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Popular summary in English

The mid 18th century marks the dawn of the industrial revolution. To a great extent this
can be attributed to the invention of the steam engine. An early development was the
Newcomen atmospheric engine, developed in 1712. Harnessing the power generated by steam,
it could produce mechanical motion. While this early steam engine was of some industrial
importance it was not until James Watt’s invention of the now-titled Wazz steam engine in
1776 that the industrial revolution was a fact. His contribution was of such significant
importance in enabling rapid industrialization that today his name is synonymous with the
industrial revolution

One of the mechanical problems encountered in the construction of a steam engine involves
the transfer of the straight-line motion generated by a piston to a mechanical rotation. As it
turns oug, it is difficult to design a construction which provides the lossless transfer between
such forms of motion. Typically the simplest of constructions will create a deviation in the
straight-line motion resulting in friction and consequently — in the long run — it will lead
to rapid decay of the mechanical components. The first attempt in devising a mechanism
that produces approximate straight-line motion from rotational motion was due to James
Watt in 1784, an invention which we today call Wazrs linkage. His construction deviated
by about 1 part in 4000 from the desired straight-line motion.

Ve

Figure 1: A mechanical linkage

Our story commences with Pafnuty Chebyshev (1821-1894) and his treatise 7héorie des
mécanismes connus sous le nom de parallélogrammes from 1854 in which he investigated the
problem encountered in motion transfer introduced by Watt. From a mechanical per-
spective, Chebyshev’s considerations amounted to devising a linkage whose deviation had

vii



an error of only about 1 part in 8000 from a straight-line motion. What is perhaps of
greater significance is the related mathematical theory that he developed in order to study
mechanical motion. The so-called theory of best approximation, introduced by Cheby-
shev, is central within mathematics and can loosely be described as trying to provide simple
descriptions of complicated objects with the smallest error possible. The complicated ob-
ject, henceforth referred to as a function, may not be explicitly computable but by carefully
considering certain properties of the function one hopes to be able to decompose it into
simple parts which are computable. With the introduction of computational machines it is
hard to overstate the importance of such mathematical methods. One of the foundations
of numerical computing concerns the possibility of decomposing a complicated function
into an approximated form.

To be somewhat precise, the mathematical problem that Chebyshev used to describe the
mechanical motion transfer was that of placing certain nodes on an interval. Letay, 4,, ..., 4,
— the nodes — be some values between —1 and 1. For any point x within this interval it is

possible to form the product of the distances between x and the nodes. This produces
5= | % |5 =y o 5= .

The question is how to choose 4, 45, ..., 4, in such a way that the resulting product deviates
from 0 with as small an error as possible. This seemingly innocent problem gives rise to
several complicated questions and has further consequences to the study of electromagnetic
field theory as it is intimately tied to the theory of logarithmic potentials. This motivates
a study of these minimization problems in much greater generality by moving the consid-
erations into the two-dimensional plane. Such considerations date back to the works of
Georg Faber from 1919.

In this thesis we will build upon the consideration of P. Chebyshev and G. Faber, together
with the many generalizations developed thereafter and try to answer some open questions.
In particular, how do geometric restrictions on the nodes affect the positioning of the min-
imizing configuration and what is the resulting deviation from 0?

viii



Populirvetenskaplig sammanfattning pé svenska

Vid sekelskiftet mellan 1600- och 1700-talet lades grunden for den industriella revolutio-
nen. Dess uppkomst kan till stor del tillskrivas uppfinnandet av dngmaskinen. En tidig
modell var Newcomens atmosfiriska maskin som togs fram 1712. Denna majligjorde ut-
nyttjandet av angkraft fér att producera mekanisk rérelse. En betydande forbittring av
dngmaskinens effektivitet vilket bidrog till dess kommersiella genombrott 1776 gjordes av
James Watt. Hans bidrag var av sadan betydelse att hans namn numera dr synonymt med
den industriella revolutionen.

Ett av de mekaniska problem som uppstér i en sidan konstruktion ir éverforingen av den
linjdra rérelse som genereras av en kolv till en mekanisk rotation. Det visar sig vara svart att
utforma en konstruktion som ger forlustfri 6verforing. Oftast skapar de enklaste konstruk-
tionerna en oonskad avvikelse i den linjira rorelsen vilket leder till friktion och f6ljaktligen
till slitage hos de mekaniska komponenterna. Det forsta férsoket att utforma en mekanism
som producerar en ungefirlig linjir rorelse frin en roterande rérelse utvecklades 1784 av Ja-
mes Watt och kallades senare for Wazts parallellrirelse. Hans konstruktion avvek med cirka
1 del pd 4000 fran den onskade linjira rorelsen.

Ve

Figur 2: En mekanisk Linkning

Vir berittelse tar vid med Pafnuty Chebyshev (1821-1894) och hans artikel 7héorie des méca-
nismes connus sous le nom de parallélogrammes fran 1854, dir han undersokte problemet re-
laterat till rorelsedverforing som Watt introducerat. Ur ett mekaniske perspektiv bestod
Chebyshevs 6verviganden i att utforma en linkning vars avvikelse var felaktig med endast
cirka 1 del pa 8000 frin den 6nskade linjira rorelsen. Av storre betydelse 4r den relaterade
matematiska teorin som han utvecklade f6r att studera mekanisk rorelse. Chebyshev intro-

ix



ducerade den sé kallade teorin om bésta approximationer vilken idag upptar en central roll
inom matematiken. Lost formulerat handlar det om att forsoka att ge en enkel beskrivning
till et komplicerat objekt pd ett sidant sitt att avvikelsen blir sa liten som méjlige. Det
komplicerade objektet som vi hinvisar till som en funktion kanske inte dr explicit berdk-
ningsbar men genom att noggrant dverviga vissa egenskaper hos funktionen hoppas man
kunna dela upp den i enkla delar som ir berikningsbara. I och med introduktionen av
berikningsmaskiner under 1900-talet 4r det svart att 6verskatta betydelsen av sidana ma-
tematiska metoder. En av de teoretiska grunderna fér numerisk berikning handlar om att
dela upp en komplicerad funktion i en approximation bestidende av enkla delar.

For att vara ndgot mer specifik handlade det matematiska problem som Chebyshev over-
vigde i relation till det mekaniska problemet om att placera vissa noder pa ett intervall.
Lat 4y, a,, ..., a, vara nagra virden, si kallade noder, mellan —1 och 1. Givet en godtycklig
punkt x inom detta intervall bildas produkten av avstinden mellan x och noderna. Detta
ger

v = ay] % |5 = ay| X x 2= .

Vad Chebyshev 6vervigde var att vilja punkterna 4, ,, ..., 4, pa ett sidant sitt att den
resulterande produkten avviker frin 0 med sa liten felmarginal som majligt. Detta tillsynes
oskyldiga problem visar sig i sin tur ge upphov till invecklade foljdfrdgor med icke-triviala
svar. Inom fysiken har sidana studier viktiga konsekvenser inom studiet av elektromagne-
tisk potentialteori eftersom produkter som ovan ir intimt knutna till teorin om logarit-
miska potentialer. Detta motiverar en generaliserad studie av dessa minimiseringsproblem
i mycket storre allminhet vidgade till det tvidimensionella planet. Ursprunget till sidana
overviganden kan tillskrivas Georg Faber 1919.

I denna avhandling kommer vi att bygga vidare pa de frigor som stilldes av P Chebyshev
och G. Faber tillsammans med de ménga generaliseringar som utvecklats och forsoka besva-
ra ngra oppna frigor rérande de sa kallade Chebyshevpolynomen. Hur paverkar geomet-
risksa begrinsningar pd noderna deras optimala positionering och vad ir den resulterande
avvikelsen fran 02



Chebyshev polynomials: Complexities
in the complex plane



1 Introduction

We begin by considering the classical theory of Chebyshev polynomials relative to real sets.

1.1 The inception of approximation theory

In 1854 [1] Pafnuty Chebyshev introduced us to the problem of “best approximation”. His
problem formulation amounts to the following:

Problem 1. Given a continuous function f : [-1,1] — R and a natural number n € N
determine (real) parameters ay, ..., a,_, such that

n—1
x?[_%ﬁ] |f(x) —ap — 4% = =2, "

is minimal.

In modern terms, this minimal deviation represents the distance between the function f
and the space of polynomials of degree at most 7z — 1, measured with respect to the su-
premum norm on the interval [-1,1]. As a consequence of Weierstral$’ approximation
theorem, proven in [2], we know that this minimal deviation tends to zero as » — oo for
any fixed continuous function f. A construction of Bernstein, detailed in [3], provides such
a sequence explicitly. In [1], Chebyshev has a different focus as his aim is directed toward
finding the actual minimum rather than a sufficiently close approximant. Curiously, the
considerations of Chebyshev predates Weierstraf$ by more than thirty years. In order to
study this general problem, Chebyshev simplifies the conditions through a consideration
of Taylor series and ends up at the following reduced problem.

Problem 2. Given a natural number n € N determine (real) parameters ay, ..., a,_,; such that
n—1 |

n
max |X —ady—axX ——4a, 1X
xE[—1,1]| 0 1 n—1

is minimal.

He further shows that the (as it turns out) unique solution to Problem 2 is given by the
coeflicients of the polynomial

1
ag+ et a, (X" =x" - 7 [(x +Vx2 = 1) + (x —Vx? - 1)”] .

Suitably rephrased,
T (x) = 2i (e + Va2 = 1)" + (v = Va2 = 1)’ )



Figure 3: Pafnuty Chebyshev (1821-1894).

is the monic polynomial of degree 7, which minimizes the supremum norm on [-1,1].
The use of the letter 7" to denote these polynomials stems from the French transliteration
Tschébychefl. Today, the polynomial (1) is referred to as the Chebyshev polynomials of the
first kind of degree 7. An alternative representation is obtained by writing x = cos@ €

[-1, 1] in which case
x+Vx?—1=cosd +7sind.

This leads us to the (well-known) formula

inf —inf
T (x) = % = 21" cos né. (2)
This alternative representation illustrates the first occurrence — but certainly not the last
— of the fact that minimizing polynomials tend to alternate between extremal points. As
it turns out, this is a characterizing property of best approximations with respect to the
supremum norm. From (2) we gather that the polynomials 7, alternate between 2!~ and
—2!"" at n + 1 consecutive points on [~1, 1].

While Chebyshev’s intentions in [1] was to perform a theoretical study of a mechanical
problem related to Watts parallelogram theory, his mathematical investigations are consid-
erably deepened in [4]. Here he introduces the following problem:

Problem 3. Given a continuous function f : [-1,1] — R, a polynomial P which is strictly
positive on (=1, 1] and a natural number n € N determine (real) parameters ay, ..., a,_, such
that

xén[_al)i] [|f(x) —dy— ayx — - an_lx”_1|/P(x)]

is minimal.



Again, of special interest to Chebyshev is the reduced case where f(x) = x”. In this partic-
ular case, he determines the exact solution of the problem, something we will get back to. A
detailed summary of the works of Chebyshev related to approximation theory can be found
in [s]. After the groundbreaking work of Chebyshev, these problems have been extended
in a variety of different directions. In particular we mention the works of Markov [6, 7],
Borel [8], Faber [9], Akhiezer [10, 11], Bernstein [12, 13] and Widom [14]. For a historical
overview detailing the early development of the subject by Chebyshev’s students we refer
the reader to [15]. The main purpose of this thesis is to investigate properties of minimal
polynomials in the complex plane as introduced by Faber [9], these are also called Cheby-
shev polynomials and incorporates the classical Chebyshev polynomials on an interval as
special cases.

This thesis is written in two parts. In the first introductory part, sections 1-3, classical
theory is presented and in some cases the proofs are modified versions of previous proofs.
The authors intention with such an inclusion is to detail the historical development of the
subject. Classical methods turn out to be a good tool in our analysis. Another motivation
for writing an introductory text solely treating Chebyshev polynomials in the complex plane
is that such a text seems to be lacking from the existing literature.

In the second part of the thesis, Section 4, the research papers of the author are discussed
together with results which do not appear in scientific publications.



2 Chebyshev polynomials - a background

2.1 An extension of the concept, existence and uniqueness

This section covers classical material, serving as an introduction to Chebyshev polynomials
in the complex plane. Here we will settle questions concerning existence and uniqueness of
solutions to the problems suggested by Chebyshev, where a monic minimizer is sought. For
a recent, more general account of weighted Chebyshev polynomials in the complex plane,
we refer the reader to [16]. Let E ¢ C denote a compact subset of the complex plane and
w : E — [0,00) a continuous function on E which is non-zero at infinitely many points
of E. Implicitly, this assumption necessitates that E contains infinitely many points. The
restriction that w is assumed to be continuous is made solely for convenience, enabling us
to consider maximal values rather than least upper bounds. For any given natural number
n € N we introduce the quantity

n

t,(E,w) = inf max[w(z) " +a, 2 Tt ay] . €)

gy, 1€EC z€E

Notice the that we have replaced the minus signs in Problem 3 with plus signs. While this
is merely a change in perspective, it signifies that we are now focusing on minimal monic
polynomials rather than approximating monomials using polynomials of lower degree. At
the outset it is not clear that minimizing parameters exist. We begin by showing that this
infimum is indeed a minimum. It is clear that

JwoPle = max [w(z) | P(z)]]

defines a norm on the finite dimensional space of polynomials of degree at most 7. Since
norms on finite dimensional spaces are equivalent (see e.g. [17, Theorem III.3.1]) we con-
clude the existence of a positive constant C > 0 such that

n

ct max [w(z) |2,2" + a,_12" " + - + 4]

(4)

n
< Z |a;| < Cmax [w(z) |a,7" + a4, 12" 4t ]
= zek

. . k .
for any choice of coefficients 4y, ..., 4,_;, 4,. Now take sequences {dj(, )}k forj=0,..,n-1
such that

/!i_r)]t;o max [w(z) ’z” + a;(lk_)lz”_l 4ot aék) ” =1,(E,w)

It is clear from (4) that each sequence {ﬂ](.k)}k is bounded. Bolzano-Weierstraf$’ theorem

implies that there exists a subsequence &, with the property that {aj(.k’)} is convergent for
every 7 = 0,...,7 — 1. We introduce the limits ﬂj*- for j =0,...,n — 1 so that

lim 2% = 4
/elﬁoo ] 7’



Again, (4) implies that

max [w(2) | (@) ~ @} )" + -+ (a7 - 4)

] sCi |a;k’) —a;| =0
7=0

as k; — oo and therefore we finally conclude that

n

max [w(z) 2" +a,_ 2"+ + ap|] = £,(E, w).

This establishes the existence of a minimizer. We proceed by showing that such a minimizer

is unique. The following lemma will be useful in this regard.

