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Abstract

Resource management is an essential building block of any modern computer and
communication network. In this thesis, the results of our research in the following
two tracks are summarized in four papers.

The first track includes three papers and covers modeling, prediction and control
for multi-tier computing systems. In the first paper, a NARX-based multi-step-ahead
response time predictor for single server queuing systems is presented which can
be applied to CPU-constrained computing systems. The second paper introduces a
NARX-based multi-step-ahead query response time predictor for database servers.
Both mentioned predictors can predict the dynamics of response times in the whole
operation range particularly in high load scenarios without changes having to be
applied to the current protocols and operating systems. In the third paper, queuing
theory is used to model the dynamics of a database server. Several heuristics are
presented to tune the parameters of the proposed model to the measured data from
the database. Furthermore, an admission controller is presented, and its parameters
are tuned to control the response time of queries which are sent to the database to
stay below a pre-defined reference value.

The second track includes one paper, covering a problem formulation and
optimal solution for a content replication problem in Telecom operator’s content
delivery networks (Telco-CDNs). The problem is formulated in the form of an
integer programming problem trying to minimize the communication delay and
cost according to several constraints such as limited content replication budget,
limited storage size and limited downlink bandwidth of each regional content
server. The solution of this problem is a performance bound for any distributed
content replication algorithm which addresses the same problem.

5





Acknowledgments

First of all, I would like to thank my wife Nassim, my parents Habibollah and
Najmehalsabah and my sister Pegah who have supported me through the years, and
their unconditional love and support helped me pass the hardships, allowing me to
get where I am now.

Furthermore, I would like to thank my supervisor Anders Robertsson who has
not only been my mentor during my studies towards the PhD but also a very good
friend. Your deep knowledge, great teaching skills, amazing personality and positive
energy has inspired me during this time. I also would like to extend my gratitude to
my supervisor Christian Nyberg for his valuable guidance and comments regarding
the thesis.

Many thanks to all the co-authors of the research papers we have written over
the years, especially my colleague Saeed Bastani with whom I spent many hours
discussing topics regarding content replication. Moreover, I would like to thank the
colleagues in the department of electrical and information technology (EIT), the
department of automatic control, the Lund Center for Control of Complex
Engineering Systems (LCCC) and the mobile and pervasive computing institute
(MAPCI) whom I enjoyed working and collaborating with.

My many regards goes to Leif Andersson for kindly sharing his extensive
knowledge and experience of LATEX with me, which made the thesis look much
nicer.

Financial support: Payam Amani was a member of LCCC, a Linnaeus Center
at Lund University, funded by the Swedish Research Council.

Payam Amani
Lund, April 2017

7





List of Acronyms

Acronym Description

Telco-CDN Telecom operator’s content delivery network

NARX Nonlinear auto-regressive neural network with exogenous inputs

MLP Multi-layer perceptron

CCNN Cascade correlation neural network

PRNN Pattern recognition neural network

KCCA Kernel canonical correlation analysis

LDS Load dependent server

MSS Mobile service support system

HLR Home location register

NE Network element

TDNN Time delay neural network

ARX Auto-regressive with exogenous inputs

MAS Management server

CDN Content delivery network

MCS Main content servers

KPI Key performance indicator

RCS Regional content server

LRU Least recently used

LFU Least frequently used

DTN Delay tolerant network
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Acronym Description

AP Access point

SP Service provider

ISP Internet service provider

CPU Central processing unit

MLE Maximum likelihood estimator

MSE Mean squared error

MAE Mean absolute error

I/O Input/Output

JDBC Java database connectivity

LAC Load-adaptive controller
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1
Modeling, prediction and
control for multi-tier
computing systems

Resource management of server systems is of great interest in the research
community as poorly managed systems contribute to severe performance
degradation in computing systems. Experience indicates that enterprise servers are
usually the bottleneck in computing systems while the backbone is underutilized.
Thus, performance models of server systems, particularly in the high traffic region,
are important building blocks in the design of optimal resource management
techniques in modern computing systems. In the next section, we will present the
most widely used architecture in web based computing systems, i.e., the multi-tier
architecture [Barry, 2003].

1.1 Multi-tier Computing Systems

Many modern computing systems use web technologies to provide their customers
with a vast variety of services. Due to requirements imposed by the flexibility and
re-usability of software, most web applications are designed in a multi-tier
architecture. Each tier here is assigned a specific functionality. The most widely
used example of this type of architecture is the 3-tier architecture which partitions
the system into three sections, namely presentation, application and data tiers.

Web-servers such as Apache HTTP Server serve as the building blocks of the
presentation tier. The second tier holds the business logic, consisting of application
servers such as Apache tomcat and Glassfish server. The last tier, called the data
tier, consists of database servers such as MySQL server and is responsible for data
storage and accessing. This is illustrated in Figure 1.1.

Dynamical modeling of each of these tiers in their operation range is a required
basis for the design of automatic resource management entities in modern
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Chapter 1. Modeling, prediction and control for multi-tier computing systems

Presentation Tier Application Tier Data Tier

Clients

Figure 1.1 Multi-tier computing system.

computing systems, in particular overload protection and admission control
entities.

1.2 Dynamical modeling of web servers

Previously in [Cao et al., 2003], it has been shown that CPU constrained
computing systems such as web servers can be modeled as a single server queuing
system. Also, [Kihl et al., 2003] states that a non-linear model is more capable of
representing the dynamics of a single server queuing system compared to a linear
model. Figure 1.2 illustrates a single server queuing system in which the
distribution of the inter-arrival times and service times are general. The mean
arrival rate and the mean service rates of the queuing system are denoted by λ and
µ respectively.

The literature offers many attempts to develop analytical estimators or
predictors for parameters of single server queuing systems. Clark in his pioneering
work has presented a maximum likelihood estimator of arrival and service rates
[Clarke et al., 1957]. Using the waiting time data, Basawa et al. in [Basawa et al.,
1996] have presented a maximum likelihood estimator for single server queues.
Some popular performance measures of queuing systems such as mean waiting
time in the queue, mean waiting time in the system, mean number of customers in
the queue and mean number of customers in the system were studied by Zheng and
Seila in [Zheng and Seila, 2000] . They showed that estimators generated by
replacing parameter estimators with the unknown parameters in the formula for the
above mentioned performance measures have the undesirable characteristic that

 

Figure 1.2 A single server queue with mean job arrival rate λ and mean service
rate µ .
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1.3 Dynamical modeling of database servers in data tier

the expected value of the estimator is non-existing and the mean squared error of
the estimator is infinite. In addition, they proposed a setup to fix these undesirable
characteristics. For the first time, the concept of Bayesian statistical inference was
applied by McGrath et al. in [McGrath et al., 1987] and [McGrath and
Singpurwalla, 1987] to an M/M/1 queuing system in which the arrivals form a
Poisson process and the service times of the single server are exponentially
distributed. Their work has been considerably extended in [Armero, 1994] and
[Choudhury and Borthakur, 2008].

The analytical approaches mentioned above to estimate parameters of single
server queuing systems present some unfavourable characteristics when used in
overload protection and admission control schemes. All these methods can only be
applied to steady state and stationary scenarios where the queuing system’s mean
arrival and service rates are constant and time invariant. It should also be noted that
none of these methods support multi-step-ahead prediction.

The requirement for a nonlinear multi-step-ahead response time predictor that
can work well under stationary and time varying scenarios led us to a black box
approach to identify the dynamics of a single server queuing system. In [Amani
et al., 2011a], we have presented a multi-step-ahead response time predictor that
has all the required characteristics which the analytical models lack and was
designed based on a nonlinear auto-regressive neural network with exogenous
inputs (NARX). This neural network and the structure of the predictor will be
introduced further in section 1.5. The proposed response time predictor works very
well in terms of both mean absolute and mean squared prediction errors. Tran et al.
in [Tran et al., 2013] have compared the respective performance of five neural
network based forecast models for web server workload including NARX,
Multi-layer Perceptron (MLP), Elman, Cascade Correlation Neural Network
(CCNN) and Pattern Recognition Neural Network (PRNN). They have established
that the best prediction accuracy was provided by NARX. This is completely in
line with our research in [Amani et al., 2011a].

1.3 Dynamical modeling of database servers in data tier

Database servers form the building blocks of the third tier in the 3-tier web
technologies, i.e., the data tier. These servers require secure, reliable and real-time
activation, modification and deactivation of both new and current customers and
services.

There is a resource access conflict among queries related to the management of
the system and queries related to the services for current users. As all these tasks
should be performed fast and in an automated manner, control systems designed
to avoid the resource access conflict and protect the database system from being
overloaded are indispensable. As these control systems have to predict a resource
access conflict well ahead in time so as to take proper action, they include a feed-

15



Chapter 1. Modeling, prediction and control for multi-tier computing systems

forward controller. This will require a multi-step-ahead state predictor which can
represent the dynamics of the data tier with fair precision in its operation range and
in the areas close to the overload region with high precision. The query response
time is considered to be the main state for this purpose. The main methods used to
develop response time estimators or predictors for database queries can be divided
into two main categories, namely analytical and data-driven methods.

Analytical models are only valid for certain types of database queries and
assume a number of simplifying conditions [Zhang et al., 2007; Tomov et al.,
2004; Watson et al., 2010]. Therefore, these models are not able to capture the
complex dynamics of the data tier. Another of their shortcomings is that they are
only valid under static and stationary scenarios and cannot represent the data tier
under time-variant and dynamical scenarios.

On the other hand, several instances of data-driven methods for modeling the
dynamics of the data tier are presented in the literature. Ganapathi et. al have
utilized Kernel Canonical Correlation Analysis (KCCA) to predict several metrics
for database queries including the response time [Ganapathi et al., 2009]. This
work has been extended by the authors in [Ganapathi et al., 2010] to cover
workload modeling for the cloud. In order to throttle long running queries, Tozer
et. al in [Tozer et al., 2010] used a linear regression model for the query response
time.

A Bayesian approach for online performance modeling of database appliances
using gaussian models was proposed by Sheikh et. al in [Sheikh et al., 2011]. This
model offered the possibility of adapting to changes in the workload and
configuration. The requirement for a nonlinear multi-step-ahead query response
time predictor that can work under both steady state and stationary scenarios as
well as under time varying and non-stationary scenarios led us to a gray box
approach to dynamical identification of database servers. In [Amani et al., 2011b],
by means of the same type of NARX neural network as in [Amani et al., 2011a],
we have designed a query response time predictor that has all the aforementioned
required characteristics and can represent the dynamics of query response times of
the database servers under various load and query mix conditions with a high
precision represented by very small mean absolute, mean squared and sum of
squared prediction errors.

Queuing theory can be utilized for the performance modeling of database
servers. The concept of load dependent server (LDS) models in which the response
time of the jobs in the system is a function of the service time of the jobs and the
current number of jobs waiting to be served in the system to the best of our
knowledge was first introduced in [Perros et al., 1992]. Rak et. al [Rak and
Sgueglia, 2010], Curiel et. al [Curiel and Puigjaner, 2001] and Perros et al. [Perros
et al., 1992] used standard benchmarks for database workload generation as well as
regression models to capture the system dynamics. A multi-step model parameter
calibration strategy was used to fine-tune the model’s parameters. The resulting
models belong to the data-driven model class. In [Mathur and Apte, 2004], a
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1.3 Dynamical modeling of database servers in data tier

queuing network representing the load-dependent behavior of the LDS was
presented and validated only by simulations. Two queuing systems, i.e., D/G/1 and
M/G/1 with load dependency assumptions, were theoretically analyzed in [Leung,
2002] by Leung. The D/G/1 is a single server queuing system with fixed regular
inter-arrival times and a general service time distribution. The M/G/1 is a single
server queuing system with exponentially distributed inter-arrival times and a
general service time distribution. These models were developed to be used in
congestion control schemes in broadband networks.

In [Kihl et al., 2012], we added the concept of load dependency to an M/M/m
queuing system, which is a queuing system with exponentially distributed
inter-arrival times, exponentially distributed service times, m servers and an
infinite queue, and also to an M/M/m/n queuing system, which is the same as
M/M/m except that it employs n queuing positions instead of an infinite queue.

The properties of the load-dependent M/M/m model (M/M/m-LDS) are set by
exponentially distributed service times with mean service time equal to base
processing time xbase = 1/µ and a dependency factor f . When a request enters the
system, it will be assigned on average the base processing time xbase. A single
request in the system will on average have a processing time of xbase. Each
additional request inside the system increases the residual work for all requests
inside the system (including itself) by a percentage equal to the dependency factor
f of the base processing time xbase. When a request leaves the system, all other
requests have their residual work decreased by f percent of the base processing
time xbase. This means that if n concurrent requests enter the system at the same
point, they will all have a processing time of xs(n) = xbase · (1+ f )n−1. A special
case is when f = 0. It means that there is no load dependency, and all requests will
have a processing time xbase. The system can process a maximum of m concurrent
requests at each time instance. Any additional request will have to wait in the
queue. New requests arrive according to a Poisson process with the average rate λ .
Therefore, the system can be modeled as a Markov chain as illustrated below in
Figure 1.3.

The steady state probabilities, average number of jobs in the system and
average response times were calculated by means of queuing theory for both
queuing systems. In order to tune the model’s parameters to represent the

Figure 1.3 Load dependent M/M/m queuing system as a Markov chain
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Chapter 1. Modeling, prediction and control for multi-tier computing systems

dynamics of the current database, query combination and load set-up, the effects of
variations of each parameter on the mean response time of queries sent to the
database as a function of the mean effective arrival rate were studied.

Furthermore, some heuristics for fine-tuning the model parameters were
introduced. Finally, via some experimental results, we have shown that the
M/M/m/n-LDS model is able to represent the response time of the queries sent to
the database as a function of the mean arrival rate of the queries. This result was
further presented and used in [Amani et al., 2012] in an admission control scheme
for Ericsson’s mobile service support system.

1.4 Mobile Service Support system and admission
control design

Application tier is the middle layer between presentation and data tiers and holds
the business logic. Application servers are the building blocks of this tier. In this
section we will introduce an entity in the mobile network which is developed by
Ericsson AB based on the application tier architecture.

The Mobile Service Support system (MSS), which Ericsson AB develops,
handles the set-up of new subscribers and services into a mobile network. To the
operator and its business support systems, it offers a unified middle-ware where
complex functions, such as setting up a new subscriber or modifying services for
an existing subscriber, can be easily invoked. The software architecture is complex,
with several layers and distributed infrastructures, which means that specific parts
of the system will not have complete knowledge of the interactions among other
parts of the system. The system architecture is illustrated in Figure 1.4.

A request to the MSS from an upstream system such as customer administration
system normally results in a number of requests send out on the mobile network to
several different network elements (NEs). A network element is usually a database
storing subscriber and service data, such as for example the Home Location Register
(HLR).

A user ID, which needs to be fetched from one database, has to be supplied in a
query to another database to ensure the system’s consistency.

In parallel to the changes and set-ups performed by the MSS, the network is also
employed by the end users, i.e., mobile subscribers. Services set up by the MSS are
queried by base stations and other systems requiring that information. With respect
to the MSS, this traffic can be considered as unknown background traffic, in contrast
to the known traffic flowing through the MSS.

The experience from deployed Ericsson systems shows the possibility of
overload situations in the NEs. The measurable (known) load coming from the
MSS and the not directly measurable (unknown) load coming from the the mobile
users may compete in a race for resources in an NE that may lead to overload in
that NE. If such an overload happens and the NE becomes unresponsive, all

18



1.4 MSS and admission control design

Figure 1.4 Mobile service support system (MSS).

transactions sent to that NE need to be rolled back manually to prevent
inconsistency in the databases. This roll-back process requires manual work which
is costly for the operators in terms of time and expenditure.

