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Abstract

This thesis is based on nine papers, all concerned with parameter estimation. The
thesis aims at solving problems related to real-world applications such as spectro-
scopy, DNA sequencing, and audio processing, using sparse modeling heuristics.
For the problems considered in this thesis, one is not only concerned with finding
the parameters in the signal model, but also to determine the number of sig-
nal components present in the measurements. In recent years, developments in
sparse modeling have allowed for methods that jointly estimate the parameters in
the model and the model order. Based on these achievements, the approach often
taken in this thesis is as follows. First, a parametric model of the considered signal
is derived, containing different parameters that capture the important character-
istics of the signal. When the signal model has been determined, an optimization
problem is formed aimed at finding the parameters in the model as well as the
model order. An important aspect when formulating the optimization problem is
to include the characteristics and properties inherent in the signal model. For in-
stance, if we know that the true set of parameters are smooth, this should also be a
requirement reflected in the optimization problem. In the ideal case, the optimiz-
ation problem is convex, in which case powerful solvers exist that may be used for
finding the solution. In many cases, however, the original optimization problem
is rather complex and definitely not convex. In this case, a common approach is
to use a convex relaxation that approximates the original problem. In papers A,
B, C, E, F, and H, this approach is utilized, however in different variations and
for different applications. Paper A deals with estimation of periodic signals in
symbolic sequences used in DNA sequences, paper B looks at the estimation of
multi-dimensional sinusoids for NMR data, paper C considers the estimation of
an unknown number of chirps for audio signals, papers E and F study pitch es-
timation, where the first paper considers online estimation and where the second
paper proposes an off-grid method. Paper D proposes a generalization of a popu-
lar estimation method, whereas paper G introduces a new approach to frequency
estimation. Paper I investigates how to sample a partially know signal to minim-
ize the number of samples needed given a lower bound on the desired estimation
performance. In all papers, the proposed methods are examined using simulated
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and/or measured data and compared to competing state-of-the-art methods.
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Introduction

This thesis covers contributions from nine papers, spanning different research
subjects; the first deals with the estimation of periodicities in symbolic sequences;
the second outlines a method for estimating an unknown number of damped
sinusoids in N-dimensional space; the third treats estimation of harmonically re-
lated chirp-signals in the time-frequency domain. The fourth paper is a more
theoretical work, where a popular estimator is analyzed and improved, and in
the fifth paper, we derive an online estimator of multi-pitch signals. In the sixth
paper, we address the problem of off-grid estimates and propose a fast and easy
method for estimating multi-pitch signals off-grid. In the seventh paper, we in-
troduce a new signal candidate dictionary, spanning larger parts of the parameter
space, which can be used to speed up the estimation procedure. In the eighth
paper, we look into the problem of estimating signals which have been saturated,
for instance due to limitations in the dynamic span of the analog-to-digital (AD)
converter, and finally, in the ninth paper, we investigate how to efficiently sample
a partly known signal; a problem that is of great interest in, e.g., the chemistry
and physics community. Although at a first glance, it may seem that these papers
have little in common, they all share many common characteristics. For instance,
in each paper, a signal model is derived which tries to explain the behavior of
the signal of interest. The models are detailed by a range of parameters, where
each explains some aspects of the signal, e.g., the frequency parameter in a sinus-
oidal model explains the rate of oscillation in the signal, whereas the amplitude
parameter explains the power of the corresponding frequency. The goal of these
papers is to estimate the parameters detailing the signal and thereby allow for an
accurate analysis of the signal at hand. Below follows a short introduction to some
of the mathematical results used in this thesis.

1 Non-parametric methods

The herein discussed methods may be divided into three general areas; parametric
estimation, semi-parametric estimation, and non-parametric estimation. In the
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Introduction

following, we will proceed to discuss each of these areas, and reflect on their char-
acteristics.

