependency rapidly decreases
when considering particles far apart. This allows a central limit theorem to be
derived, at least in the case of only nearest-neighbour interactions.

It would be excessive to claim that this work takes us much closer to explaining
the marvel that is the brain, but the pursuit has brought with it many interesting
results that will hopefully be useful in following research, and it has raised some
fascinating questions which can be explored further.



Populirvetenskaplig

sammanfattning

Termen “artificiell intelligens”, Al, anvinds ofta i popularkultur nir datorer gor
saker som tidigare gjorts av minniskor och kriver nigon form av resonemang
utéver vad vi forst tinker att datorer kan utfora. De vanligaste typerna av sidana
system faller under paraplybegreppet maskininlirning. Dessa modeller anvinder
algoritmer som vi kan beskriva och finjustera men, dtminstone just nu, inte helt
forstar. De flesta maskininldrningsalgoritmer 4r ttlingar till tidiga matematiska
modeller som inspirerades av forra arhundradets framsteg i att beskriva de biolo-
giska komponenterna av en hjirna. En hjirna, s& om den ir humanoid, reptiloid
eller ndgot annat, bestar av olika typer av neuroner: sma komponenter som skickar
elektriska och kemiska signaler till varandra. Varje enskild komponent ir ganska
vil forstddd, men det ir fortfarande ett mysterium hur kombinationen av unge-
fir, i det manskliga fallet, flera hundra miljarder sddana, sammankopplade med
nigra kvadriljoner forbindelser, faktiske fungerar. Denna avhandling behandlar
flera olika modeller som, dven om de ir enkla att definiera, besitter intressanta
beteenden.

En dator ir ett bra exempel pa nigot som bestar av enkla komponenter men
trots det kan utféra hipnadsvickande komplexa operationer. Pa “nedersta” nivin
har man en samling ettor och nollor tillsammans med négra enkla logiska oper-
ationer som kombinerar dem. Pa “toppnivan” har man en kraftfull maskin som
kan gora allt frdn att gora viderprognoser till att dela foton pé katter i lustiga hat-
tar. Diremellan finns det manga, manga lager av komplexitet som var och en
utdkar ens tillgingliga uppsittning operationer med hjilp av kombinationer av
de redan tillgingliga. En hjirna bestir ocksd av enkla enheter som vi vid det hir
laget har en ganska god forstaelse f6r. Nivaerna av 6kande komplexitet 4r dock
fortfarande vildigt mystiska. Hur kommer det sig att vissa neuroner i din hjirna

vii
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som tar emot stimuli frén sina “tidigare” grannar och skickar ytterligare stimuli «ill
sina “ndstkommande” grannar kan resultera i allt frin att varna dig om att marken
kinns kall till att forestilla dig hur en konversation med en talande ladbalksbro
skulle vara? Vi saknar fortfarande mellanliggande “programmeringssprik” som
tar oss frin de enkla komponenterna till det komplexa systemet. Dessa tankegin-
gar var delvis vad som ledde till det som undersoks i denna avhandling. Pa grund
av amnets komplexitet 4r kopplingarna frin de ursprungliga idéerna till de presen-
terade resultaten inte nddvindigtvis uppenbara. Ett viktigt steg i att forsoka l6sa
ett stort problem ir dock att identifiera och underséka de mindre problem man
stoter pa pd vigen.

Niégot som snabbt blir uppenbart nir man forsoker ta sig an den typ av mod-
eller som behandlas i denna avhandling 4r graden av beroende mellan komponen-
terna. De flesta datoralgoritmer, dven om de ar komplexa, r vanligtvis “linjdra” i
det att varje steg bygger pa resultatet av det foregiende. Dessutom forblir datorns
fysiska uppbyggnad konstant. Ett neuronalt nitverk fungerar inte sa.

