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The PHENIX collaboration at the Relativistic Heavy Ion Collider (RHIC) reports measurements of
azimuthal dihadron correlations near midrapidity in d + Au collisions at ,/syy = 200 GeV. These
measurements complement recent analyses by experiments at the Large Hadron Collider (LHC) involving
central p + Pb collisions at ,/syy = 5.02 TeV, which have indicated strong anisotropic long-range
correlations in angular distributions of hadron pairs. The origin of these anisotropies is currently unknown.
Various competing explanations include parton saturation and hydrodynamic flow. We observe qualita-
tively similar, but larger, anisotropies in d + Au collisions at RHIC compared to those seen in p + Pb
collisions at the LHC. The larger extracted v, values in d + Au are consistent with expectations from
hydrodynamic calculations owing to the larger expected initial-state eccentricity compared with that from
p + Pb collisions. When both are divided by an estimate of the initial-state eccentricity the scaled
anisotropies follow a common trend with multiplicity that may extend to heavy ion data at RHIC and the
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LHC, where the anisotropies are widely thought to arise from hydrodynamic flow.

DOI: 10.1103/PhysRevLett.111.212301

Proton- and deuteron-nucleus collisions at relativistic
energies are studied to provide baseline measurements
for heavy-ion collision measurements. In p(d) + A colli-
sions, initial-state nuclear effects are present; however, the
formation of hot quark-gluon matter as created in heavy
ion collisions is not commonly expected. Recently, there
has been significant interest in the physics of high-
multiplicity events in small collision systems, motivated
by the observation of a small azimuthal angle (A ¢) large
pseudorapidity (A7) correlation of primarily low p; par-
ticles in very high multiplicity p + p collisions at 7 TeV
[1]. The correlation resembles the ‘‘near-side ridge”
observed in Au + Au [2,3]. The initial p + p result
sparked considerable theoretical interest [4-6]. Recently,
a similar effect was observed in p + Pb collisions at
JSvn = 5.02 TeV [7]. Subsequent work from ALICE [8]
and ATLAS [9] removed centrality independent correla-
tions (largely from jet fragmentation) by looking at the
difference in correlations between central and peripheral
events and has additionally uncovered similar long-range
An correlations at A¢ = 7 beyond those expected from
fragmentation of recoiling jets. The effect appears as a
longitudinally extended azimuthal modulation with a pre-
dominantly quadrupole component [i.e., cos(2A¢)] and
bears a qualitative resemblance in both magnitude and
pr dependence to elliptic flow measurements in heavy
ion collisions, where the large quadrupole modulation is
understood to be caused by the initial-state spatial anisot-
ropy followed by a nearly inviscid hydrodynamic expan-
sion [10]. A variety of physical mechanisms have been
invoked to explain the observed anisotropies in p + Pb
including gluon saturation [6,11-13], hydrodynamics

PACS numbers: 25.75.Dw

[5,14,15], multiparton interactions [16], and final-state
expansion effects [17].

Previous analyses involving two-particle correlations
from d + Au collisions at Relativistic Heavy Ion Collider
(RHIC) have not indicated any long-range features at small
A ¢ [2,18-20]. However, these measurements involved py
selections that emphasize jetlike correlations, rather than
the underlying event. Also, Refs. [19,20] were based on
d + Au collisions recorded in 2003 with a small data
sample, which limited the statistical significance of the
results.

We present here the first analysis of very central d + Au
events to measure hadron correlations between midrapidity
particles at ,/syy = 200 GeV. The center of mass energy
per nucleon is a factor of 25 lower than at the Large Hadron
Collider (LHC). Another potentially key difference is the
use of a deuteron as the projectile nucleus rather than a
proton. In Ref. [14], within the context of a Monte Carlo-
Glauber (MC-Glauber) model, the calculated initial spatial
eccentricity of the participating nucleons, &,, for central
(large number of participants) d + Pb is more than a factor
of 2 larger than in central p + Pb collisions at LHC ener-
gies. We find the initial spatial eccentricity &, from the
MC-Glauber model [21] for d + Au at RHIC energies to be
similar to the d + Pb calculations at LHC energies.