Lemma 1. Let ay,...,a,_, be such that

n—1 *
+ta

] =4,(Ew) 5)

n *
max [w(z) |2 + _1z

then there are (at least) n + 1 points z,, ..., 2,,, in E such that

-1
[w(z) |} + a5 207" + o+ 4| ] = 4,(E, w).
Proof. We argue by contradiction. Let
n * n—1 *
T(z) =2" +a, 2" +-+a,

where the coeflicients are chosen as to satisfy (5). Assume, in order to derive a contradiction,
that there are fewer than 7 + 1 points in E where w|7’| attains the value #,(E, w). Denote
these points with 2y, ...,%,,, so that m < » + 1. Using Lagrange interpolation, we can
find a polynomial of degree at most 7z — 1 denoted with Q, such that Q(z) = T(z) for
j = 1,...,m. We consider the perturbed polynomial

T'(z) = £Q(2)

where ¢ > 0. This difference is a monic polynomial of degree 7 since Q has degree at most
n — 1. The triangle inequality applied to the absolute value of the difference at a point z
ensures us that

w(2)|T(z) —eQ(2)| < (1 - &)w(z)|T(2)| + cw(2)|T(z) — Q(2)]. (6)

Since 7'(z;) — Q(2;) = 0 we can find a § > 0 with the property that if

el Q{:: 10—l <3}
\



then c
W@ - Q@) < 252

If z € U, we obtain from (6) that

w(@)|T(:) - Q)] < (1= )1, (E,w). )

On the other hand there exists some 0 < p < 1 such that if z € En U} then w(z)|T(2)| <
(1-p)z,(E, w). Here is a subtle yet crucial point: the choice of p does not need to account
for ¢, as it depends solely on 9. We conclude that, uniformly for z ¢ Uj,

w(2)|T(2) = £Q(2)| < (1 = p)2,(E, w) + e[ wQ]e. ®)

Combining (7) and (8) it is clear that by letting ¢ > 0 be sufficiently small, we can obtain
the inequality

lw(T" = eQ)lle < 2,(E, w)

but this contradicts the assumed minimality of 7'. O

With Lemma 1 at hand, we can now easily show that there is only one monic polynomial
whose weighted deviation from zero is the smallest on a given compact set.

Theorem 1. Let E ¢ C denote a compact set and w : E — [0, 00) a continuous function which
is non-zero at infinitely many points of E. For every natural number n € N there exists a unique
monic polynomial denoted

n

E -1
T,%(2) =2" +a, 12" + - +a

such that

[T = 1, (E, w).

This is the so-called weighted Chebyshev polynomial of degree 7 with respect to the set E
and the weight function w.

Proof. 'The existence of a minimizer has already been established. To prove the uniqueness

of the minimizer we assume that there are two monic polynomials of degree 7, denoted
TW and T, satisfying
loT Mg = 5,(E,w) = T @ .

Their average is denoted 7" = %(T(l) +T@). By the triangle inequality

1 1
lwT e < 10Tl + 10T e = 1, (E,w).



On the other hand, since 7" is a monic polynomial of degree 7, the reverse inequality
|wT'|g = ¢,(E,w) follows by definition of #,. It turns out that the average polynomial
T is actually a minimizer. Lemma 1 implies the existence of 7 + 1 distinct points z, ..., 2,,,;
such that

w(zj)|T(zj)| = tn(E7 w).
Since
|T(1)(zj) +7% (Zj)|
2
< Sz [TV (3)] + 30(2) 7% ()] < 1,(E,w)

w(z;)|T(2))| = w(z))

—

equality holds throughout. But this is only possible if arg 7!) (2;) = arg 7@ (2;) and
TD(2)] = £,(E w) = [79)(z)]
forall j=1,..,n+ 1.

As a consequence the difference 7" — T? is a polynomial of degree at most 7 — 1 that
vanishes at the #» + 1 points z;,...,2,,;. This can occur if and only if the difference is
constantly equal to 0. Therefore 70 = T7® and we have established the existence of a
unique minimizer, henceforth denoted 7.5 O

If the risk of confusing the reader is low and the set E associated with the weight function
w is clearly implied from the weight function we will simply use the notation 7,,° for the
corresponding weighted Chebyshev polynomial. Alternatively, in the case where the weight
is given by w = 1 we will use the notation TE. 'The notation D will be used for the open
unit disk and T for the unit circle. We will further use C = CuU {oo} to denote the Riemann
sphere. Chebyshev polynomials corresponding to compact sets in the complex plane are
only known explicitly for a very narrow class of sets and weights. To provide at least one
example, we show that

M (z) = 2. )
Let P(2) = 2" + a, 2" + - + a, be any monic polynomial. Then P(z) /2" is an analytic
function away from the origin and has the value 1 at infinity. By the maximum modulus
principle applied to the domain {z : |z| > 1} we find that

1Pl = 1.

Since the polynomial 2" saturates this lower bound we find that Y;IT (z) = 2". This example
further shows that the number of extremal points of a Chebyshev polynomial can be infin-
ite. This is not the case however if the set E is a real subset as we will show in Theorem 2
below. To illustrate the difference between real and complex sets we now shift our attention
to the rich structure exhibited by real Chebyshev polynomials and begin by proving that
Chebyshev polynomials corresponding to real sets are have real coefficients.



Lemmaz. LetE ¢ R be compactandw : E — [0, ) be a continuous function. The coefficients
of T= are real.
Proof. 'The inequality

|w(x) Re(T'(x))| = | Re(w(x)T'(x))] < [w(x)T ()]

holds for any polynomial 7" and x € R. Since further Re(7") attains the same values on
[-1, 1] as a polynomial with real coefficients, the result follows from the uniqueness of the
minimizer. U

As we already saw, without proof, the Chebyshev polynomials on an interval have the rep-
resentation

T (x) = 2" cos(nf)

- cos[™
x”_j = COoS n

for j=0,-,nthen -1 =xy <x; <~ <x,=1and

where x = cos d. As such if

7—};[—1,1] (xj) — Zl—n(_l)n—j‘

The Chebyshev polynomial 77! alternates between +2'~. This property is in fact char-
acterizing for best approximations in the real setting, however, this realization took a long
time to develop. Although Chebyshev described this phenomenon the first person to fully
this characterization was Kirchberger [18], in 1902. The first complete proof was published
by Borel in [8]. Achieser states in [15, p. 7] that Markov gave a proof in a series of lectures
around 1905 that first appeared in print in 1948 [7].

Theorem 2 (Borel 1905 [8], Markov [7]). LerE c R be compact and w : E — [0,00) be a

continuous function which is non-zero at infinitely many points of E. A monic polynomial T of
degree n coincides with the Chebyshev polynomial T if and only if there are n+ 1 points in E

denoted by xy < x; < - < x,, such that

w(x)T(x;) = (=1)" 7 [|lwT .

Proof. Assume that w1 has fewer than # + 1 sign changes between consecutive extremal
points. It is then possible to find 2; < 4, < ... < a,, with m < n + 1 such that:

*Ec UZ:I [d/e’d/eﬂ]’



* every (a4, 4,,,) contains at least one extremal point of w7 on E,

* all extremal points of wT on (4;,4;,,) have the same sign. Moreover, the sign of
these extremal points alternates between adjacent intervals.

We consider the perturbed polynomial

T (x) — Q(x),

where
m—1

Q) =+ [ [(x-a)

k=1
and the sign in front of the product is chosen so that Q has the same sign on (4, 4, ;) as
the corresponding extremal points of w7". We can then essentially repeat the argument as
in Lemma 1. Indeed there exists a 0 > 0 such that if U denotes the d-neighborhood around
the extremal points of w7 then 7'(x) and Q(x) both have the same sign in U;. We find that
if x € E n U then

w(x)|T (x) = £Q(x)| < (1= )w(x)|T(x)| + ew(x) [T (x) - Q(x)|
(1 =T e + ellwT e = [T .

AN

On the other hand if x € En U; then there exists some 0 < p < 1 depending on 9 such that

w(x)|T(x) = eQ(x)| < (1= p)|wT e + el wQle-

By choosing ¢ > 0 sufficiently small, we ensure that |w (7" — Q)¢ < |wT||g. This implies
that any minimizer must have at least z + 1 alternating points.

We now turn to proving that if a polynomial exhibits an alternation set, then it is indeed
the minimizer. Assume that there are # + 1 points in E ordered as x, < x; < -+ < x,, and
let T be a monic polynomial of degree 7 that satisfies

w(x)T (x;) = o(=1)"7 [T,
where o € {-1,1}. If |wT'||; > ¢,(E, w), then we have
sign w(x;) {T'(x,) = T (x)} = #(-1)".

By the intermediate value theorem there exists at least 7 zeros of T=T"*. However, this dif-
ference is a polynomial of degree at most z—1 which implies that this is the zero polynomial
contradicting the fact that |wT || > ¢,(E, w). To see that & = 1 follows from the observation
that 75 has all its 7 zeros (which must be simple) between the alternating points. Since
T," is positive to the right of its final zero we conclude that the final extremal point in the
alternating set must be positive. ]
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It readily follows from Theorem 2 that
7P (x) = 2177 cos né.

In order to provide further explicit examples we introduce the family of Jacobi weights for
2>0and >0
w®® (x) = (1-x)*(1+x)f, xe[-1,1]. (10)

Using the transformation x = cos & together with Theorem 2 it is possible to conclude that

L1217 _psin(z +1)0
= 2 _—
L (%) sind ’
1
L0172 _,cos(n+5)0
TV (x) = 27—,
cos 50
. 1
w(1/20) n SlIl(?’Z + —)9
L () =2
sin 50

for x € [-1,1], see e.g. [19]. These are the normalized Chebyshev polynomials of the
second, third, and fourth kind. Much of Paper 1v consists of providing a fine analyze of
the Chebyshev polynomials corresponding to Jacobi weights.

These examples illustrate that Theorem 2, also called the “Alternation theorem”, can be used
to determine Chebyshev polynomials of real sets explicitly, something we will see further
examples of shortly. Its use can further provide insight into the asymptotic behavior of
Chebyshev polynomials corresponding to real sets, see e.g. [12, 13, 20]. The fact that the
Alternation theorem does not extend in the complex setting is one reason for the fact that
Chebyshev polynomials corresponding to complex sets are less understood than their real
counterparts.

2.2 Chebyshev polynomials corresponding to real sets

We begin this section by considering Markov’s generalization of Problem 3, in the case
where f(x) = x”. We will detail the solution he provided, as discussed in [6]. Our goal is
to ultimately derive a general result on weighted Chebyshev polynomials, as established by
Bernstein in [13]. To achieve this, we will provide a detailed account of the steps leading
up to the proof presented in Appendix A of Paper 1. This approach allows us to bypass the
analysis of the asymptotic formulas for orthogonal polynomials discussed by Bernstein in
[12]. Consequently, our proof is shorter than Bernstein’s, though it does not address the
asymptotically alternating properties of orthogonal polynomials associated with weights on
[-1,1].

II



A A Mapron (1886).

Figure 4: Andrei A. Markov (1856-1922).

Let 4, € C\ [~1,1] and form the weight function w : [~1,1] — (0, %) defined by

o= (e

We require that Hi’:l (1 - ﬂik) > 0. The case of an odd number of factors can be handled
by taking @,,, = ©and |4,| < o fork =1,2,...,2m — 1. Let z € T and p, € D be defined
implicitly through the equations

1 1 1 1
x—z(z+ ;) and dk:z(ﬁk-"ﬁ) for k=1,2,..,2m. (12)

The following result is due to Markov in [6]. However, the explicit representation for w7’
that we use can be found in [11, Appendix A] where the proof is left to the reader. For the
sake of completeness in our presentation, we include a proof here.

Theorem 3 (Markov 1884, [6]). Lerw : [-1,1] — (0,0), {a, : £k = 1,..,2m},{p, : k =
1,...,2m} be as in (11) and (12). For positive integers n > m,

_ 2m —
w(x)T* (x) = z-H,/Hﬁk(’""H — 7:’6 n_mgw/f—ﬁk) (13)

£, ([-1, 1], w) = 2" exp{% f  logw(x) dx}. (14)

and

1 V1 -2
We remark that computation of integrals of the form

lfl logw(x)dx

TJ 1 V11—«

12



can be handled using the machinery of potential theory as we will see in the following
section. In particular we will heavily rely on Lemma 3 for computations, whose proof we
postpone.

Lemma 3. For any z € C, we have
1 [!log|x—z|
V1 —x?

where z + Vz* — 1 maps C\ [-1,1] conformally onto C \ D. In particular, for z € [-1,1]
the integral is constantly equal to —log 2.

’z+w/z2—1’

dx = log 5

Proof of Theorem 3. 'The proof rests upon showing that the function exhibited in (13) defines
the product of a monic polynomial in x of degree 7 with the weight function w. We further
show that this function possesses the specified alternating qualities made precise in Theorem
2. To begin, we consider a branch of the function ¥ : C — C defined by

2m

Y() = [[ 7= £

k=1

The branch can be specified if we let ¥(z) = 2”(1 + 0(1)) as z — oo. We introduce the
function
_ l 2m—n\1/(1/z) n—2m (Z) ) Z_l
CDn(z)—z(z Yo +z Y19 /w 5

Sl I )

and claim that @, is a polynomial in x. To see this note that

w (Z +22_1) _ 121![ ((z - (1 ;ﬁkz))l/z'

k=1 L+ p,

Substituting this expression into (16) yields

S P — ( Tl =200+ [[ (e —m).

ZHk 1‘/1+ﬁ/€ k=1 k=1

Represented this way, it is clear that @, is a rational function in z which is analytic away
from 0 and .

From the definition in (16) we see that ®,(z) = ®,(1/z) implying that O, (x + vx* — 1)
has well-defined real-valued limit values as the complex variable x approaches [-1, 1] from

13



either side with respect to the complex plane. Schwarz reflection principle [21, Theorem
IX.1.1] implies that @, (x) is entire.

By letting z — oo it is clear that ®,(z) /2" has the finite limit

1
an W1 +J°/e

Moving our considerations back to the variable x, we find that ®,(x + vx? — 1) must be a
polynomial of degree 7 in x with leading coefficient

2m
2| g,/l + P2

The polynomial

— 2m —
2 HM(’”H =2, z”‘mg,/f_z’;’jk)/mm (7

is necessarily monic in the variable x, and as we shall see, actually equal to 7. Indeed, the

only remaining task is to verify the alternating behavior of (17) when multiplied with w(x).

Note that for |z| = 1
_ 2m zZ— 1
L H e, 2
= V=2

and hence the function defined in (17) is upper bounded by

2l ﬁ V1+27 (18)
k=1

whenever x € [-1,1]. Since w is a real function, any 4, that has non-negative imaginary

part must appear together with its complex conjugate. This ensures that (18) is positive.
Let z traverse the upper part of the unit circle from 1 to —1. This corresponds to x going
from 1 to —1. The maximal value from (18) is attained precisely when

2m Z—ﬁ/e)
arg | 27" ‘[ =0 mod 7.
g( g 1-2zp,
_ n—m 2~ fr 2n 2m 2~ Pr
_( H\/l—zﬁk) HI—Zﬁk'

This function is holomorphic in the unit disk and has 27 zeros inside. As z traverses the
upper half-circle the image f(z) will wrap around the origin 27 times, see the discussion

Let

14



following [21, Theorem V.3.4]. But this implies that as z goes from 1 to —1 along the upper

half-circle, the value of ,
n—m T Z = fr
arg | 2 ‘}
& ( g 1-2 ﬁk)

goes from 0 to nz. Consequently, the function in (17) has 7 + 1 alternating points where it
attains the value (18) on [-1, 1] when multiplied with w. Theorem 2 implies that 7" and

(17) coincide. Using Lemma 3 we conclude that
2 1 [!logw(x) }
J1+p7 =ex {— ———dx
g Pk ar; -1 V1 —«2
and the proof is complete. O

The solution of Problem 3 due to Chebyshev in [4], for the case f(x) = x”, can be deduced
from Theorem 3 by letting 4,, = a,;,, for every & = 1, ..., m. The next major development
succeeding Markov’s results concerning weighted Chebyshev polynomials on [-1,1] can
be attributed to Bernstein who between 1930 and 1931 presented a two part series of art-
icles where he provided the precise asymptotic behavior of both orthogonal and Chebyshev
polynomials with respect to weight functions on [—-1, 1]. This presented a remarkable shift
in the focus of the subject. While Chebyshev and Markov had been investigating precise
formulas for weighted Chebyshev polynomials, Bernstein instead analyzed their asymptotic
behavior. It should be stressed however that Faber, already in 1919 [9], had generalized the
notion of Chebyshev polynomials to considerations in the complex plane and provided a
detailed study of their asymptotics for analytic Jordan domains. We refrain from detailing
these studies here as we will discuss them thoroughly in Section 3. Bernstein considered the
general case of weights w on [—1, 1] which are assumed to be merely Riemann integrable and
showed that the two expressions in (14) are still asymptotically equivalent as 7 — co. Aston-
ishingly, his results are also valid for weights having zeros on [-1, 1]. Typically, determining
the behavior of Chebyshev polynomials corresponding to vanishing weights becomes much
more difficult. Indeed, the results of Chebyshev and Markov are valid for weights which are
reciprocals of positive polynomials. Such weights can only poorly approximate vanishing
weights. We remark that the existence and uniqueness of a minimizing monic polynomial
T can be shown for any bounded measurable function w : E — [0, %) which is non-zero
on a set consisting of at least # + 1 distinct points, see [16]. It is important to note that in
this case the maximum value from (3) may not be attained and one needs to replace it with
a supremum.