The non-parametric methods make no or only minor assumptions on how the
signal is constructed and are thus very general. The most famous non-parametric
spectral estimation method is the periodogram, which estimates the frequency
content of a signal, such that

Φ(f ) =
1

N

∣

∣

∣

∣

∣

N
∑

t=1

y(t)e−2iπft

∣

∣

∣

∣

∣

2

(1)

where N denotes the number of samples, y(t) the observed sample at time t, and
f the frequency. Evaluating (1) for a range of frequencies yields a spectrum, in
which one can see the contribution of each frequency in the signal. Due to the ef-
ficient implementation of the fast Fourier Transform (FFT), with computational
complexity as low as about O

(

N log(N )
)

, together with its simple interpreta-
tion, the periodogram has become one of the most widely used methods within
the signal processing community. The FFT-algorithm has a long history and the
implementation most used today is credited to Cooley and Tukey [1], but already
Johann Carl Friedrich Gauss formulated a method that resembles the modern
FFT-algorithm [2]. Although justly celebrated, the periodogram has severe limit-
ations. The estimates are not consistent, i.e., the variance of the estimates does not
tend to zero as the number of samples goes to infinity, and the spectral resolution
is often inadequate for many applications due to the smearing effect [3]. As an
example, Figure 1 shows the resulting periodogram estimate of a signal contain-
ing three sinusoids, with frequencies f1 = 0.2, f2 = 0.5, and f3 = 0.7, all with
unit amplitude, together with additive Gaussian white noise with a signal to noise
ratio (SNR) of 10 dB. As is clear from the figure, the periodogram easily resolves
all the three peaks, having a noise floor which is much below the amplitudes of
the signal components. However, the amplitudes are poorly estimated, and the
relative amplitude between the peaks are far from correct. This is rather common
for non-parametric estimators. They are in general robust but suffer from notable
variance and poor resolution. It should be noted that the resulting peaks are quite
wide, which can be problematic if there are peaks that are closely located, as the
two peaks might look like a single peak in the periodogram.

2



2. Parametric methods
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Figure 1: The periodogram estimate of three sinusoids embedded in noise.

2 Parametric methods

If one is given any prior knowledge about the signal, e.g., one knows that the
signal contains three sinusoids, it may be preferable to make use of this addi-
tional information, forming a parametric estimate instead. The prior information
about the signal is utilized by deriving a signal model which contains a number of
parameters that are then estimated. These parameters thus explain different char-
acteristics of the signal and can be very useful when analyzing the signal. If given
accurate model information, this form of methods often experiences high resolu-
tion and low estimation variance. However, the methods are often very sensitive
to model errors such as interference, or errors in the model assumptions. There are
many different methods for estimating parameters. Depending on the complexity
of the signal model at hand, different methods may be more suitable than others.
As a simple example, consider the case when the parameters are linear arguments

3
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in the model. One may then estimate the parameters using the least squares (LS)
method. Given the output signal y(t) and the input signals x(t) ∈ C

K ×1, one is
then typically interested in estimating some regression parametersψ ∈ C

1×K , for
t = 0, . . . ,N − 1 such that

ψ̂LS = argmin
ψ

N −1
∑

t=0

|y(t)−ψx(t)|2 (2)

This minimization has an analytic solution, which is found by differentiating the
sum of squares with respect to ψ and setting it equal to zero.

If the parameters instead depend on the signal in a non-linear fashion, one
may similarly estimate the parameters using non-linear least squares (NLS) [3].
Given a vector of observations y, one is then interested in estimating a set of
parameters θ, which are detailing the function g . The NLS takes the form

θ̂NLS = argmin
θ

||y− g(θ)||22 (3)

An often interesting case is when

g(θ) =
[

∑K
k=1 αk

∑K
k=1 αkeiφk+2iπfk · · ·∑K

k=1 αkeiφk+2iπfk(N −1)
]T

(4)

i.e., when the signal contains K sinusoids with frequency fk, amplitude αk, and
phase φk, for k = 1, . . . ,K . By stacking the K complex amplitudes in a vector

a = [ α1eiφ1 . . . αK eiφK ]T (5)

where (·)T denotes the transpose, (3) may be expressed as

[

θ̂, â
]

= argmin
θ,a

1

2
||y− Za||22 (6)

where

Z =

[

z1 . . . zK

]

(7)

zk =

[

1 e2iπfk . . . e2iπfk (N −1)
]T

(8)

θ =

[

f1 . . . fK
]

(9)
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3. Semi-parametric methods

Noting that (6) is linear in a, one may simplify (6) by substituting a with the LS
solution of (6)

âLS =

(

ZH Z
)−1

ZH y (10)

yielding

θ̂ = argmin
θ

1

2
||y − ZâLS||22 (11)

where (·)H denotes the complex conjugate transpose (the Hermitian). It is worth
noting that the cost function in (11) now only depends on θ, and may thus,
possibly, be solved using a gradient method, e.g., Newton’s method [4], or by,
simply evaluating the cost function over a grid of candidates θ, although such a
solution is only feasible if the dimension of θ is low.

