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Abstract

Within process industry, and in many other areas, the PID controller is
responsible for handling regulatory control. An educated guess is that
the number of executing PID control loops lies in the billions (2011)
and there are no signs indicating a decrease of this number.
Properly tuning the PID controller, i.e., setting its parameter values

based on characteristics of the process it controls together with robust-
ness criteria, is commonly both timely and costly. Hence, the tuning is
often overseen, resulting in numerous poorly tuned loops. These result
in unnecessary lack of performance, which might be both hazardous
and uneconomic.
If a linear time invariant model of the process is given, there exists

numerous feasible tuning methods. However, automatically obtaining
even a low complexity model is far from trivial in the absence of a
priori process information.
This thesis addresses system identification to be used in the auto-

matic PID tuning procedure. A method for generating the identification
input signal is proposed. Its objective is to yield higher model accuracy
in the frequency range where it is most needed for robust tuning.
Subsequently, methods for obtaining process models from input and

output data pairs are proposed and discussed. All methods are pre-
sented using numerous simulations and laboratory experiments.
Finally, a simulation study of closed-loop anesthesia in human pa-

tients, based on clinically obtained model parameters, is presented.
The novelty lies in that the depth of hypnosis PID controller is indi-
vidualized based on data collected during the induction phase of anes-
thesia. It is demonstrated that updating the controller, using a herein
proposed method, significantly improves performance.
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1

Introduction

1.1 Background

An Overview
The main topic of this thesis is the automation of the PID tuning
procedure. In its simplest form, this comes down to determining the
parameter set {K ,Ti,Td} of the PID control law

u(t) = K

(

e(t) +
1
Ti

∫ t

0
e(τ )dτ + Td

d

dt
e(t)

)

, (1.1)

relating the control signal u to the current and past control error e.
Due to practical considerations regarding for example periodic execu-
tion, measurement noise and actuator limits, the control law (1.1) is
subject to modifications prior to implementation in a digital computer.
These modifications are discussed extensively in e.g. [Åström and Wit-
tenmark, 1996]. In practice, the choice of controller parameters is often
based on human insight and prior experience. A more systematic ap-
proach to controller tuning bases the parameter choice on:

1. A model of the process to be controlled.

2. Performance specifications on the controlled system.

A process model is any set of characteristics describing the process.
Here we will only consider single input single output (SISO) processes.
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Chapter 1. Introduction

In the context of (PID) controller tuning it is common and convenient
to approximate the process dynamics with a linear time invariant (LTI)
model, possibly with a time delay between the input and output. Most
processes suited for PID control can be adequately modeled by a low
order, well-damped, LTI system around the reference operating point.
Focus will therefore lie on first order time delayed (FOTD):

G1(s) =
K

sT + 1
e−sL (1.2)

and second order time delayed (SOTD):

G2(s) =
b1s+ b2

s2 + a1s+ a2
e−sL (1.3)

systems.
Performance specifications may vary depending on application and

generally constitute a trade-off between conflicting interests such as
fast disturbance attenuation and robustness towards model uncertain-
ties. Once a model is obtained, there exist numerous methods to deter-
mine the controller parameters. The most famous of these are arguably
those due to Ziegler and Nichols [Ziegler and Nichols, 1942]. Over the
years, numerous additional tuning regimens, such as [Hägglund and
Åström, 2002], [Garpinger and Hägglund, 2008] and [Skogestad, 2003]
have been introduced.
This work focuses on obtaining a process model, rather than how

to use one to determine a controller tuning to match the performance
specifications. The purpose is to identify parameters of a model with
the structure of (1.2) or (1.3), based on an input signal u(t) and the cor-
responding system output y(t). Such an identification procedure nor-
mally consists of separate experiment design and parameter identifi-
cation stages. During the experiment design stage, the input u(t) is
synthesized. It is important that u excites the dynamics of the process
and hence establishes an appropriate signal to noise ratio in the fre-
quency range of interest. Typically this frequency range lies around
the bandwidth of the open loop system. Once an input has been deter-
mined and applied to the system and the corresponding output y has
been recorded, the pair {u, y} is used to determine the parameters of
the process model.

10



1.1 Background

The traditional approach to system identification often involves iter-
ating over the experiment design and parameter identification stages.
This generally involves human interaction and a skilled engineer can
contribute significantly towards efficiently obtaining a good model.
In the context of automated PID tuning, it is desired to automate

both the identification and tuning procedure, enabling a cheap and
time-wise efficient execution, which can be directly applied at the site
where the control loop is located. This puts new demands on the iden-
tification procedure:

• The procedure should work on processes with varying time scales
and dynamics.

• Little, or no, a priori information is known at the start of the
automatic procedure.

• Experiment duration need to be kept short.

Most processes in the regulatory control layer [Skogestad, 2004] of a
process industrial plant, which is where the PID controllers are found,
are stable and a majority exhibit monotonous step responses. Set-point
changes are generally rare and the main role of the PID controller is
therefore that of disturbance rejection around a given set-point.
In this process industrial setting it is realistic to assume that the

process to be identified is stable, has a monotonous step response and
can be adequately modeled within the structure of (1.2) or (1.3). In
addition to this, the proposed method will handle integrating processes,
which are found in several process industrial applications.

The Relay Auto-Tuning Experiment
The perhaps most well-known automatic PID tuning procedure is the
relay feedback experiment [Åström and Hägglund, 1984]. The aim of
the experiment is to tune a PID controller C to regulate the unknown
dynamics of a process P. A schematic sketch of the relay auto-tuner is
shown in Fig. 1.1. It is assumed that y= 0 corresponds to a dynamical
equilibrium, constituting the operating point of the system. (For an
operating point corresponding to y "= 0, an affine scaling of u and y
must first be performed.)
In tuning mode, the feedback path is closed over the relay, rather

than C. For a large family of processes, this causes a stable oscillation.
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Chapter 1. Introduction

u y
P

C

−1

Figure 1.1 Schematic sketch of the relay auto-tuner.

The stable FOTD case is completely described in [Lin et al., 2004].
Experience has shown that stable, well-damped, monotonous step re-
sponse processes generally result in well-behaved oscillations under
relay feedback. However, there also exist cases where the relay oscilla-
tions exhibit esoteric properties [Johansson et al., 2002].
The relay output amplitude d needs to be chosen such that the

closed-loop oscillations have a high enough amplitude to be distin-
guishable from noise in y, while not deviating unnecessarily far from
the operating point of P.
An approximation of the oscillation frequency and amplitude are

available through describing function analysis. The describing function
of the relay nonlinearity is given by

N(a) =
4d
aπ
, (1.4)

where a is the input amplitude. Hence, its negative reciprocal inter-
sects the Nyquist curve of C along the negative real axis.
In order to tolerate noise in y, a symmetric hysteresis ±h is nor-

mally introduced in the relay. This changes the describing function into
fulfilling

−
1
N(a)

= −
π a

4d

⎛

⎝

√

1−
(
h

a

)2

+ i
h

a

⎞

⎠ . (1.5)

It is hence a vertically shifted (and scaled) version of (1.4), as shown
in Fig. 1.2.

12



1.1 Background

πh
4d

Figure 1.2 Point on the process Nyquist curve obtained by relay feedback
experiment with relay hysteresis h.

In the traditional relay tuner, a direct method is used. The angular
frequency ω 180 of the oscillation base harmonic and the corresponding
amplitude a are used to determine the parameters of C through

[K ,Ti,Td] = f (ω 180, a), (1.6)

for some function f . This is opposed to indirect methods, where ω 180
and a would first be used to identify parameters of a process model P̂,
which, in terms, are used to determine {K ,Ti,Td}.
The relay auto-tuner has successfully been implemented in sev-

eral commercially available devices, e.g. from ABB and Fisher Controls
(bought by Emerson).
Since the relay feedback experiment only identifies one point on

the process Nyquist curve, there is an inherent ambiguity associated
with the method. For example, the two Nyquist curves in Fig. 1.3 rep-
resent significantly different dynamics and it is likely that one would
choose different tunings of C for each of them. However, they both
correspond to processes with the same critical gain, and so the relay
feedback experiment would result in the same tuning for both dynam-
ics. Because of this, extensions have been made to the classic relay
auto-tuner. For instance, repeated experiments with varied relay hys-
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Chapter 1. Introduction

Figure 1.3 Nyquist curves of two process models with differing dynamics, but
the same critical gain.

teresis can be used to identify several points on the Nyquist curve of P.
A natural problem in this setting is which hysteresis values should be
used. Fig. 1.4 demonstrates this problem; the three hysteresis values
chosen make sense in one of the cases (solid Nyquist curve), but not
for the other (dashed Nyquist curve).
In [Friman and Waller, 1997], the relay is exchanged for a nonlin-

earity which allows identification of a point corresponding to a pre-
determined third quadrant phase angle of P. This is more appeal-
ing than changing the relay hysteresis, since it identifies significant
points on the Nyquist curve regardless of P, as illustrated by Fig. 1.5.
However, it still requires repeated experiments, during all of which a
stable oscillation need to be reached.

1.2 Motivation

PID in Process Industry
PID control is an old and widely used technology. The PI controller
dates back to the era of steam engines. It has survived two paradigm

14



1.2 Motivation

Figure 1.4 Repeated experiments with varied relay hysteresis. The chosen
hysteresis values are adequate for the solid Nyquist curve, but not for the
dashed one.

shifts; from mechanical to analog, then to digital implementation. Over
the years, more advanced control schemes have been introduced, but
the PID conroller is still the dominating choice in a multitude of ap-
plications. Several such applications are found in the regulatory layer
of process industrial plants. From a control engineering perspective, a
process industrial plant can be hierarchically organized according to
Fig. 1.6 [Skogestad, 2004]. The top layers are controlled over longer
time spans (weeks, days) and the decisions within them are more
strategic than operational. The ’processes’ within these layers are gen-
erally too complex to be handled by a PID controller. It is instead at
the supervisory and regulatory control layers that the PID controllers
are found.
A typical process industrial plant can contain thousands of PID

loops. Their purpose is often to regulate a process with relatively sim-
ple input–output dynamics Gu,y, so that the closed-loop system from
reference to output can be regarded as Gr,y(s) # 1 by the next higher
level in the hierarchy. Typical examples include level control in buffer
tanks, temperature control in vessels and flow control in pipes. Set-
point changes are rear, and the objective of the control is therefore
commonly that of disturbance rejection.

15



Chapter 1. Introduction

Figure 1.5 Repeated experiments identifying points on the Nyquist curve at
given phase angles of −90○, −135○ and −180○.

Today approximately 95% of regulatory control loops in process in-
dustry utilize PI(D) control [Åström, 2002]. Most of these use PI con-
trollers. In some cases, the phase lead associated with derivative action
could increase performance significantly [Panagopoulos, 2000]. A plau-
sible explanation to why derivative action is not used in these cases is
that it makes it somewhat more demanding to arrive at an adequate
controller tuning.
Despite the fact that PID control is an old and mature technology,

several process industrial field reports indicate surprisingly low per-
formance. The following results for PID control loop performance are
adopted from [Ender, 1993]:

• > 30% operate in manual mode

• > 30% increase output variability

• # 25% use factory default parameters

A similar, but smaller, study [Bialkowski, 1993] gives the following
numbers for PID control loops within process industry:

• 80% increase output variability

• 30% cycle due to poor tuning

16



1.2 Motivation

Scheduling (weeks)

Site-wide optimization (day)

Local optimization (hour)

Supervisory control (minutes)

Regulatory control (seconds)

Control
layer

Figure 1.6 Functional hierarchy of a process industrial plant.