In order to avoid such overload situations, traffic monitoring and admission
control are vital. In cooperation with Ericsson AB, we have identified and
addressed several control challenges for the MSS system. Performance models and
control designs are based on the response time of queries sent to the NEs as this
metric is easily measurable without requiring a change of protocols and systems
and also because it well represents the dynamics of the load of the NEs, i.e., a
highly loaded NE will have a long response time and a lightly loaded NE will have
a short response time accordingly. The presented performance models in [Kihl
et al., 2012] and [Amani et al., 2012], namely the M/M/m/n-LDS model is shown
to be a suitable candidate to represent the dynamics of the response times of
queries sent to a NE. In Figure 1.5, the known and unknown load sources to a NE
with their respective mean arrival rates of queries λ and λu are illustrated.

By monitoring the response time of the requests sent from the MSS to the NE,
we are able to identify the overload situation. When the average response time of
the requests sent to a NE reaches a threshold, the MSS can classify the NE as being
overloaded and thus take action to reduce the mean arrival rate of the requests sent
to that particular NE. This reduced arrival rate is denoted by λc.
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Chapter 1. Modeling, prediction and control for multi-tier computing systems

Figure 1.5 Load at the NEs.

The MSS includes a control system which ensures that the mean response time
of the queries sent to a NE is kept below an acceptable level, thus also keeping the
load on the NE equally acceptable. The control system includes a controller and a
gate. The control system is depicted in Figure 1.6.

A response time reference value, Tre f , and response time measurements are used
by the controller to determine an acceptable workload offered to the database server.
The admitted workload is defined by the normalized mean admittance ratio of the
requests , λA which is defined as the mean arrival rate of the admitted requests
divided by the maximum mean arrival rate of the requests. Robust performance of
the controller in the presence of fluctuations in the average arrival rate of the queries
sent to the database is desired. The gate ensures that ratio λA of all arriving queries is
admitted to the database. In the MSS, this is handled by delaying the transmission of
the requests to the NEs. Since the communication with the customer administration
system is synchronous, adding delays to the responses will lower the arrival rate of
requests. Details of the controller design are presented in [Amani et al., 2012].

Figure 1.6 Control system.
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1.5 NARX-based multi-step-ahead predictor

1.5 NARX-based multi-step-ahead predictor

NARX Neural Network
Recurrent neural networks have been widely used for modeling of nonlinear
dynamical systems [Haykin, 1998; Ljung, 1999]. Among various types of the
recurrent neural networks such as distributed time delay neural networks (TDNN)
[Haykin, 1998], layer recurrent networks [Haykin, 1998] and NARX [Haykin,
1998], the latest is of great interest in input-output modeling of nonlinear
dynamical systems and time series prediction [Siegelmann et al., 1997; Lin et al.,
1996; Xie et al., 2009; Menezes and Barreto, 2006; Parlos et al., 2000].

NARX is a dynamical recurrent neural network based on the linear ARX model.
The next value of the dependent output signal y(t) is regressed over the latest nx
values of the independent input signal and ny values of the dependent output signal.
nx and ny respectively represent the dynamical order of the inputs and outputs of the
NARX. A mathematical description of the NARX model is summarized in (1.1) in
which f is a non-linear function.

y(t) = f (y(t − 1),y(t − 2), . . . ,y(t − ny),x(t − 1),x(t − 2), . . . ,x(t − nx)) (1.1)

A NARX neural network can be implemented in two set-ups, namely parallel
and series-parallel architectures. These are depicted in Figure 1.7.

This network consists of three main layers, i.e., the input layer, hidden layer
and output layer. The input layer consists of the current and previous inputs as well
as previous outputs. These are fed into the hidden layer. This layer consists of one
or several neurons resulting in a nonlinear mapping of an affine weighted
combination of the values from the input layer. The output layer consists of an
affine combination of the values from the hidden layer. In this network, the
dynamical order of inputs and outputs and the number of neurons in each layer are
pre-determined. Several methods for determination of these values are presented in
[Haykin, 1998]. A suitable training algorithm and performance measure should
also be chosen. Finally, the type of non-linear map needs to be defined.

Some pre- and post-processing on the input and target values should be
performed in order to ensure a valid training [Haykin, 1998]. These processes

Feed Forward
Network

Tapped Delay
Line

Tapped Delay
Line

( )x t
ˆ( )y t

(a)

Feed Forward
Network

Tapped Delay
Line

Tapped Delay
Line

( )x t

( )y t
ˆ( )y t

(b) Series-Parallel Parallel

Figure 1.7 NARX (a): parallel and (b): series-parallel architectures.
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( )x t

( )y t

ˆ( )y t

 

Figure 1.8 Multi-step-ahead response time predictor set-up.

include mapping of the input and target data to values in the range of [−1,1],
normalization of the inputs and targets to have zero mean and unity variance and
removal of constant inputs and outputs and processing of unknown inputs.

NARX-based multi-step-ahead predictor set-up
Figure 1.8 depicts the structure of the multi-step-ahead response time predictor
which was applied in [Amani et al., 2011a] to a single server system and in [Amani
et al., 2011b] to a database server as the NE. Hereby we predict the response time
of a request sent to a NE from the management server (MAS) by means of three
measured time values, specifically the inter-arrival, inter-departure and response
times of the requests sent to NE from the MAS.

In this setup, the input vector of the NARX predictor includes current inter-
arrival and inter-departure times of the requests sent to the NE by the MAS. The
output of the NARX predictor is the predicted response time in some steps ahead.
The measured response times are required for training and evaluation of the NARX
predictor and thus are fed back to the input layer of the proposed predictor. The
measured data is divided into training, evaluation and test data sets. The prediction
horizon m is defined as the time shift between corresponding inputs and output
values so that the current input is used for prediction of the output in m time steps
into the future. Details of the NARX predictor setup and the test beds used for its
performance evaluation are presented in [Amani et al., 2011a] and [Amani et al.,
2011b].
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2
On centralized and
decentralized content
replication algorithms in
content delivery networks

2.1 Introduction

The main trend in Internet usage covers content generation, distribution and sharing.
Among the vast variety of content types being generated, video is by far in the lead,
expected to correspond to 79% of the whole Internet traffic in 2016 [Wang et al.,
2015]. In [Cisco, 2016] it is projected by Cisco that globally, IP video traffic will be
82 percent of all consumer Internet traffic by 2020.

Content delivery networks(CDNs) are the main medium used for efficient and
reliable distribution of contents to the end users on the Internet. A CDN consists
of a distributed system of servers which are geographically distributed around the
globe.

CDN providers not only control the placement of content in the distributed
system of servers located in different geographical locations but also decide on
which server should serve a client’s request. These two functions of CDN
providers are called content replication and request routing in the literature.

Content replication and request routing algorithms can be implemented in a
centralized approach or a distributed approach. Centralized approaches which are
mainly implemented in commercial CDNs have the requirement of a global
knowledge of the network architecture and related parameters. On the other hand,
distributed approaches are presented in research CDNs and require only local
knowledge of network architecture and related parameters.

CDNs are developed in-house by internet giants such as Google and Microsoft.
Some other companies such as Akamai and Limelight have developed designated
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2.2 Content replication in CDNs

CDN solutions and serve the content providers in the Internet. Some CDN
providers have used cloud based technologies to provide a vast variety of content
generators with cheap and pay as you go solutions which are called cloud CDNs in
the literature. Finally some Telecom operators have deployed their own CDNs to
have more control on delivery of content to their customers. These solutions are
called Telecom operator’s content delivery networks (Telco-CDNs) in the literature
[Anjum et al., 2017].

2.2 Content replication in CDNs

In order to study the content replication problem in a CDN we have considered two
layers of content servers. The content servers in the commercial CDNs are herein
called main content servers (MCSs). It is assumed that a unique copy of each piece
of content is located in the MCSs, thus MCSs cover the space of whole available
contents for the content consumers.

The second layer of content servers are considered to be located in Internet
service providers (ISPs). ISPs often own several regional content servers (RCSs) as
part of a solution called Telco-CDNs [Li and Simon, 2013].

One of the main key performance indicators (KPIs) that can quantify quality
of experience (QoE) of users of video content, is content retrieval latency. In order
to minimize the content retrieval latency, contents should be disseminated towards
consumers by replicating them in RCSs based on their popularity in the domain of
each RCS.

Content replication in the RCSs can be performed in several ways. In a
traditional paradigm, each RCS autonomously and independently decides which
content to replicate and which content to discard when a new content is requested
by end users while there is not sufficient storage available in the RCS for
replicating it. Present web-caching architectures such as Least Recently Used
(LRU) and Least Frequently Used (LFU) are built based on this paradigm
[Androutsellis-Theotokis and Spinellis, 2004]. Despite its architectural simplicity,
this paradigm has some drawbacks in terms of non-optimal storage usage due to
the existence of redundant contents in RCSs. Even RCSs in the domain of one
service provider are oblivious to the replicated contents of each other.

Distributed content replication is an alternative to the independent replication
mechanism described above in which RCSs participate in a distributed content
replication process. Upon arrival of a request for a content which is not already
locally replicated, an RCS should decide to fetch the content from a neighboring
RCS which has already replicated this content or from the MCS and whether to
replicate it locally or not. The algorithms for distributed replication of contents can
be divided into two categories, namely selfish and cooperative replication. In a
selfish replication system, each RCS seeks replication strategies that maximize its
own pay-off. On the other hand, in a cooperative replication, RCSs seek replication
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strategies that maximize the social pay-off [Borst et al., 2010]. The choice of
selfish or cooperative strategies depends mainly on the business relations among
the involved parties.

Content valuation is a vital part of any selfish or cooperative content replication
algorithm through which decisions for local replication of a content is made in
RCSs. The major notion of content valuation is content popularity which is used
by almost all state of the art content replication algorithms. The popularity of a
content has been addressed through various definitions such as the recency of
usage of content in LRU and the frequency of usage in LFU [Mohan, 2001]. The
demand rate of a content is another notion of content popularity which is used in
most of the recent distributed content replication strategies.

An RCS can decide either to replicate a content completely or partially based on
the replication strategy. Many content replication strategies implement the former
option [Laoutaris et al., 2005; Borst et al., 2010]. For partial replication of contents,
the division of contents into chunks has been studied in [Bo et al., 2013]. A chunk
is considered as a fixed-size piece of content where the chunk size and hence the
number of chunks in a content is determined with respect to that fixed-size-based
chunk. The introduction of chunks into content replication has various advantages.
Chunk-based replication enables RCSs to locally replicate initial chunks of the most
popular contents with higher probability and providing the users lower access delay
for these chunks. While these chunks are consumed (in the case of videos being
played), the rest of the chunks could be fetched and consumed afterwards. Hereby,
the QoE for the end user is improved by lowering the content retrieval latency.
Another advantage is that by improving the granularity of the storage space, we
can replicate the important chunks (initial chunks) of the most popular contents
more efficiently compared to replication of the whole content in terms of storage
utilization. In Delay Tolerant Networks (DTNs), chunk-based replication can ease
opportunistic content retrieval. If a user did not fetch all chunks of a content in a
meeting incidence with the current Access Point (AP), he will still have the chance
to get the rest of the chunks from the next AP as he moves around the network.

In [Amani et al., 2013], we addressed the problem of optimal content
replication in RCSs in the form of a minimization integer programming problem.
The cost function for this problem is the accumulated weighted content retrieval
latency among RCSs and also between the RCSs and the MCS. Various practical
constraints such as a limited total content replication budget in each SP, limited
storage size and downlink bandwidth of each RCS have been considered in the
minimization problem to model the optimal content replication problem more
realistically. A solution to this centralized minimization problem will provide the
performance bound for any decentralized content replication with similar
formulation. The topology of this scenario is depicted in Fig 2.1.

As this integer programming problem is NP-hard [Li and Simon, 2013], light
weight centralized and distributed algorithms to approximate the solution of this
problem are of practical interest.
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Figure 2.1 Multiple service providers, optimization for waited delay and bounded
cost.

In [Liu et al., 2016], the authors have extended the presented problem
formulation by assuming that the APs are equipped with a type of storage called
storage helpers. Afterwards, they presented an integer programming formulation
for the content placement problem. Furthermore, they have proposed some
heuristics to estimate the optimal solution of the content placement problem.

We have extended the research results presented in [Amani et al., 2013] further
in [Amani et al., 2015] where two popularity-based cooperative content replication
and request routing algorithms have been proposed which minimize the content
access delay in a general CDN topology. The proposed algorithms are examined
under broad ranges of cache sizes and content popularity parameters via
simulation. The results show that the proposed methods outperform similar
cooperative recency-based methods and demonstrate close to optimal performance
in representative scenarios of real world situations.

2.3 Future works

Two possible extensions of the research presented in [Amani et al., 2015] are
considering the effect of server loads in content access delay as well as studying
the power consumption of the proposed algorithms and developing joint power and
content access delay optimization algorithms for content replication and request
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routing in a general CDN topology.
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3
Publications and
Contributions

This thesis is based on four papers which summarizes the result of our research in
two tracks . The contents of the two research tracks and contributions of each paper
are described as follows.

Track 1—Modelling, prediction and control for multi-tier
computing systems

Paper I
Amani, P., M. Kihl, and A. Robertsson (2011). “Multi-step ahead response time

prediction for single server queuing systems”. In: Proceedings of the 16th
IEEE Symposium on Computers and Communications (ISCC2011). IEEE,
pp. 950–955.

Multi-step ahead response time prediction of CPU constrained computing
systems is vital for admission control, overload protection and optimization of
resource allocation in these systems.

CPU-constrained computing systems such as web servers can be modeled as
single server queuing systems. These systems are stochastic and non-linear. Thus,
a well-designed non-linear prediction scheme would be able to represent the
dynamics of such a system much better than a linear scheme. A NARX-based
multi-step-ahead response time predictor has been developed. The proposed
estimator offers many promising characteristics making it a viable candidate for
being implemented in admission control products for CPU constrained computing
systems. It has a simple structure, is non-linear, supports multi-step-ahead
prediction, and works very well under time variant and non-stationary scenarios,
such as single server queuing systems under a time varying mean arrival rate. The
performance of the proposed predictor is evaluated through simulation.
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Simulations show that the proposed predictor is able to predict the response times
of single server queuing systems in multi-step-ahead with very good precision
represented by very small mean absolute and mean squared prediction errors.

I am the main contributor to this paper, and I was involved in all parts of the
scientific work and writing of the paper.

Paper II
Amani, P., M. Kihl, and A. Robertsson (2011). “NARX-based multi-step ahead

response time prediction for database servers”. In: Proceedings of the 2011 11th
International Conference on Intelligent Systems Design and Applications. IEEE,
pp. 813–818.

Advanced telecommunication applications are often based on a multi-tier
architecture, with application servers and database servers. With a rapidly
increasing development of cloud computing and data centers, characterizations of
the dynamics for database servers during changing workloads will be a key factor
for analysis and performance improvements in these applications. We propose a
multi-step-ahead response time predictor for database queries based on a NARX
neural network. The estimator shows many promising characteristics which make
it a viable candidate for being implemented in admission control products for
database servers. Performance of the proposed predictor is evaluated through
experiments on a lab set-up with a MySQL server.

I am the main contributor to this paper, and I was involved in all parts of the
scientific work and writing of the paper.

Paper III
Amani, P., B. Aspernäs, K. J. Åström, M. Dellkrantz, M. Kihl, G. Radu, A.

Robertsson, and A. Torstensson (2012). “Application of control theory to a
commercial mobile service support system”. International Journal on Advances
in Telecommunications Volume 5, Number 3 & 4, 2012.

