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The cover of this thesis draws inspiration from the iconic Dragon
Book [Aho+07] by Aho, Sethi, and Ullman. Throughout my PhD journey, I often
found myself feeling like the knight on its cover—facing difficult challenges,
dealing with complex problems, and looking for answers in the literature. Like
the knight, I tried to advance, equipped with little more than curiosity and
determination. This image shows those moments of struggle and reflection, a
reminder of the mix of uncertainty, hope, and moments of happiness that come
with exploring a complex field like compiler technology and program analysis.
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Abstract

Static program analysis plays a crucial role in ensuring the quality and secu-
rity of software applications by detecting bugs and potential vulnerabilities in
the code. Traditionally, these analyses are performed offline, either as part of
the continuous integration / continuous deployment pipeline or overnight on the
entire repository. However, this delayed feedback disrupts developer productiv-
ity, requiring context switches and adding overhead to the development process.
Integrating these analysis results directly into the integrated development en-
vironment (IDE), similar to how type errors or code smells are reported, would
enhance the development process. As developers increasingly rely on IDEs for
real-time feedback, the efficiency and responsiveness of these tools have become
critical. In such settings, developers expect immediate and precise results as they
write and modify code, making it particularly challenging to achieve response
times sufficiently low to not interrupt the thought process.

This thesis starts addressing these challenges by investigating the design and
implementation of control-flow and dataflow analyses using the declarative Ref-
erence Attribute Grammars formalism. This formalism provides a high-level pro-
gramming approach that enhances expressivity and modularity, making it easier
to develop and maintain analyses.

Central to this thesis is the development of IntraCFG, a language-agnostic
framework designed to perform control-flow and dataflow analyses directly on
source code rather than relying on intermediate representations. By superim-
posing control-flow graphs onto the abstract syntax tree, IntraCFG removes the
need for intermediate representations that are often lossy and expensive to gener-
ate. This approach allows for the construction of efficient but still precise dataflow
analysis.

We demonstrate the effectiveness of IntraCFG through two case studies: In-
traJ and IntraTeal. These case studies showcase the potential and flexibility
of IntraCFG in diverse contexts, such as bug detection and education. IntraJ
supports the Java programming language, while IntraTeal is a tool designed for
teaching program analysis for the educational language Teal. IntraJ has proven
to be faster than, and as precise as, well-known industrial tools.
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Additionally, this thesis introduces a new algorithm for the demand-driven
evaluation of fixed-point (i.e., circular) attributes, which has proven essential for
the performance of dataflow analyses in IntraJ. This improvement allows In-
traJ to achieve response times below 0.1 seconds, making it suitable for use in
interactive development environments.
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Introduction

1 Introduction

Over the past few decades, software has become increasingly important in all sys-
tems. As our dependence on software grows, so do the risks associated with bugs,
which can lead to significant financial losses and even loss of life. Well-known ex-
amples of software bugs include the Therac-25 radiation therapy machine, which
caused six patient deaths due to radiation overdoses [LT93], the Mars Climate

Orbiter crash [Saw99]—resulting in a loss of 327 million dollars—and the Toyota
unintended acceleration which was linked to at least 49 deaths [Kan+10].

While it may seem intuitive to run the program directly to verify its func-
tionality, this approach overlooks the deeper issues at play in large-scale, safety-
critical systems. Testing alone is often insufficient to uncover subtle or rare bugs
that might only manifest under specific circumstances, such as unusual inputs
or environmental conditions. For instance, in the case of the Therac-25, multiple
software failures occurred due to complex interactions between different system
components, which were not anticipated through routine testing [LT93]. Simi-
larly, with the Toyota unintended acceleration incidents, the flaw was not imme-
diately apparent during standard testing protocols [Kan+10]. In both cases, static
analysis could have identified the issues before they resulted in catastrophic con-
sequences.

Static (program) analysis is a branch of computer science that aims to
study the behavior and properties of computer programs without executing
them. Static analysis is a key technique for ensuring software quality and
reliability and is widely used in various applications such as safety [Cou+05;
Bla+02], security [PKB21; Arz+14; Aye+08b; Say+22; FD12], and performance
optimization [Aho+07; App04].

Static analyzers, the tools implementing these analyses, automatically exam-
ine source code to identify potential issues such as bugs, code smells, or security
vulnerabilities. Due to the complexity and time required by these analyses, they
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are often executed offline as part of the continuous integration pipeline or run
overnight on the entire repository. While this approach has proven to be ef-
fective, it has practical limitations. In particular, developers must wait for the
analysis results before receiving feedback on their code changes, and if the static
analyzer identifies issues, the developer must then return to the code editor to
address them, potentially disrupting their workflow.

This process can significantly decrease developer productivity, especially if
the developer has already shifted focus to another task while awaiting the anal-
ysis results. In such situations, the developer might lose the context of the code
changes, making it more challenging to address the identified issues. Addition-
ally, the need to repeat the analysis multiple times to ensure all issues are fully
addressed can further reduce productivity.

The current capabilities of modern Integrated Development Environments
(IDEs) have led to a growing interest in developing static analyses that operate
concurrently with the developer’s interactions, providing instant feedback on the
code that is immediately visible to developers [Pis+22]. These analyses are gen-
erally limited to basic tasks such as syntax highlighting, code completion, type
checking, and the detection of simple code smells, such as unused variables or
unreachable code. These limitations are primarily due to the requirement that
the analysis must be highly responsive, with response times in the IDE needing
to be less than 0.1 seconds for users to perceive the analysis as responsive [Nie94].
More advanced analyses, such as dataflow analysis, however, are still primarily
conducted offline. The complexity of dataflow analysis arises from its focus on
the flow of data and information through a program. This technique is essential
for identifying more challenging sources of errors, such as API protocol viola-
tions, which ensure that software components interact in the correct sequence,
race conditions, and taint analysis, which tracks the flow of sensitive information
through a program. In addition to improving reliability, such analyses can also
enhance program performance by uncovering opportunities for parallelization
and other forms of optimization [Aho+07].

Traditionally, dataflow analysis has been implemented using imperative
paradigms, which are based on the idea of explicitly specifying how the analysis
should be performed. Recently, there has been a growing interest in using
declarative paradigms for dataflow analysis [SEV16; DR+11; DR24], which are
based on specifying what the analysis should compute rather than how. The
declarative approach leads to a higher-level specification, resulting in improved
modularity as the emphasis is on the desired outcome, rather than the specific
steps required to achieve it.

In this work, we use Reference Attribute Grammars [Hed00] (RAGs) as a
declarative approach for implementing dataflow analysis. RAGs are a powerful
and flexible formalism for specifying the abstract syntax and semantics of
languages, and as such, they are widely used in the development of compilers
and static analysis tools. Our implementation is primarily based on the Jas-
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tAdd [HM01] RAG system. JastAdd supports RAGs and implements recursive
demand-driven evaluation algorithms, ensuring that properties are evaluated
only when necessary, reducing the overall evaluation time by avoiding redun-
dant computations. Additionally, JastAdd supports circular attributes, which
are crucial for static analysis problems that involve recursive dependencies.
These attributes rely on fixed-point computations, which are challenging [Far86;
JS86] to implement efficiently in a demand-driven evaluation framework.

The primary goal of this thesis is to explore the implementation of static anal-
ysis frameworks using Reference Attribute Grammars. We aim to use the declar-
ative nature of RAGs and their demand-driven evaluation to develop static anal-
yses that can be executed directly within IDEs. One of our main objective is to
achieve highly responsive analyses, with execution times under 0.1 seconds. Our
attention is mainly directed towards intraprocedural dataflow analysis, which in-
volves examining the behavior of a method or function in isolation (i.e., without
considering the interactions with other methods or functions).

In this thesis, we present four complementary contributions that collectively
advance the implementation of static analysis frameworks using RAGs. These
contributions aim to enhance the performance, precision, and applicability of
static analysis techniques, particularly in the context of intraprocedural dataflow
analysis.

In Paper 1, we present IntraCFG, a language-agnostic framework that signif-
icantly improves the efficiency and precision of control-flow graph construction
in static analysis. Our evaluations show that IntraJ, an instance of IntraCFG
specifically designed for the Java programming language and built upon the Ex-
tendJ [EH07b] compiler, outperforms the industrial tool SonarQube in both ef-
ficiency and precision, achieving a response time of less than 0.1 seconds for
intraprocedural analyses.

In Paper 2, we provide a detailed description of IntraJ, including its archi-
tecture and implementation, as well as its practical applications as a standalone
tool for full program analysis and for performing on-demand analysis of files
currently visible in the user’s editor.

In Paper 3, we present JFeature, a static analysis tool for automatically ex-
tracting features from a Java codebase. JFeature enables researchers and de-
velopers to explore various characteristics of a codebase, including the usage
of different Java features e.g., lambda expressions, across various Java versions,
simplifying the identification of suitable corpora for evaluating their tools and
methodologies.

Finally, in Paper 4, we introduce the RelaxedStacked algorithm, a novel
demand-driven evaluation strategy for circular attributes in RAGs. This algo-
rithm addresses inefficiencies in attribute computation within the RAG frame-
work, reducing redundant evaluations of circular attributes and leading to signif-
icant performance improvements.

The remainder of this thesis is organized as follows. In Section 2, we pro-
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vide background information on program analysis and attribute grammars to en-
sure that the discussion is as self-contained as possible, providing the necessary
context to understand the contributions of this work. In Section 3, we present
IntraCFG along with its Java implementation, IntraJ, as detailed in Paper 1.
Section 4 introduces IntraTeal, an implementation of IntraCFG used to teach
program analysis concepts. Section 5 discusses practical uses of IntraJ and In-
traTeal in integrated development environments. More details about the in-
tegration of IntraJ into IDEs are covered in Paper 2. In Section 6, we present
JFeature, a tool for extracting features from Java codebases (Paper 3). Section 7
focuses on the RelaxedStacked algorithm, a novel demand-driven evaluation
strategy for circular attributes in RAGs, which is presented in Paper 4. Through-
out these sections, we discuss the key challenges in the field and the correspond-
ing solutions proposed by this work. Finally, Section 8 concludes the thesis by
summarizing the contributions and outlining potential directions for future re-
search.
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2 Background
This section provides an overview of the concepts that underlie the main results
of this thesis, with a focus on program analysis. Specifically, we briefly discuss the
existing techniques behind control-flow graph construction [Aho+07; NNH10]
and dataflow analysis [Kil73], as these are the analyses we focused on in this the-
sis. We will also give a general overview of the declarative approach used to im-
plement these analyses, namely (Reference) attribute grammars [Knu68; Hed00],
and their implementation through the JastAdd metacompiler. The dependency
graph in Figure 1 shows the relationship between the concepts and the contribu-
tions of this thesis.

Dataflow
Analysis

Control-Flow
Analysis

JastAdd

Reference Attribute
Grammars (RAGs)

Attribute
Grammars

Teal Programming
Language

IntraCFGIntraJ

IntraTeal

JFeature

Legend

Static Analysis Topic
Attribute Grammars
New contribution

Depends on

Java Programming
Language

Programming languages

RelaxedStacked
Algorithm

Call Graph
Analysis

Figure 1: Dependency graph of the background concepts and the contributions
of this thesis.

2.1 Automatic Program Analysis
Automatic program analysis is a key area in computer science, aiming to automat-
ically examine and assess the properties of programs, such as correctness, liveness,
and safety. Program analysis can be classified into two main approaches: static
analysis and dynamic analysis.

Dynamic analysis involves evaluating a program’s behavior by executing
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it. This approach gathers precise information from a specific execution of
the program, which can then be used to infer properties about its behavior.
Dynamic analysis is particularly effective in identifying runtime errors, such
as memory leaks [Lab03], performance bottlenecks [Int], and security vulner-
abilities [LZZ18]. However, this method has limitations, primarily due to its
dependence on complete and accurate input data for each execution.

In contrast, static analysis examines programs without executing them, re-
lying solely on their source code. This thesis focuses on two fundamental static
analysis techniques: intraprocedural control-flow graph (CFG) construction and
dataflow analysis.

Intraprocedural control-flow graph construction determines the order in
which statements and expressions within a single method are executed. It
provides a finite representation of all the possible paths within a method without
taking into account interactions with other method or function calls. Building
on this, intraprocedural dataflow analysis uses the control-flow information to
deduce how data flows within the same method, enabling the identification of
potential bugs or vulnerabilities.

Traditionally, static analyzers have been implemented using imperative ap-
proaches [LA04; VR+10], where control flow and data manipulation are explic-
itly handled through sequences of instructions, offering fine-grained control but
often resulting in complex and lessmaintainable implementations. In contrast, al-
ternative strategies, such as the use of Datalog [DRS21], functional programming
approaches [MYL16b], or ad-hoc implementations designed for specific problems,
provide different trade-offs between expressiveness and efficiency. In this work,
we adopt Reference Attribute Grammars (RAGs) [Hed00], a declarative and modu-
lar approach. By using RAGs, we benefit fromhigh-level abstractions, modularity,
and on-demand evaluation, which contribute to amore efficient andmaintainable
implementation.

2.2 Precision in Static Analysis

Precision is a critical factor in static analysis, reflecting the accuracy and gran-
ularity of information about a program’s properties. Traditionally, it has been
assumed that achieving higher precision comes with trade-offs, particularly in
terms of performance and scalability. As a general principle, greater precision
has often been associated with increased computational resource demands, lead-
ing to slower execution times. On the other hand, lower precision can improve
performance but at the cost of producing less accurate or overly general results.

However, recent insights challenge this traditional view. In particular, Erik
Bodden’s work in The Secret Sauce [Bod18] highlights that imprecision caused by
overapproximation can, in many cases, slow down the analysis rather than im-
prove it. While overapproximating may initially seem to reduce computational
complexity, it often leads to excessive false positives and the need to handle a
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larger set of spurious information, ultimately making the analysis less efficient.
As Bodden suggests, the belief that precision always comes at the cost of per-
formance is no longer as straightforward as once thought. In fact, in the long
run, more precise analyses may outperform less precise ones by reducing the un-
necessary work caused by imprecision. Balancing precision and performance in
static analysis requires careful consideration of how overapproximation affects
long-term efficiency. In simpler terms, the precision of a static analyzer refers
to its ability to minimize false positives, i.e., incorrectly identifying non-existent
bugs or vulnerabilities. In contrast, recall measures the ability to detect all rele-
vant issues, minimizing false negatives. Achieving a balance between precision
and recall often involves trade-offs: increasing precision can reduce recall, po-
tentially missing some bugs, while improving recall may introduce more false
positives, thereby lowering precision.

Despite efforts to balance precision and recall, no static analysis can guarantee
both soundness and completeness [Ric53]. In fact, our approach does not aim
to be either sound or complete but rather practical, focusing on usability and
effectiveness in real-world scenarios. This inherent limitation means that our
analyses, while effective, may still fail to identify all bugs, leading to potential
false positives or negatives [Liv+15].

Nevertheless, we chose to improve the precision of our analysis by focusing
on two specific aspects of the Java language: control flow and exceptions. While
control-flow analysis has been extensively studied [MS18], exception handling
has not received the same attention in this context. By implementing exception-
sensitive analyses, we aimed to address this gap. Control-sensitivity allows the
analysis to differentiate between true and false branches in conditional state-
ments, such as if-statements, thereby improving precision by considering the
side effects of conditional expressions. Similarly, exception-sensitivity enables
the analysis to track both checked and unchecked exceptions thrown and caught
within the program, enhancing precision by identifying potential bugs related to
exception handling.

2.3 Control-flow Graph Construction

Control-flow graph construction refers to the computation of the execution and
evaluation order of the program’s statements and expressions. Each possible exe-
cution order of a program is called a control-flow path. The result of the control-
flow analysis is a control-flow graph (CFG) G = (V,E). Each vertex v ∈ V rep-
resents a unit of execution, e.g., a single statement or expression, or a basic block
(a sequence of statements without labels and jumps). Each edge (v1,v2) ∈ E rep-
resents a control-flow edge, indicating that the execution of v1 may be directly
followed by the execution of v2.

We can distinguish two main approaches to constructing the CFG for a pro-
gram: at the source level and the intermediate representation (IR) level. The
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void foo(boolean b){
Integer x = 0;
if (b) {
x = 1;

} else {
x = null;

}
}

Entry

x = 0

if (b)

x = 1 x = null

Exit

true false

Figure 2: Source level control-flow graph of the foomethod, showing the branch-
ing behavior of the if-statement.

source-level approach involves analyzing the source code directly and construct-
ing the CFG based on the abstract syntax tree (AST). The IR approach, on the
other hand, first converts the source code into an intermediate representation,
such as bytecode, and then constructs the CFG from the IR.

Both approaches have their advantages and drawbacks. Constructing the CFG
at the source level allows analysis results to be mapped directly back to the source
code, making it easier to present findings in the context of the original program.
In contrast, constructing the CFG at the IR level requires a translation step to
relate the analysis results to the source code, which may not always be feasi-
ble, as seen with Java’s source-file retention policy for annotations where
information is lost during the process. For this reason, constructing the CFG
at the source level is particularly valuable for tasks such as debugging and pro-
gram understanding, as it provides a clear and direct representation of the pro-
gram. Additionally, this approach can enable faster and more efficient analysis by
eliminating the overhead of IR generation, while also being capable of handling
semantically and syntactically invalid code, making it suitable for analyzing in-
complete programs. Most importantly, constructing the CFG at the source level
is particularly advantageous in interactive scenarios, such as analysis within an
IDE, where the overhead of IR generation may introduce unacceptable latency.

However, there are also disadvantages to constructing the CFG at the source
level. One significant limitation is the difficulty in accurately capturing the con-
trol flow of a program due to unsugared constructs, such as macros and prepro-
cessor directives, which can complicate the specification of the analysis. Addi-
tionally, the source-level approach requires significantly more engineering effort
compared to the IR approach. IRs are typically more compact than source lan-
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1 : iconst_0
2 : invokestatic #7
3 : astore_2
4 : iload_1
5 : ifeq 17
6 : iconst_1
7 : invokestatic #7
8 : astore_2
9 : goto 19
10: aconst_null
11: astore_2
12: return

1

2

3

4

56

7

8

9

10

11

12 exit

entry

Figure 3: Bytecode control-flow graph of the foo method. Each dashed box rep-
resents a basic block.

guages, which reduces the number of language constructs that need to be han-
dled, thus simplifying CFG construction. Moreover, since an IR can be targeted
by multiple languages, it helps solve the NxM problem by providing a common
representation. In general, the diversity of programming languages, each with
unique syntax and semantics, makes it challenging to design a single analysis
that can be applied universally across different languages.

To illustrate the differences between the source-level and IR-based approaches
discussed, consider the examples in Figures 2 and 3, which show the control-
flow graphs for a simple method foo at both the source level and bytecode level.
As can be seen, the source-level CFG provides a clear and direct representation
of the program’s control flow, making it easier to understand and interpret the
program’s behavior. In contrast, the bytecode CFG ismore abstract and difficult to
interpret, as it lacks the high-level constructs present in the source code. We can
also notice that both graphs have been augmented with Entry and Exit nodes,
which represent the unique entry and exit points of the method, respectively.
These nodes are crucial for simplifying the structure of dataflow analyses. For
example, the Entry node provides a clear starting point for the analysis, ensuring
proper initialization of parameters and variables at the beginning of the method.
Similarly, the Exit node becomes important in backward dataflow analyses, which
we will discuss in the next section.

2.4 Dataflow Analysis

Dataflow analysis is a technique used to analyse the flow of data through a pro-
gram. It has its roots in the field of program optimisation [Kil73], where it was
initially used to identify opportunities for improving the performance of pro-
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grams by tracking variable definitions and uses. This information can be used to
optimise the program by eliminating unnecessary computations (e.g., Very Busy
Expression or Available Expression analyses [Aho+07]) and improving the use of
available resources (e.g., registers optimisation).

In the context of bug detection, dataflow analysis can be used to identify po-
tential sources of errors in a program by tracking the flow of data through the
program and identifying points where data may be used in unexpected or incor-
rect ways. This can be particularly useful in identifying bugs that may not be
immediately apparent, such as those that only occur under certain conditions or
when certain combinations of input data are used (e.g., IndexOutOfBound excep-
tion). Many static analysis tools for Java programs, e.g., FindBugs [Aye+08a],
employ intraprocedural dataflow analysis to identify potential bugs in Java code.
Dataflow analysis, particularly interprocedural dataflow analysis, is widely used
to identify potential security vulnerabilities in software [Arz+14]. For example,
an interprocedural control-flow graph enables tracking of the flow across mul-
tiple methods or functions, thereby allowing identification of points where the
data may be exposed to unauthorized access or manipulation.

We will demonstrate an application of intraprocedural dataflow analysis by
presenting the following practical, but incomplete, example. Let us reconsider
the foo method introduced in Figure 2. Our goal is to determine at each stage of
the program whether the variable x has a null value or not1.

At the entry point of the method, i.e., Entry node, it is indeterminate whether
x is null or not, as it has not been initialized yet. However, at the declaration of
the variable x, we can determine that it is not null because it is initialised to a
non-null value. Then, if the condition if(b) is true, the variable x is assigned a
new value, which is not null. If the condition is false, the variable x is assigned
null. Therefore, at the end of the method, the variable x may be either null or
not null. Consider the scenario where x is used and dereferenced immediately
after the if-else statement, for example, calling a method on x. The program will
then crash, with a NullPointerException, if x is null. Dataflow information
can be used to identify potential bugs like this in a program.

We keep track of the value of x by mapping it to a finite set of possible values:
null, notnull, maybenull, or unknown. As we traverse the control-flow graph,
we propagate this information from node n to node n′ if (n,n′) ∈ E, until it
reaches the Exit node.

The information is updated at each node n according to the following rules:

• If n is an assignment node, the information is updated according to the
assignment operation. For example, if the assignment is x = null, then it
is recorded that x is updated to null. If the assignment is x = y, then x is
mapped to the value y maps to.

1For simplicity, just for this example, we assume that the language allows only assignments of
the form x = y where y can be either a variable, a numeric constant or the null literal. We also
assume that CFG nodes are individual assignments.
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• If n is not an assignment node and has a single predecessor, no information
is updated.

• If n has multiple predecessors, the information from the predecessors
is merged conservatively. Specifically, if x is marked as both null
and notnull by different predecessors, it is conservatively marked as
maybenull.

The dataflow analysis just described is an instance of the mathematical con-
cept of Monotone Frameworks [NNH10].

Monotone Frameworks
Monotone frameworks are a theoretical approach for reasoning about program
dataflow properties. This approach provides a flexible and generic framework for
expressing and solving dataflow equations, which can be used to reason about a
wide range of dataflow properties, such as live variables, reaching definitions and
available expressions analyses. Monotone frameworks are built on the concept of
lattices [Don68].

A latticeL = (S,≤) is a partially ordered set in which any two elements have
a unique least upper bound (also known as a join or a supremum) and a unique
greatest lower bound (also known as a meet or an infimum). This means that, for
any elements a and b in S, there exists a unique element denoted as a⊔b (or a∨b)
such that a ≤ a ⊔ b and b ≤ a ⊔ b, and a ⊓ b (or a ∧ b) such that a ⊓ b ≤ a and
a⊓b ≤ b. A complete lattice has a unique least element, commonly denoted as⊥,
and a unique greatest element commonly denoted as ⊤. These elements satisfy
the properties that for any element x in the lattice,⊥ ≤ x and x ≤ ⊤. In dataflow
analysis, lattices are widely used to represent the information flow in a program.

maybenull

null notnull

unknown

Figure 4: Diagram of the partial order in
the example in Section 2.4, showing the
order relation between maybenull (⊤),
unknown (⊥), null, and notnull.

A common example of a lattice used in
dataflow analysis is the binary lattice

with elements true and false, which is
used to represent the presence or ab-
sence of a property. Another example
is the interval lattice, which is used to
represent ranges of numbers. This lat-
tice, compared to the binary lattice, is
more complex but provides more pre-
cise information about the flow of nu-
merical values in a program. Addi-
tionally, while the binary lattice is fi-
nite height, the interval lattice can be
potentially infinite.

Monotone frameworks include a
join operator ⊔, a monotone transfer function f , and a finite height lattice L.
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A monotone transfer function is a mathematical function that maps an element
of a partially ordered set to another element in the same set such that the partial
ordering is preserved under the function. More formally, if (S,≤) is a partially
ordered set and f : S → S is a function, f is called a monotone transfer function
iff, for all x, y ∈ S such that x ≤ y, it follows that f(x) ≤ f(y).

In our example, the lattice L is used to model the possible values, i.e., null,
notnull, maybenull, and unknown, that a variable can assume. This lattice is
shown in Figure 4. Here maybenull is the greatest element in the lattice, as it
represents the set of all possible values that a variable can take. On the other
hand, unknown is the least element representing the absence of information. The
join operator ⊔merges the information of two nodes. For instance, if node n has
information null and node n′ has information notnull, then the information
at the merged node n

⊔
n′ becomes maybenull. In the previous section, we ex-

plained how a node affects the flow of data using natural language. Now, we will
present this concept in a formal manner as a transfer function. Let Var be the set
of variables in the program, V be the set of nodes in the CFG, and Γ : Var → L
be the function that maps variables to elements of the lattice L. The monotone
transfer function fNULL : (Var → L)× V → (Var → L) is defined as follows:

fNULL(Γ, node) =

{
Γ[v 7→ JeKΓ] if node is v = e
Γ otherwise

where JnKΓ for n ∈ Num = notnull

JnullKΓ = null

JvKΓ for v ∈ Var = Γ(v)

To propagate information from node n to its succeeding nodes (in the CFG)
and to represent the effect of passing through a node, we define the following
two equations:

in(n) =

{v → ⊥ | ∀v ∈Var} if n is Entry⊔
p∈pred(n)

out(p) otherwise

out(n) = fNULL(in(n),n)

where pred(n) is the set of predecessors of the node n, i.e., pred(n) = {p |
(p,n) ∈ E} and E is the set of edges in the CFG. We have defined the in and
the out sets to model the information that is available before and after passing
through a node, respectively. The in set gathers the available information before
entering the node, while the out set captures the effect of applying the transfer
function fNULL on the in set. This kind of analysis is called a forward analysis

because it propagates information from the entry node to the exit node.
These equations can be adapted to perform backward analyses, i.e., analyses

that propagate information from the exit node to the entry node. Let us look at the
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general definition of a backward analysis. Given a monotonic transfer function f
and a finite lattice L, the equations for a backward analysis is defined as follow:

out(n) =
⊔

s∈succ(n)

in(s)

in(n) = f(out(n),n)

where succ(n) is the set of successors of the node n, i.e., succ(n) = {s | (n,s) ∈
E}. The boundary condition for the out set when n is the Exit node differs de-
pending on the analysis.

The equations for both forward and backward analyses define a mutual de-
pendency between the in and out sets of a node. A fixed-point computation
is used to resolve circular dependencies in program analysis. Mathematically, a
fixed point is an element x of a function f such that f(x) = x. In the context
of static analysis, this refers to the stable state where further iterations of the
analysis yield no changes, indicating that the analysis has converged.

Several conditions must be met for a fixed point to exist and be unique. Ac-
cording to the Knaster-Tarski theorem [Tar55], if the transfer function f is mono-
tonic and operates over a complete lattice, a fixed point is guaranteed to ex-
ist. Monotonicity ensures that for any two elements x and y, if x ≤ y, then
f(x) ≤ f(y). The complete lattice structure provides a well-defined least and
greatest element, which allows fixed-point computations to converge to the least
fixed point. This least fixed point is both unique and minimal among all possible
fixed points, ensuring that the analysis reaches the most conservative and sound
result.

This result is essential not only for dataflow analysis, but also for the evalua-
tion of circular attributes in Reference Attribute Grammars (RAGs) [Hed00].

2.5 Attribute Grammars
Attribute grammars [Knu68] (AGs) are a formalism for specifying the syntax and
semantics of programming languages. This formalism is based on the concept of
attributes, which are properties associated with the elements of a language’s ab-
stract syntax tree. Attribute grammars provide a powerful tool for specifying the
behavior of a programming language and for verifying compile-time correctness
of programs written in that language. AGs are composed of three components:
a context-free grammar, which defines the language’s syntax, a set of attributes,
which are properties associated with the nodes of the abstract syntax tree, and
attribute equations, used to compute the values of the attributes associated with
each node in the abstract syntax tree.

Attribute grammars enable the description of the interdependence of syntac-
tic and semantic elements of a programming language. For instance, the type of a
variable may be determined by its declaration, but the type of an expression may
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be determined by the types of its sub-expressions. Attribute grammars provide a
way to specify these rules.

We can distinguish two types of attributes: synthesized attributes and inher-
ited attributes. For the sake of readability, we adopt the commonly used notation
in Attribute Grammars, where attribute names are preceded by a symbol (e.g., ↑,
↓) to indicate the type of attribute, such as synthesized or inherited.

A synthesized attribute is a property of a node that is computed based on
the attributes of the subtree rooted at that node. For example, the type of an
expression in a programming language may be a synthesized attribute computed
based on the types of sub-expressions in the expression. For example, in Java, the
type of the expression “40 + 2” is determined to be an integer based on the types
of its operands, whereas the type of the expression “"John" + 117” is determined
to be a string due to the operands involved.

Synthesized attributes are composed by a declaration and an equation:

T A.↑x
A.↑x = e

where T is the type of the attribute, A is the node type, and x is the attribute
name. The up-arrow symbol (↑) is used to denote a synthesized attribute. The
right-hand side of the equation is an expression, e, that may use other attributes
of the A node or its children. If A has subtypes, say A1<:A and A2 <:A, different
equations can be given for A2 and A1. If all subtypes will use the same equation,
the declaration and the equation can be combined into a single line, as follows:

T A.↑x = e

An inherited attribute is a property of a node that gets its value from its parent
in the abstract syntax tree. An example of inherited attribute is the expected
type of an expression. The expected type of an expression is inherited from the
context in which the expression is used. For example, the expected type of the
condition in an if-statement is boolean. This information is inherited from the
if statement node.

Inherited attributes are defined in two parts: a declaration and an equation.

T B.↓x
A.B.↓x = e

where A and B are node types and the down-arrow symbol (↓) is used to denote
an inherited attribute. The equation defines the x attribute of A’s child B. The
expression e may use the attributes of A and any of its children.

2.6 Reference Attribute Grammars
Reference Attribute Grammars (RAGs) were introduced by Hedin in [Hed00] and
are an extension of AGs to Object-Oriented languages. While attributes in AGs
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can only refer to terminal values, RAGs allow attributes to refer to non-terminals,
i.e., nodes in the AST. RAGs are well-suited for the analysis of programming
languages since they enable the definition of relations between AST nodes. At-
tributes referring to AST nodes can declaratively construct relations, i.e., graphs,
on the AST. Examples of the relations that can be constructed using RAGs are:

• Name and Type analysis [FH16; EH07a; FH15]: establishes a mapping be-
tween variable declarations and their corresponding uses, ensuring that
each variable reference is resolved to its correct declaration. In addition
to resolving names, type analysis ensures that expressions and variables
conform to the correct types based on the program’s type system.

• Control flow graph [Söd+13b; Rio+21]: a graphwhere nodes are statements
or expressions, and edges are control flow relations, and,

• Call graph (see Paper 4): a graph where nodes are methods and edges are
method calls.

RAGs are implemented by systems such as Silver [Van+10a] and Kiama [SKV10].
In this thesis, we used the JastAdd metacompiler [HM01].

2.7 The JastAdd Metacompiler
The JastAdd metacompiler [HM01] is a Java-based system that generates exe-
cutable Java code from an abstract grammar and a RAGs specification. For each
non-terminal in the grammar, JastAdd creates a corresponding Java class, where
each attribute defined in the RAGs specification is translated into amethodwithin
the respective class. These methods come with additional mechanisms, such as
memoization and attribute location, to optimize attribute handling.

One of the key strengths of JastAdd is its support for on-demand attribute
evaluation. Attributes are computed only when they are explicitly needed, allow-
ing the analysis to trigger computations dynamically. This feature is particularly
useful in scenarios where the computation of an attribute is not always necessary.

The JastAdd metacompiler consists of two main components:

• The JastAdd language: a domain-specific language for defining RAGs. It
allows for the specification of abstract grammars and attribute equations
using a Java-like syntax.

• The JastAdd compiler: a compiler that generates Java code from the RAG
specifications, transforming the abstract grammar and attribute definitions
into Java classes and methods.

JastAdd supports synthesized and inherited attributes, as well as other spe-
cialized kinds of attributes. The most important attributes relevant to this thesis
are: Parametrised Attributes [Hed00], Higher-Order Attributes [VSK89b], Circular
Attributes [Far86; JS86], and Collection Attributes [Boy96].
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Parametrized Attributes are attributes whose value may depend on one or
more parameters supplied to them. In this thesis, we use parametrized
attributes to pass the context Γ, which carries the information required for
dataflow analysis from one CFGNode to another. They are also commonly
used in type systems to check whether two types are compatible.

Higher-Order Attributes (HOA): Also referred to as Non-Terminal Attributes

(NTA), higher-order attributes are attributes whose values are fresh AST
subtrees. They are called higher-order because they are both attributes and
non-terminal nodes, meaning they can themselves be attributed. HOAs are
commonly used to represent information that is not explicitly present in the
source code or the AST. For example, we useHOAs to reify amethod’s entry
and exit points, which are essential for CFG construction. Throughout this
thesis, we use the right-arrow symbol (→) to denote HOA attributes, such
as FunDecl.→entry and FunDecl.→exit.

Collection Attributes: Unlike other attributes that are defined by equations,
collection attributes gather their values through contributions. These con-
tributions can originate from any point in the AST and are aggregated to
form the final value of the collection attribute. A contribution clause, as-
sociated with an AST node type, specifies what data should be contributed
to the collection attribute and under what conditions.
Collection attributes are particularly useful in scenarios where data needs
to be collected from different parts of the AST. A common use case is in
compiler construction, where all semantic errors in a program must be col-
lected regardless of their location in the AST.
For example, the collection attribute Program.□errors, gathers all semantic
errors in a program. Since multiple contribution clauses can be defined
for a single collection attribute, new error types can be easily added by
introducing additional clauses.
In this thesis, we use collection attributes to compute reverse relations in
CFGs. For instance, the predecessors of a node (CFGNode.□pred) are com-
puted as the reverse of its successors (CFGNode.↑succ).

Circular Attributes: Circular attributes are attributes whose definitions may
depend on themselves, either directly or indirectly. In JastAdd, circu-
lar attributes are declared using the circular keyword and are evaluated
through a fixed-point computation. This process starts with an initial value
and continues until the attribute’s value stabilizes, i.e., does not change be-
tween iterations.
To guarantee termination, certain conditions must be met, although Jas-
tAdd does not enforce these:

• The possible values of the attributemust form a lattice of finite height.
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  class B {
    public int x(){
       return 1;
    }
 

  }

A;
B;

JastAdd
Metacompiler

Abstract Grammar (.ast)

Attribute Specification (.jrag)

A.java

B.java

  class A {
    public int x(){
       return 1;
    }
 

  }

 public int x(){
   // RAG eval support
   // e.g., caching
   return 1;
 }

A.java

 public int x(){
   // RAG eval support
   // e.g., caching
   return 2;
 }

  aspect AttrDecl {
    syn int A.x() = 1;
    syn int B.x() = 2;
 }

Figure 5: JastAdd generates Java classes from the abstract grammar and weaves
the code from the intertype declarations into the corresponding generated classes
A and B. Additional RAG code for on-demand evaluation is omitted for clarity.