The results presented here are based on 1.56 billion
minimum-bias d + Au collisions at ,/syy = 200 GeV
recorded with the PHENIX [22] detector in 2008. The
event centrality in d + Au is determined from the inte-
grated charge measured by a beam-beam counter facing
the incoming Au nucleus [23]. Here, we isolate a more
central sample than previously analyzed, to compare more
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closely to the LHC results. We use central and peripheral
event samples comprising the top 5% and 50%—88% of the
total charge distributions, respectively.

This analysis considers charged hadrons measured
within the two PHENIX central arm spectrometers. Each
arm covers nominally 77/2 in azimuth and has a pseudor-
apidity acceptance of |n| < 0.35. Charged tracks are
reconstructed using drift chambers with a hit association
requirement in two layers of multiwire proportional cham-
bers with pad readout; the momentum resolution is 0.7% &
1.1%p(GeV/c). Electrons are rejected with a veto in the
ring-imaging Cerenkov counters.

All pairs satisfying the tracking cuts within an event are
measured. The yield of pairs satisfying tracking and parti-
cle identification cuts is corrected for azimuthal acceptance
through the use of mixed-event distributions. The condi-

tional yield of pairs is determined by (1/N’) X
(ANPS [ dA ) o (ANESS JdA d/ANPS™ /dA ) where N

mix

is the number of trigger hadrons (trigger hadrons are those
having the momenta required to begin the search for a pair

of hadrons) and Nime (NP2°) is the number of pairs from
the same (mixed) events. Mixed pairs are constructed with
particles from different events within the same 5% central-
ity class and with event vertices within 5 cm of each other.
Because the focus of this analysis is on the shape of the
distributions, no correction is applied for the track recon-
struction efficiency, which has a negligible dependence on
centrality for d + Au track multiplicities.

To make direct comparisons between our measurements
and recent ATLAS p + Pb results [9], we follow a similar
analysis procedure. Charged hadrons with 0.5 < pr <
3.5 GeV/c are used. For this analysis, each pair includes
at least one particle at low py (0.5 < pr <0.75 GeV/c¢),
which enhances the sensitivity to the nonjet phenomena.
To minimize the contribution from small-angle correlations
arising from resonances, Bose-Einstein correlations, and
jet fragmentation, pairs are restricted to pseudorapidity
separations of 0.48 <|An|<0.7. This An gap is
chosen to be as large as possible within the tracking accep-
tance, while still preserving an adequate statistical sample
size. Unlike measurements at the LHC, this method is not
sensitive to the pseudorapidity extent of the correlations.

The conditional yield owing to azimuthally uncorrelated
background is estimated by means of the zero-yield-at-
minimum (ZYAM) procedure [24]. This background con-
tribution is obtained for both the central and peripheral
samples by performing fits to the conditional yields using a
functional form composed of a constant pedestal and two
Gaussian peaks, centered at A¢p = 0 and 7. The minimum
of this function, bzyan, 18 subtracted from the conditional
yields, and the resultis: Y(A¢) = (1/N")(dNP¥™/dA ¢p) —
bzyam The conditional yields Y.(A¢) and Y, (A ) (central
and peripheral events, respectively) are shown in Fig. 1,
along with their difference AY(A¢) =Y. (Ap) —
Y,(A¢). As in Ref. [9], this subtraction removes any

ax10. [0-5.0.75]8[0.5,0.75] GeVic I [0.5,0.75]8[1.0,1.25] GeVic Joxo*
C O Y, 0-5% o d+Au |s,, = 200 GeV ]
0 Y, 50-88%
oy |An| < [0.48,0.7]
Ha,(1+2a,c0s(2A0) | T

Y(@a9), AY(A9)

T T
[0.5,0.75]®[1.25,1.5] GeV/c I [0.5,0.75]®[1.25,1.5] GeVic ]

