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Abstract We have estimated the binding affinity of three

sets of ligands of the heat-shock protein 90 in the D3R

grand challenge blind test competition. We have employed

four different methods, based on five different crystal

structures: first, we docked the ligands to the proteins with

induced-fit docking with the Glide software and calculated

binding affinities with three energy functions. Second, the

docked structures were minimised in a continuum solvent

and binding affinities were calculated with the MM/GBSA

method (molecular mechanics combined with generalised

Born and solvent-accessible surface area solvation). Third,

the docked structures were re-optimised by combined

quantum mechanics and molecular mechanics (QM/MM)

calculations. Then, interaction energies were calculated

with quantum mechanical calculations employing

970–1160 atoms in a continuum solvent, combined with

energy corrections for dispersion, zero-point energy and

entropy, ligand distortion, ligand solvation, and an increase

of the basis set to quadruple-zeta quality. Fourth, relative

binding affinities were estimated by free-energy simula-

tions, using the multi-state Bennett acceptance-ratio

approach. Unfortunately, the results were varying and

rather poor, with only one calculation giving a correlation

to the experimental affinities larger than 0.7, and with no

consistent difference in the quality of the predictions from

the various methods. For one set of ligands, the results

could be strongly improved (after experimental data were

revealed) if it was recognised that one of the ligands dis-

placed one or two water molecules. For the other two sets,

the problem is probably that the ligands bind in different

modes than in the crystal structures employed or that the

conformation of the ligand-binding site or the whole pro-

tein changes.

Keywords Ligand-binding affinity � Induced-fit docking �
MM/GBSA � QM/MM � Big-QM � Free-energy
perturbation � Continuum solvation � Bennett acceptance
ratio � D3R grand challenge � Blind-test competition

Introduction

One of the prime challenges of computational chemistry is

to predict the free energy for the binding of small mole-

cules to biomacromolecules. Many biological functions are

exerted by the binding of substrates or inhibitors to

enzymes or effectors to receptors, and the prime aim of

drug development is to find small molecules that bind

strongly to the target receptor, but with a small effect on

other biosystems. Consequently, much effort has been

spent to develop methods with this aim, ranging from

simple docking and scoring approaches, via end-point
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methods, such as MM/GBSA (molecular mechanics com-

bined with generalised Born and solvent-accessible surface

area solvation) and linear interaction energies (LIE), to

strict free-energy simulation (FES) methods [1–4].

Numerous studies have evaluated the performance of

various binding-affinity methods, e.g. docking [5, 6], MM/

GBSA [7, 8], and FES methods [9–11]. The conclusion has

typically been that docking methods can rapidly find the

correct binding pose among several other poses, but that

they have problems to correctly rank the affinities of a set

of ligands to the same protein. MM/GBSA calculations

typically give a better ranking of the ligands and an

understanding of energy terms involved in the binding, but

often vastly overestimate energy differences and the results

strongly depend on the employed continuum-solvation

model [2, 12]. Large-scale tests of FES calculations have

given rather impressive results for relative binding affini-

ties of similar ligands to the same protein, with mean

absolute deviations (MAD) of 4–6 kJ/mol [9–11]. How-

ever, the comparisons have been primarily directed to

small changes in the ligands and the performance is

uneven, with very good results for some proteins, but quite

poor performance for other proteins, occasionally with

errors of over 20 kJ/mol.

Comparisons of different approaches for the same test

case are less common and often half-hearted in the mean-

ing that the authors are experts or developers of one

approach and include other methods mainly to show that

they are worse [10, 13, 14]. In this respect, blind-test

competitions are important to judge the true performance

of different approaches, allowing experts to provide pre-

dictions that are not biased by the experimental results. In

the SAMPL4 octa-acid host–guest challenge for binding

affinities, FES methods gave the best results (the root-

mean-squared deviation, RMSD, was 5 kJ/mol and the

correlation coefficient, R2, was 0.9), although docking gave

results of only slightly worse quality (RMSD = 6 kJ/mol,

R2 = 0.8) [15–17]. However, this test case was ideal for

FES calculations with quite small differences between the

ligand and a conserved net charge. For the cucurbit [7] uril

host, the results were worse and more varying, but a FES-

based approach still gave the best results RMSD =

12 kJ/mol, R2 = 0.8, whereas docking gave poor results

(RMSD = 33 kJ/mol, R2 = 0.1) [15, 17]. The results for

the SAMPL3 host–guest systems were even worse, with

either RMSD and R2 both low, e.g. 6 kJ/mol and 0.4 for the

MM/GBSA-like solvent interaction energy (SIE) approach

[18], or both high, e.g. 47 kJ/mol and 0.8 for FES [19].

For protein systems, the results have been even worse.

For the HIV integrase binding-affinity challenge in

SAMPL4, a SIE approach was pointed out as best with a

mean absolute deviation (MAD) of 5 kJ/mol, but it gave a

negative correlation (R = -0.3) [20, 21]. Docking

calculations gave positive correlation (R = 0.5–0.6), but

the MAD was high (76–113 kJ/mol), because a raw

docking score was employed [22]. An MM/PBSA approach

gave a lower MAD, 16 kJ/mol, and a positive correlation

(R = 0.4) [20]. The reason for these poor results was that

all eight experimental binding affinities were within

4 kJ/mol.

A similar problem applied to the trypsin challenge in

SAMPL3, where the experimental range of the 17 ligands

was only 9 kJ/mol (and 13 within 4 kJ/mol). Unfortu-

nately, no overview article was published for this test case,

so it is hard to reach any unbiased conclusions. A com-

parison of five methods indicated that none of them gave

any useful correlation (R2\ 0.02), but LIE gave a correct

ranking of all ligands for which both the experimental and

computational estimates were statistically significant [14].

Docking with the Glide software gave the lowest MAD

(3 kJ/mol) and also the best discrimination between bin-

ders and non-binders (the area under the receiver-operat-

ing-characteristic curve, AUC, was 0.8). LIE gave a

slightly larger MAD (4 kJ/mol), but a poorer-than-random

AUC (0.3). MM/PBSA and MM/GBSA gave large MAD

(20 and 16 kJ/mol), but reasonable AUC (0.7).

In this article, we present a comparison of four different

approaches to calculate absolute or relative binding

affinities for three sets of similar ligands to the heat-shock

protein 90 (HSP90) within the drug-design data resource

(D3R) 2015 grand challenge [23]. HSP90 is a conserved

chaperone protein that is expressed ubiquitously in high

concentration [24], in particular in cancer cells [25, 26] and

therefore of large interest as a multiple-oncogenic-pathway

therapeutics [27–30]. We have performed docking with the

Glide software [31], MM/GBSA scoring with single min-

imised structures with the Prime software [32], and FES

calculations of relative affinities. In addition, we have

made an attempt to perform combined quantum and

molecular mechanics (QM/MM) scoring with an approach

similar to that developed by Grimme and coworkers for

host–guest systems [33, 34] combined with our big-QM

approach to obtain stable QM/MM energies for proteins

[35].

Methods

Relative binding free energies for three sets of ligands

binding to HSP90 were estimated as a part of the D3R

Grand Challenge 2015 [23]. Sets 1, 2, and 3 consist of five,

four, and ten ligands, respectively and involve chemically

similar ligands, which allow for the calculation of relative

binding free energies by alchemical FES methods. The 19

ligands are shown in Fig. 1. The FES calculations

employed four additional reference ligands, which are also
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Fig. 1 Structures of all ligands

from sets 1, 2, and 3, considered

in this study. The additional

reference ligands that were

employed for sets 1 and 3 are

also shown. The numbering of

ligands is the same as in the

HSP90 D3R grand challenge

data set. Ligands of sets 1 and 3

are shown in conformation 1

J Comput Aided Mol Des (2016) 30:707–730 709
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shown in the figure. Four methods were used to estimate

the binding affinities, viz. docking, MM/GBSA, QM/MM,

and FES. They are described in separate sections below.

The studies were based on five protein crystal structures

(PDB files 3VHA [36], 2WI7 [37], 3FT5 [38], 3OW6 [39],

and 4YKR [40]), which are described in Table 1. They

were selected based on the quality of the structure, the

conformation of the entrance of the ligand-binding pocket

(closed, semi-closed, or open [38]) and the similarity of the

co-crystallised ligand with the ligands in the various sets.

The ligands in the crystal structures are shown in Figure S1

in the supplementary material. The 3VHA structure was

obtained at 1.4 Å resolution and it contains a ligand that is

quite similar to those in set 1. It was the only structure used

for the set 1 calculations and it was also used for some set 2

calculations. However, the ligand in 2WI7 is more similar

to the set 2 ligands, although the resolution is rather poor,

2.5 Å. The ligand in 3FT5 is also similar to the set 2

ligands, but it is much smaller and the binding pocket is in

the closed conformation. The resolution is intermediate

(1.9 Å). For set 3, two structures were employed, 3OW6

and 4YKR. They are of similar resolution (1.8 and 1.6 Å,

respectively) and contain similar ligands of a proper scaf-

fold (the ligand is slightly smaller in the 3OW6 structure).

Docking calculations

The docking calculations were set up with the Schrödinger

2015-2 suite of software [41]. They were based on the

3VHA [36] structure for set 1 and 2, and the 3OW6 [39]

structure for set 3. The 4YKR [40] structure was also tested

for set 3, but no reasonable docked structures could be

obtained for ligands 15 and 61. After the experimental

results were revealed, docking calculations were also per-

formed with the 2WI7 crystal structures for set 2 [37]. The

protein preparation wizard module was employed for

preparing the protein structures [41]. Crystal water mole-

cules more than 5 Å away from the ligand were removed

prior to the hydrogen-bond optimisation and protein min-

imisation stages. The hydrogen-bond network was opti-

mised at pH 7 by sampling Asn and Gln rotamers,

hydroxyls, thiols, and water orientations. The protonation

states for Asp, Glu, and His were derived from PropKa 3.1

[42, 43]. The protonation states employed for the His

residues are shown in Table 1.

According to the recommended protein preparation

protocol [44], the prepared structures were then relaxed by

means of a restrained molecular minimisation using the

Impact refinement module using the OPLS 2005 force field

[45], with heavy atoms restrained to remain within a

RMSD of 0.30 Å from the initial coordinates. This allows

hydrogen atoms to be freely minimised and heavy atoms

can move to relax strained bonds, angles, and steric cla-

shes. After a closer inspection of the hydrogen-bond net-

work in the ligand-binding site, three (3OW6) or four

(3VHA and 2WI7) water molecules were identified that

form at least one hydrogen bond to either the protein or the

ligand. These water molecules were kept in the calcula-

tions, whereas the remaining crystal water molecules were

deleted. For set 2, one of the four crystal-water molecules

(called Wat2 below) made steric clashes with one of the

ligands. In the calculations with the 3VHA structure, this

water molecule was deleted when docking all four ligands,

whereas with the 2WI7 structure, Wat2 was deleted only

for ligand 100 and was kept for the other three ligands.