Theorem 4 (Bernstein 1931 [13]). Suppose o, € R and b, € [-1,1] for k = 0,1,..,m.
Consider a weight function w : [-1,1] — [0, 00) of the form

w(w) = wy() | ] 1= 1%, (19)
k=0
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Figure 5: Sergei N. Bernstein (1880-1968).

where wyy is Riemann integrable and satisfies 1| M < wy(x) < M for some constant M = 1.

Then ’
tn([_l; 1], w) ~ 21—71 exp { 1 ng(x) dx}

7)o G0

asn — o0,

Given two functions f, g : N — C, such that ¢g(z) # 0 for sufhiciently large 7, we use the
notation f ~ g as # — o to denote

im 7 _
g T

A proof which is a modification of Bernstein’s proof in [13] and circumvents the analysis of
orthogonal polynomials can be found in the appendix of Paper 1.

Apart from Bernstein’s formula in Theorem 4, few asymptotic results have been established
for Chebyshev polynomials associated with weights which vanish on parts of the interval
[-1,1]. If w > 0 holds almost everywhere then the #th root asymptotics are known. In

Un  g4+¥z2 -1
B 2
holds for z ¢ [-1, 1], see [22]. The precise asymptotical behavior — so-called Szeg6-Widom

this case

lim (7,71 (2)

asymptotics — of 7:,[_1’1]’"’ on C\ [-1, 1] were determined in [23] in the case where w is
strictly positive. In [24, 25] the asymptotical behavior of 7;[_1’1]"” on [—1, 1] was determined
for positive smooth weight functions. This was done using Chebyshev’s result for weights
w which are given as reciprocals of polynomial which are strictly positive on [-1, 1] to-
gether with a polynomial approximation argument. We will later see that Theorem 4 has
applications to the analysis of Chebyshev polynomials corresponding to sets in the complex
plane.
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Figure 6: Naum Achieser (1901-1980).

Following in Bernstein’s footsteps, Achieser considered in 1933 the case of weighted Cheby-
shev polynomials with respect to disjoint intervals of the form E(4, ) = [-1,-4] U [4,1]
with 0 < 4,6 < 1. In the particular case where & = 4, we write E(4, b) = E(a).

Theorem s (Achieser 1933 [10]). For anyn € N

4, (E(a)) = 272" (1 = £2)". (21)

o il [1+a
1 (E(@) ~272(1 - 2%) +2Vm-

In fact Achieser provides the full asymptotic formula for any choice of 0 < 4,6 < 1 includ-
ing the possible effects of a weight function. This generalizes Bernstein’s formula and we

Asn — oo

refer the reader to [11, Appendix E] for details. The emerging pattern is that in the generic
case when 4 and & differ, the sequence {z,(E(2, ))} has a full interval of limit points rather
than just two points. A recent proof of Theorem 5 using elliptic functions is given in [26],
we will provide a novel proof based on Theorem 4. Theorem 5 points out a recurring phe-
nomenon in the world of Chebyshev polynomials associated to compact sets which have
several components. The limit behavior of #,(E, w) may differ along different subsequences.
This was studied in detail by Widom in [14].

Proof of Theorem 5. Due to symmetry of E(2) and uniqueness of the corresponding Cheby-
shev polynomial we obtain Y;E(d) (—x) = (—1)”7:,E(4) (x). Formulated differently, Tzi(a) is an
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even polynomial and Tzi(ﬂ is an odd polynomial. We write

n—1

E(“ (x) = x™ + dex (d)(x ),

n—1

E(ﬂ) prezzs) 2k+1 _ E(a), 2

T (x + E b = xQ, " (x7)
k=0

where Q5 and BF are nth degree monic polynomials. By changing the variable from x
to z = x* we find that QE(”) and PE(”) are the zth degree monic minimizer of the expressions

n—1

ax |w(e) (¢ + 2,y "+t )|

16[42 1]
with w(#) = V7 and w(z) = 1 respectively. By Theorem 2 one immediately concludes that
P,lm) can be explicitly represented by

2 2\
E@) .\ _ -1 (2t —1—a 1-a
Pn ([) - 7—}:! ( 1- dz 2 .

We may therefore conclude that

b, (E(@) =22 (1= 2)".

2
To determine the odd norms we consider the change of variables £ = ﬁ (t - Lta ) =

1-4* 1+4
> . This yields

_ 2\ _ 2 2 n=1
) = mip o (S5E) 5500 2 (0 S |

Theorem 4 provides the precise asymptotical formula

a1 -4 " 1 rt log 1—425_'_ 1+a?
trne1 (E(2)) ~ 2! (T) exp{; f_l #d{}

as n — o, The integral is effectively computed using Lemma 3 and we find that

CXP l fl IOgV 1_24254' 1+Tﬂzdf _ 1+a
T -1 [1 _%’2 2

In conclusion,

O

st (E()) = 217 (1 2 ) i

We will later see that Theorem s has applications to the study of Chebyshev polynomials
corresponding to arcs in the complex plane. This naturally motivates us to lift our consid-
erations to the complex plane.
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Figure 7: Georg Faber (1877-1966).
3 Lifting the considerations to the complex plane

3.1 Relating Chebyshev polynomials to conformal mappings

The first broadening of the concept of Chebyshev polynomials to the setting of the complex
plane is due to Faber who is also responsible for their naming, see [9]. He begins his
investigation by letting 7F be defined as the monic minimizer of degree 7 with respect to
the supremum norm on a compact set E in C. He then goes on with mentioning some casy
cases where these polynomials can be explicitly determined. Without proof, he states the
following result, although he claims that it is “just as obvious” as the determination of (9).
We choose to include a proof here since it illustrates a reasoning that is central to estimates
of Chebyshev polynomials in the complex plane, an argument that will be reused several
times throughout.

Theorem 6 (Faber 1919 [9]). Lez P(2) = 2" + a,,_ ;2" " + - + ay. If
E(r) = {z:|P(2)| = 7}

forr >0, then
T () = P(2)"

for any n € N.

The set E(7) is called a lemniscate. If » > 0 is sufficiently small then E(r) will contain as
many components as the number of distinct zeros of P. For large enough 7 on the other
hand, E(») will consist of one component.
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Proof. As alluded to by Faber, the proof follows along the same lines as the proof used to
show (9). Indeed let Q be any monic polynomial of degree 7z and form the quotient

p(z) = 1?((:;)

On the set {z : |P(z)| > 7™} the function @ is analytic since all zeros of P lie inside
{z: |P(2)| < »™}. Analyticity extends to the point at infinity since

lim p(z) = 1.

22—

By the maximum principle applied to the unbounded component we find that

1Qlle )
1< “@”E(r) = ;,.nmr .

We conclude that [|Q|lg(y = 7" holds for any monic polynomial Q of degree #m. Since

2" |lg(ry = 7" the uniqueness of the minimizer implies that TE0) = P(z)". O

Faber does not address the issue of determining Chebyshev polynomials for degrees other
than #m. As we will later see the analysis of these can be quite involved, see also [27, The-
orem 3.2]. One of the main points of Faber’s article is to show that the classical Chebyshev
polynomials 77 are also Chebyshev polynomials in the extended sense to ellipses in the
complex plane with focii at £1. For a recent generalization of this result see [28, Theorem
L.4].

Perhaps of even greater influence on subsequent research in approximation theory, he
demonstrated that a class of polynomials, introduced by him in 1903 and now known as
Faber polynomials [29], can be used to construct sequences of polynomials that asymp-
totically achieve the same minimal norm as Chebyshev polynomials. We proceed with
explaining this chain of ideas. For this reason, let E denote a compact set and let Q¢ denote
the unbounded component of the complement of E with respect to the Riemann sphere
C. We note that the maximum principle implies that Y;E = YfQE. This shows that it is of
no importance in what follows whether we consider Chebyshev polynomials on a set or
its corresponding outer boundary. With the additional assumption that Q¢ is simply con-

nected, the Riemann mapping theorem implies the existence of a map @ : Qf — C\ D
satisfying
®(2)

z

D' (o) == lim >0, (22)
see e.g. [21, Theorem VII.4.2]. It follows that @ has the Laurent series expansion

D(z) = P’ ()2 + ay + a_lz_l 4+ (23)
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at infinity. The Faber polynomial of degree 7 corresponding to E is denoted with £F and is
defined as the polynomial satisfying

EE = (pg) +ot 4

as ¢ — oo. It is clear that Ef defined this way is a monic polynomial of degree n. If
E(r) = {z : |®(z)| = 7} for » > 1 denotes the level curve parametrized in the positive
direction, then for every z satisfying » < |®(z)| < R it can easily be seen through an
analysis of the corresponding Laurent series that

(D,(Oo)nE;E(z) = % ]l;(R) ?(f);ld;

and therefore

n_ 1 o) . 1 Q(0)”
()" = 2mi fE(R) -z a 27i fE(r) -z ac

- 080 - 5 [ O g

7L 7) ;—Z

The argument used to prove Theorem 6 has the following adaptation. Let Q be any monic
polynomial of degree z € N. Then

o(0) = @' 2

is analytic on Q¢ and @(e0) = 1. Since |®(z)| — 1 as z — dQ, the maximum modulus
theorem implies that

1< |lplle = @' («0)"Ql

and hence we obtain the lower bound

1
I S IQlle- (25)

Faber, in [9], provides the following argument to show that if the boundary of E is smooth
then @' (c0)”¢,(E) ~ 1 as # — 0. Assume that E is the closure of an analytic Jordan domain
or, equivalently formulated, @ extends analytically to some neighborhood of 0Q. Then

E / n _ n i CD(Z)”
@O =0 + 5 | Fonds

for some 7 satisfying 0 < » < 1. We immediately conclude that if z € E = E(1) then there
exists some C > 0 independent of 7 such that

|EE(2) @' (0)"| < 1+ CF™.
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Figure 8: Harold Widom (1932-2021). Photo by Renate Schmid.

By combining this with (25) we find that
1 <@ ()", (E) <1+ Cr
and since 0 < 7 < 1 we obtain the first half of the following theorem.

Theorem 7 (Faber 1919 [9]). Let E denote the closure of an analytic Jordan domain with exterior
conformal map @ : QO — C\ D as in (23) then
t,(E)D' ()" ~ 1 (26)

n

as n — oo, Furthermore
Ty (2) @' ()" ®@(2) ™" = 1+ o(1) (27)

as n — o uniformly on closed subsets of Q.

Proof. We are left to prove that the left hand side of (27) converges locally uniformly to 1.
For this reason, note that the functions

2,(2) = T (2) @' (0)" D(2) ™"

are analytic on Qf and attain the value 1 at infinity. Since we further have that |@,[|; <
1+ Cr" for some C > 0 and 0 < » < 1, Montel’s theorem (see e.g. [21, Theorem VII.2.9])
implies that {g,} is a normal family in Q. Since any convergent subsequences of {g,}
must converge to the constant function 1 locally uniformly on Qg we conclude that so
does the full sequence. O

It is actually possible to show that (27) extends to the boundary of E, see e.g. [14, Section 2].
At the time, Faber’s analysis greatly advanced the understanding of minimal polynomials
in the complex plane. His results were extended in a 1969 paper by Harold Widom [14].
Not only did Widom lift the regularity assumption on the boundary of E but the greatest
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advancement that he provided was that he also carried out a detailed study of the case
where E consists of several components which are Jordan curves of class C**. A curve is
of class C** if its arc-length parametrization is a twice continuously differentiable function
such that its second derivative satisfies a Holder condition. In this case, certain obvious
modifications are needed. Not only is there no conformal map ® from Qg to C \ D but
even with a generalized notion of such a map, the lower bound (25) is no longer optimal.
Without getting into details, Widom introduces polynomials of the form

1 2"
27rzj; {-z

where @ is a generalization of the exterior conformal map of E and f, solves a minimal
problem associated with the set E. If E has one component then £, = 1 but otherwise
I/l = 1. Widom then shows, in a similar fashion to how we showed that (25) holds, that

I/ Ne®' ()™ < 1, (E)

but more importantly he also proves that

6, (E) < 19" (0) "W, lle ~ I/, ]le®’ (28)

as 7 — o, see [14, Theorem 8.3]. As a consequence he concludes

W, (2) = —-_—d{

~Lle@ ()", n—

This result also extends to the case of weight functions on the boundary. In order to describe
this we limit ourselves to the case where the set has one component. The reason for this
limitation is to avoid having to deal with multi-valuedness. Assume that E is the closure of
a Jordan domain, and w : dE — (0, ) is a continuous function. The Dirichlet problem
on Qf = C \ E with boundary data logw on JE has a unique solution, see e.g. [30,
Corollary 4.1.8]. We conclude the existence of a harmonic function @ on Q such that
w(2) — logw({) as 2 = { € JE. Let @ denote the harmonic conjugate which vanishes at
infinity then the function

R(z) = exp (a)(z) + z'a')(z)), (29)

satisfies R(%) > 0 and |R(z)| = w(z) on oE. If ® : QO — C \ D denotes the exterior
conformal map and Q is any monic polynomial of degree 7 then by the maximum principle

L|QORO)| | Q@RE)

oy | 2l S | - P E)TRE),

w(¢) Q)] =

;aE

Therefore £,(E, w) > @'()”"R(cc). On the other hand Widom, in [14, Theorem 8.3],
shows the following generalization of Faber’s result which allows for zeros of the weight
function.
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Theorem 8 (Widom 1969 [14]). Let E be the closure of a Jordan domain with C** boundary

with exterior conformal map @ : Qp — C \ D and associate to E an upper semicontinuous
weight function w : 0 E — [0, o) such that

f logw(z)|dz| > —ce.
JE

Then as n — oo
£,(E, w)®'(00)"R(o0) ! ~ 1 (30)

and
TE"(2) = @' () "D(2)"R () (R(2) ™ + o(1)) 61

holds uniformly on closed subsets of Q. The function R is defined in (29).

Widom shows this result in a much more general setting and allows for multiple compon-
ents.

After having fully extended what can be proven for unions of Jordan curves with C** regu-
larity and associated weights, Widom turns to the consideration of Jordan arcs. In the case
where E = [-1, 1], the exterior conformal map is given by

D(z) =z+Vz2 -1
and hence @' () = 2. Based on the fact that
,([-1,1]) = 27 = 20 (o)

Widom conjectures that the asymptotical behavior given in (28) is still valid for arcs if one
first multiplies the right-hand side by 2. And this is true if all arcs of E are contained on
the real line, i.e. E is a finite union of closed intervals, see [14, Theorem 11.5]. This turns
out to be false in general. This doesn’t even hold when E consists of a single Jordan arc as
was shown through a counter example of Thiran and Detaille in [31]. They showed that
this fails for circular arcs. We will return to an in-depth considerations of circular arcs in
Section 4 and we will show how Theorem 4 can be applied to determine the asymptotical
behavior of the quantity #, in such cases.