Both surveys show that a significant fraction of PID loops in process
industry have higher output variability in closed-loop operation, than
in manual mode. The perhaps predominant reason for this situation is
the time and money associated with adequately tuning a PID control
loop. A survey by Honeywell, [Desborough and Miller, 2002], estimated
the work cost alone to be USD 250 – 1000, per control loop. The above
mentioned tuning situation combined with the relatively high cost of
tuning a control loop motivates looking into fully automated tuning
procedures, requiring no, or little, human interaction.

PID in Closed-Loop Anesthesia
Clinical anesthesia can be divided into three components, as shown in
Fig. 1.7. The role of hypnosis is to prevent unintended intra-operative

17



Chapter 1. Introduction

Analgesia Neuro-muscular
Blockade

Hypnosis

Anesthesia

Figure 1.7 Functional components of anesthesia.

awareness. In addition to this, it is essential to preserve a stable sup-
pression of noxious stimulation of the circulatory and hormonal sys-
tems. This is the role of analgesia. Finally, in some cases local mus-
cle relaxation is needed in order to successfully perform the surgery.
Anesthetic drugs are categorized according to their effect; hypnotic,
analgesic and neuro-muscular blocking agents [Bibian et al., 2005].
The dose-effect dynamics of these agents are not independent. Espe-
cially, there exist a synergetic coupling between certain hypnotic and
analgesic agents [Kern et al., 2004], [Ferreira et al., 2006].
During general surgery anesthesia is traditionally provided by an

anesthesist, who manually doses the drugs guided by online measur-
able signals (such as heart rate, blood pressure and blood plasma oxy-
gen saturation) and signs (e.g. response to various stimuli and sponta-
neous patient movement). The anesthesist hence acts as a fairly com-
plex feedback controller. In addition, it is common to proactively dose
anesthetic agents prior to foreseeable events such as increased surgi-
cal stimulation. There is hence also a feed forward path to the control
signal.
With the availability of pharmacokinetic models, dynamically re-

lating drug dose to effect site concentration, and pharmacodynamic
models, relating effect site concentration to clinical effect, it is possi-
ble to predict the time evolution of the clinical effect, given the drug

18



1.2 Motivation

infusion rate. An overview is found in [Bibian, 2006]. In order to limit
model error the parameters of most pharmacokinetic (and some phar-
macodynamic) models are related to demographic covariates such as
body mass, length, sex and age. The predictability of dose–response has
been developed into commercially available dosing regimens known as
target controlled infusion, TCI [Glen, 1998]. In TCI the predicted effect
is used to alter the current infusion rate. As any open loop strategy,
TCI is sensitive to model error and disturbances. The anesthesist is
still needed to counteract disturbances, which are mainly caused by
the surgery, and to resolve any complications which lie outside the
scope of the control system.
A natural extension of TCI would be to close a feedback loop from

measured clinical effect. This would decrease sensitivity towards model
error and disturbances. In this work attention is directed to controlling
the depth of hypnosis (DOH), using propofol as the hypnotic agent.
Surgical stimulation, typically lowering DOH, can be regarded as an
output disturbance. Other system disturbances are measurement noise
and load disturbances caused by the interaction with other anesthetic
agents.
A principal challenge in controlling DOH lies in the availability of

an adequate clinical measurement. Such a signal should at least be
continuously available and monotonically increasing with the clinical
effect. Although several signals (such as blood plasma oxygen satura-
tion and respiratory rate) are correlated with DOH, it was not until the
advent of measurements based on spectrum analysis methods applied
to brain waves (EEC), that a calibrated signal with sufficiently high
signal to noise ratio was available. There exist several commercial mon-
itors for EEC based DOH measurement, including the bispectral index
(BIS) [Liu et al., 1997], entropy [Viertö-Oja et al., 2004] and a wavelet
based [Zikov et al., 2006] monitor. The wavelet based monitor, Neu-
roSense NS-701 by NeuroWave, Cleveland, USA, has the advantage
that its dynamics are well-approximated by a linear time invariant
system, with transfer function coefficients published by its inventor.
Clinical studies in which DOH was controlled using propofol as

anesthetic agent, an EEC based measurement signal and a PID con-
troller have been conducted in the past [Absalom et al., 2002], [Liu
et al., 2005]. The author is involved in a project where this setting
is clinically evaluated within pediatrics at the British Columbia Chil-
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dren’s Hospital, Vancouver, Canada, where an initial pilot study in-
volving 20 patients was successfully completed in September 2011.
The inter-patient variability in sensitivity to propofol is not fully

captured by the demographic covariate-based pharmacokinetic and phar-
macodynamic models [Schüttler and Ihmsen, 2000]. It would therefore
be desirable to individualize controller tuning beyond what the pub-
lished models enable. One possible way to do this would be to 1) record
the DOH measurement during the transition from awake to an ade-
quately sedated state together with the corresponding propofol infusion
profile and 2) base the PID controller tuning on this response. In this
approach, it is natural to address several concepts from the automatic
PID tuning framework.

20



2

Synopsis

2.1 Contributions

The work in this licentiate thesis is based on three publications. They
are listed below, together with an explanation of their contribution to
the thesis and the role of the author in the work behind each publica-
tion.

Paper I
Soltesz, K. and T. Hägglund (2011): “Extending the relay feedback
experiment.” In Proc. IFAC World Congress. Milan, Italy.

The paper addresses the problem of devising an adequate system iden-
tification input signal, to be used in a PID auto-tuning scheme. The
proposed method is an extension of the classic relay feedback experi-
ment. It utilizes feedback over nonlinearities to excite the process dy-
namics around given phase angles. In a second stage, the signal is
extended in an iterative fashion, to form a desired input power spec-
trum for a given phase range of the process dynamics. The feasibility
of the method is demonstrated through a batch of simulations and one
experiment using a physical process.
K. Soltesz developed the method and evaluated it in simulations and

a laboratory experiment. T. Hägglund assisted in method development
and with structuring the manuscript.
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Chapter 2. Synopsis

Paper II
Soltesz, K., K. J. Åström, and T. Hägglund (2010): “Transfer function
parameter identification by modified relay feedback.” In Proc.
American Control Conference. Baltimore, USA.

Paper I dealt with experiment design for the PID auto-tuner. In this
paper, a method for obtaining FOTD, and possibly SOTD, models from
the sampled input–output pairs from the experiment, is presented. It
is based on computing sensitivity derivatives of the output error, with
respect to the parameters to be identified. A Newton-Raphson type
search is subsequently used to find a parameter set (locally) minimiz-
ing the output error. The method is demonstrated through simulation
on a batch of process models, which are representative for process in-
dustry applications.
K. Soltesz developed the method and conducted the simulations ex-

periments. K. J. Åström provided the original idea behind the work.
T. Hägglund helped in developing the method and assisted with struc-
turing and editing the manuscript.

Paper III
Soltesz, K., J.-O. Hahn, G. A. Dumont, and J. M. Ansermino (2011):
“Individualized PID control of depth of anesthesia based on patient
model identification during the induction phase of anesthesia.” In
Proc. IEEE Conference on Decision and Control and European
Control Conference. Orlando, USA.

Paper I and Paper II dealt with automatically obtaining low order
process models for PID tuning, in situations where little a priori in-
formation is available. This paper targets a medical application where
PID control and automatic tuning of the PID controller are useful. By
measuring brain wave (EEC) activity of a patient under anesthesia,
it is possible to estimate the anesthetic state. Based on this online
measurement and a dynamical model of the patient, the anesthetic
drug can then be administered in a closed-loop fashion. This paper
investigates the possibility of individualizing (i.e., re-tuning) a drug
delivery PID controller given the initial patient response. The method
of Paper II is used to refine a process model estimate, based on which
an individualized controller is tuned. A pilot version of the method is
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2.1 Contributions

demonstrated in simulation. In order to extend this version to a clin-
ically adequate scheme further work is needed. Especially, robustness
towards measurement noise and sufficient input excitation need to be
ensured.
Currently, the authors (except J.-O. Hahn) are involved in a project

where PID controlled closed-loop anesthesia is clinically evaluated. The
controller is not yet individualized beyond what is possible with demo-
graphic covariates.
K. Soltesz did the simulations experiment. J.-O. Hahn provided

the adequate background and assisted in structuring and editing the
manuscript. G. A. Dumont coordinated the work and accommodated
the original idea. J. M. Ansermino gave feedback on clinically related
aspects.

Other Publications
Apart from the publications within this thesis, the author has authored
or co-authored the following publications, within the scope of PhD stud-
ies.

Linderoth, M., K. Soltesz, A. Robertsson, and R. Johansson (2011):
“Initialization of the Kalman filter without assumptions on the
initial state.” In IEEE International Conference on Robotics and
Automation (ICRA). Shanghai, China.

Soltesz, K., J.-O. Hahn, T. Hägglund, G. A. Dumont, and J. M. Anser-
mino (2011a): “Individualized closed-loop control of propofol anes-
thesia: A preliminary study.” Transactions on Biomedical Engineer-
ing, IEEE, September. Submitted.

Soltesz, K., C. Johnsson, and T. Hägglund (2011b): “Teaching control
principles to industry practitioners.” In Proc. SEFI Annual Confer-
ence. Lisbon, Portugal.
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Paper I

Extending the Relay Feedback
Experiment

Kristian Soltesz Tore Hägglund

Abstract

An augmented version of the traditional relay feedback exper-
iment is proposed. It aims at producing an input with energy con-
centrated to a frequency band, corresponding to a certain phase
sector of the Nyquist curve of the process to be identified. A non-
convex problem is formulated. Sub-optimal, but efficient, algo-
rithms are developed.

c%2011 IFAC. Reprinted, with permission, from Proceedings of the 18th

IFAC World Congress. Milan, Italy, 2011. The article has been modified
to fit the current format. Discovered typographical errors have been
corrected in this reprint.
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Paper I. Extending the Relay Feedback Experiment

1. Introduction

1.1 The Role of the Input Spectrum
When performing frequency domain system identification, it is well-
known that higher spectral content (magnitude) of a certain frequency
in the input generally yields better model accuracy of the obtained
model around that frequency. To motivate this, consider estimation of
LTI parameters θ = [b a L]T (a ∈ Rn, b ∈ Rn, L ∈ R+) of the strictly
proper continuous time transfer function process model

P(s) =
B(s)

A(s)
e−Ls =

∑n
j=1 bjs

n− j

sn +
∑n
i=1 ais

n−i
e−Ls, (1)

from sampled input and output data u(kh), y(kh), k = 0, . . . ,N − 1,
where h is the sampling period. One identification method, presented
in [Soltesz et al., 2010], is the minimization of the squared output error

J(θ̂ ) =
1
2

∫ t f

t0

(ŷ(t)− y(t))2dt, (2)

where y is the output of P generated by u while ŷ is the corresponding
output of the model P̂. The sampled equivalent of (2) is given by

Jh(θ̂ ) =
1
2

N−1
∑

j=0

(ŷ(kh)− y(kh))2. (3)

By Parseval’s theorem, applied to the DFT of ŷ− y, (3) is equivalent to

Jh(θ̂ ) =
1
2

N−1
∑

j=0

'∆P(ω j)'
2'U (ω j)'

2, (4)

where ∆P(ω ) = P̂(iω ) − P(iω ), U is the N-point DFT of u and ω j =
2π
Nh j.
From (4) it can be readily seen that the cost component associated

with a certain frequency is proportional to the input power of that
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Input
generation

System
identification

Robust PID
tuning

Figure 1. PID auto-tuning tool chain.
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P

I

D

−1

Figure 2. Nyquist curve interpretation of robust PID tuning.

frequency. It is therefore natural to ask what input spectrum should
be chosen and how to synthesize the corresponding signal in the time
domain. This paper addresses these questions in the context of system
identification for PID tuning.