10 [ T T T T T \7; T T T 10
8F same-sign {4:] ¢|

ot 5 %)

opposite-sign 18

2k F 1-2
0.0 05 1.0 1.5 20 2530 05 1.0 1.5 2.0 25 3.0
A¢ (rad)

FIG. 1 (color online). Azimuthal conditional yields, Y(Adg),
for (open [black] squares) 0%—5% most central and (open
[black] circles) peripheral (50%—-88% least central) collisions
with a minimum A7 separation of 0.48 units. Difference
AY (A ¢) (filled [blue] circles), which is ([blue] curve) fit to a, +
2a, cos(2A ¢), where a, and a, are computed directly from the
data. (shaded [blue] band) Statistical uncertainty on a,. The
bottom left (right) panel shows the same quantity for same-
sign (opposite-sign) pairs.

centrality independent correlations, such as effects from
unmodified jet fragmentation, resonances and HBT. In the
absence of any centrality dependence, Y,.(A¢) and Y,(A¢)
should be identical. It is notable that any signal in the
peripheral events is subtracted from the central events.
We see that Y (A¢) is significantly larger than Y ,(A¢)
for A¢ near 0 and 7.

We find that the difference with centrality is well
described by the symmetric form: AY(A¢) = ay +
2a, cos(2A ¢) as demonstrated in Fig. 1. The coefficients
a, and their statistical uncertainties are computed from the
AY(A @) distributions as: a, = (AY(A¢) cos(nA¢)). The
cos(2A ¢) modulation appears as the dominant component
of the anisotropy for all pr combinations.

To quantify the relative amplitude of the azimuthal modu-
lation, we define ¢, = a,,/(bSyam T+ a0), Where by, y is
bzyam 1n central events. ¢, and c5 are shown as a function of
associated pr in Fig. 2 for central (0%—5%) collisions.

212301-4



PRL 111, 212301 (2013)

PHYSICAL REVIEW LETTERS

week ending
22 NOVEMBER 2013

J T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T ‘ T T T T L
15x107°— —
10 + + -
5 ;+ + _
S + .
5 _]
| @ n=2PHENIX, 200 GeV, d+Au, 0-5%, [0.5,0.75] ® pj |An|e [0.48,0.7] ]
| m n=3PHENIX, 200 GeV, d+Au, 0-5%, [0.5,0.75] ® p“ |Anje [0.48,0.7] |
-10}—o n=2HUING, 200 GeV, d+Au, 0-5%, [0.5,0.75] ® p |An|e [0.50,0. 7L

[~--- €5, d+Au, 200 GeV

P Bozek 1112.0915, priv. comm.

‘ 11 | \ ‘ I I - ‘ 11 | \ ‘ L1 1 | ‘ I I - ‘ L1 1 | F
0.5 1.5 2.5 3.0 3.5

pT (GeVIc)

FIG. 2 (color online). The nth-order pair anisotropy, c,, of the
central collision excess as a function of associated particle p%. ¢,
(filled [red] circles) and c5 (filled [green] squares) are for 0.5 <
pr<0.75 GeV/c, 048 <|Am| <0.7. ¢, as extracted from
d + Au HUING events using the same procedure as in the data
is also shown (open circles). c3 as expected for our p; selections
from Ref. [31] is shown as a dashed line.