We end this section with a discussion on Faber polynomials and how their properties can
be used to better understand Chebyshev polynomials. Assume again that E is compact
connected and Qg denotes its unbounded complement respect to the Riemann sphere C.
Let®: Qf — C\ D be the conformal map of the form specified in (23). If E is the closure
of a Jordan domain with C*** boundary, for some 0 < « < 1, then [32, Lemma 1.3] implies
that there exists some C > 0 so that

FE' ()" - 7| < clos”.

Q n

(32)

See also [33, Theorem 2, p.68].
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Theorem 9 (Suetin 1971 [32]). Let E denote the closure of a_Jordan domain bounded by a curve
of class C % then there exists some C > 0 such that

, 1

1< («)",(E)<1+C ‘;g” (33)

In particular
£,(E)®@'(20)" ~ 1
asn — oo,
Proof. It follows from (32) that
1 £ £ 1 logn
i = Ve < 1l s s (14 0%

and we conclude the result. O
Assuming that E is merely a convex set then [34, Theorem 2] implies that

|0’ (00)EF o &7 (w) — " | < 1 (34)

if |w| = 1. From this we may conclude the following.

Theorem 10 (Kévari-Pommerenke 1967 [34]). Let E denote a compact convex set then

Proof. Consider the set E(r) = {z : |®(2)| = 7} = {®'(w) : |w| = r} for » > 1. From
(34) we conclude that if z € E(1 + ¢) for £ > 0 then

|0 (00)"EF (2)] < | ()" + 1< 1+ (1+2)".
By the maximum principle and the minimality of #, it follows that
'(29)"7, (E) < @'(9)" 17 e < @' ()" 15 ey < 1+ (14 )"

By letting ¢ — 0 we conclude the result. O

We note that equality holds for the convex set E = [-1, 1].
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3.2 Approximating using potential theory

Here we will give a more general meaning to the quantity @’ (o) that appeared throughout
the previous section and show that a generalization of this quantity exists for every compact
set E. In particular, the lower bound (25) extends to any compact set. For this reason we
make a digression into potential theory and refer the reader to [30] for details. Other
references detailing potential theory can be found in [35, 36]. We begin by stating certain
facts.

Throughout this section let E denote a compact subset of C and introduce the notation Q¢
for the unbounded component of C \ E and .(E) for the space of probability measures
which have support contained in E. Given g € J(E) we define the potential function U*
corresponding to y via the formula

U(2) = [ tog =570

This is actually the negative of the potential function as defined in [30], however, this has
to do with our preference for energy minimization rather than maximization. We define
the energy functional as

8 = [ U*@due)

A set E is called polar if

#e%(fE) ) =

For any non-polar set, there exists a unique measure pg € J(E) such that

&E(ue) = #Ei/f%l(fE) E(p),

see [30, Theorems 3.3.2, 3.7.6]. This measure is called the equilibrium measure relative to
E and is supported on the outer boundary of E. As an example, we consider the closed
unit disk D. Since the corresponding equilibrium measure, g is unique it must also be
rotationally invariant and hence ¢ = Z—j. Using conformal mappings, it is possible to relate
equilibrium measures between different sets. Let E; and E, denote two compact sets with
unbounded complements Q¢ and Q¢ . Assume that there exists a meromorphic function
@ : Qp — Qg such that @(o0) = oo and that ® extends continuously to 4; ¢ Q¢ . The
subordination principle [30, Theorem 4.3.8] says that

e, (O(4y)) 2 pg (4;)

with equality if @ is a homeomorphism between Q¢ U 4; and Qg U @(4;). With this

result we can show that
1 dx

T J1 =2

Kl-11] = 35)
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Indeed for0sa < f<mletl, ;= {¢"? : 2 < |argd| < B}. The so-called Joukowski map

q)(w)_: %(w +w™"), whose name originates from [37], is a conformal map between C\ D
and C\ [-1, 1] satisfying ®(c0) = co. Furthermore (I, 5) = [cos B, cosa]. We conclude
from the subordination principle that

B—a

#(-1,1]([cos &, cos a]) > -

On the other hand by summing this inequality over several disjoint intervals whose union
is [-1, 1] we see that g_; ; is absolutely continuous with respect to Lebesgue measure and
also that equality must hold since g|_; 3 € #([-1, 1]). Therefore

B {E—{Z B cosa | 1
-1, ([cos B, cos a]) = T j;osﬂ ;mdx

from which (35) follows.

There is a more general notion called the harmonic measure which for any point of the
complement of the non-polar compact set E defines a measure. The equilibrium measure
is simply its value at infinity.

The capacity of a set is defined through the formula
Cap(E) = ¢~ Elue)

and is equal to 0 if the set E is polar. It is a conformal invariant in the sense that if E; and E,
denote two compact sets with associated unbounded components Q¢ and Q¢ such that
there exists a conformal map

Q:Qp — QO

with ®(z) = 2z + O(1) as z — oo, & # 0, then [30, Theorem 5.2.3]
|| Cap(E,) = Cap(E,). (36)

A proof of the following useful formula concerning the capacity of polynomial preimages
can be found in [30]. If Q is a polynomial of exact degree 7 with leading coeflicient  then
[30, Theorem 5.2.3]

Cap(E))””_

Cap(Q™ (@) = (<2

(7)

A related concept which can be used to determine the capacity of a set is its associated
Green’s function. If E is again a compact set of positive capacity and Qg is a component of
C \ E such that 9Q; is non-polar, then there exists a unique function Gs, : Qp x Qp —

(0, o] such that:
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* Gg, (-, w) is harmonic and bounded on closed subsets of Q; \ {w},

e Asz > w

log |z| + O(1), w = o,

GﬁE (z,w) = (39)

—loglz—w| +O(1), w # oo

. G@E (z,w) > 0asz — {forall f € 85E except, possibly, outside a set of capacity 0.

If a certain behavior is valid outside of a set of capacity 0 then we say that it holds quasi-
everywhere. The function G5 (-, w) is called Green’s function at w corresponding to Q.
In the case where w = o0 and Q¢ denotes the unbounded component of E we simply write
Go, (2,%0) =: Gg(z) which defines a function on the unbounded component Qg. The
behavior at oo is explicit in terms of capacity. Indeed [30, Theorem s.2.1] implies that

G (2) = log |z| —logCap(E) +0(1), asz— oo (39)

We further have from [30, Theorem 4.4.2] that

Ge(2) = E(pe) — U (2). (40)

By combining this with (35) we can prove Lemma 3 which found applications in the previ-
ous sections.

Proof of Lemma 3. Using (35) we recognize the relation

Ulog|x — 2|

‘/_dx

—U*- 11]( ) —

It is easy to verify that

Gy (2) = log |z + V22 — 1|

from the characterizing properties of Green’s function. We therefore conclude that ([-1, 1]) =
log2 and if z ¢ [-1, 1] we gather from (40) that

1 1log|x z|
————dx =log|z + Vz? — 1] — log 2.
T-2 2 g

This proves the relation if z ¢ [-1, 1].

Since both sides of (40) are lower semicontinuous on C and agree outside a set with 2-
dimensional Lebesgue measure zero they coincide on all of C, see [30, Theorem 2.7.5]. [

The relation in (37) can be used to get lower bounds for Chebyshev polynomials. Extending
Faber’s lower bound (25) is the so-called Szeg6 inequality from [38].
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Figure 9: Gdbor Szegd (1895-198s).

Theorem 11 (Szegd 1924 [38]). Let E c C denote a compact set then

Cap(E)" < 1,(E). (41

Proof. It is clear that the lemniscatic set

E, = {z: |7, (2)| < £,(E)}

n

contains E. Since Cap increases under set inclusions we gather that
Cap(E) < Cap(E,).
Recalling that the capacity and radius of a disk coincide the result follows from (37) since

Cap(E,) = 4,(E)'". m

A similar proof can be employed to prove a version of Szeg8’s inequality for real sets that
was shown by Schiefermayr in [39] using different means than presented here.

Theorem 12 (Schiefermayr 2008 [39]). Let E ¢ R denote a compact set, then

2Cap(E)” < 2,(E). (42)

Proof. 'The polynomial T is real and therefore
EcE,:={x:-£,(E) <TF(x) <z,(E)}.

n

Again, (37) implies that

E 1/n
Cap(E,) = Cap((-5,(0)1,E)"" = (252)

The result follows by monotonicity of capacity with respect to set inclusion. O
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Szeg8’s inequality, Theorem 11, can be related to (25). Indeed, in the case that E has simply
connected complement with respect to the Riemann sphere, denoted Q¢ and @ : QO —
C\ D is the conformal map satisfying ®(c0) = oo and ®’(c0) > 0 then

@' (c0) Cap(E) = 1.

To see this, note that G¢(z) = log |®(z)| = log |z| + log | D' ()| + 0(1) as z — oo and by
referring to the defining properties of the Green’s function the result follows. As a further
consequence we see that for 7 > 1

E(r) = {z: [®(2)| = 7} = {2 : Gg(2) = logr}.

The curves E(7) are therefore called the Green lines or equipotential lines corresponding to
the set E.

Szegd actually proved another connection between Cap(E) and #,(E). These ideas had
previously appeared in [9, 40].

Theorem 13 (Faber, Fekete and Szegd [9, 40, 38]). Let E ¢ C be a compact sex, then

Jim £, (E)'1" = Cap(E).
This limits how fast #,(E) can grow and a central point in the understanding of Chebyshev
polynomials concerns which bounds can be placed upon the quantity

,(E)
(E) = Cap (B (43)

the so-called Widom factor of degree 7 corresponding to E. This choice of naming stems
from [41] where examples of compact sets E such that the sequence {7, (E)} grows sub-
exponentially are exhibited. The fact that the sets considered there are of Cantor-type
should be stressed. We saw previously, that certain regularity conditions on the boundary
of E guarantees that {7,,(E)} is bounded. In fact if E is convex then Theorem 10 says that
W,(E) <2 forall » € Nand if E is the closure of a Jordan domain whose boundary curve

n
is C'** then Theorem 9 implies that

Jim %, (€) = 1.

From Szeg8’s inequality we gather that the latter is the smallest possible limit. It is an
open question what regularity conditions may be relaxed while still guaranteeing that 7,

oo W, (E) = 1. The existence of closures of Jordan
domains E where liminf, | %, (E) > 1 are known. Examples include Julia sets as can be
deduced from [42]. Such matters are considered in Paper vi. It should be noted that in
these known cases the boundary curves are nowhere differentiable.

is asymptotically minimal, that is lim

We end this section by showing the elementary fact that Widom factors are invariant under
dilations and translations.
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Theorem 14. Let E ¢ C denote a compact non-polar set. If & € C\ {0} and b € C then

W, (o + b) = W, (E).

Proof. First of all (43) is well-defined since CapE > 0 by assumption. Furthermore from
(36) we gather that
Cap(«E + &) = || Cap(E).

On the other hand, by the uniqueness of the Chebyshev polynomial,
it

anr];thb (
a

-1
Therefore z,(2E + &) = |2|"2,(E) and so we see that

ek +b) el (E)
V(B +0) = B+ 8y ~ Ta] Cap(E) ~ "n(E) =

The Widom factor does not depend on the size of a set but rather its topological, geometric
and potential-theoretic properties.

3.3 The deviation of Chebyshev polynomials

Widom, in his 1969 article [14], greatly expanded the understanding of Chebyshev polyno-
mials related to disjoint unions of closures of Jordan domains. His analysis was complete
in this case. If E is the closure of a Jordan domain with sufficiently smooth boundary then
his results says that

Jim ,(6) = 1,

which asymptotically saturates the lower bound of Szegd, see Theorem 11. We further saw
in Theorem 6 examples of sets where, at least for a subsequence, %, (E) = 1 holds. Indeed,
assuming that P is a monic polynomial of degree 7 and » > 0 then (37) implies that with

E(r) ={z: [P(2)| = "}
Cap(E(r)) = Cap(P " {z : |z <#"}) = 7.
On the other hand 7;5,(;) = P(z)” and therefore

i (E(r)

(an(E(”)) = W = m T

A natural question concerns whether there are other examples of sets where Szeg8’s lower
bound is saturated at least for a subsequence. The answer turns out to be no.
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Theorem 15 (Christiansen, Simon and Zinchenko 2020 [27]). Let E ¢ C be a compact set
with unbounded complement Q. Fixny. Then W, (E) = 1 if and only if there is a polynomial
P, of degree n, such that

0Q; = {z: |P(2)] = 1}.

As we see, sets saturating Szeg8’s lower bound are precisely lemniscates. If we again let
E(r) = {z : |P(2)| = "}, where deg P = m, then E(7) will be an analytic Jordan curve
if » > 0 is large enough. For such values of 7, Theorem 7 implies that 7%, (E(r)) — 1
as n — oo. The critical case occurs when 7 = 7, is the smallest value for which E(») is
connected. In this case, E(7) will no longer be a Jordan curve as it will contain a point of
self intersection. Classical theory is insufficient to determine the limit points of 7, (E()).
A crucial part of our study will be considerations of the lemniscatic family

{z:]z" = 1] =7}
where 7 > 0. The critical case occurs when » = 1. As we show in Paper 11, asymptotic
minimization still holds in this case.

Theorem 6 has been generalized much further by Kamo and Borodin in [42] where the
generalization appeared as the main lemma.

Theorem 16 (Kamo and Borodin (1994) [42]). Let E ¢ C be compact and let P denote a
monic polynomial of degree m. Then

b © —7E.p (44)

and
W,,, (P~ (E)) = % (E).

A recent proof of this can be found in [27]. Using (44) it is possible to get further examples
of explicit Chebyshev polynomials by simply taking polynomial preimages of compact sets.
Moreover, if P is a monic polynomial of degree 7 and E c R, then for any 7, Schiefermayr’s
inequality (42) implies that

W,,, (P E)) = W, () = 2.

As such, Theorem 16 gives us several examples of sets in the complex plane where, a sub-
sequence of the Widom factors are lower bounded by 2. Again, a natural question for such
sets is to determine the remaining limit points of the Widom factors. In Paper 1 we will

particularly focus on the case
{z:2" € [-2,2]}

which form star shaped sets centered at the origin.
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As we briefly mentioned before, Thiran and Detaille produced a counter example to Wi-
dom’s conjecture that the Widom factors corresponding to a Jordan arc should converge
to 2 as the degree increases. Their counter example was provided by the family of sets
{L, : 0 < 2 < 7}, where T, is the circular arc

L= {z:|argz| <a}.

They established in [31] that
W, (T}) ~ 2cos(a]4),

as n — 0. Their example shows that any number between 1 and 2 is a possible limit point
of Widom factors corresponding to a Jordan arc. In Paper 1 we show that 2 is a limit point
in the arc setting precisely when the arc is a straight line segment.

An analogue of Theorem 15 for the saturation of Schiefermayr’s lower bound exists for real
subsets and is due to Totik.

Theorem 17 (Totik 2011, 2014 [43, 44]). Let E c R and fix n € N. Then

¥/

n

(E)=2
if and only if there exists some polynomial P of degree n such thar
P ([-1,1]) = E.

Furthermore
Jim % (E) = 2

if and only if E is an interval.

A new proof of the first part of Theorem 17 is provided in [27]. One of the main points of
Paper 1 is to investigate sets in the complex plane where %, (E) — 2 as n — co.