1.2 Input Spectrum for PID Tuning
The herein described input signal generation is intended to be the first
link in a PID auto-tuning tool chain, outlined in Fig. 1.
Fig. 2 shows the Nyquist curve of a low pass, time delayed, process

typical to process industry. The tuning of a PID controller can be inter-
preted as moving points of the process Nyquist curve by means of the
P, I and D parts, according to the labeled arrows in Fig. 2, cf. [Åström
and Hägglund, 2006].
Conventional methods for robust PID tuning, such as [Hägglund

and Åström, 2002] and [Garpinger and Hägglund, 2008], ensure ro-
bustness by keeping the open loop transfer function outside a region
surrounding −1. Avoiding the interior of the circles in Fig. 2 ensures
sensitivity ''S''∞ < Ms and complementary sensitivity ''T ''∞ < Mt.
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Both the I and D parts introduce 90○ phase shifts (in opposite di-
rections). Hence it is desirable to have accurate models in different
frequency regions, depending on which subclass of PID controller is
synthesized. E.g., the model should be accurate around the negative
real axis for P controllers, in the third quadrant for PI controllers and
in the union of the second and third quadrant for PID controllers.
In this paper we will focus on the PI case, which is the industrially

most common. The method can, however, be used for any combination
of P, I and D. Hence, we seek an identification input with energy con-
tent concentrated to frequencies corresponding to the phase interval
(−180○,−90○) of the process to be identified.

1.3 The Use of Relay Feedback
In [Åström et al., 1995], it is concluded that stable, well damped LTI
systems generally result in stable limit cycle oscillations, under relay
feedback. A complete analysis for FOTD (first order plus time delay)
systems is given in [Lin et al., 2004]. According to describing function
analysis, the fundamental harmonic of the oscillation occurs at the fre-
quency ω 180, corresponding to the phase ϕ = −180○ of the LTI system.
This motivated the original relay feedback tuning method, [Åström and
Hägglund, 1984]. Fig. 2.3(a) shows the experimental setup, with pro-
cess P and nonlinearity N.L. Fig. 2.3(b) shows the input signal ua,180,
corresponding to 6 switches of the relay, with

P(s) =
1

(s+ 1)(s+ 2)
e−s. (5)

The corresponding power spectrum, plotted against the phase frequen-
cies of (5) is shown in Fig. 2.3(c). The vertical lines mark the frequen-
cies corresponding to ϕ = −180○ and ϕ = −90○.
As expected, energy is concentrated around ϕ = −180○, rather than

distributed over (−180○,−90○), which would be desirable.
By introducing an integrator in the loop, the oscillation frequency

is shifted to ϕ = −90○, ω 90. Fig. 1 shows a nonlinearity described in
[Friman and Waller, 1997], with describing function

N(a) =
4hp
π a

−
4hi
π a
i, (6)
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replacements N.L. P

(a) Experimental setup.

0 15.9

0

(b) Input signal ua,180 over time [s].

0
0-90-180-360

(c) Input power spectrum 'Ua,180'
2 over process

phase ϕ [○].

Figure 3. Traditional relay experiment and corresponding input power spec-
trum.

corresponding to limit cycle oscillations at

ϕ = arctan
(
hi
hp

)

. (7)

It may be used to shift the energy peak, but does not address the issue
of energy distribution over a frequency interval.

Figure 4. Two channel relay (Simulink implementation).
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2. Problem formulation and Approach

We will now present the input design problem and investigate some
approaches. The notation, used throughout the remainder of the paper,
is introduced below.

2.1 Notation
Denote by U ∆

= Fu the DFT of u and by Uj, j ∈ [0, . . . ,N − 1] its jth

component. The DFT matrix F is defined through

Fk,l = ω kl, ω = e
−2π i
N . (8)

Let
ω j =

2π
Nh
j, aj = 'Uj ', Pj = 'Uj'2, φ j = ∠Uj (9)

be the corresponding angular frequency, amplitude, power and phase
respectively.
The sample operator associated with sample period h is

Xh(t) =
∞
∑

k=−∞

δ (t− kh). (10)

2.2 Two Stage Experiment
The aim is to obtain a power spectrum similar to that of Fig. 5 by
extending the experiment of Fig. 2.3(a), while keeping experiment du-
ration short and input power low.
A first step in this direction is obtained by conducting a two stage

experiment, using the two channel relay. Stage one, yielding ua,180,
shown in Fig. 2.3(b), consists in 6 switches with hp = 1, hi = 0
(ϕ = −180○). Stage two, yielding ua,90, consists in 4 switches with
hp = 0, hi = 1 (ϕ = −90○) and is shown together with ua,180 in
Fig. 2.6(a). The number of switches were empirically decided, based
on experiments with P, commonly occurring in process industry and
listed in [Hägglund and Åström, 2002]. In order to find the peak fre-
quencies, the two sequences are individually normalized with respect
to energy, forming

u′a =

[

ua,180

uTa,180ua,180

ua,90

uTa,90ua,90

]T

. (11)
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0
0-90-180-360

Figure 5. Reference input power spectrum Q over process phase ϕ [○].

0 15.9 31.8

0

(a) Input signal ua over time [s].

0
0-90-180-360

(b) Input power spectrum 'U ′a'
2 over process

phase ϕ [○].

Figure 6. Two stage relay experiment and corresponding (modified) input
power spectrum.

The power spectrum 'U ′a'
2 is shown in Fig. 2.6(b). Two distinct peaks

lie close to the frequencies corresponding to the desired phase angles.
Experiments show that this is generally true for FOTD and SOTD
(second order plus time delay) processes, which is indicated by results
presented later in the paper.

33



Paper I. Extending the Relay Feedback Experiment

The final stage consists in augmenting the experiment in order to
obtain a magnitude spectrum similar to that of Fig. 5.

2.3 General Signal Augmentation Problem
An initial experiment has provided a zero order hold input sequence
ua = [uTa,180 u

T
a,90]

T with sample period h and length Na, as shown in
Fig. 2.6(a). Using the power spectrum 'U ′A'

2, the desired power spec-
trum Q, shown in Fig. 5, can be determined and approached by aug-
menting ua with ub, forming

u =

[

ua

ub

]

. (12)

Assuming fixed length Nb of ub, we can formulate the synthesis prob-
lem

min
ub

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

Q − diag

⎛

⎝F

[

ua

ub

][

ua

ub

]T

F∗

⎞

⎠

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
R

︸ ︷︷ ︸

J(u)

, (13)

where R is some vector norm. It is also natural to impose

''ub''∞ ≤ ''ua''∞. (14)

The problem, given by (13) is generally not convex in ub, which can

be deduced from e.g. the setup Na = 0, Nb = 2,ub =
[

u1 u2

]T

, Q =
0 and R = 2 resulting in

min
u1,u2

√

2(u41 + 6u
2
1u
2
2 + u

4
2)+ minx1,x2

x21 + 6x1x2 + x
2
2, (15)

where the equivalence follows from the substitution x1 = u21, x2 = u
2
2.

The eigenvalues of the objective Hessian are given by

sp(H(x21 + 6x1x2 + x
2
2)) = sp

(

2

[

1 3
3 1

])

=

[

−4
8

]

. (16)

(The objective is not convex, since its Hessian is indefinite.)
Further, there does generally not exist ub, which bring the norm of

(13) to 0. For instance, if ua "= 0 and Q = 0, this would result in ub of
negative energy.
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2.4 Particular Problem
Here, without further motivation, the norm R of (13) was chosen to be
a weighted Euclidean norm. The weighting was chosen 1 for elements
j ∈ I corresponding to frequencies ω j between the two peaks of 'Ua,180'
and 'Ua,90' and 0 for all other elements. All elements of Q were chosen
as max j '(Ua) j ', corresponding to the flat energy spectrum in the third
quadrant, shown in Fig. 5. For notational convenience, the sequence
ub was chosen to be of the same length as ua, i.e., Na = Nb = N/2.

2.5 Optimization
We have not found any convexifications of (13), without introducing re-
laxations resulting in suboptimality. The proposed optimization strat-
egy consists in two iterative stages. During the first stage, the error
J(uk) is monotonically non-increasing in the iterations k. The second
stage lacks this property, but has shown good results in all experi-
ments. The solution is chosen as

u∗
k, k∗ = argmin

k
J(uk), (17)

and is obtained either from the last iteration of stage one or any (usu-
ally among the last) iteration of stage two.

Stage One Each iteration of the algorithm consists in sorting the
frequencies ω j , between the 'Ua,180' and 'Ua,90' peaks with respect to
corresponding magnitude error. Starting with the wj corresponding to
the largest error, a sinusoid ∆ub in phase with the existing wj com-
ponent in u is added to ub. The amplitude is chosen to minimize the
norm in (13). If the norm cannot be decreased by ϵ = 5%, ∆ub is dis-
carded, and the next ω j from the sorted list is assessed. If the norm
cannot be decreased by ϵ for any ω j , stage one is terminated. Else, a
new iteration is executed, now with u replaced by u+ [0 ⋅ uTa ∆uTb ]

T .
An algorithmic presentation is given in Algorithm 1. For notational

convenience, we introduce

∆u0,b = [0 ⋅ uTa ∆uTb ]
T (18)

and
Wb = θ(Na + 1)− θ(N), (19)
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Algorithm 1 Synthesis of ub, stage one.

repeat
flag = false
queue = sort j 'Qj − Pj '
for all j in queue do

∆u0,b = WbXh(t) cos(ω j t+ φ j)
a = argmin j J(u + a∆u0,b)
∆u0,b ∗ = a
if J(u + ∆u0,b)/J(u) < 1− ϵ then
u = u+ ∆u0,b
flag = true

else
flag = false
break

end if
end for

until not flag

where θ(k) is the Heaviside step at k.
The problem of minimizing J over a is given by

min
a

∑

j∈I

'Qj − 'Fj(u + a∆u0,b)'
2'2

︸ ︷︷ ︸

M1(a)

, (20)

where M1(⋅) is a forth order polynomial with known coefficient. Hence
the solution of (20) is given by

min
a∈A
M(a), A =

{

a;
dM1
da
= 0

}

. (21)

Fig. 2.7(a) shows the result, when the algorithm is applied to u from
Fig. 2.6(a). The corresponding power spectrum is shown in Fig. 2.7(b).

Stage Two This stage is similar to stage one, but rather than min-
imizing the error norm, the magnitude error at ω j is brought to 0 in
each iteration. Due to spectral leakage, however, the magnitude errors
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0 15.9 31.8 63.5

0

(a) Input u over time [s].

0
0-90-180-360

(b) Power spectrum 'U '2 over process phase ϕ [○].

Figure 7. Input signal and corresponding power spectrum after first optimiza-
tion stage.

at ω l "= j might simultaneously increase. An algorithmic presentation is
given in Algorithm 2.