The Mobile Service Support system (MSS), which Ericsson AB is developing,
handles the set-up of new subscribers and services into a mobile network.
Experience from deployed systems shows that traffic monitoring and control of the
system will be crucial for handling overload situations that may occur during
sudden traffic surges. In this paper, we identify and explore some important control
challenges for this type of system. Furthermore, we present analysis and
experiments showing some advantages of the proposed solutions. First, we develop
a load-dependent server model for the Database system, which is validated in
test-bed experiments. Subsequently, we propose a control design based on the
model and a method for estimating response times and arrival rates of the queries
sent to the Database. The main contribution of this paper is that we show how
control theory methods and analysis can be used for commercial Telecom systems.
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Parts of our results have been implemented in commercial products, validating the
strength of our work. This paper is a summary of a long cooperation between
researchers in the department of electrical and information technology (EIT) in
Lund university and Ericsson in Karskrona.

I have contributed to the following parts of the scientific work and written the
paper: calculations for the mean response time and mean number of customers for
the M/M/m/n-LDS; parameter tuning for LDS models, setting up the experiments
(There has been two parallel test beds one implemented by me and one by Manfred
Dellkrantz) and fitting the model to the experimental data. I also contributed to the
design of the linear LAC and tuned the controller for a LDS model fitted to the data
from the database server in Simulink and provided the parameters for testing in the
lab set-up. In a nutshell, I have directly contributed to all parts of this scientific work
except for the section on monitoring and estimation.

Track 2—On centralized and decentralized content
replication in content delivery networks

Paper IV
Amani, P., S. Bastani, and B. Landfeldt (2013). “Optimal content retrieval latency

for chunk based cooperative content replication in delay tolerant networks”.
In: Proceedings of the 9th Swedish National Computer Networking Workshop.
SNCNW.

Modern content distribution networks face an increasing multitude of content
generators. In order to reach the minimal content retrieval latency in content
distribution networks, content shall be disseminated towards consumers based on
its popularity taken from the content distribution networks. This, combined with
dividing media into chunks (heterogeneous valuation of information) and contact
duration of the consumers with the access points in delay tolerant networks, led us
to a novel system for content management in large scale distributed systems. In
order to determine where to replicate content, we formulated the problem as an
integer programming problem. The cost function of this minimization problem is
the accumulated weighted communication delay among the content replication
servers and also the main content server. Various practical constraints such as a
limited total budget for content replication in each service provider, limited storage
size and downlink bandwidth of the content replication servers are considered. A
centralized solution to the problem is derived which yields the performance bound
for any decentralized content replication strategy for the presented scenarios.

I am the main contributor to this paper and I was involved in all parts of the
scientific work and writing of the paper.
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Other publications not included in the thesis

Paper V
Kihl, M., P. Amani, A. Robertsson, G. Radu, M. Dellkrantz, and B. Aspernäs

(2012). “Performance modeling of database servers in a telecommunication
service management system”. In: IARIA 7th International Conference on Digital
Telecommunications (ICDT).

Paper VI
Amani, P., S. Bastani, and B. Landfeldt (2015). “Towards optimal content

replication and request routing in content delivery networks”. In: Proceedings
of the 2015 IEEE International Conference on Communications (ICC 2015).
IEEE, pp. 5733–5739.
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Paper I

Multi-step ahead response time prediction
for single server queuing systems

Payam Amani Maria Kihl Anders Robertsson

Abstract

Multi-step ahead response time prediction of CPU constrained computing
systems is vital for admission control, overload protection and optimization of
resource allocation in these systems. CPU constrained computing systems
such as web servers can be modeled as single server queuing systems. These
systems are stochastic and non-linear. Thus, a well-designed non-linear
prediction scheme would be able to represent the dynamics of such a system
much better than a linear scheme.

A non-linear auto-regressive neural network with exogenous inputs based
multi-step ahead response time predictor has been developed. The proposed
estimator has many promising characteristics that make it a viable candidate
for being implemented in admission control products for computing systems. It
has a simple structure, is non-linear, supports multi-step ahead prediction, and
works very well under time variant and non-stationary scenarios such as single
server queuing systems under time varying mean arrival rate. Performance of
the proposed predictor is evaluated through simulation. Simulations show that
the proposed predictor is able to predict the response times of single server
queuing systems in multi-step ahead with very good precision represented by
very small mean absolute and mean squared prediction errors.

Originally published in the Proceedings of the 16th IEEE Symposium on
Computers and Communications (ISCC)", Kerkyra (Corfu), Greece, pp.950-955,
Jun. 2011. Reprinted with permission.
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Paper I. Multi-step ahead . . . prediction for single server queuing systems

1. Introduction

Computing systems enable the Telecom operators to provide their customers with
a vast variety of services which are aimed to meet their demands and desires. An
operator usually uses a network of several such computing systems to facilitate
providing the end users with an ever growing variety of services. Optimization of
resource allocation in computing systems has attracted much interest in recent years
as it directly relates to the performance of these systems.

Node elements (NEs) as building blocks of this network of computing systems,
have a requirement for secure, reliable and real-time activation, modification and
deactivation of both new and current customers or services. These tasks should be
performed fast and in an automated manner. A resource access conflict exists
among performing those tasks and providing current customers with their
requested services in the network. This fact raises the necessity for a new
enterprise provisioning system in the network which is hereby named as
management system (MAS). The MAS is equipped with an admission control
mechanism which enables it to avoid the resource access conflict by delaying
sending of requests to a highly loaded NE and protecting it from becoming
overloaded [Kihl et al., 2008; Chen et al., 2003; Liu et al., 2006]. This control
mechanism usually includes a feed forward controller as it should predict the
resource access conflict well before it happens and take action to avoid it.
Therefore there is a requirement for a multi-step ahead state predictor for the NEs
which precisely represent the dynamics of the NE in its whole operation range.
NEs are desired to be loaded as much as possible close to their capacity meanwhile
protected from becoming overloaded. One of the main performance measures of
computing systems is the response time of the requests sent to them. Businesses
and their customers like to minimize the system’s response times while
maximizing system utilization. Doing this, users will have a positive experience
during delivery of services which would lead to increased customer retention and
revenue.

It has been shown in [Cao et al., 2003] that CPU constrained computing systems
such as web servers with dynamic content can be modeled as single server queuing
systems. These are nonlinear stochastic systems. A nonlinear model is much more
capable of representing the dynamics of a single server queuing system compared
to a linear model [Kihl et al., 2003].

Many attempts to develop analytical estimators or predictors for single server
queuing systems have been presented in the literature. Clarke, in his pioneer work
published in 1957, presented maximum likelihood estimator (MLE)’s of arrival
and service rates [Clarke et al., 1957]. Basawa et. al . in [Basawa et al., 1996] have
presented a maximum likelihood estimator for single server queues from waiting
time data. In [Zheng and Seila, 2000], Zheng and Seila have investigated some
popular performance measures like waiting time and queue length under
frequentist setup and showed their undesirable characteristics like nonexistence of
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2 System Configuration

expected value of the estimator and infinite mean-squared error of the estimator.
Further, they proposed a set-up to fix that property. For the first time, McGrath et.
al . in [McGrath et al., 1987; McGrath et al., 1987] have applied the concept of
Bayesian statistical inference to the M/M/1 queuing system. Their work has been
considerably extended in [Armero, 1994; Choudhury and Borthakur, 2008].

The above mentioned analytical approaches to the estimation of single server
queuing systems have some unfavorable characteristics for overload protection
admission control schemes. Firstly, all of the above mentioned estimation methods
can only be applied to steady state and stationary scenarios. Secondly, mean
service and arrival rates are assumed to be constant and time invariant. However, in
the real world, there are many cases where we are interested in a state estimator
that can be applied to a CPU constrained computing system with at least one time
varying parameter. Time varying mean arrival rate can be a good example of these
parameters. Finally it should be noted that none of the above mentioned methods
support multi-step-ahead prediction.

The requirement for a non-linear multi-step ahead response time predictor that
can work under stationary and steady state scenarios as well as time varying and
non-stationary scenarios led us to a grey box approach to identification of single
server queuing systems. By means of a non-linear auto-regressive network with
exogenous inputs (NARX) neural network we have designed a predictor that covers
all the above mentioned characteristics that the other methods lack and also is able
to predict the response times of single server systems with very good precision
represented by very small mean absolute and mean squared prediction errors.

This paper is structured as follows. System configuration containing the use case
scenario, the NARX neural network and the predictor is investigated in section 2.
Section 3 is dedicated to specifications of simulation environment and scenarios.
Simulation results are summarized in section 4. Finally section 5 concludes the
paper.

2. System Configuration

This section covers three sub-sections. In subsection 2.1 the pilot system for which
a non-linear multi-step-ahead predictor is developed is introduced. Sub-section 2.2
is dedicated to the introduction of NARX recurrent neural networks. The proposed
NARX multi-step ahead response time predictor is presented in sub-section 2.3.

2.1 Management System and Node Elements
Communication and computer networks are the media used by Telecom operators
to inspire their subscribers with an ever growing variety of services. These
networks are usually inter-connected and operators provide services to their
customers via several of them. The MAS is responsible for real-time, secure and
reliable activation, modification and deactivation of subscribers and services in an
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Figure 1. A generic distributed service management system.

automated manner. Such management system interacts with many NEs in the
network and is usually implemented in distributed server clusters. Figure 1 depicts
a generic distributed service management system.

The interactions between the MAS and the NEs should not lead the high loaded
NEs to become overloaded. This brings the necessity of an admission control
mechanism for overload protection of the NEs into picture. As a real network
usually consists of various parts which are provided by several vendors with their
own protocol implementations, the admission control mechanism should be
implemented in the MAS. Also, it should be based on measurements which can be
provided without a need for changing the current protocols and operating systems.
A close review of the described set-up led us to figure out three measurements that
have the above mentioned characteristics. These include inter-arrival times,
inter-departure times and response times of the services sent to the node elements
from the service management system. These measurements can be retrieved from
the time tagged logs of requests traveling in the network. The response time of a
service is defined as the duration of time that it spends from the moment that it
leaves the MAS for the NE to the time that it leaves the NE. A high response time
corresponds to a highly loaded NE and a low response time to a lightly loaded one.
Thus response time can be used as an indicator for the NEs’ internal state.

The control mechanism for overload protection of the NEs is in the form of
admission control so that NEs’ traffic from the subscribers is given higher priority
compared to the traffic sent from the MAS to the NEs. In case that the NE is heavily
loaded and tending to become overloaded, the MAS will back off sending more
requests to the NE allowing it to process some of them and reduce its load. As the
control action should take place well before an overload occurs in the network, the
admission control scheme will consist of not only a feedback loop but also a feed
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Figure 3. A single server queue with mean arrival rate λ and mean service rate µ .

forward part. The requirement for a feed forward controller raises the need for a
multi-step ahead predictor for the NEs. In this paper we focus on interaction of one
Management Server with one NE. Configuration of the computing system which is
to be investigated in this paper is illustrated in Figure 2.

NEs can be modeled as single server queuing systems. In this paper the problem
of non-linear multi-step ahead prediction of response times of single server queuing
systems is investigated. Figure 3 illustrates a single server queuing system in which
the distribution of the inter-arrival times and service times are general. The mean
arrival rate and the mean service rates of the queuing system are denoted by λ and
µ respectively.

2.2 NARX Neural Network
Recurrent neural networks have been widely used for modeling of nonlinear
dynamical systems [Haykin, 1998; Ljung, 1999]. Among various types of the
recurrent neural networks such as distributed time delay neural networks (TDNN)
[Haykin, 1998], layer recurrent networks [Haykin, 1998] and NARX [Haykin,
1998], the latest is of great interest in input output modeling of nonlinear
dynamical systems and time series prediction [Siegelmann et al., 1997; Lin et al.,
1996; Xie et al., 2009; Menezes and Barreto, 2006; Parlos et al., 2000].

NARX is a dynamical recurrent neural network based on the linear ARX model.
The next value of the dependent output signal y(t) is regressed over the latest nx
values of the independent input signal and ny values of the dependent output signal.
nx and ny respectively represent the dynamical order of the inputs and outputs of
the NARX. A mathematical description of the NARX model is summarized in (1)
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Figure 4. NARX (a): Parallel and (b): Series-Parallel Architectures.

in which f is a nonlinear function.

y(t) = f (y(t − 1),y(t − 2), . . . ,y(t − ny),x(t − 1),x(t − 2), . . . ,x(t − nx)) (1)

A NARX neural network can be implemented in two set-ups namely parallel
and series-parallel architectures. These are depicted in Figure 4. In this paper we
have used the series-parallel architecture in which during the training period the
actual values of the output are fed back to the neural network. This will improve the
training precision.

This network consists of three main layers namely input layer, hidden layer and
output layer. The input layer consists of the current and previous inputs and
previous outputs. These are fed into the hidden layer. The hidden layer consists of
one or several neurons resulting in a nonlinear mapping of affine weighted
combination of the values from input layer. The output layer consists of an affine
combination of the values from hidden layer. In this network the dynamical order
of inputs and outputs and number of neurons in each layer are pre-determined.
Several methods for determination of these values are presented in [Haykin, 1998].
A suitable training algorithm and performance measure also should be chosen.
Finally, the type of the non-linear map needs to be defined.

Some pre and post processing on the input and target values should be performed
in order to have a valid training [Haykin, 1998]. These processes include mapping
of the input and target data to values in range of [−1,1], normalization of the inputs
and targets to have zero mean and unity variance and removal of constant inputs
and outputs and processing of unknown inputs. As these measurements are very
noisy, after normalization we filter both input and target values with a designed
Butterworth low pass filter. The bandwidth of the filter is chosen so it suppresses
noise as much as possible while not affecting the characteristics of in band part of
input and output data sets.

2.3 NARX Multi-Step Ahead Response Time Predictor Set-up
Our application requires the prediction of response times of the single server
queuing system in some time steps into the future before the actual output
measurements become available.
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Figure 5. Multi-Step ahead Response Time Predictor Set-up.

A grey box identification approach was chosen to predict the response time of a
service sent to a NE by the Management Server from three measured time values
namely inter-arrival, inter-departure and response times of the services. The input
vector consists of current inter-arrival times and inter-departure times as two
inputs. Output of the neural predictor is the predicted response time. Measured
response times are required for training and evaluation of the NARX multi-step
ahead response time predictor and are fed back to the input layer of the proposed
predictor.

Measured data is divided into training, evaluation and test data sets. Prediction
horizon m is defined as the shift between corresponding inputs and output values so
that current input is used for prediction of output in m time steps in the future. The
proposed multi-step ahead response time predictor set-up is illustrated in Figure 5.

The overload protection admission controller uses a gate for controlling the
flow of requests to the NE. The flow of requests from the MAS to the NE cannot
get negative values as negative requests do not exist. Also the gate cannot send
more requests than the available requests in the MAS. This imposes an input
nonlinearity to the NE. We already know that NEs are nonlinear and stochastic
computing systems. Thus, a NARX based predictor as a nonlinear predictor has a
much better opportunity to grasp the dynamics of the response times of the NE
compared to linear predictors [Kihl et al., 2003].

The off-line training process is described as follows. The NE is simulated under
high load conditions. The acquired data is then divided to training, validation and
test data sets. The NARX multi-step ahead response time predictor is trained using
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the train data and training is validated and its performance is tested using validation
and test data sets. This trained predictor is used for all static and dynamic load
conditions. Performance of the predictor is investigated in the following section.

3. Simulation environment and Scenarios

The simulation environment and the simulation scenarios are defined in the sub-
sections 3.1 and 3.2 respectively.

3.1 Simulation environment
The NE and the Management Server are implemented in the MATLAB Simulink
tool for event based simulations called SimEvents. Considering the pilot system
configuration, the MAS is simulated by a request generator and the NE is
simulated by a single server queuing system. The NARX multi-step ahead
response time predictor is designed using MATLAB Neural Network Toolbox. The
low pass filter is designed using the Filter Design Toolbox of MATLAB. All the
mentioned tools are included in MATLAB R2010b.

3.2 Simulation Scenarios
In order to test the performance of the multi-step ahead NARX response time
predictor we apply it to the M/M/1 queuing system [Kleinrock, 1975]. Also we
consider four main test scenarios plus an extra scenario which deals with smoothly
changing mean arrival rate.

