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Abstract 

Quantitative perfusion MRI based on arterial spin labeling (ASL) is hampered by partial 

volume effects (PVE), arising due to voxel signal cross-contamination between different 

compartments. To address this issue, several partial volume correction (PVC) methods have 

been presented. Most previous methods rely on segmentation of a high-resolution T1-

weighted morphological image volume that is coregistered to the low-resolution ASL data, 

making the result sensitive to errors in the segmentation and coregistration. In this work, we 

present a methodology for partial volume estimation and correction, using only low-resolution 

ASL data acquired with the QUASAR sequence. The methodology consists of a T1-based 

segmentation method, with no spatial priors, and a modified PVC method based on linear 

regression. The presented approach thus avoids prior assumptions about the spatial 

distribution of brain compartments, while also avoiding coregistration between different 

image volumes. Simulations based on a digital phantom as well as in vivo measurements in 

10 volunteers were used to assess the performance of the proposed segmentation approach. 

The simulation results indicated that QUASAR data can be used for robust partial volume 

estimation, and this was confirmed by the in vivo experiments. The proposed PVC method 

yielded probable perfusion maps, comparable to a reference method based on segmentation of 

a high-resolution morphological scan. Corrected gray matter (GM) perfusion was 47% higher 

than uncorrected values, suggesting a significant amount of PVEs in the data. Whereas the 

reference method failed to completely eliminate the dependence of perfusion estimates on the 

volume fraction, the novel approach produced GM perfusion values independent of GM 

volume fraction. The intra-subject coefficient of variation of corrected perfusion values was 

lowest for the proposed PVC method. As shown in this work, low-resolution partial volume 

estimation in connection with ASL perfusion estimation is feasible, and provides a promising 

tool for decoupling perfusion and tissue volume. 

  



List of abbreviations 

AIF arterial input function 

ASL arterial spin labeling 

CBF cerebral blood flow 

COV coefficient of variation 

CSF cerebrospinal fluid 

GM gray matter 

PVC partial volume correction 

PVE partial volume effect 

SNR signal-to-noise ratio 

VA volume agreement 

VO volume overlap 

WM white matter 

  



Introduction 

Arterial spin labeling (ASL) is a functional MRI method characterized by non-invasive 

quantification and spatial mapping of perfusion, accomplished by magnetically inverting 

arterial blood water upstream to the regions of interest (1,2). When studying the brain, the 

corresponding measured physical quantity is referred to as the cerebral blood flow (CBF), 

traditionally reported in units of ml blood per 100 g tissue per minute [ml/100g/min]. A single 

ASL signal acquisition has a low sensitivity to perfusion and, to accommodate this, the 

experiment is often realized using low spatial resolution and averaging of signal data from 

several repetitions. The low resolution makes the estimated perfusion values sensitive to the 

partial volume effect (PVE) (3), i.e., perfusion values may be unreliable due to signal 

contribution from several compartments within a single voxel. Note that, in the case of, for 

example, positron emission tomography, PVEs also emerge due to the large (compared to the 

voxel size) point spread function (4,5). The PVE has a large impact on absolute perfusion 

quantification in human brain tissue, and potentially also to relative measurements, for 

example, in thin cortical tissue. It is of considerable importance to either correct for or 

identify any dependence on the PVE of the measured parameters, especially when studying 

diseases in which a volumetric tissue alteration is plausible, e.g., cerebral atrophy in elderly or 

in connection with neurodegenerative diseases. 

Multiple methods for correction of PVEs, i.e., partial volume correction (PVC), have been 

proposed in the literature (4-11). For CBF quantification with ASL, most methods rely on 

segmentation of the brain into a number of compartments (tissue types), normally gray matter 

(GM), white matter (WM) and cerebrospinal fluid (CSF). This is often accomplished by an 

automatic segmentation routine using signal intensities from a separate high-resolution T1-

weighted image volume, followed by a spatial coregistration of the segmentation results to the 

ASL image. This approach may be sufficient in many cases, but the coregistration step can 

also prove to be difficult, especially when the two datasets are based on substantially different 

imaging protocols (e.g., read-out technique, resolution and contrast). Resulting maps are often 

probability maps consisting of floating point values between 0 and 1, and it is common to 

regard these as tissue partial volume estimates. However, probability maps contain estimates 

of the probability that a voxels consists purely of a certain compartment, and the use of 

probability values as partial volume estimates in PVC algorithms may thus not be strictly 

correct. If the perfusion and segmentation maps are spatially aligned, mean CBF values can 

be calculated in binary tissue masks, where the threshold for the masks are set to minimize 

PVEs, or a model of the partial volume effect can be applied to infer unperturbed perfusion 

values. 

Asllani et al. (7) modeled the measured perfusion signal in a voxel as the linear sum of the 

signal contribution from GM, WM and CSF. They used spatial linear regression, i.e., 

assuming that the underlying perfusion remained constant in the local region around each 

voxel, thereby solving the otherwise underdetermined equation system at the cost of spatial 

blurring. The results were promising, but it is clear that such an approach relies heavily on the 

coregistered tissue probability maps, obtained from segmentation of a high-resolution 

structural image. Chappell et al. (8) proposed the use of non-linear Bayesian inference to 

correct for PVEs in time-resolved (multi-TI) ASL. The methodology and results were 

comparable to the linear regression approach, although spatial details in the corrected CBF 

maps were preserved to greater extent through the use of adaptive spatial priors. In a similar 

attempt to reduce the inherent blurring of linear least squares, Liang et al. (11) proposed the 

use of least trimmed squares regression. Although all of the studies referred to above (7,8,11) 

used a separate high-resolution structural scan for PVC, neither of the respective PVC 



algorithms are intrinsically dependent on that particular type of partial volume estimates. 

Recently, Petr et al (9) applied the PVC method by Asllani et al. (7) to multi-TI ASL data, 

using a separate low-resolution Lock-Locker EPI sequence for partial volume estimation. 

Even though this reduced the differences between the two imaging protocols, coregistration 

between segmentation data and ASL data was employed. 

To avoid the problems associated with available methods, we demonstrate the implementation 

of segmentation and partial volume correction in the native space of low-resolution ASL 

images, through the use of quantitative T1 mapping. This was accomplished within the 

framework of model-free ASL, solely exploiting the data collected with the QUASAR pulse 

sequence (12). To the best of our knowledge, this is the first study to demonstrate the 

extraction of partial volume estimates from the same dataset as the perfusion estimates, thus 

avoiding the need for any additional scans or coregistration. The performance of the proposed 

segmentation method was assessed through simulations and validated in vivo. PVC was 

applied to in vivo data using a modified linear regression approach, exploiting the novel 

segmentation approach. For comparison, PVC was also performed using an established 

segmentation method based on a high-resolution morphological image dataset. 