The ligand structures were built using the Maestro

visualisation software [46] and then prepared with the

LigPrep module [47], in which the ionisation and tau-

tomeric states at pH 7 were predicted using Epik [48].

Finally, an energy minimisation in gas phase using

Macromodel [49] with the OPLS 2005 force field [45] was

performed.

All docking calculations were performed using the Glide

software [31]. Initial docking studies using the standard-

precision (SP) mode with default parameters for grid and

pose generation were unable to produce poses that fitted

into the binding site for the tested inhibitors, probably

because the binding cavity is too tight to fit molecules

larger than the co-crystallised ligands. Scaling down the

van der Waals radii of non-polar protein atoms, a crude

approach to allow steric clashes during docking, did not

produce better results. Therefore, we employed the

Table 1 Description of the

protein structures used in this

study and protonation states of

the His residues

Crystal structure Resolution (Å) State His protonation Set Ref.

77 154 189 210

3VHA 1.39 Semi-closed HIP HIPa HIP HIE 1, 2 [36]

2WI7 2.50 Open HIP HIE HIP HIE 2 [37]

3FT5 1.90 Closed HIP HIE HIP HIE 2 [38]

3OW6 1.80 Semi-closed HIP HID HIP HIE 3 [39]

4YKR 1.61 Closed HIP HIE HIP HIE 3 [40]

a HID in the docking and QM/MM calculations
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induced-fit docking (IFD) workflow [50, 51] to generate

alternative conformations of the receptor suitable to bind

the studied ligands, by allowing the protein to undergo

sidechain or backbone movements during the docking.

The IFD procedure has four steps: (1) initial Glide

docking using a softened-potential (van der Waals scaling

of 0.5) into a rigid receptor to generate an ensemble of

poses; (2) sampling of protein conformations using the

sidechain prediction module Prime [32], followed by a

structure minimisation of each protein–ligand complex; (3)

redocking of the ligands into low energy induced-fit

structures from the previous step using default Glide set-

tings (no scaling of van der Waals interactions); and (4)

estimation of the binding energy of the optimised protein–

ligand complexes.

The IFD standard protocol was employed, generating up

to 20 poses per ligand on each iteration. The docking grid

was generated for the co-crystallised ligands. The OPLS

2005 force field [45] was used for the minimisation stage,

in which residues within 5 Å of each ligand pose were

optimised. Pose rescoring was performed with the SP

docking mode. All other parameters were set to their

default values. Finally, the obtained docking poses were

visually inspected, filtering out those that did not adopt a

similar position and orientation as the reference inhibitors.

Only the most favourable docking pose for each ligand was

selected for structural analysis.

Pose rescoring with MM/GBSA

All docking poses were rescored with the MM/GBSA

approach, as implemented in the Prime program in the

Schrödinger software suite [32, 41]. It employed a single

minimised protein–ligand structure, thus establishing an

efficient approach to rapidly refine and rescore docking

results. We employed the variable dielectric solvent model

VSGB 2.0 [52], which includes empirical corrections for

modelling directionality of hydrogen-bond and p-stacking
interactions. This approach has been shown to give good

binding free energies for a wide range of protein–ligand

complexes [53]. Residues within 5.0 Å of the ligand were

allowed to relax during the MM minimisation of the

complex, keeping the rest of the structure fixed.

QM/MM scoring

The docked structures were also rescored using a QM/MM

approach, developed as a combination of the QM-cluster

approach for the study of the binding in host–guest systems

by Grimme and coworkers [33, 34] and the big-QM

approach developed in our group to obtain stable QM/MM

energies in proteins [35]. The QM/MM calculations

employed the docked structures, but the first four residues

in the protein for sets 1 and 2 were deleted (Pro11–Glu14,

because they are hanging free in solution, without any

interactions with the remainder of the protein) and a MOPS

buffer molecule, far from the ligand-binding site, was also

deleted. The docked structure was solvated in a sphere of

water molecules with a radius of 37 Å, centred on the

geometric centre of the protein, giving a total of *18,600

atoms. Hydrogen atoms and water molecules were opti-

mised with a 120 ps simulated annealing calculation with

an initial temperature of 370 K, followed by a minimisa-

tion using the Amber software [54].

QM/MM calculations

The QM/MM calculations were performed with the Com-

Qum software [55, 56]. In this approach, the protein and

solvent are split into two subsystems: System 1 (the QM

system) was relaxed by QM methods. For sets 1 and 2, it

consisted of the ligand, as well as Asn51, Ser52, Asp54,

Ala55, Lys58, Asp93, Gly95, Ile96, Gly97, Met98,

Asp102, Asn106, Leu107, Phe138, Tyr139, Val150,

Thr152, His154, Thr184, and Val186. For set 3, the QM

system included residues Leu48, Ile49, Asn51, Ser52,

Asp54, Ala55, Lys58, Asp93, Ile96, Gly97, Met98,

Asn106, Leu107, Lys112, Gly135, Val136, Gly137,

Phe138, Tyr139, Val148, Val150, Thr152, Thr184, and

Val186. In both cases, the six water molecules closest to

the ligand were also included, giving a total of *280 and

*320 atoms, respectively. The two QM systems are shown

in Fig. 2a, b. System 2 consisted of the remaining part of

the protein and the solvent. It was kept fixed at the original

docked coordinates.

In the QM calculation, System 1 was represented by a

wavefunction, whereas all the other atoms were repre-

sented by an array of partial point charges, one for each

atom, taken from MM libraries. Thereby, the polarisation

of the QM system by the surroundings is included in a self-

consistent manner (electrostatic embedding). When there is

a bond between systems 1 and 2 (a junction), the hydrogen

link-atom approach was employed: the QM system was

capped with hydrogen atoms (hydrogen link atoms, HL),

the positions of which are linearly related to the corre-

sponding carbon atoms (carbon link atoms, CL) in the full

system [55, 57]. All atoms were included in the point-

charge model, except the CL atoms [58].

The total QM/MM energy in ComQum is calculated

from [55, 56]

EQM=MM ¼ EHL
QM1þptch2 þ ECL

MM12;q1¼0 � EHL
MM1;q1¼0 ð1Þ

where EHL
QM1þptch2 is the QM energy of the QM system

truncated by HL atoms and embedded in the set of point

charges modelling system 2 (but excluding the self-energy

J Comput Aided Mol Des (2016) 30:707–730 711
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of the point charges). EHL
MM1;q1¼0 is the MM energy of the

QM system, still truncated by HL atoms, but without any

electrostatic interactions. Finally, ECL
MM12;q1¼0 is the classi-

cal energy of all atoms in the system with CL atoms and

with the charges of the QM system set to zero (to avoid

double counting of the electrostatic interactions). By this

approach, which is similar to the one used in the ONIOM

method [59], errors caused by the truncation of the QM

system should cancel.

The geometry optimisations were continued until the

energy change between two iterations was less than

2.6 J/mol (10-6 a.u.) and the maximum norm of the

Cartesian gradients was below 10-3 a.u. The QM calcu-

lations were carried out using Turbomole 7.0 software [60].

The geometry optimisations were performed using the

TPSS [61] functional in combination with def2-SV(P) [62]

basis set, including empirical dispersion corrections with

the DFT-D3 approach [63]. The MM calculations were

performed with the Amber software [54], using the Amber

ff14SB force field [64].

Big-QM calculations

Previous studies have shown that QM/MM energies

strongly depend on the size of the studied QM system

[58, 65]. To avoid this problem, we have developed the

big-QM approach to obtain converged energies [35]: we

constructed a very large QM system, consisting of all

residues with at least one atom within 7.5 Å of the ligand in

any of the studied structures. Thus, the QM system was the

same for all ligands. For sets 1 and 2 residues 22, 26,

47–59, 61, 62, 78, 91–108, 112, 135–139, 141, 142,

148–155, 162, 180, and 182–187, as well as the 79 closest

water molecules were included, in total *970 atoms. For

the set 3 ligands, the QM system consisted of residues 22,

26, 29, 44, 45, 47–59, 61, 62, 77, 78, 90–99, 102–113, 115,

131–142, 148–155, 162, 180, and 182–188, as well as the

80 closest water molecules, in total *1160 atoms. Both

systems included the single buried charged group in the

protein, Asp93. The ligand is not covalently connected to

the protein, so it does not form any junction to the protein

(in the standard big-QM approach, all buried charges in the

protein should be included and junctions should be moved

two residues away from the minimal QM system [35]). The

QM systems are shown in Fig. 2c, d. The big-QM calcu-

lations were performed on coordinates from the QM/MM

optimisation. Two sets of big-QM calculations were per-

formed. In the first, a point-charge model of the sur-

roundings was included, because this gave the fastest

calculations in our previous tests [35]. In the second

approach, we performed the calculation without the point-

Fig. 2 The QM systems used in the QM/MM optimisations for sets 1 and 2 (a), and set 3 (b), as well as in the big-QM calculations (c, d). The
ligand is shown in ball-and-sticks representation
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charge model, but included instead a conductor-like

screening model (COSMO) [66, 67] continuum solvent

with a dielectric constant of 80. In both cases, the calcu-

lations were performed at the TPSS/def2-SV(P) level of

theory and they employed the multipole-accelerated reso-

lution-of-identity J approach [68].

Additional energy terms

To the big-QM energy, we added the DFT-D3 dispersion

correction, calculated for the same big-QM system with

Becke–Johnson damping [69], third-order terms, and

default parameters for the TPSS functional using dftd3

program [70].

Moreover, we added a correction for increasing the basis

set from def2-SV(P) to def2-QZVP [71], calculated for the

QM system used in the QM/MM geometry optimisations

with the TPSS method and including a point-charge model

of the surroundings:

DEbsc ¼E TPSS/def2-QZVPð Þ�E TPSS/def2-SV(P)ð Þ ð2Þ

Thermal corrections to the Gibbs free energy at 298 K

and 1 atm pressure (Gtherm; including zero-point vibra-

tional energy (ZPE) entropy, and enthalpy corrections)

were calculated by an ideal-gas rigid-rotor harmonic-

oscillator approach [72] from vibrational frequencies cal-

culated at the MM level. These were obtained for truncated

systems in which only residues and water molecules within

12 Å of the ligand were included in the calculations.