Algorithm 2 Synthesis of ub, stage two.

repeat
j = argmin j 'Qj − Pj '
∆u0,b = WbXh(t) cos(ω j t+ φ j)
a = argmina 'Qj − 'Fj(u+ a∆u0,b)'2'
u = u+ a∆u0,b

until 'Qj − Pj ' < ϵ

The minimization step is similar to that of Stage one, with (20)
replaced by

min
a
'
√

Qj − 'Fj(u+ a∆u0,b)''
︸ ︷︷ ︸

M2(a)

, (22)

where M2(⋅) is a third order polynomial with known coefficients.
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0 15.9 31.8 63.5

0

(a) Input u over time [s].

0
0-90-180-360

(b) Power spectrum 'U '2 over process phaseϕ [○].

Figure 8. Input signal and corresponding power spectrum after second opti-
mization stage.

0 12 51

1
9e-2

5e-7

Figure 9. Normalized error J(uk)/J(u0) over optimization iterations k. Ver-
tical line marks boundary between stage one and two. Logarithmic scale.

Fig. 2.8(a) and 2.8(b) correspond to Fig. 2.7(a) and 2.7(b). The error
J(uk) over iterations k is shown in log scale in Fig. 9. The vertical line
indicates the boundary between stages one and two.
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2.6 Practical Considerations

Limiting Leakage In addition to parametrizing ub in sinusoids,
with phases chosen to be consistent with u, one might consider vari-
ous windows, to reduce spectral leakage. However, practical experience
has shown that windowing does not contribute significantly to the con-
vergence of the presented algorithms.
The amplitude constraint (14) can be incorporated in the algorithms

by limiting 'a' in each iteration, to a value where the constraints are
met. Naturally, this imposes suboptimality. The level of suboptimality
can be decreased by increasing the length of ub, Nb.
Depending on how the signal pair u, y will be used, one may or may

not care about the magnitude spectrum outside the reference window.
One way of avoiding spectral leakage from the optimization to form
peaks at the edges of the window is to begin each optimization iteration
by detecting the largest peak outside the window and add an out of
phase sinusoid, reducing it to a tolerable value. This method was used
when generating the results, presented below.

Noise and Relay Hysteresis It is not desirable to trigger subse-
quent relay switches at zero crossings, due to noise. A straight forward
method for avoiding this is the introduction of hysteresis, which can be
either in the signal magnitude or time domain. Here, signal magnitude
is advantageous, since the time scale is unknown a priori.

Adapting the Sample Period Since the experiment duration is un-
known a priori, the approach has been to introduce a buffer of fixed
length Na = 210. The system is then sampled with period h0 (as fast
as the hardware allows) until the buffer is filled. The sample period is
updated h1 = 2h0 and every second sample is overwritten, correspond-
ing to a down sampling of a factor 2. If the experiment is not completed
when the end of the buffer is reached anew, the procedure is repeated
with hk+1 = 2hk.

Meeting the Real-Time Constraint Since the optimization needs
to be conducted online, it starts executing at the second last switch of
ua in Fig. 2.6(a). Stage one is associated with a halting criterion, while
stage two executes until the last switch of ua. The time between the
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0
0-90-180-360

Figure 10. Power spectra 'U '2 over process phase ϕ [○] for a FOTD and SOTD
batch.

second last and last switch is assumed to be the same as that between
the third and second last.

3. Simulation Results

The algorithms described above have been evaluated on a large set of
FOTD and SOTD processes of the forms

P1(s) =
e−s

1+ sT1
, P2(s) =

e−s

(1+ sT1)(1+ sT2)
, (23)

with varying Tk, k = 1, 2 corresponding to normalized time delay in the
range 0.17 < τ < 0.98.
Fig. 10 shows the power spectra (cf. Fig. 2.8(b)) resulting from

applying the method to the batch. The spectra have been normalized
w.r.t. Q in (13), to facilitate visualization. Algorithm 2 was limited to
run kmax = 100 iterations.

4. Physical Example

Once the input has been applied to the system, the recorded input
and output data is used to fit a FOTD or SOTD model. This is done
in two stages. The first stage consists in obtaining initial parameters
and deciding model order, using a vector-fitting approach, under cur-
rent development. The second stage is a gradient based optimization,
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described in [Soltesz et al., 2010], minimizing

J(θ) =
1
2

∫ t f

t0

[y(t)− ŷθ (t)]
2dt, (24)

where y is the recorded output and ŷθ the output of a simulation using
a transfer function parametrized in θ .
Once the model is obtained, it is used as the basis for choosing

PID parameters. The method of choice is one by [Garpinger and Häg-
glund, 2008], where the integrated absolute error (IAE) from a load
step disturbance is minimized, subject to sensitivity, complementary
sensitivity and control signal variance constraints, as outlined in (25).
Cf. Fig. 2, where C is the transfer function of the PID controller.

min
K ,Ti,Td∈R+

∫ ∞

0
'e(t)'dt (25)

s.t.
'S(iω )' ≤ Ms, 'T(iω )' ≤ Mt,∀ω ∈ R

+,

''C(s)S(s)''22 =
σ 2u
σ 2n

≤ Vk.

Without going into further detail regarding the two last blocks
of Fig. 1, the operation of the auto-tuner is demonstrated, using a
lab scale tank process. A schematic sketch is shown in Fig. 2.11(a).
Fig. 2.11(b) shows a photo of the actual process.
First principle modeling, [Bernoulli, 1738], yields the ODE

dh

dt
= −

a

A

√

2,h+αu, (26)

where h [m] is the (measured) water level, u ∈ (0, 1) is the input, pro-
portional to the inflow through α [m3⋅s−1]. l [m3⋅s−1] is an uncontrolled
and unmeasured disturbance flow. A, a [m2] are the tank and outlet
cross sections, respectively. The delay L [s] is due to the actuating
pump and (intentionally) slow communications.
Linearizing around a nominal level h0 [m] and introducing y =

βh ∈ (0, 1), where β [m−1] is the sensor gain, an FOTD model is
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l

u hLT

(a) Schematic sketch. (b) Photograph.

Figure 11. Tank process. Dashed region in photo marks sketch.

obtained:

∆Y(s) =
K e−sL

sT + 1
∆U (s), K =

α

a

√

2x0β
,
, T =

A

a

√

2x0
,β
. (27)

The ∆:s denote deviation from the linearization point. Note however
that the available signals are u, y rather than ∆u,∆y. Also note that
only non-negative inflow is possible, i.e., α = 0 when u < 0.
Fig. 2.12(a) shows the input signal generated by the proposed method

together with that of a traditional relay experiment. The signals are
of equal duration and energy. The corresponding power spectra are
shown in Fig. 2.12(b). Here process phase is that obtained when in-
serting numerical measurement values of a, A, α , β , h0, L into (3).
From Fig. 2.12(a) it is obvious that fitting the three FOTD param-

eters to the input-output data of the traditional relay comes with nu-
merical difficulty, since virtually all energy is concentrated to a narrow
spectral peak, yielding only one complex number, i.e., two parameters.
Based on the input-output data from the extended relay experiment,

PI parameters were obtained using [Garpinger and Hägglund, 2008]
with Ms = Mt = 1.4, Vk = 4. Fig. 2.13(a) shows the plant output of
experiments where a reference step from r = 0.8h0 to h0 occurred at
t = 5 s, followed by a load step at t = 30 s. At t = 70 s, white zero
mean measurement noise, with variance 0.005, was added. Fig. 2.13(b)
shows the corresponding u.
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Figure 12. Input signal and corresponding power spectrum from tank exper-
iment. Relay (dashed), extended (solid).

5. Conclusion

The paper addresses the problem of input magnitude spectrum shap-
ing, in the context of PID auto-tuning.
A two stage optimization method, for magnitude spectrum shaping

was presented and demonstrated. It shows satisfactory result for the
class of processes (FOTD and SOTD) interesting from a PID tuning
perspective.
The algorithm was applied to physical data and the auto-tuning

procedure, of which the algorithm is a part, was outlined and demon-
strated.
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Figure 13. Closed loop response to reference step, load step and measurement
noise. (There is a 5 s transport delay on the disturbance step, due to the
hardware.)

6. Future Work

A natural question is if the problem formulation (13) can be relaxed
into a convex program (without introducing suboptimality). It is also
of interest to see if this can be done when the second part, ub, of the
input is constrained according to (14), which defines a convex region.
From a signal generation perspective it would be even more benefi-

cial if ub was only allowed to take binary values ∈ {umin,umax}, as is the
case for ua. This results in a binary program of high dimensionality,
which is not tractable without further reformulation or relaxation.
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6. Future Work

It is desirable to choose magnitude ''ua''∞, resulting in cl ⋅ σ n <
''ya''∞ < chσ n, where σ n is the standard deviation of the output ya
due to measurement noise. cl # 1 and c2 # 2 are constants. This
is a feedback problem, since the process gain is unknown before the
experiment.
In addition, several issues concerning the two rightmost blocks in

Fig. 1, remain to be addressed before the PID tuning chain functions
reliably enough for industrial use.
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Paper II

Transfer Function Parameter
Identification by Modified Relay

Feedback

Kristian Soltesz Tore Hägglund
Karl Johan Åström

Abstract

This paper proposes a method of finding low order models of a
SISO transfer function based on relay feedback. Parameter iden-
tification is posed as a (non-convex) squared output error mini-
mization problem, numerically solved utilizing Newton-Raphson
iteration with back tracking line search. Focus lies on computing
the cost function gradient and Hessian with respect to the param-
eter vector and on finding a feasible starting point. The method
is demonstrated for FOTD model identification. A modified re-
lay method is used to ensure good excitation around a predefined
phase angle fo the system. The method requires no a priori system
information. The identification method is evaluated on a batch of
common process industry processes. Finally, conclusions and sug-
gestions on future work are provided.

c%2010 IFAC/AACC. Reprinted, with permission, from Proceedings of
the 2010 American Control Conference. Baltimore, USA, 2010. The arti-
cle has been modified to fit the current format. Discovered typograph-
ical errors have been corrected in this reprint.
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1. Introduction

The use of relay feedback [Åström and Hägglund, 1984] as process iden-
tification method has been around for a long time. Its main application
has been in automatic tuning of PID controllers in process industry,
where it is still broadly used, due to its simplicity and reliability.
The original method yields the point on the Nyquist curve corre-

sponding to the phase crossover frequency. The method has been aug-
mented with various modifications of the relay non-linearity, [Friman
and Waller, 1997] being one of the more elegant, resulting in the pos-
sibility to identify a point on the Nyquist curve other than that corre-
sponding to the phase crossover frequency.
Several alternative data analysis methods have been proposed. Mats

Lilja utilized least square regression to identify low order time de-
layed transfer function models from frequency domain data (i.e. several
points on the Nyquist curve) [Lilja, 1988].
Here an optimization method, yielding a transfer function descrip-

tion of the process to be identified, is presented. A discrete time coun-
terpart of the method is outlined in [Åström and Bohlin, 1965]. The
method is based on Newton-Raphson iteration over a cost function of
the transfer function parameters. Cost derivatives (Jacobian and ap-
proximation of Hessian) are obtained through simulation of an aug-
mented system. Due to non-convexity of the cost function in the trans-
fer function parameters, a close-to optimal initial parameter guess is
desirable. Such initial guess has here been obtained by gridding the
normalized time delay of the model, evaluating the cost for each grid
point, and choosing the parameters corresponding to the minimum as
starting point for the optimization.
Input signals generated through a modified relay feedback are con-

sidered, since it allows for signal energy concentration around a fre-
quency corresponding to a pre-defined phase lag of the system to be
identified, without a priori system information. For PI(D) tuning ap-
plications, a frequency corresponding to a point in the third quadrant
of the Nyquist curve is preferable. Since PI provides a phase lag, the
obtained model needs not be accurate for phase lags larger than 145○,
whereas accuracy up to the phase crossover frequency can be of interest
when considering PID control, due to the phase lead of the controller
[Åström and Hägglund, 2006].
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2. Optimization Method for Identification

In order to verify generality of the method, it has been tested on the
AMIGO1 batch, consisting of nine classes of processes, cf. [Åström and
Hägglund, 2006]. Per design, the process models of the batch are rep-
resentative for process control industry, which is also the main target
application field of the material which follows.