Theory 

Signal Modeling 

Using the QUASAR sequence (12), time-resolved ASL data are acquired using a saturation 

recovery Look-Locker read-out. Hence, the raw data (i.e., before subtraction) follows an 

exponential saturation recovery with a limiting value being the effective equilibrium tissue 

magnetization, given by (13): 

 𝑀0𝑡,𝑒𝑓𝑓 = 𝑀0𝑡 ⋅
1 − 𝑒

−
Δ𝑇𝐼
𝑇1𝑡

1 − cos(𝜙) 𝑒
−

Δ𝑇𝐼
𝑇1𝑡

 [1] 

where 𝑀0𝑡 is the equilibrium tissue magnetization, Δ𝑇𝐼 is the time between excitation pulses, 

𝑇1𝑡 is the longitudinal tissue relaxation time, and 𝜙 is the flip angle. Due to the repeated 

excitation pulses, the recovery follows an effective longitudinal relaxation time which relates 

to 𝑇1𝑡 through: 

 
1

𝑇1𝑡,𝑒𝑓𝑓
=

1

𝑇1𝑡
−

ln(cos(𝜙))

Δ𝑇𝐼
 [2] 

Both 𝑀0𝑡,𝑒𝑓𝑓 and 𝑇1𝑡,𝑒𝑓𝑓 can be estimated on a voxel-by-voxel basis by fitting the saturation 

recovery signal equation to the signal propagation of the raw ASL data: 

 𝑆(𝑡) = 𝑀0𝑡,𝑒𝑓𝑓 (1 − 𝐴 ⋅ 𝑒−𝑡 𝑇1𝑡,𝑒𝑓𝑓⁄ ) [3] 

where 𝐴 is a fitting parameter and 𝑡 is the saturation time (i.e., time between saturation 

preparation and read-out). When 𝑀0𝑡,𝑒𝑓𝑓 and 𝑇1𝑡,𝑒𝑓𝑓 have been estimated, the true 𝑀0𝑡 and 𝑇1𝑡 

can be calculated using Eqs. 1 and 2. 

For accurate calculation of 𝑀0𝑡 and 𝑇1𝑡, the local effective flip angle 𝜙 needs to be 

determined according to: 



 𝜙 = 𝜙𝑛 ⋅ 𝑔 [4] 

where 𝜙𝑛 is the nominal flip angle and 𝑔 is a spatially varying B1 correction factor. The dual 

flip angle strategy (14) enables the estimation of 𝑔 by minimizing 

 
1

𝑇1𝑡,𝑒𝑓𝑓,𝑙𝑜𝑤
+

ln(cos(𝜙𝑛,𝑙𝑜𝑤 ⋅ (𝑔 + Δ𝑔)))

Δ𝑇𝐼
− (

1

𝑇1𝑡,𝑒𝑓𝑓,ℎ𝑖𝑔ℎ
+

ln(cos(𝜙𝑛,ℎ𝑖𝑔ℎ ⋅ 𝑔))

Δ𝑇𝐼
) [5] 

for 𝑔, where indices ‘low’ and ‘high’ indicate the two different flip angles. The slice-profile 

effects vary slightly with flip angle in a 2D acquisition and this is accounted for by the 

correction Δ𝑔=0.023 (14). Details regarding estimation of 𝑇1𝑡 and 𝑀0𝑡 from QUASAR data 

have been reported previously (14,15). 

Segmentation 

The saturation recovery signal acquisition inherent to the QUASAR sequence can be used to 

perform an automatic brain segmentation based on quantitative T1 mapping (16). This 

segmentation principle was adopted from the FRASIER method proposed by Shin et al. (17). 

The measured signal in a voxel is modelled as a linear combination of CSF, GM and WM, 

each with unique and well-defined magnetization and relaxation properties: 

 𝑆(𝑡) = ∑𝑖[𝑓𝑠,𝑖𝑀𝑠𝑠,𝑖(1 − 𝐴 ⋅ 𝑒−𝑡/𝑇1,𝑖,𝑒𝑓𝑓)] [6] 

where 𝑖 represents the respective compartment, 𝑓𝑠,𝑖 is the corresponding fractional signals, and 

 𝑀𝑠𝑠,𝑖 =
1 − 𝑒Δ𝑇𝐼/𝑇1,𝑖

1 − cos(𝜙) ⋅ 𝑒Δ𝑇𝐼/𝑇1,𝑖
 [7] 

corrects for the incomplete steady state of the equilibrium magnetization of compartment 𝑖. 
For a discrete set of 𝑁 signal values 𝐒𝐦 = [ 𝑆(𝑡1) …  𝑆(𝑡𝑁)]𝑇, Eq. 6 can be written in matrix 

form as 

 𝐒𝐦 = 𝐗 ⋅ 𝐅𝐬 [8] 

where 

 𝑋𝑗,𝑖 = 𝑀𝑠𝑠,𝑖(1 − 𝐴 ⋅ 𝑒−𝑡𝑗 𝑇1𝑡,𝑒𝑓𝑓,𝑖⁄ ),   1 ≤ 𝑗 ≤ 𝑁 [9] 

and 

 𝐅𝐬 = [ 𝑓𝑠,𝐶𝑆𝐹  𝑓𝑠,𝐺𝑀  𝑓𝑠,𝑊𝑀 ]
𝑇
 [10] 

With this formulation, 𝐅𝐬 can be estimated by means of linear least squares estimation, i.e., 

𝐅𝐬 = (𝐗𝑇𝐗)−1𝐗𝑇𝐒𝐦, where (𝐗𝑇𝐗)−1𝐗𝑇 is the pseudo-inverse of 𝐗. The fractional volume 𝑓𝑣,𝑖 

(partial volume estimate) can be calculated by division of the fractional signal by the water 

content 𝜌𝑤𝑐 of the respective compartment: 

 𝑓𝑣,𝑖 =
𝑓𝑠,𝑖

𝜌𝑤𝑐,𝑖
 [11] 

The fractional volumes are constrained by ∑ 𝑓𝑣,𝑖 = 1𝑖  to obtain normalized values. 