Moreover, residues and water molecules more than 8 Å

from the ligand were kept fixed in the calculations and they

were ignored when the frequencies were calculated. Such

an approach is employed in MM/PBSA calculations [73]

and it has been found to give reliable results [74]. To obtain

more stable results, low-lying vibrational modes were

treated by the free-rotor approximation, using the interpo-

lation model suggested by Grimme and x0 = 100 cm-1

[33].

For all energy terms, interaction energies were calcu-

lated, i.e. separate calculations were performed for the

complex, for the protein without the ligand, and for the

isolated ligand:

DEint ¼ E complexð Þ�E proteinð Þ�E ligandð Þ ð3Þ

The protein calculations were always done using the

geometry of the complex after removal of the ligand. For

the free ligand, we did two sets of calculations. The first

was single-point calculations on the QM/MM structures of

the complex, whereas in the second approach, we opti-

mised the geometry of the ligand at the TPSS/def2-

SV(P) level of theory in a COSMO continuum solvent with

a dielectric constant of 80. This allowed for the calculation

of the relaxation energy of the ligand (i.e. the difference in

the TPSS/def2-QZVP energy of ligand when optimised in

the complex or isolated in the COSMO solvent).

Several approaches were tested to calculate the solvation

energy of the complex. In particular, we tested the QM/

MM-PBSA and -GBSA approaches [75], using Poisson–

Boltzmann (PB) or generalised Born (GB) solvation ener-

gies of the whole protein–ligand complex after removal of

the water molecules. However, this gave strongly varying

energies with large differences between the PB and GB

results. Therefore, we decided to simply use big-QM cal-

culations performed in a COSMO solvent with a dielectric

constant of 80. Such calculations were performed on both

the complex and the protein without the ligand. More

accurate solvation energies of the ligand (including also

non-polar effects) were calculated with the COSMO-RS

(real solvent) approach [76, 77] using the COSMOTHERM

software [78]. These calculations were based on two sin-

gle-point QM calculations at the BP/TZVP level of theory,

either in vacuum and with an infinite dielectric constant.

Consequently, the final binding free energies involved

six energy terms: the big-QM energies in the COSMO

solvent, the basis-set correction, the DFT-D3 dispersion

energy, the DGtherm free-energy corrections, the relaxation

energy of the ligand, and the solvation free-energy cor-

rection for the ligand:

DGbind ¼DGBQ þ DEbsc þ DEdisp þ DGtherm þ DEL;rlx

þ DDGL;solv ð4Þ

FES calculations

Relative binding free energies were also estimated by FES

calculations. These were set up independently, using

slightly different methods. For set 1, the 3VHA structure

was used [36], whereas for set 2, two crystal structures

were employed: 2WI7 and 3FT5 [37, 38]. The ligand pose

in 3FT5 is rotated 180� around C–NH2 bond relative to that

in 2WI7. We also tried to start the simulations from the

protein structure of 3FT5, but with the ligand in the ori-

entation found in structure 2WI7 (3FT5/2WI7). For set 3,

the 4YKR structure was used [40]. The structures were

protonated using the leap module of Amber 14 [54]. The

protonation of His residues was determined by investigat-

ing the surroundings, the hydrogen-bond network and the

solvent accessibility of each residue (Table 1). The

assignment agreed for three of the His residues in all

structures. However, for His154, we used a varying

assignment, because the crystal structures show that the

Nd1 atom interacts either with the backbone O atom of
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Asn155 or the backbone N atom of Asp156. In the 3VHA

structure this residue is solvent exposed and forms a water-

bridged interaction with Glu-62 and it was therefore

assumed to be doubly protonated to reduce the net negative

charge of the protein. All Glu and Asp residues were

assumed to be negatively charged and all Lys and Arg

residues positively charged, whereas the other residues

were neutral. This assignment was checked by the PropKa

software [42, 43].

All crystal-water molecules were kept in the calcula-

tions, except in set 2, for which one water molecule was

deleted to avoid steric clashes with the cyano group in

ligand 100. However, after submission of the results, we

run additional calculations with set 2, keeping all crystal-

water molecules or deleting one (3FT5) or two (2WI7)

water molecules by FES before the 101 ? 100 perturba-

tion. The protein–ligand complex and the free ligand were

solvated in a truncated octahedral box of TIP3P water

molecules [79], extending 10 Å from the protein and the

ligand, respectively.

The proteins were described with the Amber14SB force

field [64] and no counter ions were added to the system. All

ligands were manually built into the corresponding protein

structure and were described with general Amber force

field [80]. Charges were obtained with the restrained

electrostatic potential method [81]: the ligands were opti-

mised with the semiempirical AM1 method, followed by a

single-point calculation at the Hartree–Fock/6-31G* level

to obtain the electrostatic potentials, sampled with the

Merz–Kollman scheme [82]. These calculations were per-

formed with the Gaussian 09 software [83]. The potentials

were then used by antechamber to calculate the charges. A

few missing parameters were obtained with the Seminario

approach [84]: the geometry of the ligands was optimised

at TPSS/def2-SV(P) level, followed by a frequency cal-

culation using aoforce module of Turbomole 7.01 [60].

From the resulting Hessian matrix, parameters for the

missing angles and dihedrals were extracted with the

Hess2FF program [85]. These parameters are given in

Tables S1 and S2 in the supplementary material.

After submission of the results, it was discovered that

the structures of the set 1 ligands were strange, with a

tetrahedral –NH2 group, accepting hydrogen bonds from

the protein and water molecules (Figure S2 in the supple-

mentary material). This was traced back to a missing

improper torsion for this group. By adding this torsion with

a force constant of 10 kcal/mol/rad2 (cf. Table S2), more

reasonable structures were obtained.

In order to estimate the relative binding free

energy between two ligands, L1 and L2, DDG�bind =
DG�bind(L2) - DG�bind(L1), we employed a thermody-

namic cycle that relates DDG�bind to the free energy of

alchemically transforming L1 into L2 when they are either

bound to the protein, DG�bound, or free in solution, DG�free
[86],

DDG�
bind ¼ DG�

bind L2ð Þ�DG�
bind L1ð Þ ¼ DG�

bound�DG�
free:

ð5Þ

After dividing the transformation of L1 to L2 into a

discrete number of states, described by a coupling param-

eter k, multi-state Bennett acceptance-ratio method

(MBAR) was used to calculate DGbound and DGfree [87],

using the pyMBAR software [88]. Energies were also

calculated with Bennett acceptance ratio (BAR) [89],

thermodynamic integration (TI) [90], and exponential

averaging (EA) [91]. Separate calculations for the ligand

free in water and bound to the protein and 13 intermediate

states were used (k = 0.00, 0.05, 0.10, 0.20, 0.30, 0.40,

0.50, 0.60, 0.70, 0.80, 0.90, 0.95, and 1.00). The electro-

static and van der Waals interactions were perturbed

simultaneously in each simulation using soft-core poten-

tials for both types of interactions [92, 93].

For all ligands in set 1 and ligands 10, 15, 21, 23, 26, 28,

and 34 in set 3, there are two possible orientations of the

modified ring system. No flipping of this ring was observed

during the simulations in the protein. Therefore, we run

two independent perturbations starting from the two dif-

ferent conformations, in order to enhance the sampling.

The resulting dihedral angles in the simulations and the

docked structures are shown in Table S3 in the Supple-

mentary material. Ligand 61 in set 3 has two possible

configurations (R and S) and we studied both (experimen-

tally, the racemate was studied [23]).

The alchemical perturbation simulations were per-

formed in the following way [10]: the system at each

lambda value was subjected to 100 cycles of steepest-de-

scent minimisation, with all atoms, except water molecules

and hydrogen atoms, restrained to their start position with a

force constant of 418 kJ/mol/Å2. This was followed by

50 ps NPT simulation and a 500 ps NPT equilibration

without any restraints. Finally, a 1 ns production simula-

tion was run. Energy differences for MBAR were sampled

every 10 ps.

All minimisations and simulations were performed with

the pmemd module of Amber14 [54, 94]. The temperature

was kept constant at 300 K using a Langevin thermostat

with a collision frequency of 2.0 ps-1 [95] and the pressure

was kept constant at 1 atm using a weak-coupling isotropic

algorithm with a relaxation time of 1 ps [96]. Long-range

electrostatics were treated by particle-mesh Ewald method

[97]. The cutoff for the van der Waals interactions was set

to 8 Å. All bonds involving hydrogen atoms were con-

strained using the SHAKE algorithm [98], so that a time

step of 2 fs could be used.
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GCMC calculations

To determine the number of water molecules in the binding

site of the set 2 ligand, we employed grand canonical Monte

Carlo (GCMC) calculations, as implemented by Essex and

coworkers [99] in the ProtoMS software package (version

3.2) [100]. The water structure was analysed for a rectan-

gular box, extending 3 Å in all directions from the ligand,

starting from the docked results. The proteins (both 2WI7

and 3FT5) were described with the Amber 14SB force field

[64] and the ligands with the general Amber force field [80].

The structures were minimised using AMBER 14 [54] (100

steps minimisation via steepest descent) and then solvated

with TIP4P water up to a radius of 10 Å around the protein.

All the simulations were performed at 298 K, with a 10 Å

cutoff for the non-bonded interactions.

Apart from standard Monte Carlo moves, such as

translation and rotation, which apply to the whole system,

attempts were also made to insert or delete a water mole-

cule within the box region. The probability is controlled by

the chemical potential of an ideal-gas reservoir to which

the region around the ligand is being coupled. A virtual

titration was performed, simulating the system at different

chemical potentials (measured by the Adams value [101]).

The optimal number of water molecules around the ligand

was determined from the titration curve based on the

simulation for which the average number of water mole-

cules corresponds to the binding free energy minimum

[99]. The simulation with this value of the chemical

potential was analysed to obtain water clusters and these

were used as starting positions in FES calculations.

For all systems, GCMC simulations were run for 40

evenly spaced Adams values between -20 and ?19. The

systems were first equilibrated with 10 million Monte

Carlo moves. The first 5 million moves were dedicated to

inserting, deleting, and moving water molecules within the

box region. In the following 5 million moves, translations

and rotations of the protein, the ligand, and the rest of the

solvent were introduced for every second move, while the

other moves were still dedicated to the water molecules

within the box. After the equilibration, we performed 200

million moves of production, where the sampling contin-

ued in the same manner. Snapshots were recorded every

0.5 million moves of the production.