2. Optimization Method for Identification

Here the proposed identification method is presented. Time is assumed
to be continuous.

2.1 Objective
Our aim is to identify parameters θ = [b a L]T (a ∈ Rn, b ∈ Rn, L ∈
R+) of the time delayed strictly proper continuous time transfer func-
tion process model

P(s) =
B(s)

A(s)
e−Ls =

∑n
j=1 bjs

n− j

sn +
∑n
i=1 ais

n−i
e−Ls. (1)

If the number of zeros is believed to be m < n − 1, we assign b1 =
⋅ ⋅ ⋅ = bn−m−1 = 0. Given input sequence u(t) and corresponding output
sequence y(t), we formulate the objective as to minimize the mean
squared output error

J(θ̂ ) =
1
2

∫ t f

t0

(ŷ(t)− y(t))2dt, (2)

where
ŷ(t)

∆
= L

−1(P̂(s)) ⋅ U (s)). (3)

The problem is convex in b̂ and L̂. However, it is non-convex in â. For
example, letting the model be defined through θ̂ = [â1 â2 â3 0 0 b̂3 L̂]T

and freezing all parameters except â3 according to θ̂ = [1 0 â3 0 0 1 0]T

yields

J(θ̂ ) =
1
2

∫ 1

0
L
−1(P̂(s)2) =

1
2

∫ 1

0
sin(â3t)2dt

1AMIGO stands for Approximate M-constrained Integral Gain Optimization. The
AMIGO test batch was originally used to obtain guidelines for a Ziegler-Nicholes type
tuning scheme.
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which is clearly not convex in â3.

2.2 Newton-Raphson Method
Due to the general non-convexity of (2) there exists no known method,
guaranteeing convergence to the global minimum. A candidate method,
which has proved successful for the problem instances we have ana-
lyzed, has been the Newton-Raphson approach, involving the compu-
tation of ∇J(θ̂ ) and ∇2J(θ̂ ) in each iteration.

2.3 Evaluation of Gradient
The gradient is given by

∇J(θ̂ ) =

∫ t f

t0

.

.θ̂

1
2
(ŷ− y)2dt =

∫ t f

t0

(ŷ− y)
.ŷ

.θ̂
dt. (4)

Introducing the canonical controllable state space form of P̂(s) yields

. x̂

.t
= Âx̂+ B̂u (5)

ŷ = Ĉ x̂, (6)

where

.x̂1
.t
= −âT x̂+ u (7)

.x̂k
.t
= x̂k−1, 2 ≤ k ≤ n (8)

ŷ = b̂
T
x̂. (9)

In order to calculate ∇J(θ̂ ), we need to evaluate

.ŷ

.θ̂
= C

. x̂

.θ̂
. (10)

From (9) we obtain
.ŷ

.b̂k
= x̂k, 1 ≤ k ≤ n. (11)
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2. Optimization Method for Identification

Finding partial derivatives of ŷ w.r.t. the components of â is somewhat
more involving. From (3) we obtain

Ŷ(s) =
B̂(s)

Â(s)
e−L̂sU (s)/ (12)

/
.Ŷ(s)

.âk
= −

sn−k

Â(s)
Ŷ(s), 1 ≤ k ≤ n (13)

The dynamics of (13) can be incorporated in the state space descrip-
tion (5), (6) by augmenting n states ẑ to the state vector x̂, forming
x̂e = [ x̂

T ẑT ]T . Letting the augmented states take on the roles

ẑk = −
.ŷ

.âk
, 1 ≤ k ≤ n (14)

we utilize (13) to obtain the augmented state dynamics

.ẑ1
.t
= ŷ− âT ẑ = b̂

T
x̂− âT ẑ (15)

.ẑk
.t
= ẑk−1, 2 ≤ k ≤ n. (16)

The augmented system in x̂e provides the desired parameter deriva-
tives

ŷ = b̂
T
x̂ (17)

.ŷ

.b̂
= In x̂ (18)

.ŷ

.â
= −In ẑ. (19)

Finally, from (1), we obtain

.Ŷ(s)

.L̂
= −s

B̂(s)

Â(s)
e−L̂sU (s). (20)

Using (7)-(9) the parameter derivative can be written

.ŷ

.L̂
= ânb̂1 x̂n − b̂1u+

n−1
∑

j=1

(â j b̂1 − b̂j+1)x̂ j . (21)
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2.4 Hessian Approximation
The Hessian of (2) is given by

∇2J(θ̂ ) =

∫ t f

t0

(
.ŷ

.θ̂

)2

+ (ŷ− y)
.2 ŷ

.θ̂ 2
dt. (22)

The first term in (22) is quadratic, i.e. ≥ 0. Under the realistic assump-
tion that the output error ŷ− y is uncorrelated with its derivatives in
the components of θ̂ , the time average of the second term is small.
Thus it can be neglected, motivating the Hessian approximation

∇2J(θ̂ ) #

∫ t f

t0

(
.ŷ

.θ̂

)2

dt. (23)

3. FOTD Model Identification

In this section we utilize the proposed optimization method to obtain
FOTD models, parametrized as

P̂(s) =
b̂

s+ â
e−L̂s, (24)

i.e. corresponding to parameter vector θ̂ = [b̂ â L̂]T . A motivation for
choosing a modified relay feedback as the source of input signal is
followed by the proposal of a method for finding initial parameters
θ̂ 0 for the optimization. Finally, attention is given to some practical
implementation related issues.

3.1 Input Signal
Existing PID tuning methods such as Ziegler-Nichols [Ziegler and Nichols,
1942], λ [Dahlin, 1968], (A)MIGO [Hägglund and Åström, 2002] as well
as a promising MIGO extension, presented by Garpinger [Garpinger
and Hägglund, 2008] rely on accurate LF process models. Of particular
interest is the phase region [−π ,−π

2 ] rad, determining the sensitivity
properties of the system. Additionally, the λ and MIGO methods utilize
a static gain estimate.
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3. FOTD Model Identification

out
1

1
s hi

hp
in
1

Figure 1. Two channel relay.

Describing function analysis indicates that negative feedback con-
nection of a proper, possibly time delayed, monotone LTI system P
and a relay non-linearity results in limit cycle oscillations. The fun-
damental harmonic of the oscillation occurs at the phase crossover
frequency of P. These observations are the basis of the identification
method proposed by Åström and Hägglund in 1984 [Åström and Häg-
glund, 1984]. Replacing the relay with the two channel (TC) relay non-
linearity shown in Fig. 1 allows for an energy concentration at a fre-
quency corresponding to an arbitrary third quadrant phase angle of P,
as described by Friman and Waller in [Friman and Waller, 1997].
The describing function of the TC relay is given by

N(a) =
4hp
π a

−
4hi
π a
i. (25)

The corresponding phase angle is thus

ϕTC = arctan
(
hi
hp

)

. (26)

By choosing hp,hi the phase of (25) can be chosen arbitrarily in the
range [0, π

2 ] rad, i.e. the fundamental limit cycle will occur at angular
frequency ωϕ corresponding to phase ϕ = −π +ϕTC ∈ [−π ,−π

2 ] rad of
P.
The Fourier series expansion of the symmetric T-periodic square

wave u(t) with amplitude Au is given by

u(t) =
∞
∑

k=1

4Au
π k
sin
(
2π kt
T

)

. (27)
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Hence, the input signal energy content at the phase crossover fre-
quency is

∫

T

(
4Au

π sin
( 2π t
T

)
)2
dt

∫

T
u2(t)dt

=
8

π 2
# 0.8, (28)

i.e. 80 %, under relay feedback (disregerading the initial convergence
phase). Remaining energy lies at integer multiples of the phase crossover
frequency.
For the two-channel relay, the above analysis will additionally de-

pend on the LTI system, but the key observations still hold:

• Most input signal energy is issued at the fundamental frequency
of the limit cycle oscillation.

• Remaining energy is issued at integer multiples of the funda-
mental frequency.

If little energy is supplied in the overtones, or if these are heavily
attenuated by P, effectively all identification data originates from the
single frequency ωϕ . Since θ̂ = [b̂ â L̂]T has three components, this
results in an under-determined problem. Generally, if one requires good
model fit for a range of phase angles, a broader spectrum input is
needed. One way to achieve this, is to alter ϕTC (by means of hp,hi
in (25)) part way through the experiment, and hence obtain frequency
data corresponding to at least two separate phase angles ϕ1,ϕ2 within
the third quadrant. Subsequently, the cost function terms Jk and its
derivatives ∇J, ∇2J corresponding to ϕ k can be weighted together,
with weights wk being functions of corresponding signal energies Eyk ,
in order to distribute model error over ϕ in a desired manner.
It is clear, from the above reasoning, that static gain information

from obtained models is unreliable. If the aim of identification is to
utilize a tuning method explicitly requiring a static gain estimate, e.g.
λ or AMIGO, this can be obtained by augmenting the experiment with
a step response.

3.2 Initial Parameter Values
Since the cost function (2) is non-convex in θ̂, a starting point θ̂ 0 close
to the global minimum is essential in order to avoid convergence of the
Newton-Raphson iteration to a local minimum far from the global one.
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3. FOTD Model Identification

Assuming that the process dynamics to be identified are de facto (ap-
proximately) FOTD, the following paragraphs suggest a methodology
for choosing θ̂ 0.
The FOTD system (24) can be re-parametrized in normalized time

delay τ̂ = L̂

L̂+1/â
, average residence time T̂ar = 1/â+ L̂ and static gain

K̂ = b̂/â. Of these parameters τ is the most difficult to estimate since
it requires a separation between delay and lag, while T̂ar is typically
easy to estimate. The following, heuristic, grid-based method aims at
yielding a feasible starting point θ 0 for the Newton-Raphson iteration,
by first estimating τ .
Assume that the input–output data set {u(t), y(t)}, t ∈ [t0, t f ] is the

outcome of a TC relay feedback experiment. Truncating the data set,
only to include the last N periods of converged limit cycle oscillation
yields the new data set {u(t), y(t)}, t ∈ [tN , t f ]. Let Au and Ay be
the amplitudes of the first harmonics in u(t) and y(t), t ∈ [tN , t f ],
respectively. These are readily given by the Fourier transform as

Au =

∣
∣
∣
∣

2
t f − tN

∫ t f

tN

u(t)e
−i 2πNt f −tN

t
dt

∣
∣
∣
∣
, (29)

Ay =

∣
∣
∣
∣

2
t f − tN

∫ t f

tN

y(t)e
−i 2πNt f −tN

t
dt

∣
∣
∣
∣
. (30)

The phase- and magnitude of P̂(iωϕ), are given by

∠P̂(iωϕ) = −L̂ωϕ − tan−1(
1
â

ωϕ) = ϕ = −π +ϕTC (31)

'P̂(iωϕ)' = Ay
b̂/â

√

1+ω 2ϕ (1/â)2
Au, (32)

where ϕTC is the TC relay phase from (26). For a given normalized
time delay τ̂ we can insert L̂ = τ̂

1−τ̂
1
â into (31) and solve the resulting

convex equation in â numerically. The obtained â can now be inserted
into (32), yielding b̂. By griding τ̂ -space we obtain a family of models
P̂τ̂ i(s). The cost (2) is evaluated for all P̂τ̂ i(s). Subsequently, θ̂ 0 is chosen
to be the parameters of the model corresponding to the smallest cost
function value.
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Figure 2. Normalized cost Jτθ )/max J(θ ) as function of normalized time
delay τ for FOTD processes with τ = 0.2 (solid), τ = 0.5 (dashed) and τ = 0.8
(dotted).

