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Abstract 

Bioenergy plays a major role in the renewable energy supply and is projected to be 

an important part of the path towards a decarbonised society. Over the past decade, 

increasing attention has been given to agricultural bioenergy to act as a 

multifunctional climate mitigation strategy. Energy crops may mitigate climate 

change while simultaneously contributing to reducing the negative environmental 

impacts of agriculture if placed in intensive cropping regions or serve as alternative 

land use and source of income when placed on unused or marginal land. The 

deployment of extensive biomass production for energy is however potentially 

limited by competition with food, feed, and fibre production, as well as the need for 

nature conservation. To avoid conflicts between climate mitigation, food security, 

and biodiversity conservation, bioenergy strategies have to be thoroughly evaluated 

to ensure sustainable policy recommendations. This thesis aims to increase the 

knowledge of sustainable bioenergy production from Swedish agricultural 

landscapes and to understand the challenges and opportunities of extended 

agricultural bioenergy production for other societal goals. With a main focus on 

sustainable land use, I have studied the interaction between different bioenergy 

strategies, ecosystem service supply, and biodiversity conservation. I have 

combined methods from ecology, economy, and geography to provide a holistic 

view of agricultural bioenergy, covering different landscape contexts, production 

sites, biomass sources, spatiotemporal scales, and taxonomic groups. From the four 

chapters of this thesis, three main findings can be communicated:  i) both ecosystem 

services and biodiversity impacts need to be considered when assessing bioenergy 

strategies to avoid trade-offs between climate mitigation and biodiversity 

conservation, ii) integrated production of bioenergy crops in intensive arable 

cropping regions may positively affect multiple ecosystem services and taxonomic 

groups if it is combined with protection of species-rich habitats, however, it requires 

substantial financial incentives and has consequences for food production, iii) there 

is a high risk of overestimating bioenergy potentials from marginal and unused land 

if land characteristics and alternative use-values are not considered. These results 

highlight the challenges of increasing agricultural bioenergy production without 

compromising other societal needs, but they also show the opportunities for 

sustainable bioenergy to contribute to a fossil-free society if coupled with 

sustainable food systems and broader reductions in energy use and consumption.  
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Populärvetenskaplig sammanfattning 

Två av de största hoten mot mänskligheten och vår omgivning är de pågående 

klimatförändringarna och förlusten av biologisk mångfald. Dessa är två tätt 

sammankopplade kriser eftersom klimatförändringar påverkar förutsättningarna för 

allt liv på jorden, samtidigt som en förlust av biologisk mångfald förvärrar 

konsekvenserna av ett förändrat klimat. Det komplexa sambandet mellan 

klimatförändringar och biologisk mångfald kräver att lösningar tar hänsyn till båda 

kriserna, så att en klimatåtgärd inte sker på bekostnad av biologisk mångfald och 

vice versa. Ett centralt fokus för klimatåtgärder är utsläppsminskningar från 

energisektorn. Det kan ske bland annat genom effektivisering och minskad 

användning av energi, samt genom att fossila bränslen och utsläppsintensiva 

energikällor fasas ut och ersätts av förnyelsebar energi. Inom Europa och i Sverige 

har bioenergi varit en viktig källa till förnyelsebar energi under det senaste decenniet 

och förutspås spela en viktig roll även framöver för att vi ska nå de uppsatta 

klimatmålen. Bioenergi är energi (t.ex. bränsle, värme, elektricitet) som produceras 

från biologiskt material så som energigrödor, skogsbiomassa och restavfall. Dock 

har hållbar produktion av bioenergi flera utmaningar eftersom det konkurrerar om 

mark och biomassa som kunde använts till annat. Detta kan få oönskade 

konsekvenser för andra samhällsmål så som livsmedelsproduktion och bevarande 

av biologisk mångfald.  

Hur vi människor nyttjar naturresurser och använder mark har en stor påverkan på 

arter och dess livsmiljöer, men är också en starkt bidragande faktor till 

klimatförändringar, bland annat på grund av utsläpp av växthusgaser och lagring av 

kol i mark och vegetation. För att säkra en långsiktigt hållbar bioenergiproduktion 

som bidrar till utsläppsminskningar och inte konkurrerar med bevarandet av arter 

och dess livsmiljöer behöver hänsyn tas till vilken typ av biomassa som används 

samt hur och var denna är producerad. I denna avhandling har jag fokuserat på 

bioenergiproduktion från jordbrukslandskapet med syftet att undersöka hur olika 

strategier för att öka produktionen av jordbruksbaserad bioenergi påverkar biologisk 

mångfald och ekosystemtjänster (produkter och tjänster från ekosystem som gynnar 

oss människor). För att skapa en helhetsöversyn av bioenergistrategier har jag 

studerat olika typer av biomassa, däribland livsmedelsgrödor, energigrödor och 

skogsplantage, som producerats på olika typer av mark i jordbrukslandskapet. Dessa 

marktyper inkluderade jordbruksmark, gräsmarker, obrukad mark och 

marginalmark (d.v.s. mark som är marginellt lönsam att bruka). De studerade 
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typerna av biomassa och produktionsplatser skiljer sig i sin markanvändnings-

intensitet, men är också mer eller mindre viktiga för livsmedelsproduktion. I min 

avhandling har jag även kombinerat flera olika metoder för att utvärdera 

bioenergistrategier vilket gjort att jag kunnat inkludera studiesystem på olika 

geografiska skalor med olika ekosystemtjänster och organismer i fokus.  

Huruvida hållbar bioenergiproduktion kan ske i jordbrukslandskapet eller ej har 

utvärderats av forskningsstudier under flera decennier och det finns dessvärre inga 

enkla svar. Mina studier visar att introduktionen av en flerårig energigröda på 

intensivt brukad jordbruksmark bidrar till ett mer varierat jordbrukslandskap, något 

som ofta medför positiva effekter för flertalet ekosystemtjänster och artgrupper. 

Inverkan på ekosystemtjänster och biologisk mångfald studeras dock sällan 

tillsammans, vilket gör att vi vet lite om den totala miljöpåverkan av sådana 

strategier. Dessutom finns det många arter som inte gynnas av en intensiv 

bioenergiproduktion samtidigt som en ökad bioenergiproduktionen få sekundära 

effekter i landskapet om en ändrad produktionsinriktning i jordbruket gör att artrika 

miljöer går förlorade. Även om bioenergigrödor kan förbättra miljöförhållanden 

inom jordbruket genom exempelvis ökad kolinlagring och minskad användning av 

bekämpningsmedel kan de inte ses som en bevarandeåtgärd för biologisk mångfald. 

Bevarande av biologisk mångfald i jordbrukslandskapet kräver istället riktade 

bevarandeåtgärder där arters specifika behov av livsmiljöer tillgodoses.  

Bioenergiproduktion från aktiv jordbruksmark har dock fått mycket kritik inom 

både politik och forskning då energiproduktionen riskerar att konkurrera med 

matproduktion, vilket i så fall ökar risken för höjda matpriser och indirekta 

markanvändningsförändringar på andra platser för att kompensera för den förlorade 

produktionen. Uppmärksamheten har därför vänts mot mark som inte anses fylla en 

viktig funktion för livsmedelsproduktion, så som marginalmark eller obrukad mark. 

Dessa marktyper är ofta vagt definierade och deras potential för 

biomassaproduktion grundas till stor del på grova uppskattningar. Mina studier visar 

dessutom att arealen obrukad mark i södra Sverige är liten och dessa marker kan ha 

hög artrikedom. Marginalmark målas ofta upp som den ultimata lösningen på hur 

markanvändningskonflikterna från bioenergiproduktion kan minska, men min 

avhandling visar att konflikterna med matproduktion, bevarande av biologisk 

mångfald och rekreation till stor del kvarstår.   