I naturen interagerar varje neuron kontinuerligt med sin omgivning, och om-
givningen férindras 6ver tid som ett svar pd dessa interaktioner. En hjirna ir plas-
tisk, vilket innebir att forekomsten och styrkan av kopplingar mellan neuroner
forandras over tid. Plasticiteten i sig behandlas inte hir, och dir det ir relevant
(specifikt i artikel IT) uppdateras hela modellen samtidigt i varje steg. Trots detta dr
beteendet mycket svart att forutspa. I artikel II hirleder vi resultat som beskriver
beteendet hos en sa kallad cellulir automat i vissa speciella fall dir detta beroende
har mindre paverkan och diskuterar det beteende som observerats via simuleringar
i de dterstdende fallen. Artiklarna III och IV behandlar en modell som 4r mindre
relaterad till neuronala nitverk men dir en liknande beroendestrukeur framtrader:
didr betraktas en linje av laddade partiklar dir varje partikel bara kinner laddnin-
gen frin ett visst antal av sina nirmaste grannar. Trots detta paverkar alla partiklar
indirekt varandra. En rad metoder (som ir intressanta i sig) anvinds for att bevisa
att detta beroende snabbt minskar nir man betraktar partiklar langt ifrdn varan-
dra. Detta gor det mojlige att hirleda en central grinsvirdessats, atminstone for
interaktioner mellan nirmaste grannar.

Det vore 6vermaga att pastd att detta arbete tar oss mycket narmare en forklar-
ing av hjirnans underverk, men jakten har fort med sig manga intressanta resultat
som férhoppningsvis kommer att vara anvindbara framéver, och den har vickt
nagra fascinerande fragor som kan utforskas ytterligare.
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Chapter 1

Introduction

1.1 Mathematically Modelling the Brain

The general subject matter of this thesis is to mathematically study one of the most
astonishing of nature’s creations: the brain. We are inspired by many fundamen-
tal questions: How does the brain function? Is there an advantage to the specific
way a brain is made up or has evolution just resulted in something that works well
enough but is actually some kind of local minima? Is there a link between the
physiological structure of the neural pathways of a brain and the tasks which it
can perform and, if so, can we describe it? Many of these questions are as old as
our knowledge about the objects themselves, so we make no claim to have found
a definitive answer to them. The core question concerns the (presumed) link be-
tween form and function. Is there a clear link between the structure of a neuronal
network and its capacity to perform certain tasks? A lot of research is being done
to find the neuronal connection structure of various species, a brain’s connectome,
e.g. for rodents [16], or to construct probabilistic models which produce struc-
tures similar to experimental findings [12]. However, it is still an active area of
research exactly what the knowledge of neuronal structure of a brain can tell us
about its function.

We seek a deeper understanding of the processes at work and the complexity
resulting from them. A variety of mathematical approaches are used and we take
a closer look at several models, some of which harking back to the roots of arti-
ficial intelligence research from the 1950s through 1980s [11, 13]. We approach
the above questions analytically and probabilistically on a fundamental level by
studying simple models and observing the complexities that naturally arise from
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them, with the hope of providing a deep understanding of the processes involved.
This can pave the way for future investigations of even more advanced models
consisting of combinations of our simpler units.

Another feature that is closely related is that of encoding information. There
are many open questions on what the set of signals fired by a brain at a given
moment, a certain state, ‘means’. In relation to coding theory, one can think of
the initial state of a model as a coded message and the resulting output as the
decoded message. These could be thought to correspond to some sensory input
and a decision about what action to take given the input, respectively. Due to the
complexity of the dynamics in the considered models, it is not so straightforward
to predict this outcome, making it a possible cryptographical tool. On the other
hand, even with knowledge on the model parameters, the problem of finding an
initial state that leads to a given output is highly non-trivial.

The field of machine learning is under a lot of development and recent years
has seen an increase of activity in the quest for explainable AI [23]. We can think
of that as a ‘top down’ approach: it investigates machine learning models used
for decision-making (in e.g. medical context or self-driving cars) with the aim of
making concrete the influence various factors have on the outcome. This could be
of great use in model design and parameter choices. In the future it might lead to
programs that not only identify the sought after features but also explain why the
features were identified and/or estimate the likelihood of the findings in a way that
is understandable to humans. Compared to this, our approach is more ‘bottom
up’: our aim is also to understand complex models, but we limit the complexity
in order to expand our understanding on a more fundamental level.

1.2 Representation by graphs

Several ways of examining various dynamics on different networks have been ex-
plored in this work, all rooted in (very simplified) models of neuronal networks.
At the most basic level, the brain is made out of neurons which are connected to
each other via synapses and can output chemical and electrical signals based on
what signals it receives. In a human brain there are roughly O(10*!) neurons and
roughly O(101°) synaptic connections [18]. Thus, as a simplification (for details
on the intricacies involved, see [5, 19]), the brain can be modelled by a graph,
denote it G, with vertices representing neurons and directed edges representing
synaptic connections. On this graph we define and study various processes, and
there are many options on how to define them.
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Firstly, the graph structure of a real brain is plastic, changing over time, in re-
sponse to external stimuli and previous activity. A common analogy is the treading
of a path: sending the same signals many times lowers the effort required to send
them. In neuroscience, this is known as the Hebbian Rule see e.g. [19], after [11].
In this work, however, the structure will always be fixed in time. It will be more
rewarding to study the effects of this plasticity after one understands the dynamics
and its effects on a given structure.