• The intermediate results of the fixed-point algorithm must increase
or decrease monotonically2.

We use the notation A.⟲↑x to denote a circular synthesized attribute. For
example, consider the circular attribute A.⟲↑x defined as Math.min(3,
A.⟲↑x + 1). In this case, the attribute begins with an initial value (e.g.,
0), and through fixed-point iteration, it stabilizes at 3 after three iterations.
Computing circular attributes both correctly and efficiently is challenging.
Given their relevance to this thesis, as they impact not only the accuracy of
the computed values but also the overall performance, we will explore the
existing algorithm for circular attribute evaluation in detail in Section 2.8.

Another important feature of JastAdd is its support for AspectJ-
style [Kic+97] intertype declarations, which allows attributes to be defined
in a highly modular fashion. This approach enables attribute declarations and

2In this thesis, boolean circular attributes start as false and grow monotonically using ∨, while
set-typed attributes start as the empty set and grow using ∪.



18 Introduction

equations to be written in separate aspects, increasing modularity by decoupling
the attribute logic from the core structure of the abstract grammar. As a result,
JastAdd automatically generates the corresponding Java methods and weaves
them into the appropriate classes derived from the abstract grammar, simplifying
maintenance and extension of the code.

Figure 5 shows an intertype declaration for attributes. In this example, the
attributes A.↑x and B.↑x are declared in the aspect AttrDecl and are woven into
the respective classes A and B.

2.8 Circular Attributes

In the traditional formulation of Attribute Grammars by Donald Knuth [Knu68],
a grammar with circular dependencies is considered ill-formed. However, the
inability to define circular dependencies in Attribute Grammars presents a limi-
tation, as many language properties are inherently recursive, and circular depen-
dencies often provide a natural way to express such relationships.

This limitation was addressed independently and concurrently by Far-
row [Far86] and Jones et al. [JS86]. Farrow demonstrated that circular attribute
grammars can be well-defined under certain constraints by ensuring mono-
tonicity and boundedness in attribute values. This allows the computation
of least fixed points through successive approximation [Far86]. Jones et al.,
extended attribute grammars to support circular dependencies in the context of
hierarchical VLSI design, where cycles are inherent in circuits. Their approach
involved partitioning the dependency graph into strongly connected components
and using fixed-point computations to ensure a correct evaluation of circular
attributes [JS86].

Sasaki and Sassa [SS03] extended circular attribute grammars by introduc-
ing Circular Remote Attribute Grammars, which support both circular dependen-
cies and non-local attribute references. This extension allows attributes to ref-
erence values from distant nodes in the syntax tree, overcoming the limitation
of traditional AGs that restrict dependencies to parent-child relationships. Their
approach introduced remote links, a restricted form of reference attributes, and
described how to perform exhaustive circular evaluation over these links. How-
ever, these remote links must be set prior to evaluation, meaning they cannot be
dynamically computed during the evaluation process.

Boyland [Boy96] expanded the understanding of circular attributes by intro-
ducing techniques for modular demand evaluation, which allows attributes to be
evaluated only when needed. His approach ensures termination even in the pres-
ence of circular dependencies, by using a combination of demand-driven evalua-
tion and monotonicity constraints. However, Boyland did not provide the actual
algorithm for implementing this evaluation strategy.

Magnusson et al. [MH07c] proposed several algorithms to handle circular de-
pendencies in Circular Reference Attributed Grammars. The most important



2 Background 19

algorithms are the BasicMonolithic and BasicStackedold
3 algorithms. The

BasicMonolithic algorithm computes attribute values using an iterative fixed-
point process. All attributes involved in circular dependencies are initialized to
a bottom value specified by the user and updated iteratively until no further
changes occur, ensuring the computation of the least fixed point. However, this
approach evaluates all attributes in a unified process, which can lead to ineffi-
ciencies when nested circular dependencies or complex interdependencies are
present.

For example, consider the attribute system on the left side of Figure 6. In one
cycle, attributes a1, a2, a3 depend on each other, and they all, directly or indi-
rectly, depend on the attribute b, which in turn depends on another cycle involv-
ing c1 and c2. Let us suppose evaluation starts in a1. In the BasicMonolithic
approach, the evaluation of these cycles would be handled in a single, monolithic
component and all attributes involved in the cycle, i.e., (a1, a2, a3, b, c1, c2) are
updated together in each iteration. This leads to inefficiencies because changes in
a1, a2, a3 may unnecessarily trigger re-evaluations of c1, c2 through their depen-
dency on b, even though they form separate cycles. This inefficiency is illustrated
by the computation tree on the right side of Figure 6.
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Figure 6: Example of two strongly connected components separated by the Non-
Circular attribute b. On the left, the attributes dependencies are shown. C de-
notes Circular and NC denotes NonCircular. On the right, the tree of recur-
sive call is showed. The requested attribute a1 will drive a fixed-point iteration,
repeatedly evaluating the equation defining a1 until all downstream attributes
have converged. Here grey nodes represent attributes that have not yet con-
verged, green nodes indicate attributes that have converged in that iteration, and
red nodes are attributes that have converged but are still recomputed in subse-
quent iterations.

3In this thesis, the term BasicStackedold refers to the [MH07b] version of the algorithm, in con-
trast to the newer BasicStacked, which is discussed introduced later in this section.
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Figure 7: Example of a circular dependency that can lead to exponential attribute
evaluation time. The left side shows the dependency graph between attributes,
while the right side shows the order in which the attributes are evaluated. Red
nodes indicate the redundant attribute evaluation within the same fixed-point
iteration.

The BasicStackedold algorithm optimizes this process by identifying distinct
strongly connected components and evaluating them separately.

The BasicStackedold applies several improvements to the BasicMonolithic
approach. Themajor improvement is the introduction of a stack-based evaluation
strategy that allows for the separation of strongly connected components (SCCs)
in the dependency graph. Strongly connected components are identified and eval-
uated separately, if they are separated by a NonCircular attribute, which acts
as a bridge between different cycles. When a NonCircular attribute triggers the
evaluation of a circular attribute, the evaluation of any ongoing circular evalua-
tion is suspended, allowing the start of a new circular evaluation. For instance,
in the earlier example, where attributes a1, a2, a3 depend on each other and on b,
which in turn depends on c1, c2, c3, BasicStackedold would identify the two in-
terdependent cycles separately as strongly connected components. The first SCC
would contain a1, a2, a3, while the second SCC would consist of c1, c2. The con-
necting node b would block any ongoing circular evaluation, allowing the start
of new ones. When b calls c1, the evaluation of the second SCC would begin as a
new circular evaluation.

The BasicStackedold algorithm, however, suffers from a major inefficiency,
which can lead to exponential evaluation time in certain cases. The inefficiency
arises when the same attribute can be reached along more than one path in the
dependency graph. In each iteration, the attribute will then be evaluated once
for each path, although one evaluation would have been sufficient. To illustrate
the problem, consider the example shown in Figure 7. The left side of the figure
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displays the dependency graph between attributes, and the right side shows the
evaluation tree of recursive calls for one iteration in the fixed-point computation.

When the attribute a1 is requested, the fixed-point iteration starts, driven by
the a1 attribute. In each iteration, a1 computes a new approximation of its value.
To do so, it first calls a3. This leads to a chain of recursive calls to a4, c1, c3, and
c4. As shown on the right side of the figure, when the evaluation reaches c4, it
loops back to a1. However, since a1 is the driver of the fixed-point computation,
the recursion stops, and the current value of a1 is returned (the bottom value for
the first iteration).

When control is returned to c1, it continues by calling c2, leading to a new
call to c4 and on to a1, where the recursion is again stopped. A similar chain of
redundant calls happens when a2 calls a4. However, the a1 value has not been
updated yet, so the second call to c4 is redundant.

In the worst-case scenario, the same attribute may be recomputed 2n times,
where n is the number of possible paths leading back to the driver attribute.

During the years, the JastAdd team has proposed several improvements to
the BasicStackedold algorithm, resulting in the BasicStacked algorithm. In the
BasicStacked, we track the iteration during which each attribute was last eval-
uated in the fixed-point computation. This avoids redundant evaluations when
an attribute’s value is used multiple times in the same iteration, improving ef-
ficiency. This approach, furthermore, allows for the detection of attributes that
are incorrectly classified as non-circular but are actually part of a cycle at run-
time. In comparison, Magnusson’s algorithm did not include this detection and
could yield incorrect results in such cases. While Magnusson proposed a fix by
tracking sets of attribute instances for each fixed-point component, it would have
introduced significant performance overhead.

Nevertheless, the BasicStacked algorithm still has limitations. One signifi-
cant challenge is that developers must manually identify circular dependencies,
which can be prone to errors and difficult to manage, especially in large, contin-
uously evolving codebases. In large projects, such as the ExtendJ Java compiler,
even minor modifications to attribute definitions can unintentionally introduce
new circular dependencies. This makes it hard to predict which attributes will re-
quire circular declarations. As a result, developers often over-annotate attributes
as Circular, leading to unnecessary fixed-point computations and associated
performance costs.

Öqvist [ÖH17; Öqv18] introduced a new algorithm, RelaxedMonolithic,
which aims to overcome some of the limitations of the BasicStacked algorithm.
One of its features is the introduction of a new type of attribute, called Agnostic.
Agnostic attributes are only treated as Circular when they are part of a cycle,
and otherwise, they are treated as NonCircular. This approach offers two main
benefits. First, it simplifies the development process since the developer does not
need to carefully classify every attribute as circular or non-circular. The only
requirement is that at least one attribute in a cycle is declared Circular. Second,
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1968 - Knuth [Knu68]: Traditional attribute grammars, do not
support circular dependencies, considering them ill-formed.

1986 - Farrow [Far86] & Jones et al. [JS86]: Independently in-
troduced circular but well-defined attribute grammars. Farrow’s
approach statically analyzes dependencies, while Jones’s relies on a
dynamic dependency graph to identify strongly connected compo-
nents and supports incremental evaluation.

1996 - Boyland [Boy96]: Describes demand-driven evaluation
for circular attributes in the presence of so-called remote attributes
(similar to reference attributes), but gives no explicit evaluation
algorithm.

2002 - Sasaki and Sassa [SS03]: Extend attribute grammars with
remote links, a restricted form of reference attributes, and describe
exhaustive circular evaluation over them.

2003 - Magnusson et al. [MH07b]: Proposed the first circular
evaluation algorithm for RAGs, BasicMonolithic, which lacked
SCC separation, resulting in inefficiencies. BasicStackedold ad-
dressed this by introducing SCC separation, though some cases still
exhibited exponential evaluation time.

2003 - 2024 - JastAdd Team: Several improvements were imple-
mented, e.g., fixing the exponential evaluation time issue to the
BasicStackedold algorithm, resulting in the BasicStacked algo-
rithm.

2017 - Öqvist et. al.[ÖH17]: Introduced RelaxedMonolithic
with Agnostic attributes for flexible circular/non-circular classifi-
cation. However, once circular evaluation starts, SCCs cannot be
separated, leading to inefficiencies similar to BasicMonolithic.

2024 - Riouak et. al. (Paper 4): We presented a new algorithm,
RelaxedStacked, which combines the strength of BasicStacked
and RelaxedMonolithic using static analysis, allowing the coexis-
tence of Circular, NonCircular and Agnostic attributes.

Figure 8: Timeline of circular attribute grammar developments, with key chal-
lenges and improvements over time.
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if an Agnostic attribute is not part of a cycle, it is treated as NonCircular,
avoiding the overhead of circular evaluations using the fixed-point evaluation
strategy.

However, this comes with a trade-off. Once a circular evaluation starts, the
algorithm cannot separate strongly connected components, leading to the same
inefficiencies found in the BasicMonolithic approach. This results in the same
issue described in Figure 6, where unrelated dependencies are evaluated together,
increasing computational overhead.

Figure 8 shows a timeline of circular attribute grammar developments, with
key challenges and improvements over time.
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Figure 9: Example of a Parent-First (left) and AST-Unrestricted (right) CFGs.

3 IntraCFG: Intraprocedural Framework for
Source-Level Control-Flow Analysis

The construction of control-flow graphs has advanced significantly in recent
years, leading to the emergence of multiple frameworks that support the creation
of precise intraprocedural CFGs [SWV20; Söd+13a]. However, despite these
advancements, many existing frameworks either lack the efficiency required
for practical, real-time analysis or do not provide the precision necessary for
advanced, source-level analyses.

To address these challenges, we developed IntraCFG, a declarative, RAG-
based, and language-independent framework designed to construct precise in-
traprocedural CFGs directly from the source code, avoiding the additional step of
generating intermediate representations, e.g., bytecode or LLVM IR. By operat-
ing at the source level, IntraCFG allows developers to customize the inclusion or
exclusion of relevant information, such as specific AST nodes, based on the needs
of the application. This flexibility helps balance both performance and precision
of the analysis.

3.1 Motivation and Challenges
The primary goal driving the development of IntraCFG was to enhance the
flexibility and precision of intraprocedural analyses by constructing CFGs on
the source-level that are not bound by the rigid structure of the AST. The pre-
vious RAG-based framework, JastAddJ-Intraflow [Söd+13b], generates CFGs
that include all AST nodes in a parent-first order. This approach can result
in imprecision, as the CFGs may not accurately reflect the true control flow of
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Figure 10: The CFGs shown in Figure 9 without AST structure.

the program, leading to inefficiencies and reduced accuracy, especially when
users require more granular control over which nodes are included in the anal-
ysis. As an example, consider the incomplete Java code snippet in Listing 1.

Listing 1: Java code snippet.
while(p1<p2){
p1++;

}

The JastAddJ-Intraflow framework would
generate a CFG that includes all the nodes of
the AST in a parent-first order, as shown on
the left side of Figure 9. On the other hand, In-
traCFG can generate a CFG that is not con-
strained to follow the structure of the AST
(AST-Unrestricted), as shown on the right
side of the figure. Instead, it includes only the

relevant nodes for the control flow of the program, resulting in a more precise
representation. Figure 10 shows the CFGs without the AST structure, highlight-
ing the difference in precision between the two approaches.
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In contrast to source-level CFG construction, many existing frameworks op-
erate at the intermediate representation level. While IntraCFG can be applied
to construct CFGs at the intermediate representation level, the primary focus of
this thesis is on source-level CFG construction to avoid the overhead associated
with IR generation and to preserve the source semantics.

3.2 The IntraCFG Framework

IntraCFG is a declarative, RAG-based, and language-agnostic framework that
constructs AST-Unrestricted CFGs directly at the source code level. The frame-
work addresses the limitations of existing frameworks by providing an interface
that allows users to define the precision of the CFGs by selectively including or
excluding specific AST nodes.

Unlike many other frameworks that build control-flow graphs at the interme-
diate representation level, such as bytecode, IntraCFG adopts an approach that
superimposes the CFGs on the abstract syntax tree. This design choice offers
several advantages, particularly in the context of Java programming.

The advantages and disadvantages of constructing CFGs at the AST level were
discussed in Section 2.3. For convenience, we provide a summary of the main
points here. One significant benefit of constructing CFGs directly on the source
code level is the preservation of certain features that may be lost during compi-
lation to bytecode. For example, annotations with source retention policies are
retained, allowing for more precise client analysis and better alignment with the
original source semantics. Additionally, the source-level CFGs can be more easily
understood by developers and error reports can be more accurately mapped back
to the source code, simplifying the debugging process. However, this approach is
not without its challenges. The engineering effort required to implement CFGs at
the AST level can be considerable. While desugaring the AST to a more precise
representation is possible [OH13], it may require additional effort to ensure that
the CFGs accurately reflect the control flow of the program.

IntraCFG consists of several key components, including interfaces, attribute
equations that define the default behavior, and APIs. The interfaces provide the
structure for the CFG, and the attribute equations define the default behavior for
the CFG construction. In the language dependent control-flow module, imple-
mentations of the IntraCFG interfaces are added to the AST types of the lan-
guage. This can be done according to the precision desired for the CFG.

IntraCFG has APIs in the form of attributes, allowing clients to access en-
try and exit nodes and to traverse the CFG. The language-independent nature
of IntraCFG allows for easy integration with various programming languages
and enables the construction of precise CFGs for those languages. The use of
attribute equations and interfaces also allows for a high degree of flexibility in
the CFG construction process, enabling the customization of the CFG to fit the
specific needs of the analysis being performed.
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IntraCFG provides three different interfaces: CFGRoot, CFGNode, and
CFGSupport. These interfaces are implemented by AST types to construct the
CFG. Each interface has a set of attributes, and default equations that are used to
construct the CFGs.

The CFGRoot interface is intended to be implemented by AST nodes that
represent subroutines, e.g., MethodDecl or ConstructorDecl. The CFGRoot
interface defines two higher-order attributes (HOAs): CFGRoot.→entry and
CFGRoot.→exit. These HOAs are used to represent the unique entry and unique
exit points of the CFG.

The CFGNode is the most important interface in IntraCFG. The purpose of
the CFGNode interface is to represent AST nodes that can be part of the CFG. This
interface defines the synthesised attributes CFGNode.↑succ and CFGNode.↑pred,
which are used to represent the sets of successors and predecessors of a CFG
node, respectively.

Finally, the CFGSupport interface is implemented by all the AST nodes that
may contain CFGNodes in their subtrees. Indeed, all CFGNodes are CFGSupport
nodes, but CFGSupport nodes that are not CFGNodes can help steer the construc-
tion of the CFG.

To compute the CFGNode.↑succ attribute, the framework uses the
helper attributes CFGNode.↑firstNodes and CFGNode.↓nextNodes. The
CFGNode.↑firstNodes attribute of a CFGNode n contains the first CFGNode
within or after the AST subtree rooted in n. The default definitions provided
by IntraCFG for the CFGNode.↑firstNodes attribute are the empty set for a
CFGSupport node and the node itself for a CFGNode.

The inherited attribute CFGNode.↓nextNodes is used to keep track of the
CFGNodes that are outside the tree rooted in n, and that would immediately
follow the last CFGNode within n. By default, the CFGNode.↑succ attribute is
defined as equal to CFGNode.↓nextNodes.

To illustrate how these attributes are used in practice, consider the example
of an AddExpr node with operands Left and Right, and where the operands are
evaluated right-to-left. The following equations define how the ↑firstNodes and
↓nextNodes attributes are computed for the AddExpr and its operands:

AddExpr.↑firstNodes = Right.↑firstNodes
AddExpr.Right.↓nextNodes = Left.↑firstNodes
AddExpr.Left.↓nextNodes = {this}//“this” refers to

the AddExpr node.

Because of the default definitions provided by the framework, the ↑succ
attribute for each node is automatically set to the corresponding ↓nextNodes
value. Figure 11 illustrates this example applied to an abstract syntax tree. Both
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Figure 11: Example of definition of ↓nextNodes and ↑firstNodes for the Teal
AddExpr using right-to-left operand evaluation. All the nodes are CFGNodes.
Dashed arrows indicates the location of the equation for an inherited attribute.

the AddExpr and its operands implement the CFGNode interface. The ↑firstNodes
attribute for an AddExpr is set to the ↑firstNodes of its right operand. The
↓nextNodes attribute for the right operand is defined as the ↑firstNodes of the
left operand, while for the left operand, it is a singleton set containing the
AddExpr node itself. Since the ↑succ attribute is not overridden, it defaults to the
node’s ↓nextNodes value.

To support both forward and backward analyses, the framework provides
a predecessor attribute that captures the inverse of the successor attribute, i.e.,
CFGNode.↑succ. However, CFGNode.↑succ is also defined for CFGNodes that are
not reachable from Entry by following CFGNode.↑succ (i.e., that are “dead code”).
The framework computes predecessor edges CFGNode.↑pred by not only inverting
CFGNode.↑succ into the collection attribute CFGNode.□succInv, but also by filter-
ing out “dead” nodes from CFGNode.□succInv with a boolean circular attribute,
CFGNode.⟲↑reachable.

3.3 IntraJ: IntraCFG for Java

To demonstrate IntraCFG applicability, we developed IntraJ, an instance of the
framework for the Java programming language. We built IntraJ upon the Ex-
tendJ extensible Java compiler [EH07b].
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Figure 12: Overall architecture of instantiating IntraCFG for the Java language.

As seen in Figure 12, we designed IntraJ following a modular approach, and
we separately instantiated the framework for different versions of Java, such as
Java 4, Java 5, Java 7 and Java 8. ExtendJ has a similar modularisation of different
Java versions. When ExtendJ is extended to support new versions of Java, this
approach will allow us to extend IntraJ in a corresponding way. This approach
allows us and the users of IntraJ to easily extend the framework to support new
versions of Java.

The degree of precision in creating CFGs using IntraCFG can differ in order
to meet the requirements of a given application. This flexibility allows the frame-
work users to optimise the analysis’s efficiency by selectively excluding/includ-
ing specific AST nodes from the CFG. For example, nodes such as WhileStmt,
which are essential for the construction of CFGs, as they are used to define the
shape of CFGs, can be excluded from the CFGs as all relevant execution points
for the WhileStmt are already captured by other AST nodes, i.e., evaluation of
the condition, and execution of the body.

The example in Figure 13 is a visual representation of the AST and CFG of the
foo Java method. The figure illustrates the ability of the framework to tailor the
CFG to the specific requirements of the analysis and eliminate unnecessary com-
plexity for improved performance. In this example, nodes like IfStmt or Dot are
not included in the CFG, resulting in a more concise but precise representation
of the control flow of the program. On the other hand, the precision of the CFGs
can be improved by synthesising new nodes and subtrees as HOAs. For instance,
we designed IntraJ to compute an exception-sensitive control-flow analysis, i.e.,
new AST subtrees are synthesized for each possible exceptional path. The result-
ing CFGs are more precise but also more complex, resulting in higher memory
consumption and a more extended analysis time.

In IntraJ, we implemented five different dataflow analyses:

• Live Variable Analysis: computes the set of variables that live at each point
in the program.
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• Reaching Definition: computes the set of definitions that reach each point
in the program.

• Null Pointer Analysis: detects possible null pointer dereferences.

• Dead Assignment Analysis: detects assignments to l-values (the left-hand
side of an assignment) that are never used from that point on.

• Indirect Dead Assignment Analysis: detects assignments to l-values which
uses always flow to a dead assignment.

All the analyses rely on the result of the control-flow analysis. The analyses
use the CFGRoot.→entry and CFGRoot.→exit attributes of the CFG, as well as
the CFGNode.↑succ and CFGNode.↑pred attributes of each node. Each analysis is
implemented as a separate aspect. Still, some analyses’ results are used as input
for other analyses. For instance, the result of Live Variable Analysis is used as
input for the DeadAssignment Analysis. Similarly, the result of DeadAssignment
Analysis is used to compute Indirect Dead Assignment Analysis.

The implemented analyses are instances of the monotone frameworks
(see Section 2.2). Each analysis defines its abstract domain, transfer function,
and in and out

4 circular attributes for each CFGNode (e.g., CFGNode.⟲↑in
and CFGNode.⟲↑out). While the core of each dataflow analysis is language-
independent, relying solely on the attributes defined by IntraCFG, language
dependencies arise in the transfer function, which is modeled as a parametrised
attribute.

The transfer function is defined for each AST node in the CFG to capture
the semantics of passing through that node. The specific implementation of the
transfer function varies depending on the type of AST node.

For example, in the case of a NullPointerException analysis, the transfer
function is initially defined in a language-independent manner, passing the con-
textΓ, which carries information about variable states, unchanged through nodes
that do not affect the analysis.

For an assignment statement (AssignStmt), the transfer function behaves dif-
ferently. It retrieves the variable on the left-hand side of the assignment and
checks whether the right-hand side is assigned a null value. Based on this check,
the transfer function updates the context Γ to reflect the nullable status of the
variable. The left-hand side variable is marked as NULL or NOTNULL, depending
on whether the right-hand side is NULL or not.

In this example, the transfer function operates by updating the mapping of
variables to their nullable status within the context Γ (see Section 2.4).

4Or kill and gen.
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3.4 Performance and Precision
We evaluated the performance and precision of IntraJ using four well-known
open-source Java projects: Antlr, Pmd, JFreeChart, and Fop. The selection
of these projects was aimed at representing diverse types of projects, including
libraries, frameworks, and applications, as well as varying sizes, ranging from
40K for Antlr to 100K for Fop.

We compared IntraJ with the RAG-based framework JastAddJ-
Intraflow [Söd+13a] and the SonarQube static code analyzer [Son]. Here,
we summarize the comparison with SonarQube for the DeadAssignment and
NullPointerException analyses.

In terms of performance, IntraJ generally outperforms SonarQube. For
the DeadAssignment analysis, IntraJ has a lower baseline time compared to
SonarQube, although SonarQube’s analysis execution time is faster. This speed
discrepancy is likely due to SonarQube pre-computing the control-flow graph,
adding overhead to the baseline time.

For the NullPointerException analysis, IntraJ also shows better perfor-
mance than SonarQube across all benchmarks, even when excluding baseline
measurements.

Regarding precision, IntraJ performs better than SonarQube in the
DeadAssignment analysis, detecting more true positives and fewer false posi-
tives. However, for the NullPointerException analysis, IntraJ is slightly less
precise than SonarQube. Generally, IntraJ detects at least as many reports
as SonarQube. However, there is one exception: in the case of PMD, where
SonarQube can identify three additional true positives by exploiting path
sensitivity. On the other hand, IntraJ does report some additional true positives
that SonarQube does not. The false positives reported by IntraJ are a result of
our analysis lacking path sensitivity.

Overall, the results suggest that IntraJ enables practical dataflow analyses,
with run-times and precision comparable to state-of-the-art tools.

4 IntraTeal: IntraCFG for Teal
As a further demonstration5 of the applicability of IntraCFG, we developed In-
traTeal6, an implementation of IntraCFG for the Teal programming language.
Teal v0.4 (Typed Easily Analysable Language) is a programming language de-
signed by Christoph Reichenbach and used in the program analysis7 course at
Lund University. Teal aims to provide a language that allows students to focus on
the challenges of performing program analysis on a real-world language without
being overwhelmed by the details of a fully-featured language. Teal is divided in

5This application of IntraCFG has not been peer-reviewed by the scientific community.
6The complete source code of IntraTeal is available at 10.5281/zenodo.7649171.
7https://fileadmin.cs.lth.se/cs/Education/EDAP15/2022/web/index.html

https://doi.org/10.5281/zenodo.7649171
https://fileadmin.cs.lth.se/cs/Education/EDAP15/2022/web/index.html
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layers, with each version building upon the features of the previous one. Teal-0
is the most basic version and includes support for variable declarations and use,
procedures, and basic control structures such as if and while statements. Teal-1
introduces the enhanced-for loop, and Teal-2 introduces user-defined classes. In
this section, we will use Teal-0 to exemplify the use of RAGs and IntraCFG.

IntraTeal is our implementation of IntraCFG for the Teal language. In
line with the approach taken for the implementation of the control-flow analysis
for IntraJ and different versions of Java, we created separate aspects for the
control-flow analysis of Teal-0 and Teal-1. The control-flow analysis is then
used to implement the NullPointerException analysis. The overall architecture
of IntraTeal is shown in Figure 14.

Teal implementation
IntraTeal

Language Agnostic

IntraCFG Control-flow
Analysis

IndexOutOfBound
Analysis

NullPointerException
Analysis

Depends on

Legend

Teal-0

Teal-1

Teal Compiler

Student Module

Figure 14: Overall architecture of IntraCFG instantiated for the Teal language.

As part of the course, the complete source code of the IntraTeal control-
flow analysis was provided to students, along with instructions and guidelines
for utilizing the API to implement their analyses. We also made avail-
able a reference implementation of the NullPointerException analysis.

if(x!=null){
x.toString();

}

Listing 2: Control sensitivity to improve
null pointer analysis.

To extend their understanding and
skills, we then asked students to im-
plement an IndexOutOfBound analy-
sis on the interval abstract domain.
This exercise allowed the students to
apply the concepts they had learned in
a practical setting and gain a deeper
understanding of dataflow analysis.

Another key aspect of the In-
traTeal and IntraJ implementations are their ability to construct enhanced
control-sensitive CFGs. For instance, they track that, in the code shown in List-
ing 2, the dereference of x inside the body of the if-statement is safe to execute
without throwing a NullPointerException.

Control sensitive CFGs are a more precise representation of the control flow
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Figure 15: Example of control sensitivity in IntraTeal.

of a program, as they take into account the different behavior when a branching
condition is true or false. This is achieved by using HOAs to synthesise two
AST nodes, i.e., ControlTrue and ControlFalse, for each comparison operator,
e.g., “≤”, “==”, “! =”, inside a conditional expression. These HOAs are used to
enhance the control flow of the programwith the information that can be inferred
from it.

Figure 15 shows IntraTeal’s control sensitive CFG for a simple programwith
an if-statement. The ControlTrue and ControlFalse HOAs are used to distin-
guish the execution path when the condition in the if-statement evaluates to true
or false, respectively. The NullPointerException analysis can benefit from this
more refined CFG.



5 IDE Integration 35

Listing 3: Control sensitivity to im-
prove null pointer analysis.
if(x!=null){
//x is not null here
}

Listing 4: Control sensitivity to im-
prove interval analysis.
if(x > 4 and x <= 6){
//x is [5,6] here

}

For the example in Listing 3 the ControlTrue and ControlFalseHOAs are used
to keep track of the information that the object x is not null in the then branch
and null in the else branch. This information is used to improve the precision of
the analysis and provide more accurate results without affecting the performance
of the analysis.

We also asked students to use the ControlTrue and ControlFalse HOAs to
improve the precision of the interval analysis. Similarly to the previous example,
in Listing 4 the ControlTrue and ControlFalse are used to keep track of the
information that the object x is in the interval [5,6].

5 IDE Integration
In this Section, we focus on the integration of IntraJ and IntraTeal with dif-
ferent IDEs and developer tools. We first describe the integration of IntraJ with
IDEs that support the Language Server Protocol (LSP) [Mica], such as Visual Stu-
dio Code [Micb], Emacs [Fou], and Vim[Moo], using theMagpieBridge [LDB19a]
framework. We then describe the integration of IntraJ and IntraTeal with
CodeProber [Ala+24a], a tool for visualising and exploring the results of compil-
ers and static analysis tools. Our work on integrating IntraJ with different IDEs
via the MagpieBridge framework has gained attention from the MagpieBridge
maintainer and resulted in an invitation to present at the PRIDE8 workshop, held
in conjunction with ECOOP 2022, with the title “Source-Level Dataflow-Based

Fixes: Experiences From Using IntraJ and MagpieBridge”.
The integration process for the Teal language is not covered in any of the

papers included in this thesis. However, it was developed as an application of the
research and methods previously described in these papers, and was carried out
subsequently.

5.1 LSP support via MagpieBridge: warnings, quick-fixes
and bug explanations

Initially, IntraJ was developed as a command-line tool, which performance was
competitive compared to existing industrial tools. However, we recognized the
potential for further improvement, by exploiting the on-demand evaluation fea-
ture of JastAdd. On-demand evaluation enables the execution of dataflow anal-

8
Practical Research IDEs.
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Figure 16: Integration of IntraJ with IDEs through the use of the MagpieBridge
framework.

yses on methods within open files, as opposed to the entire codebase. This ap-
proach allows for local and in real-time feedback on complex bugs, providing
developers with instantaneous insights, facilitating the debugging process. To
achieve this, we used the MagpieBridge framework, which facilitates the inte-
gration of static analysers with IDEs that support the LSP. MagpieBridge pro-
vides an abstraction layer between the IDE and the static analysis tool, simpli-
fying the integration process and allowing for the development of IDE plug-ins
with minimal effort. MagpieBridge provides an abstraction layer between the
IDE and the static analysis tool allowing the display of warnings, quick-fixes,
and explanations for bugs within the IDE, providing developers with an imme-
diate and convenient way to access and interact with analysis results, while also
facilitating communication between the static analysis tool and the IDE. Addi-
tionally, the framework allows for the display of web pages within the IDE, pro-
viding developers with a new level of support for visualization, customizable user
interfaces, and a better way to interact with analysis results.

Figure 16 illustrates the integration of IntraJ with different IDEs. Server-
Analysis is a component that we developed to handle the communication be-
tween IntraJ and the MagpieBridge Server. It is responsible for maintaining
a record of the active analyses and forwarding events in the editor, such as the
save command or opening of a file, to IntraJ. The results of the analysis are then
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sent back to the MagpieBridge, which subsequently forwards them to the editor,
displaying warnings, quick-fixes, and explanations to the developer. To enable a
better user experience, we extended the functionality of the existing analysis.
Specifically, we enhanced the NullPointerException analysis to not only de-
tect issues but also provide developers with quick fixes and explanations, allow-
ing them to address the problems more efficiently. Additionally, we enhanced
the (Indirect) Dead Assignment analysis to provide explanations, giving de-
velopers a deeper understanding of the issues detected. Figure 17 illustrates an
example of interaction between IntraJ and Visual Studio Code. It illustrates an
instance of a NullPointerException detected by IntraJ and its representation
within the IDE. The “ ” icon indicates that an quick-fix is available, which can
be applied by clicking on the icon.

5.2 Visualisation via CodeProber
In this Section, we will give an overview of the integration of IntraTeal with
CodeProber, a tool for visualizing and exploring the results of compilers and
static analysers. CodeProber allows developers to interact with the results of
the analysis in a visual and intuitive manner. It enables real-time interaction with
the AST node’s attributes and the source code, enabling analysis developers to
explore results and partial results, making debugging and troubleshooting more
efficient in comparison to the traditional debugging approaches. As a browser-
based tool that is not restricted to the Language Server Protocol, CodeProber
enables the visualisation of analysis results in different formats, including, but
not limited to, graph representation and other visual forms, beyond simply dis-
playing warnings. The example in Figure 18 shows the visual representation of
the CFG on top of the source code. The CFG is generated by IntraTeal and vi-
sualized by CodeProber. The graph is rendered automatically at each change in
the source code, allowing developers to understand the flow of the program and
all the possible execution paths of the analysis in real-time.

We used the IntraTeal and CodeProber integration in the Program analysis
course. Students were able to understand the CFG and the flow of the program
andwere asked to identify IndexOutOfBound exceptions. Students were able to
observe their progress and the outcomes of their analysis within a realistic IDE.

6 JFeature: Java Feature Extractor
JFeature is a RAG-based static analysis tool for the Java programming language
that extracts syntactic and semantic features from Java programs. The tool is
designed to assist researchers and developers in selecting appropriate software
corpora to better evaluate the robustness and performance of software tools, such
as static analysers. JFeature is implemented as an extension of the ExtendJ Java
compiler. It is declarative and extensible, allowing for the easy addition of new
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Figure 17: Bug detection and quick-fix in Visual Studio Code using IntraJ.
1. The NullPointerException is detected by IntraJ (squiggly line under x)
with a quick-fix available ( ). 2. The user can hover over the warning to see an
explanation of the issue. 3. The user can click on the quick-fix icon ( ) to apply
the fix.
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Figure 18: Interaction of IntraTeal in CodeProber. Colors are randomly as-
signed to make it easier to distinguish individual arrows.

queries. In this Section, we give an overview of this work, and more details are
available in Paper 3.

The need for JFeature arose during the evaluation of IntraJ. While
analysing Java projects from the DaCapo Benchmark suite [Bla+06] corpus
to evaluate the precision of IntraJ on Java 8 projects, it became apparent
that there were no Java 8 projects in the Da Capo Benchmark suite. Further
investigation revealed that many commonly used software corpora in the field
of static analysis were lacking representation of Java 8 projects.