Quality measures and uncertainty estimates

The uncertainties of the free-energy estimates were

obtained by nonparametric bootstrap sampling (using 100

samples) of the work values in the MBAR calculations

using the pyMBAR software [88]. The other approaches

(docking, MM/GBSA, and QM/MM) are based on single

structures and therefore do not provide any statistical

estimate of the uncertainties. The quality of the binding-

affinity estimates compared to experimental data [23] was

quantified using the mean absolute deviation (MAD), the

squared Pearson’s correlation coefficient (R2), and the

Kendall’s rank correlation coefficient (s). The uncertainties
of the quality metrics were obtained by a parametric

bootstrap (500 samples) using the uncertainties in both the

calculated and experimental estimates. The experimental

binding affinities were estimated from the measured IC50

values [23] according to DG�bind = RT ln(IC50/C�), where
R is the ideal gas constant, T is the temperature, 300 K, and

C� is the standard-state concentration, 1 M. Ligand 61 was

reported as a non-binder, i.e. having IC50[ 50 lM [23]

and it was assigned a binding affinity of -24.6 kJ/mol

(corresponding to IC50 = 50 lM). No uncertainties for the

experimental affinities were provided by the organisers.

Therefore, we instead assumed a typical uncertainty of

1.7 kJ/mol for the experimental affinities [102] when cal-

culating the uncertainties of the quality measures.

To estimate the convergence of the various perturba-

tions, six different overlap measures were employed [10].

We calculated the Bhattacharyya coefficient for the energy

distribution overlap (X) [103], the Wu & Kofke overlap

measures of the energy probability distributions (KAB) and

their bias metrics (P) [104, 105], the weight of the maxi-

mum term in the exponential average (wmax) [22], the dif-

ference of the forward and backward exponential average

estimate (DDGEA), and the difference between the BAR and

TI estimates) [10]. X goes from 0, no overlap to 1, perfect

overlap [103], and we consider values higher than 0.7

acceptable [10]. KAB goes from 0—no overlap, via 1—full

overlap, to 2—the first distribution is completely inside the

second distribution [104, 105], and again values larger than

0.7 are accepted. A negative P indicates poor overlap and

values below 0.5 are alarming [104, 105]. 1/wmax indicates

how many snapshots contribute significantly to the EA

estimate and wmax values larger than 0.3 indicate poor

convergence [10]. DDGEA is the hysteresis in the forward

and backward EA estimates, whereas DDGTI indicates the

difference between the BAR and TI estimates. In both

cases, differences larger than 4 kJ/mol indicate poor con-

vergence [10]. We examined these overlap measures for

each of the 26 individual perturbations (13 k values for

simulations with or without the protein). If two of the

measures indicated poor overlap (or if P was negative),

additional simulations with intermediate k values were run.

Results and discussion

In the present work, we studied three congeneric series of

HSP90 inhibitors, shown in Fig. 1, within the D3R 2015

grand challenge blind competition [23]. Sets 1 and 2 are
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small aminopyrimidine derivatives consisting of five and

four molecules, respectively, both containing a 1,3-difluo-

robenzene group. Set 3 is comprised of ten benzimida-

zolone derivatives with a 1,3-dihydroxybenzene moiety as

the common scaffold. We have estimated absolute binding

affinities with molecular docking, MM/GBSA, and QM/

MM calculations and relative binding free energies with

the FES method. In the following, we will describe the

binding modes and affinities obtained with the various

methods in separate sections.

Prediction of binding modes by docking

Initial attempts using a standard docking approach, in

which the receptor structure was kept rigid, did not yield

satisfactory results, in that only a few ligands docked into

the binding pocket. A closer inspection showed that the

selected reference crystal structures contain ligands that are

smaller than the studied inhibitors, although they contain

the proper structural scaffolds. Therefore, steric clashes

with either protein residues or surrounding water molecules

occurred during the docking of most ligands. To account

for protein flexibility, we instead employed the induced-fit

docking (IFD) protocol [50, 51], which iteratively performs

docking calculations and optimises the protein–ligand

complexes through MM minimisations, effectively mod-

elling protein structural changes upon ligand binding. This

gave reasonable structures for all complexes.

All ligands bound approximately in the same position

and orientation as their corresponding reference structure

(Fig. 3), displaying favourable interactions with Asp93 and

Gly97 in complex hydrogen-bond networks that involve

several conserved water molecules. A summary of the

protein–ligand interactions is given in Table 2. It shows

that all ligands established a strong hydrogen bond with the

Asp93 sidechain (H–O distances of 1.96 ± 0.09 Å).

Moreover, most of the ligands displayed additional water-

bridged hydrogen bonds with Asp93 and Gly97 via one

crystal-water molecule (denoted Wat1). Most complexes

also showed a stacked interaction between one of the

benzene rings and the sidechain of Asn51, with a distance

of *4 Å between the Ne2 atom of Asn51 and the centre of

the benzene ring [106, 107].

Set 1 ligands also exhibited hydrogen bonds with

another crystal-water molecule (Wat2) that directly inter-

acts with Asn51, as well as with Leu48, Ser52, and Thr184

in a network involving two additional water molecules

(Fig. 3a). A weak hydrogen-bond with Tyr139 was also

identified, where one of the chlorine atom acts as acceptor.

Other minor interactions include weak p-stacking interac-

tions with Phe138 and hydrophobic contacts with Lys58.

The latter residue showed major variations in the sidechain

conformation in the various structures, because this is the

only residue that interacts with the variable part of the

ligands. In fact, ligand 80 showed a hydrogen-bond with

Lys58 sidechain instead, in which the furan oxygen atom

acted as the acceptor. For all the other ligands, the side-

chain of Lys58 was bent away from the ligand.

The set 2 ligands displayed interactions only with Asp93

and Wat1. However, the cyanide substituent of compound

100 replaced the role of Wat2 in Set 1 and established a

hydrogen-bond with Asn51 (cf. Figure 3b). To make the

results comparable, Wat2 was excluded in the calculations

for all four ligands. After submission, we also tested

docking calculations based on the 2WI7 crystal structure

(which has a ligand that is chemically more similar to the set

2 scaffold) and kept Wat2 when docking ligands 101, 105,

and 106. The results (also included in Table 2) showed that

these three ligands can make strong hydrogen bonds to

Wat2. Strong interactions with Wat3 and Wat1 were also

observed, whereas the interactions with Asp93 became

more variable (Fig. 3c). The water molecules bridged

interactions with Leu48, Asn51, Asp93, and Gly97. More-

over, the pyrazole ring nitrogen of ligands 105 and 106

established a second hydrogen bond with Wat1 (Fig. 3c).

In general, set 3 inhibitors exhibited a larger number of

interactions, and also shorter distances than in the other

two sets. In particular, the presence of hydroxyl and car-

bonyl groups allowed the formation of additional short

direct hydrogen bonds with Gly97 and Thr184, where one

of the hydroxyl substituents appears to have displaced

Wat2 (not present in the reference crystal, 3OW6) in

favour of direct hydrogen bonds with Asn51, and allowed

for reaching water Wat3, establishing further hydrogen

bonds with Leu48, Ser52, Ile91, and Asp93. Major move-

ments were observed for the Lys112 and Phe138 sidechains

(Fig. 3d), which were shifted towards the ligands to form

cation–p and p-stacking interactions, respectively. The

geometry of the cation–p interaction with Lys112 showed a

great variability, indicating that this interaction may be

important for regulation of the activity. For ligand 61, only

the R conformation was found to bind to the protein in a

reasonable mode.

Binding affinities estimated by docking and MM/

GBSA

We have estimated the binding affinities for the three sets

of ligands with three scoring functions (all employing the

same final IFD structures in Fig. 3): GlideScore (GScore),

Emodel and IFDScore (which is the GScore plus a portion of

the Prime MM energy from the refinement calculation). In

addition, all docked complexes were scored with MM/

GBSA calculations, after minimisation of the docked

structures. The calculated binding affinities are shown in

Table 3. The performance of the tested scores was
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evaluated by three quality metrics: the correlation coeffi-

cient (R), Kendall’s rank correction coefficient (s), and the

mean absolute deviation after removal of the systematic

error (i.e. the mean signed error; MADtr), which are listed

at the bottom of Table 3. The correlation between the

experimental [23] and calculated binding affinities are

shown in Fig. 4.

The results for set 1 were poor, with a negative or

vanishing s for all methods and a negative (MM/GBSA) or

very low correlation (R = 0.0–0.2). However, the MADtr

Fig. 3 Binding modes for the three series of HSP90 inhibitor from

the docking calculations: a set 1, b original docking for set 2, based

on the 3VHA crystal structure (submitted), c set 2 in the 2WI7 crystal

structure, keeping all water molecules, and d set 3. Carbon atoms of

the residues are shown in light grey tubes, showing some movements

as result of the induced-fit docking protocol. Carbon atoms of the

ligands are shown as green tubes. Water molecules that interact with

the ligands are displayed in thick tube representation and labelled as

WAT. Reference crystal structures (3VHA, 2WI7, and 3OW6

[36, 37, 39]) are coloured in cyan for comparison (both ligands and

protein). Nitrogen and oxygen atoms are blue and red, respectively.

Hydrogen bonds are represented as yellow dashed lines (purple if the

acceptor is a halogen atom). Cation-p and p-stacking interactions are

represented as dark green and dark cyan dashed lines, respectively
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is good for both GScore and IFDScore, 4 kJ/mol, but this is

mainly an effect of the fact that the range of the predicted

affinities is small, 4–7 kJ/mol, compared to experimental

range of 11 kJ/mol (setting all calculated affinities to the

same value gives a MADtr of 3 kJ/mol).

For the original calculations on set 2, all four methods

also gave very poor results, with strong negative correla-

tions (R = -0.9 to -1.0), owing to the fact that all

methods predicted ligand 100 to bind best, although it

experimentally is the weakest ligand. This also gave a large

MADtr to all methods (7–18 kJ/mol) and a negative or

vanishing s.
For the calculations based on the 2WI7 crystal struc-

ture, in which Wat2 was kept for ligands 101, 105, and

106, the results were more varying (also included in

Table 2). The GScore energies showed no correlation

with the experimental data, whereas the internal docking

score Emodel produced reasonable correlation (R = 0.67)

and a correct ligand ranking (s = 1.00). The IFDScore

showed intermediate results (R = 0.42 and s = 0.33).

The MM/GBSA results were very poor, with negative

R and s. On the other hand, MADtr was best for

IFDScore (5 kJ/mol). All methods still predicted ligand

100 to bind with a potency comparable to the other

ligands, probably because the employed docking and

MM/GBSA rescoring approaches did not consider the

cost of displacing Wat2 when ligand 100 binds. In fact,

most quality measures improved significantly if ligand

100 was excluded.