The outcome of this procedure is illustrated in Fig. 2 for the FOTD
processes θ = [5/4 5/4 1/5]T + τ = 0.2 (solid), θ = [2 2 1/2]T + τ =
0.5 (dashed) and θ = [5 5 4/5]T + τ = 0.8 (dotted), all with average
residence time Tar = 1.0 and steady state gain K = 1.0. Introducing
the grid τ i ∈ {0.1i, i = 1..9}, the method yields either the correct τ or
its grid neighbors.

3.3 Model Order Validation
When identifying processes where the order of P exceeds that of P̂,
an inherent model reduction takes place. The cancellation of one or
several poles is compensated for by a change in delay estimate L̂. If
the input u has a narrow spectrum, the obtained model P̂ can still
be accurate around the frequency corresponding to the spectral peak.
However, accuracy local to one point might not be enough for feasible
controller synthesis.
Therefore, a test for checking the validity of a FOTD model is desir-

able. An instructive such test is provided in increasing the model order
to SOTD and identifying the parameters θ 0,+ of the new model P̂+. If
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4. Experimental Procedure
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Figure 3. Simulink model generating test data for the proposed identification
method. The contents of the non-linearity block are shown in Fig. 1. (The step
is used to initialize a limit cycle oscillation.)

'L̂ − L̂+' is large compared to L̂, it is motivated to de facto increase
model order to SOTD.

4. Experimental Procedure

In this section we outline the experimental procedure. Data was gen-
erated in MATLAB/Simulink using the TC relay feedback connection
shown in Fig. 3.

4.1 Data Generation
Parameters hp,hi in (26) corresponding to ϕTC = 0.4π rad, i.e. # 75○

were chosen. Other ϕTC ∈ [0, π
2 ] rad would shift the phase dependence

on model accuracy. However, the identification methodology would re-
main unaltered.
Each data generating simulation lasted 11 zero crossings of LTI in-

put u(t). Identification data was generated for all 133 batch processes.

4.2 Identification
In this first paper, we consider the ideal measurement noise and load
disturbance free case. The only modifications applied to the above pre-
sented theory has been those of discretization (i.e. exchanging integrals
for sums, the Fourier transform for the FFT, etc.).
Fundamental frequency amplitudes of in- and outputs were found

by applying the FFT versions of (29), (30) on truncated versions of
u(t), y(t), corresponding to the two last oscillation periods. (As a com-
ment it should be mentioned that the chosen number of relay switches
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was found heuristically, so that the last two relay periods could be
considered converged limit cycle.)
Subsequently, an initial parameter vector θ̂ 0 was determined by

means of (31), (32) and the described τ̂ -grid method with grid size
τ̂ i ∈ {0.1i, i = 1..9}.
The Newton-Raphson optimization was applied over 7 iterations,

which was found to be adequate, considering cost convergence for the
different batch processes.
Back tracking line search, cf. [Boyd and Vandenberghe, 2004], was

added to increase convergence rate. The method is illustrated below,
with δ being the step length, while α = 0.25, β = 0.5 are user-defined
parameters.

while J(θ̂ + δ ∆θ̂ ) > J(θ̂ ) +αδ∇J(θ̂ )T∆θ̂ ,δ := βδ

Finally, bounds on time delay estimate L̂ were introduced, forcing
it to be strictly non-negative and less than a half period of the funda-
mental frequency component in u(t).

5. Results

Results from the identification of one particular transfer function are
presented in detail, exploiting key features of the proposed method.
This is followed by a compilation of the model errors obtained by run-
ning the method on a batch [Åström and Hägglund, 2006].

5.1 Instance Study
Here, results from identifying P(s) = 1

(s+1)2 e
−s are presented. The

choice of process is motivated by the fact that process order is higher
than model order. This has two fundamental implications:

• There exists no FOTD model with ’good’ fit for all frequencies.
However, the proposed method is expected to yield one with good
fit around the phase ϕ in the third quadrant.

• The initial guess provided by τ̂ -gridding is sub-optimal, since the
model structure assumption is invalid, demonstrating the benefit
of the Newton-Raphson optimization.
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Figure 4. TC relay output u(t) (grey), process output y(t) (solid, black) and
converging model outputs ymk(t), k ∈ {1, . . . , 7} (grey, thin).

Fig. 4 shows identification input u(t), generated by the TC relay feed-
back, together with corresponding process output and converging model
output.
Fig. 5 shows the Nyquist curve of P together with those of the ob-

tained FOTD model P̂ and the corresponding initial model P̂0 provided
by the τ -gridding. Not unexpectedly, P̂0 provides a better all-over fit,
whereas P̂ shows a better fit in the third quadrant (which is achieved
at expense of a worse fourth quadrant fit). Both models provide good
fits at the phase angle ϕ = −π+ϕTC , corresponding to the fundamental
harmonic of the process input u(t).
The observations presented above generally hold for the AMIGO

batch.
A complementary representation of performance is given by the

step response. Fig. 6 shows the step responses of P, P̂ and P̂0 in Fig. 5.
As expected, the final model P̂ has a worse static gain estimate

than the initial model P̂0.
Note the over-estimation of L, shown in the lower plot of Fig. 6,

being a consequence of lower model than process order. A second order
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Figure 5. Nyquist curve of P(s) = 1
(s+1)2 e

−s (black), P̂0(s) = 0.52
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dashed) and P̂(s) = 0.57
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Figure 6. Step response of P(s) = 1
(s+1)2 e

−s (black), P̂0(s) = 0.52
s+0.49 e

−1.35s (grey,
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Figure 7. Step responses of P(s) = 1
(s+1)2 e

−s, P̂(s) = 0.57
s+0.51 e

−1.37s and P̂+(s) =
0.001s+1.06

(s+1.26)(s+0.84) e
−1.01s

model (provided a feasible θ +,0 is given by

P̂+(s) =
0.001s+ 1.06

(s+ 1.26)(s+ 0.84)
e−1.01s. (33)

Fig. 7 shows the initial part of the step responses of P, P̂ and P̂+.
The model order test of section 3 yields

'L̂ − L̂+'

L̂
= 0.26. (34)

Another interesting observation is that T̂ar = 3.33 for the FOTD
model and T̂+,ar = 2.98 for the SOTD model, which are both good es-
timates, given Tar = 3.0 for the process. However, assume all input
energy was issued at the frequency ωϕ , i.e. u(t) = sin(ωϕ t). Asymptot-
ically the cost would be minimized (to J = 0) when 'P(iωϕ )' = 'P̂(iωϕ)'
and ∠P(iωϕ) = ∠P̂(iωϕ ), where the left hand sides are constants and
the right hand sides are given by (32) and (31), respectively. This is
an under-determined system in θ̂ , with unique solution ∀L̂ ∈ R+, as
indicated in section 3.
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Figure 8. Gain error 'P' − 'P̂' as function of process phase for the processes
of the AMIGO test batch.

5.2 Batch Study
Fig. 8 shows a compilation of gain errors 'P' − 'P̂' plotted against pro-
cess phase, for the processes of the test batch.
As expected, the method yields best fit close to the phase −115○

corresponding to the first harmonic of the input signal u(t) (marked
by a dashed line in Fig. 8).
For larger negative phase values within the third quadrant, the

errors are negative for most processes, corresponding to conservative
models, concerning sensitivity.

6. Conclusions

Amethod for computing partial derivatives of the output error in model
transfer function parameters has served as basis for a gradient search
(Newton-Raphson) approach to system identification. The method is
applicable to all proper, possibly time delayed, transfer functions.
The following, highly interrelated, items need to be decided, prior

to applying the method: cost function, model order (choice and verifica-
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tion), input signal, initial parameters and halting criterion. Particular
attention has to be given to the input signal, ensuring spectral content
at frequencies for which model validity is crucial.
This paper was mainly confined to the case of FOTD model struc-

ture, utilizing a quadratic cost function and TC relay feedback for input
generation.
Initial parameters were obtained by means of a heuristic gridding

strategy and no explicit attention was given to halting criteria for the
optimization.
A method for model order validation was suggested.
The approach proved successful for a large number of common pro-

cess types and instances thereof.

7. Future Work

There are several directions for potential future work related to the
proposed identification method.
One obvious continuation would be to combine the identification

method with one or several PID-tuning methods and evaluate the ob-
tained closed loop performance. A related issue is the investigation
of how process- and measurement noise affect the identification and
ultimately the closed loop performance.
Another interesting direction is that of MIMO control. Especially

TITO systems are common in process industry. Hence an extension of
the method to the identification of TITO dynamics would be of high
interest.
It would also be interesting to evaluate performance of the method

using higher order models, possibly with modifications regarding cost
function and input signal. SOTD models (with one zero) are of partic-
ular interest, covering essentially all modeling needs for PID design.
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Paper III

Individualized PID Control of
Depth of Anesthesia Based on

Patient Model Identification During
the Induction Phase of Anesthesia

Kristian Soltesz Jin-Oh Hahn Guy A. Dumont
J. Mark Ansermino

Abstract

This paper proposes a closed-loop propofol admission strategy
for depth of hypnosis control in anesthesia. A population-based,
robustly tuned controller brings the patient to a desired level of
hypnosis. The novelty lies in individualizing the controller once a
stable level of hypnosis is reached. This is based on the identified
patient parameters and enhances suppression of output distur-
bances, representing surgical stimuli. The system was evaluated
in simulation on models of 44 patients obtained from clinical tri-
als. A large amount of improvement (20 – 30%) in load suppression
performance is obtained by the proposed individualized control.

c%2011 IEEE CDC/ECC. Reprinted, with permission, from Proceedings
of the 2011 IEEE Conference on Decision and Control and European
Conrol Conference. Orlando, USA, 2011. The article has been modified
to fit the current format. Discovered typographical errors have been
corrected in this reprint.
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controller
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surgical
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patient DOH sensor

infusion pump

Figure 1. Closed-loop DOH control system.