To address this problem, we developed JFeature, a tool that extracts features
from Java programs categorised by the Java version they were introduced in. The
goal of JFeature is to provide insight and an overview of the composition of a
Java project or corpus, specifically in terms of the different Java features cate-
gorized by the Java version in use. JFeature comes with twenty-six predefined
queries and can be easily extended with new ones. Since JFeature is built on top
of the ExtendJ compiler, JFeature has access to all the information computed by
the compiler, allowing the definition of complex queries. In Figure 19, we show
the architecture of JFeature.

Overview
JFeature

Java Compiler




Extendj


Depends on

Legend

Queries for Java 1-4

Queries for Java 5 Queries for Java 7 Queries for Java 8

Queries for Java 6
Version independent

queries

Figure 19: JFeature architecture.

We conducted a case study, applying JFeature to four widely used corpora
in the program analysis area: the Da Capo Benchmark suite [Bla+06], De-
fects4J [JJE14], Qualitas Corpus [Tem+10a], and XCorpus [Die+17]. The re-
sults showed that Java 1-5 features were predominant among the corpora, sug-
gesting that some of the corpora may be less suited for the evaluation of tools that
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Figure 20: Circular dependencies in backward dataflow analysis between in and
out, and their relationships with other attributes.

address features in Java 7 and 8. In addition to evaluating corpora, we showed
how JFeature could also be used for other applications such as longitudinal stud-
ies of individual Java projects and the creation of new corpora. In Paper 3, we also
demonstrate a practical application of how JFeature can be extended to capture
more complex semantic features by writing queries using the RAGs formalism.

7 Using Static Analysis to Improve the Efficiency
of Circular Attributes

Circular attributes, whose values may directly or indirectly depend on them-
selves, allow developers to declaratively express complex relationships. These
attributes are particularly useful in representing dataflow analyses.

As illustrated in Figure 20, the in and out attributes in backward dataflow
analysis may depend on one another. However, the evaluation of these attributes
requires fixed-point computations to ensure convergence, which, if not handled
correctly, can be inefficient. This section explores the challenges posed by circular
attributes and their evaluation, and how static analysis techniques can be applied
to improve their efficiency.

7.1 Circular Attribute Evaluation for RAGs
For the RAGs compiler, in this case JastAdd, to generate correct evaluation code,
it must first recognize that certain attributes, such as in and out, may exhibit cir-
cular dependencies and require fixed-point computations. However, this process
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is not always straightforward, as the compiler must take into account the follow-
ing challenges:

• Dynamic dependencies: The compiler cannot always statically deter-
mine which attributes are circular because their circularity depends on the
specific structure of the AST being analyzed. This dynamic nature means
that circular dependencies may only be discovered during evaluation, mak-
ing it difficult to predict in advance. For instance, let us consider the fol-
lowing example:

A.⟲↑foo(boolean b) =

{
A.⟲↑foo(false) + 1 if b = true
0 otherwise

Here the foo attribute is circular when b is true, but not when b is false.
A conservative and safe approach would be to treat foo as Circular in all
cases.

• Conservative approach in handling circular attributes: Even when
attributes are not circular for certain types, they might still be treated as
circular due to potential circularity in subtypes. Let us consider the follow-
ing example:

A.⟲↑bar = 0

B.⟲↑bar = min(A.⟲↑bar+ 1, 5)

In this example, the bar attribute is circular only for the B type, but never
for the A type. However, if the compiler treats bar as Circular for in-
stances of A, it will unnecessarily introduce fixed-point computations for
attributes that are NonCircular in most cases. This is the case for the Ex-
tendJ compiler, where the type attribute may only form a circular depen-
dency in specific language constructs, such as lambda expressions. How-
ever, applying fixed-point computations for type in all cases would lead
to unnecessary computational overhead in instances where no circularity
exists.

• Performance inefficiencies: Fixed-point computations can introduce
significant performance overhead, particularly when applied to a large
connected components. If the component has smaller strongly connected
components (SCCs), it is more efficient to isolate these smaller components
and evaluate them separately. Smaller components can often reach their
fixed points and terminate earlier, reducing the overall computational cost.
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7.2 Challenges with Existing Solutions

The first attempt to address the challenges of circular attributes was the Basic-
Stacked algorithm, proposed by Magnusson et al. [MH07b], which required de-
velopers to explicitly declare attributes as Circular when they could participate
in a cycle. While this approach allows certain strongly connected components to
be isolated, it introduced new inefficiencies and impracticalities.

Figure 21: ExtendJ’s call graph. Red
nodes represent attributes explicitly de-
clared as Circular. Other colors repre-
sents different types of attributes.

In particular, the BasicStacked
algorithm required developers to
manually identify all attributes that
may be on a cycle for any possible
AST. This process can be error-prone
and difficult to maintain, especially
in large and evolving codebases.
Figure 21 shows the callgraph of the
ExtendJ compiler. Here each red
node represents an attribute that is
explicitly declared as Circular. Mod-
ifying a single attribute within the
compiler can potentially introduce
new circular dependencies, making it
challenging to anticipate in advance
which attributes will require circular
declarations. Most of the time, this
results in developers over-annotating
attributes as Circular, leading to un-
necessary fixed-point computations
and performance overhead.

In response to these issues, a
new algorithm called Relaxed-
Monolithic was proposed by
Öqvist [ÖH17; Öqv18]. The Relaxed-
Monolithic algorithm improves
upon BasicStacked by removing the
requirement to declare all attributes
in a cycle as Circular. Instead, only one attribute within the cycle needs to be
explicitly marked as Circular, while the remaining attributes are automatically
labeled as Agnostic. An attribute classified as Agnostic can be either Circular
or NonCircular, depending on the context in which it is evaluated. While this
approach provides more flexibility in handling circular attributes, it introduces
new inefficiencies. For example, the RelaxedMonolithic algorithm does not
recognize strongly connected components, evaluating all downstream attributes
from a circular attribute in a single, large fixed-point computation. This can
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Algorithm Annotation Decompose Supported
Effort SCCs Attributes

BasicStacked High Yes Circular
NonCircular

RelaxedMonolithic Low No Circular
Agnostic

relaxedstacked Low Yes
Circular

NonCircular
Agnostic

Table 1: Algorithm comparison based on their support for different attribute dec-
larations.

lead to multiple recomputations of downstream attributes during fixed-point
iterations, even when their values remain unchanged.

7.3 Static Analysis for Efficiency Improvement
To address the limitations of existing solutions, we propose a new evaluation
algorithm, called RelaxedStacked, that combines the strengths of the Basic-
Stacked and RelaxedMonolithic algorithms. This algorithm supports three
kinds of attributes, Circular, NonCircular, and Agnostic. We then use static
analysis to detect attributes that can be safely classified as NonCircular based
on the static dependency graph of the attributes.

In order to identify NonCircular attributes, we developed the Callgraph
Analysis Tool (CAT), which constructs a call graph of the Java evaluation code
generated by JastAdd.

From this callgraph, CAT filters out non-attribute methods and then applies
Tarjan’s [Tar72] strongly connected component analysis to determine which at-
tributes can be safely marked as NonCircular (i.e., they are guaranteed to not be
on a cycle for any AST). Attributes that are part of a single-node SCC and do not
directly call themselves are considered NonCircular and are evaluated without
iterative fixed-point computations. Table 1 presents a comparison of the three
algorithms based on their support for different attribute declarations.

To better understand the differences between the BasicStacked, Relaxed-
Monolithic, and RelaxedStacked algorithms, let us consider how the
attributes in Figure 20 can be classified by each algorithm. Figure 22 illustrates
the classification of these attributes which are part of a backward dataflow
analysis for each algorithm.

With the BasicStacked algorithm, developers are required to explicitly de-
clare the in and out attributes as Circular as they depend on each other. With-
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Figure 22: Attribute classification using the BasicStacked, Relaxed-
Monolithic, and RelaxedStacked algorithms.

out this explicit declaration, the algorithm may fail to recognize circular depen-
dencies, which could lead to infinite recursion and result in a runtime error, such
as a stack overflow. Therefore, the correctness of the evaluation process is highly
dependent on the developer’s annotations.

The RelaxedMonolithic algorithm simplifies the specification of circular
attributes by requiring only one attribute in a cycle to be explicitly declared as
Circular; for instance, the CFGNode.⟲↑out attribute, while the remaining at-
tributes can be left as Agnostic. When the in attribute requires multiple iter-
ations to reach a fixed point, attributes such as gen, kill, and succ are recom-
puted in each iteration. For example, if out requires n iterations, these down-
stream attributes—gen, kill, and succ—are unnecessarily recalculated n times,
even though their values remain constant after the first iteration.

The RelaxedStacked algorithm builds upon the RelaxedMonolithic clas-
sification for Circular attributes but reclassifies attributes such as gen, kill,
and succ as NonCircular. This approach computes the values of the gen, kill,
and succ attributes only once, and these values are memoized for all subsequent
iterations when computing out, thereby avoiding redundant recomputation.

While effective, our approach does have some limitations. Its effectiveness
is constrained by the accuracy of the static analysis tool. For instance, our call
graph analysis, which is based on Class Hierarchy Analysis[DGC95], conserva-
tively treatsmethod calls that appear recursive in theAST as circular, even though
they not exhibit circular behavior in practice. Furthermore, this approach can-
not detect dynamically strongly connected components, which may only become
apparent during evaluation.
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Figure 23: Simplified static call graph of the attributes defining the nullable, first,
and follow sets.

7.4 Evaluation

To compare the performance of the RelaxedStacked algorithm with that of the
BasicStacked and RelaxedMonolithic algorithms, we conducted three distinct
experiments which we describe below.

LL(1) Parser Construction

We tested the algorithms on a simple LL(1) parser construction scenario, where
the follow, first, and nullable properties are defined using circular attributes.

This experiment was the only scenario where all three algorithms could be di-
rectly compared, as the complexity of the ExtendJ compiler and the IntraJ static
analyser made them unsuitable for evaluation with the BasicStacked algorithm.

The static call graph of the attributes is shown in Figure 23. In this scenario,
the RelaxedStacked algorithm matches the efficiency of the BasicStacked
algorithm while providing the flexibility of the RelaxedMonolithic algorithm,
and it outperforms the RelaxedMonolithic algorithm with a speedup of
approximately 2.8x. This because, from the callgraph, CAT is able to identify
firstSuffix and nullableSuffix as NonCircular attributes, which are
evaluated without fixed-point computations. This allows to break the evaluation
of the circular attributes into smaller SCCs, which can be evaluated more
efficiently. In contrast, the RelaxedMonolithic algorithm evaluates all the
attributes in a single large SCC, leading to unnecessary recomputations of all
the downstream attributes.

ExtendJ

The development of the RelaxedMonolithic algorithm was initially driven
by the requirements of the ExtendJ Java compiler, which contains rela-
tively few circular attributes. This made it an ideal candidate to determine
if the RelaxedStacked algorithm introduces any overhead compared to the
RelaxedMonolithic algorithm.

In this case study, the RelaxedStacked algorithm performs equally as the
RelaxedMonolithic algorithm, demonstrating that it does not introduce any
additional overhead, even in scenarios with relatively few circular attributes.
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IntraJ

We evaluated the RelaxedMonolithic and RelaxedStacked algorithms using
the IntraJ static analysis tool, focusing on two different dataflow analyses: Null-
Pointer Dereference Analysis and Dead Assignment Analysis. Unlike ExtendJ, In-
traJ involves a high number of circular attributes, making it a robust test for the
RelaxedStacked algorithm’s capabilities.

In the IntraJ case study, the RelaxedStacked algorithm significantly out-
performs the RelaxedMonolithic algorithm, achieving a median steady-state
performance speedup of approximately 2.5x for dead-assignment analysis and
about 18x for null-pointer dereference analysis.

We also evaluated the performance of our algorithm compared to the
RelaxedMonolithic algorithm in demand-driven scenarios, focusing on
execution time and the frequency of successor attribute recomputations. Due
to space constraints in Paper 4, we were unable to present the full evaluation
results. In this section, we provide the complete results. The data, presented in
Figures 24 and 25, demonstrate that the RelaxedStacked algorithm significantly
outperforms the RelaxedMonolithic algorithm. The results are consistent
across all projects and align with the outcomes observed in the whole program
analysis. As shown in the figures, the RelaxedStacked algorithm significantly
reduces the number of successor attribute evaluations, which in turn leads to a
substantial reduction in execution time.
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Figure 24: Steady-state performance of dead assignment analysis for randomly
selected sets of methods of 14 real world projects. In red we report the per-
formance of the RelaxedMonolithic algorithm, while in green we report the
performance of the RelaxedStacked algorithm. Solid lines represent execution
time (left axis, seconds). Dashed lines represent successor attribute evaluations
(right axis, count).
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Figure 25: Steady-state performance of null-pointer dereference for randomly
selected sets of methods of 14 real world projects. In red we report the per-
formance of the RelaxedMonolithic algorithm, while in green we report the
performance of the RelaxedStacked algorithm. Solid lines represent execution
time (left axis, seconds). Dashed lines represent successor attribute evaluations
(right axis, count).



8 Conclusions 49

8 Conclusions

This thesis has explored several challenges in static analysis, particularly focus-
ing on improving control-flow and dataflow analyses within the context of Ref-
erence Attribute Grammars. The solutions developed offer a practical approach
to improving both the precision and efficiency of these analyses, especially in
interactive settings like integrated development environments.

Our main contribution is the development of a new framework for precise
construction of source-level control-flow graphs, called IntraCFG. IntraCFG is
language-agnostic and is designed to be easily extensible to support new lan-
guages. It provides a flexible and efficient way to construct arbitrarily precise
control-flow graphs. This framework was applied successfully to two different
languages resulting in two different tools: IntraJ for analyzing Java code and In-
traTeal, an educational tool aimed at teaching program analysis concepts. The
framework has proven flexible and adaptable across different use cases.

We have demonstrated that IntraJ can effectively be executed both as a stan-
dalone tool and as an integrated plugin within an IDE. In both modes, IntraJ has
demonstrated faster performance than a well-known commercial tool. Even for
non-trivial analyses, it consistently meets the goal of providing feedback in under
0.1 seconds.

In this thesis, we also presented JFeature, an extensible tool for automati-
cally extracting and summarising the key features of a corpus of Java programs.
JFeature allows researchers and developers to gain a deeper understanding of
the composition and suitability of software corpora for their particular research
or development needs. By applying JFeature to four widely-used corpora in the
program analysis area, we demonstrated its potential for use in corpus evalu-
ation, the creation of new corpora, and longitudinal studies of individual Java
projects. Together, these contributions provide frameworks and practical tools
for improving the development and maintenance of software systems.

In addition to these contributions, this thesis also presented a new demand-
driven evaluation algorithm for circular attributes, named RelaxedStacked.
This algorithm combines the strengths of previous approaches, such as the
BasicStacked and RelaxedMonolithic algorithms, while introducing op-
timizations that reduce redundant recomputation of circular attributes. By
identifying strongly connected components within the attribute dependency
graph, the RelaxedStacked algorithm improves the efficiency of attribute
evaluation, especially in the presence of complex circular dependencies. In
particular, we used call graph analysis to identify attributes that can be safely
classified as NonCircular, allowing them to be evaluated only once and imme-
diately memoised. The results of our evaluation demonstrate the effectiveness
of the RelaxedStacked algorithm in real-world scenarios. The benchmarking
results showed a significant improvement in performance, with a median
speedup of ∼2.5x for dead assignment analysis and a median speedup of ∼18x
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for null-pointer dereference analysis, compared to RelaxedMonolithic.
Throughout this work, we have placed a strong emphasis on ensuring that

our results are open, easily accessible, and reproducible. The artifacts created,
including code, documentation, and Docker images, are all publicly available,
allowing others to replicate and build upon this research.

In conclusion, the tools and methods developed in this thesis contribute to
making static analysis more practical for interactive use. By focusing on both
precision and efficiency, and ensuring that our work is reproducible, we hope it
will serve as a foundation for future research in this area.
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This paper presents IntraCFG, a declarative and language-independent frame-
work for constructing precise intraprocedural control-flow graphs (CFGs) based
on the reference attribute grammar system JastAdd. Unlike most other frame-
works, which build CFGs on an Intermediate Representation level, e.g., bytecode,
our approach superimposes the CFGs on the Abstract Syntax Tree, enabling accu-
rate client analysis. Moreover, IntraCFG overcomes expressivity limitations of
an earlier RAG-based framework, allowing the construction of AST-Unrestricted
CFGs: CFGs whose shape is not confined to the AST structure. We evaluate the
expressivity of IntraCFG with IntraJ, an application of IntraCFG to Java 7,
by comparing two data flow analyses built on top of IntraJ against tools from
academia and from the industry. The results demonstrate that IntraJ is effec-
tive at building precise and efficient CFGs and enables analyses with competitive
performance.
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1 Introduction
Static program analysis plays an important role in software development, and
may help developers detect subtle bugs such as null pointer exceptions [HSP05]
or security vulnerabilities [Smi+15].

Many client analyses make use of intraprocedural control-flow analysis, and
are dependent on its precision and efficiency for useful results. Bug checkers
and other clients that report to the user must be able to link their results to the
source code, so the control-flow analysis itself must also connect to a represen-
tation close to the source code, such as an abstract syntax tree (AST). Current
mainstream program analysis tools and IDEs, like SonarQube, ErrorProne, and
Eclipse JDT, take this exact approach.

However, building analyses at the AST level typically ties the analysis closely
to a particular language and thereby reduces opportunities for reuse. Further-
more, language semantics can require highly intricate control flow, e.g. for object
initialisation and exception handling.

In this paper, we present an approach for developing control-flow analyses
and client analyses at the AST level that is based on reference attribute grammars
(RAGs) [Hed00] and addresses these challenges. We build on an earlier approach
that also used RAGs [Söd+13a] and remove its two main limitations: imprecision
and bloat, both caused by limited flexibility in the shape of control-flow graphs
(CFGs) that could be built. Our approach introduces a new generalised frame-
work, IntraCFG, that is unrestricted in the shape of the CFGs that it can build.
This improves precision as well as conciseness, in that IntraCFG connects only
AST nodes of interest in the CFG. As a case study, we applied IntraCFG to the
Java language, implementing IntraJ, a CFG constructor for Java, as an extension
of the Java compiler ExtendJ [EH07a]. To evaluate the precision and perfor-
mance of IntraJ, we implemented two client data flow analyses, one forward
and one backward, namely Null Pointer Exception analysis and Dead Assignment

analysis, respectively.
More precisely, our contributions are as follows:

• We present IntraCFG, a modular and precise language-independent
framework for intraprocedural CFG construction, implemented using
RAGs.

• We present IntraJ, an application of the framework to construct concise
and precise CFGs for Java 7. We discuss design decisions for what facts
to include, and how to reify implicit facts that the AST does not expose
directly.

• We provide two different client analyses to validate and evaluate the frame-
work: Dead Assignment analysis, which detects unnecessary assignments,
and Null Pointer Exception analysis, which detects if there exists a path in
which a NullPointerException can be thrown.
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Figure 1: In the Parent-First CFG (left) a parent always precedes its children,
resulting in redundant and misplaced nodes. The AST-unrestricted CFG (right)
is correct and minimal.

• We provide an evaluation of performance and precision for a number of
Java subject applications, and compare performance and precision both to
the earlier RAGs-based approach and to SonarQube, a current mainstream
program analysis tool.

In the rest of this paper, we review RAGs and introduce IntraCFG (Section 2)
and IntraJ, along with underlying design decisions and implementation details
(Section 3), present our client analyses (Section 4) and evaluation (Section 5),
discuss related work (Section 6) and conclude (Section 8).

2 RAGs and the IntraCFG framework

Attribute grammars, originally introduced by Knuth [Knu68], are declarative
specifications that decorate AST nodes with attributes. Each AST node type can
declare attributes and define their values through equations. There are two main
kinds of attributes: synthesised attributes, defined in the same node, and inher-
ited attributes, defined in a parent or an ancestor node. Synthesised attributes
are useful for propagating information upwards in anAST, e.g. for basic type anal-
ysis of expressions. Inherited attributes are useful for propagating information
downwards, e.g., for environment information.
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Reference Attribute Grammars (RAGs) [Hed00] extend Knuth’s attribute
grammars with reference attributes, whose values are references to other
AST nodes. Attributes that compute references to AST nodes can declaratively
construct graphs that are superimposed on the AST, e.g., CFGs, so that RAGs can
propagate information directly along these graph references.

For our implementation, we have used the JastAdd metacompilation sys-
tem [HM03], which supports RAGs as well as the following attribute grammar
extensions that we use here:

Higher-order attributes (HOAs) [VSK89b] have a value that is a freshAST sub-
tree, which can itself have attributes. HOAs are useful for reifying implicit
structures not available in the AST constructed by the parser. We use HOAs
to reify, for example, control flow for unchecked exceptions and implicit
null assignments.

Circular attributes are attributes whose equations may transitively depend on
their own values [MH07b]. They support declarative fixpoint computations
and can e.g. express data flow properties on top of a CFG.

Collection attributes are attributes that aggregate any number of contributions
from anywhere in the AST, or from a bounded AST region [MEH07a]. They
simplify e.g. error reporting and the computation of the predecessor rela-
tion from the successor relation in a CFG.

Node type interfaces are similar to Java interfaces and can be mixed into
AST node types. They declare e.g. attributes and equations, and enable
language-independent plugin components in attribute grammars [FSH20].

Attribution aspects are modules that use inter-type declarations to declare a
set of attributes, equations, collection contributions, etc. for specific node
types [HM03], and mix in interfaces to existing node types. They provide
a modular extension mechanism for RAGs.

On-demand evaluation, where attributes are evaluated only if they are used,
and with optional caching that prevents reevaluation of attributes used
more than once [Jou84]. JastAdd exclusively uses this evaluation strategy.

2.1 RAG frameworks for control flow
Our work is the second to construct CFGs in a RAG framework, following the
earlier jastaddj-intraflow [Söd+13a]. jastaddj-intraflow constructs Parent-
First CFGs, in the sense that all AST nodes involved in the CFG computation are
also part of the CFG and impose their nesting structure, so that the CFG must
always pass through all of a node’s ancestors before it can reach the node itself.
By contrast, our IntraCFG framework is AST-unrestricted, in that the resulting
CFG need not follow the syntactic nesting structure.
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Figure 1 illustrates this difference between the two approaches for a while
loop in Java. The left (Parent-First) CFG from jastaddj-intraflow first flows
through the While node to reach the loop condition. However, the CFG already
encodes the flow properties of While, so this flow is unnecessary for data flow
analysis. The same holds for ExprStmt. We therefore consider these nodes redun-
dant for the CFG. By contrast, our system’s AST-unrestricted CFG on the right
skips these two nodes entirely.

The second, more severe concern is that the control flow in the left CFG in
Figure 1 cannot follow Java’s evaluation order due to the Parent-First constraint:
flow passes through the PostUnaryInc node, which represents an update, before
passing through the node’s subexpression p1. This flow would represent an in-
version of the actual order of evaluation: the nodes are misplaced in the CFG.
Typical client analyses on such a flawed CFG must add additional checks to com-
pensate or otherwise sacrifice soundness or precision in programs where p1 also
has a side effect. By contrast, our AST-unrestricted CFG on the right addresses
this limitation and accurately reflects Java’s control flow.

We note that recent work on program analysis [Sza; Hel+20] has asserted
that attribute grammars restrict computations to be tightly bound to the AST
structure. Our work demonstrates that this generalization does not hold, and
that RAGs are an effective framework for efficiently deriving precise CFGs that
deviate from theAST structure and for expressing client analyses directly in terms
of such derived structures.

2.2 The IntraCFG framework

IntraCFG is our new RAG framework for constructing intraprocedural AST-
unrestricted CFGs, superimposing the graph on the AST. Figure 2 shows the
framework as a UML class diagram. IntraCFG is language-independent, and in-
cludes interfaces that AST types in an abstract grammar can mix in and specialise
to compute the CFG for a particular language. The figure shows five types: the
CFGRoot interface is intended for subroutines, e.g., methods and constructors, to
represent a local CFG with a unique entry and exit node. We represent the latter
as synthetic AST node types Entry and Exit. The CFGNode interface marks nodes
in the CFG, and each node has reference attributes succ and pred to represent the
successor and predecessor edges. The CFGSupport interface marks AST nodes in
a location that may contain CFGNodes. All CFGNodes are CFGSupport nodes, but
CFGSupport nodes that are not CFGNodes can help steer the construction of the
CFG.

Figure 2 also shows the AST node types’ attributes and their types (middle
boxes), aswell the defining equations (bottom boxes). Here, wewriteP(CFGNode)
for the type of sets over CFGNodes. We optionally prefix attribute names with ↑,
↓, →, □, or ⟲ to highlight the AST traversal underlying their computation. For
the different kinds of attributes, we use the following equations, for attributes x
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<<interface>>
CFGSupport

↑firstNodes : P(CFGNode)
↓nextNodes : P(CFGNode)
↓nextNodesTT : P(CFGNode) [df-api]

↓nextNodesFF : P(CFGNode) [df-api]

↑firstNodes = ∅

<<interface>>
CFGRoot

→entry : Entry [df-api]

→exit : Exit [df-api]

→entry = new Entry
→exit = new Exit
*.↓entry = →entry
*.↓exit = →exit
*.↓nextNodes = ∅
*.↓nextNodesTT = ∅
*.↓nextNodesFF = ∅

<<interface>>
CFGNode

↑succ : P(CFGNode) [df-api]

↑pred : P(CFGNode) [df-api]

↓entry : Entry
↓exit : Exit
□succInv : P(CFGNode)
⟲reachable : boolean
↑firstNodes = {this}
↑succ = ↓nextNodes
s ∈ ↑succ =⇒ this ∈ s.□succInv
⟲reachable =

↓entry∈ □succInv ∨ ∃p ∈ □succInv : p.⟲reachable
↑pred = {p | p ∈ □succInv ∧ p.⟲reachable}

Entry

Exit

Attribute markers

↑ synthesized
↓ inherited

→ higher-order
□ collection
⟲ circular

[df-api] for client data
flow analyses

Figure 2: The IntraCFG framework with interfaces CFGRoot, CFGSupport,
CFGNode, and synthetic AST types Entry, Exit. Highlighted attribute equations
are default equations, intended for overriding.

and expressions e:

Synthesised attributes: ↑x = e defines attribute ↑x for the local AST node
(which we call this).

Inherited attributes: c.↓x = e gives AST child node c and its descendants
access to e through ↓x, where e is evaluated in the context of the this
node (c’s parent). We use the wildcard ∗ for c to broadcast to all children,
∗.↓x = e.

Higher-order attributes: →x = ewhere emust construct a fresh AST subtree.

Circular attributes: ⟲x = e, where e computes a fixpoint. In this paper,
boolean circular attributes start at false and monotonically grow with ∨,
while set-typed circular attributes start at ∅ and monotonically grow with
∪.

Collection attributes have no equations, but contributions. We write P =⇒
e ∈ n.□x to contribute the value of expression e to collection attribute □x
in node n if P holds. In this paper, all collection attributes are sets.

This pseudocode translates straightforwardly to more verbose JastAdd code
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MethodDecl ::= ... b:Block

implements CFGRoot
entry.↓nextNodes = b.↑firstNodes
b.↓nextNodes = {↓exit}

EQOp ::= left:Expr right:Expr

implements CFGNode
↑firstNodes = left.↑firstNodes
left.↓nextNodes = right.↑firstNodes
right.↓nextNodes = {this}

AndOp ::= left:Expr right:Expr

implements CFGSupport
↑firstNodes = left.↑firstNodes
left.↓nextNodesTT = right.↑firstNodes
left.↓nextNodesFF = ↓nextNodesFF
...

ReturnStmt ::= [e:Expr]

implements CFGNode
...
↑succ = {↓exit}

Figure 3: Example application of the IntraCFG framework.

EQOp ::= Left:Expr Right:Expr; // Abstract grammar
EQOp implements CFGNode;
eq EQOp.firstNodes() = getLeft().firstNodes();
eq EQOp.getLeft().nextNodes() = getRight().firstNodes();
eq EQOp.getRight().nextNodes() =

SmallSet<CFGNode>.singleton(this);

Listing 1: JastAdd translation of EQOp in Figure 3.

that uses Java for the right-hand sides in our equations. IntraCFG is 45 LOC of
JastAdd code.1

The equations in the framework define some of the attributes, and provide de-
fault definitions for others. To specialise the framework to a particular language,
the default equations can be overridden for specific AST node types to capture
the control flow of the language.

Client analyses can then use attributes marked as [df-api] in Figure 2, such
as, ↑succ and ↑pred, to analyze the CFG. Since CFG nodes are also AST nodes,
it is easy for these analyses to also access syntactic information and attributes
from, e.g., type analysis, as we illustrate in Section 4.

2.3 Computing the successor attributes

To compute the ↑succ attributes, we use the helper attributes ↑firstNodes and
↓nextNodes. Given an AST subtree t, its ↑firstNodes contain the first CFGNode
within or after t that should be executed, if such a node exists. If not, ↑firstNodes is
empty. The framework in Figure 2 shows the default definitions for this attribute:
the empty set for a CFGSupport node, and the node itself for a CFGNode.

1https://github.com/lu-cs-sde/IntraJSCAM2021/

https://github.com/lu-cs-sde/IntraJSCAM2021/


68 A Precise Framework for Source-Level Control-Flow Analysis

The ↓nextNodes attribute contains the CFGNodes that are outside t, and that
would immediately follow the last executed CFGNode within t, disregarding
abrupt execution flow like returns and exceptions. By default, the ↑succ attribute
is defined as equal to ↓nextNodes.

Figure 3 shows how the framework can be specialised to some example AST
node types to define the desired CFG. JastAdd expresses these additions in a mod-
ular attribution aspect. For illustration, we again encode the JastAdd specification
into UML and include the abstract syntax of each node type. Listing 1 also illus-
trates how the pseudocode can be translated to JastAdd code.

Here, MethodDecl exemplifies a CFGRoot. It defines the flow between its
→entry and →exit HOAs and its children. EQOp exemplifies a CFGNode. It de-
fines a pre-order flow: left, then right, then the node itself. Each type defines
its own synthesised attributes as well as the inherited attributes of its children
and HOAs.

All CFGNodes have immediate access to the Entry and Exit nodes of the CFG,
through the inherited ↓entry and ↓exit attributes declared in CFGNode and defined
by the nearest CFGRoot ancestor (Figure 2). This allows e.g., the ReturnStmt to
point its ↑succ edge directly to the Exit node.

For boolean expressions that affect control-flow, IntraCFG supports path-
sensitive analysis, splitting the successor set into two disjoint sets for the true and
false branches. We provide attributes ↓nextNodesTT and ↓nextNodesFF, respec-
tively, to capture these branches. The AndOp type illustrates how these attributes
can capture short-circuit evaluation on the left child. These attributes are rele-
vant only for boolean branches, and must ensure the following property:

↓nextNodesTT ∪ ↓nextNodesFF = ↓nextNodes
Figure 4 illustrates these attributes on a small program in a language with

methods, statements, and expressions. Here, MethodDecl is a CFGRoot and thus
automatically has fresh Entry and Exit nodes. Nodes in the control flow, e.g.,
identifiers and the equality-check operator, EQOp, are CFGNodes, and thus have
the ↑succ attribute. Nodes that do not belong to the control-flow but live in AST
locations below a CFGRoot that may contribute to control flow are CFGSupport
nodes. The left-hand-side variable of the assignment p1 = 0 (i.e., p1) is not part
of the flow (cf. Section 3.1).

2.4 Computing predecessors

To support both forward and backward analyses, we provide a predecessor at-
tribute that captures the inverse of the successor attribute ↑succ. However, ↑succ
is also defined for CFGNodes that are not reachable from Entry by following ↑succ
(i.e., that are “dead code”). Our framework therefore computes predecessor edges
↑pred by not only inverting ↑succ into a collection attribute□succInv, but also by
filtering out such “dead” nodes from □succInv with a boolean circular attribute
⟲reachable (Figure 2).
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void foo(int p1, int p2, boolean b1){
if (p1==p2 && b1) p1 = 0;

}

AndOp

b1

p1 p2

EQOp

Entry Exit

p1 0

ExprStmt

MethodDecl

IfStmt

AssignExpr

Block

AndOp

b1

p1 p2

EQOp

Entry Exit

p1 0

ExprStmt

Fals
e

True

MethodDecl

IfStmt

Block

True

AndOp

b1

p1 0p1 p2

EQOp

Entry Exit

ExprStmt

MethodDecl

IfStmt

Block

p1 AssignExpr
p1

AssignExpr
p1

True

False

Fa
lse

CFGRoot

CFGNode

CFGSupport

AST node

HOA

firstCFG

nextNodes

succ

Figure 4: Visualization of the attributes ↑firstNodes, ↓nextNodes and ↑succ.
For boolean expressions (AndOp and EQOp), the subsets ↓nextNodesTT and
↓nextNodesFF are shown instead of ↓nextNodes, marked by True and False, re-
spectively.
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3 IntraJ: IntraCFG implementation for Java 7
IntraJ is our implementation of a precise intraprocedural CFG for Java 7, extend-
ing the IntraCFG framework and the ExtendJ Java compiler. IntraJ exploits the
ExtendJ front-end, which performs name-, type-, and compile-time error analy-
sis. ExtendJ produces an attributed AST2 on top of which IntraJ superimposes
the CFG.

In this Section, we discuss the most important design decisions for IntraJ,
and in particular, how we used HOAs to improve the precision of the CFG. Our
two main goals were:

1. minimality: build a concise CFG by excluding AST nodes that do not cor-
respond to any runtime action. This improves client analysis performance,
in particular for fixpoint computations.

2. high precision: the constructed CFGs should capture most program details.
We exploit HOAs to reify implicit structures in the program, such as calls
to static and instance initialisers and implicit conditions in for loops.

We gave particular importance to exceptions, modelling them as accurately as
possible and weighing the trade-off between precision and minimality.

IntraJ consists of a total of 989 LOC (598 for Java 4; 11 for Java 5; 380 for
Java 7). We have constructed a systematic benchmark test suite for IntraJ, con-
sisting of 151 tests in total (126 for Java 4; 5 for Java 5; 20 for Java 7). The test
suite reads source code as input and produces CFGs as dot files as output. We
validated the result of each test manually.

3.1 Statements and Expressions

When a language implementer specialises IntraCFG for a given language, they
must decide which AST nodes should be part of the CFG, i.e., mix in (implement)
the CFGNode interface. As a general design principle, we included AST nodes that
correspond to a single action at runtime. This includes operations on values, like
additions, comparisons, and read operations on variables and fields.

We also included nodes that are interesting points in the execution that a
client analysis might want to use. This includes nodes that redirect flow outside
of the CFG, like method calls, return statements, and throw statements.

For assignments, the choice of nodes to include in the CFG was not obvious.
The left-hand side of an assignment can be a chain of named accesses and method
calls, e.g., f.m().x, with the rightmost named access, x, corresponding to the
write. Here, we chose to not include x in the CFG but instead use the assignment
node itself to represent the write operation, see Figure 5. We argue that this gives

2The full abstract grammar for Java 7 can be found at https://extendj.org

https://extendj.org
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a simpler client interface, since the same AST node type, VarAccess, otherwise
represents all named accesses on the left- and right-hand side of an assignment.

AssignExpr

Dot

DotVarAccess

MethodAccess
< m >

< f >

IntegerLiteral

< 0 >

MethodDecl

Entry Exit
Block

VarAccess
< x >

void foo() {
f.m().x = 0;

}

We represent the write to
x by the AssignExpr
node in the CFG.