Perfusion Quantification 

Perfusion quantification in model-free ASL is based on the general kinetic equation (18) and 

employs deconvolution of the time-resolved perfusion signal, Δ𝑀(𝑡), and the corresponding 

arterial input function (AIF) according to: 

 Δ𝑀(𝑡) = 2 ⋅ 𝑀0𝑎 ⋅ 𝐶𝐵𝐹 ⋅ [𝑐(𝑡)⨂𝑅(𝑡)] [12] 

where “⨂” denotes convolution, 𝑀0,𝑎 is the magnetization of fully relaxed arterial blood, 𝑐(𝑡) 

is the fractional AIF and 𝑅(𝑡) is the effective impulse residue function (including effects of 

wash-out and relaxation). The QUASAR sequence employs crusher gradients to obtain 

arterial signal curves and absolute AIFs are defined as 𝐶𝐴𝐼𝐹(𝑡) = 2 ⋅ 𝑀0,𝑎 ⋅ 𝑐(𝑡), so that 

deconvolution yields the perfusion-scaled residue function 𝐶𝐵𝐹 ⋅ 𝑅(𝑡). Deconvolution was 

performed using oscillation index truncated block-circulant singular value decomposition 

(19). The theory of model-free ASL is explained in detail by Petersen et al. (12,14,20). 

Partial volume correction 

Partial volume correction was achieved through a simplification of the linear regression 

method proposed by Asllani et al. (7). Since QUASAR perfusion estimation is based on 

model-free quantification, we chose to perform PVC directly on the CBF maps (rather than 

the ASL difference maps). Hence, the measured CBF was modeled as: 

 𝐶𝐵𝐹 = ∑𝑖[𝑓𝑣,𝑖 ⋅ 𝐶𝐵𝐹𝑖] [13] 

where 𝐶𝐵𝐹𝑖 is the unknown underlying perfusion contribution of compartment 𝑖, to the total 

perfusion, and partial volumes act as weighting factors. It was assumed that CSF does not 

contribute to the perfusion signal, i.e., 𝐶𝐵𝐹𝐶𝑆𝐹 = 0. Estimation of 𝐂𝐁𝐅𝐭 = [𝐶𝐵𝐹𝐺𝑀, 𝐶𝐵𝐹𝑊𝑀]T 

from Eq. 13 is not possible in a single voxel since the equation is underdetermined. By 

assuming that partial-volume-free perfusion in GM and WM does not vary in a local region, 

more data are included and the corresponding equation system can be solved. In contrast to 

the square regression kernel commonly used in spatial linear regression, we define the local 

region based on Euclidian distance by using a circular regression kernel. Hence, at voxel 

position 𝐫𝑘 = (𝑥𝑘, 𝑦𝑘) we assume that 𝐂𝐁𝐅𝐭(𝐫𝑘) = 𝐂𝐁𝐅𝐭(𝐫𝑛) for all neighboring voxels at 

position 𝐫𝑛 that satisfy ‖𝐫𝑛 − 𝐫𝑘‖ ≤ 𝑅, where 𝑅 is the radius of the circular kernel. The 

parameters of interest can be estimated by linear regression: 

 𝐂𝐁𝐅(𝐫𝑘) = 𝐅𝐯(𝐫𝑘) ⋅  𝐂𝐁𝐅𝐭(𝐫𝑘) [14] 

where 𝐂𝐁𝐅(𝐫𝑘) is the column vector of measured perfusion values included in the regression 

kernel centered at 𝐫𝑘, and 𝐅𝐯(𝐫𝑘) is the matrix with the corresponding estimated fractional 

volumes (two columns since we can ignore the zero term originating from CSF). Hence, 

𝐶𝐵𝐹𝐺𝑀 and 𝐶𝐵𝐹𝑊𝑀 can be estimated through conventional linear least-squares analysis, i.e., 

𝐂𝐁𝐅𝐭 = (𝐅𝐯
  𝑻𝐅𝐯)−1𝐅𝐯

  𝑇𝐂𝐁𝐅, where (𝐅𝐯
  𝑻𝐅𝐯)−1𝐅𝐯

  𝑇 is the pseudo-inverse of 𝐅𝐯. Although the 

analysis yields estimation of both GM and WM perfusion, we will focus on GM perfusion in 

this work. Estimation of absolute WM perfusion with ASL is challenging, primarily due to a 

low absolute perfusion levels and prolonged blood arrival time, compared to GM, and it has 

been suggested that a large amount of repetitions are needed for reliable WM results (21). 

The PVC analysis can be used to produce partial tissue perfusion maps 𝑝𝐶𝐵𝐹𝐺𝑀 = 𝑓𝑣,𝐺𝑀 ⋅
𝐶𝐵𝐹𝐺𝑀, and/or partial-volume-free tissue perfusion maps 𝐶𝐵𝐹𝐺𝑀. There is some variety in the 

interpretation of PVC of perfusion maps, where either 𝑝𝐶𝐵𝐹𝐺𝑀 or 𝐶𝐵𝐹𝐺𝑀 is referred to as 



partial-volume-corrected GM perfusion. These two definitions actually originate from two 

different ways of acknowledging PVEs. The former interpretation highlights that the PVE is a 

loss of contrast due to a mixture of tissues in a single voxel, and the PVC is used to ‘clean’ the 

perfusion map from, in this case, contributions from WM. Partial tissue perfusion maps may 

also be added together (e.g., 𝑝𝐶𝐵𝐹𝐺𝑀+𝑊𝑀 = 𝑝𝐶𝐵𝐹𝐺𝑀+ 𝑝𝐶𝐵𝐹𝑊𝑀), yielding a type of denoised 

version of the measured CBF map which reintroduces the PVEs (9). Note that the 𝑝𝐶𝐵𝐹𝐺𝑀 

value can be misleading since it does not reflect the underlying perfusion of the GM, but 

rather the contribution to the voxel CBF estimate originating from the GM within that voxel 

(which has little physiological meaning). For very low resolution, such as in ASL 

experiments, we have reason to believe that very few voxels contain 100% GM, and the latter 

interpretation of PVC, i.e., producing partial-volume-free tissue perfusion maps, aims at 

completely removing the dependence on tissue volume. This approach yields visually 

unnatural maps of GM perfusion, with no morphological information, but can be of 

importance when decoupling of regional or global changes in perfusion from changes in tissue 

volume is warranted, for example, in the case of atrophy. In this work, we analyze 𝑝𝐶𝐵𝐹𝐺𝑀 

and 𝐶𝐵𝐹𝐺𝑀 separately. 