The dominant source of systematic uncertainty results
from the inability to completely exclude the near-side jet
peak in this analysis. The PHENIX central arm spectrom-
eters lack sufficient |Am| acceptance to completely
exclude the near-side jet peak. To assess the systematic
influence of any residual unmodified jet correlations, we
analyzed charge-selected correlations. Charge ordering is a
known feature of jet fragmentation, which leads to
enhancement of the jet correlation in opposite-sign pairs,
and suppression in like-sign pairs, in the near side peak
(e.g., Ref. [25]). A representative pr selection of Y(A¢)
and AY(A¢) distributions for like-sign and opposite-sign
pairs are shown in Fig. 1 (bottom panels). Both AY(A¢)
distributions exhibit a significant cos(2A ¢) modulation.
The magnitude of the modulation at A¢p = 0 is larger in
the opposite-sign case. The root-mean-squared variation
of the same-sign and opposite-sign ¢,, measurements rela-
tive to the combined value is included in the systematic
uncertainties. This reflects the influence of possible
remaining jet correlations and is applied symmetrically,
because the influence of the jet contribution is not known.
As an additional test, the minimum A% was varied from
the nominal value of 0.48 to 0.36 (where sensitivity to jet
contributions is enhanced) and 0.60 (where it is reduced).
The 0.36 selection has some A¢ asymmetry in AY(A¢);
the 0.60 selection does not. In both cases the extracted ¢,
values are consistent with the central An selection. To
assess the dependence of the results on our selection of
peripheral events, we have extracted c2 values using
60%—-88% and 70%-88% central events as alternate

peripheral samples. No significant change was found in
the ¢, values from the default peripheral subtraction. This
is potentially different from the implications of Ref. [26]
where a difference in low py hadron correlations between
40%-100% d + Au and p + p collisions is observed. We
observe a similar magnitude signal in both 0%-5% and
0%-20% central events. Other sources of uncertainty, such
as occupancy and acceptance corrections, were found to
have a negligible effect on these results.

In p + Pb collisions at the LHC, the signal is seen in
long-range Amn correlations. In this analysis, signal is
measured at midrapidity, but it is natural to ask if previous
PHENIX rapidity separated correlation measurements [18]
would have been sensitive to a signal of this magnitude.
The maximum c, observed here is approximately a 1%
modulation about the background level. Overlaying a
modulation of this size on the conditional yields shown
in Fig. 1 of Ref. [18] shows that the modulation on the near
side is small compared with the statistical uncertainties.
With the current method we cannot determine whether the
signal observed here persists for n > 3.

To test effects of the centrality determination or known
jet modifications on this observable, we have applied the
identical analysis procedure (including the centrality selec-
tion) to HIJING [27] (v1.383) d + Au events. As shown in
Fig. 2, we find an average ¢, value of (7.5 = 5.5) X 1074
for 0.5<p%<15GeV/c with no significant py
dependence.

The c; values, shown in Fig. 2, are small relative to c,.
Fitting the c; data to a constant yields (6 = 4) X 10™* with
a x? per degree of freedom of 8.4/7 (statistical uncertain-
ties only); no significant c3 is observed.

A measure of the single-particle anisotropy, v,, can be
obtained under the assumption of factorization [28-30]:
&Py, ) = va(p)ua(pd). We have varied pj and
recomputed v,(py) and find no significant deviation from
the factorization hypothesis. The calculated single particle
v, is shown in Fig. 3, and also compared with the ATLAS
[9] results, revealing qualitatively similar py dependence
with a significantly larger magnitude. We also compare the
v, results to a hydrodynamic calculation [14,31] and find
good agreement between the data and the calculation. The
v, reported here is the excess v, beyond any which is
present in peripheral d + Au collisions. While we cannot
extract v3 from the current data, Fig. 2 shows that the
measured c3 values are in agreement with the values
expected from v; as a function of pr in the same model
as the v, calculation [31]. The v, data are also in qualita-
tive agreement with another hydrodynamic calculation
[32] both with the MC-Glauber model and with impact-
parameter glasma [33] initial conditions (note that these
calculations are at a fixed N, not the exact centrality
range as in the data). These calculations have very different
assumptions about the initial geometry and yet are all in
qualitative agreement with the data.
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FIG. 3 (color online). Charged hadron second-order anisot-
ropy, v,, as a function of transverse momentum for (filled
[blue] circles) PHENIX and (open [black] squares) ATLAS
[9]. Also shown are hydrodynamic calculations from Bozek
[14,31] (dotted [blue] curve) and Bzdak et al. [32,39] for
impact-parameter glasma initial conditions (solid curve) and
the MC-Glauber model initial conditions (dashed curve).