A related question concerns placing upper bounds on Widom factors. Such an upper
bound, which is independent of the degree #, is called a Tozik-Widom bound in [28]. In the
real setting such a Totik-Widom bound is provided in [20]. To describe this, we introduce
the concept of a Parreau-Widom set. These are the sets E ¢ C such that

PW(E) = > Gelz) <.
{z:V G (2)=0}

In words, this quantity is equal to the sum of the critical values of the corresponding Green’s
function with a pole at infinity. It is clear that finitely connected sets are examples of
Parreau-Widom sets. A Parreau-Widom set always satisfies a Totik-Widom bound.
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Theorem 18 (Christiansen, Simon and Zinchenko 2017 [20, 45]). Let E ¢ R be a regular
(in the sense of potential theory) Parreau-Widom set. Then

W, (E) < 2exp(PW/(E)). (4

Extending these considerations to the full generality of the complex plane remains an area of
research in its early stages and it is an open question whether such bounds can be extended.
In [46] these concepts were investigated for subsets of the unit circle. The first step in
generalizing (45) to the complex plane is to demonstrate that compact connected sets have
bounded Widom factors. This question was originally posed as an interesting problem in
[47, Problem 4.4], and it was initially claimed that D. Wrase had provided an example of
a compact connected set with unbounded Widom factors. However, recent findings in
(48] have cast doubt on this claim. After nearly so years of being considered settled, this
question now appears to be open once again.

Upper bounds for Widom factors associated with sets exhibiting specific structures in the
complex plane exist, although without explicit constants. In order to describe one such
result, we remark that two arcs meet at a a cusp point if the two angles formed at their
intersection are 0 and 27 radians. If  is an open set such that dQ consists of curves and
arcs then an outward pointing cusp from Q is a point { € dQ which is a cusp point for Q.
and such that the sector forming the 2z-angle is contained in the complement of Q.

Theorem 19 (Totik and Varga 2015 [49]). Let E ¢ C be a compact set with unbounded
complement Q. If 0Q is a finite union of Dini-smooth Jordan arcs, disjoint except possibly at
their endpoints and such that Qg does not contain an outward cusp, then E satisfies a Totik-
Widom bound.

Examples of such sets include lemniscates. In this case the Totik-Widom bound can actually
be made explicit.

Theorem 20 (Christiansen, Simon and Zinchenko [27]). Let P be a monic polynomial of
degree m and

E(r) = {=z: [P(2)] = 7"}

For any n
W(E() < max W (EC)).

Proof. We have already seen that Cap(E(7)) = . Any natural number can be expressed as
nm + [ where / € {0,1,...,m — 1} and n € N. Therefore by making use of Theorem 6 we
see that

byt (E(1)) < 4(E()) 1, (E() = 4,(E(r)) Cap(E(r))™ = W;(E(r)) Cap(E()"""".
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In conclusion,

Wt (E()) < W(E()) < max W (E()). O

It follows from the proof that for a fixed / the mapping » — %, ,(E(r)) is decreasing. If
7 is large enough so that E(7) is an analytic curve then Theorem 6 implies that the limit is
1.

In [50, 48, s1] Totik-Widom bounds for sets with reduced boundary regularity were studied.
To better understand these results we consider quasicircles and quasiconformal arcs. A
quasicircle T is a Jordan curve such that any three points on the boundary satisfies the
so-called Ahlfors condition: there exists some A4 > 0, such that if z;, 2z, both belong to T
then

|21 = 2 + |z = 2| < Az - 3|

whenever z lies on that subarc of T', with smallest diameter connecting z; and 2,, see e.g. [36,
52]. A quasidisk is the bounded component of the complement of a quasicircle. Examples
of quasicircles include boundaries whose parametrization satisfies Lipschitz conditions but
also fractal sets like the von Koch snowflake. A quasiconformal arc is any proper subarc of
a quasicircle.

Theorem 21 (Andrievskii 17 [48, s1]). If E = U E; where the sets E [ are mutually disjoint
closed quasidisks and quasiconformal arcs then E mtzsﬁes a Totik-Widom bound.

It is not at all clear what the least upper bound is. Andrievskii also considered the case
where no regularity is present and concluded the following.

Theorem 22 (Andrievskii 17 [48]). LetE = U] ) E where the sets E are mutually distjoint

compact and connected sets that all satisfy diam(E ) > 0. Then asn — o
W,(E) = O(logn).

These results highlight a significant distinction between Chebyshev and Faber polynomials
for sets lacking boundary regularity. In fact, Gaier [53], building on an example by Clunie
[54], demonstrated the existence of a quasicircle E such that there is a positive constant &
for which the associated sequence of monic Faber polynomials {Ef} satisfies

15
Cap(E)”k

for an increasing sequence 7;,. On the other hand, Theorem 21 demonstrates that E satisfies
a Totik-Widom bound, while Theorem 22 shows that the growth rate »” is not possible
for Widom factors of single-component sets. We emphasize that the purported counter-
example to connected compact sets satisfying Totik-Widom bounds, as claimed in [47],
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is based on the very construction referenced in [54]. Andrievskii’s result shows that this
example does not provide the necessary counterexample.

We remark that there are known examples of quasidisks for which limsup %, (E) > 1,
see [42] and Paper vi. Consequently, sufficient conditions to ensure that Widom factors
corresponding to closed Jordan domain converge to 1 require some regularity of the bound-
ing curve.

3.4 The zeros of Chebyshev polynomials

The final section of this background on Chebyshev polynomials focuses on the behavior
of their zeros. For a fixed degree 7, almost nothing is known about the precise location of
the zeros of TF. Many times, the asymptotical zero distribution is the interesting object to
study. The following result constitutes an exception.

Theorem 23 (Fejér (1922) [s5]). LetE ¢ C be a compact set andw : E — [0, ) a non-negative
weight function which is non-zero on at least n points. All zeros of YZlE’w lie in cvh(supp(w)) —
the convex hull of the support of the weight function.

Proof. If w has precisely # points in its support then the Chebyshev polynomial is uniquely
determined to be the polynomial with all its zeros coinciding with the supporting set.

We consider the case where w has at least 7z + 1 points of support. In order to obtain a
contradiction, assume that Y;E’w(z) = HZ:1(Z — ;) and that ¢, ¢ cvh(supp(w)). The
Hahn-Banach Theorem, see e.g. [17, Theorem III.6.2], tells us that there exists a line which
naturally decomposes C\ L into two connected components, one containing supp(w) and
one containing 4. If 4] denotes the orthogonal projection of 2, onto L then

|z - ai] < |z -4

holds for every z € supp(w). Consequently
w(@)lz=aj| [ [ lz-al < w@) [ ] |z - a4l = w(@)|7;()]
k=2 k=1

with strict inequality on supp(w) \ {4, | ¥ = 2, ..., n}. Since w contains at least z + 1 points
in its support we conclude that (z — 47) [T,_, (2 = 4) is a monic polynomial of degree 7

with smaller weighted supremum norm than 7.5 which is a contradiction. ]

The remaining results we consider in this section provide information on the asymptotical
behavior of the zeros of the Chebyshev polynomials as the degree goes to infinity. The first
study with this flavor was performed on partial sums of Taylor series by Jentzsch in [56]

36



and later substantially extended by Szeg6 in [38]. They were both interested in describing
the zero distribution of partial sums of power series of analytic functions.

If P is a polynomial of exact degree 7 with zeros at 2y, ..., z,, counting multiplicity, then we
define the normalized zero counting measure of P as the probability measure

) =20, (46)
j=1

where d, denotes the Dirac measure at 2.

Theorem 24 (Jentzsch (1916) [56], Szeg6 (1922) [57]). Let
f@&)=> 4 (47)
=0

and the nth partial sum of f be given as

n

D(z) = Z a7

k=0

If [ has radius of convergence 0 < r < oo then there is a subsequence of degrees {n,,},, such that

»(P )-ﬁj—:'

"

(48)

{z:|z|=r}

as n,, — o,

To be precise concerning the accreditation of this result, Jentzsch showed in [56] that every
point of {z : |z| = r} was a limit point of the zeros of the partial sums. Szegd extended
Jentzsch’ result in [57] by showing that for a subsequence of {£,} the corresponding zeros
distribute in an equidistributed fashion in any circular sector with respect to the correspond-
ing angle and that these zeros approach the circle determined by the radius of convergence
|z| = 7. See also [58, §2.1] for a potential theoretic proof of Theorem 24. The proof stated
there is based on [58, Theorem 2.1.1] a simplification dealing with Chebyshev polynomials
that we now formulate.

Theorem 25 (Blatt, Saff and Simkani (1988) [59]). LezE ¢ C be a compact set with Cap(E) >
0 such that the unbounded component Qr of C\ E has a boundary which is regular (in the
sense of potential theory). If

W(T;)(4) = 0 (49)

as n — oo for any closed set A contained in the union of the bounded components of C \ Qg
then
v(1) = e (50)

asn — oo,
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In the special case where the bounded components of the complement are void, the fol-
lowing result trivially follows from Theorem 25.

Corollary 1 (Blatt, Saff and Simkani (1988) [59]). Suppose that £ c C is a compact set with
Cap(E) > 0, connected complement and empty interior. Then

V(Y;E) 5 Ug, as m—> oo, (51)

We intend to prove Theorem 25 by combining recent simplified proofs. As a first step, we
show that the support of any limit measure of V(YZIE) is contained in dQ¢. It is always so
that most zeros of 7;E approach the polynomially convex hull of E as the following result
shows.

Theorem 26 (Blact, Saff and Simkani (1988) [59]). LezE c C be a compact set with Cap(E) >
0 then
W(T;)(4) = 0

for any closed subset A in the unbounded component Qr of C \ E.

Proof. We define the sequence of functions {/,} via

mn

1 1
h,(2) = log [TE(2) | + U (2) + > G (5,) (52
k=1

where 2, ,,...,%,, , is an enumeration of the zeros of 7" that reside in Qg, counting mul-
. "

tiplicity. From the properties of Gp_ detailed in (38) we gather that the function b, is

harmonic in Q. This harmonicity extends to the point at 0. Furthermore, for quasi-every

Z € 8QE,

. 1 1
lim sup i (2) = ;, log 75| = Cap(E) <~ log |7, e = Cap(E) =i,

where ¢, — 0, as a result of Theorem 13. From the maximum principle, see e.g. [30,
Theorem 3.6.9], we conclude that 4, (z) < ¢, for every z € Q. Since

Jim (Slog |7 ()] + U%(2)) =0
the symmetry of G, provides us with the estimate
1< 1<
62D =2 Go (5, = > Gelo) = fQ Ge(2)dn(T5) (3).
k=1 k=1 E

In particular,

lim, fQ Ge(2)dn(TE) (2) = 0. (53)
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Let A denote any closed subset of Q. Since 4 is compact, there exists some ¢ > 0 such
that G¢(z) > ¢ for all z € 4. As a consequence

W5 < ¢ [ Ge@ati) < 1 [ G ).
4 O

From (53) we gather that V(Y;E)(A) — 0asn — . O

If (49) holds then any limit point measure of »(7,") must be supported on the boundary
of the unbounded complement Q. The equilibrium measure ¢ has this very property
and so this is what we expect based on Theorem 25. To conclude the proof we need a cer-
tain minimality condition which is a consequence of the strong asymptotics of Chebyshev
polynomials outside of the convex hull of E.

Theorem 27. Let B be a compact set with positive capacity. Uniformly on compact subsets of
C \ cvh(E) it holds that

|7y (2)| /" | Cap(E) exp Ge () — 1 (54)

asn — oo,

Proof. As a consequence of Theorem 23, we conclude that the family of functions {/,}

defined by
1 1
b(2) = ~ log [T ¢ + Ge(2) = ~ log |7, (2)|
is a family of harmonic functions on C \ cvh(E). From (39) together with [30, Corollary
3.6.2] we gather that 4, extends harmonically at infinity with the value

b

n

(o) = ilog 175 lle = log Cap(E) = %log%(E) 2 0.

The inequality is a consequence of Theorem 11. Since 4, extends superharmonically to the
unbounded component Q of C\ E and

. 1 1
lim 5,(2) = - log |7l - log |I7(¢)] > 0

for gq.e. { € 0Q¢ we conclude from the extended minimality principle [30, Theorem 3.6.9]
that 4,(z) = 0 for every z € Qf. On the other hand 5,() — 0 due to Theorem 13.
The final ingredient is supplied by a variant of Harnack’s theorem [30, Theorem 1.3.10]
which entails that these conditions are enough to guarantee that 4, — 0 locally uniformly.
Combining these considerations gives us that

ol (o = 1P (Ge@) I Cap() ep(Gel) _,
§ | TE (=) M/ Cap(E)  |ZF ()"
uniformly on compact subsets of C \ cvh(E). O
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While it is not true that »(7F) 5 ug as n — oo for any compact set E with Cap(E) > 0, as
exemplified by T = E, there is a general “sweeping” procedure which relates any limit point
of »(IF) with g. We recall the notation .#(E) which denotes the family of probability
measures on E. Again, Q denotes the unbounded complement of E. If € #(E) then we
say that yb is the “balayage” of 1 to 0Q¢ if[ub € M(0Q) and

U(z) = U¥ (2) (s5)

for quasi-every z € Q. The measure ‘ub defined this way, is the unique measure in #(0Q)
satisfying (55) with finite energy &(-) < oo, see [60, Theorem 2.2]. Recall that ¢ always has
its support contained in 0Q)¢.

Returning to the example of the unit circle we know that U*T(z) = —log |z| for |z| = 1
and since U” (z) = — log || for |z| > 0 we conclude that g is the balayage of 9, = V(Y;T).
This observation can be significantly generalized as we now show, see also [28, Theorem
2.1].

Theorem 28 (Mhaskar and Saff (1991) [60]). Let E denote a polynomially convex compact set
with Cap(E) > 0. If ., denotes any limit point of {v(TF)} then u., is supported on E and for
all z € Q, the complement of C\ E, it holds that

U=(z) = U (z). (56)
Proof. From Theorem 26 it immediately follows that any limit point p,, of the sequence

{V(YZ,E)} is supported on the set E. As a consequence U*> is harmonic on Q. Pick a
subsequence 7, such that ‘I/(T;;E) = Uy Then

U¥~(2) = Jim flog| dn(TE)(Q) = lim —n—klog| ).

Zl n,—0

Theorem 27 therefore implies that in a neighborhood of infinity
Ut~ (z) = —G¢(2) — log Cap(E) = U*(2)

and therefore the identity principle for harmonic functions implies that this equality persists
on QE . D

We are now in a position to finally prove Theorem 25.

Proof of Theorem 25. Let p,, be any limit point of »(ZF). Then Theorem 28 implies that
4o is supported on the polynomially convex hull of E. On the other hand the condition
that ‘V('];IE) (A) — 0 for any closed subset on the bounded components of C \ dQ¢ implies
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that the support of any limit point measure g, is contained in dQ¢. The regularity (in the
sense of potential theory) of Q¢ together with Theorem 28 and the lower-semicontinuity
of potentials gives us that

U*({) < liminf U*=(2) = lim inf U*(2) < —log Cap(E).

Z—> Z—>

Since the support of u, lies on dQ¢ and g, necessarily is a probability measure we conclude
that

() = fc U*({)d(?) < - log Cap(E).

The uniqueness of the minimizer ¢ for the energy potential now implies that pp = .
Since u, was an arbitrary limit point and »(Z)\) is limit point compact as a consequence of
the Banach-Alaoglu Theorem, see e.g. [17, Theorem V.3.1], we finally conclude that

V(EE) - HE
as 7 — oo, I
In a completely analogous fashion to how we showed Theorem 26 we can prove the follow-
ing simplification of [61, Theorem III.4.1] using Theorem 25.