Min avhandling visar på vikten av att inkludera både ekosystemtjänster och 

biologisk mångfald i utvärderingar av bioenergistrategier för att undvika konflikter 

mellan klimatåtgärder och bevarandeåtgärder. Detta kräver att vi bättre förstår vilka 

livsmiljöer som gynnar biologisk mångfald för att styrmedel ska kunna utformas 

som säkerställer att dessa ekosystem bevaras samtidigt som klimatförändringar 

bekämpas. Även om hållbart producerad bioenergi kan vara en del av vägen mot ett 

fossilfritt samhälle krävs även andra samhällsförändrande åtgärder som minskar vår 

totala energianvändning och konsumtion för att de globala klimatmålen ska nås.  
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Introduction  

Despite humanity’s dependence on nature, we are severely altering ecological 

systems to a point where the quality of life for people is threatened. Human activities 

have changed biophysical and biochemical systems and processes, driving planetary 

environmental conditions into a state outside of the safe operating space for 

humanity (Richardson et al., 2023). Two main factors in the stability and 

functioning of the Earth system are climate change and biodiversity loss (Steffen et 

al., 2015). Through our use and transformation of ecosystems, biodiversity is 

declining globally at an unprecedented rate and currently threatening more than 1 

million species with extinction (Díaz et al., 2019; IPBES, 2019; Jaureguiberry et al., 

2022). In addition, human-caused climate change poses a threat to humans and 

nature by affecting the weather and climate extremes across the globe (IPCC, 2023). 

One of the main challenges for humanity in the 21st century is to find sustainable 

climate mitigation and biodiversity conservation strategies (IPBES, 2019; IPCC, 

2023), a challenge that becomes increasingly urgent. However, a critical question 

remains: Can we mitigate climate change without harming biodiversity and 

ecosystems? A large focus in climate mitigation is on energy generation and there 

are multiple pathways to reduce greenhouse gas emissions in the energy sector. 

These mainly include replacing fossil fuels with renewable energy sources, such as 

wind, solar, or biomass energy generation, but few of these options include co-

benefits for biodiversity protection (Pörtner et al., 2023). A narrow focus on 

emission reductions and short-term mitigation solutions carries the risk of 

generating new sustainability issues, but measures that are locally adapted, holistic, 

and have a long-term view can create robust and synergistic mitigation pathways 

(Smith et al., 2022). Moving forward, we need sustainable management of land 

resources, where climate mitigation occurs in a socially and ecologically responsible 

manner (Kiesecker et al., 2024) to ensure that no Sustainable Development Goal 

(SDG) is reached at the expense of another (United Nations, 2015). This requires 

integrated approaches focusing on the connections, synergies and trade-offs 

between societal goals. Nexus approaches enable the evaluation of sustainability 

impacts in complex systems by addressing the interlinkages between sectors and 

SDGs (Liu et al., 2018), such as providing renewable energy without compromising 

food production, environmental quality, and biodiversity conservation. In this 

thesis, I have used a nexus approach to address how different methods of adopting 

agricultural bioenergy as climate mitigation strategies in Sweden may affect the 

supply of ecosystem services and biodiversity. 
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The link between biodiversity loss and climate change 

The term biodiversity captures the variability of all organisms, including the 

diversity within species, between species, and of ecosystems (Convention on 

Biological Diversity, 1992). In addition to the intrinsic value of ecosystems and all 

living organisms, i.e. their inherent worth independent of how useful they are to 

humans (Redford & Richter, 1999), biodiversity also has an instrumental value for 

humans, including pools and fluxes of materials and energy. Biodiversity loss 

diminishes these services by altering the ecosystem functions and stability 

(Cardinale et al., 2012; Isbell et al., 2017). A continued supply of ecosystem 

functions and resilience that benefit humanity also in the future hence requires 

conservation of the biodiversity that underpins these ecosystem services (Dee et al., 

2019; Mace et al., 2012; Reich et al., 2012).  

The conservation of biodiversity and ecosystem services is under additional threat 

from climate change (Pörtner et al., 2021). Anthropogenic emissions of greenhouse 

gases (GHG) have resulted in global warming above 1.1°C relative to preindustrial 

levels, creating additional stresses on human livelihoods, land resources (IPCC, 

2023), and nature (Trisos et al., 2020; Urban, 2015). A changing climate forces 

species to adapt or to shift geographical range, leading to changes in species 

interactions, composition, and ecological functions (Pörtner et al., 2023). When 

species cannot migrate to new habitats or adapt to new climate conditions, they may 

face local or global extinctions (Román-Palacios & Wiens, 2020). Urgent 

conservation actions are required to maintain a healthy planet for all living species, 

but the shared drivers and mechanistic links between biodiversity and climate have 

increased the recognition that a more integrated approach is needed to find 

sustainable solutions (Pettorelli et al., 2021; Pörtner et al., 2021). 

To limit global warming well below a 2°C increase from pre-industrial levels, in 

line with the Paris Agreement on Climate Change, major reductions of GHG 

emissions are required worldwide (IPCC, 2023). As a part of the European Green 

Deal, the European Union (EU) and its member states have set out to reduce GHG 

emissions by at least 55% by 2030 from 1990 levels and achieve climate neutrality 

by 2050 (European Commission, 2020b). After the COVID-19 pandemic and the 

Russian invasion of Ukraine, ensuring energy security within the EU has gained 

even more importance, thereby reducing the dependency on energy imports (Mišík 

& Nosko, 2023). This has been concretised in the RePowerEU plan, aligning climate 

mitigation targets with an energy independence strategy, where actions such as 

reducing overall energy consumption and increasing the share of renewable energy 

have been advocated (European Commission, 2022).  

At the same time, the EU has adopted a Biodiversity Strategy for 2030 to protect 

and restore biodiversity and halt ecosystem degradation as a contribution to the 

Kunming-Montreal Global Biodiversity Framework (European Commission, 
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2020a). The strategy recognises the interdependence between biodiversity loss and 

climate change, intending to protect at least 30% of land in Europe and reach the 

legally binding target to restore at least 20% of degraded land and sea areas under 

the Nature Restoration Law. The proposed conservation actions are expected to have 

co-benefits for climate mitigation, in particular by avoiding deforestation and 

restoring ecosystems with significant carbon storage potential (Shin et al., 2022). 

Aligning and fulfilling the climate and biodiversity commitments is essential to 

achieve the transformative change needed to secure healthy ecosystems and a 

liveable planet (Pörtner et al., 2023). 

The focus on agricultural landscapes 

Agriculture plays a crucial role in modern society by providing food and biobased 

material to a growing global population and by supporting rural livelihoods. With 

more than one-third of all terrestrial land currently devoted to agricultural 

production, agroecosystems also greatly impact biodiversity and ecosystem 

functions (IPBES, 2019). In most parts of the world, agricultural productivity has 

increased rapidly over the last century through developments in the use of synthetic 

fertilisers, pesticides, machinery, and species varieties (Pellegrini & Fernández, 

2018; Robinson & Sutherland, 2002). Despite the increase in agricultural 

productivity, around 30% of the global population faces food insecurity, with large 

inequalities between regions (FAO et al., 2023). In addition, intensified agricultural 

production has resulted in simplified landscapes with increased erosion, soil carbon 

loss, nutrient run-off, and pollution, which have caused environmental impacts such 

as eutrophication, soil degradation, global warming, and declines in biodiversity 

(Power, 2010). Consequently, essential ecosystem services important for 

agricultural production, such as pollination, biological pest control, nutrient cycling, 

and soil formation, have declined across intensive agricultural regions (IPBES, 

2019). Further land-use intensification may temporarily compensate for some of the 

productivity reduction caused by declines in ecosystem services but with the risk of 

additional environmental externalities and productivity loss over time (Seppelt et 

al., 2019).  