Then there is the matter of the activity on the graph at any given time. Physi-
ologically, we know that a neuron receives electrical and chemical impulses from
its neighbours (neurons with a synaptic connection to it). The neuron itself fires
similar signals to all of its neighbours if the total sum of the received signals ex-
ceeds some threshold value, the so-called action potential. Many models, e.g. so-
called integrate-and-fire models [10], seek to capture the complex behaviour that
emerges from the fact that a neuron’s chemical levels and electrical potential dif-
ferences over membranes need refractory time to reset before this neuron can fire
again. We do not include such complexities in any of our models, focusing instead
on a larger scale of information flow over the whole graph.

One complication we do consider is the existence of inhibitory neurons, see e.g.
[18]. These are neurons such that a fired signal reduces the potential difference
of the recipient, thus working against the other incoming signals which increase
it. At first glance, from an evolutionary viewpoint, this might seem like a waste
of energy. There are some beneficial consequences on a chemical and electrical
level [10], but we find that there are also benefits in the resulting complexity. In
mathematical terms, including inhibitory neurons breaks the monotonicity of the
dynamics, which greatly complicates the analysis. Particularly, in [7] (paper II in
this thesis), we provide an informative example on how inhibitory vertices can
be computationally beneficial. The model in [7] is simple to define yet results in
complex dynamics. Without inhibitory vertices, one would need to define a much
more involved model to achieve the same behaviour. This highlights as possible
role played by the inhibitory neurons in a brain.

1.3 Multiple levels of scale

One interesting feature prevalent in nature but not often explicitly thought about
is the seemingly separate, but definitely linked, levels of scale. On one level, we
have atoms and molecules interacting to create and react to electrical and chemical
processes. At a higher level, the behaviour of those atoms is interpreted as signals
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traversing (and also altering) our neural network. Then, somehow, the behaviour
of those signals e.g. help us decide what to have for lunch. The levels in between are
quite mysterious, but it is easy to see how zooming out’ from simple components
opens up increasingly complicated phenomena.

A Cellular automaton is a model in which small components, cells, each have
one of a set of szates at any given time. When updated, a cell follows some simple
dynamical process which depends on the current states of its neighbouring cells.
The exact update function, number of states and which cells are considered to be
neighbours can be defined in many ways, but the interesting question is how these
kinds of cellular automata can behave over time. Perhaps the most known model
is Conway’s game of Life, treated in detail in [1].

The models under consideration in this work all, to some extent, display differ-
ent behaviours when considered at different scales. In [6] (paper I in this thesis)
the flow of incoming particles on a graph with several outgoing directions and
different speeds along the edges is considered. This gives rise to limiting cycles de-
scribing the (eventually cyclical) sequence of chosen directions. On a larger scale,
this simplifies to the expected behaviour: the incoming particle flow gets separated
into several particle flows which proportionally agree with the edge speeds.

The first level of complexity in [7] (paper II) is the activation of vertices on
a cellular automaton. The second level of complexity is the activation patterns
of the whole network over time. A third level can be the interpretation of that
activation. We show that for the considered model the activation will become
cyclical whatever the initial activation is. It is natural to classify the states by which
cycle it will eventually reach. Interestingly, this defines some kind of metric on the
state space: states which are pre-periodic to a cycle can be thought of as being
infinitely far from all other cycles and the number of time-steps required to enter
the cycle can be defined as its ‘distance’ to that cycle. Further, if one were to
introduce noise to the model (alternatively, some external input affecting certain
vertices), this metric would change: some of the hitherto impossible to reach cycles
could become within reach. One way one could define the distance from a given
state to a given cycle is the amount of noise required to make the target cycle a
possible outcome. It is an open question whether it is possible to reach any cycle
from any state, if one also requires the probability of that outcome to be above
some threshold level.