Theorem 29 (Saff and Totik (1997) [61]). Let E c C be a compact set of positive capacity such
that the unbounded component Qf of C \ E has a boundary which is regular (in the sense of
potential theory). If every bounded component of C\ 0Q¢ contains a point z, such that

lim inf |7 ()| "/" — Cap(E) (57)

then V(Y;E) = ug asn — o,

Proof. With the intent of applying Theorem 25 we show that the number of zeros on any
closed subset of the bounded components of C \ E is at most o(%) as # — oo. Let Qf be a
bounded component of C \ E. We define

1 1<
hy(2) = ~log T (2)| - Cap(E) + = > Gg5 (2.3,,)
k=1

where 7, ,, ..., %, , is an enumeration of the zeros of 7. contained in Q. We find that for
, -

all £ € 9Q); it holds that

limsup s, (2) =  log | (2)] - Cap(E) =

z—{

log |7, [l ~ Cap(E) =: ¢,

S| —
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where, as a consequence of Theorem 13, ¢, — 0 as 7 — . From the maximum principle,
we gather that

for all z € Q. By taking z = 2, we find that

1 m
~ E GQE 20> %) < &, + Cap(E) - —log ITE(z)| = o(1)
k=1

as 7 — o0, On the other hand

3

n

S| =
T

lm
Gas, (G0 a) = > G (o fG (2, 20)d¥(I) () — 0
k=1

1
as 7 — co. Any closed subset 4 of Q is compact and hence, given such a set, there exists
some ¢ > 0 such that Gg, (2, 2y) = c. It now follows that

lim sup y(Y;E) (A) < lim sup % f Gs, (2, zo)dV(Yf) (2)
7—00 7—>00 A

<limsup~ [ Gg(e,2)d(T)(2) = 0.

n—oo € QE

Through this chain of reasoning we have verified that the hypothesis of Theorem 25 is
satisfied and therefore »(T,F) <> g as n — . O

Remark. 1f a sequence of monic polynomials {P,}, where deg P, = #, satisfies
lim sup |2, "* = Cap(E)

then we say that B, is asymptotically extremal on E, a terminology originating from[61, p.
169]. By Theorem 13, the sequence {Y;E} is asymptotically extremal for any compact set E.
Many results on weak-star limits of zero counting measures as in (46) can be phrased in
terms of asymptotic extremality and therefore implicitly hold for Chebyshev polynomials.
As an example, Theorems 25, 27, and 29 all hold in this extended setting. A generalization
of Theorem 25 was shown by Grothmann in [62] and can be found in [s8, Theorem 2.1.1].

In general it is not the case that the zeros of 7" approach the outer boundary of E. In
particular this can never happen for closures of analytic Jordan domains.

Theorem 30 (Saff and Totik (1990) [63]). Let E c C be a compact ser with connected interior
and connected complement. There exists a neighborhood U of 0F and N € N such thar

W(IE)U)=0, n=N

if and only if OF is an analytic Jordan curve.
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This entails that the zeros of T stay strictly away from a neighborhood of oE for large
n precisely when oE is analytic. The proof in [63] is performed using a comparison with
the Faber polynomials which exhibit this very property. A local result on asymptotic zero
distributions of Chebyshev polynomials is given in the following.

Theorem 31 (Christiansen, Simon and Zinchenko (2020) [28]). Lez E be polynomially convex
and U an open connected set with connected complement so that U N 0E is a continuous arc that
divides U into two pieces: one contained in the interior of E and one contained in C \ E. If

liminf»(7,)(U) = 0

then U 0 0E is an analytic arc.

These considerations conclude our discussion on the background of Chebyshev polynomi-
als and we now advance toward novel results.
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4 Summary of research papers

In this section we discuss the work from Papers 1 to v1 as they constitute the main scientific
contribution of this thesis. The aim of this section is to place the scientific novelties of the
articles within a general framework. Papers 1 to 1v are either published or submitted for
peer-review. Paper v is more or less complete and is in the process of proof-reading. Paper
VI contains several complete results, however, this is still work in progress.

Paper 1 — Extremal polynomials and sets of minimal capacity

In [14], Harold Widom performs a detailed study of the limiting behavior of Chebyshev
polynomials corresponding to Jordan curves and arcs. As we discussed in Section 3 he
completely determines the asymptotics of, what we now call the Widom-factors,
t,(E, w)
W, (E,w) = Cap(E)” (s8)
in the case where E is a union of smooth Jordan curves and w is a nice enough weight.
Based on the example

W ([ab]) =2, a<b

he conjectured that the formula (28) should still hold if at least one of the components of
E is an arc if one first multiplies the right-hand side by 2. In particular he writes

Thus M, (¢,, author’s edit) is asymptotically twice as large for an interval as for
a closed curve of the same capacity. We conjecture that this is true generally;
that is, if at least one of the E,, is an arc then the asymprotic formula for M, P
(¢,(E, w), author’s edit), given in Theorem 8.3 ((28) in Section 3, author’s edit)
must be multiplied by 2...

...Unfortunately we cannot prove these statements and so they are nothing
but conjectures.

Widom shows in [14, Theorem 11.4] that the right-hand side of (28), multiplied with 2,
provides an upper bound of any limit point of {7,,(E, w)}. However, he fails to show that
the conjectured asymptotic formula holds. In the case of a single smooth arc E, Widom’s
conjecture would imply that asymptotically

W, (E) ~ 2

as n — oo. As we already discussed previously, this conjecture is false as shown by Thiran
and Detaille in [31]. In fact, Widom’s conjecture fails for almost every arc as was recently
shown by G. Alpan [64, Theorem 1.3]. In particular, the following holds.
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Theorem 32 (Alpan (2022) [64]). Let E denote a_Jordan arc with C** regularity. If there exists
an interior point z € E such that

0Gg 0Gg

i) = i) (59

n, n_

where n, and n_ denote the normal directions from each respective side of the arc, then

lim sup %, (E) < 2. (60)

n—>00

If the normal derivatives of Green’s function at infinity from both sides of a smooth arc are
equal at all interior points, then we say that the arc possesses the S-property. This property
was initially considered by Stahl in [65, 66]. We adopt a simplified definition, following
[67, Definition 2].

Definition 1. LetE c C be a compact set with Cap(E) > 0 and suppose thar C\E is connected.
Assume further that there exists a compact subset Ey c E with Cap(E,) = 0 such that

ENE, = U ¥, (61)
i€l
where the v, s are disjoint open analytic Jordan arcs and I ¢ N. Then E is said to possess the
S-property if
G oG
S (2) = 5 (2), (62)

n, n_

forallze ., v

While Theorem 32 is stated for arcs with C 2+ regularity, it is not difficult to see that any arc
for which (62) is satisfied at all interior points is, in fact, analytic.

The first result we show in Paper 1 is that the S-property of an arc can be rephrased. In
particular, the only way that equality can hold in (60) is if E is a straight line segment.

Theorem 33. Let E denote a Jordan arc with C** regularity. Then
lim sup %, (E) < 2 (63)

and equality holds if and only if € is a straight line segment.

Theorem 32 serves as a guiding principle in the further investigations undertaken in Paper 1.
Our main inquiry concerns whether there are other examples of sets in the complex plane

for which
lim () = 2 (69
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holds. If (62) fails even for one arc then (64) is impossible. We therefore restrict our study
to sets satisfying the S-property. As it turns out, this property is intimately tied to minimal
capacity conditions. To be precise, the Chebotarev problem — so-called since it was posed
as a question from Chebotarev to Pdlya [68] — concerns finding the following set.

Problem 4 (Chebotarev). Given a finite number of points ay, ..., a,, € C, determine the
compact connected set & containing these points with minimal logarithmic capacity.

The non-trivial fact that such a set exists uniquely for any given point configuration 4, ..., 4,,
was established by H. Grotzsch [69]. That such sets necessarily satisfy the S-property was
shown by Stahl, see e.g. [70]. In our pursuit of examples of sets satisfying (64) we are thus
led to investigate sets of minimal capacity. Typically, the solution to a Chebotarev problem
is difficult to attain and one needs to rely on numerical approximations. A notable excep-
tion is due to Schiefermayr [71]. He showed that if P is a polynomial and P7*([~1, 1]) is
connected, then this set is a solution to a Chebotarev problem. To be precise, if 4, ..., a,,
are the simple zeros of P> — 1 then P~'([~1,1]) is the Chebotarev set corresponding to
{ay,...,a,,}. The capacity of this polynomial preimage is easily determined from (37).

This motivates an investigation of the Widom factors corresponding to the sets
E, ={z:2" €[-2,2]}. (65)

For cach fix m € N, the set E,, is the Chebotarev sets corresponding to {21/ ¢™*/™ . f =
1,...,2m}. Our main result in Paper 1 is the following.

Figure 10: {z: 2 € [-2,2]} form = 2, 3 and 15.
Theorem 34. Form € N, let E,, be defined as in (65). Then
,,E,) =2 nx1

and
;%%(Em) =2. (66)

In addition n — W,,,,,,(E,,) is monotonically decreasing for 1 < l[m < 2.
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In short, the method we apply is transferring the domain using a change of variable to the
Jacobi weighted Chebyshev polynomials on [-1, 1] corresponding to the weights (10). It
turns out that Chebyshev polynomials corresponding to Jacobi weights exhibit different
monotonicity structures depending on the values of the associated parameters. In fact, this
was first observed numerically using a complex extension of the classical Remez algorithm
which we discuss extensively in Paper 111. The proof of such monotonicity structures eluded
us for a long time. Our most comprehensive understanding is presented in Paper v. A
consequence of the main theorem proven there is that if 0 < //m < 1 then

Sl’tp %nwﬁl(Em) =2.
It follows that the largest value is attained for 1 < //m < 2 and thus we have
%(Em) < 22—1/m

for any 7 and this value is attained for » = 2m — 1. By taking m large we can therefore
produce Widom factors corresponding to connected sets which are arbitrarily close to 4.
This observation led us to investigate which properties characterize sets with large Widom
factors in Paper vI.

Determining the asymptotical values of the norms of Chebyshev polynomials correspond-
ing to Jacobi weights on [—1, 1] can easily be attained from Theorem 4. However, we should
note that, in our experiences, references to these results are hard to come by in the recently
published literature. For this reason we provided a modification of the proof of Theorem
4 in the appendix of Paper 1. To further emphasize the diverse applications of Theorem 4
we determined the asymptotics of Widom factors associated with quadratic preimages of
[-2,2]. In particular we obtain the following result.

Theorem 35. Let P(z) = 2° + az + b for a,b € C and form Ep := {z: P(2) € [-2,2]}. Then

%(EP) =2, n=1 (67)

,!i_r}gc%rﬁl(EP) = V2|C+ VCZ _4|: (68)

where c = b — a* |4 and z + z* — 4 maps the exterior of [~2,2) to the exterior of the closed
disk of radius 2 centered at 0. In particular, for ¢ € [-2,2] we have

and

lim 7, (E,) = 2. (69)

It follows from [72, Theorem 40] that the preimage P~*([~2,2]) is connected if and only
if it contains all zeros of P', see also [73]. Theorem 35 thus shows that E, is connected if
and only if

W,(Ep) =2, n— oo
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In Paper 1, our final investigation addresses a conjecture formulated in [74]. This conjecture
builds upon an observation due to G. Alpan and M. Zinchenko from [75]. They showed
that Widom factors corresponding to L* and L™ minimizers can be related on circular arcs.
With the notation I, = {z : | argz| < a} where « € (0, 7) they showed that

n—1 2

+ ZCkZ
k=0

as n — oo. The conjecture in [74] proposes that this should hold for arcs in much greater

W,(T,) ~ min

generality. Indeed it is conjectured that the particular arc I, could be replaced by any
smooth arc I.

In Paper 1, we verify that the conjecture is also valid for the sets E,,,.
Theorem 36. Form € N, letE,, be defined as in (65). Then asn —

n—1

Zn + Z Ckzk
Em k=0

%,(E,) ~ min [
3

2
due (2) / Cap(E,,)*" ~ 2.

We show this by explicitly computing both asymptotical values and then observing that
they are equal.

Paper 11 — Chebyshev polynomials corresponding to a vanishing weight

We return to discuss weighted Chebyshev polynomials 7.5, this time focusing on the case
where the weight vanishes for some point of the set. Theorem 4 provides a method of
determining the asymptotics of #,([-1, 1], w) in the case where

m
= H ERARE
k=1

Here we consider the generalized problem of vanishing weights on the boundary of a Jordan
domain and how they affect the asymptotics of the corresponding Chebyshev polynomi-
als. Theorem 8 provides a way of determining the asymptotics of ¢, (E, w) for quite general
weights, even those that vanish on boundaries. Lacking is however the asymptotical point-
wise behavior on E. To exemplify the case of a vanishing weight we consider the Chebyshev
polynomials on the unit circle and assume that the associated weight function is of the form

m

[T e,

k=1

w(z) = (70)

where o, € [0,27). Inital interest in providing upper bounds for #,(T, w) seems to origin-
ate with G. Hal4sz. In [76, Lemma p.264] he showed, in relation to Turdn’s theory of power
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sums, that there exists, for each positive integer 7, a polynomial P, such that 2,(0) = 1,
DP,(1) =0and

2
15 0r <1+ PR (71)
Explicitly this polynomial is given by

pe= 3 (- ) oS- e

j=1 j=1

It is clear by the maximum modulus theorem that any polynomial satisfying Q(0) = 1
also satisfies | Q|| = 1, so his results shows that there exists an asymptotically minimizing
sequence of polynomials, which also vanishes at a point of T. This is not quite the setting
that we have been working in so far but we can easily transform it to a result on monic
polynomials. If Q is an arbitrary polynomial of exact degree 7 then

Q(2) = Q(1/7)7"

is called the reciprocal of Q and possesses several interesting properties. It is a polynomial
of degree at most 7 and if z; is a zero of Q then 1/7; is a zero of Q". The zeros on T
are preserved. Also preserved is the modulus on the unit circle, |Q(z)| = |Q"(z)] for all
z € T. Finally, Q is a monic polynomial of degree 7 if and only if Q*(0) = 1. By consid-
ering Haldsz' polynomial, denoted 7, defined in (74), we conclude from the properties of
reciprocals that

H, 1(z) =B/ (2)[(z— 1) (73)

defines a monic polynomial of degree 7 — 1 satisfying
H, (@) (- 1) <1+ 2
max |H,_(2) (2 <1+

Introducing the notation w(z) = (z — 1) we find that

2
tn(T, w) <1+ m

As we will see, O(1/n) decay to 1 is optimal in this case. Interestingly, the zeros of Haldsz
polynomials {/,} exhibit very different behavior compared to z”, the unweighted minimal
polynomial on the unit circle. We show this using Theorem 29.

Proposition 1. Let

H,H(z)(z—l)=i(1—ﬁ)(z;})"<zf—1>z"-f/ (1= 45) (251 o

J=1

* df
thenv(H, ) — 5 pan

49



Proof. We write D,(z) = H,_,(z)(z — 1). From (71) we find that | Z,| — 1 implying that
the sequence {£,} is asymptotically extremal. We determine a lower bound for |2,(0)| in
order to show that (57) holds with 2z, = 0. Inserting 0 into (74) we find

20 =~(e1) (1) [ S (- (5

ST n—l)f ”(n—l)f “(n—l)f_n—l
;(1 n+1)(n+1 =2 \n+1 SZ n+l) 2 °

Jj=1 j=1

Since

this gives us that

1 l/n 71—1 2 1/71
. Un g5 s _
lipinf 1201 = ipief (=) (55) (=) =0

However, Cap(T) = 1 and so we see that (57) is satisfied and the result follows from a
suitable modification of Theorem 29 to asymptotically extremal sequences. O

As it turns out, something similar happens for the actual minimizer, 7,” when w(z) = |z—1|.