Increasing landscape and crop heterogeneity across spatiotemporal scales has been 

suggested to support biodiversity within agroecosystems (Benton et al., 2003; 

Fahrig et al., 2011), which in turn may benefit the delivery of ecosystem services 

(Tscharntke et al., 2005, but see Birkhofer et al., 2018). The increase or maintenance 

of landscape complexity often involves protecting and restoring semi-natural 

habitats (SNH) (Gonthier et al., 2014; Holland et al., 2017), while crop 

diversification in space and/or time from e.g. intercropping or crop rotation can 

contribute to complexity at the field level (Hufnagel et al., 2020). SNH, such as field 

edges, woodlands, or extensive grasslands, are important habitats for several 
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organisms, including pollinators and natural enemies that may spill over to 

surrounding sites and have a positive spillover effect for pollination and pest control 

in the agricultural landscape (Blitzer et al., 2012; Holland et al., 2017; Öckinger & 

Smith, 2007). The connectivity between suitable habitats influences the dispersal of 

species among habitat patches, where the importance of the scale of connectivity is 

set by the behaviour and characteristics of the organism (Taylor et al., 2006). 

Agricultural land can be both a source and sink of carbon due to anthropogenic and 

natural factors. With the agricultural sector accounting for more than 10% of 

anthropogenic GHG emissions, there is great potential for adopting land uses, 

agricultural practices, and food systems that contribute to climate mitigation and 

adaptation (IPCC, 2019). However, there are major concerns that agricultural 

mitigation could negatively affect the food and biomass supply (Smith et al., 2013; 

Valin et al., 2013), which calls for mitigation strategies that reduce the trade-off 

between GHG abatement and food security. Within agricultural production, such 

proposed strategies include for example increased sequestration of soil organic 

carbon (SOC) on cropland (Frank et al., 2017), sustainable intensification (Pretty & 

Bharucha, 2014; Rockström et al., 2017), or optimised input of mineral fertilisers 

(Foley et al., 2011). Together with the reduction of food waste and losses throughout 

the post-harvest production chain (Notarnicola et al., 2017; Vázquez-Rowe et al., 

2021), and dietary shifts towards products with a lower GHG footprint 

(Aleksandrowicz et al., 2016; Tilman & Clark, 2014), food production could be 

maintained while fundamentally reducing the environmental impact.   

In parallel with the intensification and regional specialisation of agriculture in 

Europe, an increased abandonment of marginal or remote arable land and semi-

natural grasslands has been recorded (Ustaoglu & Collier, 2018). The cessation of 

agricultural activities and management has been attributed to biophysical, 

socioeconomic, and political factors that limit the profitability of maintained 

production in certain fields or regions (MacDonald et al., 2000; Rey Benayas et al., 

2007; van der Zanden et al., 2017). Farmland abandonment may further exacerbate 

the competition over limited resources of arable land that already faces increasing 

demand for agricultural commodities, environmental consideration, and 

biodiversity conservation (Lécuyer et al., 2021). At the same time, abandoned land 

is also seen as a promising resource for alternative uses to avoid land-use conflicts 

(Muscat et al., 2022). If abandoned farmland does not remain abandoned for natural 

succession to revegetate the former fields towards semi-natural landscapes, it is 

often afforested, urbanised, or transformed back to agricultural use (Fayet et al., 

2022).  

The environmental impacts of farmland abandonment are context-dependent and 

can further be influenced by site characteristics, former land use, and the 

surrounding landscape (MacDonald et al., 2000; van der Zanden et al., 2017). 

Abandonment in intensively farmed agricultural landscapes may offer opportunities 

for regenerating natural ecosystems that can enhance the local and landscape 
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heterogeneity, increase SOC sequestration, and reduce the use of chemical inputs 

(Navarro & Pereira, 2012; van der Zanden et al., 2017). On the contrary, abandoning 

fields in low-intensity traditional farmland landscapes can cause negative 

environmental and ecological impacts as they are dependent on the extensive 

management that has shaped unique conditions for biodiversity and ecosystem 

services over hundreds or even thousands of years (MacDonald et al., 2000; Queiroz 

et al., 2014). When considering abandoned land for alternative uses, studies that 

consider both local and landscape context-specific conditions are necessary to avoid 

further land-use conflicts. 

Agricultural landscapes have undergone considerable changes over the past 

centuries, and Sweden is no exception. In the high-productive arable regions fields 

have become larger and more intensely managed, while landscape openness has 

decreased in the marginally productive regions due to afforestation (Ihse, 1995). 

Furthermore, more than 50% of grasslands with a long history of extensive grazing 

and mowing, so-called semi-natural grasslands (SNGs), have been lost over the past 

100 years due to reduced number of cattle, arable intensification, afforestation, or 

abandonment (Aune et al., 2018; Swedish Board of Agriculture, 2008). SNGs are 

often characterised by a high biodiversity consisting of species adapted to and 

dependent on biomass removal from grazing and mowing (Eriksson et al., 2002). 

The loss of grasslands from Swedish landscapes has not only resulted in a decline 

in biodiversity (Cousins, 2009), but likely also in a loss of ecosystem functionality 

as SNGs are important for ecosystem services such as carbon storage, pollination, 

and erosion control (Bengtsson et al., 2019).  

Even if other open habitats similar to SNGs in the boreal landscape can serve as 

alternative habitats for grassland species (Andersson et al., 2022; Johansen et al., 

2022), the surrounding landscape has successively become less suitable for most 

grassland species to survive. Increasing demand for forest products has driven the 

intensification of Swedish forestry, resulting in a forest landscape dominated by 

even-aged stands of monocultural spruce plantations, managed in rotational clear-

felling (Petersson et al., 2019). The land use within agriculture and forestry, 

including deforestation and the increasing overgrowth of abandoned land, are the 

main factors driving the red-listing of species in Sweden (Eide et al., 2020). 

With a growing population to feed (Godfray et al., 2010), higher demand for 

biobased material (Muscat et al., 2020), and an urgent need for climate mitigation 

and biodiversity conservation (Pörtner et al., 2021), the agricultural landscape is 

under higher pressure than ever. When selecting the pathway forward, research and 

policy must focus on identifying synergies between these demands and how these 

can be balanced in different landscape contexts. 
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Bioenergy – a sustainable source of renewable energy? 

The main source of renewable energy in the EU is bioenergy produced from 

agricultural, forestry, and organic waste feedstock, accounting for around 60% of 

the renewable energy consumption (European Commission, 2023). To meet the 

global and European GHG reduction targets, bioenergy coupled with carbon capture 

and storage (BECCS) is expected to play an important role also in the future energy 

supply (European Commission, 2017; Rogelj et al., 2018) by offering opportunities 

for domestic energy markets and a predictable energy supply to sectors that are 

difficult to decarbonise or electrify (Davis et al., 2018; Debnath et al., 2019). The 

current main utilisation of bioenergy is for heating and cooling, but biomass is also 

used to produce biofuels and bioelectricity (European Commission, 2023). Sweden 

is one of the countries in the EU that has the largest supply and per capita 

consumption of bioenergy (Wu & Pfenninger, 2023), with forest biomass 

accounting for more than 80% of the utilised bioenergy (Black-Samuelsson et al., 

2017). While Swedish forestry mainly supplies wood for pulp and timber, the 

residues from harvests and industries (e.g. slash, stumps, and sawdust) are important 

for bioenergy production. However, the sustainability of forest-derived bioenergy 

has been questioned because of the negative impacts on biodiversity and uncertain 

GHG emission reductions of the current silvicultural production system and 

intensive forest management (de Jong & Dahlberg, 2017; Harper et al., 2018; 

Norton et al., 2019). The ongoing climate change is putting further pressure on the 

Swedish forests to provide increased harvests of wood for supplying bioenergy and 

biobased materials for the decarbonisation of society (Cintas et al., 2017; 

Hildebrandt et al., 2017), at the same time as the importance of sustainable forest 

management to enhance carbon storage in forests has been emphasised (IPCC, 

2019). The impossible task of managing forests to maximise both the carbon storage 

and the harvest of forest biomass to substitute fossil fuels within the same timeframe 

(Rummukainen, 2021) suggests other sources of biomass, such as agricultural 

feedstock, are needed for future bioenergy production (Searchinger et al., 2022). 