To further investigate the origin of this effect, we plot, in
Fig. 4, the PHENIX results for both d + Au and Au + Au
scaled by the eccentricity (&,), as calculated in a MC-Glauber
model, as a function of the charged-particle multiplicity at
midrapidity. Due to the lack of available multiplicity data for
the d + Au centrality selection the dN.,/dn value is calcu-
lated from HIJING [27]. The 0%—5% d + Au collisions at
JSvnv = 200 GeV have a dN,/dn similar to those of mid-
central p + Pb collisions at the LHC, while the &, values for
d + Au collisions are about 50% larger than those calculated
for the midcentral p + Pb collisions. The key observation is
that the ratio v, / &, is consistent between RHIC and the LHC,
despite the factor of 25 difference in collision center of mass
energy. A continuation of this trend is seen by also comparing
to v,/e, as measured in Au + Au [34-36] and Pb + Pb
[37,38] collisions. The &, values calculated depend on the
nucleon representation used in the MC-Glauber model. In
large systems, this uncertainty is small, but in small systems,
such as d + Au, this uncertainty becomes much more sig-
nificant. For illustration, &, has been calculated using three
different representations of the participating nucleons, point-
like centers, Gaussians with o = 0.4 fm, and uniform disks
with R = 1 fm for the PHENIX data. The scaling feature is
robust against these geometric variations, which leads to an
approximately 30% difference in the extracted &, in d + Au
collisions (other models, e.g., Ref. [32], could produce larger
variations).

In summary, a two-particle anisotropy at midrapidity in
the 5% most central d + Au collisions at /syy =
200 GeV is observed. The excess yield in central com-
pared to peripheral events is well described by a quadru-
pole shape. The signal is qualitatively similar, but with a
significantly larger amplitude than that observed in long-
range correlations in p + Pb collisions at much higher

F ‘ ‘ ‘d+Au,ez(ﬁoint-iike‘ceﬁtéré) kGLZOO Ge\/) ‘ ‘E
0.7 ‘ Au+Au, &,(point-like centers) (Ys=200 GeV) —]
[ esenss ¢,(Gaussian smearing ¢ = 0.4) ]
[ s ¢,(disks, R = 1fm)

06 = ® CMSPb+Pb vz(EP}/e;’"' (5=2.76 TeV) o] Gg
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FIG. 4 (color online). The eccentricity-scaled anisotropy,
v,/&,, vs charged-particle multiplicity (dNg,/dmn) for d + A
and p + Pb collisions [8,9]. Also shown are Au + Au data at
Svy =200 GeV [34-36] and Pb+Pb data at . [syy =
2.76 TeV [37,38]. The v, are for similar p; selections. The
colored curves are for different nucleon representations in the &,
calculation in the MC-Glauber model. The errors shown are
statistical only and only shown on the d + Au point with the
pointlike centers &, for clarity. Owing to the lack of available
multiplicity data in p + Pb and d + Au collisions, the dN,/dn
values for those systems are calculated from HUING [27]. All
dNg,/dmn values are in the center of mass system.

energies. While our acceptance does not allow us to
exclude the possibility of centrality dependent modifica-
tions to the jet correlations, the subtraction of the periph-
eral jetlike correlations has been checked both by varying
the A7 cuts and exploiting the charge sign dependence of
jet-induced correlations. The observed results are in agree-
ment with a hydrodynamic calculation for d + Au colli-
sions at ./syy = 200 GeV.

We find that scaling the results from RHIC and the LHC
by the initial second-order participant eccentricity from the
MC-Glauber model [14] may bring the results to a com-
mon trend as a function of dN,/d7. This may suggest that
the phenomena observed here are sensitive to the initial
state geometry, and that the same underlying mechanism
may be responsible in both p + Pb collisions at the LHC
and d + Au collisions at RHIC. It may also imply a rela-
tionship to the hydrodynamical understanding of v, in
heavy ion collisions. The observation of v, at both RHIC
and the LHC provides important new information. Models
intended to describe the data must be capable of also
explaining their persistence as the center of mass energy
is varied by a factor of 25 from RHIC to the LHC.
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