1. Introduction

During surgical procedures, a combination of anesthetic drugs are
given in order to 1) maintain a desired depth of hypnosis (sleep), 2)
keep the patient in an analgesic (pain free) state, and in some cases
3) establish a neuro-muscular blockade to avoid movement. This paper
focuses on the problem of individualized closed-loop control of depth of
hypnosis (DOH) based on propofol administration. Fig. 1 outlines the
system from a control engineering point of view.
Propofol hypnosis can be divided into three temporal phases. During

the induction phase, the aim is to bring the patient to a reference DOH
level. Once a stable DOH close to the reference is achieved, the main-
tenance phase, during which surgery takes place, begins. The surgical
stimuli can be viewed as output disturbances, reducing the DOH. At
the same time, the administration of analgesic drugs increase the DOH
via anesthetic-opioid synergy. Hence, the challenge during the mainte-
nance phase is to administer propofol to counteract the disturbances,
without over- or under-dosing. Once surgery is completed, the emer-
gence phase, during which administration of propofol is terminated,
takes place.
The aim of this paper is to examine the potential benefit of indi-

vidualized propofol delivery based on controller re-tuning at the end
of the induction phase. The main advantage of a single update before
the maintenance phase begins, as opposed to continuous adaptation
(see e.g. [Haddad et al., 2006]), is that unmeasured disturbances dur-
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ing the maintenance phase do not result in poor performance or even
instability due to drifting parameters. Focus does not lie on the con-
troller tuning per se, but rather on what can be gained by the proposed
individualization. The rationale supporting this papar can therefore
be combined with previous work in the area of closed-loop propofol
anesthesia, such as [Gentilini et al., 2001], [Ionescu et al., 2008] and
[Dumont et al., 2009].
The paper is organized as follows: Section 2 presents the models

that controller synthesis is based upon. The PID controller and its tun-
ing is explained in Section 3. Patient model parameter identification
for individualized control is the topic of Section 4. The proposed control
scheme is evaluated in a simulator, explained in Section 5. Simulation
results are presented and discussed in Section 6. Finally, conclusions
are drawn in Section 7.

2. Model of the Propofol-DOH Process

Patient models for anesthesia consist of a pharmacokinetic (PK) model
explaining the distribution and metabolism of the drug, and a pharma-
codynamic model relating the plasma drug concentration to clinician
effect. In a previous work [Bibian et al., 2005] PK and PD parameters
were derived from demographic data, based on which robust controllers
were synthesized to handle inter- and intra-patient variability.
Controller and PD identifier were designed based on the patient

PKPD model with the propofol infusion rate u as input and the DOH
measurement y as output.

2.1 Parameters and Signals
Table 1 lists signals and parameters used throughout the paper.
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Table 1. Signals and parameters.

Symbol Unit/Range Name

A, B, C - Schüttler PK system matrices
Ce mg⋅l−1 Effect site concentration
Cp mg⋅l−1 Primary compartment concentration
Cpm mg⋅l−1 Estimate of Cp from Em
DOH (100,0) Depth of hypnosis (100 + awake)
eL - Load step control error
E (0,1) Normalized DOH (0 + awake)
Em (0,1) Estimate of E from y
Emσ - Signal threshold
EC50 mg⋅l−1 Hill gain parameter
h s Controller sample period
kij i, j = 1, 2, 3 s−1 Rate constants (flow i→ j)
k−1d s Effect PD time constant
k10 s−1 Elimination rate constant
K - True FOTD gain
K̂ - Estimate of K
KD - Derivative controller gain
KI - Integral controller gain
KP - Proportional controller gain
L - True FOTD delay
L̂ - Estimate of L
N - Maximal derivative gain
pk, k = 1, 2, 3 - Schüttler PK poles
r (0,1) Normalized DOH reference
tγ s Duration of γ identification
tind s Duration of induction phase

Continued on next page
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Table 1. – Continued from previous page.

Symbol Unit/Range Name

T - True FOTD time constant
T̂ - Estimate of T
Td s Effect PD delay
TI s Controller integral time
TD s Controller derivative time
Tr s Reference filter time constant
Tt s Anti-windup tracking time
u mg⋅s−1 Infusion rate
umax mg⋅s−1 Upper bound of control signal
umin mg⋅s−1 Lower bound of control signal
uσ - Signal threshold
v - Signal in Hill function
v̂ - Feedback quantity
vm - Estimate of v from E
V1 l Primary compartment volume
x = [x1 x2 x3]T mg⋅l−1 Compartment concentrations
xD - PID derivative filter state
xI - PID integrator state
y (0,1) Normalized measured DOH
γ - Hill slope parameter
γ̂ - Estimate of γ

2.2 Pharmacokinetic (PK) Model
The PK model relates infusion rate u to plasma concentration Cp. In
this paper, the Schüttler PK model [Schüttler and Ihmsen, 2000] was
used. It is a three-compartment mamillary model, outlined in Fig. 2.
Each compartment represents a class of tissues. The drug is delivered
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Figure 2. Schüttler’s three-compartment mammillary model.

into the primary (central) compartment with rate u. Denoting by x
the vector of drug concentration in each compartment, the Schüttler’s
model is given by

ẋ =

⎡

⎢
⎣

−(k10 + k12 + k13) k12 k13

k21 −k21 0
k31 0 −k31

⎤

⎥
⎦x+

1
V1

⎡

⎢
⎣

1
0
0

⎤

⎥
⎦u. (1)

The transfer function representation of (1) from u to x1 is

GCp,u(s) =
1
V1

(s+ k21)(s+ k31)

(s+ p1)(s+ p2)(s+ p3)
, (2)

where pk, k ∈ {1, 2, 3} are defined accordingly from kij . It was con-
cluded by Schüttler et al. [Schüttler and Ihmsen, 2000] that age and
lean body mass are reliable demographic covariates for the parame-
ters of (2). Functions relating these covariates to volumes and clear-
ance rates V1, kk, k ∈ {1, 2, 3} are presented in [Schüttler and Ihmsen,
2000].

2.3 Pharmacodynamic (PD) Model – Hill Function

Effect Site Dynamics The output of the Schüttler PK model is
the primary compartment concentration of propofol, Cp. However, the
effect site of the drug is the brain, not the plasma. To account for the
distribution of drug from the plasma to the effect site, the PK model
was augmented by a delayed first order system [Bibian, 2006]:

GCe,Cp(s) =
kd
s+ kd

e−Tds, (3)
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where the delay is intended to model the drug transport from the in-
travenous to the effect site.

Dose-Response Characteristics The clinical effect E is normalized
to (0, 1), where 0 corresponds to fully awake state. In the steady state,
the relation between Ce and E is well described by a sigmoidal Emax
function:

E(Ce) =
C

γ
e

EC
γ
50 + C

γ
e

, (4)

which is also known as the Hill function. It is parametrized by EC50,
the value of Ce corresponding to E = 0.5, and γ , defining the steepness
of the sigmoidal curve. The Hill function (4) can be decomposed into a
series of a linear gain

v(Ce) =
1

2EC50
Ce, (5)

and a sigmoidal nonlinearity

E = f (v;γ ) =
vγ

1
2

γ
+ vγ

, (6)

which is parametrized only in γ . It is obvious from (6) that E = 0.5
corresponds to v = 0.5.
For model identification purposes, the effect PD and linear Hill

gain are lumped together to yield the following first order time delayed
(FOTD) system:

v(s) =
Kd/(2EC50)
s+ Kd

e−sTdCp(s), (7)

whereas the nonlinear part (6) is treated separately.

2.4 Clinical Front End
There are several clinical options for measuring DOH based on the elec-
troencephalogram (EEG), which can be sampled using non-invasive
probes mounted on the patient’s forehead. The most popular option
is the Bispectral Index (BIS) [Johansen and Sebel, 2000], for which
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u yGCp,u GCe,Cp Hill GE,yCp Ce E

Schüttler PK Effect PD Hill PD Sensor

LTI LTI SNL LTI

Figure 3. PKPD patient and sensor model, relating DOH y to propofol infusion
rate u. Subsystems are linear time invariant (LTI) or static nonlinearities
(SNL).

commercial instrumentation equipment are available. However, BIS is
not ideal for control design purposes since its dynamics are strongly
time-varying and that the proprietary algorithm often exhibits non-
linear behavior. The use of wavelet techniques has been proposed to
overcome these challenges, yielding the WAVCNS index [Zikov et al.,
2006]. It correlates well with BIS, and moreover, it has time-invariant
linear dynamics:

Gy,E(s) =
1

(8s+ 1)2
, (8)

which is preferable to BIS from a control design perspective. The WAVCNS
monitor is graded in BIS units. They range (0, 100), where 100 corre-
sponds to the fully awake state.

2.5 PKPD Model
The patient model is obtained by combining the PK and PD models. A
block diagram of this combination, together with the WAVCNS monitor,
is shown in Fig. 3.
It was demonstrated that PK parameters of propofol are linear in

the range 25 − 200 µg⋅kg−1⋅min−1 and that the model is generally
invalid outside this range [Schnider et al., 1998b]. Similarly, the Hill
function (4) describes the steady-state relation between Ce and E.

2.6 Surgical Stimuli
Surgical stimulation was modeled as an output disturbance, which was
adapted from [Dumont et al., 2009] (see Fig. 4).
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Figure 4. Disturbance profile from [Dumont et al., 2009].

3. Robust PID Control Synthesis

A two-degrees-of-freedom PID controller was designed for DOH control.
Two novel output filters were introduced in this paper in an effort
to facilitate control design by effectively cancelling out the monitor
dynamics and the Hill function nonlinearity.

3.1 Output Filter I
The system shown in Fig. 3 cannot be readily divided into its LTI and
static nonlinearity components, due to the existence of the Hill function
between the effect PD and the monitor dynamics. This is a limiting
factor in both patient model identification and controller synthesis. To
overcome this problem, we propose to augment a delayed inverse of the
monitor dynamics as follows. The control system operates at 1 Hz. A
zero order hold (ZOH) sampling of (8) with period h = 1 s yields

Ghy,E(z) =
1
100

0.719z+ 0.662
z2 − 1.765z+ 0.778

. (9)

To invert (9) without introducing acausality, a delay of h was added,
resulting in the delayed inverse:

F1(z) = 100
z2 − 1.765z+ 0.778
0.719z2 + 0.662z

. (10)

This filter was applied to the sensor output to convert the system dy-
namics to a standard Wiener model by canceling out the effect of the
monitor dynamics. The sensor plus the delayed inverse was modeled
as a delay h in controller synthesis. Depending on the high pass na-
ture of the drug delivery actuator, further filtering might therefore be
desirable.
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3.2 Output Filter II
The model in Fig. 3 is nonlinear due to the Hill function. In the context
of synthesizing a maintenance phase controller, this can be approached
by linearizing (4) around the operating point Ce = EC50. However, this
is not acceptable during the induction phase, in which no well-defined
operating point exists. If a PID controller (or any controller involv-
ing integral action) is used, the integral state will build up rapidly
during the beginning of the induction phase due to the low dose con-
centrations, Cp ≪ EC50. This will in turn cause an undershoot of the
WAVCNS response. A possible remedy to alleviate this problem is to
reduce the integral action, but this may increase the duration of the
induction phase. To facilitate the controller design by further lineariz-
ing the system dynamics, an additional linearizing filter was used in
series with (10) as follows. The inverse of the non-linear part of the
Hill function (6) is given by

v = F2(E;γ ) = f−1(E;γ ) =
1
2

(
E

1− E

) 1
γ

. (11)

Letting γ and γ̂ be the true and demographics-based slope parameters,
respectively, yields

v̂ = f−1( f (v;γ ); γ̂ ) =
1
2
(2v)γ /γ̂ , (12)

which is close to vwhen γ̂ # γ . The controller was based on the assump-
tion that γ̂ = γ and that the nonlinearity was completely cancelled out
by closing the loop from v̂ in (12).

3.3 Plant Model
Combining (2), (3), (5), (9), (10) and (12) and assuming γ̂ = γ yields
the plant model

P(s) =
kd

2EC50V1
(s+ k21)(s+ k31)e−s(Td+h)

(s+ p1)(s+ p2)(s+ p3)(s+ kd)
, (13)

which was used for controller synthesis.