The first generation of agricultural bioenergy crops was derived from oils, starches, 

and sugars of food biomass, such as wheat, corn, or oil crops. These crops were 

mainly used to produce biofuel but because of their direct competition with food 

production and negative effects on biodiversity, attention has been turned to second-

generation bioenergy crops (residues or lignocellulosic, woody crops) (Havlik et al., 

2011; Immerzeel et al., 2014). However, the choice of biomass matter is not the only 

factor important for ensuring emission reductions from bioenergy, but also the land 

used for biomass production and how the energy is being used (Harper et al., 2018). 

Cultivation of bioenergy crops on agricultural land risks indirect land-use changes 

and displacement effects on GHG emissions and biodiversity, as additional land is 

needed to maintain food production (Nunez-Regueiro et al., 2019; Searchinger et 

al., 2008). In addition, the context-specific biophysical and socio-economic 
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conditions may increase the risk of land degradation, displacement of local actors, 

food insecurity, water scarcity, and biodiversity loss (IPCC, 2019; Vera et al., 2022). 

The controversial sustainability implications of agricultural bioenergy have been 

debated for the past decades (Leemans et al., 1996; Robledo-Abad et al., 2017; 

Tilman et al., 2009), leading to increasingly ambitious sustainability requirements 

for bioenergy to minimise trade-offs between energy production, food security, and 

the protection of the environment. For energy used within the EU, these 

requirements are specified in the EU Renewable Energy Directive (RED) (EU 

Directive 2023/2413) and include for example restrictions on using biomass that 

undermines food and feed production, land carbon sinks, or biodiverse habitats, with 

GHG emissions saving criteria for the energy that is produced.  

One alternative source of bioenergy that reduces environmental trade-offs as well 

as competition over land and food is the energy production from municipal waste 

and residues from agriculture and forestry (Vera et al., 2022). However, the supply 

of residues does not meet the full demand for bioenergy (Daioglou et al., 2019) 

which has created a growing body of literature that investigates the potential to 

integrate perennial energy crops strategically in the agricultural landscape to 

mitigate the negative impacts of intensive agriculture (Asbjornsen et al., 2014; 

Carlsson et al., 2017; Dauber & Miyake, 2016; Englund et al., 2020a; Milner et al., 

2016), or to produce dedicated bioenergy feedstock on marginal or abandoned 

cropland (Dauber et al., 2012; Muscat et al., 2020; Næss et al., 2023). 

Marginal land is a wide term, often used to describe low-productive or remote land 

in the agricultural landscape that is on the economic margin for food or feed 

production (Elliott et al., 2024; Shortall, 2013; Tilman et al., 2006). The marginality 

of land may be defined due to the biophysical characteristics of the land (such as the 

soil quality or erodibility) (Gelfand et al., 2013; Gopalakrishnan et al., 2011), the 

utilisation (Dale, 2010; Gopalakrishnan et al., 2011; Shortall, 2013), the 

geographical location (Beilin et al., 2014; MacDonald et al., 2000), or the socio-

economic setting (Khanna et al., 2021; Strijker, 2005). Driven by the limited 

economic viability or any other factors that hinder production, marginal arable fields 

or grasslands risk abandonment if no incentives are in place to maintain the 

production (Elliott et al., 2024; Munroe et al., 2013). Marginal and abandoned land 

have received wide attention for the potential to produce bioenergy crops that thus 

will not compete with food production at the same time as it provides an alternative 

source of income for rural communities as the perennial energy crops often are 

better adapted to poor production conditions (Khanna et al., 2021; Mehmood et al., 

2017). Depending on the characteristics of the site and land owner preferences, 

marginal or abandoned land may be used for the production of agricultural feedstock 

or forest biomass to generate bioenergy (Csikós & Tóth, 2023). However, the 

feasibility of cultivating bioenergy crops on marginal land has been questioned due 

to low economic incentives (Bryngelsson & Lindgren, 2013), poor yields (Dauber 

et al., 2012), and limited willingness from farmers to supply marginal land for 
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bioenergy crop production (Skevas et al., 2016). Many types of marginal land may 

also have alternative use values, such as sequestering carbon or providing valuable 

sites for biodiversity conservation or recreational activities  (Dauber et al., 2012; 

Gopalakrishnan et al., 2011) that have to be taken into account before being 

considered for biomass production. 

While utilisation of marginal land for bioenergy production does not fully resolve 

sustainability trade-offs, growing perennial energy crops on marginal land or in 

intensively farmed landscapes can reduce environmental problems such as erosion, 

nutrient leakage, and flooding (Englund et al., 2020a), as well as increasing SOC 

sequestration (Carlsson et al., 2017; Xu et al., 2022). If bioenergy systems are 

developed sustainably, they could increase the multifunctionality of agroecosystems 

to promote synergies between bioenergy production, biodiversity, and the 

provisioning of ecosystem services (Carlsson et al., 2017; Englund et al., 2023). In 

the Nordic countries, including Sweden, one such strategy is including perennial 

grass in crop rotations with annual crop production (Englund et al., 2023; Prade et 

al., 2017). Growing grass leys for feed and pastures is a common practice in Sweden, 

where nearly half of the agricultural land presently is used for grass ley production 

(Swedish Board of Agriculture, 2023b), but the same biomass could also be used as 

a biogas substrate (Ahlgren et al., 2017; Gustafsson & Anderberg, 2023). 

Marginal and abandoned land, as well as additional integration of grass leys in 

intensive agriculture, could play an important role in increasing the domestic 

bioenergy supply in Sweden, but more knowledge is needed on how such climate 

mitigation strategies may impact ecosystem services and biodiversity across spatial 

scales. This thesis contributes with new aspects to the overarching question of how 

Swedish agricultural landscapes could be used for sustainable bioenergy production 

without compromising the supply of ecosystem services and biodiversity. 
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Thesis aims and scope 

This interdisciplinary thesis aims to increase the knowledge of sustainable 

bioenergy production from the Swedish agricultural landscape and to understand the 

challenges and opportunities of increased agricultural bioenergy production for 

other societal goals. To achieve this goal, I have studied the interaction between 

bioenergy strategies, ecosystem services supply, and biodiversity conservation, 

where sustainable land use is a central focus. The thesis evaluates different pathways 

to sustainable bioenergy by covering multiple alternative production sites and 

biomass sources (Figure 1). First, I provide an overview of the sustainability and 

research gaps in agricultural bioenergy (Chapter I). I then address two strategies 

for sustainable bioenergy production: i) using abandoned or marginal land to 

produce bioenergy to avoid conflicts with food production (Chapters II and III), 

and ii) integrating grass biomass production in the intensive agricultural landscape 

as a multifunctional climate mitigation action (Chapter IV).  