↑succ

CFGRoot

CFGNode

CFGSupport

AST node

Legend

HOA

Figure 5: An assignment with a complex left-hand side.

We do not include purely structural nodes, like Block or type information
nodes, in the CFG. We also exclude nodes that redirect internal flow, like while
statements and conditionals. While these nodes do represent runtime actions, the
CFG already reflects their flow through successor edges.

MethodDecl and the analogous ConstructorDecl for constructors mix in the
CFGRoot interface, thus representing a local CFG. A CFGSupport node defines the
inherited attributes for its CFGNodes children, if any. For example, a Block defines
the ↓nextNodes attribute for all its children.

As an example of the flexibility of IntraCFG, consider the Java ForStmt,
which is composed of variable initialisation, termination condition, post-iteration
instruction, and loop body. The CFG should include a loop over these compo-
nents. However, it is legal to omit all the components, i.e., to write: ‘for ( ;
; ){}’. The condition is implicitly true in this case, resulting in an infinite loop.
To construct a correct CFG, we still need a node to loop over; we therefore opt to
reify this implicit condition. We construct an instance of the boolean literal true
as the HOA →implC. Figure 6 shows how the ↑firstNodes attribute then uses
→implC only if both the initialisation statements and the condition are missing.
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MethodDecl

Entry Exit

Block

ForStmt

True

BooleanLiteral

< true >

Block

F
a
l
s
e

CFGRoot

CFGNode

CFGSupport

AST node

Legend

HOA

↑firstNodes
↑succ

void foo(){
for( ; ; ){ }

}

ForStmt ::= init:Stmt∗ c:Expr ... b:Block

implements CFGSupport
→implC : BooleanLiteral
→implC = new BooleanLiteral(true)
↑firstNodes = if ¬init.empty then
init0.↑firstNodes

elif ¬c.empty then c.↑firstNodes
else →implC.↑firstNodes

Figure 6: CFG for method with empty ForStmt. The HOA →implC reifies the
implicit true condition.

Another interesting corner case is the EmptyStmt. This node represents
e.g. the semicolon in the trivial block {;}. The EmptyStmt is a CFGSupport
node since it does not map to a runtime action. Since EmptyStmt has no
children, its ↑firstNodes will be the following CFG node. We achieve this by
defining ↑firstNodes as equal to ↓nextNodes, overriding the default equation
from CFGSupport. In this manner, the CFG skips the EmptyStmt, and if there
are occurrences of multiple EmptyStmts, we skip them transitively and link to
the next concrete CFGNode. The example in Figure 7 shows how we exclude
two EmptyStmts from the CFG and obtain a CFG with only a single edge from
method Entry to Exit. Let us call the two EmptyStmts e1 and e2, from left to
right. The equations give that Entry.↑succ = Exit since

Entry.↑succ= Entry.↓nextNodes= Block.↑firstNodes
= e1.↑firstNodes = e1.↓nextNodes
= e2.↑firstNodes = e2.↓nextNodes
= Block.↓nextNodes= Exit

3.2 Static and Instance Initialisers
When a Java program accesses or instantiates classes, it executes static and in-

stance initialisers. We will use the example in Figure 8 to explain how we handle
initialisers. As seen in the example, static and instance initialisers can be syn-
tactically interleaved: The instance field foo is followed by the static field bar,
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MethodDecl

Entry Exit

Block

EmptyStmt EmptyStmt

CFGRoot

CFGNode

CFGSupport

AST node

Legend

HOA

↑firstNodes
↑succ

void bar(){
; ;

}

EmptyStmt

implements CFGSupport
↑firstNodes = ↓nextNodes

Figure 7: The CFG can entirely skip AST nodes.

another static field foobar, and by an instance initialiser block printing the string
"Instance".

The Java Language Specification specifies that when a class is instantiated,
the static initialisers are executed first (unless already executed), then the in-
stance initialisers, and finally the constructor. During the execution of the static
initialisers, the ones in a superclass are executed before those in a subclass, and
similarly for the instance initialisers.

To handle this execution order, our solution is to use HOAs to construct
two independent CFGs for each ClassDecl: one for the static initialisa-
tions, →staticInit, and one for the instance initialisations, →instanceInit.
The →staticInit connects all the static field declarations and all static ini-
tialisers. →instanceInit analogously connects instance fields and initialisers.
→instanceInit and →staticInit mix in the CFGRoot interface, and automatically
get Entry and Exit nodes. The equations for ↑firstNodes and ↓nextNodes
are overridden to include the initialisers in the same order as they appear in
the source code. To connect the initialisation CFGs, we view them as implicit
methods and use HOAs to insert implicit method calls to them. For example, if a
class has a superclass, the implicit static/instance initialiser method will start by
calling the corresponding initialiser in the superclass.

3.3 Exceptions Modelling

Control flow for exceptions is complex to model and often requires non-trivial
approximations [Ami+16; JC04; Cho+99]. In Java, there are two kinds of excep-
tions: checked and unchecked. If an expression can throw a checked exception,
then Java’s static semantics require that the method that contains this expression
must surround the expression with an exception handler, or declare the excep-
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ClassDecl

StaticInit

Exit

FieldDecl

Block

ExprStmt

StringLiteral

< Instance >

InstanceInit

FieldDecl FieldDecl

BooleanLiteral

< false >
IntegerLiteral

< 1 >
IntegerLiteral

< 0 >

FieldDeclarator

< foo >

FieldDeclarator

< bar >
FieldDeclarator
< foobar > MethodAccess

< println >

EntryExitEntry

public class A {
int foo = 1; //instance field
static int bar = 0; //static field
static boolean foobar = false; //static field
{ println("Instance"); } //instance initialiser

}

Figure 8: Example of class that interleaves static and instance initialisers. The
→instanceInit and →staticInit HOAs represent the CFGs for each kind of ini-
tialisers.

tion in the method signature (using the throws keyword). If the exception is
unchecked, it is optional for the method to handle or declare the exception. Some
methods still declare unchecked exceptions, possibly to increase readability or to
follow coding conventions.

For the IntraJ CFG, we decided to explicitly represent all checked exceptions,
and, in addition, all unchecked exceptions that are explicitly thrown in themethod
or declared in themethod signature. For unchecked exceptions, we represent only
those that may escape from a try-catch statement. Within the try block of such
a statement, we introduce individual CFG edges for each represented exception
whenever it may be thrown, and separate edges for regular (non-exceptional)
control flow. This design allows us to avoid conservative overapproximation, and
enables client analyses to distinguish whether control reached a finally block
through exceptional control flow or through regular control flow.

Consider the following example with two nested try blocks:
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void ex(Long x) throws Exn {
try {
try {
if (x < 10) NPE
array[x] = 0; OOB

else throw new Exn(); Exn
return; R

} finally { . . . } F1
} catch (Exn e) { . . . } CExn
catch (Alt e) { . . . } CAlt
finally { . . . } F2

}

NPE OOB Exn R

F1

CExn CAlt

F2

NPE OOB Exn R

F1

CExn CAlt

F2

NPE OOB Exn R

F1

CExn CAlt

F2

Figure 9: Complex exception flow in a conservative CFG. Only the flow paths in
green and orange are realisable.

Calling ex(null) from Figure 9 triggers a null pointer exception at NPE. Con-
trol then flows from the exception to the first and then to the second finally
block, NPE F1 F2 . Calling ex(-1) similarly triggers an out-of-bounds excep-
tion at OOB, with analogous flow.

NPE OOB Exn R

UE

F11

F12 F13

CExn

F21 F22 F23

NPE OOB Exn R

UE

F11

F12 F13

CExn

F21 F22 F23

Figure 10: Path-
sensitive variant of the
CFG from Figure 9, used
in IntraJ.

The explicit exception at Exn takes the path
Exn F1 CExn F2 , and no path can go through
CAlt assuming that F1 does not throw Alt. Note that
finally also affects break, continue, and return, as
we see in the path R F1 F2 .

If we represent the CFG as on the right in Fig-
ure 9, client analyses will process many unrealisable
paths, such as R F1 CAlt F2 . Instead, we exploit
an existing feature in ExtendJ, originally intended for
code generation [Öqv18], that clones finally blocks.
We incorporate the HOAs that represent each cloned
block into our CFG. In our example, this yields the CFG
from Figure 10, and leaves CAlt as dead code.

This path sensitivity heuristic gives us increased
precision in exception handling and resource cleanup
code, which in our experience is often more subtle and less well-tested than the
surrounding code. For unchecked exception edges (NPE, OOB), we follow Choi et
al. [Cho+99], who observe that these edges are ‘quite frequent’; we therefore fun-
nel control flow for these exceptions through a single node UE in the style of Choi
et al.’s factorised exceptions. Each try block provides one such node through a
HOA. Section 5 shows some of the practical strengths and weaknesses of our
heuristic.

We take an analogous approach for try-with-resources, which automatically
releases resources (e.g., closes file handles) in the style of an implicit finally
block. Our treatment differs from that of finally only in that we synthesise the
implicit code and suitably chain it into the CFG.
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4 Client Analysis
We demonstrate our framework with two representative data flow analyses: Null
Pointer Exception Analysis (NPA), a forward analysis, and Live Variable Analysis
(LVA), a backward analysis that helps detect useless (‘dead’) assignments. These
analyses are significant for bug checking and therefore benefit from a close con-
nection to the AST.

We first recall the essence of these algorithms on a minimal language that
corresponds to the relevant subset of Java:

e ∈ E ::= new() | null | id | id.f | id = E

v ∈ id ::= x, . . .

An expression e can be a new() object, null, the contents of another variable,
the result of a field dereference (x.f), or an assignment x = e. The values in our
language are an unbounded set of objects O and the distinct null. Expressions
have the usual Java semantics. Since IntraJ already captures control flow (on
top of IntraCFG) and name analysis (via ExtendJ), we can ignore statements
and declarations, and safely assume that each id is globally unique.

4.1 Null Pointer Exception Analysis
In our simplified language, a field access x.f fails (in Java: throws a Null Pointer
Exception) if x is null. Null Pointer Exception Analysis (NPA) detects whether a
given field dereference may fail (e.g. in the SonarQube NPA variant) or must fail
(e.g. in the Eclipse JDT NPA variant) and can alert programmers to inspect and
correct this (likely) bug.

In our framework, writing may and must analyses requires the same effort;
we here opt for a may analysis over a binary lattice L2 in which ⊤ = nully

signifies value may be null and ⊥ = nonnull signifies value cannot be null.
More precisely, we use a product lattice over L2 that maps each access path

a ∈ A (e.g. x; x.f; x.f.f; . . . ) to an element of L2. Our analysis then follows
the usual approach for a join data flow analysis [CC77]. Our monotonic transfer
function fNPA : (A → L2)× E → (A → L2) is straightforward:

fNPA(Γ, v = e) = Γ[v 7→ JeKΓ]
where Jnew()KΓ = nonnull

JnullKΓ = nully

JvKΓ = Γ(v)
Jv.fKΓ = Γ(v.f)
Jv = eKΓ = JeKΓ

We do not need to write a recursive transfer function for assignments nested
in other assignments (e.g., x = y = z), since the CFG already visits these in eval-
uation order.
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<<interface>>
CFGNode

↑trFun : EnvNPA → EnvNPA
⟲inNPA : EnvNPA
⟲outNPA : EnvNPA
↑trFun(Γ) = Γ
⟲inNPA = {a 7→

⊔
n.⟲outNPA(a)

| a ∈ A, n ∈ ↑pred}
⟲outNPA = ↑trFun(⟲inNPA)

VarAccess

extends Expr. implements CFGNode
↓isDeref : boolean
↑canFail : boolean
↓cu : CompilationUnit [name-api]

↑mayBeNull = (⟲inNPA(↑decl) = nully)
↑canFail = ↑mayBeNull ∧ ↓isDeref
↑canFail =⇒ this ∈ ↓cu.□NPA

Expr

↑mayBeNull : boolean
↑decl : A [name-api]

↑mayBeNull = false

AssignExpr ::= lhs:Expr rhs:Expr

extends Expr. implements CFGNode
↑trFun(Γ) = if rhs.↑mayBeNull

then Γ[lhs.↑decl 7→ nully]
else Γ[lhs.↑decl 7→ nonnull]

↑mayBeNull = rhs.↑mayBeNull

NullExpr

extends Expr. implements CFGNode
↑mayBeNull = true

Figure 11: Partial implementation of our NPA. We obtain ↑decl and ↓cu from
ExtendJ’s name analysis API.

Our implementation is field-sensitive and control-sensitive (i.e., it under-
stands that if (x != null){x.f=1;} is safe), but array index-insensitive and
alias-insensitive. Field sensitivity is reached by considering the entire access
path chain, while control sensitivity is given by defining new HOAs representing
implicit facts, e.g., x != null.

Figure 11 shows how we compute environments Γ ∈ EnvNPA = A → L2

that capture access paths that may be null at runtime. We extend CFGNode with
⟲inNPA, which merges all evidence that flows in from control flow predecessors,
and ⟲outNPA, which applies the local transfer function ↑trFun to ⟲inNPA. While
NPA is a forward analysis, JastAdd’s on-demand semantics mean that we query
backwards, following ↑pred edges, when we compute⟲inNPA on demand. ⟲inNPA
and ⟲outNPA are circular, i.e., can depend on their own output and compute a
fixpoint.

The attributes for VarAccess show how we use this information. Each
VarAccess contributes to ↓cu.□NPA, the compilation unit-wide collection
attribute of likely null pointer dereferences, whenever ↑mayBeNull holds and
when the VarAccess is also a proper prefix of an access path and must therefore
be dereferenced (↓isDeref, not shown here).

Our full Java 7 implementation takes up 142 lines of JastAdd code, excluding
data structures but including control sensitive analysis handling and reporting.
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4.2 Live Variable Analysis
Given a CFGNode n, a variable is live iff there exists at least one path from n to
Exit on which n is read without first being redefined. An assignment to a vari-
able that is not live (i.e., dead) wastes time and complicates the source code, which
generally means that it is a bug [Rei21]. We can detect this bug with Live Vari-

able/Liveness analysis (LVA), a data flow analysis that computes the live variables
for each CFG node.

We express LVA as a Gen/Kill analysis, on the powerset lattice over the set of
live (local) variables. Each transfer function adds variables to the set (marks them
live) or removes them (marks them dead). LVA is a backward analysis, starting at
the Exit node with the assumption that all variables are dead (i.e., with the set of
live variables L = ∅). The transfer function thus maps from node exit to entry
and has the form:

fLVA(L, e) = (L \ def(e)) ∪ use(e)

where def (e) is the set of variables that e assigns to, and use(e) is the set of vari-
ables that e reads.

We encode the fLVA using RAGs in a similar way as done in [Söd+13a]: Fig-
ure 12 shows our computation where circular attributes⟲inLVA and⟲outLVA rep-
resent variables live before/after a CFGNode. Here, ⟲outLVA reads from ↑succ
nodes, since we are implementing an on-demand backward analysis. VarAccess
and AssignExpr override ↑use and ↑def, respectively. Since the CFG traverses
through the right-hand side of each assignment, this specification suffices to cap-
ture the analysis of our Java language fragment. Our full implementation for
Java 7 takes up 38 lines of code.

4.3 Dead Assignment Analysis
We use dead assignment analysis (DAA) as a straightforward client analysis for
LVA. Our implementation of DAA refines the results of LVA with a number of
heuristics that we have adopted from the SonarQube checker. Specifically, these
heuristics suppress warnings in code like the following:

String status = ""; // WARNING: unused assignment
if (...) status = "enabled";
else status = "disabled";

Here, the initial assignment to status reflects a defensive coding pattern that
ensures that all variables are initialised to some safe default. We (optionally) sup-
press warnings like the above under two conditions: (1) the assignment must be
in a variable initialisation, and (2) the initialiser must be a common default value,
i.e., one of {null, 1, 0, -1, "", true, false}. Our DAA implementation takes up
62 lines of code.
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<<interface>>
CFGNode

⟲inLVA : P(A)
⟲outLVA : P(A)
↑def : P(A)
↑use : P(A)

⟲inLVA = (⟲outLVA \ ↑def) ∪ ↑use
⟲outLVA =

⋃
{n.⟲inLVA|n ∈ ↑succ}

↑def = ∅
↑use = ∅

VarAccess

implements CFGNode
↑use = { ↑decl }

AssignExpr ::= lhs:Expr rhs:Expr

implements CFGNode
↑def = { lhs.↑decl }

Figure 12: Partial implementation of our LVA.

5 Evaluation and Results
We demonstrate the utility of IntraCFG and IntraJ3 by evaluating the client
analyses that we describe in Section 4 against similar source-level analyses from
the Parent-First framework jastaddj-intraflow4 (JJI) and the commercial static
analyser SonarQube, version 8.9.0.43852 (SQ).

Our evaluation targets DaCapo benchmarks ANTLR, FOP, and PMD [Bla+06],
as well as JFreeChart (JFC), which is a superset of the Chart benchmark. These
benchmarks mostly subsume the ones used by JJI [Söd+13a], except for replacing
Bloat by the more readily available and larger PMD. Table 1 summarise key
metrics for the benchmarks and compares CFGs against JJI. Here, IntraJ’s AST-
unrestricted strategy for building CFGs reduces the number of nodes and edges
by more than 30%.

5.1 Precision
To ensure that our analyses yield useful results, we compared them against the
results that JJI and SQ report.

Dead Assignment Analysis JJI and SQ provide subtly different DAA vari-
ants. JJI’s DAA corresponds largely to our LVA (Section 4.2) with minimal fil-
tering, while SQ additionally applies the default value filtering heuristic from
Section 4.3. We therefore ran two variants of our DAA, the JJI-style IntraJ-NH
(non-heuristic), and the SQ-style IntraJ-H (heuristic). For SQ’s reports, we fil-
tered reports that involved multiple methods (FOP: 24; JFC: 5; PMD: 8), since SQ
can use interprocedural analysis within one file.

The Venn diagrams in the upper part of Figure 13 show the number of DAA
reports for each project, categorised by their overlap among the different check-

3Based on ExtendJ commit a56a2c2 and JastAdd commit faf36d2
4Using JastAdd2 release 2.1.4-36-g18008bb and JastAddJ-intraflow commit b0b7c00, restored

with the original authors’ generous help
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LOC Qty IntraJ JJI %

ANTLR
v. 2.7.2 33·737

Roots 2·667 2·329 +14.5
Nodes 76·925 116·523 -39.9
Edges 85·028 136·528 -37.7

PMD
v. 4.2 49·610

Roots 6·215 5·960 +4.26
Nodes 103·739 182·864 -43.2
Edges 108·639 202·842 -46.4

JFC
v 1.0.0 95·664

Roots 9·271 7·889 +17.5
Nodes 219·419 331·368 -33.7
Edges 220·256 363·642 -39.4

FOP
v 0.95 97·288

Roots 11·327 8·921 +26.9
Nodes 239·096 347·125 -31.1
Edges 240·068 379·269 -36.6

Table 1: Benchmark sizemetrics, LOC from cloc. The rest are CFG sizes. Roots is
the number of intraprocedural CFGs. For IntraJ, this includes static and instance
initialisers.

ers. For each categorywith 20 or fewer reports, wemanually inspected all reports.
For other categories, we sampled and manually inspected at least 20 reports or
20% of the reports (whichever was higher).

The Venn diagrams are dominated by two bug report categories: reports from
the intersection of IntraJ-NH and JJI, which are initialisations of variables with
default values, and reports from the intersection of all tools. For these two cat-
egories, we found all inspected reports to be true positives, modulo the DAA
heuristic (Section 4.3). The remaining cases are often false positives: SQ reports
8 and 44 false positives in PMD and FOP that seem to largely stem from impre-
cision in handling try-catch blocks. Meanwhile, JJI reports 9 false positives in
PMDwhile handling break statements. IntraJ reports two false positives, due to
missing two exceptional flow edges for unchecked exceptions (Section 3.3). These
do not affect JJI (and possibly SQ), since JJI conservativelymerges exceptional and
regular control flow.

Null Pointer Analysis For NPA (lower part of Figure 13), IntraJ detects at
least as many reports as SQ, except for PMD, where SQ is able to exploit path
sensitivity to identify three additional true positives. Similarly, the false positives
reported only by IntraJ are mostly due to the lack of path-sensitivity. Listing 2
shows a simplified example.

We found that most of the false positives in the intersection of IntraJ and
SQ are due to the lack of interprocedural knowledge. Listing 3 gives a simplified
example. The code here checks if rs is null and, if so, calls panic() to halt
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Figure 13: Venn diagram: number of reports shared across checkers, and percent-
age of true positives (unless 100%).

execution. IntraJ and SQ treat panic() as a regular method call and infer that
rs may be null when dereferenced.

void bar(boolean flag){
Object o = null;
if (flag)
o = new Object();

if (flag)
println(o.toString());

}

Listing 2: Simplified false positive
reported by IntraJ

void foo(){
Object rs = getRS();
if(rs==null)

// rs can be null
panic(); //exit(1)

println(rs.toString());
}

Listing 3: False positive due to
intraprocedural limitations

5.2 Performance
We evaluated IntraJ’s runtime performance with the above benchmarks on an
octa-core Intel i7-11700K 3.6 GHz CPU with 128 GiB DDR4-3200 RAM, running
Ubuntu 20.04.2 with Linux 5.8.0-55-generic and the OpenJDK Runtime Environ-
ment Zulu 7.44.0.11-CA-linux build 1.7.0_292-b07.
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We separately measured both start-up performance on a cold JVM (restarting
the JVM for each run) and steady-state performance (for a single measurement
after 49 warmup runs). We measured each for 50 iterations (i.e., 2500 analysis
runs for steady-state) and report median and 95% confidence intervals for IntraJ,
JJI, and SQ, where applicable.

2 and Table 3 summarise our results. The Baseline column in Table 2, gives the
times for each tool to load each benchmark, without data flow analyses. For SQ,
we report the command line tool run time, with checkers disabled. For IntraJ and
JJI, this time includes parsing, name, and type analysis. As JJI uses old versions of
JastAdd and ExtendJ (formerly JastAddJ) from 2013, it reports different baselines.
We speculate that the delta is due to bug fixes and other changes to JastAdd and
ExtendJ.

We measured DAA and NPA, as well as CFG construction time, on separate
runs (column An.sys). Table 3 has some missing values since JJI does not provide
an implementation for NPA analysis, and since for SQ, we were unable to trigger
the construction of the CFG only. Further, we could not measure steady state for
SQ, since we ran it out of the box.

For start-up measurements, we then subtracted the baseline timings. DAA
and NPA timings include on-demand CFG construction time. For the CFG mea-
surements, we iterated over the entire AST and computed the ↑succ attribute.

The %JJI and %SQ columns summarise IntraJ’s performance against JJI and
SQ as slowdown (in percent), i.e. IntraJ was faster whenever we report less than
100.

We see that IntraJ is often slower than JJI for small benchmarks, but out-
performs it as the benchmarks grow in size, especially in steady-state. This trend
mirrors the additional overhead that IntraJ expends on computing smaller, more
accurate CFGs: the difference between the CFG and DAA timings is consistently
smaller for IntraJ than it is for JJI, and becomesmore significant for larger bench-
marks.

For the industrial-strength SQ, we observe that its baseline is longer than In-
traJ’s, and an explanation might be that it includes computations that for IntraJ
would be attributed to the analyses. A strict comparison to SQ is therefore dif-
ficult, but we observe that IntraJ is considerably faster including the baseline,
at most 3.12 times slower for DAA only, and considerably faster for NPA only,
though the latter is likely due to SQ’s more expensive interprocedural analysis.

Overall, our results support that IntraJ enables practical data flow analyses,
with run-times and precision similar to state-of-the-art tools. Moreover, the re-
sults support that the overhead that IntraJ invests in refining CFG construction
over jastaddj-intraflow pays off: client analyses can amortise this cost, andwe
expect this benefit to grow for analyses on taller lattices (e.g., interval or typestate
analyses).
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Table 2: Measure the baseline execution time and 95% confidence intervals using
50 data points per reported number.

Benchmark Baseline(s)

ANTLR
IntraJ JJI SQ

2.14±0.01 1.34±0.01 4.91±0.05

PMD
IntraJ JJI SQ

3.56±0.01 2.34±0.02 10.76±0.09

JFC
IntraJ JJI SQ

4.29±0.01 3.14±0.02 10.81±0.11

FOP
IntraJ JJI SQ

4.42±0.00 3.32±0.00 17.20±0.12

Table 3: Benchmark mean execution time (seconds) and 95% confidence intervals
over 50 data points per reported number. We are reporting only confidence in-
tervals greater than 0.02.

Benchmark Start-up Steady state
An.sys IntraJ JJI SQ %JJI %SQ IntraJ JJI %JJI

ANTLR
CFG 0.29 0.16 - 181 - 0.05 0.04 125
DAA 0.53 0.43 0.24±0.05 123 220 0.12 0.13 92
NPA 0.90 - 12.35±0.10 - 7 0.27 - -

PMD
CFG 0.28 0.11 - 120 - 0.07 0.06 116
DAA 0.47 0.39 0.18±0.08 120 261 0.12 0.16 75
NPA 0.80 - 12.40±0.13 - 6 0.26 - -

JFC
CFG 0.45 0.45±0.04 - 100 - 0.12 0.12 100
DAA 0.75 1.07±0.03 0.24±0.11 70 312 0.25 0.34 73
NPA 1.62 - 10.71±0.12 - 13 0.60 - -

FOP
CFG 0.36 0.33 - 109 - 0.14 0.17 82
DAA 0.67 0.74 0.34±0.12 90 197 0.26 0.39 66
NPA 1.42 - 19.25±0.14 - 7 0.67 - -
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6 Related Work

Our work is most similar to jastaddj-intraflow [Söd+13a], the earlier RAG-
based control- and data flow framework. As demonstrated, our CFG framework is
more general, leading to more concise CFGs, avoiding misplaced nodes, and han-
dling control flow that does not follow the AST structure, like initialisation code.
Furthermore, our framework is formulated as a complete language-independent
framework (Fig 2) with interfaces and default equations for all nodes involved in
the CFG computation, and it has a more precise predecessor relation, excluding
unreachable nodes. Our application of the framework to Java is more precise than
the earlier work, making use of HOAs for reifying implicit structure, e.g., in con-
nection to finally blocks. Additionally, we implemented the analyses for Java 7,
including complex flow for try-with-resources, whereas [Söd+13a] only sup-
ported Java 5.

Earlier work on adding control flow to attribute grammars includes a
language extension to the Silver attribute grammar system [VWK07; Van+10b]
which supports that AST nodes are marked as CFG nodes, and successors are
defined using an inherited attribute. Data flow is implemented by exporting
data flow properties as temporal logic formulas, and using model checking to
implement the analysis. The approach is demonstrated on a small subset of C.
No performance results are reported, and scalability issues are left for future
work.

Other declarative frameworks for program analysis have also demonstrated
flow-sensitive analysis support. SOUL [De 11] exposes data flow information for
Java 1.5 from Eclipse through a SmallTalk dialect combined with Prolog, though
we were unable to obtain performance numbers for bug checkers or related
analyses based on SOUL. Like our system, SOUL uses on-demand evaluation.
DeepWeaver [Fal+07] supports data flow analysis and program transforma-
tion on byte code. Meanwhile, Flix [ML20] combines Datalog-style fixpoint
computations and functional programming for declarative data flow analysis,
and can scale IFDS/IDE-style interprocedural data flow analysis to nontrivial
software [MYL16b]. To the best of our understanding, Flix does not connect to
any compiler frontend, and we assume that Flix users rely on Datalog-style fact
extractors to bridge this gap. MetaDL [DBR19] illustrates how to synthesise fact
extractors from a JastAdd-based language, and we expect that it can directly
expose IntraJ edges.

FlowSpec [SWV20] is a DSL for data flow analysis based on term rewriting.
To the best of our knowledge, FlowSpec has only been demonstrated on educa-
tional and domain-specific languages. Rhodium [Ler+05] uses logical declarative
specifications for data flow analysis and transformation, to optimise C code and
to prove the correctness of the transformations.

Other declarative systems that do not handle data flow include logic program-
ming based techniques [BS09], term rewriting systems [Vis04], and XPath pro-
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cessors [Cop05].
Our work has focused on intraprocedural data flow analyses [Kil73; KU77;

CC77]. However, existing (IR-based) program analysis tools like Soot [VR+10],
Wala [FD12], or Opal [Hel+20] include provisions for interprocedural analysis,
too. We currently see no fundamental challenge towards scaling our techniques
to interprocedural analysis and expect only minor changes to the IntraCFG in-
terfaces, for context-sensitivity. Such an effort would require additional analy-
ses (call graph, points-to). We hypothesise that our implicit handling of recur-
sive dependencies can eliminate the need for pre-analyses or complex worklist
schemes [LH03], analogously to Datalog-based analyses [SB10]. While we ex-
pect that it is possible to integrate highly scalable data flow algorithms like IFDS,
IDE [RHS95; SRH96], or SPPD [SAB19] into RAG interfaces, such interfaces may
require a different design than IntraCFG and IntraJ to e.g. accommodate pro-
cedure summaries and to better enforce and exploit the invariants of these more
specialised algorithms.

7 Conclusions

We presented IntraCFG, a RAG-based declarative language-independent frame-
work for constructing intraprocedural CFGs. IntraCFG superimposes CFGs on
the AST, allowing client analyses to take advantage of other AST attributes, such
as type information and precise source information. We validated our approach
by implementing IntraJ, an application of IntraCFG to Java 7, and demonstrated
how IntraCFG overcomes the limitations of an earlier RAG-based framework,
jastaddj-intraflow (JJI), by allowing the CFG to not be constrained by the
AST structure. Compared to JJI, IntraJ can faithfully capture execution order
and improve CFG conciseness and precision, removing more than 30% of the CFG
edges in our benchmarks. We evaluated IntraJ by implementing two data flow
analyses: Null Pointer Exception Analysis (NPA) and Dead Assignment Analy-
sis (DAA), comparing both to JJI (for DAA), and to the highly tuned commercial
tool SonarQube (SQ) (for DAA and NPA). Our results show that the IntraJ-based
analyses offer precision that is comparable to that of JJI and SQ. Compared to JJI,
IntraJ pays some overhead for computing more precise CFG but can amortise
this effort for larger programs by speeding up client analyses, outperforming JJI.
Compared to SQ, IntraJ’s NPA analysis is substantially faster, although this is
likely due to SQ’s more advanced interprocedural analysis. IntraJ’s DAA anal-
ysis seems slower than SQ’s, but SQ has a much larger baseline, which might
include computations that we would attribute to the analysis for IntraJ. Overall,
we find that our results demonstrate that IntraJ-based data flow analyses are
practical, that IntraJ enables precise data flow analyses on Java source code, and
that IntraCFG is effective for constructing CFGs for Java-like languages. More-
over, we demonstrate for the first time how RAGs can build and exploit graph
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structures over an AST without being restricted by the AST’s structure.

Acknowledgements
This work was partially supported by the Wallenberg AI, Autonomous Systems
and Software Program (WASP) funded by the Knut and Alice Wallenberg Foun-
dation.

References
[Ami+16] Afshin Amighi et al. “Provably correct control flow graphs from

Java bytecode programs with exceptions”. In: International journal
on software tools for technology transfer 18.6 (2016), pp. 653–684.

[Bla+06] S. M. Blackburn et al. “The DaCapo Benchmarks: Java
Benchmarking Development and Analysis”. In: OOPSLA ’06:

Proceedings of the 21st annual ACM SIGPLAN conference on

Object-Oriented Programming, Systems, Languages, and

Applications. Portland, OR, USA: ACM Press, Oct. 2006,
pp. 169–190.

[BS09] Martin Bravenboer and Yannis Smaragdakis. “Strictly declarative
specification of sophisticated points-to analyses”. In: Proceedings of
OOPSLA ’09. Orlando, Florida, USA: ACM, 2009, pp. 243–262.

[Cho+99] Jong-Deok Choi et al. “Efficient and precise modeling of
exceptions for the analysis of Java programs”. In: ACM SIGSOFT

Software Engineering Notes 24.5 (1999), pp. 21–31.
[Cop05] Tom Copeland. PMD applied. Vol. 10. Centennial Books

Arexandria, Va, USA, 2005.
[CC77] Patrick Cousot and Radhia Cousot. “Abstract Interpretation: A

Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints”. In: Proceedings of
the 4th ACM SIGACT-SIGPLAN Symposium on Principles of

Programming Languages. POPL ’77. Los Angeles, California:
Association for Computing Machinery, 1977, pp. 238–252.

[De 11] Coen De Roover. “A Logic Meta-Programming Foundation for
Example-Driven Pattern Detection in Object-Oriented Programs”.
English. In: Proceedings of the 27th IEEE International Conference on

Software Maintenance (ICSM 2011). Proceedings of the 27th IEEE
International Conference on Software Maintenance (ICSM 2011).
2011.



A Precise Framework for Source-Level Control-Flow Analysis 87

[DBR19] Alexandru Dura, Hampus Balldin, and Christoph Reichenbach.
“MetaDL: Analysing Datalog in Datalog”. In: Proceedings of the 8th
ACM SIGPLAN International Workshop on State Of the Art in

Program Analysis. ACM. 2019, pp. 38–43.
[EH07a] Torbjörn Ekman and Görel Hedin. “The jastadd extensible Java

compiler”. In: Proceedings of the 22nd annual ACM SIGPLAN

conference on Object-oriented programming systems and

applications. 2007, pp. 1–18.
[Fal+07] Henry Falconer et al. “A Declarative Framework for Analysis and

Optimization”. In: Compiler Construction. Ed. by
Shriram Krishnamurthi and Martin Odersky. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 218–232.

[FD12] Stephen Fink and Julian Dolby. WALA–The TJ Watson Libraries for

Analysis. 2012.
[FSH20] Niklas Fors, Emma Söderberg, and Görel Hedin. “Principles and

patterns of JastAdd-style reference attribute grammars”. In:
Proceedings of the 13th ACM SIGPLAN International Conference on

Software Language Engineering, SLE 2020, Virtual Event, USA,

November 16-17, 2020. Ed. by Ralf Lämmel, Laurence Tratt, and
Juan de Lara. ACM, 2020, pp. 86–100.

[Hed00] Görel Hedin. “Reference Attributed Grammars”. In: Informatica

(Slovenia) 24.3 (2000).
[HM03] Görel Hedin and Eva Magnusson. “JastAdd—an aspect-oriented

compiler construction system”. In: Science of Computer

Programming 47.1 (2003), pp. 37–58.
[Hel+20] Dominik Helm et al. “Modular collaborative program analysis in

OPAL”. In: Proceedings of the 28th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the

Foundations of Software Engineering. 2020, pp. 184–196.
[HSP05] David Hovemeyer, Jaime Spacco, and William Pugh. “Evaluating

and tuning a static analysis to find null pointer bugs”. In:
Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on

Program analysis for software tools and engineering. 2005, pp. 13–19.
[JC04] Jang-Wu Jo and Byeong-Mo Chang. “Constructing control flow

graph for java by decoupling exception flow from normal flow”. In:
International Conference on Computational Science and Its

Applications. Springer. 2004, pp. 106–113.



88 A Precise Framework for Source-Level Control-Flow Analysis

[Jou84] Martin Jourdan. “An Optimal-time Recursive Evaluator for
Attribute Grammars”. In: International Symposium on

Programming, 6th Colloquium, Toulouse, France, April 17-19, 1984,

Proceedings. Ed. by Manfred Paul and Bernard Robinet. Vol. 167.
Lecture Notes in Computer Science. Springer, 1984, pp. 167–178.