Response Time Predictor’s Parameters The NARX multi-step ahead response
time predictor is configured as follows. The two dimensional input vector x(t)
consists of inter-arrival and inter departure times. The one dimensional output y(t)
represents the predicted response times.

The measured response times are fed back to the input layer for training. The
tapped delay line in the hidden layer consists of two delays. Three neurons are
considered in the hidden layer. The hidden layer neuron’s activation function is
considered as tangential sigmoid function tansig. The output layer consists of one
neuron with activation function chosen as linear function purelin. This is
summarized in Figure 6.

Several criteria such as sampling time, control structure and constraints affect
the choice of the prediction horizon m. As in this paper we only focus on response
time prediction of a single server system regardless of the control structure and other
criteria that affect the choice of the prediction horizon, a suitable value for m cannot
be decided here. However as we know that a multi-step ahead prediction is required
we chose m = 4 to show that the NARX response time predictor is able to predict
the response times of the single server queuing systems in several time steps into
the future.
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Figure 6. Neural predictor configuration and parameters.

The Levenberg-Marquardt algorithm [Haykin, 1998] is chosen as the training
algorithm and the performance metric is set to mean squared error (MSE). The
predictor is trained with the data from the high load scenario then tested over high
load, low load and two varying load conditions.

Single Server Queuing System Parameters Our test set includes a M/M/1
queuing system with the following parameters. Mean service rate is set to 1 for all
the scenarios. Simulation time is set to 20000. All time values are in simulated
seconds. The static scenarios are designed for evaluation of performance of the
NARX response time predictor in steady state under low (ρ = 0.30) and high
(ρ = 0.95) load conditions. The dynamical scenarios are meant to evaluate
performance of the NARX response time predictor with arrival rate changing from
high to low load or vice versa with a step function at time 5000. The extra
simulation scenario covers time variant mean arrival rate as a saturated ramp
function starting from low(ρ = 0.30) load at start time and saturating at high
(ρ = 0.95) load. Static Scenarios:

• S1: Mean arrival rate is set to 0.95 to simulate a high (ρ = 0.95) load scenario.
The NARX multi-step ahead response time predictor is then trained, validated
and tested using train, validation and test data sets.

• S2: Mean arrival rate is set to 0.3 to simulate a low (ρ = 0.3) load condition.
Performance of the NARX multi-step ahead response time predictor is tested
using the acquired data.

Dynamic Scenarios:

• S3: Mean arrival rate is a step, denoted by step1, from 0.3 to 0.95 with the
step time set to 5000. Performance of the NARX multi-step ahead response
time predictor is tested using the acquired data.

• S4: Mean arrival rate is a step from 0.95 to 0.3 with the same step time as
before shown as step2. Performance of the NARX multi-step ahead response
time predictor is tested using the acquired data.

47



Paper I. Multi-step ahead . . . prediction for single server queuing systems

4. Simulation Results

Performance of the proposed predictor applied to the defined M/M/1 queuing
system is summarized in Table 1. In this section MAE stands for mean absolute
error and MSE stands for mean squared error. It should be considered that the data
used in these simulations is normalized to its maximum value. This is the reason
why the maximum value of the response times is equal to one.

As it can be seen from the results in TABLE 1, the multi-step ahead NARX
response time predictor is well trained and shows a promising performance under
S1 and S2 considering both MSE and MAE. This shows that the proposed response
time predictor is able to accurately predict the response time of the described
M/M/1 system in 4 steps ahead under static and steady state load conditions.

Performance of the response time predictor under dynamic load conditions
especially its performance in transient load conditions is of interest in the
following tests. Under S3 both MSE and MAE indicate very good performance of
the predictor. Figure 7 depicts measured response time vs. estimated response time

Table 1. Performance (MAE and MSE) of NARX m step ahead response time
predictor for M/M/1 queuing system in S1 to S4 scenarios with prediction horizon
m set to 4.

Performance of the Proposed Predictor in Training Phase

Scenario Server load ρ Performance Measure Value

S1 ρ = 0.95
MSE 5.1915e−10

MAE 0.00174

Performance of the Proposed Predictor in Testing Phase

Scenario Server load ρ Performance Measure Value

S1 ρ = 0.95
MSE 1.3728e−9

MAE 0.002

S2 ρ = 0.30
MSE 4.1312e−9

MAE 0.0163

S3 ρ = step1
MSE 2.585e−9

MAE 0.002

S4 ρ = step2
MSE 1.8481e−7

MAE 0.0037
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Figure 7. NARX m step-ahead response time prediction of the M/M/1 queuing
system with mean arrival rate changing with a step from 0.3 to 0.95 at time 5000.
The prediction horizon m is set to 4. (upper) Measured response times vs. estimated
response times. (lower) Difference between measured and estimated response times.

under S3.
As it can be seen in the upper side of Figures 7, 8 and 9, the measured and

predicted response time values are so close that it is really hard to distinguish
between them. Thus an additional figure depicting the difference between the
measured and predicted response time values or simply prediction error has been
added to the lower part of Figures 7, 8 and 9.

Under S4 we observed that the prediction performance degrades compared to
S3 but still holds a very small value for MSE and MAE. This performance
degradation is most likely caused by the non-linearity of this queuing system.
Figure 8 illustrates the transient behavior of the proposed NARX multi-step ahead
response time predictor under S4.

The two last simulations showed that the proposed response time predictor is
able to handle transient regimes very well. In the last two simulation scenarios, the
time variation in the mean arrival rate was specified as step functions representing
sudden change of levels. In the extra simulation scenario performance (MAE and
MSE) of the NARX m step-ahead response time predictor applied to a M/M/1
queuing system under a smooth slowly varying mean arrival rate is studied. The
prediction horizon m is set to 4. The mean arrival rate is changed with a saturated
ramp which is depicted in Figure 9. The minimum and maximum values of the
mean arrival rate are respectively 0.3 and 0.95. By studying Figure 9 closely we can
conclude that the proposed predictor can handle smooth time variant mean arrival
rates.

Performance of the proposed predictor under some more single server queuing
system configurations such as M/D/1 and D/M/1 for the same sets of scenarios
S1-S4 has been investigated via simulations and very small MAE and MSE for the
prediction error has been confirmed. Due to the lack of space, we skipped presenting
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Figure 8. NARX m step-ahead response time prediction of the M/M/1 queuing
system with mean arrival rate changing with a step from 0.95 to 0.3 at time 5000.
The prediction horizon m is set to 4. (upper) Measured response times vs. estimated
response times. (lower) Difference between measured and estimated response times.
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5 Conclusion

those results.

5. Conclusion

A multi-step ahead NARX response time predictor for single server queuing
systems, which represents a CPU constrained computing system, has been
proposed and its performance under several test scenarios has been studied. The
proposed predictor benefits from several promising characteristics which turns it
into a viable candidate for being implemented in admission control products for
computing systems. It is non-linear, it supports multi-step ahead prediction, its
structure is simple and its required measurements can be obtained without any
requirement on changing communication protocols or operating systems. It has
been shown that with being trained in only one high load scenario, it can predict
the response times of a single server queuing system in multiple step ahead under
high and low load steady state scenarios with a high accuracy. Very good
performance of the proposed predictor under time variant and non-stationary
scenarios has been confirmed by very small MAE and MSE of the response time
prediction. It has also been shown that the proposed predictor is capable of
accurate m step ahead response time prediction under time varying mean arrival
rate scenarios. For the future work, the proposed predictor will be implemented in
our web server lab and its capability of predicting the response times of the node
elements will be studied.
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NARX-based multi-step ahead response time
prediction for database servers

Payam Amani Maria Kihl Anders Robertsson

Abstract

Advanced telecommunication applications are often based on a multi-tier
architecture, with application servers and database servers. With a rapidly
increasing development of cloud computing and data centers,
characterizations of the dynamics for database servers during changing
workloads will be a key factor for analysis and performance improvements in
these applications. We propose a multi-step ahead response time predictor for
database queries based on a non-linear auto-regressive neural network model
with exogenous inputs. The estimator shows many promising characteristics
which make it a viable candidate for being implemented in admission control
products for database servers. Performance of the proposed predictor is
evaluated through experiments on a lab setup with a MySQL-server.

Originally published in Proceedings of the 11th International Conference on
Intelligent Systems Design and Applications, Cordoba, Spain, pp.813-818, Nov.
2011. Reprinted with permission.
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1. Introduction

Telecom and Internet operators need to provide their customers with a vast variety
of services which are aimed at meeting their demands and desires.

Multi-tier server clusters are used to host the service logic and user data. The
optimization of resource allocation in server cluster systems has attracted much
interest in recent years as it directly relates to the performance of these systems.

Database servers, as important entities of these server clusters require secure,
reliable and real-time activation, modification and deactivation of both new and
current customers or services. These tasks should be performed fast and in an
automated manner. Therefore, control mechanisms can be introduced, which
enable the system to avoid the resource access conflict and protect it from
becoming overloaded [Kihl et al., 2008; Chen et al., 2003; Liu et al., 2006]. This
control mechanism usually includes a feed-forward controller as it should predict
the resource access conflict well before it happens and take action to avoid it.
Therefore, there is a need for a multi-step-ahead state predictor, which fairly
represents the dynamics of the database in its whole operation range and also
provides high precision state representation of the system near the overload region.

Many attempts to develop response time estimators or predictors for database
queries have been presented in the literature. They can be divided into two
categories namely analytical and experiment-driven methods. Analytical models
[Liu et al., 2006; Tomov et al., 2004; Watson et al., 2010], designed by experts,
usually cover specific types of queries and database servers and assume some
simplifying conditions. Thus they are not able to capture the complex dynamics of
the database server. These models only support static cases and cannot be used in
dynamic scenarios.

Several instances of experiment-driven methods have been recently presented
in the literature. Ganapathi et. al in [Ganapathi et al., 2009] predict several metrics
for database queries including the response time by means of Kernel Canonical
Correlation Analysis (KCCA). Tozer in [Tozer et al., 2010] used a linear regression
model for the response time in order to throttle long running queries. Sheikh et. al
in [Sheikh et al., 2011] have presented a Bayesian approach for on-line performance
modeling of database appliances using Gaussian models. Their proposed model has
the possibility of adaptation to changes in workload and configuration. The smallest
prediction error of their method is 14%.

In [Amani et al., 2011], we have presented a (non-linear auto-regressive neural
network with exogenous inputs) NARX-based multi-step-ahead response time
predictor for single server queuing systems. We have shown via simulations that
the suggested response time predictor is capable of predicting the response time of
the single server queuing systems in multiple steps ahead with very small mean
squared errors and mean absolute prediction errors respectively under both static
and dynamic workload scenarios without adapting the model parameters to the
changes in the workload.
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Figure 1. A generic multi-tier server cluster.

The requirement for a non-linear multi-step-ahead query response time
predictor that can work under stationary and steady state scenarios, as well as
under time varying and non-stationary scenarios led us to a gray box approach to
identification of database servers. Thus we have used the same type of response
time predictor for database servers. By means of a NARX neural network, we have
designed a predictor that covers all the aforementioned characteristics and is also
able to very well predict the response times of queries of database servers with
very good precision represented by very small mean absolute, mean squared and
sum of squared prediction errors.

This paper is structured as follows: system description, the NARX neural
network and the predictor are investigated in section 2. Section 3 is dedicated to
specifications of the experiment set-up and scenarios. Experimental results are
summarized in section 4 and finally, section 5 concludes the paper.

2. System Configuration

This section covers three sub-sections. In subsection 2.1 the pilot system for which
a non-linear multi-step-ahead predictor is developed is introduced. Sub-section 2.2
is dedicated to the introduction of NARX recurrent neural networks. The proposed
NARX multi-step ahead response time predictor is presented in sub-section 2.3.

2.1 System description
Figure 1 depicts a generic multi-tier server cluster. The system can correspond to a
broad range of Telecom and Internet applications, as data centers, cloud networking
systems, web shops, enterprise systems or service management systems.
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Figure 2. A sample scheme with combined feed-forward and feedback for control
of database servers using response time prediction.

Here, we focus on the database tier. The interactions between the application
tier and the database tier should not lead to the database servers to become
overloaded. Therefore, control mechanisms should be implemented in the
application servers that limit the traffic to the databases. The control system should
be based on measurements which are available and which can be provided without
a need for changing the current protocols and operating systems.

In this paper, we use inter-arrival, inter-departure and response times of the
queries sent to the database servers from the application servers. These
measurements can easily be retrieved from the time-tagged logs of the queries
traveling in the system. A high response time (compared to the reference response
time) corresponds to a highly loaded database and a low response time to a lightly
loaded one. Thus, response time can be used as an indicator of the databases’
internal state. In this paper, we focus on the interaction of one application server
with one database server.

As the control action should take place well before an overload occurs in the
system, the control scheme will consist of not only a feedback loop but also a feed-
forward part. The requirement for a feed-forward controller raises the need for a
multi-step-ahead query response time predictor for the databases. Figure 2 shows a
controller scheme combining feedback and feed-forward, which requires response
time prediction, presented by Kjær et. al in [Kjær et al., 2007].

Two main MySQL query types, Select and Update, are investigated in this
paper. These requests have very different contributions to the response times of the
queries sent to the database. Select queries are based on read actions while Update
queries are based on write actions. Select queries are CPU restricted actions while
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Figure 3. Mean response times of Select and Update queries sent to a 1E7 tuples
relation in a scalable Wisconsin benchmark table in a MySQL database server vs.
mean arrival rates of the queries.

Update queries are I/O restricted actions. As it can be seen in Figure 3, the
non-linear behavior of these two types of queries are very different. Processing of
an Update query is much more time consuming compared to a Select query.

2.2 NARX Neural Network
Recurrent neural networks have been widely used for modeling of nonlinear
dynamical systems [Haykin, 1998; Ljung, 1999]. Among various types of the
recurrent neural networks such as distributed time delay neural networks (TDNN)
[Haykin, 1998], layer recurrent networks [Haykin, 1998] and NARX [Haykin,
1998], the latest is of great interest in input output modeling of nonlinear
dynamical systems and time series prediction [Siegelmann et al., 1997; Lin et al.,
1996; Xie et al., 2009; Menezes and Barreto, 2006; Parlos et al., 2000].

NARX is a dynamical recurrent neural network based on the linear ARX model.
The next value of the dependent output signal y(t) is regressed over the latest nx
values of the independent input signal and ny values of the dependent output signal.
nx and ny respectively represent the dynamical order of the inputs and outputs of
the NARX. A mathematical description of the NARX model is summarized in (1)
in which f is a non-linear function.

y(t) = f (y(t − 1),y(t − 2), . . . ,y(t − ny),x(t − 1),x(t − 2), . . . ,x(t − nx)) (1)

This network consists of three main layers namely input layer, hidden layer, and
output layer. The input layer consists of the current and previous inputs and
outputs. These are fed into the hidden layer. The hidden layer consists of one or
several neurons resulting in a nonlinear mapping of affine weighted combination of
the values from the input layer. The output layer consists of an affine combination
of the values from the hidden layer. In this network, the dynamical order of inputs
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and outputs and number of neurons in each layer are pre-determined. Several
methods for determination of these values are presented in [Haykin, 1998]. A
suitable training algorithm and performance measure should also be chosen.
Finally, the type of the non-linear map needs to be defined.

Some pre- and post-processing on the input and target values should be
performed in order to have a valid training set [Haykin, 1998]. These processes
include mapping of the input and target data to values in the range of [−1,1],
normalization of the inputs and targets to have zero mean and unity variance and
removal of constant inputs and outputs and processing of unknown inputs. As the
measurements are very noisy, after normalization we filter both input and target
values with a designed Butterworth low pass filter. The bandwidth of the filter is
chosen so it suppresses noise as much as possible while not affecting the
characteristics of in band part of input and output data sets.