 

 

 
Figure 1. A conceptual overview of the biomass sources and production sites in focus of the different 
chapters of the thesis. Image source: BioRender.com 

For each of the chapters I addressed the following research questions and aims: 

Chapter I: How does introduction of bioenergy crops on different types of 

agricultural land impact the supply of ecosystem services and biodiversity?  
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In Chapter I, I give an overview of the sustainability of agricultural bioenergy by 

reviewing the impact of bioenergy-driven land-use changes in temperate 

agricultural landscapes on ecosystem services and biodiversity. The literature 

review was limited to only considering studies of land conversions that have been 

suggested within policy and/or research as potential production sites for agricultural 

bioenergy (arable land, grasslands, marginal land, abandoned land, and fallows), 

and I included both first- and second-generation bioenergy crops. The aims of 

Chapter I were to i) identify potential synergies or trade-offs between biodiversity 

conservation and ecosystem services from the studied land-use changes, ii) analyse 

patterns in how bioenergy land-use changes are studied and how this may impact 

the interpretation of results, and iii) identify research gaps for how an introduction 

of bioenergy crops in the agricultural landscape impacts biodiversity and ecosystem 

services. The findings from Chapter I guided the aims of the following chapters to 

cover research gaps and uncertainties in Swedish and European bioenergy research. 

Chapter II: To what extent can easily identified marginal land contribute to 

sustainable bioenergy production? 

In Chapter II, I studied marginal land in south Swedish arable landscapes to improve 

the understanding of its potential for bioenergy production. Using public databases, 

I mapped, quantified, and characterised marginal land, and with the aid of remote 

sensing I identified the current land use. The aims of Chapter II were to i) understand 

what type of marginal land can be identified from public databases, ii) study how 

marginal land differs from productive arable land in biophysical characteristics and 

socioeconomic settings, and iii) assess potential alternative use values of marginal 

land and how these may affect the availability for feedstock cultivation.  

Chapter III: What are the biodiversity consequences of using abandoned 

grasslands for bioenergy production? 

Chapter III builds further on the findings from Chapters I and II by focusing on land-

use changes of SNG in a mixed farm-forest region of south Sweden that is sensitive 

to agricultural abandonment. Using a space-for-time substitution approach, I studied 

how plant communities of SNG respond to three land-use change scenarios: grazing 

abandonment, spruce afforestation, and grassland improvement by intensification. 

The aims of this chapter were to i) evaluate the contribution of abandoned, 

afforested, and improved SNG to local plant diversity, and ii) assess what effects an 

increased production of wood and grass for bioenergy purposes on abandoned SNG 

could have on biodiversity. 

Chapter IV: Can the integration of agricultural bioenergy production in intensive 

cropping regions act as a multifunctional climate mitigation strategy?  

Finally, in Chapter IV, I studied the potential of agricultural bioenergy production 

as a multifunctional climate mitigation strategy in intensively farmed regions. 

Focusing on grass leys for bioenergy production and using an agent-based model 
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(ABM) in combination with an ecological model on farmland bird diversity, this 

chapter aimed to i) assess how incentivising energy ley production affects the farm 

structure and land use in an intensive cropping region, and ii) evaluate how 

increased uptake of energy ley in crop rotations affects the supply of ecosystem 

services and conservation of farmland birds. 
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Methods 

Study systems and data collection 

This thesis is set in the agricultural landscape and includes land-use studies for bioenergy 

production across spatiotemporal scales. Chapter I gives an overview of bioenergy-driven 

land-use changes of agricultural land in the temperate climate zone using literature from 

North America and Europe, and Chapters II, III, and IV study the potential for and impacts 

of producing agricultural bioenergy in southern Sweden (Figure 2).  

 

Figure 2. Maps of the spatial extent of the study systems in the four chapters. Chapter I reviewed studies 
from the temperate climate zone (illustrated in turquoise). For Chapters II-IV, the study systems are 
illustrated with a background map sourced from OpenStreetMap. Chapter II included the nine 
southernmost counties in mainland Sweden, Chapter III focused on 42 field sites in Jönköping county, 
and Chapter IV studied the production region GSS (Götalands Södra Slättbygder).  
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In Chapter I, a literature review was conducted to synthesise the biodiversity and 

ecosystem service impacts from land-use changes to bioenergy production in 

temperate agroecosystems (Figure 2). The search for literature was performed in the 

Web of Science Core Collection to access peer-reviewed research articles, using 

methods for systematic reviews to reduce biases (Haddaway et al., 2015). The 

literature search was based on a pre-determined search string and the identified 

papers were screened for relevance with a decision tree, resulting in 54 original 

research papers in the review. A review matrix was used to extract the relevant 

information from each article, including details of the reference land use, bioenergy 

crop, taxonomic group to represent biodiversity, examined ecosystem service(s), 

geographical scope, methodology used, production scale, and the assessed impact 

(on the species, taxonomic group, or ecosystem service). Studies were subdivided 

into land-use change cases to synthesise how specific land-use changes affected 

individual ecosystem services or taxonomic groups. The reference land use was 

categorised into four groups: arable land, grassland, marginal land, and non-

managed land, and bioenergy crops were grouped into first- or second-generation 

energy crops. The categorisation of ecosystem services was based on the 

Millennium Ecosystem Assessment classification (Millennium Ecosystem 

Assessment, 2005), and the biodiversity assessments were classified into taxonomic 

groups: amphibians, birds, reptiles, mammals, invertebrates, plants, 

microorganisms and, in cases where no explicit organism was studied, unspecified 

biodiversity. The methodology used in the reviewed literature was grouped into 

direct (empirical) and indirect (modelling, simulations) measurements, and the 

geographical scope was categorised into local and regional scales. For each land-

use change case, the assessed impact on a specific ecosystem service or 

species/taxonomic group from the literature was noted as positive, neutral/mixed, 

or negative. 

Chapter II focused on the nine southernmost counties of mainland Sweden to 

identify and characterise marginal land. The nine counties (Skåne, Blekinge, 

Kronoberg, Halland, Kalmar, Jönköping, Örebro, Östra Götaland, and Västra 

Götaland; Figure 2) contain the majority of agricultural land in Sweden but differ in 

land-use intensity, landscape complexity, and socioeconomic conditions. The 

present utilisation of land was used as an indicator to detect marginal land that either 

had no evident uses or was used in arable production but without receiving 

agricultural subsidies. In a raster-based analysis, we developed a spatial analysis 

funnel approach to identify marginal land from land-use and land cover data from 

official databases (Lantmäteriet, 2021; Statistics Sweden, 2021; Swedish Board of 

Agriculture, 2021; Swedish Environmental Protection Agency, 2020, 2021; 

Swedish University of Agricultural Science (SLU), 2015; The Swedish Transport 

Administration, 2021). The analysis started from the broad land-cover classes 

“Agricultural land” and “Open land with vegetation” in the National Land Cover 

Database of Sweden and from these two classes all other apparent land uses were 

removed, including arable land that received any CAP subsidies during 2015-2020, 
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forested land, urban areas, military areas, recreation facilities, nature protected 

areas, infrastructure, buildings, and waterfronts by oceans, lakes, or rivers. All 

connecting raster cells larger than 0.1 ha were kept for further evaluation of the 

marginal land availability for bioenergy production.  

In Chapter III, we conducted a space-for-time substitution study (Pickett, 1989) to 

assess the potential biodiversity effects of biomass production on abandoned 

grasslands in a mixed farm-forest study area in southern Sweden (Figure 2). The 

study area was located in Jönköping county (57°45′N, 14°12′E), a forest-dominated 

region with agricultural landscapes mainly consisting of animal farms and small 

holdings that are susceptible to farmland abandonment (Perpiña Castillo et al., 

2018). We identified 42 sites of grazed, abandoned, spruce afforested, and improved 

SNG, using agricultural and forest land-use data (Swedish Board of Agriculture, 

2021, 2022; Swedish Environmental Protection Agency, 2020) and times-series of 

orthophotos (Lantmäteriet, 2022). Plant surveys were conducted in two survey 

rounds between June and August 2022 to identify vascular plants to species level 

for each site (Figure 3). The sampling was randomly distributed along site borders 

and within the site to achieve a similar sample completeness for all sites and habitats 

(Chao & Jost, 2012). 