We will get back to this in the following discussion.

In [47, Problem 8.2], Haldsz had posed the related dual problem of determining the ex-
tremal value

A, = max | P(0)]

among all polynomials of degree 7 which satisfy P(1) = 1 and ||P|; < 1. Itss easily seen
that the solution is given by
Tw \
[wa)

2, =t,(T,w)™.

and hence

The exact determination of 4, (and #,(T, w)) was completely solved by Lachance, Saff and
Varga [77]. They showed that

n+l
T
F = ( m)

but their considerations went much deeper. If we introduce the notation

w(z)=(z-1), seN={12,..} (75)

S

then 7,%w, is the unique monic polynomial of degree 7 + s that has a zero of order s at
z = 1. Rather than having the perspective of weighted Chebyshev polynomials Lachance,
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Saff and Varga consider these polynomial as minimal monic polynomial with a prescribed
zero of order s at the point 1. In connection to this they also consider polynomials

T(z) = [ [(e = €%), o €[0,27)
k=1

which are minimizers to the same problem however restricted to have all zeros on the unit

circle
n

_ . _ 1) _ iy
T =, min max (z-1) H(z )|

T
|, nay 1

It is not apriori clear if such polynomials are unique. The following remarkable theorem
shows how the seemingly unrelated minimization problems associated with 7,* and 7,*
have strong links.

Theorem 37 (Lachance, Saff and Varga (1979) [77]). Lets,n € N then

W) = 4 (0, () [+ 5+1) 76)

and

Tk = o T e 2. (77)

It is easy to show that all zeros of 7,," lie in D. However, Theorem 37 shows that the
primitive function of w,7,* normalised to have a zero of order 5 + 1 at 1 has all its zeros on
the unit circle. A consequence of (76) is that 7;"} is unique for s > 1 while (77) implies that
7:%1|| > 2. If we further recall the definition of the Jacobi weight

"w:+l

w® (x) = (1 - x)*(1 + x)#

from (10) then there is an interesting relation between Chebyshev polynomials correspond-
ing to the weight w, on the unit circle and Chebyshev polynomials corresponding to w*#)
on [-1,1].

Theorem 38 (Lachance, Saff and Varga (1979)[77]). Let |z| < 1 and set x = (z +27') /2.
Fors,n e N and [ € {0, 1}

o b2

w (@) Ty, (2) = (=1)72(22)" 20T oy T (). (78)

Consequently,
25,,(T,w) = 2702 ([—1,1], 0 CTD/2AR)), (79)
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Using Theorem 4 it is possible to determine the asymptotics of #,(T, w,). Since Lemma 3
implies that
1 ! w®® (x)
——dx =

TJ1 V1 -a?

we conclude from (99) that

—(a+ f)log2

tn([_l’ 1]) w(zx,ﬂ) (x)) ~ 21—n—(u+{@))
as n — oo. Inserting this into (79) one easily concludes that
t,(T,w) ~ 1

as 7 — oo, In the particular cases where the occurring weights are w™? and w™'/?), the
polynomials can be explicitly determined.

Using this explicit representation we prove the following result in Paper 11.

Theorem 39. Let w(z) = (z — 1), then
oz > &

—>2—
7l

asn — oo,

Consequently the zeros of 7, distribute according to equilibrium measure on the unit
circle. The way to prove this is by applying Theorem 29 together with Theorems 37 and
38 in the case where s = 1. In essence, this behavior mirrors that of the polynomials
constructed by Haldsz.

A natural question arises: what are the effects when the prescribed zeros are raised to some
non-integer power? In other words, what if

m

w(z) = H |z — % |* (80)

k=1

for 5, € (0,00)? Our motivation for this originates with a study of Chebyshev polynomials
corresponding to the lemniscatic sets

L,:={z:|z"-1| =1} (81)

These sets represent examples of unions of curves with a self-intersection. In other words,
they are not closures of Jordan domains and thus the machinery developed by Widom in
[14] does not apply. It is easily seen using symmetry thatif / € {0, 1,...,m — 1} then

T, =2Qr (") (82)
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Figure 1i: {z: [¢" — 1| = 1} form = 2,3,7.

for some monic polynomial Qt’” of degree 7. By changing the variable to { = 2" -1 €T
in (82) we find that

L W, m
T (2) = w7, ")
which brings us to the case illustrated in (80). In the particular case where / = 0 we obtain
Ti(2) = (2" = 1)".

We see that all zeros corresponding to such degrees are located at the 7th roots of unity. Our
interest centers around better understanding the behavior of the Chebyshev polynomials
for the remaining degrees, when 0 < / < 7. This leads us to extend Theorems 37 and 38 to
the case where s is not necessarily an integer.

The proof of Theorem 37 relies on the Erdés—Lax inequality.

Theorem 40 (Lax (1944) [78]). If P is a polynomial of degree n which is zero-free on D then

' n
1270 < 5121l (83)

Equality holds in (83) if and only if P has n zeros, counting multiplicity, all situated on'T.

The case of equality in Theorem 40 establishes the connection between Chebyshev problems
with unrestricted zeros and those restricted to the unit circle, as discussed in [77]. Initially
conjectured by Erd8s, the first proof of (83) which was built upon techniques of Szegé and
Pélya was given by P. Lax [78], see also [79]. In order to generalize Theorem 37 to the case
of weight functions w, with s = 0 we need to extend Theorem 40 to the case of non-integer
powers. In Paper 11 we established the following.

Theorem 41. Lets, > 1 and §, € [0,27) fork = 1,...,n then

jz {ﬁ(z - e"ek);"} Ek ! H 7 — %)%

k=1

\ZI 4 \ZI
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This in turn allows us to establish extensions of Theorems 37 and 38 to the case where the
parameter s is any positive real number.

Our initial aim with determining these extensions was the prospect towards determining
properties of Chebyshev polynomials corresponding to the lemniscates L,,. One of the
consequences is that we can easily determine that

W,(L,) =1 (84)

n

as n — oo using Theorem 4.

However, we lack a precise description of the zeros. Our initial hope was to establish a
generalization of Theorem 39 showing that

« db

s il
AR R

as n — oo for any s > 0. One of the implications such a result would have is that if
0 </ < m then )
AT )5 (55

nm+l
as 7 — oo. As of yet, we have unfortunately been unable to do so. We find this an intriguing
question. If true, this would illustrate radically different behaviors among subsequences of
Chebyshev polynomials associated with the same compact set in terms of their zeros. We
remark that this is known for the corresponding Faber polynomials, see [80]. To invest-
igate this further, we aim to gain a deeper understanding of Jacobi-weighted Chebyshev
polynomials with general parameters. This is the topic of Paper 1v.

We end this section by considering several recent results concerning polynomials with pre-
scribed zeros on the boundary of domains. In particular both upper and lower bounds have
been provided for #,(T, w) where w is as in (70).

Theorem 42 (Totik and Varja (2007) [81]). Let w be as in (70) with m zeros. There exists a
constant ¢ > 0 such that for n > m

t (T,w)=1+c- % (86)
Under the assumption that
0oy <..a,<2mw (87)
and 5
T
Ay =2 2 (1+3)7 (88)

or some 0 > 0 there exists a constant Dy (only depending on ) such that
s (onty aep 4

t, . (T,w) <1+ D{;\/g (89)

where the constant Dy only depends on 0.
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The upper bound (89) was improved in [82] to show that (86) is sharp.

Theorem 43 (Andrievskii, Blatt (2010) [82]). Let w be as in (70) and assume that ay, ..., a
satisfy (87) and (88) for some d > 0. Then for n > m

m

£, (Tow) <1+ 55% (90)
where Dy is a constant that only depends on 9.

Andrievskii and Blatt went much further by considering the same problem of prescribing
zeros on any analytic Jordan curve. Totik in [83] extended their results to the case of C?
curves. These results highlight the fact that by prescribing a zero on the boundary of a
curve in the form of a vanishing weight, the corresponding Widom factors may decay
much slower.

In Paper 1v, we returned to the problem of studying Chebyshev polynomials corresponding
to Jacobi weights on [—1,1]. Our motivation for this was different than in Paper 11 since
we wanted to discern general monotonicity patters for the corresponding Widom factors.
To this end, Theorem 41 proved useful.

Paper 111 — Computing Chebyshev polynomials using the complex Remez al-
gorithm

Orthogonal polynomials may be efficiently computed using the Arnoldi iteration, a mod-
ified version of the classical Gram-Schmidt procedure, see e.g. [84, 85, 86, 87]. In theory
this provides an explicit iterative formula for computing minimizing polynomials relative to
the Z* norm. There is no corresponding explicit method to compute L™ minimizers such
as Chebyshev polynomials except for certain special cases where they can be determined
explicitly.

In [88, 89], E. Remez describes an iterative algorithm to compute best approximations
in the real setting. As such, his algorithm can be used to compute weighted Chebyshev
polynomials relative to real sets. Several proposed generalization exists with the goal of
computing best approximations in the complex setting. One robust algorithm which can
be shown to converge quadratically given that certain regularity conditions are fulfilled
has been developed by P. T. P Tang, B. Fischer and J. Modersitzki, see [90, 91, 92]. The
aim of Paper 111 is to employ this algorithm and illustrate how it can be used to compute
Chebyshev polynomials corresponding to a variety of sets. While there are only a handful
of theoretical results in Paper 111, the focus lies in illustrating connections to other classes
of polynomials using numerical experiments. We believe that Tang’s algorithm is a useful
tool in discerning patterns which can later be turned into proven mathematical statements.
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In this regard, use of the algorithm has been tremendously useful in our studies as many of
our results have first been suggested by numerical experiments.

With Paper 111 we mainly investigate three properties related with Chebyshev polynomials
in the complex plane.

¢ The Widom factors,

* A relation between Chebyshev polynomials on growing equipotential lines and Faber
polynomials,

* Zero distributions of Chebyshev polynomials.

Widom Factors

Existing results concerning the actual limit values of Widom factors related to closures
of Jordan domains all require at least C*** regularity of the bounding curve. Theorem 9
implies that if E is a C'** Jordan curve then 9, (E) — 1 as » — . In our premier experi-
mental analysis, we wished to investigate what happens when the regularity conditions are
loosened. The examples we investigated are the regular polygons, hypocycloids and circular
lunes, all of which are examples of piecewise analytic Jordan curves with singularities on
their boundaries. Our findings appear to point in the direction that if the corner points are
sufficiently mild then the minimal possible limit still seems to hold. That is %, (E) — 1 as
n — co. With a “mild” corner point we mean a singularity on the boundary curve other
than a cusp. Sets such as regular polygons and circular lunes all seem to satisfy minim-
ization of the Widom factors in the limit, with the apparent emergence of monotonicity
properties. We therefore conjectured the following.

Conjecture 1. Let E denote the closure of a jordan domain with piecewise analytic boundary
where none of the singularities of OF are cusp points. Then

lim %, (E) = 1. (91)

While this result seems to be true based on plenty of numerical experiments there is no
clear way in how to show this. The results of Faber [9], Widom [14] and Suetin [32] have
all compared the norm of the Chebyshev polynomials to those of the related Faber polyno-
mials. If a corner point appears on the boundary of E, then it is known from [93, Theorem
I1.2.1] that for the corresponding Faber polynomials {£"} defined in (24), it holds that

lim inf | £ / Cap(E)" > 1.
If we choose to believe that Conjecture 1 is valid then we need to consider some other class

of polynomials to show this conjecture.
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The reason for not including sets with cusp points in the conjecture comes from the nu-
merical experiments related to the hypocycloids which have an outward pointing cusp. It
appears that the decay of {7} is much slower in this case and it is not clear if it converges
to 1.

A relation to Faber polynomials

In our study of Chebyshev polynomials related to the family of lemniscates
L,(r) ={z: 1" - 1| ="} (92)

. . . . . . L
an interesting pattern emerged upon letting the equipotential value » grow. Letting £,
denote the associated Faber polynomials (which do not depend on the parameter 7) we

found, to our surprise, that
: L, (r) L
lim 7, = F,

r—o

seemed to hold. It is classically known that
Ly @) = (" = 1" = E;" ().

To the best of our knowledge, in all known cases where the Chebyshev polynomials for a
specific set can be explicitly determined, they always coincide with the corresponding Faber
polynomials. Using an explicit computation, we can show that

L(») L
LT -

as 7 — 0,

We investigated this potential link between Chebyshev polynomials and Faber polynomials
on several other domains. For the closure of a Jordan domain E we let @ : C\E — C\D be
the canonical conformal map as in (22). By letting E(r) = {z : |®(2)| = 7} we considered

the limit points of Y;E’”(r)

as 7 increases for fixed degrees 7. To our surprise, the pattern
appeared consistent insofar as

. E,.(r

r—0

was valid for every set we considered. We suspect that the regularity of the boundary is of
lesser importance since E(7) will always be an analytic curve for » > 1 and the corresponding
EF are independent of the value of 7. In Paper 111 we therefore conjecture the following.

Conjecture 2. Let E denote a connected compact set with simply connected complement and let
® : C\ E — C\ D denote the conformal map as in (23). IfE(r) = {z : |®(2)| = r} and
n € N then

}%EEm(r) _ F};E' (93)
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One reason to expect this to be true is that the norms of E° relative to the equipotential
lines E(7) approach the minimal value of Cap(E(7)) as  grows. To be precise,

ey
#R Cap(EC))”

Presumably this is enough to ensure that for large values of 7 the polynomials 75" and EE
are measurably close.

Zero distributions

Our final numerical experiments concerns determining the zero placements of Chebyshev
polynomials corresponding to compact sets in the complex plane. Motivated by Conjecture
2 we considered sets for which the asymptotic zero distributions of the corresponding Faber
polynomials were known. From [94, Theorem 1.5] we gather that if E is the closure of a
piecewise analytic Jordan domain with a corner other than an outward cusp then there is a
subsequence of degrees 7, such that

() = e (94)

as 7, — oo. An outward cusp truly provides an exceptional case as shown in [95], see also
[96, 97]. They show that for the m-cusped hypocycloid, all zeros of the corresponding Faber
polynomials are situated on the lines connecting the vertices with the origin. For an inward
cusp the situation is quite different, and the asymprotic distribution of the zeros Chebyshev
polynomials is known. Indeed it was shown in [98] that »(77) <> ug as 7 — oo in this case.
Our numerical experiments suggest that if E is the closure of a piecewise analytic Jordan
domain with a singularity other than an outward cusp then it appears as though

v(T)(4) = 0

as 7 — oo for any closed set 4 contained in the interior of E. Assuming that this is true,
. . * . .

Theorem 25 implies that »(7F) <> g as # — o holds. Based on this, we conjecture the

following in Paper 111.

Conjecture 3. Let E c C denote the closure of a Jordan domain with piecewise analytic bound-
ary such that OE has a singularity other than an outward cusp. Then there is a subsequence {7;2}
such that

W(Ti) = e (95)

as ny, — 9,

Again our main motivation comes from the result due to Kuijlaars and Saff from [94] where
they showed that the result holds for Faber polynomials. Our conjectured relation between
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Chebyshev polynomials and Faber polynomials serves to motivate why one could expect
similar behavior for the corresponding Chebyshev polynomials.

For a set with an outward cusp it appears as though the result is not valid, just as for Faber
polynomials. The zeros of Chebyshev polynomials corresponding to 7-cusped hypocyc-
loids seem to lie on the lines connecting the vertices with the origin and we conjecture that
the same is true for the corresponding Chebyshev polynomials.