2.3 NARX Multi-Step Ahead Response Time Predictor Set-up
Our application requires the prediction of response times of the queries sent to the
database server in some time steps into the future, before they are processed in the
database server. A gray box identification approach was chosen to predict the
response times of such queries from three measured time values, namely
inter-arrival, inter-departure, and response times of the queries. The predictor is
designed by means of the Neural Networks Toolbox of MATLAB R2010b. The
input vector consists of current inter-arrival times and inter-departure times as two
inputs. Output of the neural predictor is the predicted response time. Measured
response times are required for training and evaluation of the NARX multi-step
ahead response time predictor and are fed back to the input layer of the proposed
predictor. Measured data is divided into training, evaluation and test data sets.
Prediction horizon m is defined as the shift between corresponding inputs and
output values so that current input is used for prediction of output in m time steps
in the future. The proposed multi-step ahead response time predictor is illustrated
in Figure 4. The overload protection admission controller uses a gate for
controlling the flow of queries to the database server. The flow of queries from the
application server to the database server cannot get negative values as negative
requests do not exist. Also, the gate cannot send more requests than the available
requests in the application server. This imposes an input non-linearity to the
database server. We already know that database servers are nonlinear and
stochastic computing systems under high load conditions. Thus, a NARX based
predictor as a nonlinear predictor has a much better opportunity to capture the
dynamics of the response time of the database server compared to linear predictors
[Kihl et al., 2003].

The off-line training process is described as follows: The database server is
stressed under high load conditions. The acquired data is then divided to training,
validation and test data sets. The NARX multi-step ahead response time predictor
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Figure 4. Multi-Step ahead Response Time Predictor in Admission Control Set-
up.

 

Figure 5. Database lab set-up.

is trained using the train data and training is validated and its performance is tested
using validation and test data sets. This trained predictor is used for all static and
dynamic load conditions containing various combinations of database queries. The
performance of the predictor is investigated in the following sections.

3. Database server lab set-up

The database server lab consists of two main computers: one hosting the database
server and one hosting the traffic generator which represents the application tier.
One objective of this lab is to test the performance of the proposed response time
predictor for I/O constrained systems such as database servers. The mentioned
computers are connected via an Ethernet switch. This is depicted in Figure 5.
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3.1 Hardware and Software
The database server is a Dell precision workstation 340 computer with an Intel
Pentium 4 CPU running at 1.7 GHz, 768 MB RAM and a 72GB Hard Disk hosting
MySQL Server 5.1.4.1. It has Solaris 11 Express as its operating system.

The application server, in this case, is represented by a Dell precision
workstation 340 computer with an Intel Pentium 4 CPU running at 1.7 GHz, 512
MB RAM and a 36 GB Hard Disk hosting Apache Jmeter 2.4 as load generator
sending queries to the database server. It has UBUNTU 10.04 LTS as its operating
system.

3.2 Apache Jmeter
Apache Jmeter [Halili, 2008] is a Java-based load generator with support for
plugins that can be used to stress test various types of servers such as web servers,
mail servers and database servers. Support for database queries is provided via
Java database connectivity, JDBC. Various load distributions can be generated by
means of timer plugins. A timer plugin for generation of Poisson distributed
database queries via JDBC has been used [Kihl et al., 2011]. Apache Jmeter
generates the load to the supported servers by means of blocking I/O, and a fixed
number of threads. This imposes an upper limit for the maximum number of
concurrent requests which is equal to the number of Jmeter’s threads. During the
time intervals that all the threads are busy, no new queries can be sent out before
the processing of an old query is finished. This will change the distribution of the
load to the database server. Thus, all experiments that use all of the threads at the
same time shall be invalidated.

3.3 Tracing and D-Trace
Tracing in software engineering terminology is a specialized use of logging for
recording information about execution of an application. Dynamic Tracing,
D-Trace [Gregg and Mauro, 2011], is a detailed dynamic tracing tool introduced
by Oracle for Unix-like operating systems. D-Trace has the option to provide not
only information regarding the whole application like CPU and memory demand,
but also information regarding each function in the application. D-trace scripts are
written in a C based programming language which is equipped with variables and
functions required for tracing, called D. D programs include a set of one or more
probes and each probe is associated with an action. When the condition of the
probe is satisfied, the associated action is executed. We have used these probes to
get exact time stamps of arrival of a Select or Update query to the MySQL
database server and the time that the database server is done with processing of the
mentioned queries. From these time stamps, we can calculate the inter-arrival and
inter-departure times of the queries.
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3.4 Structure of the Database
The database server has several relations all with the same structure from the
Scalable Wisconsin Benchmark [DeWitt, 1993] with different number of tuples.
Two types of MySQL queries which are most frequently used in the database
servers, namely Select and Update, are taken into consideration in this paper. The
structure of the queries are as follows:

Select queries:
SELECT unique2 from tenmil where unique1 equals ?;
Update queries:
UPDATE tenmil SET unique3=? where unique1=?;
In the above queries, tenmil is a ten million tuple relation from the Scalable
Wisconsin Benchmark and ? represents a uniformly distributed random number
between 0 and 1E7.

In order to test the performance of the multi-step ahead NARX response time
predictor, we apply it to the described MySQL database server. Also, we consider 4
main test scenarios, consisting of two static and two dynamic scenarios.

3.5 Response Time Predictor’s Parameters
The NARX multi-step ahead response time predictor is configured as follows: the
two dimensional input vector x(t) consists of inter-arrival and inter departure times.
The one dimensional output y(t) represents the predicted response times.

The measured response times are fed back to the input layer for training. The
tapped delay line in the hidden layer consists of three delays. Three neurons are
considered in the hidden layer. The hidden layer neuron’s activation function is
considered to be tangential sigmoid function tansig. The output layer consists of one
neuron with activation function chosen as linear function purelin. Several criteria
such as sampling time, control structure and constraints affect the choice of the
prediction horizon m. Since support for multi-step ahead prediction is required, we
chose m = 4 to show that the NARX response time predictor is able to predict the
response times of the queries sent to the MySQL database server in several time
steps into the future.

The Bayesian Regularization algorithm [Foresee and Hagan, 1997] is chosen as
the training algorithm and the performance metric is set to the sum of squared errors
(SSE). The predictor is first trained with the data from the high load scenario then
tested over high load, low load and two varying load scenarios.

3.6 Database load and queries specifications
Our test set includes an Apache Jmeter load generator with 30 concurrent threads.
Duration of each experiment is set to 600 seconds. The effective mean arrival rate
for which all the threads are busy in case of Update requests corresponds to 16
requests per second and for Select queries corresponds to 23 requests per second.
This defines the maximum effective mean arrival rates in case of each type of the
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Table 1. Experiment Scenarios

Scenario Mean Arrival Rate [Req/Sec] Predictor State

Update Select Mixed

Static
S1 15 22 15 Train,Test

S2 5 7 5 Test

Dynamic
S3 Step1 Step1 Step1 Test

S4 Step2 Step2 Step2 Test

queries. The types of queries in real world applications are usually mixed of both
the mentioned query types. In order to represent a more realistic case we have also
considered a mix of 75% Select and 25% Update queries. The maximum allowed
mean arrival rate in order to keep the Poisson distribution of the arrivals in this case
is equal to 16 requests per second.

The static scenarios are designed for evaluation of performance of the NARX
response time predictor in steady state under low (ρ ≈ 0.30) and high (ρ ≈ 0.95)
load conditions. By load, here we mean the ratio between the mean arrival rate
and the maximum effective mean arrival rate. The dynamical scenarios are meant
to evaluate performance of the NARX response time predictor with arrival rates
changing with a step function at time 200 seconds from low to high load (Step1) or
vice versa (Step2). These are summarized in Table 1.

4. Experimental Results

Performance of the proposed predictor applied to the MySQL database server is
summarized in Table 2. In this section, MAE stands for mean absolute error, MSE
for mean squared error and SSE stands for the sum of squared errors. It should be
noted that the data used in these tests is normalized to its maximum value. This is
the reason why the maximum value of the response times is equal to one.

As it can be seen from the results in Table 2, the multi-step ahead NARX
response time predictor is well trained and shows a promising performance under
S1 and S2 considering MSE, MAE and also SSE. This shows that the proposed
response time predictor is able to accurately predict the response times of the
queries sent to the described MySQL server in 4 steps ahead under static and
steady state load conditions.

Looking at the presented experimental results in Table 2, one can observe a
large difference between the performance of the proposed response time predictor
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Table 2. Performance (MAE, MSE and SSE) of NARX m step ahead response time
predictor for MySQL database server in scenarios S1-S4 with prediction horizon m
set to 4.

Predictor’s Performance Select Queries

Scenario Server load ρ Measure Value

S1 ρ = 0.956
MSE 2.8716e−8

MAE 0.0061

SSE 0.7964

S2 ρ = 0.318
MSE 2.8582e−7

MAE 0.0055

SSE 0.2056

S3 ρ = Step1
MSE 1.9117e−6

MAE 0.0094

SSE 2.4692

S4 ρ = Step2
MSE 6.2844e−7

MAE 0.0071

SSE 0.7352

Predictor’s Performance Update Queries

Scenario Server load ρ Measure Value

S1 ρ = 0.935
MSE 1.2331e−6

MAE 0.0073

SSE 0.8717

S2 ρ = 0.333
MSE 4.2261e−8

MAE 0.0065

SSE 0.4208

S3 ρ = Step1
MSE 9.3608e−8

MAE 0.0055

SSE 0.9220

S4 ρ = Step2
MSE 1.4715e−8

MAE 0.0055

SSE 0.4
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Table 2. (Continued)

Predictor’s Performance Mixed Queries

Scenario Server load ρ Measure Value

S1 ρ = 0.935
MSE 8.1621e−9

MAE 0.0065

SSE 0.7968

S2 ρ = 0.333
MSE 4.3381e−7

MAE 0.0.0049

SSE 0.1487

S3 ρ = Step1
MSE 9.3608e−8

MAE 0.0053

SSE 0.4254

S4 ρ = Step2
MSE 2.2948e−7

MAE 0.0055

SSE 0.3344

under S1 for update queries compared to the select and mixed queries. This can
be related to the different nature of Select and Update queries. Select queries are
CPU constrained while the Update queries are I/O constrained. This leads to a very
different non-linear behavior of the MySQL database server depending on the query
types. As the response time predictor has been trained using the mixed queries, we
can expect that the scenario S1 for Update queries should have the worst prediction
performance as it is the extreme case which has the longest distance from the mixed
queries.

Performance of the response time predictor under dynamic load conditions
especially its performance in transient load conditions is of interest in the
following tests. Under both scenarios S3 and S4, all the performance measures
namely MSE, MAE and SSE indicate very good performance of the predictor.
Figure 6 depicts measured response times vs. estimated response times under S3
for the mixed queries. As it can be seen in the upper diagram of Figure 6, the
measured and predicted response time values are so close that it is really hard to
distinguish between them. Thus an additional figure depicting the difference
between the measured and predicted response time values or simply prediction
error has been added to the lower part of Figure 6. As it can be seen in this Figure,
the maximum prediction error for each mixed query is less than 5% which is a very
promising performance under dynamic mean arrival rates.

Performance of the proposed predictor under some more query mixes such as
(50% Select, 50% Update queries) and (25% Select and 75% Update queries) for
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Figure 6. NARX m step-ahead response time prediction of the MySQL Server
Database with mean arrival rate changing with a step from 5 to 15 requests per
second at time 200. The prediction horizon m is set to 4. (upper) Measured response
times vs. estimated response times. (lower) Difference between measured and
estimated response times.

the same sets of scenarios S1-S4 has been investigated via experiments and very
small MAE, MSE, and SSE for the prediction error has been confirmed. Due to the
lack of space, we skipped presenting those results.

5. Conclusion

A multi-step ahead NARX response time predictor for MySQL database server,
has been proposed and its performance under several test scenarios has been
studied. The proposed predictor benefits from several promising characteristics
which turns it into a viable candidate for being implemented in admission control
products for computing systems. It is non-linear, it supports multi-step ahead
prediction, its structure is simple and its required measurements can be obtained
without any requirement on changing communication protocols or operating
systems.

It has been shown that with being trained in only one high load scenario, it still
can predict the response times of queries in MySQL database server under both high
and low load steady state scenarios with a high accuracy. Very good performance
of the proposed predictor under time varying and non-stationary scenarios has been
confirmed by very small MAE, MSE and SSE of the response time prediction.
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Abstract

The Mobile Service Support system (MSS), which Ericsson AB develops,
handles the setup of new subscribers and services into a mobile network.
Experience from deployed systems show that traffic monitoring and control of
the system will be crucial for handling overload situations that may occur at
sudden traffic surges. In this paper we identify and explore some important
control challenges for this type of systems. Further, we present analysis and
experiments showing some advantages of proposed solutions. First, we
develop a load-dependent server model for the system, which is validated in
test-bed experiments. Further, we propose a control design based on the
model, and a method for estimation of response times and arrival rates. The
main contribution of this paper is that we show how control theory methods
and analysis can be used for commercial Telecom systems. Parts of our results
have been implemented in commercial products, validating the strength of our
work.

Originally published in International Journal On Advances in Telecommunications,
vol.5, no. 3 & 4, pp. 204-215, Dec. 2012. Reprinted with permission.
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1. Introduction

Resource management of computer systems, which has gained increased attention
during recent years, was explored already in the late 60’s [Brawn and Gustavson,
1968; Crocus, 1975]. It is an essential mechanism to handle load disturbances such
as traffic surges and changes in user behavior. Poorly managed resources can
severely degrade the performance of a system with potentially large financial
consequences.

The work presented in this paper is motivated by a commercial Mobile Service
Support System (MSS), developed and produced by Ericsson AB. Mobile Service
Support Systems are used by the network operators for all processing regarding
new subscribers and services in the network. Each new subscriber or service
requires processing and data storage in several network nodes. The systems are in
general multi-tier systems, implemented as distributed server clusters, where web
and application servers process the incoming requests and database servers are
used for data storage. The resource management of these systems, based on
measurements of the system states such as actual utilization and response times, is
crucial for the optimization of operation cost and the guarantee of service level
agreements during load surges, for example during marketing campaigns or
various events.

Therefore, the challenge is how to control system performance while providing
guarantees on convergence and disturbance rejection. The solution is based on
dynamic control schemes, which monitors the systems and provides actions when
needed. Several types of resource–management mechanisms have been proposed
and evaluated in the literature. In larger computer systems, load balancing is
performed in order to distribute the demand for resources uniformly over a number
of resource units (computers, CPUs, memory, etc.), thus avoiding the case that
among the nodes with similar functionalities some are under-utilized while others
are overloaded [Diao et al., 2005; Fu et al., 2006]. During overload periods, when
more resources are requested than are available, admission control mechanisms
reduce the load to the system by blocking or delaying some of the requests [Kihl
et al., 2008; Chen et al., 2003; Liu et al., 2006; Voigt and Gunningberg, 2002]. For
Internet applications, virtualized server systems can be used to divide physical
resources into a number of separated platforms where different web applications
are allowed to operate without affecting one another. Dynamic resource allocation
between the virtualized platforms serves as a new and easy way to perform
resource optimization on web server systems [Kjær et al., 2009; Xu et al., 2006;
Wang et al., 2007]. In the last years, the field of power and energy management has
become important. Large software systems have high energy consumption, which
means that dynamic resource optimization of these systems may considerably
lower the operating costs for the network operators [Bianchini and Rajamony,
2004; Claussen et al., 2009; Horvath et al., 2007; Elnozahy et al., 2002].