For set 3, the results are somewhat better: all methods

gave a positive correlation (R = 0.1–0.7) and a positive s
(0.1–0.4; however, it should be noted that four of the

ligands have experimental affinities within 1 kJ/mol,

making it questionable to calculate s for these—it would be

better to consider only statistically significant differences,

e.g. s90 [14]). Both R and s were best for MM/GBSA, but

MM/GBSA and Emodel gave poor MADtr (29 and

22 kJ/mol), which reflects that the results for these two

methods have a much larger range than the experimental

data (124 and 111 compared to 19 kJ/mol). On the other

hand, MADtr of GScore and IFDScore is much better, 4

and 5 kJ/mol, but again the ranges are smaller than for the

experimental results, 7 and 13 kJ/mol.

Two sets of absolute affinities were submitted, viz. the

original GScore and MM/GBSA (submission entries

56afbe93eeaf4 and 56afbea4a8c67, respectively) results in

Table 3 (based on the 3VHA structure without Wat2 for set

2).

QM/MM estimates

Next, we tried to estimate the binding free energies also

with a QM/MM approach. As described in the Methods

section, we started from the final induced-fit docked

structures, to which a sphere of water molecules was added

and optimised (together with the hydrogen atoms). Then, a

QM system of 280–320 atoms was optimised by QM/MM

at the TPSS/def2-SV(P) level of theory (Fig. 2a, b).

Table 2 Hydrogen bonds (first eight lines) and cation–p interactions (last line, Lys122) in the structures obtained with the induced-fit docking

Residues Set 1 Set 2 Set 2a Set 3

n r n r n r n r

Lys58 1 2.12

Asp93 5 2.08 ± 0.09 4 1.86 ± 0.07 4 1.90 ± 0.50 10 1.94 ± 0.11

Wat1 5 1.90 ± 0.07 4 2.12 ± 0.14 4 2.13 ± 0.15 10 1.84 ± 0.09

Wat2 5 1.94 ± 0.07 3 2.10 ± 0.05

Asn51 1 2.27 8 2.17 ± 0.12

Wat3 4 2.20 ± 0.05 9 1.97 ± 0.17

Gly97 10 2.19 ± 0.14

Thr184 10 1.83 ± 0.08

Asn51b 5 4.08 ± 0.05 4 4.30 ± 0.17 4 5.38 ± 0.71 5 4.13 ± 0.71

Lys112 8 5.40 ± 0.76

For each interaction, the number of structures in which this interaction is found is given (n, out of 5, 4, and 10 structures for sets 1–3,

respectively) and the average distance in these structures (r in Å), together with the standard deviation over the n structures. Wat1–Wat3 are

crystal-water molecules
a A second set of docking calculations for set 2, using the 2WI7 crystal structure and keeping Wat2 for ligands 101, 105, and 106 (but not 100),
done after the experimental results were revealed
b Interaction in which the plane of the sidechain amide group is nearly parallel to the plane of the aromatic ring. The average distance between

the Ne2 of Asn51 and the centre of the aromatic ring is given
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Finally, a big-QM calculation was performed for a QM

system involving all protein residues and water molecules

within 7.5 Å of the ligand, 970–1160 atoms, shown in

Fig. 2c, d), calculated at the TPSS/def2-SV(P) level of the-

ory in a COSMO continuum solvent. To the big-QM energy,

entropy, basis-set, and DFT-D3 dispersion corrections were

added, in addition to the relaxation energy and a more

accurate COSMO-RS solvation energy of the ligand (Eq. 4).

The QM/MM structures were qualitatively similar to the

docked structures, but with some differences in the

hydrogen-bond distances, as can be seen by comparing

Tables 2 and 4. For set 1, the bonds to Asp93 were

shortened, whereas those to Wat1 were elongated. For set

2, the structures of the four ligands were more similar, but

the hydrogen-bond interaction with Wat1 was strength-

ened. For set 3, the hydrogen bonds to Asp93, Wat3,

Table 3 Binding affinities

(DGbind in kJ/mol) for the three

studied HSP90 inhibitor sets

calculated with Glide (GScore

and Emodel), induced-fit docking

protocol (IFDScore), and MM/

GBSA. In addition, the

experimental data [23] are

included (Exp.)

Ligand Exp. GScore Emodel IFDScore MM/GBSA

Set 1 80 -32.6 -42.6 -326.8 -2079.7 -367.9

81 -38.2 -46.9 -398.1 -2086.9 -379.7

82 -28.2 -47.0 -378.7 -2083.8 -395.5

83 -27.5 -45.4 -375.6 -2085.9 -413.1

84 -29.9 -45.4 -368.3 -2081.5 -405.6

Set 2 100 -24.6 -41.3 -333.9 -2054.0 -342.8

3VHA 101 -38.3 -38.7 -289.5 -2047.0 -311.1

105 -39.5 -37.4 -300.7 -2046.5 -319.5

106 -40.3 -37.8 -308.4 -2046.6 -298.7

Set 2 100 -24.6 -39.7 -282.2 -1973.7 -357.2

2WI7 101 -38.3 -38.4 -282.9 -1973.4 -310.9

105 -39.5 -40.7 -307.1 -1978.7 -348.0

106 -40.3 -39.5 -309.7 -1974.8 -338.8

Set 3 10 -30.3 -51.5 -444.6 -1980.7 -292.2

11 -38.1 -46.9 -401.6 -1977.9 -307.1

15 -29.5 -54.1 -512.3 -1988.8 -347.7

19 -29.6 -47.8 -444.2 -1980.4 -306.3

21 -38.3 -54.2 -493.0 -1989.1 -395.8

23 -31.5 -50.3 -468.3 -1985.9 -333.7

26 -43.9 -53.7 -458.7 -1987.1 -383.3

28 -37.4 -54.4 -457.6 -1986.9 -316.1

34 -29.7 -51.4 -447.2 -1991.3 -305.0

61(R) [-24.6 -50.2 -415.5 -1981.7 -271.4

MADtr Set 1 3.9 17.6 3.8 18.2

Set 2 6.8 18.5 8.3 18.0

3WI7 5.6 8.7 4.8 17.5

Set 3 4.3 22.3 5.1 29.4

R Set 1 0.05 0.20 0.21 -0.70

Set 2 -0.97 -0.86 -1.00 -0.91

3WI7 -0.02 0.67 0.42 -0.55

Set 3 0.32 0.11 0.16 0.70

s Set 1 -0.20 0.00 -0.20 -0.60

Set 2 -0.67 0.00 -0.67 -0.67

3WI7 0.00 1.00 0.33 -0.33

Set 3 0.20 0.20 0.11 0.42

For set 2, two series of results are given, based on either the 3VHA or 2WI7 crystal structures, the latter

including Wat2 for ligands 101, 105, and 106. The lower part of the table contains the quality metrics of the

various results: the mean absolute deviation after removal of the systematic error (MADtr), the correlation

coefficient (R) and Kendall’s rank correlation coefficient (s). Only the best scores among all obtained

structures are reported
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Gly97, and Thr184 were much shortened, whereas that to

Wat1 was elongated.

Table 5 shows the various QM/MM (free) energy

components for the 19 ligands and their correlation to the

experimental data. It can be seen that the raw QM/MM

energies were large and negative (-620 kJ/mol on aver-

age). The same applies to the EHL
QM1þptch2 energy component

(-557 kJ/mol on average), showing that the QM/MM

energy is dominated by the QM energy. Neither term

showed any convincing correlation to experimental data.

The big-QM energies were less negative, especially in the

COSMO solvent (-127 kJ/mol on average). However, the

correlation to the experimental data was still poor for all

three sets of ligands, R = -0.1 to 0.3.

The dispersion energy was large and negative, showing

a smaller variation than the QM energies (-309 kJ/mol on

average). It was compensated by the basis-set correction

and the DGtherm terms, which both were positive, 177 and

104 kJ/mol on average. Neither term showed any consis-

tent correlation to the experimental data. The relaxation

energy of the ligand was 10–61 kJ/mol, largest for the set 3

ligands and smallest for set 2. It showed only a minor

variation depending on whether it was calculated with the

def2-SV(P) or def2-QZVP basis sets or with or without the

COSMO solvation energy (less than 11 kJ/mol). The

COSMO-RS solvation energies of the ligand were -48 to

-141 kJ/mol, more negative for the set 3 ligands than for

the ligands of the other two sets. The COSMO-RS solva-

tion energy was always more negative than the pure

COSMO solvation energy, by 23 kJ/mol on average. Nei-

ther of the ligand terms showed any consistent correlation

to the experimental data.

Adding all the terms according to Eq. 4, we obtained the

full QM/MM binding free energy (DGbind). From Table 5,

it can be seen that it was too negative compared to the

experimental data and also with a too large range (-34 to

-164 kJ/mol). For sets 2 and 3, it showed a weak corre-

lation with the experimental data (R = 0.5 and 0.3,

respectively), whereas for set 1, the correlation was nega-

tive (R = -0.7). For all three sets, MADtr was large,

17–30 kJ/mol. In fact, the results could be improved if the

DGtherm and DEL,rlx terms were omitted (DG’bind column in

Table 5). Then, MADtr was only 6 kJ/mol for set 2 and

Table 4 Hydrogen bonds (first eight lines) and cation–p interactions (last line, Lys122) in the structures obtained with QM/MM optimisation

Residues Set 1 Set 2 Set 3

n r n r n r

Lys58 1 2.29

Asp93 5 1.86 ± 0.04 4 1.83 ± 0.07 10 1.53 ± 0.05

Wat1 5 2.08 ± 0.08 4 1.89 ± 0.05 10 2.07 ± 0.07

Wat2 5 1.87 ± 0.05

Asn51 1 2.52 9 2.08 ± 0.12

Wat3 9 1.62 ± 0.03

Gly97 10 1.75 ± 0.03

Thr184 10 1.67 ± 0.04

Asn51a 5 3.95 ± 0.11 4 4.22 ± 1.03 9 3.75 ± 0.21

Lys112 10 5.42 ± 0.29

For each interaction, the number of structures in which this interaction is found is given (n, out of 5, 4, and 10 structures for sets 1–3,

respectively) and the average distance in these structures (r in Å), together with the standard deviation over the n structures. Wat1–Wat3 are

crystal-water molecules
a Interaction in which the plane of the sidechain amide group is nearly parallel to the plane of the aromatic ring. The average distance between

the Ne2 of Asn51 and the centre of the aromatic ring is given
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Fig. 4 Correlation between the experimental [23] and calculated

binding affinities. Sets 1–3 are marked with squares, triangles, and

circles, respectively. For GScore, the original score is shown, whereas

for Emodel, IFDScore, and MM/GBSA, the mean signed error is

subtracted (to give a similar scale of all the calculated results). The

line shows the perfect correlation. Ligand 61 was experimentally

found to be a non-binder, i.e. with a Ki[ 50 lM, which corresponds

to DGbind[-25 kJ/mol
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14–23 kJ/mol for the other two sets. It is often observed

with the similar MM/GBSA approach that the results are

improved if the DGtherm term is omitted [2]. The reason is

probably that the complex and protein structures may relax

to different local minima during the MM minimisation.