We conclude our experimental study by investigating the zeros of Chebyshev polynomials
associated with lemniscates of the form E(r) = {z : |P(z)| = 7} where P is a monic
polynomial of degree 7. It is known from Theorem 16 that

T = P(2)"

and so V(Y;E,Y)) is a fixed discrete measure for all values of z. What is interesting is that
V(Y;Ei?l) seem to behave quite different when 0 < / < m. Indeed, for large 7, the zeros
of the Chebyshev polynomials of degrees nm + / seem to distribute along some curve in
the complex plane as 7 grows. Numerical evidence from Paper 111 seem to suggest that
this curve is given by E(7)) where 7 > 0 is the smallest value for which E(7) is connected.
The value 7 is the largest modulus of any critical value of P. In the case of the family
{z : 12" — 1] = "}, we have 7, = 1. In this case, it is known that the v(};b:”) converges
weak-star to equilibrium measure on {z : |2” — 1| = 1} for 0 </ < m, see [80, 96].

Conjecture 4. Let P be a polynomial of degree m with largest critical value in terms of absolute
value given by c. For any r = |c| let

For a fixed ! € {1,2,...,m — 1}
W) 5 HE(|e)) (96)

nm+l

asn — o0,

Paper 1v — Chebyshev polynomials related to Jacobi weights

Paper 1v is dedicated to the analysis of Chebyshev polynomials relative to Jacobi weights.
Recall from (10) that we use the notation w'*® for the weight function

w®® (x) = (1 - x)*(1 + x)°.

Such considerations are classical and in the case where @ = 4 € {0,1/2} the minimizers
of (3) are given by the Chebyshev polynomials of the 1** to 4™ kind. In [12], Bernstein
considers the minimizing properties of orthogonal polynomials in terms of the maximum
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norm. Given a weight function w0 [-1,1] — [1/M, M] where M > 1 he shows that the
minimizing coefficients ¢, ..., ¢,_; satlsfymg

n—1 1 n—1 2
wy(x

f "+ ) gx dx = minf X"+ Z ckxk o) dx (97)

-1 = 1-«2 % J prd - x?

also satisfy
n—1
n x k

~t(]-1,1 8
xén[—%),(l] wO(x) (x + kz:(;c]ex ) n([ > ]on) (9 )

asn — oo. In other words the orthogonal polynomials are also minimal in terms of the max-
imum norm with respect to a related weight function. These investigations are extended in
[24]. There, uniform estimates of 7,," in terms of the orthogonal polynomials corresponding
to the weight w” /v'1 — 2 are established under the additional assumption that the weight
possesses certain smoothness and does not vanish on [-1, 1], see [24, Corollary 2.6].

In [13], Bernstein proceeds to investigate what happens when a zero is added to the weight.
To provide an example, he investigates Jacobi weights (10). Following the notation from
[99, Chapter IV], we use Pn(“’ﬂ ! to denote the classical Jacobi polynomials. The associated
monic Jacobi polynomial is given by

B = 2rpf | (zn B ﬂ)-

n

These are the monic polynomials which are orthogonal relative to w*#). Based on (97)
and (98) it is suggested that we should consider PRt
maximum norm corresponding to the weight w*#). Bernstein determines that if 0 < «, 8 <

1/2 then

in relation to the weighted

A(2e—-1/2,2-1/2
OBy~ (11 10,0 (99)

as n — co. However, if one of the conditions fails, i.e. max{a, 8} > 1/2, then (99) fails.

Our aim in Paper 1v is to provide a more detailed description of the convergence determined
in Theorem 4. Namely, in what manner does the convergence

%(w(d,ﬁ)’ [_13 1]) ~ 21_0‘_[@
as n — o occur. One part of our analysis consists of showing that as z — o
o "w(a:,ﬁ)f)n(zo‘_l/zxzﬂ_l/z) ” 1 — 21—4—[@
from below if 0 < 2, 8 < 1/2. As a consequence, the same follows for W/n(w(“’ﬂ), [-1,1]).
This is shown using an estimate from [100] on the Jacobi polynomials. In a completely

different manner we show convergence from above for the case where &, 8 € {0} U[1/2, ).
Our main result in Paper 1v is the following.
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Theorem 44. For any parameters a, B > 0 it holds thar
%(w(zx,ﬂ)’ [_1> 1]) ~ zl_d_ﬁ

as n — 0. Furthermore:
1. Ifa, B €{0,1/2} the quantity W/n(w(“’ﬁ), [-1,1]) is constant.
2. Ifa,B €0,1/2] then
sup 7, (w'*?, [-1,1]) = 217,

3. Ifa, f € {0} U [1/2,0) then

inf %, (w'*?, [-1,1]) = 2!

and W, (w'*P), [=1,1]) decreases monotonically with n.

The way to prove the different cases uses completely different methods. In the case where
a, 2 € {0,1/2} the Chebyshev polynomials are classically known. If 2,8 € [0,1/2] we
carefully manipulate an estimate from [100]. If 2, 8 € {0} U [1/2, ) we apply a similar
technique used in Paper 1 to relate the Chebyshev polynomials relative to Jacobi weights
with weighted polynomials on the unit circle. The difference now is that we allow for the
case of asymmetric weight functions, i.e. 2 # S.

o _ (8)
It would be interesting to consider uniform estimates between P,,(2 Y2267102) 5nd T
when 0 < 2, £ < 1/2 in the style of [24].

Paper v — Chebyshev polynomials and circular arcs (work in progress)

We turn now to describe work in progress concerning Chebyshev polynomials on circular
arcs of the form
Lp={z€dD:f<|argz| <a} (100)

for 0 < f < a < 7. Note that if § > 0 the set contains two components which are
symmetrically placed with respect to the real line while the case £ = 0 degenerates to a
single arc. To ease with notation we let

L, = Lo (101)
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Chebyshev polynomials corresponding to circular arcs have been previously studied for the
one arc case corresponding to 8 = 0 by several authors. The problem originated with [31]
and was followed up by considerations in [101, 26, 102]. The case of two arcs, i.e. when
B > 0 has been studied in [46]. For 8 = 0 the norm asymptotics of the corresponding
Chebyshev polynomials have been completely determined.

Thiran and Detaille [31] established that

W, (L) — 2 cos® (%) € (1,2) (102)

if « € (0,7). The significance of this result lies in the fact that it constitutes a counter
example to the conjecture of Widom from [14] stating that if I is a sufficiently smooth arc
then

W, (L) — 2

as 7 — oo,

The way that (102) is shown in [31] comes from relating Chebyshev polynomials on the
circular arc with weighted Chebyshev polynomials relative to two disjoint intervals.

Theorem 45 (Thiran & Detaille 1991 [31]). Ler I, = {z € 0D : —a < argz < a} and
E(2) = [-1,—4] U [, 1] with a = cos(a[2) then

L, 2n E(a
170 = 27175 e (103)
L 2n+1 ~E(a),w
175l = 22 I wle (104)

where w(x) = V1 — x%.

The even Chebyshev polynomials Téi(d) and an(ﬂ)’w are simply rescaled variants of classical
Chebyshev polynomials on an interval. The odd Chebyshev polynomials Tzi(ﬁ and Tzi(fiw
have representations in terms of Jacobi elliptic functions and theta functions as shown in
[10, 103]. For a proof of the representations (103) and (104) we refer the reader to [26]. It
is immediate that Theorem s can be used to compute the asymprotical values of (103). To
compute the asymptotic behavior of (104) an analogous result can be shown using Theorem

4.

Recently, Schiefermayr and Zinchenko [102] showed that %, (L,) is strictly monotonically
increasing. In [46], the same authors related the odd sequence of Chebyshev polynomials
on two symmetric disjoint arcs to weighted Chebyshev polynomials relative to disjoint
intervals.

Theorem 46 (Schiefermayr & Zinchenko 2022 [46]). LetT,;={z € D : B < |argz| < a},
0<p<as<mandE(a,b) =[-b—a]ua,b] witha = cos(a[2) and b = cos(f/2) then

I,
IZ,,%

2n | E(a.b)
2”+1||I;:,ﬂ =2 ”“T ; w”E(a,b)

2n+1,w
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where w(x) = V1 — x2.

They also prove upper bounds on the Widom factors related to I, 5.

Theorem 47 (Schiefermayr & Zinchenko 2022 [46]). Letl, g ={z € 0D : B < |argz| <a},
0<B<a<mandneN then

7 ﬁ, (105)

sin 2 a—p
W1 (L) < — (1 + cos ) . (106)
. . ap 2
sin —

They conjecture that (105) is not sharp but should be replaced with

a
W3,(L,p) < 2cos
and

> ﬂ (107)

W/M(l;ﬁ) <1+ cos
Using Theorems 4 and 46, it is actually possible to show that

lim %3, (I, ) = (108)

The proof is completely analogous to the proof of Theorem s so we refrain from providing
it. Furthermore, numerical experiments suggest that (107) is valid and that

lim 7, (L, 5) = 1 + cos £ (109)
should hold. However, we have been unable of providing a proof of this.

The main content of Paper v concerns establishing extensions of Theorem 4 to the setting
of one circular arc. In particular, we determine the following.

Theorem 48. Let w;, : I, — [0, ) denote a Riemann integrable function with respect to arc-
length on T,, satisfying 1| M < wy(x) < M for all x € T, where M > 1. Ifw : I, — [0, o) is
a weight function of the form

k
w(x) = wy() [ [ I = 17
j=1

where x; € L, and 5; € R, then

t,(L,w) ~ 2 cos(a/4)* Cap(L,)" exp {j; logw(x)dur. (x)} (110)

asn — oo,
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This result should be compared with those in [14] for weighted Chebyshev polynomials
in relation to Jordan curves, here presented as Theorem 8. Widom’s approach to proving
Theorem 8 begins by considering smooth, positive weights. To relax the regularity condi-
tions and allow for zeros in the weight function, he approximates the weight from above.
However, this method fails in the case of arcs. Specifically, for an arc I with an associated
weight function w, the expression

|74l | Cap(r)”

does not asymptotically saturate the lower bound

exp { fr logw(x)dyr(x)}.

In fact, the results in [44] illustrate that this fails even when w is a constant function. In
order to determine (110) a careful analysis is needed. The way we approach this is by first
considering residual polynomials relative to the circular arcs I, and weight functions w of
the form

ko1
wu) = | | ——
Jll |”_”j|

where [#;| > 1. The residual polynomials are the solutions to the extremal problems

sup {|P(u0)| :deg P <, [lwP| < 1} (111)
ifuy € C\ I, and
| P(2)
sup § lim — tdegP <, [lwP[ <1 (112)

at infinity. It is clear that the solution to (112) is given by AT / ||w7;r“w||ra for any ¢ €
[0,27). In Paper v we build upon work in [101] where the unweighted case is considered.
A detailed account of residual polynomials, detailing existence and uniqueness results can
be found in [104].

Similar to the approach in [101] we establish so-called Szeg6—Widom asymptotics of the
residual polynomials on the domain C \ I,. The main difference between our results and
those in [101] is that our formula include the outer function F, which is analytic in C\ L,
and satisfies |7, ()| = w(#) for » € I,. Similar to [101] this can be concluded from results
in [105] where residual polynomials on [-1, 1] are studied.

Having obtained the limiting behavior of {z,(L,, w)} for weights which are given as recip-
rocals of polynomials we obtain the non-vanishing case of Theorem 48 through an approx-
imation argument using the Stone-Weierstrafl Theorem. To allow for zeros of the weight
we use a technique similar to Bernstein’s in [13]. We emphasize that this is still work in
progress and the manuscript may change before submission to reviewers.
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Paper vi — Large Widom factors (work in progress)

In Paper 1 we showed that the minimal capacity sets
E, ={z:2"€[-2,2]}
satisfy W, (E,,) — 2 as n — co. We also established the upper bound
W, (E,) <221

This demonstrates that for this particular family of sets, the inequality %, (E,,) < 4 holds.
Interestingly, it is possible to approach saturation of the bound 4 by letting 7 = m — 1 and
letting m grow. This led us to consider if the Widom factors corresponding to compact
connected sets could be upper bounded. The formula (43) defining %, (E) suggests that
there are two perspectives to take into account if one wants to obtain large Widom factors.
One is to make ||TnE||E large and the other is to make Cap(E) small. The latter exempli-
fies the possible relation between large Widom factors and minimal capacity sets. As we
already discussed in relation to Paper 1, E,, are minimal capacity sets. Their symmetry fur-
ther “forces” certain zeros of the corresponding Chebyshev polynomials to be placed at the
origin. This combination of forced zero placement together with minimal capacity serves
as our motivation that they could provide large Widom factors. In Paper vi we show that
the sets E,, are extremal in providing large Widom factors certain degrees for symmetric
sets. Based on this we conjecture the following.

Conjecture 5. Let E ¢ C be an arbitrary non-degenerate continuum. Then
W (E) < 41—1/(n+1)
" (E) <

Jorall n = 1. In particular, the number 4 serves as a universal upper bound for all Widom
factors corresponding to such sers.

This result would show that [47, Problem 4.4] is impossible and provide an explicit upper
bound of 4. To investigate this further we consider the case # = 1 which states that

W (E) < 2

for any compact connected set with positive capacity. It turns out that this problem is
intimately connected to minimal capacity sets. Recalling Problem 4 we let E(4,, ..., 4,,)
denote the Chebotarev set corresponding to the points 4, ..., 4,,. Then the assertion that
W, (E) < 2 for any set compact connected set E with positive capacity is equivalent to the
statement that

Cap(E(-1,¢%,¢)) > 1/2, 0< ¢, ¢ <7/2. (113)
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While this remains a work in progress, numerical evidence strongly suggests the validity of
the claim. The Chebotarev problem for two points is trivially solved by the straight line
segment connecting them. However, the case of three points already demands significantly
more advanced techniques. The solution, involving Jacobi theta functions, is presented in
[106, 107]. A thorough analysis of these formulas is crucial for establishing (113).

In Paper v we also present work concerning Widom factors on Julia sets. In particular, we
consider a quasidisk E, such that lim sup W,(E,) > 1. Let E, be the Julia set associated
n—00

with
2 —c

where —1/4 < ¢ < 3/4. It follows from [108, Theorem 12.1] that E, is the closure of a Jordan
domain and from [109, SVIII] that this closure is in fact a quasicircle. As such, Theorem
21 implies that {7, (E,)} is a bounded sequence in 7. Since

{e:2°—ceE}=E
we conclude from Theorem 16 that
TZE" (2) =" —c.

Iterating, we can further extend this to

7 times

This result, originating from [42], was extended by Stawiska in [110] to show that if 7 > 1
and

E.(r) :={z: Gg (2) = logr}

then TZE;(V) = TZE, see also [111]. This broadens Faber’s result in [9] stating that the Cheby-

shev polynomials on ellipses with focii at +1 coincide with the Chebyshev polynomials of
the first kind. It follows from [30, Theorem 6.5.1] that Cap(E,) = 1 and that

1 /1 cE
>tz ek

If we additionally assume that ¢ > 0 then this value also coincides with £, (E,). Combining
the specific form of the norm with the fact that Cap(E,) = 1 we find that

‘Wzn(E[)=%+‘[;}+c>l

for any n. Interestingly, this example shows the existence of a compact set E which is the
closure of a Jordan domain such that

lim sup %, (E,) = %+‘&+c> 1. (114)
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It is an open problem whether

1 1
%(Ec) = z + Z +c
can be shown for every z. In a different phrasing, we question if the Julia set E, can be

mapped by a monic polynomial inside the disk of radius 5 + /7 + ¢. In Paper v1 we show
that this is impossible for degrees of the form » = £2” where # = 3 and m € N. Similar
proofs work for k£ = 5, 7.
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