However, all optimization techniques require accurate performance models of
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the involved computing systems. The operation region is mainly high traffic load
scenarios, which means that the computing systems show non-linear dynamics that
needs to be characterized accurately [Kihl et al., 2003]. A software system is
basically a network of queues, as examples, the CPU ready queue, semaphore
queues, socket queues, and I/O device queues, which store requests in waiting of
service in the processors. Therefore, queuing models can be used when describing
the dynamic behavior of server systems [Brawn and Gustavson, 1968; Dilley et al.,
1998; Menasce and Almeida, 2002; Mei et al., 2001].

The concept of Load-Dependent Server (LDS) models, in which the response
time of the jobs in the system is a function of the service time of the jobs and
current number of jobs waiting to be served has, to the best of our knowledge,
firstly been introduced in [Perros et al., 1992]. In [Perros et al., 1992; Rak and
Sgueglia, 2010; Curiel and Puigjaner, 2001], standard benchmarks were used for
workload generation and also regression models to capture the system dynamics.
In [Mathur and Apte, 2004], a queuing network model which represents the load
dependent behavior of the LDS was presented and validated with simulations. In
[Leung, 2002], a theoretical analysis of the D/G/1 and M/G/1 models with load
dependency assumptions was presented.

In this paper, we investigate solutions to some important control challenges
identified for the commercial MSS developed by Ericsson AB. We present a
load-dependent server model, which is validated in experiments. The model has
been previously published in [Kihl et al., 2012]. Further, we extend [Kihl et al.,
2012] by proposing and validating an admission control mechanism based on a
load-adaptive controller. A modified version of the controller has been
implemented in the Ericsson product. Finally, we show how extended Kalman
filters can be used for estimating the response times and arrival rates in the system.

The paper is organized as follows. In Section 2, the Ericsson product is described
and the control challenges identified for the system are presented. In Section 3,
the test-bed used for some of the experiments is described. In Section 4, the load-
dependent server model is presented and validated. In Section 5, the load-adaptive
controller is presented and experiments validating its performance are described. In
Section 6, our work on response time estimation based on extended Kalman filters
is presented. Finally, in Section 7, some conclusions are presented.

2. System and Problem Description

The Mobile Service Support system (MSS), which Ericsson AB develops, handles
the set-up of new subscribers and services into a mobile network. It presents to the
operator and its business support systems a unified middle-ware where complex
functions, such as setting up a new subscriber or modifying services for an existing
subscriber, can be easily invoked. The software architecture is complex with
several layers and distributed infrastructures, which means that specific parts of the
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Figure 1. Mobile service support system (MSS).

system will not have complete knowledge of the interactions among other parts of
the system.

2.1 System architecture
The system architecture is illustrated in Figure 1. One request to the MSS from an
upstream system normally results in a number of requests downstream out on the
mobile network to several different network elements (NEs). A network element
is usually a database storing subscriber and service data, for example, the Home
Location Register (HLR). A user id, which needs to be fetched from one database,
needs to be supplied in a query to another database to get the system consistent.

In parallel to the changes and set-ups that the MSS performs, the network is
also used by the end users. Services being set up by the MSS are queried by base
stations and other systems requiring that information. In respect to the MSS, this
traffic can be considered as unknown background traffic, in contrast to the known
traffic flowing through the MSS.

2.2 Control challenges
The experience from deployed Ericsson systems shows that there can be problems
with overload in the NEs. The measurable load arriving from the MSS and the
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Figure 2. M/M/1 model.

unknown (not directly measurable) load arriving from mobile users may interfere
with each other, creating a race for resources that may lead to overload in a NE.
When one NE becomes overloaded and unresponsive, this may result in the entire
transaction requiring rollback to avoid in-consistencies in the network. Such a
rollback may require manual work which is of course costly for the operator.

To protect against such situations, traffic monitoring and control are crucial. In
cooperation with Ericsson AB, some important control challenges have been
identified for this type of system. These challenges are described below. In the
following sections our collaborative work on these challenges will be presented.
The models and control designs are based on response times, as this metric is
rather easily measurable in the real system and because the response times can be
mapped to the load status of the controlled system using the proposed model.

Performance models The first challenge is to design a performance model for the
NEs, since good control designs are based on sufficiently accurate system models.
The model should capture the dominant load dynamics of the NEs. Most service
performance metrics such as response times and service rates depend on queue state
dynamics, which means that queue models are suitable for these systems.

For the objective of performance control, simple models, such as single server
queues, are often preferred. The model should only capture the dominating load
dynamics of the system, since a well-designed control system can handle many
model uncertainties [Åström and Wittenmark, 1997].

The classical M/M/1 model, where a single-server queue processes requests that
arrive according to a Poisson process with exponential distributed service times, see
Figure 2, has been shown to accurately capture the response time dynamics of a web
server system [Cao et al., 2003]. However, experience from deployed systems and
lab measurements have shown that databases may not have M/M/1 dynamics [Kihl
et al., 2011]. Therefore, other models are required that more accurately captures the
dynamics of database servers.

Admission control in MSS The NEs are loaded by two traffic sources, the
measurable traffic coming to the MSS and the unknown (unmeasurable) traffic
coming from the mobile users, as illustrated in Figure 3. The average arrival rates
can be denoted as λ for the measurable traffic and λu for the unknown traffic.
Overload in the NEs can be detected by monitoring the response time of requests
sent to each node. When the average requests’ response times exceed some
threshold, the MSS can classify the involved NE as overloaded and thereby start
actions to lower the arrival rate to that particular NE, in order to achieve an
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Figure 3. Load at the NEs.

acceptable arrival rate, denoted as λc. Therefore, the second control challenge is to
design an admission control scheme that can handle the unknown traffic at the NEs
and further can handle the time varying mean measured traffic rates experienced in
the systems.

Monitoring and estimation One of the problems when designing control
mechanisms in these types of systems is the lack of performance information. The
designed protocols basically provide no means of control communication between
the MSS and the NEs that can be used by a control system. Therefore, the third
control challenge that has been identified is the design of monitoring and
estimation mechanisms that could help in the design of, for example, an admission
control scheme. The estimation scheme can be used as feed-forward control in the
control system, and thereby improving the performance of the control system
compared to when only using feedback control. In collaboration with Ericsson AB,
some preliminary work on the application of extended Kalman filters for load
estimation have been started for systems as in Figure 3.

3. Testbed

To validate some of the proposed solutions, we have performed a series of
experiments in our server lab. We developed a MSS test-bed with two traffic
generators, one for the measurable traffic and one for the unknown traffic, and a
MySQL 5.1.41 database server as depicted in Figure 4. The computers were
connected to a local 100 Mbit/s Ethernet network.

The traffic generators were implemented in Java, using the JDBC MySQL
connector, and they were executed on computers with an AMD Phenom II X6
1055T Processor at 2.8 GHz and 4 GB main memory. The operating system was
Ubuntu 10.04.2 LTS. The traffic generators use 200 working threads and generate
MySQL queries according to a Poisson process with average rate λ and λu queries
per second. Both traffic generators were validated in order to guarantee that they
were not a bottleneck in the experiments.
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Figure 4. Test-bed for the experiment.

The database server has several relations with the same structure but with
different number of tuples. The maximum number of allowed concurrent
connections is set to 100. The structure of the relations comes from the Scalable
Wisconsin Benchmark [DeWitt, 1993] with 10 million tuples. Two basic types of
queries are used, SELECT (read) and UPDATE (write).

The queries look like this:
SELECT * FROM <relation> WHERE unique1=?;
UPDATE <relation> SET unique2=? WHERE unique1=?;
The question marks are replaced with uniformly distributed random numbers

from zero to ten million.

4. Performance Models

In this section, we focus on the modeling aspects of database servers. The objective
is to develop a performance model for the database server that captures the dynamics
during high loads. The performance model can be used in resource optimization
schemes, as admission control systems, in order to maximize the throughput of the
database server, while keeping some latency constraints. One of the challenges for
these database servers is that they have a write-heavy workload, which means that
the CPU is not the bottleneck during high loads. This means that previous work on
performance modeling of server systems may not be applicable since they assume
CPU-intensive workload.

4.1 M/M/m model with load dependency (M/M/m-LDS)
We propose to add load-dependency to an M/M/m system. In all load-dependent
server models, the service time for a request will be dependent on the number of
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Figure 5. Illustration of M/M/m-LDS model as a Markov chain.

concurrent requests in the system. This load-dependency will model effects of the
operating system, memory use, etc., which may cause service degradation when
there are many concurrent jobs in a computing system [Curiel and Puigjaner, 2001].
In the experiment section, we will show that the M/M/m-LDS model accurately
captures the behavior of various database workload.

The properties of the load dependent M/M/m model (M/M/m-LDS) are set by an
exponential distributed base processing time, xbase = 1/µ and a dependency factor,
f . When a request enters the system, it gets the base processing time xbase assigned
to it. A single request in the system will always have a processing time of xbase.
Each additional request inside the system increases the residual work for all requests
inside the system (including itself) by a percentage equal to the dependency factor
f . When a request leaves the system all other requests have their residual work
decreased by f percent again. This means that if n concurrent requests enter the
system at the same point, they will all have a processing time of

xs(n) = xbase · (1+ f )n−1 (1)

A special case is when f = 0. It means that there is no load dependency, and all
requests will have processing time xbase.

The system can process a maximum of m concurrent requests at each time
instance. Any additional request will have to wait in the queue. New requests
arrive according to a Poisson process with average rate λ .

Therefore, the system can be modeled as a Markov chain as illustrated in
Figure 5.

The average service rate of the system depends on the number of concurrent
requests in the system, k, derived as follows:

µk =


kµ

(1+ f )k−1 if 0 < k < m

mµ

(1+ f )m−1 if k ≥ m

(2)

By solving the balance equations, stationary probability distribution of existence
of k concurrent requests in the system is calculated as below:
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πk =



(
λ

µ

)k

k!
(1+ f )

k(k−1)
2 π0 if 0 < k < m(

λ

µ

)k

mk−m ·m!
(1+ f )(m−1)(k−m

2 )π0 if k ≥ m

(3)

As the sum of the probabilities of all possible states equals to one, π0 can be
derived as follows:

∑∞
k=0 πk = 1→

π0 =
1

1+
m−1
∑

k=1

(
λ

µ

)k

k!
(1+ f )

k(k−1)
2 +

µ

(
λ

µ

)m
(1+ f )

m(m−1)
2

(m−1)!(µm−λ (1+ f )m−1)

(4)

The stability condition in this case is:

λ

µm
(1+ f )m−1 < 1 (5)

The average number of requests in the system, N, can be calculated as below:

N =
∞

∑
k=1

k ·πk = N1 +N2

N1 =
m−1

∑
k=0

(
λ

µ

)k
(1+ f )

k(k−1)
2

(k−1)!
π0

N2 =

(
λ

µ

)m
(1+ f )

m(m−1)
2 (µm2−λ (m−1)(1+ f )m−1)µ

(m−1)!(mµ−λ (1+ f )m−1)
2 π0

(6)

Finally by means of Little’s theorem [Kleinrock, 1975], the average time each
request spends in the system, T , can be derived as follows.

T =
N
λ

(7)

4.2 M/M/m/n model with load dependency (M/M/m/n-LDS)
In case that the queue is limited to n positions, the probability for an empty system,
π0, can be determined as follows. This queuing system is named as M/M/m/n-LDS.
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π0 =
1

I + II + III

I = 1+
m−1

∑
k=1
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λ

µ

)k
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1
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2 m2+ 1

2 m+mn−n−1
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mnµn+mm!(λ (1+ f )m−1−µm)

III =− (1+ f )
1
2 m(m−1)

λ m

µm−1(m−1)!(λ (1+ f )m−1−µm)

(8)

Further, the average number of requests in the system is as follows:

N = N1−N2
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(9)
Finally, the average response time for a request can be derived using Little’s

theorem.
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Figure 6. Variations of the λ/T graph for a special scenario with m as variable
when ( f ,µ) = (0.7,22).

4.3 Parameter Tuning
In a Telecom system with latency constraints, the dominant dynamic of the system
is often characterized by the average response time, T , when varying the average
arrival rate, λ . Tuning of the parameters of the LDS model in a way that it fits the
measured data from the actual server system is a necessary step in modeling of such
systems. Assuming that λ and T are measurable, there are three main parameters
for the M/M/m-LDS model, m, f and µ to tune in order to fit the model on the
measured data. Further, for the M/M/m/n-LDS there is an extra parameter, n, to
tune.

Therefore, in Figures 6-10, the effects of changing model parameters on
dynamics of average response time versus mean arrival rate of queries are
illustrated. In the rest of the paper, this graph will be called the λ/T graph. In each
figure, it is assumed that two (three) of the parameters are fixed and the one that is
mentioned is the variable. As the equations for calculating the mean response
times are rather complex and the parameters are interdependent, more than one set
of parameters can be fit on the measured data. Thus using these figures, a heuristic
rule for tuning the parameters of the LDS model can be achieved.

In the cases where the M/M/m-LDS model is used, the first parameter to be
tuned is the number of servers, m. As it can be seen in Figure 6, by increasing the
maximum number of concurrent requests that can be processed in the system, the
linear part of the λ/T graph will be shorter and the exponential rising rate of the
graph is increased. In this case it is assumed that ( f ,µ) = (0.6,22).

The second parameter to be tuned is the dependency factor, f . As shown in
Figure 7, by decreasing the dependency factor, the linear part of the λ/T graph is
increased, however, the change is slower than in the case where m is decreased. On
the other hand the exponential rising rate of the graph is increased in comparison
with the case where m is decreased. Here, it is assumed that (m,µ) = (3,22).
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Figure 7. Variations of λ/T graph for a special scenario with f as variable when
(m,µ) = (3,22).

Figure 8. Variations of λ/T graph for a special scenario with µ as variable when
(m, f ) = (3,0.6).

The effects of changing µ on the λ/T graph while fixing the two other
parameters is illustrated in Figure 8. As shown in the figure, by increasing µ in
equal steps, the λ/T graph will be shifted to the right in equal steps. In this case,
where (m, f ) = (3,0.6), the rate of rising of the graph is decreased.

In cases where the M/M/m/n-LDS model is used, there will be a saturation of
the response times when the load is high enough to overload the queue. Here, it
is assumed that the default values are (m,n, f ,µ) = (4,15,0.6,22). Figure 9 and
Figure 10 show the effects when varying m and f respectively. In each case, the
values of the other three parameters are constant. The general effect of changing the
parameters is similar as for the case with the infinite queue, with the difference that
the response times saturate when the load is high.
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Figure 9. Variations of λ/T graph for a special scenario with m as variable when
(n, f ,µ) = (15,0.6,22).

Figure 10. Variations of λ/T graph for a special scenario with f as variable when
(m,n,µ) = (4,15,22).

4.4 Experiments
In order to validate the model, we have performed a series of experiments in our test-
bed, as described in Section 3. In this case, the arrival rate of the unknown traffic
was set to zero. The dynamics of the database server highly depends on the mix of
requests, since SELECT and UPDATE queries require different amount of server
capacity. Therefore, experiments with varying workload mix have been performed.

Figure 11, Figure 12, and Figure 13 show the results from experiments where
the arrival rate is varied from low load to high load. The graphs show the average
response times of queries as a function of the arrival rate. We have fitted M/M/m/n-
LDS models for the data using the tuning steps described in the previous section. In
both scenarios, the CPU utilization was very low, also for high loads. The maximum
CPU load was about 5%.

In order to model the network delays, we have added a bias of 0.023 seconds in
the average response times of the proposed models.
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Figure 11. Performance of the M/M/m/n-LDS queuing model in modeling steady
state dynamics of a MySQL database server using UPDATE queries.

Figure 12. Performance of the M/M/m/n-LDS queuing model in modeling steady
state dynamics of a MySQL database server using mixed queries.