  

Figure 3. Field assistants and the author conducting plant surveys in grazed semi-natural grassland (to 
the left) and afforested semi-natural grassland (to the right). Photos taken by author (2022). 

For Chapter IV we combined agent-based economic modelling with multiple 

ecosystem services and biodiversity production functions to estimate the 

consequences of policies incentivising energy leys as a climate mitigation strategy. 

The combined assessment of ecosystem services and biodiversity under different 
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policy and land-use scenarios allowed the identification of synergies or trade-offs 

between different outputs and societal goals (cf. Nelson et al., 2009). The study 

focused on Götalands Södra Slättbygder (GSS, i.e. the arable plains of southern 

Sweden; Figure 2), the most productive arable region in Sweden that extends over 

the two counties Skåne (55°59′N, 13°26′E) and Halland (56°43′N, 12°49′E). 

Data analysis 

After using a systematic approach to identify and classify relevant literature for the 

literature review in Chapter I, we summarised the land-use change cases into a total 

impact assessment for specific taxonomic groups or ecosystem services following 

Immerzeel et al. (2014). The total impact included five classes: 1) strong positive 

impact (≥ 75% of the cases reported a positive impact), 2) moderate positive impact 

(≥50% but <75% of cases reported a positive impact), 3) no or mixed impact (no 

impact or equally many cases with positive and negative impacts), 4) moderate 

negative impact (≥50% but <75% of cases reported a negative impact), or 5) strong 

negative impact (≥ 75% of the cases reported a negative impact).  

The marginal land identified in Chapter II was characterised by analysing the land 

use/land cover (LU/LC), soil moisture, crop productivity, and socioeconomic 

setting, to assess the type of marginal land that may be identified from public 

databases and its potential for bioenergy production. The LU/LC was determined 

for a subset of the marginal land using remote sensing (Google, 2022; Lantmäteriet, 

2022). We also identified the land cover surrounding these sites (Swedish 

Environmental Protection Agency, 2020) to identify in which landscapes marginal 

land generally occurs. The same subset of marginal land was used to compare the 

soil moisture index (Swedish Environmental Protection Agency, 2020) of marginal 

land to the surrounding 1 km arable landscape using a Wilcoxon signed-rank test 

and to existing energy crop sites using a Mann-Whitney U test. The relationship 

between marginal land and site productivity was analysed using generalised linear 

models with the standard yield of spring barley across crop yield areas from Swedish 

Board of Agriculture (2023a) as the dependent variable. The analysis was weighted 

by the influence of organic farming on yields and the geographical coordinates were 

added as fixed terms to the model to account for spatial autocorrelation in the model 

residuals. Further analysis of how the farming conditions (regional productivity and 

socioeconomic setting) were associated with the area of marginal land identified 

was made by comparing marginal land coverage across areas of natural constraints 

(ANCs) using a Kruskal-Wallis rank-sum test. 

In Chapter III, we investigated the impact of biomass production on abandoned 

grasslands for local plant diversity and community composition. To analyse local 
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diversity, generalised linear models were constructed with species richness and 

Shannon diversity as response variables and habitat type, landscape composition in 

a 1 km radius of each site, time since land conversion/abandonment, and sampling 

intensity as predictors. The difference in plant community composition between 

habitats and its relationship to SNG coverage in the surrounding landscape was 

analysed using nonmetric multidimensional scaling (NMDS) ordination analysis 

and permutational multivariate analysis of variance (PERMANOVA). The 

community dissimilarity was further analysed by calculating its turnover and 

nestedness components to assign the dissimilarity pattern to species replacement or 

species loss (Baselga, 2010). Species of conservation concern were identified using 

information on red-listing, signal species, and/or protected species (SLU 

Artdatabanken, 2023). 

In Chapter IV, the ABM AgriPoliS (Happe et al., 2006) was used to simulate how 

farm structure and land use responded to three policy scenarios differentiated by 

increasing area-based subsidies to the production of energy leys for biomethane (50, 

200, and 350 € ha-1). These were compared to a reference scenario where the subsidy 

for energy ley was set to zero. From the AgriPoliS model and the submodels coupled 

to it, we also extracted information on soil carbon content (% SOC in topsoil; Brady 

et al., 2019), pesticide use (kg active substance of fungicides, herbicides, and 

insecticides; Agriwise, 2017), and contribution to food production (kcal produced 

from food crops, meat, and dairy; Boke Olén et al., 2021). To assess ecological 

consequences contingent on landscape configuration on fine spatial scales, the 

AgriPoliS model output was extended from a simple landscape representation to 

spatially explicit results, using the farm typology of GSS (Boke Olén et al., 2021) 

and spatial agricultural information from the Integrated Administration and Control 

System (IACS) database. The resulting land-use maps with detailed crop 

information were used to predict farmland bird diversity impacts, using the 

estimates of relationships from a joint-species distribution model (Hristov et al., 

2020; Stjernman et al., 2019). The predicted farmland bird abundance was 

aggregated to species-specific regional abundances for each scenario and 

normalised by dividing the regional abundance in the energy ley scenario by the 

corresponding value in the reference scenario, to ultimately calculate a composite 

farmland bird index (FBI) following the method of Gregory et al. (2005).  
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Results and discussion 

Sustainability of agricultural bioenergy  

Strategies to increase the sustainability of agricultural bioenergy have revolved 

around the land-use changes surrounding biomass production (Dauber et al., 2012; 

Tilman et al., 2009; Valentine et al., 2012), but few studies have considered the 

combined impact of these strategies on ecosystem services and biodiversity. 

Chapter I provides an overview of how ecosystem services and biodiversity are 

affected under bioenergy-related land-use change scenarios suggested by policy and 

research. We found that agricultural bioenergy research is highly segregated 

between those focusing on ecosystem services and those focusing on biodiversity, 

with a predominance of the former (Figure 4). This raises concern about the policy 

recommendations given by bioenergy research, not only because of the risk for 

biodiversity loss but also because biodiversity and many ecosystem services are 

highly interlinked such that a loss of biodiversity could diminish ecosystem services 

important for agriculture (Le Provost et al., 2023). Furthermore, our results show 

that the cultivation of bioenergy crops in the agricultural landscape comes with two 

main trade-offs, either for food production or for biodiversity conservation. Despite 

the risk of decreased food security due to displacement effects, deploying perennial 

energy crops on arable land is widely researched and our review shows that this 

strategy has the potential to reduce the negative environmental and ecological 

impacts of intensive agriculture. Several previous studies have shown similar results 

(e.g. Dauber et al., 2010; Englund et al., 2020b; Werling et al., 2014), highlighting 

the potential role of feedstock cultivation on arable land as a multifunctional strategy 

to mitigate climate change.  

To alleviate the competition with food production, biomass production on marginal 

land or abandoned land has been promoted as a sustainable bioenergy alternative 

(Gelfand et al., 2013; Gopalakrishnan et al., 2011; Vera et al., 2022), however, the 

results of Chapter I suggest that few studies have assessed the environmental and 

ecological impacts of using non-managed land for agricultural bioenergy production 

(Figure 4). In addition, we identified a large knowledge gap on the ecological 

implications of cultivating energy crops on marginal land, with the few studies 

focusing on biodiversity impacts predominantly reporting negative effects. 

Bioenergy production from marginal or abandoned land could hence be in direct 

conflict with biodiversity conservation (Plieninger & Gaertner, 2011), emphasising 
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the importance of a joint recognition of ecosystem services and biodiversity for 

bioenergy-related land-use changes in future strategies for and research on 

agricultural bioenergy to avoid trade-offs between different societal goals.  