In [8] (paper III in this thesis) a close-range variant of a typical model from
statistical physics, the Coulomb chain is considered. The model, originally intro-
duced by Malyshev [15], considers a density function consisting of a product of
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Coulomb interactions between particles within a constant range. Note that even
though the position of each particle is only present in factors containing its neigh-
bours, all particle positions become dependent. In this setting, with the range
reduced to each particle’s nearest and next-to-nearest neighbours, a central limit
theorem is derived which describes the large-scale behaviour of the inter-particle
spacings. In [9], the correlation decay, which was required for the proof of the
central limit theorem, is proved for the extended case of each particle interacting
with its K nearest neighbours, for any constant K.

1.4 'The Hopfield Inverse Problem

The original Hopfield model, introduced in [13] and further studied in e.g. [3,
14], is one where for N € N one has a graph G(V, E') with N two-state vertices
Ve {-1 l}N and edges with weights w;; € [0,1] (4,5 € {1,..., N} and

i = 0. Aset £ of K € N given (or randomly chosen) patterns &, € { L1y
are learned by tuning the weights (often assumed to be symmetric). This is done
so that if the model is given an input £ € {—1,1}" as the initial state, 0/(0) = &,
the imposed dynamics given by

N
O'Z'(t + 1) = sgn Zfijaj(t) 5 (1.1)
j=1

terminates in one of the patterns . The interpretation is that the final pattern is
the one that is ‘closest’ to the initial one. The greatest number of patterns where
the weights can be tuned to achieve this is called the model’s szorage capaciry. It is
shown in [13] that the storage capacity is proportional to IV, and later the storage
capacity was rigorously bounded from below by 0.055N [17]. The set of states
which lead to alearned pattern is called that pattern’s basin of attraction. It has been
shown [2] that a surprisingly large number of weights can be randomly removed
whilst the model still terminates at a pattern close (in a precise sence) to one of
the learned ones. Specifically, for i.i.d. random patterns it is shown that for N
neurons where each pair are connected at random with a (small) probability p,
where for some constant ¢ we have

cln(N)
N )

there exists a constant o, such that this di/uted Hopfield model has a storage ca-

p > (1.2)

pacity of apN patterns. For ¢ = 7, a, ~ 0.027 and as ¢ decreases, o, decreases
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‘roughly proportionally’ by —1/1In(c). It is also pointed out that p = In(V)/N
is the lowest probability where the diluted Hopfield could possibly work, as it is
known from random graph theory that the network would be disconnected for
lower values of p.

This inspires the following lines of investigations and conjectures. Say that
instead of a random selection of weights are removed and the model is studied
for random patterns, the patterns are (randomly) selected first and the smallest
weights are removed after tuning them. The model can in this case possibly be
pruned even further and still function as intended. This could provide results for
the dilute Hopfield model for the region where p € {In(N)/N, /cIn(N)/N}.

In relation to our work, another question arises: is it possible to predict what
pruned graph a given set of patterns will result in? Inversely, given a pruned graph,
is there a relation to a set of patterns that the corresponding dilute Hopfield model
is able to learn?

In research of the Hopfield model, one studies an energy function which has &,
the patterns to be learned, as minima. However, this energy function will typically
have additional, so called ‘spurious’, minima in addition to the desired ones.



Chapter 2

An overview of the papers

2.1 Paper I, The Phases of a Discrete Flow
of Particles on Graphs

Flows on graphs are typically studied in the continuous setting. This paper takes a
close look at the intricacies that arise when considering a discrete flow on a graph
with one vertex, one incoming edge and k outgoing edges. On these edges we
assign different speeds. We let a steady stream of equidistant particles enter the
system on the incoming edge. When they arrive at the ‘crossroad’ vertex, they
choose the edge where the distance to the next particle is maximal and proceed to
travel on that edge in its associated speed. Considering the system as a model of
very thin electrical wires, the dynamics can be thought to result from the particles
having a repellent charge to each other, and the various speeds can be thought of
as the outgoing wires having different resistance.

For a given set of outgoing speeds, we consider the input of the system to be
the speeds of the outgoing edges as well as the initial position of the nearest particle
along them. It is shown that, after some time has elapsed, the imposed dynamics
result in a repeating cycle of chosen edges. We define the output of the model to
be the list of edges which each incoming particle chooses during the course of one
such cycle.