In Figure 11, the workload is based on 100% UPDATE queries. The fitted
model in this case has the following parameters (m,n, f ,µ) = (3,81,0.75,37.1).
Figure 12 depicts the same experiment set-up when using a mix of 25% SELECT
queries and 75% UPDATE queries. The fitted M/M/m/n-LDS model in this case
has the following parameters (m,n, f ,µ) = (6,73,0.44,35.2). In Figure 13 only
SELECT queries are used. In this case the model parameters are
(m,n, f ,µ) = (6,240,1.39,38).

The results verify that the proposed model can represent the average dynamics
of a database server with various workloads very well.
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Figure 13. Performance of the M/M/m/n-LDS queuing model in modeling steady
state dynamics of a MySQL database server using SELECT queries.

5. Admission Control

As part of the collaboration with Ericsson AB, we have designed an admission
control mechanism for the measurable traffic to the NEs, as illustrated previously
in Figure 3. As a direct effect of this work, a modified version of the control
mechanism has been implemented in the Ericsson product. In this section, the
controller design and its validation are described.

5.1 Control structure
The MSS includes a control system, as illustrated in Figure 14, which should ensure
that the load on a specific NE is kept at an acceptable level. The control objective
is to keep the mean response times of the NE queries below a desired value while
maximizing the throughput. The control actions must be based on a limited amount
of control information, due to the standardized protocols and the layered software
architecture. The control system includes a controller and a gate.

The controller uses a response time reference value, Tre f , and measurements to
determine an acceptable workload to the database server. The acceptable workload
is defined by the normalized rate of admitted queries, λA, which corresponds to the
ratio of the average arrival rate of the admitted requests over the higher bound of
the average arrival rate of the requests. It is desired that the control system performs
robustly in presence of fluctuations in the average arrival rate of the queries sent to
the database. Therefore, the controller design is crucial for guaranteeing the control
objectives.

The gate ensures the ratio λA of arriving queries is admitted to the database.
In the experiments, the gate rejects requests that cannot be admitted. However, in
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Figure 14. Control system.

the real product, this is not feasible. Instead, the real product has a traffic shaping
mechanism that adds delays to the responses to the customer administration system.
Since the communication with the customer administration system is synchronous,
adding delays to the responses will lower the arrival rate of requests.

In this paper, we focus on the controller performance. Therefore, the
implementation of the gate is not the main focus as long as it can be assumed that
the gate actuates the control signal accurately.

5.2 Controller design
We have designed a controller that can guarantee the control objectives for the
system. The controller, called the Load-Adaptive Controller (LAC), only uses
measurements of the query response times. A classical PID controller [Åström and
Wittenmark, 1997] includes one Proportional part (P), one Integral part (I), and
one Derivative part (D) that determines the control signal based on the deviation of
the input signal from the reference value. For stochastic systems, the derivative
part will amplify the effect of high frequency noise in the response time error and
thus deteriorate the overall performance of the system.

Therefore, the LAC is based on a modified PI controller with anti-windup. The
LAC adapts its proportional gain with the variations in the mean arrival rates of
queries sent to the database. The structure of the modified PI controller is illustrated
in Figure 15.

The total load of the NE is determined by the aggregated arrival rates of the
measurable and the unknown traffic streams. However, assuming that the unknown
traffic is stationary during a limited time period and that the database server behaves
as a conservative queuing system [Kleinrock, 1975], a specific admitted ratio of the
traffic will correspond to a specific mean response time, as illustrated in Figure 16.

The controller continuously keeps track of two points in this graph, one low
point, (λlow,Tlow), which is situated below the reference response time, Tre f , and
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Figure 15. Load-adaptive controller (LAC).
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Figure 16. An illustration of the LAC calculations.

one high point, (λhigh,Thigh), which is situated above Tre f . As the control system
operates only based on measured response times of NE queries, λlow guarantees
that those measurements exist for all sampling intervals. The upper limit for mean
arrival rates of the queries processed by the NE while not overloading the database
is represented by λhigh. The starting values for λlow and λhigh are set to 5% and
100% respectively.

The admittance rate of the incoming queries is iteratively updated so that its
corresponding response time meets the desired value. Every sampling time, the
controller calculates the average response time, T , over the last period. If the
average response time during sampling period k, Tk, is too high, (Tk > Tre f ), the
high point is updated as (λhigh,Thigh) = (λk,Tk) where λk is the normalized
admitted arrival rate during interval k. If the average response time during interval
k is too low, (Tk < Tre f ), the low point is updated as (λlow,Tlow) = (λk,Tk). It is
now assumed that the optimal normalized arrival rate, λo, which gives a response
time of exactly Tre f is in the interval [λlow,λhigh]. Therefore, the next normalized
admitted arrival rate, λk+1, can be interpolated from these points using classic
geometry:

λk+1 = λk +
λhigh−λlow

Thigh−Tlow
(Tre f −Tk) (10)
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Therefore, the quotient (λhigh−λlow)/(Thigh−Tlow) is used as proportional gain
in the P-part of the controller. The algorithm will converge to the desired response
time value assuming that the arrival process is stationary or slowly changing. It is
obvious that the control gate cannot admit more queries than the incoming ones.
This upper limit will be noted in the calculations and treated as a saturation limit of
the control signal.

The integral I-part of the controller is used when the P-part is not enough for
keeping the steady state error to zero. The integral part uses a controller parameter,
Ki, which in conventional PI controllers are equal to the proportional gain. However,
in this case, as the proportional gain changes drastically due to the load-adaptive
algorithm, using the conventional PI structure will lead to a reduced phase margin
which will drive the system to unstable region. Therefore, Ki is chosen as a static
gain and its suitable value is determined in tuning phase of the controller.

Further, the parameter Ti is the integration time constant and Tt is the integrator‘s
reset time constant in the anti-windup mechanism. Anti-windup is added to avoid
building up of the integration part when the control gate is saturated or completely
open. It is desired to choose small values for Tt so that the integrator resets quickly.
Generally, Tt is chosen to be less than Ti.

A low pass filter is added after the proportional gain to smoothen the response
time error signal as it is very noisy. The bandwidth of this filter should be suitably
chosen so that its effect on the in-band characteristics of the response time errors is
minor while attenuating high frequency components of that signal.

5.3 Experiments
To investigate the controller performance, a Java implementation of the controller
was deployed as a web application to a Glassfish application server, placed on the
server acting as traffic generator in Figure 4. The web application also included the
traffic generator that generated requests for the web application. For each request,
the admission control decides whether to allow the request to be sent to the database
or rejected. The traffic generator for unknown traffic did not have an admission
control, and was set to a specific average arrival rate that could be altered during
run time. All requests sent to the database server were SELECT queries (according
to the query structure described earlier). The λ/T graph for this particular scenario
setting is shown in Figure 17. The saturation of the system is not shown in the graph
for clarity reasons, since the operation region is around the “knee”.

To test the performance of the controller, a scenario was chosen where the load
changed from slight overload to high overload. The reference response time, Tre f ,
was set to 0.2 seconds. According to the λ/T graph in Figure 17., this corresponds
to a total arrival rate of approximately 40 queries per second.

In this paper, two experiments are shown, one with a step in the unknown traffic
and one with a step in the measurable traffic. The controller parameters were set to
Ti = 4, Ki = 0.5, Tr = 1, and the sampling time h= 0.5 seconds. Ti was determined as
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Figure 17. λ/T graph for the admission control experiments.

a multiple of the sampling time, chosen so that the controller was able to maximize
the throughput while keeping the mean response times below Tre f . Ki was set equal
to the sampling time. To give the controller time to settle this state was kept for 100
seconds after which a step in the traffic was performed. The resulting graphs are
shown in Figure 18 and Figure 19. The graphs show the average dynamics from
100 runs.

In the first experiment, shown in Figure 18, the starting arrival rate was set to
23 requests per second for the measured traffic and 22 requests per second for the
unknown traffic. The step increased the arrival rate of the unknown traffic by 10 (to

Figure 18. Performance of the LAC with step in unknown traffic.
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Figure 19. Performance of the LAC with step in observable traffic.

32) requests per second, resulting in a more severe overload situation.
The second experiment, shown in Figure 19, was similar to the first experiment.

However, the arrival rate step was in the measurable traffic instead. To obtain a
similar control signal response as in the first experiment, the step in the controllable
traffic had to be larger. Therefore, the observable arrival rate was increased from 23
requests per second to 51 requests per second.

Both experiments show a well-behaved controller, with a reasonable settling
time and smooth dynamics after the step.

6. Monitoring and Estimation

The system in Figure 1 is complicated with many different queues, caches and
databases. Attempting to capture all details gives models that are too complex for
on-line control. Extensive experience in the field of control has clearly
demonstrated that simple models that capture essential behavior can be very
beneficial [Åström and Murray, 2008]. One aspect of the collaboration with
Ericsson has been to explore if benefits can also be obtained for monitoring and
control of the MSS. A crucial issue is what complexity of the models is required
for estimation and control of the MSS.

Response time and arrival rates are variables of prime concern. The variables
have strong variations, which can be reduced by averaging. A more effective way is
to construct estimators that exploit the dynamic behavior of the system. Exploration
of such estimators has been one of the goals of the project.

A key feature of the system shown in Figure 1 is that there are two traffic
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Figure 20. Schematic diagram of an abstraction of the MSS in Figure 1 with a
controller and estimator.

streams. The measured traffic, generated by the customer administration system
has a known arrival rate λc, can be controlled. The unknown stream, which is
created by the mobile phone users, has an arrival rate λu that cannot be controlled.
Monitoring and control of the system can be improved if good estimates of the
average service time are available.

An abstraction of the system in Figure 1 is shown in Figure 20, where an
estimator and the controller have been included. In this section, we will focus on
the estimator, which only has access to measurements of the measured arrival
stream λ and the response time T . All actions by the NEs and the MSS have been
represented by one queue that represents the aggregated behaviors.

The queue length is represented by the variable x, which captures the
aggregated behavior of many different queues in the real system. The variable x
can be interpreted as a virtual queue length. The queue length cannot be measured.
The actual response time T and the actual arrival times can, however, be measured.
Variations in x reflect changes in the system‘s load.

6.1 Flow Model
To model the system, we will make an additional abstraction by assuming that the
variables x and T are continuous and that they vary continuously in time. The
behavior of the system can then be captured by the simple flow model:

dx
dt

= λ −µmax f (x) (11)

where x is the virtual queue length, λc is the known arrival rate, λu is the unknown
arrival rate, µmax is the maximum service rate and f is a monotone function with
the range [0, 1]. The response time is given by:

T = t0(1+ x) = t0(1+ f−(ρ)) (12)

where t0 = 1/µmax is the average time to serve one job when the queue is empty and
ρ is the normalized service rate or the utility ρ = λ/µmax.

95



Paper III. Application of Control . . . Mobile Service Support System

The response time goes to infinity as λ approaches µmax if the range of the
function f is [0, 1]. The function f gives significant freedom in adjusting the
behavior to real queue behavior.

The model (11), (12) has been used extensively to model queuing systems
[Agnew, 1976]. The simple M/M/1 queue can be represented by (12) with
f = x/(x+1) [Tipper and Sundareshan, 1990].

Even if the model (11), (12) is simple it captures some important features of
real queuing systems, for example the fact that response time increases with queue
length. The model also captures the behavior that the rate of change of the response
time increases with increasing arrival rate. The behavior of the system can be shaped
by the function f .

In the project, we have investigated simulated models with servers and we have
demonstrated that it is possible to find functions f which matches the steady state
behavior of simulated systems. An illustration is given in Figure 21.

Figure 21. Service times for the operations SELECT (left) and UPDATE on an
SQL server and predictions based on the model (12) with f (x) = (1/(1+ x))n, n =
1.5 and µmax = 880 for SELECT and n = 0.15 and µmax = 132 for UPDATE.

6.2 Estimation Algorithm
There are significant variations in the arrival and response times due to their discrete
nature. To monitor and control the system it is necessary to smooth these variations.
For example, the average arrival rate of the controlled stream can be estimated the
simple exponential smoother

t̂+i = t̂i + k3(ha− t̂i)

λ̂
+
c = 1/t̂+i

(13)

where ti is the arrival time and ha is the time since the last arrival update.
One advantage with the model (11), (12) is that it is possible to use Kalman

filtering [Åström and Murray, 2008] to combine the model, which captures the gross
behavior of the queuing system, with measured data.

96



6 Monitoring and Estimation

If continuous data was available, an extended Kalman filter for the service time
is given by:

dx̂
dt

= λc +λu−µmax f (x̂)+ k1(T − t0(1+ x̂))

dλu

dt
= k2(T − t0(1+ x̂))

(14)

This filter will capture the behavior that response time increases with increasing
queue length and arrival rate. The detailed behavior can be shaped by the function
f .

It must be considered that the real measurements are events that represent arrival
of a request or a completed response. To deal with this, we have developed an event-
based Kalman filter. At arrivals, the queue length is updated according to the flow
model:

x̂+ = x̂+ha(λ̂c + λ̂u−µmax f (x̂)) (15)

This difference equation is simply a forward Euler approximation of (11). Equation
(15) is simply a prediction of x based on the model (11). Information about x is
obtained when a service is completed. The queue length and the unknown arrival
rate are then updated as:

x̂+ = x̂+hd(λc +λu−µmax f (x̂)+ k1(T − T̂ ))

λ̂
+
u = λ̂u +hdk2(T − T̂ )

(16)

where hd is the time since the last departure update. The arrival rate can be estimated
because it results from the model (11) and (12) that the arrival rate is observable
from a measurement of service time [Åström and Murray, 2008].

6.3 Experiment
The Kalman filter estimator was evaluated using a discrete-event simulation
program written in Java, The program simulates a single server queue with
exponentially distributed service times with mean µmax = 100 requests per second.
The queue has two arrival processes, representing the measurable and unknown
traffic. The Kalman filter has been evaluated for a number of scenarios validating
its performance. However, in this paper we show the results of one specific
scenario.

In this scenario, the unknown arrival process was a stationary Poisson process
with mean 42.5 requests per second. The measurable arrival process was basically a
Poisson process with changing average rate. The arrival rate, λ , was the sum of one
constant part and one part represented by a sine function as given by:

λ (t) =C+a · sin(kt) (17)

The parameters were chosen so that the system can handle the workload over
long time but with periodic overloads, hence:

µmax−a <C < µmax (18)
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Figure 22. Kalman filter estimates of response times and estimation of arrival rate.

Therefore, the numerical values used in the simulations are C = 42.5 and a = 20
requests per second.

The differential equations describing the behavior of the estimates between
events were approximated using first order forward Euler discretization.

Figure 22 shows the response times and the arrival rate, both real values and
estimates for a time period of 20 seconds during the simulation. The estimate error
is shown in Figure 23. It can be seen how the Kalman filter manages to follow
the real system during the quick rises in response time around time 424 and 427.
Here the mean square error is σ = 7.4 · 10−4 for the period 415 < t < 420 and
σ = 1.1 · 10−2 for the period 425 < t < 430. The mean square error for the entire
experiment is σ = 1.9 ·10−2 .

Figure 23. Proposed Kalman filter‘s response time prediction error.
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7. Conclusion

Accurate control designs using control theory are essential for resource
management in computer systems. In this paper we have presented work
performed in collaboration with Ericsson AB, investigating how control theory can
improve the performance of a commercial mobile service support system. Together
with Ericsson AB, we have identified three major control challenges, and
investigated solutions. The first challenge is to find accurate performance models
for the system, with the objective to capture the system dynamics. The second
challenge is to develop an admission control scheme that can handle unknown
traffic and load surges. The final challenge is to develop estimation methods for
accurate prediction of response times and arrival rates in systems with unknown
traffic.