 

Figure 4. Overview of the reviewed literature in Chapter I, showing reference land use, energy crop 
type, assessment type, and impact. Starting from the left, the Sankey diagram shows the division of 
reference land uses that were included in the reviewed literature, the land use change to energy crops 
(first generation (1G) annual food crops, second generation (2G) perennial crops, or a mix of the two 
(Mix)), the assessment type of energy crops (ecosystem services or biodiversity), and the impact of the 
assessed land-use changes (number of positive, neutral/mixed, or negative cases). The bar plots on 
the right show the synthesised impact on ecosystem services and biodiversity for 1G and 2G crops. 
Abbreviations: ES: Ecosystem services, BD: Biodiversity, A: Arable land, G: Grassland, M: Marginal 
land, N-M: Non-managed land, 1G: First generation energy crops, 2G: Second generation energy 
crops, Mix: Mix of 1G and 2G crops. 

Biomass production on marginal and abandoned land  

To address the existing knowledge gap on the environmental and ecological effects 

of biomass production on marginal and abandoned land identified in Chapter I, we 

focused on identifying and characterising Swedish marginal land in Chapter II and 

evaluating the biodiversity implication of using abandoned farmland for bioenergy 

production in Chapter III. When studying marginal land, the definition and framing 

of marginality are central to what type of land will be identified (Csikós & Tóth, 

2023; Muscat et al., 2022). Earlier studies of bioenergy potential from marginal land 

in Sweden have made general production estimates based on official land use data 

(cf. Börjesson, 2016; Nilsson & Rosenqvist, 2018; Olofsson & Börjesson, 2016; 

Prade et al., 2017), but without further studies of alternative use values and 

availability, these assessments are prone to large uncertainties. In Chapter II we 

defined marginal land as unused open land (such as abandoned land) and arable land 
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outside the agricultural subsidy system. Agriculture without financial support was 

included in our marginal land definition as it is more sensitive to abandonment 

(Renwick et al., 2013) and is likely less intensively managed (Brady et al., 2017), 

which could indicate limitations for cost-effective production. The total area of 

marginal land identified in the nine Swedish counties ranged from 0.74% of the 

county area in Jönköping to 1.56% in Skåne (Figure 5). Out of all the marginal land, 

only a minor share (11%) was without management. The remainder of the land was 

either unsuitable for biomass production (wetlands or rock surfaces), was already 

used for biomass production to some extent (managed grasslands, agricultural 

fields, or tree plantations), or served as pastures for horses or livestock. Assuming 

all these land types as available for biomass production could compromise 

alternative use values, such as food production, recreation, or biodiversity 

conservation.  

 

 

Figure 5. Area, land use, farming conditions, and productivity of the marginal land identified for the 
nine south Swedish counties in Chapter II. A) The total identified area of marginal land and the land 
use of 200 randomly selected marginal land sites within each county. County abbreviations: Sk: Skåne, 
Bl: Blekinge, Ka: Kalmar, Kr: Kronoberg, Ha: Halland, Vg: Västra Götaland, Jo: Jönköping, Og: 
Östergötland, Or: Örebro. B) The share of marginal land identified per arable land across ANCs (areas 
with natural or other area-specific constraints, i.e. farming conditions) and the level of ANC payments 
(compensatory economic support level). Category 0 has no ANC support (good farming conditions), 
category 10 has the lowest support, and category 6 has the highest support (constraining farming 
conditions). C) The relationship between the share of marginal land identified per arable area and the 
standard yield of spring barley across crop yield areas (CYA). 
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We found that about half of the marginal land were parcels that formerly received 

agricultural subsidies, but that currently either continued to be agriculturally 

managed without economic support, had been abandoned, or converted, mainly 

because of afforestation, infrastructure, or recreation. Even if the highest density of 

marginal land was identified in high-productive regions, we found a negative 

correlation between the relative share of marginal land per agricultural area and 

productivity. Moreover, the marginal land generally consisted of small land parcels 

(less than 0.5 ha). The small size and lower productivity of the identified marginal 

land would likely make biomass production difficult and unattractive due to the low 

cost- and time efficiency (Bryngelsson & Lindgren, 2013; Skevas et al., 2016). The 

use of marginal land for sustainable bioenergy production is commonly suggested 

within research and policy, but marginal land is also framed as important for food 

security, rural development, and ecosystem restoration, resulting in the same 

competing claims over marginal land as for productive land (Muscat et al., 2022). 

Improved mapping of marginal land will not remove these competing claims, nor 

will it change farmers’ views of how marginal land could and should be used 

(Helliwell, 2018; Skevas et al., 2016). Bioenergy production from marginal land 

could make an important contribution to climate mitigation, however as shown in 

Chapter II, the use of marginal land will not overcome the land-use debate 

surrounding agricultural bioenergy if alternative use values are not considered.  

The findings of Chapter II suggested that marginal land mainly occurs in mixed 

arable-forest landscapes and that a large share of the marginal land is grazed, 

passively managed, or abandoned SNGs. These results informed the focus of 

Chapter III, in which we studied the ecological implications of using abandoned 

SNGs for energy biomass production (ley and spruce) in a mixed farmland-forest 

region of southcentral Sweden. We found that both abandonment, afforestation, and 

grassland improvement of SNGs reduced local phytodiversity and altered plant 

communities compared to grazed SNGs, with the most profound negative effects 

from grassland afforestation and improvement to grass ley production (Figure 6). 

The difference in species communities was almost entirely explained by species 

turnover, i.e. species replacement. SNGs are among the most species-rich 

ecosystems in temperate landscapes with a manifold of rare species dependent on 

their continued management (Habel et al., 2013), and cessation of grazing or 

mowing generally affects plant diversity negatively (Elliott et al., 2023; Pykälä et 

al., 2005). Interestingly, our results showed that abandoned SNGs remain relatively 

important habitats for grassland species at an early stage of abandonment with 

similar plant species composition to grazed SNGs (Figure 6B). The abandonment 

of grasslands however resulted in a loss of rare species and even if there are studies 

claiming that the natural succession occurring after abandonment could create 

rewilded semi-natural habitats important for conservation (cf. Navarro & Pereira, 

2012), a loss of species richness in grassland habitats could reduce both biodiversity 

as well as the supply of ecosystem services and the ecosystem multifunctionality 

(Prangel et al., 2023). However, both local and landscape processes are important 
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for the structure of plant diversity (Foster, 2001; Schmucki et al., 2012). In addition 

to the effect of local management, we found that increased coverage of SNG in the 

surrounding landscape had a positive spill-over effect on plant species richness and 

Shannon diversity for all habitat types.  

 

Figure 6. A) Observed (smaller coloured points) and predicted (larger filled points) plant species 
richness for the different habitat types. The letters a, b, and c show significant differences (p<0.05) in 
predicted species richness between habitats. The habitat types that do not share a letter are 
significantly different. B) The result of a non-metric multidimensional scaling (NMDS) showing the 
dissimilarity in plant species composition between the surveyed sites, grouped by habitat type.  

The results of Chapter III highlight the importance of SNGs for local and landscape 

diversity but also suggest that abandoned grassland may hold high conservation 

values and should not be seen as available for intensive biomass production by 

default. Even if it also exits grasslands with low conservation values that could be 

better suited for biomass production, additional and updated assessments are needed 

to identify the grasslands with the highest biodiversity values (Larsson et al., 2020). 

However, despite the risk to grassland biodiversity, abandonment of SNGs is an 

ongoing process in Sweden (Eriksson et al., 2002), enhanced by dietary shifts (Röös 

et al., 2016) and increased costs for cattle farming (Söderberg & Hasund, 2021). 

When grazing is no longer possible, extensive management of abandoned 

grasslands, such as mowing, offers an opportunity for biomass harvesting that also 

may contribute to restoring the grassland flora (Heinsoo et al., 2010; Huhta et al., 

2001).  