[KU77] John B Kam and Jeffrey D Ullman. “Monotone data flow analysis
frameworks”. In: Acta informatica 7.3 (1977), pp. 305–317.

[Kil73] Gary A. Kildall. “A Unified Approach to Global Program
Optimization”. In: Proceedings of the 1st Annual ACM
SIGACT-SIGPLAN Symposium on Principles of Programming

Languages. POPL ’73. Boston, Massachusetts: Association for
Computing Machinery, 1973, 194–206.

[Knu68] Donald E Knuth. “Semantics of context-free languages”. In:
Mathematical systems theory 2.2 (1968), pp. 127–145.

[Ler+05] Sorin Lerner et al. “Automated soundness proofs for dataflow
analyses and transformations via local rules”. In: ACM SIGPLAN

Notices 40.1 (2005), pp. 364–377.
[LH03] Ondřej Lhoták and Laurie Hendren. “Scaling Java points-to

analysis using Spark”. In: International Conference on Compiler

Construction. Springer. 2003, pp. 153–169.
[ML20] Magnus Madsen and Ondřej Lhoták. “Fixpoints for the masses:

programming with first-class Datalog constraints”. In: Proceedings
of the ACM on Programming Languages 4.OOPSLA (2020), pp. 1–28.

[MYL16b] Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. “From Datalog
to flix: a declarative language for fixed points on lattices”. In: ACM
SIGPLAN Notices 51.6 (2016), pp. 194–208.

[MEH07a] Eva Magnusson, Torbjorn Ekman, and Gorel Hedin. “Extending
Attribute Grammars with Collection Attributes–Evaluation and
Applications”. In: Seventh IEEE International Working Conference

on Source Code Analysis and Manipulation (SCAM 2007). IEEE.
2007, pp. 69–80.

[MH07b] Eva Magnusson and Görel Hedin. “Circular reference attributed
grammars—their evaluation and applications”. In: Science of
Computer Programming 68.1 (2007), pp. 21–37.

[Öqv18] Jesper Öqvist. “Contributions to Declarative Implementation of
Static Program Analysis”. PhD thesis. Lund University, 2018.

[Rei21] Christoph Reichenbach. “Software Ticks Need No Specifications”.
In: Proceedings of the 43rd International Conference on Software

Engineering: New Ideas and Emerging Results Track. Virtual, 2021.



A Precise Framework for Source-Level Control-Flow Analysis 89

[RHS95] Thomas Reps, Susan Horwitz, and Mooly Sagiv. “Precise
interprocedural dataflow analysis via graph reachability”. In:
Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on

Principles of programming languages. 1995, pp. 49–61.
[SRH96] Mooly Sagiv, Thomas Reps, and Susan Horwitz. “Precise

interprocedural dataflow analysis with applications to constant
propagation”. In: Theoretical Computer Science 167.1-2 (1996),
pp. 131–170.

[SB10] Yannis Smaragdakis and Martin Bravenboer. “Using Datalog for
fast and easy program analysis”. In: International Datalog 2.0
Workshop. Springer. 2010, pp. 245–251.

[Smi+15] Justin Smith et al. “Questions developers ask while diagnosing
potential security vulnerabilities with static analysis”. In:
Proceedings of the 2015 10th Joint Meeting on Foundations of

Software Engineering. 2015, pp. 248–259.
[SWV20] Jeff Smits, Guido Wachsmuth, and Eelco Visser. “FlowSpec: A

declarative specification language for intra-procedural
flow-Sensitive data-flow analysis”. In: Journal of Computer

Languages 57 (2020), p. 100924.
[Söd+13a] Emma Söderberg et al. “Extensible Intraprocedural Flow Analysis

at the Abstract Syntax Tree Level”. In: Sci. Comput. Program. 78.10
(Oct. 2013), 1809–1827.

[SAB19] Johannes Späth, Karim Ali, and Eric Bodden. “Context-, Flow-, and
Field-Sensitive Data-Flow Analysis Using Synchronized Pushdown
Systems”. In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019).

[Sza] Tamás Szabó. “Incrementalizing Static Analyses in Datalog”.
PhD thesis. Johannes Gutenberg-Universität Mainz.

[VR+10] Raja Vallée-Rai et al. “Soot: A Java Bytecode Optimization
Framework”. In: CASCON First Decade High Impact Papers.
CASCON ’10. Toronto, Ontario, Canada: IBM Corp., 2010,
pp. 214–224.

[VWK07] Eric Van Wyk and Lijesh Krishnan. “Using verified data-flow
analysis-based optimizations in attribute grammars”. In: Electronic
Notes in Theoretical Computer Science 176.3 (2007), pp. 109–122.

[Van+10b] Eric Van Wyk et al. “Silver: An extensible attribute grammar
system”. In: Science of Computer Programming 75.1 (2010). Special
Issue on ETAPS 2006 and 2007 Workshops on Language
Descriptions, Tools, and Applications (LDTA ’06 and ’07),
pp. 39–54.



90 IntraJ: An On-Demand Framework for Intraprocedural Java Code Analysis

[Vis04] E. Visser. “Program Transformation with Stratego/XT: Rules,
Strategies, Tools, and Systems in Stratego/XT 0.9”. In: Lecture
Notes in Computer Science 3016 (2004). Ed. by C. Lengauer et al.,
pp. 216–238.

[VSK89b] H. H. Vogt, S. D. Swierstra, and M. F. Kuiper. “Higher Order
Attribute Grammars”. In: SIGPLAN Not. 24.7 (1989), 131–145.



Pa
pe

r
II

IntraJ: An On-Demand
Framework for

Intraprocedural Java Code
Analysis

Abstract
Static analysis tools play a crucial role in software development by detecting bugs
and vulnerabilities. However, running these tools separately from the code edit-
ing process often leads to context switching for developers, resulting in decreased
productivity. To address this issue, we present IntraJ, a responsive and exten-
sible framework for intraprocedural control-flow and dataflow analysis for Java
source code. By using on-demand evaluation and Reference Attribute Grammars
(RAGs), IntraJ can provide real-time analysis results directly in the editor, sim-
ilar to compile-time error detection. The framework is implemented on top of
the ExtendJ extensible Java compiler, which provides a complete Java compiler
implementation. We demonstrate the use of IntraJ in various development en-
vironments, including the command line, an editor integration based on the Lan-
guage Server Protocol, and an integration into the debugging tool CodeProber.
Finally, we showcase the extensibility of IntraJ by illustrating how new client
analyses and language constructs can be added to the framework through RAG
specifications. We evaluate the performance of IntraJ on a set of real-world
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Java benchmarks, demonstrating that IntraJ can provide real-time feedback to
developers by analyzing most compilation units in under 0.1 seconds.

1 Introduction

Detecting software bugs early in the development process is crucial. Early de-
tection not only significantly reduces costs but can also prevent severe conse-
quences, such as system failures, security breaches, and financial losses [Saw99].

As a result, software development is increasingly relying on static anal-
ysis tools to identify defects and vulnerabilities. Tools like Infer [Dis+19],
PMD [Cop05], and SpotBugs (successor of FindBugs [Aye+08b]), are becoming
integral parts of the development process, providing automated analysis of
code quality and security issues. These tools are typically run as part of an
automated pipeline enabling the detection of post-editing issues [Sad+15]. While
this approach is effective, it is prone to errors as developers often switch their
focus to other tasks while waiting for the analysis results [Nad22]. Such context
switching can introduce new errors and issues into the codebase.

Detecting and displaying static analysis problems directly in the editor pro-
vides real-time feedback analogous to compile-time error detection. This inte-
gration reduces context switching and helps maintain the developer’s continu-
ous focus and productivity. Achieving this requires low response times; ideally,
analysis results should be available within 0.1 seconds to ensure the system feels
instantaneous to the user [Nie94]. Despite the evident benefits, the challenge of
delivering such responsive static analysis remains largely unaddressed.

In this paper we revisit our previous work on IntraJ [Rio+21], a framework
designed for responsive and extensible intraprocedural control-flow and dataflow
analysis of Java source code. Here, our emphasis is on describing the architec-
ture and demonstrating the extensibility and efficiency of IntraJ for interactive
analyses, highlighting its modularity and responsiveness. IntraJ achieves low
latency through two key approaches: on-demand evaluation, computing only the
necessary parts of the analysis relevant to the current editing context, and source-
level analysis, performing analysis directly on the abstract syntax tree rather than
bytecode, avoiding the overhead of bytecode generation. This approach mini-
mizes computational resources and ensures efficient and responsive analysis.

IntraJ is built using Reference Attribute Grammars (RAGs) [Hed00], a high-
level declarative formalism that inherently supports on-demand evaluation. Our
framework is implemented as an extension of the ExtendJ [EH07b] Java com-
piler, which already uses RAGs for name binding and type analysis. The In-
traJ API includes methods for traversing the control-flow graph and computing
dataflow analyses, enabling the development of custom analyses using RAGs.

IntraJ offers an extensible API, allowing developers to integrate additional
analyses as RAG specifications. These extensions can leverage both IntraJ and
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ExtendJ APIs, benefiting from automatic on-demand evaluation.
We showcase IntraJ across multiple development environments, including

a command line tool, an editor integrated with the Language Server Protocol,
and the debugging tool CodeProber [Ala+24b]. Our previous work [Rio+21]
showed that IntraJ achieves precision comparable to industrial-strength tools
like SonarQube and has efficient performance on whole program analyses.

In this paper, we focus on the performance of IntraJ in interactive environ-
ments. We present results that highlight its ability to deliver real-time analysis
with no noticeable latency, even in large codebases. Our results show that for
most projects, IntraJ can analyze 99% of the compilation units (one at a time) in
less than 0.1 seconds. This demonstrates IntraJ’s suitability for integration into
modern development workflows where immediate feedback is crucial.

The paper is structured as follows: we begin with a brief overview of RAGs
and Monotone Frameworks (Section 2), followed by a presentation of our contri-
butions:

• We present the architecture and APIs of IntraJ (Section 3).

• We demonstrate the integration and use of IntraJ into three different de-
velopment tools, highlighting its flexibility and responsiveness (Section 4).

• We illustrate the framework’s extensibility through the addition of new
client analyses written as RAG specifications (Section 5).

• We evaluate the performance of IntraJ in interactive environments (Sec-
tion 6).

The paper concludes by discussing related work (Section 7). Finally, we
present our conclusions and outline future work (Section 8).

2 Background
This section introduces Reference Attribute Grammars for defining language se-
mantics and monotone frameworks for reasoning about program dataflow prop-
erties.

2.1 Reference Attribute Grammars
Reference Attribute Grammars (RAGs) [Hed00] are a formalism for specifying
how programming languages should be evaluated and analyzed. RAGs represent
programs as abstract syntax trees (ASTs) decorated with computed properties
called attributes. RAGs extend Knuth’s Attribute Grammars [Knu68] by allowing
attributes to reference other AST nodes. This extension allows RAGs to define
relations between nodes in the abstract syntax tree and to superimpose graphs
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Add

Sub

Num Num

Add

Num Num

Value=3 Value=5 Value=8 Value=2
v : 3 v : 5 v : 8 v : 2

v : −2 v : 10

v : 8

Figure 1: Decorated AST representing the expression (3-5) + (8+2). Attribute
v is the value of the expression.

Listing 1: Abstract grammar for the expression language.
abstract Expr;
Add : Expr ::= Left:Expr Right:Expr;
Sub : Expr ::= Left:Expr Right:Expr;
Num : Expr ::= <Value:int>;

over the AST, including name bindings, type hierarchies, and control-flow graphs
(Section 2.2).

To illustrate this concept, wewill consider a very simple arithmetic expression
language with additions, subtractions, and numeric literals. The input text is
parsed into an AST that is decorated with attributes. For example, the decorated
AST of the expression (3− 5) + (8+ 2) is shown in Figure 1. Each node has an
attribute v , which is the value of the node and its subtree. The value of the whole
expression is then v of the root node.

Listing 1 shows the abstract grammar for this language. To define the abstract
grammar and attributes, we use the meta-compilation system JastAdd [HM03].
Given a RAG specification, JastAdd generates Java code for the AST classes and
the attribute evaluation methods. Thus, the abstract grammar in the example
above defines four Java classes to represent the different program elements.

Listing 2: Specification of the attribute v .
syn int Expr.v();
eq Add.v() = getLeft().v() + getRight().v();
eq Sub.v() = getLeft().v() - getRight().v();
eq Num.v() = getValue();
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The classes Add, Sub, and Num are subclasses of the abstract class Expr. Add
and Sub have two children, Left and Right, of type Expr. The Num class has a
token Value representing the numerical value.

Listing 2 shows the definition of the attribute v . The attribute is declared on
the class Expr, and each subclass defines an equation for it. Each equation names
the attribute on its left-hand side and gives a Java method body without observ-
able side effects on the right-hand side. For each attribute, JastAdd generates a
namesake method, which here allows v to access the values directly. The equa-
tion for a Num node simply returns its value. Children and tokens are accessed
by methods prefixed with get. The equation for an Add node accesses v on its
children and adds them together.

When attribute equations reference other attributes, their evaluation may re-
curse: for example, if we evaluate the v attribute of the Sub node in Figure 1, the
right-hand side of the equation for Sub. v will recurse into the children, both of
which will use the equation for Num. v and return their literal values (3 and 5,
respectively).

This example uses only synthesized attributes (indicated by the keyword syn),
meaning that their defining equations are evaluated in the context of the node to
which the attribute belongs, analogously to Java methods. JastAdd supports
other kinds of attributes beyond synthesized ones, such as inherited attributes,
which are evaluated in the context of the parent node and are used for providing
nodes with contextual information. This allows passing information downwards
in the AST, which IntraJ uses heavily when constructing the control-flow graph.
Attributes may transitively depend on their own values, as long as they are ex-
plicitly declared to be circular attributes [MH07b; Far86; JS86]. Circular attributes
allow computing fixed points, which is an essential part of dataflow analysis.

When an attribute is accessed from Java, JastAdd computes it on demand
and memoizes the result. Memoization ensures that once an attribute’s value
is computed, it is stored for future use, preventing redundant calculations and
improving efficiency.

2.2 Monotone Frameworks

Many interesting program properties depend on the order in which different
parts of the program execute, and on how the contents of the program’s variables
change over time. To answer questions about about e.g. redundant computations
or the variables’ contents and liveness, modern production compilers and many
software tools rely on monotone frameworks [Kil73; KU77], a unifying theoreti-
cal approach that enables analyses such as live variables, available expressions, or
reaching definitions.

These analyses propagate information along the control-flow graph (CFG), a
graph that overapproximates all possible sequences of steps in which a program
may execute, with each step represented as a CFG node.
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void foo(boolean b) {
String x = null;
if (b) {
x = "Hello␣world";

}
x.toString();

}

Entry

String x = null

if (b)

x = "Hello world"

x.toString()

Exit

true

false

in0 = {}
out0 = {}

in1 = {}
out1 = {x}

in2 = {x}
out2 = {x}

in3 = {x}
out3 = {}

in4 = {x} = {x} ⊔ {}
out4 = {x}

in5 = {x}
out5 = {x}

Figure 2: Example program (left) and its control-flow graph (right). The CFG
is annotated with the in and out sets containing all the variables that might be
null.

To express an analysis as a monotone framework, we combine the CFG with
two additional components:

• a datatype that defines the information that we want to collect, along with
an operation that reconciles possibly conflicting information from different
branches (a semilattice, formally speaking), and

• a family of transfer functions that explain how passing through a CFG node
updates this information.

Figure 2 demonstrates this idea with a conservative null pointer anal-

ysis of a Java program. The program on the left-hand side will throw a
NullPointerException when the method toString is invoked and if the
parameter b has the value false.

The right-hand side of the same figure shows the program’s control flow
graph, with control flow edges connecting individual statements in the order of
execution. For each of the six control flow nodes, the set ini contains all variables
that might be null before entering the node, and the set outi contains all variables
that might be null afterwards. For the Entry node, we assume that no variables
may be null, so we set in0 = ∅, If fi is the transfer function for CFG node i, then
outi = fi(ini). For example,

f1(s) = s ∪ {x}
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since this CFG node assigns null to variable x. If there is a CFG edge from node i
to node k, propagate the outi to be ink , as long as i is the only predecessor of k. If
node k has multiple predecessors, we must reconcile (or join) the incoming infor-
mation from all predecessors, as for in4 in our example. Following convention,
we write the reconciliation or join operator as⊔. Since we want to conservatively
analyse which variablesmight be null on any control path, we use the set union,
i.e., we set ⊔ = ∪. Therefore, we have in4 = out2 ⊔ out3 = out2 ∪ out3 = {x}.

The general rule for computing ini and outi is thus:

ini =
⊔

p∈pred(i)
outp

outi = fi(ini)

This kind of analysis is called a forward analysis because it propagates infor-
mation from the Entry node to the Exit node, but monotone frameworks also
support backward analyses that traverse the CFG in the opposite direction (e.g.,
for liveness analysis).

If the source program contains a loop, the CFGs may be circular, which means
that the results of outn for some n may flow back into inn for the same n, di-
rectly or indirectly. In these cases we must compute a fixed point, iterating our
computation until none of the ini or outi change. Monotone frameworks define
sufficient conditions over the transfer functions and the join operator to ensure
that such a fixed point always exists, essentially by requiring that we never dis-
card information and that the information for each CFG node reaches a saturation
point after a finite number of updates [NNH10].

To express monotone frameworks in RAGs, we can describe transfer
functions and the join operator directly as attribute equations over in and out
sets. Since these attributes will generally recursively depend on themselves,
we express them as circular attributes, which automatically support efficient
on-demand fixed point computation [MH07b; Öqv18]. Section 5 gives an
example of what a dataflow analysis expressed as a monotone framework might
look like in a RAG.

3 IntraJ Architecture
IntraJ is a framework for the construction of CFGs for Java 8. It is entirely built
using RAGs and offers an exception-sensitive control-flow analysis, considering
both checked and unchecked exceptions. On top of IntraJ, we have implemented
a number of dataflow analyses, such as Live Variable analysis, Reaching Definition
analysis, and a Null Pointer Dereference analysis.

IntraJ is an instance of the IntraCFG framework for control-flow analysis,
which is a language-independent framework for defining control-flow graphs us-
ing RAGs. IntraJ is built on top of the ExtendJ Java compiler, which is also
implemented using RAGs.
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Figure 3: Layered architecture of IntraJ. Each IntraJ layer builds upon the
attributes of the underlying layers.

Figure 3 presents the IntraJ architecture as layers of RAG components and
subcomponents. Each component and subcomponent defines an attribute API,
and uses the APIs of its own and lower layers. We will now discuss each compo-
nent and subcomponent in more detail.

3.1 The ExtendJ Compiler
ExtendJ is an open-source extensible Java compiler implemented using RAGs. It
currently supports Java 4-11, including parsing, compile-time checking and byte-
code generation. ExtendJ defines the node types of a Java AST, such as different
kinds of declarations, statements, and expressions. It also defines a number of
RAG attributes for these node types, like name bindings, types, compile-time er-
rors, and bytecode. ExtendJ offers thousands of predefined attributes available
as an API for the programmer to use when building analyses or transformations.
As for any RAG-based system, the attributes are computed on demand, and the
computation is driven by the attribute API1.

Once the AST has been constructed, the programmer can call any attribute
1The complete ExtendJ API is available at https://extendj.org/javadoc/.

https://extendj.org/javadoc/
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<<Class>>
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<<Class>>
Exit

Figure 4: Main API of IntraCFG.

method to get its value. No explicit compilation passes like name binding, type-
checking or code generation are needed. To compile a Java program, ExtendJ
simply parses the source text into an AST, calls an error attribute to see if there
are compile-time errors, and calls bytecode attributes to print the resulting byte-
code to suitable class files.

3.2 The IntraCFG component

ExtendJ does not itself provide a CFG for Java. Instead, IntraJ builds on In-
traCFG, a language-agnostic RAG component for CFG construction. IntraCFG
defines a set of node type interfaces, which are analogous to Java interfaces but
include overridable default attribute equations.

Figure 4 shows the main API of IntraCFG in the form of interfaces and
classes. The CFGRoot interface is intended for AST node types that represent
subroutines, e.g., method and constructor declarations in Java. Each AST node
type that implements the CFGRoot interface is automatically extended with two
synthetic AST nodes, Entry and Exit, for the unique entry and exit points of that
subroutine’s CFG.

The CFGNode interface is intended for AST nodes that participate in the CFG
as CFG nodes. Each AST node type that implements this interface obtains the
attributes succ and pred through default equations. succ returns the control
flow successors, and pred returns the predecessors of that node, respectively.

Language implementers can define CFGs for their language by adding these
interfaces to AST node types of interest and overriding default equations as
needed [Rio+21], though there are often multiple possible CFG designs for the
same language, balancing precision against complexity.
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Figure 5: AST with superimposed CFG for the foo Java method.

3.3 IntraJ Control-Flow Analysis

To define control-flow graphs for Java, IntraJ adds the IntraCFG interfaces
to selected ExtendJ node types, and adds and overrides attributes to define the
detailed control flow. For IntraJ, we have chosen to implement precision at the
expression level, as this approach captures a more detailed control flow, resulting
in more precise analyses.

The CFGRoot interface is added to the ExtendJ types MethodDecl and
ConstructorDecl so that each method and constructor gets a local CFG. Such
additions are done by a simple specification statement in the RAG specification
language, e.g.: MethodDecl implements CFGRoot.

The CFG is then constructed by adding the CFGNode interface to a number
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of AST node types, to reflect the control flow of statements and expressions. At-
tribute rules are added to define the detailed control flow so that it complies with
the semantics of Java. This way, the CFG is constructed by superimposing it on
a subset of the AST nodes. Not all AST nodes need to be included in the CFG,
and synthetic AST nodes can be created to capture flow that is implicit, allowing
a concise and precise graph to be constructed.

Figure 5 shows a simple example for a Javamethod foo. Here, the MethodDecl
is a CFG root, and therefore automatically gets synthetic Entry and Exit nodes.
The AST nodes of the types DeclStmt, VarAccess, Literal, and MethodAccess
nodes are all CFG nodes. We can note that some nodes are excluded from the CFG.
For example, the IfStmt is not part of the CFG since its control flow is captured
by nodes in its subtree. The successor edges are captured by the succ attribute
that contains references to the successor nodes in the graph. The pred attribute
(not shown in the figure), represents the predecessor edges and is computed au-
tomatically by the IntraCFG component as the reverse of the successors.

The IntraJ CFG specification is structured into subcomponents, as was
shown in Figure 3, one for each version of Java2. This matches a similar
subcomponent structure inside ExtendJ, and allows Java compilers to be built
for different language versions. A more detailed description on the construction
of the IntraJ CFGs can be found in [Rio+21].

3.4 Dataflow and Client Analyses
IntraJ provides a number of example analyses in its client and dataflow layers.
Figure 6 shows the APIs of these analyses, and how they use each other. They
also use the APIs in the lower level CFG and compiler layers. The dataflow layer
implements various analyses, including Live Variable Analysis, Reaching Defini-
tion Analysis, and May Null Analysis. These analyses compute dataflow facts for
each node in the CFG. For instance, the outLVA attribute computes the set of
variables that are live after a given CFG node. This means it determines which
variables are used on any path from the current CFG node to the Exit node. The
Reaching Definition Analysis, like Live Variable Analysis, tracks the definitions
that reach each CFG node, considering transitive assignments. Similarly, the May
Null Analysis determines the nullness status of reference variables at each node.

The analyses in the client layer make use of the general dataflow analyses to
interpret the results in a way suitable for client tools. For example, in the Dead
Assignment component, the Assignment interface is extended with a boolean
attribute isDeadAssign . This attribute is true if the CFG node of the assigned
variable represents a dead assignment (i.e., the assigned variable is not in the
outLVA set) and if additional language-specific conditions are met, to capture
heuristics.

2No subcomponent is needed for Java 6 since that version did not include any new language
constructs or semantics that affect control-flow.
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Figure 6: The APIs exposed by the IntraJ’s dataflow and client analyses.

As an example of a heuristic condition, consider the declaration of a local
variable with an initializing assignment. If the initializer is a usual default value
in Java, like null or zero, the developer will typically consider this as good
programming practice, even if the assignment is technically dead. Therefore,
isDeadAssign is defined as false in this case. The client analysis uses the rich
API of ExtendJ to easily specify such conditions.

The implicit dead assignment analysis is a client analysis that demands the
computation of dead assignment analysis to find assignments that are not dead
themselves, but are used in a dead assignment.

Figure 7 showcases examples of bugs detected by the analyses supported by
IntraJ. In the first example, the variable x is identified as a dead assignment,
meaning it is assigned a value which is never used thereafter. Similarly, the vari-
able y is an indirect dead assignment because its value is assigned but only used
as an operand in the assignment int z = x + y, which itself is identified as a
dead assignment since the resulting value of z is never used.

The second example illustrates a potential null pointer exception. IntraJ de-
tects that there is a potential null pointer exception in the code snippet since
the variable x is assigned the value null and then dereferenced in the statement
x.toString().

1 2

Figure 7: Examples of bugs detected by IntraJ. 1. Examples of dead assignments
and implicitly dead assignments. 2. Example of null pointer exception.
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3.5 Demand-Driven Analyses
As mentioned earlier, the attributes in both ExtendJ and IntraJ are computed
on demand. Figure 8 illustrates how this works for the May Null analysis. The
example is the same as in Figure 5, but showing only the CFG nodes, and not the
full AST. In the example, the dereference of x in the statement x.toString();
may generate a null pointer exception, namely if the boolean parameter b is false.
The dereference is represented by a VarAccess node in the AST. To investigate if
it can give a null pointer exception, a tool would query its isNullable attribute.

Querying isNullable will lead to the recursive evaluation of a number
of additional attributes, as shown in Figure 8. In this example, evaluation of
isNullable will use the inNPA attribute of the same node, which is defined
using the outNPA attributes of the predecessors, which in turn are defined using
inNPA attributes, and so on, recursively along the predecessors, all the way to
the Entry node.

The inNPA and outNPA attributes contain the nullness status of variables
right before and after the CFG node, respectively. For example, consider the the
assignment x = "Hello world", represented by the VarAccess for x. Here
inNPA shows that x is MAYBENULL prior to the assignment, and outNPA shows
that x is NOTNULL (i.e., it is definitely referring to an object).

To compute the outNPA of a node, the inNPA is combined with a transfer
function that may use attributes defined by ExtendJ, such as the decl attribute
linking a VarAccess to its declaration (not shown in the figure). These attributes
are also evaluated on demand. Thus, when a tool queries a specific attribute, only
a subset of all available attributes will be evaluated. Usually, this subset is very
small, even for the first query when no attributes have yet been memoized.

4 Tool Integration
In this section, we discuss the integration of IntraJ with different development
tools. We examine three major applications of IntraJ: command line integration,
editor integration based on the Language Server Protocol, and integration into
the debugging tool CodeProber. Each of these integrations highlights different
ways that IntraJ can be used in tools.

The command line integration allows developers to run the analysis on the
entire codebase, providing a comprehensive overview of the issues in a project.
The Language Server Protocol (LSP) is a standardized interface that enables ed-
itors and IDEs to communicate with language-specific analysis tools. Our LSP
integration enables viewing issues in an edited file, running the analysis on save.
This approach provides a shorter feedback loop, allowing developers to address
issues as they are introduced. Finally, the CodeProber integration shows that In-
traJ is fast enough to operate on every keystroke, delivering real-time analysis
and feedback for immediate bug detection.
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Figure 8: On-demand evaluation example. Querying isNullable on a derefer-
enced VarAccess leads to the computation of only a subset of the NPA attributes.
Note that the figure elides ExtendJ attributes, most of which the evaluation does
not depend on (and therefore never computes).
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Figure 9: Example of IntraJ running on the command line.

4.1 Command line Integration
Originally, IntraJ was developed as a command line tool, exhibiting competitive
performance when compared to existing industrial tools [Rio+21]. The command
line integration is suitable for continuous integration pipelines, as it can be easily
integrated into existing workflows.

The command-line interface is similar to the javac and ExtendJ compilers,
supporting the specification of, for example, classpath, sourcepath, libraries, and
files to be analyzed/compiled. Specific IntraJ flags include what analyses to en-
able for warnings, such as -WNPA, -WDAA for null pointer analysis and dead as-
signment analysis, respectively.

Figure 9 illustrates an example of IntraJ running on the command line. The
-statistics flag is used to summarise the analysis results, displaying the num-
ber of warnings and statistics related to the CFGs. When specified, the -succ flag
generates a PDF file visualising the CFGs of the analysed methods.

4.2 Editor Integration
The demand-driven evaluation in IntraJ makes it very suitable for integration
with interactive tooling: analyses can be performed efficiently on individual pro-
gram elements or files, even if the analysis depends on information in a larger
project. To investigate this kind of integration, we used theMagpieBridge frame-
work [LDB19b], which facilitates the integration of static analysers with IDEs
that support LSP. MagpieBridge provides an abstraction layer between the LSP
protocol and the static analysis tool, allowing for the development of IDE plug-
ins with a very low effort. It reruns the analyses after each save in the editor. The
supported LSP functionalities include diagnostics, code actions (e.g., quick fixes),
and code-lens.

Figure 10 illustrates the integration of IntraJ with different IDEs via Mag-
pieBridge. ServerAnalysis is a component we developed to handle the com-
munication between IntraJ and the MagpieBridge Server. It is responsible for
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Figure 10: Integration of IntraJ with IDEs through the use of the MagpieBridge
framework.

maintaining a record of the active analyses and forwarding events in the editor,
such as the save command or opening of a file, to IntraJ. The analysis results
are then sent back to MagpieBridge, which subsequently forwards them to the
editor, displaying warnings, quick fixes, and explanations to the developer.

Our initial implementation of the client analyses included only the identifi-
cation of issues, like dead assignments and potential null pointer exceptions. To
take advantage of the support fromMagpieBridge, we added explanations of the
warnings, and also quick fixes for Null Pointer issues.

Figure 11 illustrates an example of interaction between IntraJ and Vi-
sual Studio Code. More specifically, it illustrates an instance of a potential
NullPointerException detected by IntraJ and its representation within the
IDE. The lightbulb icon ( ) indicates that a quick fix is available, which can be
applied by clicking on the icon.

4.3 CodeProber Integration
To investigate an even tighter integration with the editor, we have integrated In-
traJ with CodeProber [Ala+24b], a tool for visualising and exploring the results
of compilers and static analysers on an edited program. CodeProber supports
exploring partial analysis results such as properties of AST nodes, and is there-
fore particularly suited for RAG-based tools that use on-demand evaluation. It
is browser-based and can support visualizations beyond what is possible via the
Language Server Protocol. The visualizations are live and updated as the user ed-
its the analyzed program. Unlike LSP-based tools, CodeProber triggers attribute
evaluation on each keystroke, enabling real-time interaction with the analysis re-
sults. In contrast, LSP-based tools typically perform analysis less frequently, such
as on file save or when a file is opened. As demonstrated in Section 6, IntraJ is
fast enough to support the execution of analyses on each keystroke, making it
suitable for integration with CodeProber.
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Figure 11: Bug detection and quick fix in Visual Studio Code using IntraJ.
1. The NullPointerException is detected by IntraJ (squiggly line under x)
with a quick fix available ( ). 2. The user can hover over the warning to see an
explanation of the issue. 3. The user can click on the quick fix icon ( ) to apply
the fix.
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Figure 12: Integration of IntraJ in CodeProber. A. The CFG of the method
foo is superimposed on the source code. (Edge colors are randomly picked.) B.
Diagnostics can be accessed by hovering over them, providing explanations of
the identified issues.
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The example in Figure 12 shows the visual representation of the CFG on top of
the source code. The CFG is generated by IntraJ and visualised by CodeProber.
It also shows the diagnostics that are displayed when hovering over the squig-
gly lines. The CFGs and the analysis results are computed automatically at each
keystroke, allowing developers to interact with the results in real-time.3

5 Extending IntraJ
IntraJ is inherently extensible due to its use of Reference Attribute Gram-
mars [Hed00].

In this section we explore different ways to extend IntraJ and discuss the
possibilities for adding new analyses and supporting additional language con-
structs.

5.1 Extending IntraJ’s Functionality
IntraJ can be extended by adding newmodules that provide additional attributes
and equations to the existing AST. JastAdd provides a modular extension mech-
anism for RAGs, which allows newmodules to be added to IntraJ without modi-
fying the existing codebase. These modules can be independently developed and,
if desired, subsequently integrated into IntraJ to provide supplementary func-
tionality. To illustrate this extensibility, we provide examples from various IntraJ
submodules: one demonstrating the addition of a new analysis, another showcas-
ing a separate analysis for information flow, and a third example detailing how
existing analyses can be extended to support newer Java versions.

5.2 Addition of New Analyses
The existing dataflow and client analyses serve as examples for how to add new
dataflow-based analyses. As an example, consider the Implicit Dead Assignment
module. It uses results from the ordinary Dead Assignment module and from the
Reaching Definitions (RD) module. The key attribute that defines this analysis is
the isImplicitlyDead attribute, which is shown in Listing 3. This attribute is
defined on the CFGNode interface, which is implemented by all nodes in the CFG.
The attribute definition is written as a method body, but without side-effects,
using other attributes as needed (see API Figure 6). It uses the isDeadAssign
attribute, computed by the ordinary Dead Assignment module. It also uses a local
attribute allUses (not shown) that in turn is defined using the inRD attribute

3Courtesy of the CodeProber developer, Anton Risberg Alaküla, a demo version of this integra-
tion is available online at https://github.com/Kevlanche/codeprober-playground. Enter the
code from Figure 12 in the editor. Open a probe for MethodDecl. showCFG to get the CFG visualiza-
tion, and one on Program. showAnalysis to get the diagnostics for null-pointer exceptions. Edit the
code to see the immediate response.

https://github.com/Kevlanche/codeprober-playground
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Listing 3: Definition of the isImplicitlyDead attribute, which determines if an
assignment is implicilty dead.

1 syn boolean CFGNode.isImplicitlyDead() {
2 if (allUses().isEmpty() || this.isDead())
3 return false;
4
5 for (CFGNode candidate : allUses()) {
6 if (candidate != this && !candidate.isDead() &&

!candidate.isImplicitlyDead()) {
7 return false;
8 }
9 }
10 return true;
11 }

from the Reaching Definition component. Because the analysis is implemented
using RAGs, it is automatically evaluated on-demand.

5.3 Information Flow
Another example of an extension to the IntraJ framework is SinfoJ [Sol23], an
information flow analysis similar to JFlow [Mye99]. The goal of this analysis is
to detect if sensitive data is leaked to untrusted sources. The developer classifies
variables according to how sensitive they are. In SinfoJ, the following lattice
is used for labeling variables (from lower to higher): Bottom → Unclassified
→ Confidential → Secret → TopSecret. The analysis can then, for example,
identify if a variable labeled as TopSecret is leaking information to variables
classified with lower security labels.

A simple example is shown in Figure 13, where variables are labelled using
Java annotations. The analysis detects that the variable z is leaking information,
since it is labeled as Unclassified, but uses information from variables with
security labels Secret and Confidential.

SinfoJ reuses the CFG from IntraJ but builds its own dataflow analysis as
an instance of the monotone framework described in Section 2.2. Variables and
their labels are propagated forward in the control flow. Each CFG node has an in
and out set, consisting of the variables and their labels before and after the effect
of the CFG node, respectively. The transfer function defines the effect, thus, how
in is transformed into out.