We derive, for k € {2, 3}, acomplete description of what the possible limiting
cycles are, given the configuration of speeds. This is done in a combinatorial way,
treating a general configuration of speeds and going through the possible outcomes
case by case, until a repetition is reached. Crucially, we show that in the case
k > 3 the limiting cycles are not unique given the outgoing speeds. They are
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in fact dependent on the initial placement on each outgoing edge of the particle
nearest the vertex. In terms of encoding, the model (for £ > 3) provides a highly
non-trivial map from a set of k outgoing speeds and initial particle placements to
a limit cycle.

Future works could consider an extension of the above model where the speed
of the incoming stream of varies over time. This introduces even more complexity:
due to the dependence on the initial configuration, this opens up the possibility
of switching between limiting cycles by a temporary speed alteration. If the speed
changes in a periodical way, the output would also be a limit cycle. This is a natural
consideration, as each outgoing edge in the original model will (after some time
has elapsed) have a repeating pattern of distances between the particles traversing
it. Taking one (or several) outgoing edge(s) from the above model and treating
it as an incoming stream for a new vertex which itself has several outgoing edges.
This second vertex is locally equivalent to the extension discussed above, where the
time between each incoming particle (i.e. distance between them while traversing
it) is determined by the first model. This opens up the possibility of considering
discrete particle flows on zrees. Even for one additional ‘layer’ of such a tree, it
is an open question for this extended model to what extent the initial particle
placements affect the outcome.

2.2 DPaper II, Non-Monotone Cellular Automata:
Order Prevails Over Chaos

Paper II in this thesis studies the effect that adding inhibitory influences of certain
vertices in dynamical model has on the dynamics. We consider a graph G(V, E)
on which, for each time ¢, a subset A; C V of the vertices are considered to be
active. Typically, one initialises Ag, the activity at time ¢ = 0 and studies the
behaviour of the model under a given rule for how this activity spreads.

In what is known as bootstrap percolation, each vertex becomes active (or ‘in-
fected’) at time ¢ 4 1 if the number of neighbouring vertices that are active at time
t exceeds some threshold value r. The activation is strictly increasing and each
activation set A will lead to a final state Ao, which is stable under updates. A
question one can ask is this: if each vertex is in A (initially active) with some
probability p, what is the probability of there being an infinite connected com-
ponent of neighbouring active vertices in Ao,? With the bootstrap threshold r
chosen correctly (so as not to invoke trivial dynamics where all or no vertices are
in As), there can be a phase transition at some critical p. where the existence of
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a finite connected component becomes likely.

Inspired by the existence of inhibitory neurons discussed in the introduction,
we extend the bootstrap percolation model in the following way. Each vertex is
assigned a type, either excitatory or inhibitory. For each time step, synchronously,
each vertex becomes active if the difference of the number of active excitatory and
inhibitory neighbours exceeds the threshold value 7, as opposed to bootstrap per-
colation where only the sum of active neighbours is considered. It quickly becomes
apparent that this change has many complicated consequences. Most results in
the field of percolation theory become inapplicable, since the monotonicity of the
evolution of activity is a key assumption. Instead, the model becomes closer to
a cellular automaton. These are models where identical units update their state
according to a function of their neighbours. These simple units form a complex
system. For our model, one can for each time step ¢ let vertex ¢ have the state
ou(t) = (ay(t),by) where a € {0, 1} describes its (time-dependent) activity and
b € {—1,1} describes its type. Let n(v) denote the neighbours of the vertex v.
The dynamics is then given by

Lo i Y pen@) @w(t) - bw =T,

0, otherwise.

ay(t+1) = 2.1)

We study in depth the graph of a two-dimensional lattice where each vertex
is connected to its four nearest neighbours. A vertex is defined to be inhibitory if
both its indices are even and excitatory otherwise. Since this is a periodic graph, an
equivalent model can be formulated as a classical one-state cellular automaton by
mapping clusters of four vertices to one cell, but doing so makes the update rule
very involved and unintuitive. This shows the complexity benefits of introducing
inhibitory vertices.

In seeking to describe the behaviour of the studied cellular automaton, ad-
ditional models are proposed which can describe the amount of activation for a
certain regime of initial activation. We show that with one single initially active
excitatory vertex, the activation will spread as strips of activation in either the hori-
zontal, vertical or all four cardinal directions. Further, we list all possible outcomes
of having two initially active vertices, by far the most common of which is a strip
of activity from one vertex growing into a strip originating from the other and
stopping its growth in that direction. This allows for a simplified model of sparse
initial activation of the system. The (four time-steps cyclical) strips of activation
are mapped to a continuous model of lines similarly growing along the cardinal
directions from random points until they reach another line. The total length of
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lines resulting from such growth is proportional to the total activation in the orig-
inal model. This model was recently studied in [4] where it was shown that the
correlation of the length of the lines emanating from two particles exponentially
decays with the distance between them.