Likewise, MM/GBSA almost invariably exclude the ligand

and protein relaxation energies, because they strongly

increase the statistical uncertainty of the results [2]. For the

rigid octa-acid host–guest system in the SAMPL4 compe-

tition, an improvement of the results was obtained if the

ligand-relaxation energy was included [16], but with the

more flexible ligands in the SAMPL5 competition, the

results were deteriorated [108].

Compared to the docking and MM/GBSA results in

Table 3, the QM/MM calculations gave much better corre-

lation and s for set 2, similar or slightly worse results for set 3,

andmuchworse for set 1 (except forMM/GBSA).MADtrwas

also better for set 2, whereas it wasworse than the GScore and

IFDScore for the other two sets. One set of relative QM/MM

affinities was submitted (submission entry 56af85ab34dbd),

viz. theDGbind results inTable 5, but unfortunatelywith a sign

error in the DDGL,solv term in Eq. (4).

Table 5 The various QM/MM (free-) energy terms (kJ/mol): the

QM/MM energy (DEQM/MM), the E
HL
QM1þptch2 energy (DEQM?ptch), the

big–QM energy (DEBQ), calculated either with a point-charge (ptch)

model of the surroundings or with COSMO solvation, the dispersion

energy, the basis-set correction energy (Eq. 2), the DGtherm ZPE,

entropy, and thermal correction, the ligand relaxation energy

(DEL,rlx), the ligand solvation energy (DGL,solv), calculated either at

the COSMO (TPSS/def2–SV(P)) or COSMO–RS (BP/TZVP) levels

(the DDGL,solv term in Eq. (4) is the difference of those two energy

terms), and the final QM/MM binding free energy from Eq. (4)

(DGbind) and the same energy, excluding the DGtherm and DEL,rlx

terms (DG0
bind). The last nine lines in the table give MADtr, R and s

compared to the experimental data [23]

Ligand DEQM/MM DEQM?ptch DEBQ DEdisp DEbsc DGtherm DEL,rlx DGL,solv RS DGbind DG0
bind

ptch COSMO QZP COSMO

80 -484.2 -426.7 -156.2 -56.9 -285.5 149.3 93.1 -27.1 -45.9 -54.8 -64.1 -157.2

81 -565.5 -491.4 -214.4 -76.2 -324.3 157.4 111.3 -33.8 -55.4 -69.2 -84.3 -195.5

82 -487.3 -421.6 -145.2 -45.9 -316.1 145.3 81.4 -21.5 -42.3 -51.5 -104.6 -186.0

83 -550.4 -470.1 -218.3 -82.9 -337.8 160.5 99.2 -32.2 -51.3 -60.5 -119.6 -218.8

84 -544.9 -471.9 -158.4 -45.0 -340.5 152.6 80.5 -32.7 -57.7 -65.8 -111.6 -192.1

100 -487.8 -425.3 -181.7 -65.7 -249.1 148.0 100.1 -16.2 -65.2 -81.9 -33.9 -133.9

101 -475.4 -419.0 -164.5 -67.6 -266.1 158.8 61.1 -10.6 -39.3 -48.1 -94.4 -155.5

105 -433.5 -379.7 -157.8 -54.3 -238.3 133.1 86.4 -10.2 -49.6 -63.2 -49.3 -135.7

106 -438.7 -384.7 -170.7 -70.4 -231.7 130.5 93.7 -10.7 -51.5 -66.1 -52.7 -146.3

10 -760.1 -697.2 -447.5 -242.3 -307.2 196.8 123.8 -54.7 -103.8 -141.1 -136.8 -260.6

11 -707.8 -645.2 -336.0 -153.8 -324.3 194.7 112.4 -54.8 -89.7 -122.8 -83.0 -195.4

15 -851.1 -705.8 -388.7 -182.1 -353.4 256.5 136.8 -48.2 -101.5 -127.4 -68.1 -204.9

19 -711.6 -640.0 -386.5 -215.5 -284.3 191.0 106.6 -31.6 -91.4 -123.6 -138.4 -244.9

21 -776.1 -684.7 -349.5 -178.5 -359.3 217.3 150.4 -35.9 -92.7 -120.9 -105.9 -256.3

23 -748.1 -676.3 -389.8 -185.3 -338.8 186.2 85.8 -47.0 -98.8 -140.3 -163.7 -249.5

26 -726.8 -658.0 -349.4 -176.8 -341.0 203.6 116.0 -34.9 -89.9 -123.9 -129.3 -245.3

28 -750.0 -685.2 -379.5 -190.6 -325.4 203.3 107.6 -43.9 -95.2 -125.4 -131.0 -238.6

34 -749.5 -687.7 -424.5 -235.0 -291.0 196.4 104.5 -52.2 -100.9 -141.0 -132.7 -237.2

61 -687.3 -622.1 -282.7 -93.5 -352.0 187.6 123.8 -60.8 -90.3 -121.0 -42.6 -166.5

MADtr 31.9 25.0 29.0 13.3 16.7 6.0 11.5 4.5 5.2 5.1 21.4 14.5

27.0 24.2 12.1 7.0 15.5 9.4 10.7 7.7 12.5 14.1 17.1 6.1

31.6 23.7 37.6 30.1 21.0 16.7 13.9 11.1 7.8 9.6 30.0 23.0

R 0.33 0.44 0.33 0.29 -0.26 -0.21 -0.70 0.41 0.36 0.57 -0.67 -0.27

-0.78 -0.73 -0.83 -0.11 -0.22 0.37 0.49 -0.99 -0.81 -0.76 0.53 0.55

-0.01 0.09 -0.11 0.05 0.21 -0.08 -0.09 -0.53 -0.40 -0.32 0.27 0.38

s -0.60 -0.20

0.33 0.33

0.07 0.33
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FES results

Relative binding free energies between pairs of ligands

were estimated using alchemical FES calculations and

employing the standard thermodynamic cycle with the two

ligands either bound to the protein or free in solution [86].

Free-energy differences were calculated with the MBAR,

BAR, TI, and EA methods. Most of the calculations in sets

1 and 3 involved reference ligands to make the perturba-

tions smaller.

The average structures of the HSP90–ligand complexes

are described in Table 6. For set 1, we find that the ligands

bind in a mode that is rather similar to that found in the

docking and the QM/MM optimisations (Fig. 5a): all

ligands formed a direct hydrogen bonds to Asp93 and the

two water molecules Wat1 and Wat2, as well as the

stacking interaction between the aromatic ring of the ligand

and the sidechain of Asn51. However, in variance to the

docked and QM/MM structures, all ligands in the FES

structures showed also a hydrogen bond to Wat3.

Ligands from set 2 bind differently in the FES simula-

tions started from the crystal structures 2WI7 and 3FT5.

Structures obtained with the 2WI7 structure were quite

similar to the docked and QM/MM structures (Fig. 5b), in

which each ligand directly interacted with Asp93 and

formed a hydrogen bond network involving Wat1, Asp93,

Thr184, and Gly97. No water molecule replaced the

deleted Wat2 molecule. In the 3FT5 structures, the ligands

still showed a direct hydrogen bond to Asp93, but the

ligands were rotated so that the hydrogen-bond network

was moved towards Asn51 and involved Wat2, Wat3, and

a third water molecule, shown in Fig. 5c. Ligand 100 of the

3ft5 subset also formed two direct hydrogen bonds with

Thr184 and Gly97 (Fig. 5d).

After submission of the results, we performed GCMC

calculations to study the water structure around the ligands

of set 2. These calculations are described in the Supple-

mentary material. The resulting clustered water molecules

around the various ligands are shown in Fig. 6. It can be

seen that for the 2WI7 structure, the cyano group in ligand

100 replaced two water molecules that were present for the

other three ligands (Wat2 and Wat3). For the 3FT5 struc-

ture, only one water molecule (Wat1) was displaced by the

cyano group in ligand 100. Therefore, we performed an

additional set of FES calculations (using both the 2WI7 and

3FT5 structures), in which all water molecules were

included in the perturbations. For ligand 100 in the 2WI7

structure, Wat2 moved away from the ligand and ended up

in bulk solvent, whereas for the other ligands, Wat2 stayed

in the original position. Wat3 remained in the starting

position in all calculations with the 2WI7 structure (i.e.

also for ligand 100). For the calculations in the 3FT5

structure, Wat1 did not interact directly with any of the

ligands (the distance was *2.7 Å). For ligand 100, Wat3

cFig. 5 Binding modes in the FES calculations. a ligand 80 (set 1; all

the other ligands in this set bind in a similar mode), b set 2 ligands,

based on the 2WI7 crystal structure, c ligands 101, 105, and 106 (set

2) with three water molecules in different colours (the one in magenta

corresponds to Wat2 and that in orange corresponds to Wat3),

d ligand 100 (set 2), based on the 3FT5 crystal structure, and e ligand
10 (set 3; all the other ligands in this set bind in a similar mode).

Hydrogen bonds are indicated by green dotted lines

Table 6 Hydrogen bonds in the structures obtained in the FES calculations (the most stable conformation of the ligand for Sets 1 and 3)

Residues Set 1 Set 2 (2WI7) Set 2 (3FT5) Set 2 (2WI7 ? Wat2) Set 2 (3FT5 ? Wat1) Set 3

n r n r n r n r n r n r

Asp93 5 2.01 ± 0.07 4 1.90 ± 0.03 4 2.15 ± 0.10 4 1.87 ± 0.03 3 1.98 ± 0.01 10 1.69 ± 0.04

Wat1 5 2.57 ± 0.15 4 2.16 ± 0.07 4 2.12 ± 0.07 10 2.39 ± 0.09

Wat2 5 2.28 ± 0.09 4 2.17 ± 0.19 3 2.16 ± 0.03 3 2.12 ± 0.11

Asn51 1 2.11

Wat3 5 2.22 ± 0.04 4 2.33 ± 0.05 1 2.50 4 2.17 ± 0.05 1 2.43 10 1.95 ± 0.27

Gly97 1 2.50 10 2.05 ± 0.05

Thr184 1 2.46 10 1.88 ± 0.09

Asn51a 5 3.94 ± 0.06

For each interaction, the number of structures in which this interaction is found is given (n, out of 5, 4, and 10 structures for sets 1–3,

respectively) and the average distance for the various ligands over average in the k = 0 or 1 simulations (r in Å), together with the standard

deviation over the n ligands. Wat1–Wat3 are crystal-water molecules. No cation–p interactions with Lys122 were found for any ligand
a Interaction in which the plane of the sidechain amide group is nearly parallel to the plane of the aromatic ring. The average distance between

the Ne2 of Asn51 and the centre of the aromatic ring is given
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came in and bridged the interaction with Asp93. Thereby, it

interacted very weakly with the protein.