In the implementation, in and out are defined as the attributes inIF and
outIF (IF as in Information Flow). Figure 13 shows the value of these attributes
for the last variable declaration z. In this example, inIF is transformed into
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Figure 13: SinfoJ is an example extension that detects information flow violations
(line 10).

outIF by adding z=Secret, since that is the highest label used in the right-
hand side of the assignment. The figure also includes the attribute isUnsafeIF ,
which has the value true for this declaration, meaning it is an information flow
violation. It may be tedious to annotate all variables with labels, thus some of
them can be omitted and automatically derived. For instance, it would be possible
to omit the annotation for z. Then, the label would be derived to Secret, and the
declaration would no longer yield a violation.

Part of the definition of the information flow is shown in Listing 4. The inIF
and outIF are implemented like a normal forward analysis, using the attribute
pred provided by IntraJ to propagate information forward in the control flow
graph. Both attributes compute a value of the type IFDomain, which is a mapping
from variables to labels. The attribute inIF joins all outIF of its predecessors
by keeping the highest label of each variable. The outIF attribute applies the
transfer function to inIF , e.g., the effect of the CFG node. The transfer function
is shown for variable declarations, where the highest label is used from either the
annotation or the right-hand side of the declaration (if it has one). The attributes
inIF and outIF are circular [MH07b], meaning that they will automatically be
solved by a fixed-point iteration algorithm. When defining a circular attribute, a
bottom value needs to be given (in this case: new IFDomain()).

SinfoJ contains more analysis than shown here, like protecting against con-
ditionals leaking information in control structures. For instance, if a TopSecret
variable is used in a condition of an if statement, then that might leak infor-
mation to the statements insides the branches. This issue is handled by another
analysis also defined using the monotone framework. SinfoJ was implemented
by Max Soller as a master thesis. This illustrates that IntraJ can be extended
by students for non-trivial use cases. The Figure 13 is a screenshot of SinfoJ in
CodeProber, illustrating how attributes easily can be explored when developing
analyses.
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Listing 4: Part of the definition of information flow in SinfoJ. (Source code from
SinfoJ implementation. Complete code available at https://bitbucket.org/
jastadd/infoflow-exjobb-max-soller)
aspect InformationFlowAnalysis {
syn IFDomain CFGNode.inIF() circular[new IFDomain()] {
IFDomain res = new IFDomain();
for (CFGNode p: pred()) {
res.join(p.outIF());

}
return res;

}

syn IFDomain CFGNode.outIF() circular[new IFDomain()] {
return transferFunIF(new IFDomain(inIF()));

}

// Transfer function. Default behavior
syn IFDomain CFGNode.transferFunIF(IFDomain domain) {
return domain;

}
// Transfer function for variable declarations
eq VariableDeclarator.transferFunIF(IFDomain domain) {
LabelDomain label = LabelDomain.BOTTOM;
// Label from annotation
if (annotatedFlowLabel().isHigherThan(label)) {
label = annotatedFlowLabel();

}
// Label from initializer expression
if (hasInit()) {
label = label.returnHighest(getInit().flowLabel());

}
// Update label for this variable
domain.join(this, label);
return domain;

}
...

}

https://bitbucket.org/jastadd/infoflow-exjobb-max-soller
https://bitbucket.org/jastadd/infoflow-exjobb-max-soller
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Listing 5: Adding support for ForEach construct to IntraJ.
1 aspect CFG_java5 {
2 EnhFor implements CFGNode;
3 // Defines the first node that should be traversed when visiting

an Enhanced For statement
4
5 eq EnhFor.firstNodes() = getExpr().firstNodes();
6
7 // The successor of the collection is the variable declaration

or the what follows the Enhanced For statement in case the
collection has been completely traversed.

8 eq EnhFor.getExpr().nextNodes() =
Set.union(getVarDecl().firstNodes(), nextNodes());

9 eq EnhFor.getStmt().nextNodes() = getExpr().firstNodes();
10 eq EnhFor.getVarDecl().nextNodes() = getStmt().firstNodes();
11
12 eq EnhFor.nextContinue() = getExpr().firstNodes();
13 }

5.4 New Language Constructs

The Java language is constantly evolving, with new language constructs being
introduced in almost each new version. As new language constructs are intro-
duced, ExtendJ can be extended to handle them appropriately. IntraJ, being
built on top of ExtendJ, can be easily extended as well to support these new
features. The possibility of doing this is already demonstrated by the modular
support of IntraJ for Java 4 to 8. This guarantees the compatibility of IntraJ
with the evolving nature of the Java language.

The code in Listing 5 shows an example of how the CFG is extended to support
the Enhanced For statement introduced in Java 5. As can be seen from the Listing,
the number of lines of code required to support the new language constructs
is very small: The first two lines specify that the new construct also serve as
CFG nodes. The remaining lines are equations that override default attribute
definitions from IntraCFG ( firstNodes , nextNodes , nextContinue ) in order
to define the control flow for the EnhFor AST node.

The use of node type interfaces further simplifies the process of supporting
new language constructs into IntraJ. This approach eliminates the need to mod-
ify existing analyses since they rely on the CFGNode interface rather than the
AST node types. As a result, the addition of new language constructs does not
require the modification of existing analyses. For example, by adding CFG sup-
port for the ForEach construct, all dataflow analyses, including SinfoJ, will au-
tomatically handle programs containing ForEach statements without additional
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Benchmark Name LOC Files #Methods Version Application

commons-jxpath 24320 213 2030 1.3 XPath expression processing
antlr 36525 192 2070 2.7.2 Parser generator
jackson-core 48599 280 3687 commit #c5b123b Core JSON processing library
pmd 60749 752 5325 4.2.5 Source code analyzer
struts 81394 1111 7023 2.3.22 Web application framework
joda-time 86562 330 9324 2.10.13 Date and time library
jfreechart 95664 736 6980 1.0.0 Chart library
fop 102746 1047 8318 0.95 XSL-FO processing library
extendj 147265 396 16025 11.0 Java compiler
castor 235745 1711 12643 1.3.3 Data binding framework
weka 245719 1223 14952 revision 7806 Machine learning library
poi 329366 2959 23816 3.11 Microsoft Office file processing

Table 1: Evaluated Java benchmarks, including number of lines of code, number
of methods, version, and application.

modifications.

6 Evaluation
This section presents the performance evaluation of IntraJ, with a particular
focus on its suitability for on-demand analysis in interactive environments. The
experiments are designed to simulate the scenario where each compilation unit
is analyzed individually, and the analysis results are displayed to the user in real-
time.

To assess the performance of IntraJ, we conducted experiments on two dif-
ferent analyses: Dead Assignment Analysis and Null-Pointer Dereference Analysis.
Since the scenario is in an interactive environment, we measure the execution
times of the analyses when the JVM is in a steady state. For each compilation
unit, the analysis is first computed 25 times to warm up the JVM. Then, we record
25 measurements of the analysis and compute the mean. Between each measure-
ment, the memoized results are explicitly flushed to ensure that each analysis is
performed from scratch. The results reported focus exclusively on the analysis
time, excluding the time required for program parsing.

The evaluation was performed on a machine with an Intel Core i7-11700K
CPU running at 3.60GHz, 128 GB of RAM, and Ubuntu 22.04.3. The benchmarks
were executed using the OpenJDK Runtime Environment Zulu 8.50.0.53-CA-
linux64, build 1.8.0_275-b01, with the JVM heap size set at 8 GB.

The evaluation of IntraJ uses Java benchmark projects selected from real-
world applications, varying in both type and size. These benchmarks included
projects from the DaCapo [Bla+06] and Qualitas [Tem+10b] benchmark suites,
such as antlr and jfreechart, alongside additional projects specifically chosen
to cover a broad spectrum of applications, e.g., extendj. The selected projects
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ranged from 6,000 to 320,000 lines of code, ensuring a diverse set of benchmarks
for the evaluation. A summary of the benchmarks used in the evaluation is pre-
sented in Table 1.

6.1 Dead Assignment Analysis
Dead Assignment Analysis is a static analysis technique designed to identify as-
signments to variables that are never read, indicating potential bugs or unneces-
sary code.

The results of this analysis are detailed in Table 2.
The analysis times are notably efficient, with themajority of compilation units

being processed in under 0.1 seconds. In six out of the twelve benchmarks, IntraJ
analyzed all compilation units within this 0.1-second threshold. For the remain-
ing benchmarks, most compilation units that exceeded the 0.1-second mark still
completed analysis within 0.1 to 0.2 seconds. No compilation unit required more
than 1 second for analysis.

6.2 Null-Pointer Dereference Analysis
Null-pointer Dereference Analysis is a static analysis technique designed to de-
tect potential null-pointer dereference errors within a program. This analysis
extends theMay Null analysis, a flow-sensitive and context-insensitive approach
that tracks the potential nullness of variables. To perform the May Null analy-
sis, IntraJ constructs the forward control-flow graph on-demand and computes
the predecessor relationship as the inverse of the successor relationship for the
relevant variables.

Null-pointer dereference analysis is generally more computationally in-
tensive than dead assignment analysis due to the requirement of constructing
control-flow graphs in both directions. Despite the increased computational
requirements, the analysis times remain low, with the majority of compilation
units being processed in under 0.1 seconds. The results for the Null-Pointer

Dereference Analysis are presented in Table 4.
For most projects, nearly all files were analyzed in under 0.1 seconds. Specif-

ically, 100% of the files in the commons-jxpath and antlr projects met this
threshold. Similarly, over 99% of the files in most other projects were also an-
alyzed within 0.1 seconds.

However, there were a few exceptions. In the extendj benchmark, while
88% of the files were processed in under 0.1 seconds, one particularly large file
with a large method (over 6000 lines of code) required approximately 1 second
for analysis. Despite this outlier, the overall performance remained efficient.

These results confirm that IntraJ is highly efficient and suitable for use in
interactive development environments, even when handling complex and large
codebases.
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Benchmark Analysis File Mean Analysis Mean
Time Range Count Time (s) File LOC

commons-
jxpath

≤ 0.1s 213 (100%) 0.0015±0.0000 114
0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

antlr
≤ 0.1s 192 (100%) 0.0027±0.0001 175

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

jackson-
core

≤ 0.1s 280 (100%) 0.0054±0.0001 174
0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

pmd
≤ 0.1s 751 (99.9%) 0.0019±0.0000 69

0.1s - 0.2s 1 (0.1%) 0.1634±0.0016 8913
0.2s - 1.0s 0 − −

struts
≤ 0.1s 1111 (100%) 0.0022±0.0000 73

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

joda-time
≤ 0.1s 330 (100%) 0.0118±0.0001 262

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

jfreechart
≤ 0.1s 735 (99.9%) 0.0054±0.0001 129

0.1s - 0.2s 1 (0.1%) 0.1358±0.0021 1132
0.2s - 1.0s 0 − −

fop-0.95
≤ 0.1s 1046 (99.9%) 0.0025±0.0000 97

0.1s - 0.2s 1 (0.1%) 0.1061±0.0009 1258
0.2s - 1.0s 0 − −

extendj
≤ 0.1s 357 (90.2%) 0.0199±0.0002 251

0.1s - 0.2s 21 (5.3%) 0.1388±0.0013 860
0.2s - 1.0s 18 (4.6%) 0.3393±0.0033 2202

castor
≤ 0.1s 1711 (100%) 0.0019±0.0000 94

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

weka
≤ 0.1s 1216 (99.4%) 0.0066±0.0001 190

0.1s - 0.2s 5 (0.4%) 0.1203±0.0016 1635
0.2s - 1.0s 2 (0.2%) 0.2959±0.0034 3488

poi
≤ 0.1s 2954 (99.8%) 0.0039±0.0000 108

0.1s - 0.2s 5 (0.2%) 0.1519±0.0017 2031
0.2s - 1.0s 0 − −

Table 2: Steady-state performance of IntraJ for Dead Assignment Analysis for
single compilation units across different Java benchmarks.
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commons-jxpath antlr

jackson-core pmd

struts joda-time

jfreechart fop-0.95

extendj castor

weka poi

Table 3: Steady-state performance of IntraJ for Dead Assignment Analysis for
single compilation units across different Java benchmarks. Each plot overlays
a histogram and a scatterplot, with the X axis representing LOC for both. The
histogram (gray) shows the distribution of compilation unit sizes for each project,
with relative frequency on the Y axis. The scatterplot shows the analysis times for
each compilation unit on the Y axis, marked green (≤ 0.1 seconds), orange (0.1–
0.2 seconds), or red (0.2–1.0 seconds). The dashed lines represent the boundaries
at 0.1s (green), 0.2s (orange), and 1.0s (red).
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Benchmark Analysis File Mean Analysis Mean
Time Range Count Time (s) File LOC

commons-jxpath
≤ 0.1s 213 (100%) 0.0021±0.0000 114

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

antlr
≤ 0.1s 192 (100.00%) 0.0039±0.0000 175

0.1s - 0.2s 0 − −
0.2s - 1.0s 0 − −

jackson-core
≤ 0.1s 279 (99.6%) 0.0070±0.0001 163

0.1s - 0.2s 1 (0.4%) 0.1033±0.0010 2990
0.2s - 1.0s 0 − −

pmd
≤ 0.1s 751 (99.9%) 0.0028±0.0000 69

0.1s - 0.2s 1 (0.1%) 0.1249±0.0008 8913
0.2s - 1.0s 0 − −

struts
≤ 0.1s 1110 (99.9%) 0.0031±0.0000 73

0.1s - 0.2s 1 (0.1%) 0.1115±0.0009 550
0.2s - 1.0s 0 − −

joda-time
≤ 0.1s 327 (99.1%) 0.0130±0.0001 255

0.1s - 0.2s 3 (0.9%) 0.1078±0.0010 1097
0.2s - 1.0s 0 − −

jfreechart
≤ 0.1s 734 (99.7%) 0.0064±0.0001 126

0.1s - 0.2s 2 (0.3%) 0.1344±0.0013 1669
0.2s - 1.0s 0 − −

fop
≤ 0.1s 1045 (99.8%) 0.0033±0.0000 96

0.1s - 0.2s 2 (0.2%) 0.1555±0.0019 1239
0.2s - 1.0s 0 − −

extendj
≤ 0.1s 349 (88.1%) 0.0253±0.0003 239

0.1s - 0.2s 31 (7.8%) 0.1500±0.0013 1073
0.2s - 1.0s 16 (4.0%) 0.3632±0.0035 1903

castor
≤ 0.1s 1710 (99.9%) 0.0025±0.0000 93

0.1s - 0.2s 1 (0.1%) 0.1286±0.0013 1610
0.2s - 1.0s 0 − −

weka
≤ 0.1s 1210 (98.9%) 0.0085±0.0001 184

0.1s - 0.2s 10 (0.8%) 0.1260±0.0012 1405
0.2s - 1.0s 3 (0.3%) 0.3431±0.0035 3041

poi
≤ 0.1s 2948 (99.6%) 0.0048±0.0001 107

0.1s - 0.2s 9 (0.3%) 0.1344±0.0013 1276
0.2s - 1.0s 2 (0.1%) 0.2144±0.0019 1902

Table 4: Steady-state performance of IntraJ forNull Pointer Dereference Analysis
for single compilation units across different Java benchmarks.
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commons-jxpath antlr

jackson-core pmd

struts joda-time

jfreechart fop-0.95

extendj castor

weka poi

Table 5: Steady-state performance of IntraJ for Null Pointer Dereference Analysis
for single compilation units across different Java benchmarks. Each plot overlays
a histogram and a scatterplot, with the X axis representing LOC for both. The
histogram (gray) shows the distribution of compilation unit sizes for each project,
with relative frequency on the Y axis. The scatterplot shows the analysis times for
each compilation unit on the Y axis, marked green (≤ 0.1 seconds), orange (0.1–
0.2 seconds), or red (0.2–1.0 seconds). The dashed lines represent the boundaries
at 0.1s (green), 0.2s (orange), and 1.0s (red).
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7 Related Work

The challenge of balancing analysis complexitywith tool responsiveness is awell-
known issue in the field of static analysis. Existing extensible static analysis
frameworks like SpotBugs [Spo], Soot [Lam+11], or Infer [CD11] are gener-
ally designed for throughput, rather than responsiveness, reflecting their origi-
nal intended use for batch program analysis. Depending on the internal archi-
tecture, increasing responsiveness for interactive use may require nontrivial re-
engineering.

For example, Distefano et al. manually re-engineered parts of Infer [Dis+19]
to support incremental updates, in order to scale to larger code bases with fre-
quent changes. Arzt et al. exploited properties of the IFDS/IDE analysis frame-
work underlying Soot to incrementalise analysis [AB14], but still needed tomake
some architectural adjustments.

Prior work has demonstrated strategies that allow analysis frameworks to
automatically incrementalise declaratively specified analyses. Dura et al. demon-
strate this at the file level [DRS21] for various bug checkers, while Szabo et
al. show fine-grained incrementality for a points-to analysis [SEB21]. Both ap-
proaches use declarative logic programming to specify their analyses.

IntraJ builds on the RAG framework JastAdd [HM01] that similarly
provides declarative interfaces between the attributes computed by different
components, but specifies these components in Java, instead of declarative logic
programming. This approach implicitly ensures that IntraJ-based analyses are
demand-driven.

Söderberg et al. [SH12] proposed a strategy for using dynamic dependency
tracking to extend the demand-driven RAG evaluation model to an incremental
analysis model that can re-use information from unchanged parts of the program,
potentially further increasing reactivity during interactive editing. We expect
that this approach would be effective for IntraJ, again without requiring changes
to the analyses implemented on top of IntraJ.

8 Conclusions and Future Development

In this paper, we have presented IntraJ, a responsive and extensible framework
for intraprocedural control-flow and dataflow analysis for Java source code. By
leveraging on-demand evaluation and Reference Attribute Grammars, IntraJ
provides real-time analysis results to the programmer, without any noticeable
latency in the development environment.

We have demonstrated how IntraJ can be used in different contexts where
the programmer can benefit from on-demand analysis, including a command line
interface, an editor integration based on LSP, and an integration into the debug-
ging tool CodeProber.
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Additionally, we have exemplified how IntraJ can be extended with new on-
demand client analyses by writing them as RAG specifications.

In the future, we plan to investigate how RAGs can be used to extend the In-
traJ analyses to also support interprocedural analyses. We also aim to expand
the range of analyses supported by IntraJ, in particular towards detection of se-
curity bugs and vulnerabilities. Furthermore, we see many interesting opportuni-
ties for building more interactive exploration tooling for static analysis, based on
CodeProber. For example, it would be interesting to generate interactive views
of the CFG, perhaps similar to Figure 5 or 8.
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Abstract

Software corpora are crucial for evaluating research artifacts and ensuring re-
peatability of outcomes. Corpora such as DaCapo and Defects4J provide a col-
lection of real-world open-source projects for evaluating the robustness and per-
formance of software tools like static analysers. However, what do we know about

these corpora? What do we know about their composition? Are they really suited

for our particular problem? We developed JFeature, an extensible static analysis
tool that extracts syntactic and semantic features from Java programs, to assist
developers in answering these questions. We demonstrate the potential of JFea-
ture by applying it to four widely-used corpora in the program analysis area,
and we suggest other applications, including longitudinal studies of individual
Java projects and the creation of new corpora.

1 Introduction

The impact of our research in computer science is bounded by our ability to
demonstrate and communicate how effective our techniques and theories really
are. For research on software tools, the dominantmethodology for demonstrating

Idriss Riouak, Görel Hedin, Christoph Reichenbach and Niklas Fors.
“JFeature: Know Your Corpus!”.
In 22nd International Working Conference on Source Code Analysis and Manipulation (SCAM), pp.
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effectiveness is to apply these tools to “real-life” software development tasks and
to measure how well they perform. Blackburn et al. [Bla+08] outline this process
in considerable detail, highlighting the need for appropriate experimental design

(to construct experiments), relevant workloads (to obtain relevant data from the
experiments), and rigorous analysis (to obtain rigorously justified insights from
experimental data). The strength of our insights is then bounded by the weakest
link in this chain.

Carefully curated, pre-packaged workloads such as the DaCapo Benchmark
suite [Bla+06], Defects4J [JJE14], the Qualitas Corpus [Tem+10a], and XCor-
pus [Die+17] can help ensure that we use relevant workloads. However, no
software corpus aims to be representative of all software, and for any given
research question there may not be any one corpus designed to answer that
question, so we must still validate that the corpus we choose is relevant to what
we want to show.

For instance, the DaCapo corpus aims to provide benchmarks with “more
complex code, richer object behaviors, and more demanding memory system
requirements” [Bla+06] than the corpora that preceded it, and it systematically
demonstrates complex interactions between architecture and the Java Run-Time
Environment, whereas Defects4J collects “real bugs to enable reproducible stud-
ies in software testing research” [JJE14]. Despite DaCapo’s focus on run-time
performance and Defects4J’s focus on software testing, both suites have seen
heavy use in research that they were not explicitly intended for, including the
authors’ own work in static analysis [Rio+21; DRS21] (using Defects4J), and in
compilers [EH07a] and dynamic invariant checking [Rei+10] (for DaCapo).

For each of these ostensible mis-uses, the authors selected the correspond-
ing benchmark corpus as the highest-quality corpus they were aware of whose
original purpose seemed sufficiently close to the intended experiments. This di-
vergence between research question and corpus purpose required the authors to
carefully re-validate the subset of the corpus that they had selected by hand.

In this paper, we argue that there is a need for increased automation and deci-
sion support for selecting benchmarks for specific research questions, and present
JFeature, a static analysis tool designed to help researchers in this process. JFea-
ture identifies how often a Java project uses key Java features that are significant
for different types of software tools. JFeature operates at the source code level,
and is capable of identifying not only local syntactic features that may be chal-
lenging to encode in regular expression search tools like grep, but also complex
semantic features that depend on types and libraries. We have implemented JFea-
ture in the JastAdd [HM03] ecosystem as an extension of the ExtendJ [EH07a]
Java Compiler. This implementation architecture gives easy access to types and
other properties computed by the compiler, and also supports extensibility, al-
lowing researchers to adapt the analysis to fit their specific needs.

We demonstrate JFeature by running it on several widely-used corpora,
specifically the DaCapo, Defects4J, Qualitas, and XCorpus corpora.
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Our main contributions are:

• JFeature as an example of a tool for extracting information about the fea-
tures used in Java source code, and

• An overview over JFeature’s key insights on the DaCapo, Defects4J, Qual-
itas, and XCorpus corpora.

The rest of this paper is organised as follows: Section 2 introduces JFeature
and discusses the design decisions that underpin the tool. Section 3 shows the
results of applying JFeature to the four corpora. Section 4 illustrates how JFea-
ture can be extended to extract new features, taking advantage of properties in
the underlying Java compiler. Section 5 outlines future applications of JFeature.
Section 6 discusses related work, and Section 7 summarizes our conclusions.

2 JFeature: automatic feature extraction
We have designed JFeature as an extension of the ExtendJ extensible Java
compiler. ExtendJ is implemented using Reference Attribute Grammars
(RAGs) [Hed00] in the JastAdd metacompilation system. ExtendJ is a full Java
compiler, feature-compliant for Java 4 to 7 and close to being feature-compliant
for Java 81. In building compilers by means of attribute grammars [Knu68], the
abstract syntax tree (AST) is annotated with properties called attributes whose
values are defined using equations over other attributes in the AST. RAGs extend
traditional attribute grammars by supporting that attributes can be links to other
AST nodes. ExtendJ annotates the AST with attributes that are used for checking
compile-time errors and for generating bytecode. Example attributes include
links from variable uses to declarations, links from classes to superclasses, types
of expressions, etc. These attributes are exploited by JFeature to easily identify
AST nodes that match a particular feature of interest.

2.1 Java version features
There are many different features that could be interesting to investigate in a
corpus. As the default for JFeature, we have defined feature sets for different
versions of Java, according to the Java Language Specification (JLS). A user can
then run JFeature to, e.g., investigate if a corpus is sufficiently new, or select only
certain projects in a corpus, based on what features they use. If desired, a user
can extend the feature set for a specific purpose.

In recent years there have been several new releases of the Java language.
Currently, Java 18 is the latest version available. However, most projects utilise
Java 8 or Java 11, both of which are long-term support releases (LTS).

1https://extendj.org/compliance.html

https://extendj.org/compliance.html


128 JFeature: Know Your Corpus!

Feature Kind
Syn Sem

Java 1.1 - 4, 1997-2002 – [Java; Javb; Javc; Javd]
Inner Class ✓
java.lang.reflect.* ✓
Strictfp ✓
Assert Stmt ✓

Java 5, 2004 – [Javg; Jave]
Annotated Compilation Unit ✓

Annotations Use ✓
Decl ✓

Enum Use ✓
Decl ✓

Generics

Method ✓
Constructor ✓
Class ✓
Interface ✓

Enhanced For ✓
Varargs ✓
Static Import ✓
java.util.concurrent.* ✓

Java 7, 2011–[Javf]
Diamond Operator ✓
String in Switch ✓
Try with Resources ✓
Multi Catch ✓

Java 8, 2014– [Javh]
Lambda Expression ✓
Constructor Reference ✓
Method Reference ✓
Intersection Cast ✓
Default Method ✓

Table 1: Major changes in the Java language up to Java 8.

Table 1 summarises themain features introduced in each Java release after the
initial release (JDK 1.0) up to Java 8. We have classified the features into either

• Syntactic: can be identified using a context-free grammar, or

• Semantic: additionally needs context-dependent information such as nest-
ing structure, name lookup, or types.
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Whilemost features are syntactic, there are several features that are semantic, and
where the attributes available in the compiler are very useful for identification of
the features.

Given any Java 8 project, JFeature collects all the feature usages, grouped by
release version. By default, JFeature supports twenty-six features2, but users may
extend the tool and add their own. We have chosen these features by looking at
each Java release note [Java; Javb; Javc; Javd; Javg; Jave; Javf; Javh]. We included
features that represent the most significant release enhancements, i.e., libraries or
native language constructs whose use significantly impacts program semantics.
In particular, we included the usage of two libraries, java.util.concurrent.* and
java.lang.reflect.*, because their usage may be pertinent for the evaluation of
academic static analysis tools.

2.2 Collecting features
To collect features, JFeature uses collection attributes [Boy96; MEH07b], also sup-
ported by JastAdd. Collection attributes aggregate information by combining
contributions that can come from anywhere in the AST. A contribution clause

is associated with an AST node type, and defines information to be included,
possibly conditionally, in a particular collection. Both the information and the
condition can be defined by using attributes.

For JFeature, we use a collection attribute, features, on the root of the AST.
The value of features is a set of objects, each defined by a contribution clause
somewhere in the AST. The objects are of type Feature that models essential
information about the extracted feature: the Java version, feature name, and ab-
solute path of the compilation unit where the feature was found.

Figure 1 shows an example with JastAdd code at the top of the figure, and
below that, an example program and its attributed AST. The features collection
is defined on the nonterminal Program, which is the root of the AST (line 1). Then
two features are defined, Strictfp and String In Switch (lines 3-5 and 7-9).

Strictfp is a syntactic feature that corresponds to the modifier strictfp. In
ExtendJ, modifiers are represented by the nonterminal Modifierswhich contains
a list of modifier keywords, e.g., public, static, strictfp, etc. To find out if
one of the keywords is strictfp, ExtendJ defines a boolean attribute isStrictfp
for Modifiers. To identify the Strictfp feature, a contribution clause is defined
on the nonterminal Modifiers (line 3), and the isStrictfp attribute is used for
conditionally adding the feature to the collection (line 5). The absolute path is
computed using other attributes in ExtendJ: getCU is a reference to the AST node
for the enclosing compilation unit, and path is the absolute path name for that
compilation unit (line 4).

String In Switch is a semantic feature in that it depends on the type of
the switch expression. It cannot be identified with simple local AST queries or

2The complete implementation can be found at https://github.com/lu-cs-sde/JFeature.

https://github.com/lu-cs-sde/JFeature
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coll HashSet<Feature> Program.features();

Modifiers contributes
new Feature("JAVA2", "Strictfp", getCU().path())
when isStrictfp() to Program.features();

Switch contributes
new Feature("JAVA7", "StringInSwitch", getCU().path())
when getExpr().type().isString() to Program.features();

Program

MethodDecl
<bar>

Modifiers
<strictfp>

...

MethodDecl
<foo>

ParamDecl
<String color>

Switch

VarAccess
<color>

Block

Case
<"RED">

BreakStmt

...

features() strictfp void bar(){
...

}

void foo(String color){
switch(color){

case "RED":
break;

...
}

}

Collection Attribute

Contributor Node

AST Node

Contribution

Figure 1: Example definitions of features.

regular expressions. Here, the contribution clause is defined on the nonterminal
Switch, and the feature is conditionally added if the type of the switch expression
is a string. ExtendJ attributes used here are type which is a reference to the
expression’s type, and isString which is a boolean attribute on types.

3 Corpora Analysis
We used JFeature to analyse four widely used corpora, to investigate to what
extent the different Java features from Table 1 are used. We picked the newest
available version of each of the corpora.

3.1 Corpora Description
DaCapo Benchmark Suite

Blackburn et al. introduced it in 2006 as a set of general-purpose (i.e., library),
freely available, real-world Java applications. They provided performance mea-
surements and workload characteristics, such as object size distributions, allo-
cation rates and live sizes. Even if the primary goal of the DaCapo Benchmark



JFeature: Know Your Corpus! 131

Table 2: Corpora Analysis. Each entry represents the total number of projects
utilising the respective feature.

Corpus
(# Projects)
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DaCapo (15) 15 12 2 5 0 8 4 14 8 6 2 7 4 8 7 5 7
Defects4J (16) 16 15 1 8 0 15 7 16 14 13 3 12 10 15 13 14 14
Qualitas (112) 109 100 4 51 9 67 35 109 45 55 7 59 41 68 49 46 50
XCorpus (76) 74 65 4 28 3 39 21 74 32 31 4 35 22 39 28 25 27

Table 3: Corpora Analysis. Each entry represents the total number of projects
utilising the respective feature.
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(# Projects)
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DaCapo (15) 2 1 3 2 2 0 2 0 0
Defects4J (16) 14 7 13 10 10 5 8 1 1
Qualitas (112) 1 1 1 1 0 0 0 0 0
XCorpus (76) 4 2 3 3 2 1 2 0 0
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Suite is intended as a corpus for Java benchmarking, there are several instances
of frontend and static analysers evaluation. For evaluation, we used version 9.12-
bach-MR1 released in 2018.

Defects4J

introduced by Just et al., is a bug database consisting of 835 real-world bugs from
17 widely-used open-source Java projects. Each bug is provided with a test suite
and at least one failing test case that triggers the bug. Defects4J found many uses
in the program analysis and repair community. For evaluation, we used version
2.0.0 released in 2020.

Qualitas Corpus

is a set of 112 open-source Java programs, characterised by different sizes and
belonging to different application domains. The corpus was specially designed
for empirical software engineering research and static analysis. For evaluation,
we used the release from 2013 (20130901).

XCorpus

is a corpus of modern real Java programswith an explicit goal of being a target for
analysing dynamic proxies. XCorpus provides a set of 76 executable, real-world
Java programs, including a subset of 70 programs from the Qualitas Corpus. The
corpus was designed to overcome a lack of a sufficiently large and general corpus
to validate static and dynamic analysis artefacts. The six additional projects added
in the XCorpus make use of dynamic language features, i.e., invocation handler.
For evaluation, we used the release from 2017.

3.2 Evaluation
Methodology

To compute complete semantic analysis with JFeature and ExtendJ, all dependent
libraries and the classpath are needed for each analysed project. Unfortunately,
different projects use different conventions and build systems, making automatic
extraction of this information difficult. Therefore, for our study of the full cor-
pora, we decided to extract features depending only on the language constructs
and the standard library, but that did not require analysis of the project depen-
dencies. This way, we could run JFeature on these projects without any classpath
(except for the default standard library).

Table 2 and Table 3 show an overview of the results of the analysis. For each
corpus, we report the number of projects that use a particular feature from Ta-
ble 1. More detailed results, including the results for all 26 features, and counts
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for each individual project, are available at https://github.com/lu-cs-sde/J
Feature/blob/main/features.xlsx.

For standard libraries, like java.lang.reflect.* and java.util.concurrent.*,
we count all variable accesses, variable declarations, and method calls whose
type is hosted in the respective package.

While ExtendJ mostly complies to the JLS version 8, its Java 8 type inference
support diverges from the specification in several corner cases. As Table 2 and
Table 3 show, these limitations did not affect DaCapo, but they did surface in 43
method calls in 9 projects (2 projects in Defects4J that we manually inspected to
validate our findings).

Corpora overlap

Corpus
Projects

Mock Asm Derby Junit Tomcat Xerces JRep Jmeter
1.1 2.0 3.3 5.2 10.14 10.9 4.10 4.12 6.0 7.0 2.8 2.10 1.1 3.7 2.5 3.1

DaCapo ✓ ✓ ✓ ✓ ✓
Defects4J ✓
Qualitas ✓ ✓ ✓ ✓ ✓ ✓
XCorpus ✓ ✓ ✓ ✓ ✓ ✓

Table 4: Projects used in the corpora with different versions.

Figure 2 shows the overlap between the four corpora as twoVenn diagramswhere
each number represents a project. In the left diagram, two versions of the same
project are counted as two separate projects. In the right diagram, we only con-
sider the project name, disregarding the version. From the left diagram, we can
see that Defects4J does not overlap with any other corpus analysed. As expected,

16

42664

611

TOT:145
1 14

3964

1

6

36

2

1

TOT:137

DaCapo Defects4J Qualitas XCorpus

Figure 2: Project overlap. In the left diagram, two projects with the same name
but different versions are counted as distinct—the diagram to the right shows
overlap when versions are disregarded.

https://github.com/lu-cs-sde/JFeature/blob/main/features.xlsx
https://github.com/lu-cs-sde/JFeature/blob/main/features.xlsx
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most of the projects are shared across Qualitas and XCorpus as XCorpus was built
as an extension of Qualitas. From the diagrams, we can see that eight projects
(145-137) are used among the corpora, but with different versions. Table 4 details
these projects and versions.

Discussion

Table 2 provides insight into the features utilised by each project. Using Quali-
tas Corpus as an illustration, we see that strictfp is only used in four projects.
Similarly, in DaCapo, fewer than fifty percent of the projects use concurrency
libraries. With JFeature, we can achieve a fine-grained classification of the prop-
erties. We can, for instance, distinguish between uses and declarations of annota-
tions, andwhen it comes to generics, we can distinguish between the declarations
of generic methods, classes, and interfaces, providing the user with a better com-
prehension of the corpus. It is apparent that most projects utilise only Java 4 and
Java 5 features. With the exception of Defects4J, few projects employ Java 7 and
Java 8. Indeed, this table reveals that Defects4J is the most modern corpus, as
nine of the fourteen assessed applications utilise at least one of the observed Java
8 features.

4 Extensibility
Extensibility is one of the key characteristics of JFeature. Users can create new
queries to extract additional features, making use of all attributes available in the
ExtendJ compiler. We illustrate this by adding a new feature, Overloading, that
measures the number of overloaded methods in the source code. Listing 1 shows
the JastAdd code for this: we define a new boolean attribute, isOverloading,
that checks if a method is overloaded. We then use this attribute to conditionally
contribute to the features collection, only for overloaded method declarations.
The attribute isOverloading is defined using several ExtendJ attributes: the at-
tribute hostType is a reference to the enclosing type declaration of the method
declaration. A type declaration, in turn, has an attribute methodsNameMap that
holds references to all methods for that type declaration, both local and inherited.
If there is more than one method for a certain name, that name is overloaded.