Methods 

MRI Experiments 

Data from ten volunteers (6 males, 4 females, age 21-65 years) participating in the multi-

center QUASAR study (20), were used. Each volunteer was scanned four times with the 

QUASAR sequence resulting in a total of 40 data sets. The scans were divided into two 

sessions, where one session included repositioning between the ASL acquisitions and the 

other session was performed without repositioning. The study was approved by the local 

ethics committee, and all volunteers gave written informed consent. The experiments were 

performed on a 3T MRI unit (Philips Achieva, Philips Healthcare, Best, The Netherlands) 

using an 8-channel SENSE receiver head coil. For the QUASAR acquisition, the following 

parameters were used: TR/TE/ΔTI/TI1=4000/23/300/40 ms, 35°/11.7° flip angles, 640 ms 

bolus length, 13 inversion times, 84 series (48 crushed, 24 non-crushed and 12 low flip angle - 

alternating label and control), 4 cm/s velocity encoding for the crushed pairs, 150 mm 

labeling thickness, 7 slices, 6 mm slice thickness, 2 mm slice gap, 64×64 matrix, 3.75×3.75 

mm2 in-plane resolution, SENSE factor 2.5, at a total scan time of 5 min 52 s. A high-

resolution morphological scan (MPRAGE) was acquired using the following parameters: 

TR/TE=6.7/3.1 ms, TI=0.8 s, FA=8°, voxel size=0.9×0.9×0.9 mm3, 288×288 matrix, 80 slices 

with a scan duration of 5 min 26 s. In the session without repositioning, only one MPRAGE 

scan was performed. Automatic planning was achieved using the SmartExam software 

(20,22). 

Simulations 

The proposed segmentation methodology was validated through simulations based on a high-

resolution (1 mm isotropic) digital phantom of a normal brain from BrainWeb (23) 

[http://brainweb.bic.mni.mcgill.ca/brainweb/], composed by tissue fractions of CSF, GM and 

WM. The tissue maps were down-sampled (by averaging over neighboring voxels) to the 

same resolution as the QUASAR data and used as ground truth in the simulations. Simulated 

MR signal sampling was generated based on Eqs. 6 and 7, using the same parameters as in the 

in vivo experiments. 𝑇1𝑡 was set to 1.5, 1.0 and 4.3 s for GM, WM and CSF, respectively, and 

𝑇1𝑡,𝑒𝑓𝑓 was calculated from Eq. 2. Water content and 𝑔 was set to one in the simulations. 



Gaussian noise was added corresponding to signal-to-noise ratio (SNR) levels ranging from 

25 to 200, where SNR was defined as the signal intensity at steady state (𝑀0𝑡) divided by the 

standard deviation of the added noise. The multiple repetitions in the QUASAR sequence 

allowed the same SNR measure to be estimated in vivo. The down-sampled digital phantom 

consisted of 7,726 voxels and the simulation was repeated 10 times yielding a total of 77,260 

simulated signal curves per SNR level. The segmentation was performed according to the 

descriptions in the ‘Theory’ and ‘Post-processing’ sections. PVC of ASL data using linear 

regression has been simulated and evaluated elsewhere (7-9), and was not included in the 

simulations. 

Post-processing 

All post-processing was executed on a PC using MATLAB 2012a (The MathWorks, Inc., 

Natick, MA, USA) using in-house written software (unless stated otherwise), based on the 

theory presented above, as well as in Refs. (12,17). 

Segmentation 

Both the true and the effective relaxation times for the three compartments need to be 

determined (see Eqs. 6 and 7) prior to the segmentation. The true relaxation times for GM and 

WM were estimated as the mean values in a multiple Gaussian distribution fit on the whole 

brain 𝑇1𝑡 histogram. Shin et al. estimated the effective relaxation times from a whole brain 

histogram (17), whereas we chose to calculate it voxel-wise as 

 
1

𝑇1𝑡,𝑒𝑓𝑓,𝑖
=

1

𝑇1𝑡,𝑖
−

ln(cos(𝜙))

Δ𝑇𝐼
 [15] 

The motivation for this approach was that we acquired estimates of the local flip angle, and, 

consequently, 𝑀𝑠𝑠,𝑖 becomes a parametric map in our implementation. It is difficult to achieve 

a robust estimation of the relaxation time in CSF, mainly due to few voxels and excessive 

PVE, and a fixed literature value of 4.3 s was used in this study (17). Water contents (𝜌𝑤𝑐) of 

100%, 89% and 73% were used for CSF, GM and WM, respectively (24). To reduce the 

signal contribution from arterial blood, only the crushed QUASAR data were used in the 

segmentation routine. Segmentation of MPRAGE data was performed using the ‘New 

Segment’ routine in SPM8 [http://www.fil.ion.ucl.ac.uk/spm/], which is an extension of the 

default unified segmentation routine (25). This routine is based on Gaussian mixture modeling 

of the MR signal and performs best on a high-resolution anatomical scan. 

Perfusion Quantification 

QUASAR data were analyzed with the EasyMRI software, developed by Esben Petersen. The 

automatic routines produced maps of CBF, arterial blood volume, arterial transit time and 

longitudinal relaxation rate (R1), of which only CBF and R1 were used in this study. 

Partial Volume Correction 

The radius of the circular kernel in the PVC routine must be set by the user. To ensure that the 

overall results were not heavily dependent on the selected kernel radius, analysis was 

performed for integer radii ranging from 2 to 6 voxels (see Supplementary Material 1). For 

the continued analysis, a radius of 3 voxels was employed yielding a total of 37 voxels. This 

was found to be a reasonable trade-off between the degree of smoothing and the amount of 

voxels for which 𝐅𝐯(𝐫𝑘) was singular. Any center voxels for which the fractional volume 

matrix was singular was omitted from further analysis. 



The proposed PVC approach, based on segmentation of QUASAR data, can be applied 

immediately after the mapping of CBF and partial volumes. This approach is referred to as 

PVC-QUASAR in this work. The high-resolution segmentation maps produced by SPM8, on 

the other hand, need to be coregistered to the ASL space before applying the PVC routine. A 

conventional approach with spline interpolation generally yields non-ideal results for 

coregistration between images with very different spatial resolutions, and therefore we 

applied the methodology described by Chappell et al. (8). In short, the R1 map from the 

QUASAR software was super-sampled to the same in-plane spatial resolution as the 

MPRAGE, and used as a fixed reference. The MPRAGE volume was then coregistered to the 

supersampled ASL volume using a 12 parameter affine transform, and the same transform 

was applied to the segmentation maps. Integration over the coregistered segmentation maps 

yielded low-resolution partial volume maps in ASL space. Note that the ‘Coregister’ routine 

in SPM8 [http://www.fil.ion.ucl.ac.uk/spm/] uses a default 6 parameter (translation and 

rotation) rigid body transform (26). Since the ASL data and the high-resolution MPRAGE 

data may have different geometrical distortions due to different readout schemes, we modified 

the routine to allow for a 12 parameter affine transform, i.e., including scaling and shearing 

(John Ashburner, personal communication). The PVC approach based on segmentation of 

MPRAGE data is referred to as PVC-MPRAGE below. 