All the ligands from set 3 bound to the protein in a

similar way, with rather small variations between the dif-

ferent ligands. Each ligand forms direct hydrogen bonds

with Gly97, Thr184, and Asp93, and also an additional

water-bridged interaction with the latter residue. Each

ligand also binds to Ser52 and Leu48 via a water molecule

(Fig. 5e). These binding modes are quite similar to the ones

observed in the docking and the QM/MM results for the set

3. However, we do not find any interaction with Ile91, and

Lys112 is far away from the ligand.

For set 1, the perturbations involved mainly the sub-

stituents of one of the three ring systems, involving the

perturbation of one (or in one case two) hydrogen atoms to

methyl, methoxy, or ethoxy groups. In one case, the ben-

zene ring was instead perturbed to a furan ring (ref ? 80).

In another case, a methyl group is perturbed to an acetate

group (81 ? 82). Set 2 involves perturbations of C and N

atoms in a fused six and five-ring system. In one case

(100), a cyano group is also added. Set 3 is more diverse,

although all ligands share a benzimidazolone group joined

to a resorcinol group. By the use of three reference ligands,

the size of the perturbations was in many cases reduced to

the conversion of hydrogen atoms to hydroxyl, chloride,

methoxy, CF3, and isopropyl groups, or to the conversion

of a carbon atom in the benzene ring to a nitrogen atom

(pyridine). However, in one case a hydrogen atom is con-

verted to a benzene ring (19 ? ref1), in one case the

benzene ring is converted to quinoline (23 ? ref2), and in

one case, the benzene and resorcinol rings are joined by a

pyran ring (61 ? ref2).

The raw binding affinities calculated with FES are given

in Table 7. It can be seen that the precision of the FES

results was reasonable: the standard errors of the MBAR

estimates were 0.2–0.9 kJ/mol, indicating good conver-

gence of the perturbations. Results obtained with the BAR,

TI, and EA methods are shown in Table S4 in the Sup-

plementary material. The BAR and TI results agreed with

the MBAR results with MADs of 0.6 and 0.8 kJ/mol,

respectively, which indicates a somewhat worse conver-

gence. In particular, the 21 ? ref3 and 26 ? ref2 pertur-

bations gave alarming differences of 4 and 5 kJ/mol,

respectively. The convergence of all perturbations was

examined by considering a set of six overlap measures, as

described in the Methods section. All 26 individual simu-

lations for each perturbation were checked for poor overlap

and additional simulations were run with intermediate k
values if two of the overlap measures indicated poor

overlap or if P (which is considered to be the most reliable

overlap measure, with the best correlation to the other

measures [10]) was negative. Consequently, the presented

results should be numerically reliable.

As mentioned in the Methods section, many of the

ligands in sets 1 and 3 can bind with two conformations,

differing by an 180� rotation of the perturbed ring. In the

FES calculations, both conformations were tested, starting

from the symmetric reference molecules. The best con-

formation was then selected as the one that gave the most

favourable binding energy, compared to the reference

Fig. 6 Water clusters obtained by GCMC method for the a 2WI7 and

b 3FT5 structures with set 2 ligands. In both figures, ligands and the

corresponding water molecules are presented in different colours:

ligand 100—blue, ligand 101—red, ligand 105—yellow, and ligand

106—green
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molecule (shown in bold face in Table 7). The average

dihedral angles observed during the FES simulations and in

the docked structures are shown in Table S3. In most

structures, the ring systems were not coplanar.

Ligand 61 has two stereoisomers, depending on the

orientation of the hydroxyl and methyl groups. We tested

both and found the S form to bind more favourably than the

R form. This is in striking contrast to the docking calcu-

lations, which indicated that only the R form bound to the

protein. Experimentally, ligand 61 (racemic mixture) was

found to be a non-binder.

For set 2, no reference ligands were employed and

therefore, we can directly compare the results of the three

studied perturbations with experimental relative affinities.

From the results in Table 7, it can be seen that the two

results employing the pose in the 2WI7 crystal structure,

but using either the 2WI7 or the 3FT5 crystal structures

gave similar relative affinities. Therefore, only one of these

results is compared with experiments in Table 8. It can be

seen that the results were poor with a strongly negative

correlation (R = -0.8), an incorrect sign for two of the

perturbations (sr = -0.3, although the sign of one of the

experimental relative affinities in not statistically signifi-

cant), and a MAD of 14 kJ/mol. However, the results based

on the 3FT5 crystal structure were much better with a

positive correlation (R = 0.6), a correct sign of two of the

perturbations (those that have statistically significant

experimental differences) and a MAD of 5 kJ/mol. The

results of the docking and MM/GBSA calculations (for the

same relative affinities, also shown in Table 8) were much

Table 7 Calculated relative binding free-energies and standard errors (obtained with MBAR in kJ/mol) for the studied perturbations

Transformation Exp. Results 1 Results 2 Results 3

Set 1 Conf. 1 Conf. 2

ref ? 80 1.8 ± 0.5 23.6 – 0.5

81 ? 82 10.0 213.2 – 0.5 -16.4 ± 0.5

82 ? ref 13.3 ± 0.3 16.4 – 0.3

83 ? ref 3.6 – 0.5 -3.5 ± 0.5

84 ? ref 8.3 – 0.5 8.3 ± 0.6

Set 2 without Wat1/2 2WI7 3FT5 2WI7/3FT5

101 ? 100 13.9 -12.2 ± 0.5 2.7 ± 0.5 -12.8 ± 0.5

101 ? 105 -0.1 -7.5 ± 0.2 2.7 ± 0.2 -8.4 ± 0.2

101 ? 106 2.0 -7.3 ± 0.3 3.8 ± 0.3 -8.7 ± 0.3

Set 2 with Wat1/2 2WI7 3FT5

101 ? 100 13.9 11.2 ± 0.9 18.0 ± 0.9

101 ? 105 -0.1 -6.2 ± 0.4 3.5 ± 0.4

101 ? 106 2.0 -3.7 ± 0.5 5.5 ± 0.5

Set 3 Conf. 1 Conf. 2

10 ? ref2 -4.9 ± 0.4 20.6 – 0.4

11 ? ref2 2.3 – 0.2

15 ? ref3 4.8 – 0.5 -4.1 ± 0.6

19 ? ref1 2.9 – 0.6

21 ? ref3 7.3 – 0.4 -2.1 ± 0.4

23 ? ref2 26.7 – 0.5 -13.1 ± 0.6

26 ? ref2 3.7 – 0.4 -12.0 ± 0.4

28 ? ref2 1.3 – 0.4 -1.9 ± 0.4

34 ? ref2 20.2 – 0.7 -3.7 ± 0.7

61S ? ref2 24.8 – 0.8

61R ? ref2 -19.8 ± 0.4

ref 2 ? ref1 211.5 – 0.6

ref 3 ? ref2 4.5 – 0.4

Experimental data [23] for the relative energies are also given for the transformations that do not involve any reference ligands
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worse with R = -0.6 and -0.8, sr = -1.0, and MAD = 8

and 28 kJ/mol, respectively. QM/MM results were of

intermediate quality with R = 0.4 and MAD = 13 kJ/mol.

Keeping the Wat2 crystal water molecule in the FES

calculations improved the results for both crystal struc-

tures, giving a perfect correlation (R = 1.0) and low MADs

(5 kJ/mol for 2WI7 and 4 kJ/mol for 3FT5). In particular,

both sets of calculations predicted that ligand 100 has a

much lower binding affinity (*10 kJ/mol) than the other

three ligands. However, in both cases, one of the three

relative affinities had an incorrect sign (sr = 0.3), although

for the 3FT5 structure this involved the transformation for

which the experimental estimate is not statistically signif-

icant. These calculations also gave an ideal slope of 1.0,

whereas it was 1.2 for the calculations based on the 2WI7

structure. Both FES calculations gave better results than the

docking and MM/GBSA calculations including Wat2

(R = 0.5 and MAD = 6 kJ/mol for GScore).

For the other two sets of ligands, no direct comparison

with experiments [23] can be performed, because all

studied perturbations (except one) involved reference

ligands with unknown experimental affinities. This means

that the calculated results need to be combined to compare

with experiments, increasing the uncertainty and making

the comparison dependent on which data are combined.

Moreover, when calculating the correlation coefficient, the

results also depend on the sign of the transformation (i.e.

whether the 81 ? 82 or 82 ? 81 perturbation is consid-

ered, for example). The latter problem was solved by

always considering both directions of the perturbation

when R was calculated.

For set 1, it may seem natural to compare with ligand

82, because all relative affinities can be obtained from this

ligand using one or two perturbations. However, three

additional relative affinities can be obtained by combining

two perturbations and all ten possible relative affinities can

Table 8 Performance of the various methods to calculate relative binding free energies (MAD and maximum error, Max, in kJ/mol) compared

to experimental results [23]

GScore MM/GBSA QM/MM FES

Set 1

MAD 5.8–6.1 20.8–26.3 17.6–29.1 10.9–15.9

R -0.58 to 0.03 -0.69 to -0.60 -0.42 to -0.01 -0.80 to -0.54

s -1.00 to -0.40 -0.43 to 0.00 -0.14 to 0.50 -1.00 to -0.71

Max 10.2 32.2–50.4 33.3–66.8 23.3

2WI7 3FT5

Set 2 without Wat1/2

MAD 7.7 27.8 12.9 14.2 ± 1.0 5.3 ± 0.8

R -0.57 -0.81 0.43 -0.81 ± 0.07 0.59 ± 0.10

s -1.00 -1.00 -0.33 -0.33 ± 0.33 0.33 ± 0.48

Max 16.4 45.6 19.9 26.0 ± 1.8 11.2 ± 1.8

2WI7 3FT5

Set 2 with Wat1/2

MAD 6.1 41.0 4.8 ± 1.3 3.7 ± 1.3

R 0.49 -0.58 1.00 ± 0.04 1.00 ± 0.04

s 0.33 0.33 0.33 ± 0.43 0.33 ± 0.43

Max 15.2 60.2 6.1 ± 1.8 4.1 ± 1.8

Set 3

MAD 4.7–10.4 29.6–56.0 23.6–47.1 8.7–14.6

R -0.45 to 0.70 0.18 to 0.92 -0.32 to 0.57 -0.47 to -0.20

s -0.56 to 0.33 0.33 to 0.78 -0.33 to 0.56 -0.78 to 0.11

Max 8.8–16.9 55.4–95.6 59.1–88.4 17.9–27.9

For set 1, the reported values are the range obtained when doing three comparisons: four relative affinities using ligand 82 as the reference, all

seven relative affinities that can be obtained by combining two perturbations, or all ten possible relative affinities of the five ligands. For set 2, we

present the results of the three perturbations studied by FES, reporting bootstrapped uncertainties, using the observed standard error for FES.