Listing 1: Definition of the Overloading feature
MethodDecl contributes
new Feature("JAVA1", "Overloading", getCU().path())
when isOverloading() to Program.features();

syn boolean MethodDecl.isOverloading()
= hostType().methodsNameMap().get(getID()).size() > 1;
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Projects ∼ KLOC Number
of Methods

Overloaded
Methods %

antlr-2.7.2 34 2081 358 17,2
commons-cli-1.5.0 6 585 76 13
commons-codec-1.16-rc1 24 1812 422 23,3
commons-compress-1.21 71 5359 571 10,7
commons-csv-1.90 8 716 93 13
commons-jxpath-1.13 24 2030 167 8,23
commons-math-3.6.1 100 7229 1779 24,6
fop-0.95 102 8317 666 8,01
gson-2.90 25 2289 125 5,46
jackson-core-2.13.2 48 3687 839 22,8
jackson-dataformat-2.13 15 1122 161 14,3
jfreechart-1.0.0 95 6980 1000 14,3
joda-time-2.10 86 9324 1257 13,5
jsoup-1.14 25 2556 408 16
mockito-4.5.1 19 2054 318 15,5
pmd-4.2.5 60 5324 1021 19,2

Table 5: Results from the Overloading feature.

For the computation to work, it is necessary to supply the classpath, so that Ex-
tendJ can find the classfiles for any direct or indirect supertypes of types in the
analysed source code. We analysed 16 distinct projects for which we successfully
extracted the classpaths and dependencies required for ExtendJ compilation. The
results provided by JFeature for the sixteen projects are summarised in Table 5.
As can be seen, each project has overloaded methods. In some cases, such as
commons-codec, commons-math, and jackson-core, more than one fifth of the
methods are overloaded.

Overloading is a good example of a feature that requires semantic analysis—
it can not be computed by a simple pattern match using regular expressions or a
context-free grammar.

5 Use cases for JFeature

We already discussed two possible use cases for JFeature: corpus evaluation (Sec-
tion 3), and extending JFeature to identify specific features (Section 4). In this
section, we discuss two additional use cases: longitudinal studies and project
mining.
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5.1 Longitudinal Study
JFeature can be used to conduct longitudinal studies, i.e., changes occurring over
time. As an example, we conducted a study on Mockito and its evolution on
the adaption of Java 8 features over time. Mockito is one of the most popular
Java mocking frameworks and has an extensive history with over 5,000 commits.
Java 6 was utilised by Mockito until version 2.9.x. With version 3.0.0, Java 8 was
adopted.

4200 4400 4600 4800 5000 5200 5400 5600 5800
Commit counter

0

100

200

300

400

500

600

700

Nu
m

be
r o

f t
im

es
 L

am
bd

a 
is 

us
ed 6b818ba

Lambda Expressions usage in Mockito

5000 5200 5400 5600 5800
Commit counter

0

10

20

30

40

Nu
m

be
r o

f t
im

es
 T

RW
 is

 u
se

d

b3fc349

Try w/ Resources usage in Mockito

Figure 3: Usage of Lambda Expressions and Try With Resources in Mockito
over time.

The evolution of the occurrences of Lambda Expressions and Try With
Resources is depicted in Figure 3. As can be seen, at commit number 52693, there
is a substantial increase in utilisation of try with resources, whereas at commit
number 56964, there is a significant increase in the use of lambda expressions.

5.2 Project mining
Contemporary revision control hosting services (GitHub5, GitLab6, bitbucket7)
offer uniform interfaces to the source code of millions of software projects. These
interfaces enable researchers to “mine” software projects at scale, filtering by
certain predefined properties (e.g., the number of users following the project or
the main programming language). For example, the GitHub Java Corpus [AS13]
collects almost 15,000 projects from GitHub, filtered to only include Java projects
that have been forked at least once. Combining JFeature with these query
mechanisms allows researchers to select projects by more detailed syntactic
and semantic features. For instance, a corpus suitable for answering questions

3Commit: b3fc349.
4Commit: 6b818ba.
5https://github.com
6https://gitlab.com
7https://bitbucket.org

https://github.com
https://gitlab.com
https://bitbucket.org
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about race detection [Li+14] could select projects that make explicit use of
java.util.concurrent.*, while an exploration of functional programming pat-
terns [Cok18] could select projects that use Lambda Expressions and Method
References.

6 Related work
Existing tools for code metrics are usually focused on code quality metrics, rather
than what language features are used, and typically analyse the intermediate rep-
resentation rather than the source code. One example is the CKJM tool [Spi05] for
the Chidamber and Kemerer metrics [CK94]. Another example, that more closely
resembles ours, is jCT, an extensible metrics extractor for Java 6 IL-Bytecode, in-
troduced by Lumpe et al. [LMG11], in 2011. Like us, they evaluated their tool on
Qualitas Corpus; however, because jCT works only on annotated bytecode and
not on source code, the number of features that can be extracted is limited. A
significant amount of information is lost during the compilation of Java source
code to Java bytecode. For example, enhanced for statements, diamond opera-
tors and certain annotations, such as @Override, are not present in the bytecode.
For XCorpus, the authors analysed the language features used, and a summary
was presented in their paper [Die+17]. They also analysed the bytecode, which
was implemented using the visitor pattern.

Away to improve the user experiencewould be to integrate JFeaturewith a vi-
sualisation tool like Explora [MLN15]. The idea behind Explora is to provide to the
user a visualisation tool designed for simultaneous analysis of multiple metrics in
software corpora. Finally, JFeature may be enhanced by incorporating automated
dependency extractors, such as MagpieBridge’s JavaProjectService [LDB19a], to
infer and download libraries automatically. Currently, JavaProjectService infers
the dependencies for projects using Gradle or Maven as build system.

7 Conclusions
We have presented JFeature, a declarative and extensible static analysis tool for
the Java programming language that extracts syntactic and semantic features.
JFeature comes with twenty-six predefined queries and can be easily extended
with new ones.

We ran JFeature on four widely used corpora: the DaCapo Benchmark Suite,
Defects4J, Qualitas Corpus, and XCorpus. We have seen that, among the corpora,
Java 1-5 features are predominant. This leads us to conclude that some of the
corpora may be less suited for the evaluation of tools that address features in
Java 7 and 8.

We have illustrated how JFeature can be extended to capture semantically
complex features by writing the queries as attribute grammars, extending a full
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Java compiler. This allows powerful queries to be written that can make use of
all the compile-time properties computed by the compiler.

We discussed several possible use cases for JFeature: evaluation of corpora,
mining software collections to create new corpora, and longitudinal studies of
how projects have evolved with regard to the use of language features. We also
note that for some features to be analysed, the full classpath and dependencies
are required. An interesting future direction is therefore to combine JFeaturewith
recent tools that support automatic extraction of such information from projects
that follow common build conventions.
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scribe a static meta-analysis that identifies such attributes, and obtains a median
steady-state performance speedup of ∼2.5x and ∼22x for dead-assignment and
null-pointer dereference analyses, respectively.

1 Introduction

Static program analysis is a key part of modern software tools, including com-
pilers and static checkers. After first deriving facts from program code, many
analyses rely on a fixed-point computation over some lattice to find a solution
to a mutually dependent equation system. Typically, this computation is either
data-driven, exhaustively computing all derivable facts, or on demand, comput-
ing only the facts necessary to answer a particular query. Demand evaluation
can substantially outperform data-driven exhaustive analysis when the analysis
client asks for only a subset of the analysis results, e.g., for a dead code elimina-
tion that uses constant folding only for branch conditions or for interactive tools
that scan only code portions that are visible in the editor.

Reference Attribute Grammars (RAGs) [Hed00] are a high-level declarative
formalism for specifying static program analyses in terms of attributes, i.e.,
properties associated with program nodes. These specifications take the form of
equations (sometimes called semantic functions) that may introduce dependen-
cies between attributes. RAGs extend Knuth Attribute Grammars (AGs) [Knu68]
to allow attribute equations to describe and traverse references to other AST
nodes, and contemporary RAG frameworks provide facilities to reify additional
structures [VSK89a] such as Control Flow Graphs (CFGs), and to compute fixed
points with the help of circular attributes [MH07c] to solve typical dataflow
problems [Söd+13c; Rio+21].

Contemporary RAG compilers [SKV10; Van+10a; HM03] translate these
equations into attribute evaluation engines that answer attribute queries by
recursively evaluating the equations on demand, memoizing intermediate
results. When an attribute has a self-dependency, evaluation iterates until
the result no longer changes. This evaluation strategy is practical for many
applications; for example, the ExtendJ Java compiler, which is specified using
RAGs, executes within 3× the execution time of the handwritten reference
compiler javac [EH07b].

However, for applications that make heavy use of fixed point computations,
efficient evaluation may hinge on identifying strongly-connected components
(SCCs) over the dependency graph and evaluating them in topological or-
der [HDT87]. This is non-trivial for RAGs as the dependency graph depends
on reference attribute values, and is therefore not known before evaluation.
Fixed point support in contemporary RAG compilers uses either a heavy-weight
algorithm for all potentially cyclic attributes that can distinguish SCCs separated
by non-circular attributes [MH07c], or a light-weight algorithm that operates
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on a subset of the potentially cyclic attributes but cannot distinguish between
different SCCs [ÖH17].

We here propose a novel evaluation algorithm that overcomes the limitations
of the earlier algorithms by combining their insights with a technique that stat-
ically identifies attributes that are guaranteed to never be on a cycle. We have
implemented and validated our algorithm in the JastAddmetaprogramming sys-
tem [HM03], which compiles RAG specifications to Java code. Our approach con-
structs a call graph from the generated Java code and maps it back into attribute
declaration dependencies, which we use to conservatively overapproximate dy-
namic evaluation dependency cycles. We then feed this information back into
JastAdd to allow it to generate more efficient evaluation code.

While our work builds on RAGs, the algorithms are general in that they can
be applied to implement any system that exposes a demand analysis as an obser-
vationally pure query API on a graph of nodes (e.g., an abstract syntax tree or
an abstract syntax graph). We believe that our algorithms could therefore also
be useful for compilers built around other query-based architectures, including
Microsoft’s Roslyn platform and the rustc compiler for Rust.

We start by giving a brief background on RAGs and circular attributes (Sec-
tion 2). We then present our contributions:

• We introduce our new attribute evaluation algorithm (Section 3).

• We propose a novel approach to conservatively identify dependencies in
RAGs based on the call graph of the generated evaluation code and explain
how our new algorithm uses this information to speed up evaluation (Sec-
tion 4).

• We evaluate our approach on a set of real-world case studies. Our evalu-
ation shows that our approach can significantly improve the performance
of the generated evaluator (Section 5).

We then discuss related work (Section 6) before concluding the paper (Sec-
tion 7).

2 Reference Attribute Grammars with Circular
Attributes

In this section we introduce Reference Attribute Grammars (RAGs) and circular
attributes by defining reachability for a simple state machine language. Consider
the example state machine in Figure 1. For each of the machine’s three states, we
want to compute the set of transitively reachable states.

We demonstrate the analysis in the metacompilation system JastAdd, eliding
the concrete syntax definition for brevity. We first parse input state machine
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state S1;
state S2;
state S3;
trans S1 -> S2;
trans S2 -> S1;
trans S2 -> S3;

S1 S2 S3

{S1,S2,S3} {S1,S2,S3} {}Reachable states

Figure 1: State machine example. Textual syntax (left), visual depiction annotated
with reachable states (right).

/* — Abstract Syntax Definitions — */
Machine ::= State* Transition*;
State ::= <Label:String>;
Transition ::= <SourceLabel:String> <TargetLabel:String>;

/* — RAG Attribute Definitions — */
syn Set<State> State.successors();
eq State.successors() { ... };

syn Set<State> State.reachable()
circular [new HashSet<State>()];
eq State.reachable() {

Set<State> result = new HashSet<State>();
for (State s: successors()) {

result.add(s);
result.addAll(s.reachable());

}
return result;

}

Figure 2: State machine language definition, comprising the abstract grammar
and the RAG specification of reachable.
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programs such as the one in Figure 1 into an abstract syntax tree (AST). Figure 2
(top) shows the abstract grammar: a state machine (Machine) consists of a list of
states (State) and a list of transitions (Transition). Each state has a label, and
each transition has a source and a target label.

Figure 2 (bottom) shows the definitions of two attributes, successors and
reachable. Each definition specifies the attribute name on its left-hand side and
gives a Java method body on the right-hand side that must have no observable
side effects. For example, the attribute successors defines the set of all suc-
cessor states for State, though we elide the implementation for brevity. Each
non-terminal instance (AST node) has its own set of attribute instances. For a
state n, our definition of reachable computes the following:

n.reachable =
⋃

s∈n.successors

{s} ∪ s.reachable

Figure 2 writes the right-hand side of this equation in plain Java code, looping
over all successors to construct their union. For each attribute, JastAdd gen-
erates a namesake method, which here allows reachable to access successors
directly.

The keyword syn marks both attributes as so-called synthesized attributes,
meaning that we evaluate their defining equations in the context of the node that
the attribute belongs to. Other kinds of attributes use other contexts; e.g., inher-
ited attributes use the parent node context, though this distinction is inessential
for the work that we present here.

Since state machines may contain cycles, an instance of reachable may de-
pend on itself. We must thus declare reachable as circular, which tells Jast-
Add to evaluate it with a fixed-point iteration algorithm (shown in Section 3).
Circular attributes must have explicit bottom values: here, we use the empty set
([new HashSet<State>()]). Since the set of States forms a finite lattice on
which set union is monotonic, iteration terminates. JastAdd requires attribute
definitions to ensure that there can be no infinite chains of updates, e.g. via finite-
height lattices and monotonic updates.

When we access an attribute from Java, JastAdd will now compute it on de-
mand and memoize the result. For example, suppose that we have parsed the
program from Figure 1 into an AST and have a reference s1 to the S1 state
node. By calling s1.reachable() we will execute the right-hand side of the
reachable attribute equation, which in turnwill call s1.successors(), and then
recurse by calling s.reachable() for each s from s1.successors(). If we call
reachable() on the S3 state node, its successors attribute will be the empty
set, so reachable will return the empty set without recursing. For any attribute
evaluation, the exact set of attribute instances that we need to evaluate thus de-
pends on the structure of the AST, the equations, and the values of attributes that
we have evaluated so far.
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3 Circular Attribute Algorithms
We now describe our on-demand algorithms for attribute evaluation in the pres-
ence of circular attributes. We first discuss a general framework that captures
commonalities across the algorithms, then detail the constituent subalgorithms.

3.1 Preliminaries
In our approach, each non-terminal X is implemented by a corresponding class
X, and each attribute X.attr by a method X.attr(). If x is an instance of class X,
we can thus access the value of an attribute instance x.attr by calling x.attr().

We consider only well-formed RAGs for which each attribute instance will
have exactly one defining equation for any possible AST. The defining equation
and the attribute may be located in different AST nodes, e.g., if the attribute is
inherited rather than synthesized. We abstract away the equation location by in-
troducing a method X.attr_compute() for each attribute declaration X.attr().
This method will locate the equation in the AST and call a method correspond-
ing to the right-hand side of the equation. In this process, the method will call a
number of other attribute instances.

The calls form a dynamic dependency graphwhere each edge ⟨a,b⟩ represents
a call from attribute instance a to attribute instance b. When a can transitively
reach an attribute instance c along the edges of this dependency graph, we say
that c is downstream from a, and when a is downstream from a itself, we say
that a is effectively circular. Since the dynamic dependency graph can depend on
dynamically computed reference attributes, we cannot precisely predict whether
a given attribute instance is circular in the general case.

3.2 Attribute Declarations and Main Algorithms
To avoid unnecessary fixed-point computation, we require a declaration for each
attribute that selects one of three sub-algorithms for evaluating that attribute’s
instances:

Circular An instance of an attribute declared as Circular is allowed to be
effectively circular. A Circular attribute instance, x .attr , will be evaluated
by a fixed-point computation, and has an explicit bottom value, computed by
the method x.attr_bottom_value().

NonCircular An instance of an attribute declared as NonCircular is not al-
lowed to be effectively circular. If it is, evaluating the instance will yield a
runtime error.

Agnostic An instance of an attribute declared as Agnostic is allowed to be ef-
fectively circular, if there is at least one attribute declared as Circular on each
cycle it is part of. An Agnostic attribute does not have any explicit bottom
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value. Instead, its first approximation will be computed based on the approxi-
mations of its downstream attributes. If it is on a cycle without any intervening
Circular attribute, attempting to evaluate it will yield a runtime error.

We say that a Circular attribute instance and its downstream attributes, up
to any NonCircular attribute, belong to the same fixed-point component. Thus,
NonCircular attributes stratify different fixed-point components into an acyclic
component graph. If evaluation starts in one fixed-point component and flows
through a NonCircular attribute into another component, we suspend fixed-
point computation for the first component until we have reached a fixed point
for the second component (Section 3.5). When two strongly connected compo-
nents are instead directly connected or separated only by Agnostic attributes,
we evaluate them as one single fixed-point component.

We consider three different main algorithms for evaluation: BasicStacked,
RelaxedMonolithic, and RelaxedStacked. BasicStacked corresponds to the
original algorithm by Magnusson [MH07c] and supports Circular and Non-
Circular attributes. Our version of BasicStacked is somewhat different from
Magnusson’s version: We keep track of in which fixed-point iteration each at-
tribute was most recently evaluated. This allows for an important optimization
where we avoid evaluating an attribute more than once if its value is used more
than once in the same iteration. This also allows us to detect if an attribute that
is (erroneously) classified as NonCircular is actually on a cycle at runtime. In
the paper by Magnusson, the algorithm did not support such detection, but could
instead compute the wrong result in case of a specification error like this. The pa-
per only sketched a fix to this problem, and which relied on keeping track of sets
of attribute instances for each fixed-point component, which would have slowed
down the evaluation substantially.

A consequence of BasicStacked is that all attributes that may have an effec-
tively circular instance, for some AST, must be declared as Circular. This can
be impractical for larger systems, like compilers and program analyzers for real
languages. For example, it may be the case that a common attribute, say a type
attribute, can have instances that are on cycles only for particular language con-
structs, e.g., local type inference in lambda expressions. Requiring an attribute to
be declared as Circular would then give an efficiency penalty when analyzing
all other parts of the program where instances of the attribute are actually not on
a cycle. To avoid this problem, Öqvist introduced an alternative algorithm that
we call RelaxedMonolithic [ÖH17; Öqv18], which supports Circular and Ag-
nostic attributes. Agnostic attributes can be on a cycle, but if they are not, their
evaluation can be more efficient than for Circular attributes.

When using RelaxedMonolithic, all attributes that are not explicitly de-
clared as Circular are assumed to be Agnostic, so there are no NonCircular
attributes that can separate strongly connected components. Therefore, when
a Circular attribute is evaluated, all its downstream attributes, both Circular
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and Agnostic, will be evaluated as part of the same monolithic fixed-point com-
ponent. As our evaluation will show, this can be very inefficient for demand
analyses that start with querying a Circular attribute. To get the best of both
BasicStacked and RelaxedMonolithic, we therefore propose a new algorithm,
RelaxedStacked that supports all three kinds of attributes. In this algorithm,
NonCircular attributes can be used to separate the evaluation into smaller fixed-
point components. By using a static conservative analysis of the attribute speci-
fication, we can identify attributes that are guaranteed to never be on any cycle
in any possible AST, and that can therefore safely be classified as NonCircular.

In the RAG specification, Circular attributes are the only attributes requir-
ing an explicit annotation by the user, i.e., circular, like the reachable attribute
in Figure 2. Attributes that are not declared as circular, such as successors, are
referred to as normal attributes. Normal attributes are classified as either Non-
Circular or Agnostic, depending on the main algorithm used, and on results
from the static analysis of the specification in the case of the RelaxedStacked
algorithm.

3.3 Subalgorithms and Variables
There is one subalgorithm for each of the three attribute kinds: Circular, Non-
Circular, and Agnostic. We have formulated the subalgorithms so that all
three main algorithms can use different combinations of exactly the same sub-
algorithms. Hence, BasicStacked corresponds to using the two subalgorithms
Circular and NonCircular; RelaxedMonolithic corresponds to using Cir-
cular and Agnostic; RelaxedStacked corresponds to using all three subalgo-
rithms. The subalgorithms are shown in Listings 1-3 and use the following key
global variables.

IN_CIRCLE is a boolean global variable that is true when evaluation is ongo-
ing inside a fixed-point component, and false otherwise. If an attribute is
called when IN_CIRCLE is false, its final value is returned. If it is called when
IN_CIRCLE is true, an approximation of it is returned.

CHANGE is a boolean global variable indicating if any value was changed in the
current fixed-point iteration.

CIRCLE_ITER is a global object uniquely identifying the current fixed-point iter-
ation.

Once an algorithm has computed the final value of some attribute X .attr ,
the algorithm memoizes the result in an instance variable X.attr_value. To
keep track of whether the attribute is memoized or not, NonCircular attributes
use a boolean instance variable X.attr_computed. For Circular and Agnostic
attributes, the X.attr_value instance variable will hold the current approxima-
tion of the value. To monitor the status of X.attr_value, we use an instance
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variable X.attr_iter of type Object. Initially, this is set to NOT_INITIALIZED
to indicate that no approximation has yet been computed. Then, in each fixed-
point iteration when a new approximation is computed, the X.attr_iter is set
to the object identifying that iteration. Finally, when it is deduced that the cur-
rent approximation is the final value of the attribute, this is recorded by setting
X.attr_iter to the constant object FINAL_VALUE.

Evaluation starts when the main program calls an attribute of some node of
the AST. Since IN_CIRCLE is initially false, this call will return the final memoized
value of the attribute. As an effect of this evaluation, other attributes may either
be still unevaluated, or have an approximate value, or have their final memoized
value. A later call to an attribute with an approximate value will continue its
evaluation.

1 // Global variables
2 boolean IN_CIRCLE = false;
3 boolean CHANGE = false;
4 Object CIRCLE_ITER = new Object();
5

6 // Global constants
7 final Object FINAL_VALUE = new Object();
8 final Object NOT_INITIALIZED = new Object();
9

10 class X {
11 // Instance variables
12 Object attr_iter = NOT_INITIALIZED;
13 T attr_value;
14

15 T attr() {
16 if (attr_iter == FINAL_VALUE) {
17 return attr_value;
18 }
19

20 if (attr_iter == NOT_INITIALIZED) {
21 attr_value = attr_bottom_value();
22 }
23

24 if (!IN_CIRCLE) {
25 // DRIVES
26 IN_CIRCLE = true;
27 do {
28 CHANGE = false;
29 CIRCLE_ITER = new Object();
30 attr_iter = CIRCLE_ITER;
31 T v = attr_compute();
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32 if (!Objects.equals(attr_value, v)) {
33 CHANGE = true;
34 }
35 attr_value = v;
36 } while (CHANGE);
37 attr_iter = FINAL_VALUE;
38 IN_CIRCLE = false;
39 return attr_value;
40 } else if (attr_iter != CIRCLE_ITER) {
41 // FOLLOWS
42 attr_iter = CIRCLE_ITER;
43 T v = attr_compute();
44 if (!Objects.equals(attr_value, v)) {
45 CHANGE = true;
46 }
47 attr_value = v;
48 return attr_value;
49 } else {
50 // ALREADY HANDLED in this iteration
51 return attr_value;
52 }
53 }
54 }

Listing 1: Evaluation of Circular attributes

3.4 The Circular Subalgorithm

Listing 1 shows the subalgorithm for Circular attributes. The first Circular at-
tribute that is called in a fixed-point component will take the role of driver, run-
ning the loop of fixed-point iterations. Other Circular attributes in the same
component will be followers. The algorithm distinguishes three different situa-
tions when calling a Circular attribute:

DRIVES An attribute instance takes the role of driver and starts a fixed-point
computation. It runs a loop and in each iteration, it calls its compute method
to get a new approximation of its value, potentially (transitively) calling other
Circular attributes in the component, as well as itself.

FOLLOWS An attribute instance other than the driver is called for the first time
during the current fixed-point iteration. It computes a new approximation by
calling its compute method, again potentially (transitively) calling other Cir-
cular attributes in the component, as well as itself.
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1 // Global variables
2 Stack STACK = ...;
3

4 class X {
5 // Instance variables
6 boolean attr_computed = false;
7 T attr_value;
8

9 T attr() {
10 if (attr_computed) {
11 return attr_value;
12 }
13 if (!IN_CIRCLE) {
14 // NORMAL
15 attr_value = attr_compute();
16 attr_computed = true;
17 return attr_value;
18 } else {
19 // BRIDGE
20 push CHANGE, CIRCLE_ITER on STACK;
21 IN_CIRCLE = false;
22 attr_value = attr_compute();
23 IN_CIRCLE = true;
24 CHANGE, CIRCLE_ITER = pop from STACK;
25 attr_computed = true;
26 return attr_value;
27 }
28 }
29 }

Listing 2: Evaluation of NonCircular attributes
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1 class X {
2 // Instance variables
3 Object attr_iter = NOT_INITIALIZED;
4 T attr_value;
5

6 T attr() {
7 if (attr_iter == FINAL_VALUE) {
8 return attr_value;
9 }
10 if (!IN_CIRCLE) {
11 // NORMAL
12 attr_value = attr_compute();
13 attr_iter = FINAL_VALUE;
14 return attr_value;
15 } else {
16 if (attr_iter != CIRCLE_ITER) {
17 // FOLLOWS
18 attr_value = attr_compute();
19 attr_iter = CIRCLE_ITER;
20 return attr_value;
21 } else {
22 // ALREADY COMPUTED in this iteration
23 return attr_value;
24 }
25 }
26 }
27 }

Listing 3: Evaluation of Agnostic attributes
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a = {5} ∪ b

b = {42} ∪ c ∪ d

c = b ∪ a

d = c

a

b

c

d

a

b

c

b a

d

c

(drives)

(follows)

(follows) (follows)

(already) (already) (already)

Figure 3: Equation system for Circular attributes (left). Dynamic dependency
graph (middle). Call tree for one iteration (right).

ALREADY HANDLED A driver or a follower is called during fixed-point iteration,
but has either already been computed in that iteration or is in the process of
being computed (i.e., another method invocation for the same attribute is on
the call stack). Then it simply returns its current value.

To illustrate how the Circular evaluation works, consider the example in
Figure 3 showing an equation system, the dynamic dependency graph, and the
tree of method calls for one of the fixed-point iterations, given that a client de-
mands the attribute a by calling a(). The attributes a, b, c, and d are all sets
of integers, and we assume that they are all declared as Circular. Solving the
equation system with a fixed-point iteration, starting out with the empty set as
bottom, the solution will be a = b = c = d = {5, 42}.

Because the evaluation starts with a, this attribute becomes the driver, and
will execute the DRIVES part of the code, with the fixed-point loop. In each iter-
ation in the loop, it calls its compute() method which will in turn call b(). The
attribute b becomes a follower, and will execute the FOLLOWS part of the code
which calls its compute method that will first call c() and then d(). Both these
attributes also become followers. The attribute c will similarly call b() and a(),
but both these will execute the ALREADY HANDLED part of the code, since they are
in the process of already being evaluated during the same iteration, and their cur-
rent approximation is returned directly, without any call to compute(), ending
the recursion. Similarly, when d() calls c(), then c has already computed a new
approximate value in the same iteration, due to the previous call from b() to c(),
again ending the recursion. We can see from this example that the recursion will
terminate, and that each attribute that a depends on will update its value exactly
once during an iteration.

Both the driver and the followers update the global variable CHANGE to keep
track of whether any of the approximations were updated during the current it-
eration. The driver will loop until there is an iteration where no approximations
are updated. The driver and all its followers will then have their final values and
can memoize them. For simplicity, the algorithm in Listing 1 only memoizes the
driver, i.e., a in the example in Figure 3. Using an optimization called LastCy-

cle [MH07c], the driver can memoize all the followers as well (b, c, and d in the
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a1 a2

a3a4

b c1 c2

C C

CC

NC C C

Figure 4: Attribute serving as a bridge between two circular components.
C=Circular, NC=NonCircular.

example). This is accomplished by the driver calling its compute() method an
extra time, with an extra global flag set to signal to followers that they should
memoize their values. (The code for this is elided for brevity.) If this optimization
is not used, and a previous follower is called at a later point in time, it will become
a driver, and find after one iteration that it can be memoized.

3.5 The NonCircular Subalgorithm

NonCircular attributes use the subalgorithm in Listing 2. An instance of a Non-
Circular attribute is assumed to not be effectively circular. (If it actually is circu-
lar, a runtime error will be raised, see Appendix A.) The algorithm distinguishes
between two different situations when the NonCircular attribute is called:

NORMAL In the normal case, the attribute is called when there is no ongoing fixed-
point computation (i.e., IN_CIRCLE == false). It can then simply call its
compute() method and memoize the result. This is so since when IN_CIRCLE
== false, any attribute called by the compute() method will return its final
value.

BRIDGE If the attribute is called during an ongoing fixed-point computation (i.e.,
IN_CIRCLE == true), any downstream Circular attribute will, by defini-
tion, belong to a separate fixed-point component. We say that the NonCir-
cular attribute serves as a bridge between the upstream and any downstream
components. A downstream component should run its own fixed-point com-
putation for efficiency. This is accomplished by the NonCircular attribute
stacking the state of the ongoing component (i.e., the variables CHANGE and
CIRCLE_ITER), and setting IN_CIRCLE to false before calling its compute()
method. If a Circular attribute is encountered during the compute() call, it
will start its own fixed-point computation, and finish this computation before
returning its value. After the compute() call, the stacked variables are restored,
and IN_CIRCLE is set to true again.
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Figure 4 shows an example. Here, the NonCircular attribute b serves as a
bridge between the components {a1, a2, a3, a4} and {c1, c2}. Suppose the eval-
uation starts by a call to a1, which will become the driver of the {a1, a2, a3, a4}
component. When a2 calls b in the first iteration, the component will be stacked.
Then b calls c1 which becomes the driver of a new fixed-point loop for {c1, c2}.
This component will loop until c1 is finalized andmemoized, and then return con-
trol to b. Then bwill compute andmemoize its own value, pop the {a1, a2, a3, a4}
component, and return control to a2. In the second iteration of {a1, a2, a3, a4},
calling b will directly return b’s memoized value.

If the NonCircular b attribute did not stack the component state and
set IN_CIRCLE to false, its call to compute() might yield only an approx-
imation rather than a final value, so it would not be safe to memoize b’s
value here. Essentially, this would lead to the evaluation of all the attributes
{a1, a2, a3, a4, b, c1, c2} in a big monolithic fixed-point loop, driven by a1.
The NonCircular algorithm in Listing 2 thus has two advantages over a
non-stacking variant of the algorithm: it will separate circular components, and
it will avoid evaluating the NonCircular attribute more than once.

3.6 The Agnostic Subalgorithm
Agnostic attributes use the subalgorithm in Listing 3. They may be part of a
cycle, but only as followers, never as drivers. We can thus assume that any cycle
that contains an Agnostic attribute instance also contains a Circular attribute
instance to act as the driver. (If an Agnostic attribute is on a cycle without any
Circular attribute, the evaluation algorithm raises an error, cf. Appendix A.)

In the following, we explicitly note several differences to the previous algo-
rithms that we discuss further in Sections 3.6, 3.6, and 3.6.
Note 1 : Agnostic attributes have no bottom values. If they are in a cycle, we
compute their first approximations from the bottom values of the Circular at-
tributes on the cycle.

The algorithm distinguishes between three situations when an Agnostic at-
tribute is called:

NORMAL This case is similar to the corresponding case for NonCircular
attributes, i.e., there is no ongoing fixed-point computation (IN_CIRCLE ==
false). The attribute will call its compute() method and memoize its result.
Note 2 : Since the Agnostic attribute may be on a cycle, it may be revisited
by another downstream call.

FOLLOWS This case is similar to the corresponding case for Circular at-
tributes. It occurs when there is an ongoing cycle (IN_CIRCLE == true),
and its recorded iteration is different from the current one (attr_iter !=
CIRCLE_ITER). In this case, the attribute’s compute() method is called to
compute a new approximation.
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Note 3 : Unlike a Circular attribute, an Agnostic attribute does not compare
its current value against the previous one and never updates the CHANGE flag.
Note 4 : Unlike a Circular attribute, an Agnostic attribute updates its
attr_iter after the call to compute().

ALREADY HANDLED This case is similar to the corresponding one for Circular
attributes. Here, there is an ongoing cycle (IN_CIRCLE == true), and the
recorded iter is the same as the current one (attr_iter == CIRCLE_ITER).
In this case, the attribute is already computed in the current iteration, and it
simply returns its current approximation without computing a new one, thus
ending the recursion.

The four properties that we noted above affect the performance and correct-
ness of the algorithm, as we detail below.

An Agnostic Attribute Has No Explicit Bottom Value

Since Agnostic attributes have no explicit bottom value (see Note 1 ), they must
not end up in the ALREADY HANDLED case without first having computed an ap-
proximate value. We can see that this cannot happen, because attr_iter ==
CIRCLE_ITER can happen only if the evaluation previously has passed through
all of the FOLLOWS code, where attr_iter is set to CIRCLE_ITER, meaning that
the value has been set. For this reason, it is important that attr_iter is set to
CIRCLE_ITER after the call to compute(), and not before (see Note 4 ).

An Agnostic Attribute Does Not Set the CHANGE Flag

A new approximate value of an Agnostic attribute cannot depend on itself un-
less this dependency goes via one or more Circular attributes. The Agnostic
attribute can only get a new approximation if at least one of these Circular at-
tributes has a new value. But if it has, it will have set the CHANGE flag. Therefore,
the Agnostic attribute does not need to set the CHANGE flag (see Note 3 ). This
also means that if there is an iteration where the CHANGE flag was not set, i.e., the
fixed-point computation has completed, also the Agnostic attribute will have its
final value.

An Agnostic Attribute Executing the NORMAL Case May Be Revisited
Downstream

If an Agnostic attribute is on a cycle, but called from outside of circular eval-
uation, a Circular attribute on the cycle will drive the fixed-point evaluation.
The Agnostic attribute will then start by executing the NORMAL case, but as a
part of this computation, be recursively called (see Note 2 ). When the fixed-
point evaluation has started, the Agnostic attribute will enter the FOLLOW code



Efficient Demand Evaluation of Fixed-Point Attributes Using Static Analysis 159

reachable1 reachable2 reachable3

successors1 successors2 successors3

... ... ...

C C C

A A A

Figure 5: Dynamic dependency graph for the state machine example in Figure 1.
C=Circular, A=Agnostic.

in each iteration, and compute a new approximation. When the fixed-point eval-
uation terminates, the Agnostic attribute will also have been iterated to its final
value, as explained in the previous Section 3.6. When the evaluation returns to
the Agnostic call executing the NORMAL case, it is therefore safe to memoize the
attribute.

4 Static Analysis to Identify NonCircular At-
tributes

For an attribute that is not declared as Circular, we have the option of either
declaring it as Agnostic or as NonCircular. Using an Agnostic attribute has
the advantage that it is safe to use, even if it is on a cycle (as long as there is some
Circular attribute on the cycle).

However, an Agnostic attribute can be quite inefficient if it is called from
an upstream cycle, but is not itself on a cycle. In this case, the upstream cycle
will have a Circular attribute that drives a fixed-point loop, and the Agnostic
attributewill be evaluated once for each iteration of this loop. Since the Agnostic
attribute is not on any cycle in this particular case, each of these evaluations will
result in the same value, resulting in unnecessary work.