Analysis 

Segmentation Assessment 

The accuracy and precision of the simulated segmentation was calculated for each 

compartment as 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 = ∑𝑗(𝑓𝑣,𝑖,𝑗
∗ − 𝑓𝑣,𝑖,𝑗)/𝑁 [16] 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖 = √∑𝑗(𝑓𝑣,𝑖,𝑗
∗ − 𝑓𝑣,𝑖,𝑗)2/𝑁 [17] 

where 𝑓𝑣,𝑖,𝑗
∗  and 𝑓𝑣,𝑖,𝑗 are the estimated and simulated volumes, respectively, for compartment 𝑖 

and voxel 𝑗 (𝑗 = 1, … , 𝑁 where 𝑁 is the number of simulated voxels). The volume agreement 

between ground truth and estimates was further assessed by a similarity index called volume 

overlap (VO) (27) and the total volume agreement (VA) (28). Volume overlap was calculated 

as 

 𝑉𝑂𝑖,𝑗 =
min(𝑓𝑣,𝑖,𝑗

∗ , 𝑓𝑣,𝑖,𝑗)

0.5(𝑓𝑣,𝑖,𝑗
∗ + 𝑓𝑣,𝑖,𝑗)

 [18] 

Since VO values become unreliable in voxels with low partial volumes, median VO was 

calculated in binary masks, based on which tissue type contributed the most to each voxel. 

The VO measure is similar to the Dice coefficient, and assumes total agreement in the spatial 

distribution of tissues within the corresponding voxels (27), which is true in this case since the 

simulated data are perfectly aligned with the ground truth. The volume agreement compares 

the total volume of each compartment, and was defined as 

 𝑉𝐴𝑖 = |1 −
|𝛴𝑗𝑓𝑣,𝑖,𝑗

∗ − 𝛴𝑗𝑓𝑣,𝑖,𝑗|

𝛴𝑗𝑓𝑣,𝑖,𝑗
∗ + 𝛴𝑗𝑓𝑣,𝑖,𝑗

| [19] 



Since the in vivo data included repeated measurements in each subject, the same measures 

were used to assess the repeatability of the QUASAR-based segmentation, the MPRAGE-

based segmentation, as well as agreement between the QUASAR- and MPRAGE-based 

segmentations. Note, however, that even though SmartExam planning was used (which makes 

the overall alignment excellent in comparison with manual planning), the interpretation of the 

measures changes for the in vivo data, since we no longer can compare a ground truth with a 

perfectly aligned estimate. 

Partial Volume Correction Assessment 

The impact of the PVC on the CBF quantification was analyzed using statistical tools. Based 

on all scans, the intra-subject standard deviation (𝑠𝑤) was calculated for original CBF maps as 

well as 𝑝𝐶𝐵𝐹𝐺𝑀 and 𝐶𝐵𝐹𝐺𝑀, estimated using both PVC approaches. The corresponding 

coefficient of variation (COV) and repeatability index (√2 ⋅ 1.96 ⋅ 𝑠𝑤) was also calculated. 

Differences between PVC and conventional smoothing were assessed by analyzing CBF maps 

convolved with a Gaussian 2D kernel with a FWHM of 5.2 mm. This FWHM was 

interpolated from the estimated degree of smoothing reported by Asllani et al. (7), based on 

the number of voxels in the linear regression kernel. The statistical analysis was based on 

mean values in whole brain GM masks produced by thresholding the GM partial volume 

maps at 20%. It should be noted that such a low GM threshold would generally not be used 

for uncorrected perfusion maps and, therefore, we also report some results for a GM threshold 

of 50%. An example of whole brain GM masks corresponding to GM thresholds of 20% and 

50% can be found in Supplementary Material 2. 

The dependence of perfusion parameters on the partial volume of GM was assessed by ROI 

analysis. Mean perfusion was calculated in all voxels within a 10% GM fraction interval (e.g., 

70-80%)  for uncorrected CBF maps and partial-volume-free 𝐶𝐵𝐹𝐺𝑀 maps. 

PVC could be of particular interest in elderly and in diseases associated with brain tissue 

atrophy (e.g., neurodegenerative diseases and dementia). In order to obtain an indication of 

the performance of the proposed method at different stages of brain ageing, the age 

dependence of the amount of PVE in the data sets was investigated by performing linear 

regression and Pearson correlation analysis of the ratio 𝐶𝐵𝐹𝐺𝑀/𝐶𝐵𝐹 as a function of age. The 

age dependence of 𝐶𝐵𝐹, 𝐶𝐵𝐹𝐺𝑀, and total GM volume was also analyzed. 

Results 

The simulation results are summarized in Figure 1. As expected, performance increases with 

SNR and the mean in vivo whole-brain SNR was 98.6 which make the application to 

QUASAR data credible. Figure 2 displays segmentation results obtained with the proposed 

method (QUASAR-based) and the reference method (MPRAGE-based), together with 

corresponding anatomical references (left column). Note that the anatomical references in 

Figure 2 also depict the coregistration of the MPRAGE image to the ASL space. The two 

segmentation methods yielded plausible and overall visually similar tissue volume maps, 

although clear differences between the two methods can indeed be identified. Figure 3 

displays test-retest measures (VA and VO in the session without repositioning) of the 

QUASAR-based segmentation maps (Fig. 3a-b), the MPRAGE-based segmentation maps 

(Fig. 3c-d), and comparison between QUASAR- and MPRAGE-based segmentation (Fig. 3e-

f). Note that, in one of the sessions, only one MPRAGE scan was performed and the same 

segmentation result was coregistered to two different ASL scans. Overall, the repeatability 

was high for both QUASAR- and MPRAGE-based segmentation. The agreement in total 

volume (VA) and spatial distribution of partial volume estimates (VO) between QUASAR 



and MPRAGE was lower than the corresponding intra-method agreements, illustrating the 

differences in partial volume estimation between the two methods (Fig. 3e-f). The goodness 

of the in vivo segmentation model fit in terms of mean whole-brain coefficient of 

determination was (mean±SEM) 𝑟2=0.9994±0.00009.  Note that 𝑟2 values should be treated 

with caution when it comes to nonlinear models, and the value should only be considered as a 

general indication of the goodness of fit. 

Figure 4 displays an example of a PVC result in one subject showing five different parameter 

maps for each of the two segmentation methods. The two methods produced visually 

comparable results overall, although with certain apparent differences between the methods, 

primarily in the 𝐶𝐵𝐹𝐺𝑀 maps (Fig. 4). Figure 5 shows calculated CBF values in all 40 scans 

using a GM mask with a threshold of 20%. The corresponding numerical values are presented 

in Table 1. Quantified GM CBF values are low compared to literature values in uncorrected 

maps (no PVC), as well as in the 𝑝𝐶𝐵𝐹𝐺𝑀 maps. PVC-MPRAGE produced somewhat higher 

𝐶𝐵𝐹𝐺𝑀 values than PVC-QUASAR. Mean CBF in GM is displayed as a function of GM 

volume (10% intervals) in Figure 6. Partial-volume-free 𝐶𝐵𝐹𝐺𝑀 values produced by PVC-

QUASAR were less dependent on GM volume, than those produced by PVC-MPRAGE. 