In this paper, the challenges have been treated rather independent of each other.
However, the future goal is to be able to use all solutions together, in order to
improve the system performance and speed up the development process. The
performance model could be tuned using real data and then used for validating
control designs, which is much easier than implementing the designs in testbeds or
the real system. Also, in the future, the estimation algorithms should be
incorporated in the control system, improving the control decisions.
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Optimal Content Retrieval Latency for
Chunk Based Cooperative Content

Replication in Delay Tolerant Networks

Payam Amani Saeed Bastani Björn Landfeldt

Abstract

Modern content distribution networks face an increasing multitude of
content generators. In order to reach the minimal content retrieval latency in
the content distribution networks, content shall be disseminated towards
consumers based on its popularity taken from the content distribution
networks. This, Combined with dividing media into chunks (heterogeneous
valuation of information) and contact duration of the consumers with the
access points in delay tolerant networks led us to a novel system for content
management in large scale distributed systems.

In order to determine where to replicate content we formulated the
problem as an integer programming problem. The cost function of this
minimization problem is the accumulated weighted communication delay
among the content replication servers and also the main content server.
Various practical constraints such as limited total budget for content
replication in each service provider, limited storage size and downlink
bandwidth of the content replication servers are considered. A centralized
solution to the problem is derived which gives the performance bound for any
decentralized content replication strategy for the presented scenarios.

Originally published in Proceedings of The 9th Swedish National Computer
Networking Workshop, SNCNW, Lund, Sweden, 2013. Reprinted with permission.
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1. Introduction

Content replication has proved an efficient mechanism for offloading traffic from
the content sources to the consumer edge. It has gained more significance in modern
content distribution networks (CDNs) which face an increasing multitude of content
generators, thus content, in delay tolerant networks (DTNs). An example of such
content generators is the mobile users with smart-phones which upload videos to
various possible video sharing websites.

The advantages of content replication in a Service Provider (SP) are twofold:
first, the content access requests from the Main Content Servers (MCSs) -owning
the content- are reduced by fulfilling some requests locally in the designated
Replicated Content Servers (RCS) in the service provider’s premises. This helps
avoiding unnecessary extension of MCS which otherwise would incur costs on the
Content Provider (CP). Second, by placing the content closer to the end consumers
the delay-throughput performance is improved. Delay performance is a key factor
influencing the user experience. A long content access delay results in reduced
quality of experience among end users. Therefore, the limited contact duration of
end consumers with the edge access devices in DTNs requires that the content is
delivered with minimum delay.

Content replication can be realized in several ways. In a traditional paradigm,
individual RCSs autonomously and independently decide what content to replicate
and what content to discard when the available storage is full and new contents
become available. Present web caching architectures are mainly built based on this
paradigm where Least Recently Used (LRU) and Least Frequently Used (LFU) are
the dominant content replacement policies used in web caching
[Androutsellis-Theotokis and Spinellis, 2004]. While being simple from an
architectural and implementation point of view, this paradigm comes with some
drawbacks; the storage is not used efficiently due to potentially largely redundant
contents in the individual RCSs. Even RCSs belonging to the same SP are
oblivious to the replicated contents of one another. This implies that the same
content may have as many copies as the number of RCSs which globally results in
waste of storage. Distributed content replication is an alternative to the isolated
replication mechanism as described above. With this paradigm, individual RCSs
participate in a distributed content replication process. RCSs should decide
whether to replicate content locally or fetch it from a (neighbour) RCSs currently
having the content, or download the content on demand from the MCS. The
neighbourhood of RCSs is defined with respect to some cost notion (e.g. delay,
monetary, bandwidth, etc.). This mechanism while offloading the traffic and
request load from the MCS, will potentially achieve a delay efficient content
access to a level beyond the capacities of individual RCSs. The distributed
replication can be realized in two ways. In a selfish replication system, each RCS
seeks replication strategies which maximize its payoff. On the other hand, in a
cooperative replication system RCSs seek strategies which maximize the social
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payoff (i.e., global payoff) [Borst et al., 2010]. The choice of selfish and
cooperative replication would depend on the business relations. In its simplest
form, the cooperative replication is the choice if the RCSs are maintained by the
same SP and the objective will be maximizing the pay-off achievable by the whole
system and not an individual RCS. However, in presence of multiple SPs, selfish
replication is the natural strategy of choice. It should be noted that, business
agreements between SPs may change these settings. For instance, SPs may decide
to implement cooperative replications to enhance their individual pay-offs.

In practice, the realization of a replication system requires some form of
content valuation, i.e., the importance of a typical content object from the
standpoint of the consumers. Content valuation enables a SP (in a cooperative
scenario) or individual RCSs (in traditional autonomous replication servers) to act
selectively when they decide on content to replicate. Content popularity is one
major metric used in almost all existing work to enable selective replication. In
traditional web caching, LRU and LFU implicitly represent the popularity of web
pages demanded so far [Mohan, 2001]. In the existing distributed replication
proposals the notion of content popularity is expressed by the demand rate for a
content. Furthermore they assume content popularity is fixed in the entire system.
Popularity of content is considered to be different from region to region, where a
region is the coverage area of an Access Point (AP) designated for consumers
living or commuting within that area.

A service provider (or an individual RCS) may choose to replicate a typical
content entirely or partially. In the previous work, the replication systems adopt the
former option [Borst et al., 2010; Laoutaris et al., 2005] i.e., either replicate the
entire content or nothing. In our proposed content replication strategy, the
individual RCSs can decide on the fraction of the content to replicate and
download on-demand the remaining content fraction from either the peer RCSs of
from the MCS. We conjecture that partial replication is in stronger alignment with
the limited contact duration or impatience of consumers; however, continuous
fractions will introduce design challenges into the replication system. Thus, in this
work we choose to discretize the content using the notion of chunks. Various
chunking strategies have been studied in the literature [Bo et al., 2013]. We
consider a chunk as a fixed size piece of a content where the chunk size and hence
the number of chunks in a content is determined with respect to a fixed size base
chunk. By introducing the notion of chunks into the content replication problem
we aim for the following advantages:

• Improved user experience: The chunk based replication allows for
replicating the initial chunks of contents locally with high probability thus
allowing the user to access those chunks faster. While consuming those
initial chunks, the remaining chunks are fetched and consumed gradually.

• More efficient storage utilization: RCSs are not required to replicate the
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entire content body. Instead, they choose a number of more important chunks
from each content to replicate locally and access the remaining chunks either
from peer RCSs or the MCS.

• Avoiding bandwidth and storage usage for fake content: With the
enormous variety of contents, the emergence of fake content is inevitable,
i.e., content masquerading authentic content. A natural mechanism of
identifying fake content is to involve the direct consumers. If content is fake,
then it is likely that the user abort demanding for the rest of the fake content
by investigating the initial chunks.

• Opportunistic content download made easier: If a user did not fetch all
chunks of a content in a meeting incidence with the current AP, they have the
opportunity to download the remaining chunks form other APs as they move
through the network.

• Flexibility of cost optimization: A RCS can partition the chunks of a content
to replicate locally, fetch from neighbour RCS, or from the MCS in order to
achieve a minimum cost of access to the content containing these chunks.
This implies more flexibility in cost saving compared with 0/1 replication
paradigm.

• Low overall delay per content access: It is conjectured that the chunk based
replication will achieve a lower overall access delay per content.

In order to determine where to replicate content we formulated the problem as
an integer programming problem with some practical constraints and solve it for
the global optimal solution. This paper is structured as follows. After introduction,
problem formulation is presented in section 2. System parameters are described in
section 3. Results from the defined integer programming problem are summarized
in section 4. Finally section 5, concludes the paper and gives some ideas for future
work.

2. Problem Formulation

The topology of this scenario is depicted in Fig 1. In this scenario, we first assign
weights to the chunks of contents. The weight of a chunk is a function of the
popularity of the content containing the chunk, the contact duration of the AP
where the content has non-zero popularity, and the rank of the chunk in the
containing content. Define wi

cr as the weight of a chunk with rank r in content c
with non-zero popularity in RCSi. We assign wi

cr as:

wi
cr = ∑

k

M− r+1
M

(
τ i

max− τ i
k

τ i
max− τ i

min

)
Ii
c (1)
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Figure 1. Multiple service providers, optimization for waited delay and bounded
cost.

The weight assignment mechanism as described by ( 1) is expected to maintain
these fundamental properties:

• Assign larger weights to chunks within more popular content.

• Assign larger weights to the initial chunks (high ranks) in a content as
compared to the chunks positioned at the end of the content (with low
ranks).

• Among two contents with equal popularity, assign weights to the content
being demanded in an access point with shorter contact duration.

• Not be biased in favour of small contents (with small number of chunks).

2.1 System architecture
wi

cr is interpreted as the valuation of an RCSi of a chunk r within a content c and used
as a metric for deciding which chunk is a good candidate for replication when there
are a number of several available choices. In this scenario we address a replication
system involving multiple service providers. For simplicity, we assume each service
provider owns a single RCS (or hired it from a cloud). The business relations implies
for some monetary cost calculated per chunk download. Denote Ci

j by the cost per
chunk download in the RCS operated by service provider i from the RCS operated
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by service provider j , and Ci
0 the cost per chunk download in the RCS operated by

service provider i from the MCS. Assume a service provider i has a limited budget
Gi

max . We define Qi
j as follows:

Qi
j = ∑

c
∑
r

sbdi
c(C

i
jX

i
cr j +Ci

0X i
cr0) (2)

Y i
j is the total weighted delays of fetching chunks in RCSi either from node RCS j

or from the MCS. Zi
j is the total bandwidth needed for fetching chunks in RCSi from

RCS j.

Y i
j = ∑

c
∑
r

wi
cr(D

i
jX

i
cr j +Di

0X i
cr0) (3)

Zi
j = ∑

c
∑
r

sbdi
cX i

cr j (4)

The optimization problem is defined as follows:

min∑
i

∑
j

Y i
j (5)

Subject to:

X i
cr−X i

cr j ≥ 0 ∀i, j,c,r (6)

X i
cr0 +∑

j
X i

cr j = 1 ∀i,c,r (7)

∑
c

∑
r

X i
cr ≤Bi ∀i (8)

∑
i

Zi
j ≤ BWj ∀ j (9)

∑
j

Qi
j ≤ Gi

max ∀i (10)

X i
cr,X

i
cr j,X

i
cr0 ∈ {0,1} ∀i, j,c,r (11)

Definition of parameters in the problem formulation are presented in Table 1.
constraint (6) states that RCSi cannot fetch a chunk r from RCS j , unless chunk r
is replicated in RCS j. Constraint (7) states that a chunk r must be fetched in RCSi
either from the MCS or from one of RCSs (including itself). In other words, for
each chunk it should be decided from where it is fetched. Constraint (8) shows that
the total number of chunks replicated in RCSi must not exceed its storage capacity.
Constraint (9) states that the total amount of information downloaded from a RCS j
must not exceed its downlink bandwidth. Constraint (10) shows that the total cost of
chunks downloaded in service provider i from the MCS and other service providers
must not exceed the maximum budget of service provider i. Finally, (11) indicates
the binary constraint for the decision variables.
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Table 1. Notations

Notation Description

MCS Main Content Server

RCSi Replicated Content Server i

APi
k Access Point k in domain of RCSi

SPi Service Provider i

c Content index

r Chunk index

Ii
c Popularity of content c from the standpoint of users of

RCSi,Ii
c ∈ [0,1]

τ i
k Average contact time in APk and in domain of RCSi

τ i
min,τ

i
max Min and max contact duration of access points in domain

of RCSi

Ai
k Arrival rate of users in APk in domain of RCSi

di
c Demand rate of content c in domain of RCSi, di

c = Ii
c ∑k Ai

k

Bi Storage capacity of RCSi (stated as the number of chunks)

BWi Downlink bandwidth of RCSi

Di
j Chunk access delay in RCSi from RCS j

Di
0 Chunk access delay in RCSi from MCS

Ci
j Generic chunk access cost in RCSi from RCS j

Ci
0 Generic chunk access cost in RCSi from MCS

Gi
max Maximum budget of service provider i

wi
cr Aggregate weight of chunk r of content c in domain RCSi

X i
cr j Chunk access binary decision variable: 1 if RCSi accesses

chunk r of content c from RCS j, and 0 otherwise.

X i
cr0 Chunk access binary decision variable: 1 if RCSi accesses

chunk r of content c
from MCS, and 0 otherwise.

X i
cr Replication decision variable: 1 if RCSi replicates chunk

r of content c, and 0 otherwise.

sb The size of base chunk (in bits).

Mc =
⌈

sc
sb

⌉
Number of chunks in content c. where sc is the size of
content c.
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Table 2. Cost and Delay Matrix

SP1 SP2 SP3 MCS

SP1
Delay 0 1 2 3

Cost 0 2 1 0.5

SP2
Delay 1 0 1 4

Cost 2 0 3 0.5

SP3
Delay 2 1 0 5

Cost 1 3 0 0.5

3. System Parameters

We consider 400 files as our content pool with sizes uniformly ranging from
100KB to 5.18 MB. The size of base chunk is set to 100KB. This will translate to
files of sizes ranging from 1 base chunk to 53 base chunks. Three service providers
namely SP1, SP2, SP3 are assumed. SP1 consists of one RCS called RCS1. SP2,
consists of two RCSs namely RCS2, RCS3. Finally, SP3 covers three RCSs namely
RCS4, RCS5 and RCS6. We make a reasonable and realistic assumption that the
cost of content access between two SPs is symmetric, i.e., Ci

j = C j
i . If content is

replicated inside a SP, no matter in which RCS, the cost for local access is
considered as zero. This means that no cost is assumed for intra SP content
delivery. We also assume that the cost of content access from the public main
content server MCS is less than the cost of content access from a peer SP, i.e.,
Ci

0 < Ci
j ∀i, j = 1,2, ..,6. Likewise the symmetry of costs between two service

providers, we assume that the communication delay between two RCSs belonging
to two different SPs and also between two RCSs of the same SP are symmetric.
Generally for two RCSs in the domain of two service providers namely SPi and
SPj, Di

j = D j
i . The corresponding content access delay and cost are summarized in

Table 2. Other parameters specific to the service providers are summarized in
Table 3.

4. Summary of Results

The considered integer programming problem consists of 496656 binary variables.
The problem was solved by means of Gurobi optimizer v5.1. Total number of
chunks was 10347 from which 4472 chunks have been replicated. With this
assignment the accumulated weighted chunk access delay is minimized while
constraints on storage space, bandwidth and budgets for SPs are closely met. This
gives us the optimal performance bound for any decentralized chunk based content
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Table 3. Parameters Specific to the Service Providers

SP1 SP2 SP3

RCS1 RCS2 RCS3 RCS4 RCS5 RCS6

Percentage total storage 15 7.5 7.5 5 5 5

tmin[sec] 1 1 120 1 10 120

tmax[sec] 5 10 3600 10 120 3600

Zipfian index α 0.1 0.1 0.3 0.1 0.3 0.5

Bandwidth Mbps 1 2 2 1 2 3

Budget units 130 260 3600

replication strategies for the same setup. We also have established that for the
given system, chunk-based content replication led to a lower minimum
accumulated weighted content access delay, 3425, compared to replication of the
whole content 3636. Now we consider the following interesting scenarios:

• By relaxing the constraint on the budget for SPs and assuming that the
available space for each RCS is greater or equal to the size of the content
pool then the optimal solution is to make a local copy of all the contents in
each RCS.

• In case that each chunk can be replicated only to one of the RCSs in the
system, we can get a lower bound on the acceptable performance of the
system.

Thus we have the upper and lower bounds for the performance of any decentralized
content replication strategies for the mentioned scenario.

5. Conclusion

A chunk based cooperative content replication strategy was introduced and
formulated as an Integer programming problem. Practical limitations of such a
system like limited storage size, limited bandwidth and limited budget are
introduced as constraints in the problem. Effects of the contact duration of the
users to the access points in the system is reflected in the problem. The global
optimal solution of this centralized problem was calculated. Lower and upper
bounds on the performance of any decentralized chunk based content replication
strategy is introduced. As a future work such strategies will be studied.
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