As an example, this situation occurs for our state machine example from Fig-
ure 1. Suppose the successors attribute, as well as all its downstream attributes
that compute the name analysis, are declared as Agnostic. In this case, we get
the dependency graph shown in Figure 5. If the evaluation starts in reachable1,
each of the successors attributes, as well as all their downstream attributes, will
be re-evaluated once per iteration during each of the n fixed-point iterations of
reachable1. This can potentially be very inefficient, leading to all downstream
attributes being recomputed n times.

Another kind of inefficiency is due to different fixed-point components. If
the two components in Figure 4 were separated by an Agnostic rather than by
a NonCircular attribute, and evaluation starts in the upstream component, then
the evaluation could not be done separately for the two components. Instead, all
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Figure 6: Overview over our approach. The JastAdd metacompiler generates
Java code from a RAG specification. CAT determines which attributes may be
NonCircular and feeds this information into a second run of JastAdd that can
then generate more efficient evaluation code.

the attributes would be evaluated in a big monolithic component, which is less
efficient.

Both these inefficiencies would be avoided if we used NonCircular attributes
instead of Agnostic ones. However, we only want to use NonCircular attributes
if we are sure that they will never be on any cycle, for any possible AST.

To solve this problem, we have implemented a tool CAT (https://github.c
om/idrissrio/cat), that we use to analyze the static call graph of a RAG.We use
this analysis to identify attributes that can safely be declared as NonCircular.

4.1 Approach Overview

CAT is a general call graph analysis tool for Java, and we use it to analyze the
Java code that is generated from a JastAdd RAG specification. An overview of
our approach is shown in Figure 6. Initially, the RAG specification is fed into
the JastAdd metacompiler, which generates the corresponding evaluation code
in Java, using the subalgorithms described in Section 3. We use the Agnostic
code as the default for attributes without annotations. Then, CAT analyses the
generated evaluation code and computes the corresponding call graph. In this
call graph, method declarations are nodes, and edges represent method calls. The
CAT tool uses this call graph to identify what attributes can safely be declared
as NonCircular, and outputs this information as a meta data file. Then Jast-
Add is run again, this time with the meta data as additional input and with some
optimization flags enabled. JastAdd uses this extra information to generate op-
timized evaluation code where as many as possible of the unannotated attributes
use the NonCircular subalgorithm instead of the Agnostic one.

https://github.com/idrissrio/cat
https://github.com/idrissrio/cat
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4.2 Call Graph Construction

A call graph is a directed graph that represents the calling relationships between
methods in a program. We say that a call graph is sound if it contains all the
possible method calls that can occur at runtime. One of the main challenges in
constructing a sound call graph is effectively managing dynamic dispatch, which
is the capability to dynamically choose the method to call based on the runtime
type of the receiver object. CAT handles dynamic dispatch by using a technique
called Class Hierarchy Analysis (CHA) [DGC95]. CHA is a context- and flow-

insensitive analysis, meaning that it does not consider the context of the method
calls and it does not consider the order of the statements in the program. A key
aspect of CHA is that given a method call on a receiver object of a certain type,
it considers all the possible subclasses of that type, and includes all the methods
in these subclasses in the call graph. This way, CHA ensures that all possible
method calls are included in the call graph, even if the exact type of the receiver
object is not known at compile time.

4.3 Identifying Non-Circular Attributes

Since we are interested in how attributes call each other, we start by constructing
a filtered call graph that only includes methods that correspond to attributes.
We first obtain this set of methods from annotations generated by the JastAdd
metacompiler, and then project all paths from the original call graph onto the
filtered one.

To identify non-circular attributes, we employ Tarjan’s algorithm [Tar72] on
the filtered call graph to discover all strongly connected components (SCCs). A
SCC constitutes a set of nodes in a directed graph where each node is reachable
from every other node in the set.

Given the SCCs, we can safely mark an attribute n as NonCircular if both
of the following conditions hold:

1. n is in an SCC with only a single node, and

2. n does not directly call itself (no self-loop).

These attributes can never be circular for any AST. Attributes not marked as
NonCircular by CAT, and not explicitly marked as Circular, are by default
considered Agnostic.
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State.reachable State.successors ...

Set<State> reachable_compute(){
Set<State> result = new HashSet<State>();
for (State s : successors()) {

result.add(s);
result.addAll(s.reachable());

}
return result;

}

SCC1 SCC2

Figure 7: Call graph between attributes for the state machine language (left),
and corresponding computemethod (right). Dashed rectangles represent strongly
connected components (SCC). Green methods are in the filtered call graph. Red
methods are other methods in the original call graph.

To illustrate our approach, we revisit the state machine example from Sec-
tion 2. Figure 7 shows a part of the call graph, and the compute() method for
the reachable attribute that was used to generate it. The SCC analysis of the
call graph identifies two distinct SCCs: SCC1 and SCC2. We see that the attribute
State.successors can be declared as NonCircular, as both conditions 1 and 2
are met. Conversely, we see that the attribute State.reachable cannot be de-
clared as NonCircular, since there is a self-loop in the graph, violating condi-
tion 2. This is expected since State.reachable is declared as Circular in the
RAG, and instances of it are indeed on a cycle in the example in Figure 5.

4.4 Imprecision and Limitations

CAT is unsound on Java code that uses reflection, native calls, or dynamic class
loading. Since CAT only analyzes code that JastAdd generates from RAG spec-
ifications, and since existing RAG specifications in JastAdd have not made use
of these Java features, we currently expect that the practical significance of this
limitation is minimal.

An important imprecision arises from attribute instances that recursively call
other instances of the same attribute along the AST structure, but without be-
ing cyclic. An example would be when all calls between instances of the same
attribute go downwards to children. The static approximation of the call graph
will then be cyclic, whereas any dynamic instance of this part of the graph will
be acyclic.
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Since our approach can be adapted to any type of call graph, we expect that
more precise call graphs can mitigate this imprecision, help identify more at-
tributes as NonCircular, and thus further improve performance.

Another limitation of our approach is that the algorithm does not distinguish
between different dynamic instances of the same static SCC. Generalizing the
algorithm to detect dynamic SCCs at evaluation time, and investigating if this
pays off in practice, is an interesting line of future research.

5 Evaluation

In this section, we present the evaluation performance of the three algorithms:
BasicStacked, RelaxedMonolithic, and RelaxedStacked. We evaluated the
RelaxedStacked algorithm across three distinct case studies: the construction
of an LL(1) parser, the ExtendJ Java compiler, and IntraJ, an extension of the
ExtendJ frontend for data-flow analysis. This section presents the findings for
the LL(1) parser construction and IntraJ case studies, as the results for the Ex-
tendJ case study, detailed in Appendix B, align with expectations and do not offer
additional insights. For the IntraJ case study, we evaluate both a forward and
a backward analysis. We exclude the BasicStacked algorithm from the second
and third case studies, as it requires all attributes on a cycle to be declared Cir-
cular, which is impractical for complex applications like ExtendJ and IntraJ.
When RelaxedStacked is evaluated, we use the CAT tool to automatically infer
what attributes can be declared as NonCircular.

The first case study is included to demonstrate that the RelaxedStacked al-
gorithm does not introduce any performance degradation for this application. On
the other hand, with the IntraJ case study we demonstrate the advantages of the
RelaxedStacked algorithm for more complex applications and for analyses in
on-demand settings.

In all of these case studies, the specification includes a cache configuration,
i.e., a specification of which attributes to memoize and which to reevaluate on
each access. We used the cache configuration supplied by each respective tool, as
the optimization of this aspect is a separate research challenge [ALL96; SH11].

5.1 Evaluation Setup

System Configuration Our experiments were conducted on a machine with
an Intel Core i7-11700KCPU running at 3.60GHz and equippedwith 128 GBRAM.
The machine ran Ubuntu 22.04.3 and the benchmarks were executed using Open-
JDK Runtime Environment Zulu 8.50.0.53-CA-linux64, build 1.8.0_275-b01. Ad-
ditionally, for all evaluations, we fixed the Java Virtual Machine (JVM) heap size
to 8 GB.
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Benchmark Name LOC #Methods Version

antlr 36525 2070 2.7.2
pmd 60749 5325 4.2.5
struts 81394 7023 2.3.22
fop 102746 8318 0.95
extendj 147265 16025 11.0
castor 235745 12643 1.3.3
weka 245719 14952 revision 7806
poi 329366 23816 3.11

Table 1: Evaluated Java benchmarks, including number of lines of code, number
of methods, and version.

Evaluation Methodology The measurements were conducted separately for
start-up performance on a cold JVM, involving a JVM restart for each run, and
for steady-state performance, with a single measurement taken after 49 warmup
runs. Each benchmark iteration was repeated 25 times, resulting in a total of
1250 runs for steady-state measurements. For steady-state measurements, we in-
troduced a 300-second timeout since RelaxedMonolithic took a long time to
run for some benchmarks. If any of the 49 warmup runs exceeded 300 seconds,
we terminated the evaluation process for that particular steady-state measure-
ment, disregarding the remaining warmup runs. The reported metrics include
the median values and 95% confidence intervals. We checked the correctness of
all three case studies by comparing their results to those from the original tools.

Benchmarks Table 1 shows the Java benchmark projects for the IntraJ and
ExtendJ case studies. They include projects from the DaCapo [Bla+06] and Qual-
itas [Tem+10b] suites, e.g., antlr and jfreechart, and projects that we selected
to cover a wide range of applications, including the generated Java source code
of ExtendJ itself.

The artifact for running all the experiments is available online [Rio+24].

5.2 Case Study: LL(1) Parser Construction

LL(1) parsers can be generated by computing the nullable, first, and follow sets
for a context-free grammar [App04]. Normally, these sets are computed by hand-
written fixed-point algorithms. Magnusson et. al. [MH07c] instead formulated
the computation as circular attributes. We use the RAG specification from their
artifact [MH07a] to evaluate our different algorithms. For comparison, we also
ran the original implementation from that artifact (BasicStackedold).
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BasicStackedold BasicStacked RelaxedMonolithic RelaxedStacked
4.24±0.12 2.92±0.05 8.30±0.12 2.93±0.03

Table 2: Startup performance results for the Java 1.2 grammar benchmark. Mea-
surements in milliseconds.

Table 2 shows the startup performance results for computing nullable, first,
and follow sets for a Java 1.2 grammarwith 155 terminals and 332 productions. We
can see that BasicStacked shows a performance improvement of 4.24

2.92 =∼1.45x
over BasicStackedold, confirming the efficacy of the improvements that we intro-
duced for BasicStacked in Section 3.2. Furthermore, RelaxedStacked performs
as well as BasicStacked, and is significantly faster than RelaxedMonolithic,
with a speedup of 8.30

2.93 =∼2.8x. One reason for this is that RelaxedStacked is
able to compute follow in a separate fixed-point component than first and nul-

lable.

5.3 Case Study: IntraJ
IntraJ [Rio+21] is a dataflow analyser for Java built as an extension of the Ex-
tendJ Java compiler. It currently supports detecting two kinds of dataflow bugs:
null-pointer dereferences and dead assignments. The analyses implemented in
IntraJ are instances of the Monotone frameworks [NNH10].

Monotone frameworks are a theoretical approach for reasoning about pro-
gram dataflow properties. This approach provides a flexible and generic frame-
work for expressing and solving dataflow equations, which can be used to reason
about a wide range of dataflow properties, e.g., reaching definitions and available
expressions analyses.

The dataflow information is propagated through the program using the
control-flow graph (CFG), available with the functions pred (predecessors) and
succ (successors). To propagate information from node n to its succeeding nodes
(in the CFG) and to represent the effect of passing through a node we use the
following equations:

in(n) =
⊔

p∈pred(n)

out(p) (1)

out(n) = ftr(in(n),n) (2)

out(n) =
⊔

p∈succ(n)

in(p) (3)

in(n) = ftr(out(n),n) (4)

Equations (1) and (2) are used to propagate information from the predecessors
of a node n to n itself. Each instantiation or implementation of these equations
corresponds to a forward analysis. Similarly, the equations (3) and (4) are used to
propagate information backward in the CFG. The function ftr is called the transfer
function of the analysis and captures the effect of passing through a node in the
CFG.
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CFGNode.out CFGNode.succ

...

Figure 8: Static call graph for forward (left) and backward (right) analysis.

Benchmark
Start up Steady State

Relaxed- Relaxed- Relaxed- Relaxed-
Monolithic Stacked Monolithic Stacked
Time (s) Time (s) Speedup Time (s) Time (s) Speedup

antlr 3.16±0.07 1.83±0.03 × 1.73 ↑ 1.42±0.01 0.51±0.01 × 2.78 ↑
pmd 6.49±0.12 3.48±0.05 × 1.86 ↑ 3.61±0.02 1.39±0.02 × 2.60 ↑
struts 9.32±0.18 5.31±0.09 × 1.75 ↑ 5.18±0.07 2.17±0.06 × 2.38 ↑
fop 8.38±0.09 4.74±0.05 × 1.77 ↑ 5.57±0.03 2.08±0.09 × 2.68 ↑
extendj 40.88±0.74 16.11±0.21 × 2.54 ↑ 37.16±0.66 12.94±0.35 × 2.87 ↑
castor 11.10±0.25 6.89±0.14 × 1.61 ↑ 6.96±0.04 3.16±0.15 × 2.21 ↑
weka 28.12±0.09 12.93±0.12 × 2.17 ↑ 23.50±0.20 9.31±0.19 × 2.52 ↑
poi 34.63±0.23 16.17±0.12 × 2.14 ↑ 27.85±0.25 11.14±0.08 × 2.50 ↑

Table 3: Performance of dead assignment analysis, comparing the Relaxed-
Monolithic and RelaxedStacked algorithms in startup and steady state.

Benchmark
Start up Steady State

Relaxed- Relaxed- Relaxed- Relaxed-
Monolithic Stacked Monolithic Stacked
Time (s) Time (s) Speedup Time (s) Time (s) Speedup

antlr 28.09±0.28 2.48±0.06 × 11.34 ↑ 26.74±0.09 0.73±0.01 × 36.65 ↑
pmd 32.36±0.20 4.46±0.09 × 7.26 ↑ 28.14±0.10 1.73±0.01 × 16.24 ↑
struts 66.97±0.85 6.42±0.10 × 10.43 ↑ 61.74±0.74 3.54±0.14 × 17.45 ↑
fop 83.52±0.26 6.04±0.09 × 13.84 ↑ 79.12±0.06 2.99±0.08 × 26.48 ↑
extendj 1510.75±5.99 13.04±0.08 × 115.87 ↑ ≥ 300.00 9.55±0.08 ≥ 31.42 ↑
castor 143.99±4.06 8.54±0.27 × 16.85 ↑ 137.35±1.85 4.59±0.13 × 29.93 ↑
weka 475.89±2.66 17.21±0.45 × 27.65 ↑ ≥ 300.00 11.88±0.32 ≥ 25.25 ↑
poi 571.56±4.47 21.14±0.16 × 27.03 ↑ ≥ 300.00 15.32±0.08 ≥ 19.59 ↑

Table 4: Performance of Null-Pointer Dereference Analysis, comparing the
RelaxedMonolithic and RelaxedStacked algorithms in startup and steady
state. The symbol indicates that the analysis timed out.
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In IntraJ, in, out, succ, and pred are represented by attributes. Fig-
ure 8 shows the static call graphs for a forward and a backward analysis. In
both graphs, the CFGNode class represents a node in the CFG. The attributes
CFGNode.in and CFGNode.out are circular and require a fixed-point computation
to compute their values. Our tool CAT will detect that both CFGNode.pred and
CFGNode.succ can never be on a cycle and can thus be declared as NonCircular.

Performance For IntraJ we conducted the evaluation on two dataflow
analyses, namely the null-pointer dereference and the dead assignment analyses.
The null-pointer dereference analysis detects expressions that may cause a
null-pointer dereference. The dead assignment analysis detects assignments that
are never used. Both the analyses are monotone frameworks, with the difference
that the null-pointer dereference analysis is a forward analysis (see equations
(1) and (2)), while the dead assignment analysis is a backward analysis (see
equations (3) and (4)).

Each analysis is done by querying an attribute in IntraJ that collects all warn-
ings in the benchmark program. This attribute will in turn demand the dataflow
in/out attributes, which in turn demand the pred/succ attributes. These at-
tributes may in turn demand name- and type analysis attributes as defined by
the underlying compiler ExtendJ. Thus, in these analyses, many attributes will
be demanded downstream from the circular dataflow attributes. It is therefore
expected that RelaxedStacked will perform better than RelaxedMonolithic.

Table 3 and Table 4 show the performance of the RelaxedMonolithic and
RelaxedStacked algorithms for both the dead assignment and the null-pointer
dereference analyses. The start up measurements include both parsing and anal-
ysis and the steady state measurements include only analysis. The results show
significant performance improvements for the RelaxedStacked algorithm com-
pared to the RelaxedMonolithic algorithm. For dead assignment analysis, the
startup speedup of RelaxedStacked ranges from∼1.7x to∼2.5x, with a median
speedup of around∼1.8x. In steady-state, the speedup becomes evenmore signif-
icant, ranging from∼2.2x to∼2.8x, with a median speedup of around∼2.5x. One
reason for the speedup is that RelaxedMonolithic will compute the control-
flow graph (succ and its downstream attributes) in each fixed-point iteration,
whereas for RelaxedStacked succ will be classified as NonCircular, and will
only be computed once.

For null-pointer dereference analysis, the results show an even more
significant improvement for RelaxedStacked, with a speedup between ∼7x
to ∼115x for startup performance, with a median of ∼15.3x. For steady state
performance, the speedup was between ∼16x to ∼35x, with a median of ∼22x,
disregarding 3 measurements that timed out for RelaxedMonolithic. The
reason for the larger difference and variation is that this is a forward analysis
which uses the pred() attribute which is defined as the reverse of the successor,
leading to even more downstream attributes being unnecessarily reevaluated
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Figure 9: Steady-state performance of null-pointer dereference analysis for ran-
domly selected sets of methods of the pmd benchmark. Solid lines represent exe-
cution time (left axis, seconds). Dashed lines represent successor attribute evalu-
ations (right axis, count).

for the RelaxedMonolithic algorithm. We can observe an extremely high
speedup for the extendj benchmark, where the RelaxedStacked algorithm
is approximately 115 times faster than the RelaxedMonolithic algorithm.
Upon closer inspection, we discovered that the extendj benchmark has a very
large generated method for parsing Java source code, consisting of 6844 lines
of code, and where the problems of RelaxedMonolithic become particularly
pronounced.

The experiments in Table 3 and Table 4 analyze complete benchmark pro-
grams. To further demonstrate the on-demand nature of the algorithms, we ran
the analyses on sets of randomly selected methods, querying an attribute sum-
marizing the results for each of the selected methods. For each benchmark, we
randomly selected 10, 20, 50, 100, and 200 methods to run the experiment, and
report the steady-state performance of the analyses. We present the results ex-
clusively for pmd as findings across other projects are similar. Figure 9 shows the
results for the null-pointer dereference analysis. We report both the execution
time and the number of times a succ attribute was evaluated, and it can be ob-
served that these metrics correlate closely. We can also note that the speedups
for RelaxedStacked are consistent with the earlier results in Table 3 and Table 4
running on the whole benchmark, approaching similar numbers as the number
of methods increases. This experiment demonstrates the on-demand nature of
the algorithms, resulting in very short response times when only a subset of the
results are demanded, and with similar performance profiles as for the complete
programs.
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6 Related Work

Knuth’s original attribute grammars [Knu68] disallowed cyclic dependencies.
Farrow [Far86] and Jones et al. [JS86] independently introduced circular but
well-defined attribute grammars. Farrow’s approach statically analyzes de-
pendencies, while Jones’ relies on a dynamic dependency graph to identify
strongly connected components and supports incremental evaluation. Sasaki
and Sassa extend attribute grammars with remote links [SS03], a restricted form
of reference attributes, and describe exhaustive circular evaluation over them. In
contrast to our work, none of these approaches support demand evaluation, nor
general reference attributes. Sasaki and Sassa’s remote links must be set before
evaluation, i.e., may not be computed by attributes.

Boyland describes demand-driven evaluation for circular attributes in the
presence of so-called remote attributes (similar to reference attributes), but gives
no explicit evaluation algorithm [Boy96]. Hesamian recently added statically
scheduled support for circular attributes to Boyland’s remote attribute system
APS [Hes23]. However, this implementation is exhaustive (not demand-driven)
and the experimental results are limited to comparatively small grammars and
synthetic input. The largest grammar in this work is the nullable-first-follow
grammar from Magnusson [MH07c] that we discuss in Section 5.2.

Previous demand-driven algorithms for RAGs with circular attributes include
BasicStackedold by Magnusson et al. [MH07c] and RelaxedMonolithic by
Öqvist et al. [ÖH17; Öqv18]. Our algorithm generalizes both. Öqvist fur-
ther presents a concurrent lock-free attribute evaluation algorithm based on
RelaxedMonolithic, while Söderberg et al. [SH15] present an extension of
BasicStacked to handle circular higher-order attributes. Both contributions are
orthogonal to the ones presented here.

Kiama [SKV10] and Silver [Van+10a] are two RAG systems that could bene-
fit from using the RelaxedStacked algorithm. Kiama already supports circular
attributes by implementing one of the basic algorithms described by Magnusson
et al. [MH07c].

Logic programming, especially in Datalog, is the basis for other declarative
approaches to program analysis. Datalog-based analysis frameworks include
Doop [BS09], which supports points-to analysis of Java bytecode, and the
commercial .QL system [DM+07]. These generally follow a two-phase process
that first extracts program facts into a database and then evaluates logical rules
until it reaches a fixed point, though Dura et al. describe how both phases can be
integrated into a single declarative framework [DRS21]. While these approaches
are often limited to boolean lattices, Madsen et al. [MYL16a] demonstrate a
Datalog variant with support for general complete finite-height lattices. Unlike
our work, Datalog frameworks generally use exhaustive evaluation, though
some Datalog-based tools use on-demand evaluation strategies based on logical
rule rewriting to use so-called Magic Sets [Ban+85], or hybrid strategies, as
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in the Clog framework [DR24], which combines exhaustive evaluation with
on-demand queries to a compiler frontend.

Stein et al. present a general approach to demand-driven abstract interpreta-
tion over a pre-computed CFG, with cyclic computations over infinite-height do-
mains [SCS21], though their experimental results are limited to synthetic work-
loads. Other demand-driven approaches range from frameworks for distributive
interprocedural dataflow analysis [DGS95; HRS95] to points-to analysis for full
languages like Java [Sri+05; Spä+16]. It is an area of future work to investigate
how the RAG approach can be applied to similar problems.

7 Conclusion
We have presented a new formulation of demand-driven evaluation of Refer-
ence Attribute Grammars with circular (fixed-point evaluated) attributes. Our
approach integrates three attribute kinds, Circular, Agnostic, and NonCir-
cular, in our new RelaxedStacked algorithm, improving upon previous algo-
rithms that only supported combining Circular with either NonCircular or
Agnostic attributes.

Our experiments show that effective use of NonCircular attributes is cru-
cial to efficient evaluation. Since manually selecting NonCircular attributes is
challenging and error-prone, we perform a call graph analysis on the RAG to
automatically identify NonCircular attributes, ensuring correctness and effi-
ciency.

We have evaluated the new algorithm on LL(1) parser construction, on
a Java compiler, and on two intraprocedural dataflow analyses for Java. In
the parser case study, RelaxedStacked matched the performance of Basic-
Stacked and was 2.8x faster than RelaxedMonolithic. For the Java compiler,
RelaxedStacked matched the performance of RelaxedMonolithic, which
was expected since this application contains few circular attributes. For the
dataflow analyses, we observed substantial speedups for RelaxedStacked
over RelaxedMonolithic: a 1.8x median improvement in startup and 2.5x in
steady-state for dead assignment analysis, and 15.3x and 22x, respectively, for
null-pointer dereference analysis. We also conducted experiments by sampling
results from the benchmark programs, demonstrating that our algorithm works
efficiently even when only a subset of the program’s results are demanded.
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Figure 10: Attributes a, b, c and e are incorrectly specified as NonCircular.

Appendices

A Safe Evaluation of Incorrectly Specified RAGs
This appendix details how a runtime error is raised if an Agnostic or NonCir-
cular attribute is incorrectly specified.

Safe Evaluation of Incorrectly Specified NonCircular Attributes

It is important that the algorithms are safe in that they do not compute the wrong
result even if the developer incorrectly declares an attribute as NonCircular,
while for some AST, it turns out to be effectively circular. Rather, a runtime error
should be raised in this case. In our algorithm, a NonCircular attribute on a
cycle will lead to endless recursion, and therefore raise a stack overflow error. As
an alternative solution, it would be straightforward to extend the algorithm to
use one additional flag per NonCircular attribute instance to track and report
such circular dependencies. (The code for this solution is elided for brevity.)

To see that the algorithm is safe in this respect, we can consider two cases, as
shown in Figure 10. In the left example, all the attributes a, b, c, are (incorrectly)
declared as NonCircular, although they are on a cycle. Suppose that evaluation
starts by calling a. All the attributes will take the NORMAL branch in the algorithm,
and just continue calling each other in an endless recursion, eventually leading
to stack overflow.

In the example to the right, the attribute e is (incorrectly) declared as Non-
Circular and the others (correctly) as Circular. Suppose that evaluation starts
in one of the Circular attributes, say d. It will become a driver, start a fixed-
point evaluation, and start an iteration with a unique id, say 1. This id is saved in
its d_iter instance variable. When the evaluation reaches e, it takes the BRIDGE
branch, and stacks the current circular evaluation. The evaluation then reaches f
which will become the driver of a new fixed-point evaluation, with a new unique
iteration id, say 2. When the evaluation reaches d again, it will become a fol-
lower since circular evaluation is ongoing. It will call its compute method since
its stored iteration id (1) differs from the current one (2). When the evaluation
again reaches e, it again takes the BRIDGE branch, and stacks the current evalua-
tion. The evaluation continues this way, stacking cyclic evaluation for every visit
to the f attribute, leading to endless recursion and eventually stack overflow.

If the evaluation instead starts in the NonCircular e, it will first take the
NORMAL branch, but at the next visit, it will take the BRIDGE branch, and lead to
the same kind of endless recursion.
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Figure 11: Attributes a, b, d and e are incorrectly specified as Agnostic.

Safe Evaluation of Incorrectly Specified Agnostic Attributes

If an Agnostic attribute is on a cycle without any Circular attribute, the al-
gorithm must be safe in that it does not return an incorrect value, but instead
raises a runtime error. As for the NonCircular attributes, we will use endless
recursion, i.e., stack overflow, to identify such an error. (As for NonCircular
attributes, an alternative solution using a boolean flag could be used, but elided
here for brevity.)

To see that the algorithm is safe in this respect, we consider two cases, as
shown in Figure 11. In the left example, an incorrectly specified Agnostic at-
tribute a is called from outside any cyclic evaluation. It thus enters the NORMAL
code, and calls b, which also enters its NORMAL code. Then b calls a which again
enters the NORMAL code. We see that this leads to endless recursion and eventually
stack overflow.

In the right example, an incorrectly specified Agnostic attribute d is called
from inside a cyclic evaluation. Here, the evaluation starts with the Circular at-
tribute cwhich becomes the driver. When d is reached, it will execute the FOLLOWS
code, and call e. The e attribute is also Agnostic, and also executes the FOLLOWS
code, and calls d again. Since the value of attr_iter for d is unchanged, and thus
still different from CIRCLE_ITER, the d attribute will again execute the FOLLOWS
code, and we have endless recursion, eventually leading to stack overflow. It is
important that the attr_iter is not set until after the call to compute to get this
behavior (relating to Note 4 in Section 3.6).

B Case Study: ExtendJ
ExtendJ [EH07b] is a Java compiler supporting Java 11, built using the meta-
compilation system JastAdd [HM03]. ExtendJ uses the RelaxedMonolithic
algorithm introduced by Öqvist [ÖH17; Öqv18]. It cannot be run with the Basic-
Stacked algorithm because it includes a number of attributes that are effectively
circular only on rare occasions, and that are not declared as Circular. It can
be run with our new RelaxedStacked algorithm, but we do not expect big per-
formance differences. The reason is that ExtendJ has relatively few circular at-
tributes, and these are typically downstream from the error checking and code
generation attributes that drive the attribute evaluation.

In Table 5 we present performance results for the ExtendJ compiler, show-
ing both startup and steady-state performance for both RelaxedMonolithic and
RelaxedStacked. As expected, the results for the two algorithms are very simi-
lar.
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Benchmark
Start up Steady State

Relaxed- Relaxed- Relaxed- Relaxed-
Monolithic Stacked Monolithic Stacked
Time (s) Time (s) Speedup Time (s) Time (s) Speedup

antlr 1.75±0.03 1.76±0.05 ≈ 0.42±0.00 0.42±0.00 ≈
pmd 4.03±0.07 4.03±0.08 ≈ 1.31±0.02 1.30±0.01 ≈
struts 5.32±0.16 5.14±0.16 ≈ 1.76±0.05 1.74±0.04 ≈
fop 4.99±0.19 4.96±0.15 ≈ 1.72±0.03 1.71±0.06 ≈
extendj 6.77±0.14 6.84±0.12 ≈ 3.92±0.10 3.90±0.04 ≈
castor 8.17±0.29 7.98±0.18 ≈ 3.31±0.09 3.20±0.03 ≈
weka 9.88±0.16 9.63±0.17 ≈ 4.77±0.34 4.63±0.09 ≈
poi 14.18±0.40 14.54±0.53 ≈ 8.00±0.10 7.86±0.06 ≈

Table 5: Performance of ExtendJ compilation of the benchmark, comparing
the RelaxedMonolithic and RelaxedStacked algorithms in startup and steady
state. Times in seconds. Speedup is the ratio between RelaxedStacked and
RelaxedMonolithic. Results are considered the same if the confidence intervals
overlap.
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English

Software plays a crucial role in ourmodernworld, driving everything from smart-
phones tomedical devices. However, as our dependency on software increases, so
do the risks associatedwith software bugs—errors in the code that can lead to seri-
ous consequences. As an example, imagine an architect designing a skyscraper in
a busy city. Every aspect of the building, from its foundation to the top floor, must
be flawless. A minor flaw in the structure, such as a miscalculation in the steel
framework, could compromise the entire building, leading to dangerous cracks or
even a catastrophic collapse. Similarly, software bugs are like hidden structural
weaknesses; they might go unnoticed during development, but if not detected
and corrected, they can lead to severe outcomes.

Well known examples of such bugs include the Mars Climate Orbiter crash in
1999, where a software error caused the spacecraft to disintegrate in the Martian
atmosphere, and the Therac-25 radiation therapymachine, which delivered lethal
doses of radiation to patients due to a software malfunction.

To reduce these risks, developers employ a technique known as static analy-
sis. Static analysis involves examining the code for potential errors without ac-
tually executing the program. While static analysis is a powerful tool, it can be
time-consuming. Typically, developers write their code and then run the static
analysis tool to identify issues. During this process, developers must wait for
feedback, which can interrupt their workflow and reduce overall productivity.
This is similar to inspecting a skyscraper’s structure only once a day; if flaws are
discovered, builders must backtrack, undo their work disrupting the construc-
tion process. Imagine if inspectors could continuously monitor the construction,
checking each new addition as it is made without any noticeable overhead. This
would allow them to catch and address issues in real time, preventing small prob-
lems from becoming major defects.

This thesis explores a new method to enhance the efficiency and precision
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Figure 1: The process of generating code using a declarative approach.

of static analysis, especially when integrated into Integrated Development Envi-
ronments (IDEs), by using a declarative approach.The goal is to deliver almost
instant feedback, enabling developers to correct issues as they write code, rather
than waiting hours for results.

Declarative Approach
Declarative programming, in contrast to imperative programming, is a paradigm
where developers focus on defining the desired outcomes or properties of the
code, rather than detailing the exact steps to achieve them. In other words, the
developer specifies what should be computed, not how it should be computed.

To further clarify, let us revisit the analogy of constructing a building. In
a traditional, imperative approach, you would provide detailed instructions for
each step of the construction process—laying the foundation, erecting the walls,
and installing the roof. In contrast, with a declarative approach, you would sim-
ply describe the finished building—its height, materials, and layout—and let a
specialized team figure out the most efficient way to build it according to those
specifications.

In software development, programming using a declarative approach typi-
cally involves writing code in a high-level language that abstracts away the im-
plementation details. Another program, known as a compiler, then takes this
high-level specification and generates the lower-level code that can be executed
by a computer. This separation allows developers to focus on the what—the logic
and goals of the program—while leaving the how to the underlying system. There
exists a variety of declarative programming languages and compilers. In ourwork
we used a formalism called Reference Attribute Grammars (RAGs). We imple-
mented our system using a tool called JastAdd, which is Java based compiler for
RAGs: given a high-level specification of a program, JastAdd generates the corre-
sponding Java code. The process of generating code using a declarative approach
is illustrated in Figure 1.

Programs developed using a declarative style are structured into smaller com-
ponents known as attributes. These attributes can be individually defined and
adjusted, simplifying the maintenance and extension of the overall program. In
our work, these attributes are combined to create a more complex system, specif-
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ically a static analyzer. The advantage of this approach is that it provides a clear
and modular structure, making it easier to understand and maintain the code.

Main Contributions

The main contributions of this thesis are centered around improving the effi-
ciency and responsiveness of static analysis tools using a declarative approach.

The first major contribution is the development of IntraCFG, a framework
designed to create control-flow graphs (CFGs). A control-flow graph is a pro-
gram representation that shows how the execution flows from one instruction to
another. A CFG can be viewed as a map of the program’s structure, illustrating
the possible paths the code can take during execution. These graphs are essential
for static analysis tools, as they help to reason about the program’s behavior and
identify potential issues. Figure 2 shows an example of a CFG for a simple Java
program.

Traditional methods for building these graphs can be slow and less precise
because they rely on intermediate representations like bytecode. In contrast, In-
traCFG builds these graphs directly from the program’s structure, known as the
Abstract Syntax Tree (AST).

Figure 2: Example of CFG on the pro-
gram’s source code for the Fibonacci
function. Colors are randomly assigned
to make it easier to distinguish individ-
ual arrows.

Building on this framework, we
created IntraJ, a tool specifically de-
signed to analyze Java code using the
IntraCFG framework. IntraJ was
tested against SonarQube, a widely-
used tool in the industry for static
analysis. The results showed that
IntraJ was significantly faster than
SonarQube while maintaining the
same level of accuracy. This means
that developers using IntraJ can get
quicker feedback on potential issues
in their code, allowing them to ad-
dress problems much sooner.

To further enhance the speed of
our analysis, we improved the at-
tribute evaluation algorithms used for
RAGs with a new algorithm for at-
tribute evaluation called Relaxed-
Stacked. Some attribute values in a
program can depend, directly or indi-
rectly, on their own value. If not handled properly, this can lead to repeated cal-
culations that slow down the analysis process. RelaxedStacked identifies which
attributes are not recursive (does not depend on itself) by analysing the code gen-



182 PopSci Summary

erated by JastAdd. Once these attributes are identified, the algorithm will gen-
erate new code that avoids unnecessary recomputation, by storing the results of
the value of each non-recursive attribute immediately. We applied this new algo-
rithm to IntraJ, and the results showed a significant improvement in the analysis
speed, making it almost instantaneous (less than 0.1 seconds for analysing a sin-
gle file).

In conclusion, this research addresses the need for faster and more integrated
tools to ensure the quality and safety of software. By making static analysis more
responsive, it not only helps developers write better code but it also reduces costs
and risks associated with software bugs.