The correction ratio 𝐶𝐵𝐹𝐺𝑀/𝐶𝐵𝐹 increased with subject age. For PVC-QUASAR, the ratio 

increased by 0.3% per year (r=0.81, p=0.005) and for PVC-MPRAGE, the increase was 0.4% 

per year (r=0.63, p=0.05). Neither 𝐶𝐵𝐹 nor 𝐶𝐵𝐹𝐺𝑀 showed any significant age dependence, 

but total GM volume decreased significantly with age. The decrease was 2.40 cm2 per year 

(r=-0.89, p=0.0005) for QUASAR-based segmentation, and 1.94 cm2 per year (r=-0.84, 

p=0.003) for MPRAGE-based segmentation. 

The results from the statistical analysis are summarized in Table 1 (for a GM threshold of 

20%). The 𝑠𝑤 of GM CBF was lowest for 𝑝𝐶𝐵𝐹𝐺𝑀 with PVC-QUASAR and highest for 

𝐶𝐵𝐹𝐺𝑀 with PVC-MPRAGE. The uncorrected CBF values showed a 𝑠𝑤 value that was lower 

than 𝐶𝐵𝐹𝐺𝑀 and similar to 𝑝𝐶𝐵𝐹𝐺𝑀. However, using PVC-QUASAR, 𝐶𝐵𝐹𝐺𝑀 and 𝑝𝐶𝐵𝐹𝐺𝑀 

showed a lower COV than the uncorrected CBF. As expected, the session with repositioning 

was characterized by higher 𝑠𝑤 for all parameters, compared to no repositioning. The 

smoothing generated results similar to the 𝑝𝐶𝐵𝐹𝐺𝑀 parameter, which is to be expected due to 

the smoothing effect of the PVC algorithm. PVC-QUASAR resulted in overall lower 𝑠𝑤 and 

COV, compared to PVC-MPRAGE. Although 𝐶𝐵𝐹𝐺𝑀  had a higher 𝑠𝑤 than uncorrected and 

𝑝𝐶𝐵𝐹𝐺𝑀 values, the COV was conserved. The use of a 50% GM threshold did not alter the 

general conclusions drawn from the statistical analysis (data not shown). 

Finally, the different kernel radii yielded different degrees of smoothing, but the mean GM 

CBF values were the same for all kernel sizes (Supplementary Material 1). 

Discussion 

Segmentation 

The aim of the simulations was primarily to assess the performance of fractional signal-

modelling-based segmentation when applied to low resolution data. The results of the 

segmentation simulation (Fig. 1) suggested that ASL data can be used for robust segmentation 

and partial volume estimation according to the proposed methodology, assuming that T1 can 

be reliably estimated. For SNR=100 (similar to in vivo SNR), accuracy was -0.02, 0.004, 0.01 

and precision was 0.06, 0.02, 0.04 for GM, WM and CSF, respectively (note that these values 

are in units of volume fraction, not percentage of the ground truth value). These results are 



similar to those of Shin et al. (17), although a saturation magnetization preparation, obviously, 

results in a lower dynamic signal range than an inversion magnetization preparation. The VA 

was high overall, in agreement with the accuracy values. The VA values were lowest in CSF, 

which may be related to the lower amount of voxels with CSF in the digital phantom. A VO 

above 0.7 has been regarded to be excellent in the literature (29), and although the 

interpretation of the absolute value is difficult, our results indicate a very high spatial 

similarity between true and estimated partial volumes. WM had the highest performance 

overall which is related to the large amount of voxels with high WM fractions. The 

performance of the segmentation is dependent on the amount of PVE, i.e., a voxel with three 

different components is generally difficult to segment. It should be noted that the QUASAR 

sequence is incompatible with fat saturation and this may, in some cases, impair the 

segmentation results. 

One important aspect of the FRASIER segmentation approach is that each tissue type is 

assumed to have a single T1 value. This type of assumption is common in most segmentation 

methods employing mixed signal modeling, but it will introduce errors in structures with 

largely varying T1, for example, in deep gray matter structures. Based on simulations, Shin et 

al. found that a 10% variation in the T1 of GM yielded a 6.5% error in partial volume 

estimation of pure GM (17). 

The proposed segmentation approach produced realistic segmentation maps in vivo, visually 

comparable to those obtained with the established segmentation approach (Fig. 2). However, 

differences are noticeable in all three segmentation maps and, in particular, the QUASAR-

based segmentation has sharper boundaries and higher GM volumes. These differences were 

confirmed when assessing the segmentation agreement through the VA and VO (Fig. 3e-f). 

Both the QUASAR-based and the MPRAGE-based segmentations showed a high intra-

method VA and VO in all subjects (Fig. 3a-d), implying that the repeatability of both 

segmentation methods was good. The VA between QUASAR and MPRAGE was fair (Fig. 

3e), i.e., the total whole-brain volumes were comparable between the two methods. The VO 

was below 0.9 in all subjects (Fig. 3f) which, as mentioned above, signifies a reduced spatial 

correspondence of partial volume estimates. This is expected due to the differences in tissue 

segmentation methodology, but is also partially caused by misalignment (non-ideal 

coregistration). 

Note that the VO calculation assumes perfect alignment (see Analysis section), which is not 

true for the in vivo case. Although the spatial correspondence is expected to be high through 

the use of SmartExam, the VO values will be overestimated (27). For the same reasons, in 

vivo VO values should not be directly compared with the simulation results. 

Partial volume correction 

The PVC yielded plausible parameter maps with both PVC-QUASAR and PVC-MPRAGE 

(Fig. 4). The partial tissue perfusion maps 𝑝𝐶𝐵𝐹𝐺𝑀 and 𝑝𝐶𝐵𝐹𝑊𝑀 were realistic at visual 

inspection, and adding them up resulted in an apparently denoised 𝐶𝐵𝐹 map (cf., last 

paragraph in the Theory section). Although the two PVC methods generated similar results, 

PVC-MPRAGE produced more local hotspots (less homogeneity) in the 𝐶𝐵𝐹𝐺𝑀 map, 

compared to PVC-QUASAR, especially at the edges of the brain (Fig. 4). 

Partial perfusion maps 𝑝𝐶𝐵𝐹𝐺𝑀 yielded mean GM perfusion values which were slightly lower 

than the uncorrected and smoothed CBF map. Furthermore, the statistical measures were 

similar between 𝑝𝐶𝐵𝐹𝐺𝑀 and the uncorrected maps, of which PVC-QUASAR yielded the 

lowest variance (Table 1). The observed correspondence between 𝑝𝐶𝐵𝐹𝐺𝑀 and uncorrected 



CBF is expected due to the low perfusion-weighted signal in WM, explained by prolonged 

blood arrival time and low absolute perfusion compared to GM. That is, for GM perfusion 

assessment, PVEs due to mixing of WM perfusion signal seems small in our study, although 

the volumes of different compartments are significant. 