The lines from the latter model partition the space into rectangular areas which
seem, from simulations, to result in regions with long and narrow horizontal/vertical
strips. Can we define a measure that gives the correct probabilities for these? If one
labels each point by the ratio of height and width, it would be interesting to study
the correlation of two points having the same direction. Additionally, what would
be the distribution of width-to-height ratio? Returning to the original model, such
a description could be useful in describing the final activation patterns.

Another open question is whether there exists an energy function that has the
cyclical states as minima, as is the case in the Hopfield model [13]. The two models
might seem very disparate, but they share the feature of ‘retrieving patterns’, and
basins of attraction for certain (in our case cyclical) final states.

2.3 Paper III, A Central Limit Theorem and
Decay of Correlations in the Coulomb Chain

Paper III in this thesis considers a model of the Coulomb chain introduced by
Malyshev in [15]. The model consists of N € N identical particles that are con-
fined to one dimension. Each particle experiences three-dimensional Coulomb
interactions with its nearest and next-to-nearest neighbours. This work proves ex-
ponential decay of correlations between sets of consecutive inter-particle distances
and uses this result to prove a central limit theorem.

First, we define the model. Let P € RY denote the consecutive positions of
the particles, so that we have

0<P <---<Pyn_1 <Py, (2.2)

and we let the model be circular by treating the first and last particles as neighbours.
Let 3,7 € RT be parameters governing the strength of nearest neighbour and
next-to-nearest neighbour interactions, respectively. The Gibbs energy function
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of the considered model is given by

=Ly ()
P = \P =P
= (2.3)

N
Y Y ( 8 )
+ + L4y (),
P+ (PN —Py-1) P Zz_; P, — P
wheire the terms outside the sums account for the circular nature of the model. We
let Y € [0, 1]" denote the distances between each pair of consecutive particles by
defining
Yl = P17

2.4
Y =P —P_1,ic{2,...,N}. 24)

This we assume to be bounded, and without loss of generality bounded by one.
To simplify the notation, all indices are henceforth to be taken modulo N. We
may now rewrite the energy of the system, Equation (2.3), into

N
> B
HO =3 (7 v 2

and define a probability distribution for Y by
1 )
fy(y) = o—e MO,

) (2.6)
N = / e_H(y)dﬂ.
[0,1]¥

The first theorem in this work proves exponential decay of the correlation between
two sets of consecutive variables. We use the notation that fora vector Y € [0, 1]V
and an index set I C {1,..., N}, we denote by Y; the vector containing the
elements of Y whose index are in 1.

Theorem 2.3.1 Ler 3 > 0 and~y > 0 be arbitrary parameters and let Y € [0, 1]V
be a random vector with the density function fy(y) given by Equations (2.5) and
(2.6). There exist positive constants C = C(B,7) and o = () such that for any
disjoint sets of (in the circular sense) consecutive indices I, J C {1,..., N} with
(I, J) denoting the distance between them, we have

Fonivy=g, @) — fy,@n)| < Ce ") fo (), 2.7)
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for any g1 € [0, 111 and 55 € [0, 1]]. Furthermore, we have that

a() Y . (2.8)

Theorem 2.3.1 is an extension of Theorem 2.1 in [21], which proved the case when
|I| = |J| = 1. Note that only the distance between the sets I and J is present in
Equation (2.7) and not their sizes.

Although the energy function in (2.5) consists of terms with at most two vari-
ables, all variables in Y are indeed dependent. The proof of Theorem 2.3.1 in-
volves rewriting the density functions on the left hand side of Equation (2.7) as
‘chunks’ of integrals over the sets I, J and the two remaining sets of consecutive
variables in {1,..., N} \ ({ U J). One then gets an expression which is a dif-
ference of functions inside a large amount of integrals, divided by another large
amount of integrals. The difference itself can be bounded and then a number of
approximations are made which split the integrals into their respective ‘chunks’ of
consecutive variables, breaking the overlapping dependencies. It is shown that all
(possibly small) factors in the denominator can be cancelled out with correspond-
ing factors in the numerator.

The result of Theorem 2.3.1 was a necessity in proving the central limit theo-
rem for the considered model. For simplicity, the random variables are centralised.