74



3. Robust PID Control Synthesis

3.4 Controller
The PID controller was parametrized in its proportional (Kp), integral
(KI) and derivative (KD) gains. Two robust PID design methods, out-
lined below, were evaluated to determine these gains. They are both
based on minimizing norms of the tracking error caused by step load
disturbances.

Robust Load IE Minimization The objective of this method is to
find PID parameters {KP, KI , KD} that minimize the integral of the
control error (IE) eL caused by a step load disturbance. Robustness is
enforced by restricting the open-loop Nyquist curve outside a circular
disc with radius Ms, centered at −1. This is equivalent to restricting
the ∞-norm of the sensitivity function:.

min
KP ,KI,KD

∫ ∞

0
eL(τ )dτ , (14)

s.t.max
ω
'S(ω )' ≤ Ms. (15)

See [Panagopoulos et al., 2002] for a thorough description of the method
or [Åström and Hägglund, 2006] for a summary. A regimen for deter-
mining suitable Ms is described in [Dumont et al., 2009].

Robust Load IAE Minimization An oscillatory zero-mean error
can yield small IE values, yet is not desirable. This can be prevented
by using the following optimization constraint:

min
KP ,KI,KD

∫ ∞

0
'eL(τ )'dτ . (16)

The minimized quantity is referred to as the integral absolute error
(IAE). A useful algorithm is presented in [Garpinger and Hägglund,
2008].

3.5 Reference Filter
In order to avoid oscillations and over-dosing during the induction
phase, the reference was processed using the following filter, whose
time constant Tr was chosen according to [Martinez, 2005].

Fr(s) =
1

sTr + 1
. (17)
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3.6 Implementation Aspects

Saturation and Integrator Anti-Windup The control signal has a
natural lower bound umin = 0 (since drug cannot be extracted once in-
fused). For safety reasons, an upper bound umax of 3.33 mg⋅s−1 was also
introduced. Tracking was utilized in order to avoid integral windup; see
Fig. 2.5(b). The tracking constant was heuristically chosen as the ge-
ometric mean of the PID integral (TI = KP

KI
) and derivative (TD = KD

KP
)

times as suggested in [Åström and Hägglund, 2006]:

Tt =
√

TITD =

√

KD
KI
. (18)

Setpoint Weighting In this paper, disturbance rejection and ab-
sence of output oscillations are prioritized to tight reference tracking.
Hence, a zero setpoint weight was chosen for proportional and deriva-
tive components of the controller, forcing the reference to enter the
control signal only through the integral term, as shown in Fig. 2.5(b).

Derivative Filter To suppress the high frequency noise, the differ-
entiator KDs was filtered as

sKPKDN

sKD + KPN
, (19)

where N = 5 was chosen heuristically to yield an adequate trade off
between noise suppression and phase lead. Note that the reference was
not differentiated to facilitate a smooth response to rapid and abrupt
reference changes.

Derivative Kick The low-pass reference filter combined with the
zero setpoint weight resulted in a slow increase of u, and consequently
y, during the beginning of the induction phase, which is not desirable,
since the propofol infusion is painful to the patient while the DOH
is low. To avoid this problem, the derivative term of the PID control
signal was set to a strictly positive value during the beginning of the
induction phase, yielding a spike in u.
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4. System Identification

Discretization The controller was discretized using the approxima-
tion s # z − 1, which is acceptable since the sample period is small
compared to the dominant time scale of the system. Using ZOH dis-
cretization or performing the tuning optimization in the discrete time
domain would have been other options. However, they lack the intuitive
insight provided by the continuous-time PID control architecture that
the proposed discretization preserves.

Bumpless Parameter Changes Let xI and xD be the state of the
PID integrator and derivative filter, shown in Fig. 2.5(b) and Fig. 2.5(c).
The control signal is given by

u = satumaxumin
(−v̂KP
︸ ︷︷ ︸

P

+ xI
︸︷︷︸

I

−v̂KPN − xD
KPN

KD
︸ ︷︷ ︸

D

). (20)

Switching the set of PID controller parameters from {KP, KI, KD} to
{K ′P, K

′
I, K

′
D} at the end of the induction phase, may lead to disconti-

nuity in the derivative term, resulting in discontinuity in the control
signal. This risk was prevented by simultaneously updating the states
as follows:

x′D = v̂(K
′
P − KP)

K ′D
K ′P

− xD
KP
KD

K ′D
K ′P
, (21)

x′I = xI + v̂(K
′
P − KP). (22)

3.7 Closed-Loop System
Summarizing, Fig. 2.5(a) shows the block diagram of the closed loop
system, including patient, controller and filters, discussed above. The
block diagram of the PID controller is shown in Fig. 2.5(b). The deriva-
tive filter block of Fig. 2.5(b) is illustrated in detail in Fig. 2.5(c).

4. System Identification

The objective of the system identification was to derive parameter esti-
mates for the model that relates Cp to E; see Fig. 3. The model consists
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ur y v̂Fr PID plant and sens. F1 F2

(a) Closed-loop system. The plant and sensor is equivalent to
Fig. 3.
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(b) PID controller. The derivative filter block contains the ZOH
discretization of (19).
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(c) The derivative filter (19) block of Fig. 2.5(b).

Figure 5. Closed-loop system and PID controller.

of the FOTD (7), parametrized in

K =
1

2EC50
, T =

1
Kd
, L = Td, (23)

and the nonlinear part of the Hill function (6), parametrized in γ . Since
E is not directly available, its estimate Em was used. It was obtained
by applying F1 in (10) to y. Likewise, an estimate Cpm of Cp, obtained
by driving the PK model (2) with u, was used.
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4.1 Hill Function Nonlinearity
Since v in (7) ranges from 0 to # 0.5 during the induction phase,
linearizing (7) around a nominal value does not present a feasible
approach towards PD model parameter identification. Furthermore, it
is not trivial to simultaneously identify the LTI parameters {K ,T , L}
and the Hill function parameter γ . For this reason a two-stage approach
was employed. The parameter γ was identified and fixed during the
first stage and LTI parameters were identified during the second stage.

4.2 Initial Parameter Estimates
Inspecting the simulation pairs of u and E reveals that the first order
dynamics are fast compared with the time scale of induction. Hence, it
was reasonable to approximate (7) by a delayed gain K ⋅ e−Ls.
The initial estimate L̂ of L was obtained by identifying the time

instants after which Em and u stay above thresholds Emσ and uσ , re-
spectively. The initial estimate K̂ of K was then obtained by averaging
the ratio of Em and u over the last 3 min of the induction phase.
Subsequently, the initial estimate γ̂ of γ was obtained by a bisection

search, which minimized (the discretized equivalent of)

∫ tγ

0

(

f−1(Em; γ̂ )(t)− KCpm(t+ L)
)2
dt. (24)

Fixing γ̂ yielded the estimate vm of v:

vm = f
−1(Em; γ̂ ). (25)

Finally, a bisection search was used to find the estimate T̂ of T ,
which minimized (the discretized equivalent of)

∫ tind

0

(

vm(t)−L
−1

(

K̂ e−sL̂

sT̂ + 1
Cpm

))2

dt. (26)

4.3 PD Identification Using Induction Phase Response
A gradient-based identification method [Soltesz et al., 2010] was em-
ployed to obtain refined estimates of the PD model parameters from
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the patient’s response during the induction phase. The parameter es-
timates were identified to minimize

J(θ̂ ) =

∫ tind

0
(vm − v̂)

2dt, (27)

where vm was parametrized in θ̂ = {K ,T , L} (while γ̂ was fixed).
Computing the gradient ∇J(θ̂ ) was done by simulating an augmented
system, where the augmented states were partial derivatives of the
objective function (27) with respect to the PD model parameters to be
identified. Details of the methods are outlined in [Soltesz et al., 2010].

5. Simulated Experiment

The surgical procedure was simulated for each patient in the test pop-
ulation, as described below.

5.1 Test Population
The test population consisted of 44 PKPD models. Model parameters
were derived using clinical data and are disclosed in [Dumont et al.,
2009]. In the course of PD identification, it was assumed that individ-
ual PK models can be accurately characterized using Shcüttler’s co-
variate formulae [Schüttler and Ihmsen, 2000]. This essentially lumps
all the parametric uncertainty into the PD model.

5.2 Experiment Layout

Induction Phase Prior to the simulated surgical procedure, the in-
duction phase controller was synthesized according to Section 3, based
on the control design model (13). Parameters k21, k31, p1, p2 and p3 were
computed from the patient age and weight using Schüttler’s formulae,
while population averages were used for Kd, EC50 and Td. Propofol was
administered using this population-based controller during the induc-
tion phase of the simulated surgical procedure.
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6. Results and Discussion

PD Identification and Controller Re-Design PD parameters were
estimated as described in Section 4. At the end of the induction phase,
the estimated PD parameters were used to synthesize an individual-
ized controller, based on the same procedure as the induction phase
controller.

Maintenance and Emergence Phases During the beginning of the
maintenance phase, the simulation state was saved to allow for parallel
maintenance phase simulations with (i) the induction phase controller,
(ii) the individualized controller and (iii) and an ideal controller based
on the actual parameter values of the simulated patient. Signals from
these simulations were saved and analyzed as described in Section 6.

5.3 PK Uncertainty
In order to introduce a realistic amount of PK uncertainty in the sim-
ulated procedure, perturbations were given to the parameters of the
patient model. This was done using normally distributed random num-
bers with standard deviations chosen as the standard deviations of the
prediction residuals reported in Schüttler et al. [Schüttler and Ihmsen,
2000]. Nominal values were used for the controller synthesis.

6. Results and Discussion

Overall, the individualized controller outperformed the population-based
controller. Fig. 6 shows the simulation profiles for each of the 44 pa-
tients, using the individualized controller. In terms of IAE, the individ-
ualized controller could provide a 23 % reduction in error over the 44
patient models, compared with the population-based controller. More-
over, it was only 4 % larger than with the ideal controller, synthesized
using the true patient PKPD models. The results clearly demonstrate
the potential of an individualized control scheme.
The use of an output filter (11) significantly improved the reference

tracking performance in the induction phase. In the absence of the
filter, undershoots by as much as 30 BIS units were observed in some
patients.
Due to the presence of the perturbations in the PKmodels, the iden-

tified PD parameters generally did not converge to the patient values.
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Figure 6. Measured DOH and infusion profiles of the test population.

Instead they converged to values close to their true counterparts in
order to compensate for the PK mismatch. It should be noted, however,
that the identified PD parameters converged to the true parameter
values when the PK model uncertainty was not considered.
Although rigorous parameter convergence proof is not feasible due

to the non-convexity of the system identification problem discussed in
Section 4, the proposed two-stage identification strategy was able to
provide accurate parameter estimates for all the simulated procedures.
In a future study, however, its validity and performance needs to be
extensively examined before it can be introduced into clinical practice.
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7. Conclusion

7. Conclusion

A novel propofol administration strategy for closed-loop DOH control
has been proposed. Evaluation of the proposed control scheme in simu-
lated procedures over wide-ranging PKPD models with parameter per-
turbations suggested that 1) the closed-loop performance can be sig-
nificantly enhanced by employing the individualized controller based
on the PD model identified using the induction phase response, and
that 2) the proposed control scheme is equipped with a sufficient level
of robustness against uncertainty in the PK model.
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