The partial-volume-free perfusion maps 𝐶𝐵𝐹𝐺𝑀, on the other hand, yielded significantly 

higher mean GM perfusion values than uncorrected GM CBF, and the PVC-QUASAR and 

PVC-MPRAGE means were also significantly different (two-sided paired t-test, 𝛼=0.05). The 

mean 𝐶𝐵𝐹𝐺𝑀 for PVC-QUASAR was 47% higher than the uncorrected GM CBF value, 

comparable to the results by Asllani et al. who found an approximate increase of 56% in GM 

voxels with GM volume >20% for a slightly larger voxel size (7). Although it is unlikely for a 

20% GM volume mask to be used to estimate GM CBF from uncorrected data, this still gives 

an indication of the amount of PVE present in the data. For comparison, the 50% GM mask 

resulted in a 36% higher GM CBF with PVC, also in accordance with previous results. The 

hotspots mentioned previously were the main reason for the higher mean 𝐶𝐵𝐹𝐺𝑀 of PVC-

MPRAGE (Fig. 5). The hotspots appeared primarily for low partial volumes, which resulted 

in the decrease of 𝐶𝐵𝐹𝐺𝑀 with GM fraction seen in Figure 6. Ideally, 𝐶𝐵𝐹𝐺𝑀 should be 

independent of the fractional volume of GM, and in this regard our proposed method 

outperforms the reference method. In fact, our proposed method yields 𝐶𝐵𝐹𝐺𝑀 values that are 

almost completely independent of GM volume fraction (Fig. 6). 

The amount of PVC was found to be significantly dependent on the subject age. This was 

found to primarily be an effect of an age dependent decrease in total whole brain GM volume, 

which also justified the age dependence analysis of our data sets. We observed no significant 

age dependence of CBF values, with or without PVC, in accord with the previous QUASAR 

test-retest study (20). Nevertheless, reports of decreased CBF with age are common, and such 

results should be interpreted with some caution when no PVC has been employed. 

One might argue that the existence of a higher spatial gradient (cf., the observed hotspots) is 

advantageous since it infers less spatial smoothing. However, we used the exact same kernel 

for the linear regression in PVC-QUASAR and PVC-MPRAGE, and, therefore, the hotspots 

are more likely related to misalignment and differences in partial volume estimation, than 

preservation of local flow inhomogeneities. This could very well be the same effect as 

reported by Chappell et al. who found that imperfections in partial volume estimation and 

misalignment yielded low GM CBF values for GM volumes >90% (8). Furthermore, 𝐶𝐵𝐹𝐺𝑀 

maps are expected to be independent of GM volume fraction, and PVC-MPRAGE failed to 

meet this. 

To the best of our knowledge, this is the first study using test-retest data to assess the 

repeatability of partial volume corrected ASL perfusion estimates. The intra-subject standard 

deviation increased for the partial-volume-free parameters. This is most likely caused simply 

by the upscaling of the absolute values, since the global COV was maintained (and even 

slightly decreased for PVC-QUASAR) compared with uncorrected values. The overall 

increase in intra-subject variance for 𝐶𝐵𝐹𝐺𝑀 may also be related to imperfections in the 

partial volume estimation and, for PVC-MPRAGE, coregistration. The intra-subject standard 

deviation was lowest in the session without repositioning for all parameters. Repeatability was 

superior for the proposed method compared to the reference method, likely due to the lack of 

a coregistration step and, possibly, due to more accurate partial volume estimation. Note that 

one session used a single MPRAGE scan which may have affected the estimated repeatability 

of PVC-MPRAGE (although coregistration to different ASL scans should mimic a realistic 

motion between two scans). 



Although the global COV was not significantly decreased for partial-volume-free CBF 

parameters in this study, the local COV is likely to have improved since, in theory, the 

method segments out CSF and WM which otherwise would cause increased variation on a 

voxel by voxel basis. Future studies will be focused on repeatability assessment for smaller 

structures and areas that may benefit from PVC. 

Our approach is simplified in that we applied PVC directly on the quantitative CBF maps. 

This means that differences in GM and WM tracer kinetics (apart from CBF) and tissue 

properties, such as arterial transit time and relaxation times, are not included. This line of 

processing was chosen to conserve the main advantage of model-free ASL, namely the lack of 

need for estimation, or assumption, of bolus length, arterial transit time, tissue relaxation time, 

brain-blood partition coefficient and the number of compartments. All previous work on PVC 

in ASL have employed such assumptions, either by using fixed literature values (7,9) or 

through prior distributions (8). 

Petr et al. employed a similar segmentation approach combined with a linear regression 

(square kernel) PVC to calculate maps of 𝑝𝐶𝐵𝐹𝐺𝑀+𝑊𝑀 (9). However, they used a separate 

Look-Locker scan for the segmentation and applied an affine transform to register the data to 

the ASL images. No partial-volume-free perfusion values were reported, which makes it 

difficult to compare their quantitative results to ours. Still, the current work and the work by 

Petr et al. (9) shows that it is possible to perform PVC on ASL data without a high-resolution 

structural scan. Although these methods employed multi-TI ASL acquisitions, the concept can 

be adapted to any ASL protocol and sequence, for example a single-TI pCASL sequence, 

simply by incorporating T1 mapping (preferably within the scan). 

In contrast to the square kernel commonly used in spatial linear regression, we employed a 

circular kernel. We argue that the local region around a voxel is favorably defined by the 

Euclidian distance. This also reduces the presence of streaky artifacts in the partial-volume-

free perfusion maps (cf. (7)). As with square kernels, the smoothing effect of the linear 

regression increases with kernel size, although the main findings of this study were shown not 

to depend substantially on the kernel size (Supplementary Material 1). 

Although it may be important to remove signal contributions from WM, we argue that the 

most important PVC in low-resolution perfusion MRI is the removal of the dependence of 

tissue volume fraction. The importance of disentangling the effects of morphological and 

haemodynamic alterations cannot be overemphasized. A regional abnormality in estimated 

perfusion may be sufficient to identify it as a pathological state, but the physiological 

interpretation of the alteration may be erroneous if PVC is not employed. Furthermore, if both 

tissue volume and perfusion are affected, differences between groups as well as longitudinal 

changes may be completely overlooked if PVC is disregarded. 