Theorem 2.3.2 Let X € [—1, 1N be a zero-mean random vector with density
[ (&) satispying the condition that there exists constants C, v € R such that for
any disjoint sets of consecutive indices I,J C {1,..., N}, Equation (2.7) is ful-
[filled. Furthermore, let 5 (Z) satisfy the condition that there for any 6 € |0, 1] exists
a constant ¢ > 0 such that for large N we have

[N

Var( > XZ-> > ¢|N?|. (2.9)
i=1

Denote
1 N
o} = NW(Z)Q), (2.10)
=1
and set
] N
(= ZXZ-. (2.11)
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Then for any € € (0,1/4), we have
sup, [P(Cy < 2) — P(Z < 2)| = O(N~3+¢), (2.12)
where 7 is a standard normal random variable.

The proof of Theorem 2.3.1 was inspired by the work of Schmuland and Sun in
[20], but several technical adjustments were needed to account for the difference
in setting compared to that work, which considers a random process on an infinite
d-dimensional lattice with a different correlation decay condition than the one in
our case.

The proof of Theorem 2.3.2 centres around splitting the (circular) string of
random variables into subsets of p and ¢ consecutive variables, where ¢ < p and
both are (the integer parts of) exponents of N. There are a total of k = | N/(p +
q) | subsets of each type. The sum (} is then approximated in a number of steps.
Firstly, the contribution of terms from the smaller sets are neglected. Secondly, the
sum of terms from each of the larger sets are approximated as independent of each
other. Thirdly, the difference between the sum of the (now independent) random
variables and the standard normal is bound by the Berry-Esseen theorem.

The error bounds of all the above approximations contain the quantities p
and ¢ (as well as &, itself a function of p and ¢), and one can tune the exponents
defining p and ¢ to achieve the desired final rate of O(N~1/4+%),

One noteworthy change from the corresponding proof in [20] is the definition
of p and ¢, which in that work is defined immediately instead of being fine-tuned
towards the end. The result in [20] is not directly comparable to Theorem 2.3.2,
but it is encouraging that the changed exponents, together with the altered setting,
allowed us to improve the rate from O(N~/9) to arbitrarily close to O(N~1/%),

The last result in Paper III is confirming that the condition in Equation (2.9)
holds for the Coulomb chain model. This was shown using a result from [22] and
was the final step needed to confirm the conjecture in [21] of a central limit the-
orem for the inter-particle distances in the nearest and next-to-nearest Coulomb
chain model.

2.4 Paper IV, Correlation Decay in the Coulomb Chain
with Local Pairwise Interactions

In Paper IV, the result on correlation decay in Paper I11, [8], is extended to apply for
the circular Coulomb chain model with pairwise interactions between each particle



14 CHAPTER 2. AN OVERVIEW OF THE PAPERS

and its K nearest neighbours in each direction, where K € N is an arbitrarily fixed
constant. This alteration brought additional technical difficulties compared to the
previous work and it was even a challenge to find a notation that made the work
digestible. The model under consideration is the same as in Paper III but now
contains K parameters (31, . .., 8. Letting Y still denote the distance between
consecutive particles, the Gibbs energy function is now of the form

K N
ZZY-i— -l-Yz+k; 1 (2.13)

k=1i=1 "

The main difference compared to Paper III is that instead of needing to split in-
tegrals by altering a factor containing two variables, one needs to alter a much
more involved factor containing K — 1 variables. An additional notational dif-
ficulty arises from this fact: the factors involved, let us denote them 7 (Z, y) for
z,7 € [0,1]571, are not symmetric in the sense that 7(Z, %) = T (¥, ), but
rather in the sense that

T((xlax27 s wa—l)? (ylay27 s >3/K—1))

(2.14)
=T (-1, y2,01), (T -1, .., T2,21)).

Nevertheless, we show that Theorem 2.3.1 indeed also holds for the Coulomb
chain model for arbitrary constant K > 2. A promising line of inquiry for future
research is to prove that this model also satisfies the central limit theorem 2.3.2
for arbitrary K. The result needed for this is that there exists a constant ¢ such the
lower bound of the variance,

[N

Var( ZYZ-—]E(YZ»)) > ¢|NY|, (2.15)
=1

holds for any d € [0, 1]. In fact, for Theorem 2.3.2 to hold for e € (0,1/4), it is
sufficient to prove that there exists such a constant so that Equation (2.15) holds
foro =1 — 2e.
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