Values in brackets for GScore and MM/GBSA were obtained using the 2WI7 crystal structure. For set 3, we present the range obtained by using

either ligands 10, 11, 23, 26, 28, or 34 as the reference
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be obtained from three perturbations. Therefore, we give in

Table 8 the results of three different comparisons (as ran-

ges): four relative affinities using ligand 82 as the refer-

ence, all seven relative affinities that can be obtained by

combining two perturbations, and all ten possible relative

affinities. Numerically, the results vary somewhat, but all

results were poor: the correlation was negative (R = -0.8

to -0.5), MAD = 11–16 kJ/mol, and sr = -1.0 to -0.7,

i.e. only one relative affinity had the correct sign, but the

signs of four of the measured relative affinities are not

statistically significant. In fact, the largest error (23 kJ/mol)

is obtained for the 81 ? 82 transformation that is directly

comparable with experiments.

The docking gave a smaller MAD and MM/GBSA and

QM/MM larger MADs than FES (6, 21–26, and

18–29 kJ/mol, respectively), owing to a smaller and larger

ranges of the absolute affinities compared to experiments,

4, 45, and 62 kJ/mol, respectively, compared to 11 kJ/mol

for the experimental data. All three methods showed no or

negative correlations (R = -0.0 to -0.7). Likewise, sr was
mostly negative (-0.1 to -1.0) or zero, except when using

ligand 82 as the reference for QM/MM (sr = 0.5).

For set 3, the situation is even more complicated: all

studied transformations involve at least one of the three

reference molecules. Any of ligands 10, 11, 23, 26, 28, 34,

and 61 can be individually compared employing two per-

turbations, whereas ligands 19, 15, and 21 require the

combination of three perturbations. Table 8 shows the range

of results obtained when using any of the six ligands in the

first group as the reference (excluding ligand 61, because it

is experimentally a non-binder). It can be seen that the FES

results were quite poor with a negative correlation

(R = -0.5 to -0.2), a varying sr (-0.8 to ?0.1), a MAD of

9–15 kJ/mol and maximum errors of 18–28 kJ/mol.

From Table 8, it can also be seen that the docked results

for set 3 were somewhat better with a positive correlation

(R = 0.3–0.7), except when ligand 11 was used as the

reference (R = -0.5). The same applies to sr, which was

positive (0.1–0.3), except when using ligand 11 as the

reference (sr = -0.6). MAD was appreciably better

5–10 kJ/mol, but this is mainly because all relative ener-

gies were underestimated: the range of the affinities was

only 7 kJ/mol, whereas the experimental range was at least

19 kJ/mol, and in FEP the range was 21 kJ/mol. The MM/

GBSA calculations vastly overestimated the range

(124 kJ/mol) and therefore gave a very poor MAD of

30–56 kJ/mol and a maximum error of up to 124 kJ/mol

(9–17 kJ/mol for the docking). On the other hand, the

correlation was always positive, reaching an impressive

R = 0.9 when using ligand 26 as the reference. Likewise,

sr was better than for the other methods, 0.3–0.8. QM/MM

gave quite poor results with both R and sr = -0.3 to 0.6

and MAD = 24–47 kJ/mol.

One set of relative affinities was submitted (submission

entry 56af858f31db8). It was based on the data in Table 7

for sets 2 (2WI7 structure) and 3, but the data in Table S5

for set 1 (i.e. obtained without the improper ca–hn–nh–hn

dihedral angle, giving spurious structures, as discussed

above). The data were submitted with ligands 80, 100, and

10 as the reference, which increases the uncertainty and

may affect the calculated quality estimates. Unfortunately,

we selected to submit the set 2 results based on the 2WI7

structure (mainly because the 2WI7/3FT5 results were

similar), although it turned out that the 3FT5 reproduced

the experimental measurements much better.

Conclusions

In this study, we have tried to estimate the binding affini-

ties of three sets of ligands (with five, four and ten ligands

in each) for HSP90 in the D3R 2015 grand challenge blind-

test competition. We have employed four different theo-

retical methods of varying sophistication: docking with the

induced-fit protocol in Glide, MM/GBSA calculations with

single minimised structures performed by Prime, a new

QM/MM approach, based big-QM calculations with vari-

ous energy terms added, and standard FES calculations of

relative binding affinities.

Unfortunately, the results were quite disappointing, with

poor and often negative correlation and s values for most of

the methods and ligand sets. For set 2, the problem could

be traced to the displacement of one or two water mole-

cules by one of the ligands. If this effect was properly

accounted for, FES and some docking scores gave good

results. We employed GCMC calculations to deduce which

water molecules dissociate with the various ligands.

Owing to the poor overall results, it is hard to compare

the four methods employed. However, our results show no

clear-cut advantage of using the more rigorous method FES

approach, which comes with a much higher computational

effort. In general, the docking calculations with GScore

and IFDScore gave small MADtr for all three sets,

4–8 kJ/mol. However, this primarily reflects that these

scores underestimate the differences between the various

ligands. The Emodel score and MM/GBSA gave much

higher MADtr (9–29 kJ/mol) and a strong overestimation

of the range of the calculated binding affinities.

Compared to the other submissions in this blind-test

competition, our calculations gave in general mediocre or

poor results [23]. However, QM/MM was one of the few

methods that gave a non-negative s and a positive corre-

lation for set 2, and without the unfortunate sign error, the

correct QM/MM results would have given the best R and s
among all submissions. For set 3, our docked results gave

the lowest RMSD and MM/GBSA gave the best s among
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all submissions (in fact, our four submissions gave among

the five best s values for set 3). Still, this mainly reflects the

large variation in the performance of the results from both

us and the other groups; the other submissions also gave

rather disappointing overall results: in particular, none of

the submissions gave positive s values for all three sets.

In the new QM/MM method, we first reoptimised the

docked structures with standard QM/MM calculations,

using a quite large QM system (280–320 atoms), including

all atoms within 3 Å of the ligand. Then, the QM system

was enlarged with all atoms within 7.5 Å of the ligand

(970–1160 atoms) and a single-point energy was calculated

in a COSMO continuum solvent (Fig. 2). To the rigid

interaction energies calculated with this model, we added

five energy corrections (Eq. 4), similar to what has been

used for host–guest systems [16, 33, 34]: first, a correction

term for increasing basis set for the smaller QM system to

quadruple-zeta quality. Second, a DFT-D3 dispersion cor-

rection, including third-order terms. Third, a thermostatis-

tical correction, including the zero-point energy and

entropy, calculated at the MM level with a free-rotor

approximation for the low-lying vibrations. Fourth, a

ligand-relaxation energy term, and finally an improved

solvation energy for the ligand, estimated by the COSMO-

RS approach. We also tried to include the solvation free

energy of the whole protein with PB or GB methods, but

could not obtain any consistent results.

Unfortunately, the QM/MM affinities, showed no con-

sistent improvement over the docked results, although most

hydrogen bonds were shortened. Instead, the QM/MM

energies showed a similar overestimation of the differences

in the binding affinities as the MM/GBSA method, giving

MADtr of 17–30 kJ/mol. Still, the results could consistently

be improved for all three sets if the ligand-relaxation and

thermostatistical terms are omitted (e.g. MADtr =

6–23 kJ/mol). It is probably necessary to employ more than

a single minimised structure to obtain consistent and reliable

results with QM/MM.

Clearly, the FES results were disappointing, with MADs

of 4–15 kJ/mol and maximum errors of up to 26 kJ/mol.

Previous large-scale tests of relative FES affinities have

shown that MADs of 2–6 kJ/mol are typically obtained for

well-behaving systems [9–11]. Such results were only

obtained for set 2 if all water molecules are included. The

much larger errors obtained for the other two sets can have

several causes. First, some of the perturbations in this study

are larger than in the large-scale tests. However, we have

thoroughly monitored the overlap, convergence, and pre-

cision of the calculations, and there is not indication that

the perturbations are too large or that the sampling is too

short. On the other hand, HSP90 has a flexible binding site

and the simulations are much too short to sample larger

conformational changes in the binding site or the whole

protein. Second, it is possible that the MM force field is not

accurate enough to model the chemical variation of the

ligands. However, the set 1 ligands show a rather restricted

variation, involving mainly methyl, methoxy, ethoxy, and

acetate groups, for which the general Amber force field is

expected to perform well.

Third, for all FES calculations, we have assumed that all

ligands bind in the same mode as the starting crystal

structure. Some differences have been observed between

the FES and docked structures and also between the various

starting structures. If the binding mode in the crystal

structure is incorrect or if the binding mode changes

between the various ligands, FES is expected to give poor

results, and this would affect also the other calculations,

because docked structures were accepted only if they were

similar to the crystal structures. We believe that this is the

main reason for the poor results in this investigation. It

should also be noted that the variable parts of the ligands do

not show much interactions with the protein. This means

that there is a risk that the ligands may bind in a different

conformation and that some residues in the protein may

show a large change in conformation (to form interactions

with this part of the ligand), or that the binding is mainly

determined by the interaction of this part with solvent.

Clearly, all ranking methods heavily depend on accurate

structures, but unfortunately, crystal structures are lacking

for all ligands in this investigation. This makes the present

test somewhat less informative when it comes to the ranking

of different methods to predict binding affinities. To obtain

improved binding-affinity predictions for such complicated

systems, FES methods involving enhanced sampling could

be tested, e.g. metadynamics, accelerated MD, or replica-

exchange methods [109–114]. However, many of them are

most effective if it is known beforehand which groups need

better sampling, which not always is the case. They also

significantly increase the computational effort.
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