In summary, Chapters II and III overview the availability of marginal land and 

abandoned land for energy biomass production, suggesting that neither of the two 

land types offers a simple and unproblematic solution to the increasing demand for 

biobased energy and material (Hertel et al., 2013). The competition for land is 

further amplified by climate change (IPCC, 2023) and the growing demand for food 
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from an increasing population (Barthel et al., 2019), putting additional pressure on 

all types of land to produce food, feed, fuel, or nature conservation (Muscat et al., 

2022). Moving forward, an integrated approach to biomass production, ecosystem 

service supply, and biodiversity conservation should be a priority to promote 

bioenergy production that does not compromise other societal needs. 
 

 

Figure 7. A field with grass ley being harvested. Photo taken by author (2022). 

Integrated biomass production in intensive agriculture 

In Chapter IV we explored an alternative agricultural bioenergy strategy where 

grass biomass production (grassland ley; Figure 7) is integrated into intensively 

farmed agriculture as a multifunctional climate mitigation strategy (Carlsson et al., 

2017; Englund et al., 2023). In contrast to earlier studies, we wanted to understand 

how incentivising energy grass production in an intensive cropping region in 

southern Sweden affects the uptake of energy grass in crop rotations and how the 

changes in farm structure and land-use change could affect the supply of ecosystem 

services and biodiversity. By comparing three different subsidy levels for energy 

ley production to a reference scenario without any such subsidy, our results showed 

that the total ley production only increased when very high financial incentives were 

introduced. For the lower payment levels (50 or 200 € ha-1) the increase in energy 

ley was mainly achieved at the cost of fodder ley, an outcome that could be expected 
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in productive agriculture with high cereal prices (Ford et al., 2024; Stürmer et al., 

2013). In contrast, a subsidy of 350 € ha-1 resulted in 40% of the utilised agricultural 

area dedicated to ley production, which increased soil carbon storage, reduced 

pesticide use, and increased the overall abundance of farmland birds, in addition to 

the generation of substrate for biogas production (Figure 8). The simulated 

production changes however reduced the regional food production (the number of 

calories produced from food crops, dairy, and meat) as energy leys replaced spring 

barley. Even if some of the lost food production could be compensated by dietary 

shifts to less red meat and dairy products (Aleksandrowicz et al., 2016), the conflict 

with food production is one of the major limitations for increased production of 

agricultural bioenergy (Popp et al., 2014; Tilman et al., 2009; Vera et al., 2022).  
 

 

Figure 8. The predicted impact on energy production, farm income, farmland birds, food production, 
pesticide use, and soil organic carbon (SOC) storage in the reference scenario (REF) and the three 
energy ley scenarios (LOW, MEDIUM, HIGH). The impact for all variables has been normalised by 
dividing the impact value by the maximum variable value (scale 0-1). The figure is taken from Chapter 
IV, with variable icons sourced from BioRender.com.  
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The results of Chapter IV suggest that agricultural bioenergy could not only 

contribute to the decarbonisation of society by providing renewable energy but 

potentially also mitigate some of the environmental problems of intensive 

agriculture. Integrating grassland leys in crop rotations is a relatively easy and low-

risk practice for farmers (Ford et al., 2024) that could benefit multiple agriculturally 

important ecosystem services in intense agriculture (Martin et al., 2020). In the 

studied region, grassland leys are already commonly used in crop rotations to 

produce ensiled fodder and hay for cattle and horses, indicating few practical 

barriers to the uptake of additional ley production. However, our results show that 

the increased uptake of energy ley reduced the production of fodder ley, resulting in 

a shift in livestock production towards fewer cattle and more granivores for the 

higher energy ley scenarios. While we found no major loss of utilised SNGs in our 

energy ley scenarios, a reduction in the number of grazing cattle generates risks for 

grassland abandonment with concurrent biodiversity loss (Elliott et al., 2023).  

Given the high opportunity costs on productive arable land, our results show that 

the uptake of energy ley comes at a high cost. A hectare-based subsidy of 350 € ha-1 

for energy ley production is likely unrealistically high under current agricultural 

policies but was used in our study to simulate a high demand for biogas substrate. 

Sweden has set ambitious climate targets, including no net emissions of GHG by 

2045 and a 70% emission reduction of domestic transportation by 2030 (Swedish 

Environmental Protection Agency, 2024), indicating that the need for fossil-free 

energy and fuel is becoming increasingly important. Whether agricultural bioenergy 

is included in the pathway towards a low-carbon society is uncertain and highly 

dependent on the trade-offs or synergies society and landowners are willing to 

accept. 
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Conclusion and final remarks 

Climate change and biodiversity loss are two interconnected and complex global 

challenges. The urgency of finding and adopting mitigation and conservation 

strategies however carries the risk of generating new sustainability issues if these 

interlinkages are not addressed. Climate change and biodiversity loss hence have to 

be tackled together. In this thesis, I have focused on bioenergy production from the 

agricultural landscape – a source of renewable energy that has received increasing 

attention as a multifunctional climate mitigation strategy. By comparing different 

bioenergy strategies and their impact on biodiversity and ecosystem services, my 

thesis highlights the challenges of increasing agricultural bioenergy production 

without causing competition with the demand for food, feed, fibre, and resources 

from other sectors, including nature conservation.  

I found that one of the most promising bioenergy strategies is the integrated 

production of bioenergy crops in intensive arable cropping regions. It could serve 

as a multifunctional climate mitigation strategy by positively affecting multiple 

ecosystem services and taxonomic groups (Chapter I). These benefits are 

nevertheless difficult to achieve without substantial financial incentives and 

consequences for food production (Chapter IV). Moreover, intensive biomass 

production is not beneficial for all taxonomic groups and species, and the increased 

bioenergy production may indirectly harm biodiversity by the loss of species-rich 

habitats when farm structure and agricultural production are altered (Chapter IV). 

Despite the environmental benefits offered by energy crops, such as increased 

carbon sequestration and reduced use of pesticides, multifunctional bioenergy 

systems cannot replace sustainable circular food systems that maintain food 

production or biodiversity conservation measures that preserve or recreate the 

habitats needed by the diverse group of species inhabiting the agricultural 

landscape.  

An alternative bioenergy strategy is to produce bioenergy crops on marginal and 

abandoned land. In theory, this strategy offers an opportunity for sustainable 

biomass production without conflicting with other land uses, but as shown in 

Chapters II and III, neither of these land types offers a simple and unproblematic 

solution to the increasing demand for biobased energy. My thesis shows that the 

area of unused land in southern Sweden is small, and these sites may hold high 

biodiversity values. In addition, I found that marginal land generally has a smaller 

area and lower productivity than the surrounding arable land, indicating lower cost-
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efficiency for intensive production. Using remote sensing, I showed that marginal 

land in most cases still has various use values, suggesting that the conflicts with 

food production, recreation, and biodiversity conservation are not resolved when 

marginal land or abandoned land is used for bioenergy production.  

My thesis emphasises the importance of including both ecosystem services and 

biodiversity when evaluating bioenergy strategies to avoid conflicts between 

climate action and biodiversity conservation. This requires a more representative 

inclusion of multiple taxonomic groups in bioenergy studies, as well as a better 

understanding of which habitats benefit biodiversity so that policies can be designed 

that ensure that these ecosystems are preserved while mitigating climate change. 

However, the climate is already changing, and multifunctional bioenergy strategies 

may also offer opportunities for climate adaptation by increasing the productivity 

and climate resilience of arable land. Further research is needed to better understand 

the effect of climate change and climate adaptation on farming decisions and farmer 

attitudes to bioenergy crop cultivation in different landscape contexts. Finally, 

although sustainably produced bioenergy can be part of the path towards a fossil-

free society, global climate goals cannot be reached without substantial reductions 

in energy use and consumption. 
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