Conclusion 

Automatic brain segmentation based on fractional signal modeling was accomplished in the 

low-resolution ASL CBF space by exploiting the inherent saturation recovery of the 

QUASAR sequence. The segmentation results were subsequently used for PVC of perfusion 

maps. Simulations suggested high segmentation performance for realistic data quality, and in 

vivo segmentation results were comparable to tissue probability maps generated by a 

reference method. The PVC increased gray matter perfusion values to more realistic levels 

and the results were most robust for the proposed methodology. 



In contrast to previously published methods, the proposed approach produces partial volume 

estimates based on the same data that perfusion is estimated from, thereby circumventing the 

need for additional scans and image coregistrations. The implementation was shown to yield 

superior partial-volume-free GM perfusion estimation, compared to a reference method. We 

believe that native-space segmentation based on quantitative MRI in connection with 

perfusion MRI is a promising tool for assessing volumetric dependence of extracted 

haemodynamic parameters. 
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Figure 1. Summary of the performance of the proposed (QUASAR-based) segmentation 

approach, based on simulations. a) Accuracy (bars) and precision (error bars), according to 

Eqs. 16-17, as a function of SNR. b) Volume agreement (VA), i.e., agreement in total volume 

for each compartment (Eq. 19). c) Volume overlap (VO), i.e., median voxel-wise similarity 

index of the partial volume estimates (Eq. 18), with 1st and 3rd quartiles indicated by bars. 

 



 
 

Figure 2. Comparison of segmentation results in one subject. Top row shows segmentation 

based on QUASAR data, and bottom row shows segmentation results based on the high-

resolution MPRAGE scan. The column to the left displays anatomical references, i.e., the 

QUASAR R1 map and the coregistered T1-weighted MPRAGE image. 

 



 
Figure 3. In vivo repeatability results for partial volume estimates (without repositioning) 

using segmentation based on QUASAR data (a-b), MPRAGE data (c-d), and corresponding 

comparison of QUASAR and MPRAGE. The left column (a,c,e) displays total volume 

agreement (VA) for gray matter (blue), white matter (red) and cerebrospinal fluid (green). The 

right column (b,d,f) displays spatial similarity, i.e., volume overlap (VO) for gray matter 

(blue), white matter (red) and cerebrospinal fluid (green). 

 



 
Figure 4. Example of partial volume correction (PVC) results in one subject. The top row 

corresponds to PVC results based on QUASAR segmentation and the bottom row corresponds 

to PVC results based on MPRAGE segmentation. 𝐶𝐵𝐹𝐺𝑀 and 𝐶𝐵𝐹𝑊𝑀 are tissue volume 

independent perfusion maps, 𝑝𝐶𝐵𝐹𝐺𝑀 and 𝑝𝐶𝐵𝐹𝑊𝑀 are partial tissue perfusion maps (i.e., 

GM perfusion map without WM contribution, and vice verca), and 𝑝𝐶𝐵𝐹𝐺𝑀+𝑊𝑀 =
𝑝𝐶𝐵𝐹𝐺𝑀 + 𝑝𝐶𝐵𝐹𝑊𝑀. The perfusion map to the right shows the measured CBF. All parameter 

maps are scaled according to the color bar to the right. 𝐶𝐵𝐹𝐺𝑀 and 𝐶𝐵𝐹𝑊𝑀 maps were 

masked to exclude voxels with partial volumes lower than 10% GM and 10% WM, 

respectively. 

 

 
Figure 5. Mean GM perfusion (ROI based on threshold at 20% GM volume) for uncorrected 

CBF (‘No PVC’), volume independent perfusion maps (𝐶𝐵𝐹𝐺𝑀), and partial tissue perfusion 

maps (𝑝𝐶𝐵𝐹𝐺𝑀), for both MPRAGE-based and QUASAR-based PVC. Green dots represents 

all 40 individual scans, red line shows the mean values (n=40), light red area indicates one 

standard error of mean (SEM), and the light blue area corresponds to the 95% confidence 

interval (CI). Each of the 40 scans is connected by a green line. 



 

Figure 6. Mean GM perfusion as a function of GM fraction for uncorrected CBF data (‘No 

PVC’, blue), and volume independent perfusion maps (𝐶𝐵𝐹𝐺𝑀) using MPRAGE-based (red) 

and QUASAR-based (green) PVC (𝑝𝐶𝐵𝐹𝐺𝑀 is omitted for clarity). Mean values are based on 

a GM ROI defined as all voxels with a GM fraction within a 10% interval (e.g., an x-axis 

value of 55% corresponds to the interval 50-60%). 

 



 
Supplementary Material 1. a) Circular kernels with radii from 2 to 6 voxels. b) In vivo mean 

CBF in GM without PVC and with the two evaluated PVC methods, including average 

standard deviations (dashed lines) in the GM mask (i.e., reflecting the degree of effective 

smoothing), as a function of kernel radius. 

 



 

Supplementary Material 2. Example of whole brain GM masks used in the statistical 

analysis. The left panel shows segmentation using QUASAR data and the right panel shows 

segmentation using MPRAGE data. The top row displays fractional volume estimation, the 

middle row shows a whole brain mask with a threshold of 𝑓𝑣,𝐺𝑀=0.2, and the bottom row 

shows a whole brain mask with a threshold of 𝑓𝑣,𝐺𝑀=0.5. 

 

 

Table 1. Summary of the statistical analysis of the 40 in vivo experiments. All values are 

based on a binary gray matter mask generated from segmentation maps with a threshold of 

20%. SEM is the standard error of mean, 𝑠𝑤 is the intra-subject standard deviation and COV 

is the coefficient of variation. 

Parameter 
Mean ± SEM 

[ml/100g/min] 

𝒔𝒘 

[ml/100g/min] 

𝒔𝒘 with 

repositioning 

[ml/100g/min] 

𝒔𝒘 without 

repositioning 

[ml/100g/min] 

COV 

[%] 

Repeatability 

index 

[ml/100g/min] 

𝐶𝐵𝐹 

(no correction) 
37.45 ± 0.90  3.69 3.60 2.69 9.85  10.22 

𝐶𝐵𝐹 

(smoothed) 
36.29 ± 0.85  3.58 3.42 2.64 9.85  9.91 

𝐶𝐵𝐹𝐺𝑀 

(MPRAGE) 
60.61 ± 1.45  6.76 7.15 4.56 11.15  18.73 

𝐶𝐵𝐹𝐺𝑀 

(QUASAR) 
55.14 ± 1.21  5.37 5.02 4.30 9.74  14.88 

𝑝𝐶𝐵𝐹𝐺𝑀 

(MPRAGE) 
33.57 ± 0.85  3.48 3.57 2.41 10.36  9.64 

𝑝𝐶𝐵𝐹𝐺𝑀 

(QUASAR) 
33.50 ± 0.79  3.18 3.03 2.53 9.49  8.81 

 

 