3 Semi-parametric methods

So far, one may conclude that the parametric and the non-parametric methods
are somewhat the opposite of each other; the non-parametric methods are often
robust to model assumptions, whereas the parametric methods are commonly
fragile. On the other hand, the parametric methods generally outperform the
non-parametric methods when it comes to estimation variance and bias, if using
accurate model information. Now one might ask if there is a way of combining
these two ideas and thereby get the best of each. Sometimes the answer to that
question is yes as will be briefly discussed below.

4 Sparsity

As the word suggests, a sparse vector is a vector with only a few non-zero valued
elements. The basic idea with sparse estimation methods is to set up an under-
determined system and force the solution to be sparse, i.e., only a few of the
candidates for the solution are selected. Let y be the signal on vector form and
D be a matrix where the columns are candidate signal components for y, i.e., we
assume that a combination of the columns of D can well approximate y, which
yields the signal model

y = Dx + e (12)
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Figure 2: The estimate using LS when solving (13).

where e denotes the white Gaussian noise with the same dimension as y. The most
straight forward approach for finding these columns in D that best approximate
y would be to solve the LS problem

x̂ = argmin
x

1

2
||y−Dx||22 (13)

The solution of (13) will not be sparse and would typically suggest that a linear
combination of (almost) all of the columns in D would yield the best approxima-
tion. Especially, if the signal y contains a high level of noise, (13) would generally
find a solution that also models the noise. An example of this is depicted in Fig-
ure 2, where the same signal as before is used, but with amplitudes of magnitude
10 and with a much higher noise presence, SNR = −5 dB. As is clear from the
figure, the LS estimate is very sensitive to the noise, and the peaks of the signal are
hardly recognizable. A better way of solving this problem is to introduce a penalty

6
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that enforces the solution to be sparse. A natural choice of a sparsity enforcing
penalty would be one that counts the number of non-zero elements in x and en-
sures that this number is small. This penalty is often referred to as the ℓ0-"norm",
||x||0, and is defined as the number of the non-zero elements in x. It should be
stressed that although commonly called so, ||x||0 is not a norm, as it does not
fulfill the definition of a norm (it is not homogeneous). The problem will now be
on the form

x̂ = argmin
x

1

2
||y−Dx||22 + λ||x||0 (14)

where λ > 0 is a tuning parameter governing the amount of sparsity in x. To be
able to solve (14), one has to conduct an combinatorial search, which, if the size
of x is large, is essentially infeasible. Instead, one often relaxes the ℓ0-constraint
and replace it with the ℓ1-norm,

||x||1 =

P
∑

i=1

|xi| (15)

such that the problem is reformulated as

x̂ = argmin
x

1

2
||y−Dx||22 + λ||x||1 (16)

With this relaxation, we have ended up with the celebrated Lasso method [5],
which was introduced in 1996. However, ideas that resembles the Lasso had been
introduced much earlier, e.g. in seismology [6], and are today present in many
different research areas, e.g. in portfolio optimization [7], connected graphs [8],
and compressed sensing [9–11].

It is important to remember that sparsity is not uniquely defined for vectors;
on the contrary, one may consider sparsity for matrices and tensors as well. In
Figure 3, the Lasso estimate is shown for the signal examined in Figure 2. Com-
paring this estimate to the LS estimate depicted in Figure 2, one sees that the
Lasso estimate is much sparser, and that the three peaks of the signal are clearly
visible, here together with two spurious noise peaks. A prominent feature of the
Lasso method is that it is convex. A convex problem is a problem where the cost
function (the function to minimize) is convex and where the set over which the
function is minimized is also convex (meaning that the equality constraints are
affine and the inequality constraints are convex functions) [12]. An important

7
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Figure 3: The Lasso estimate of the three sinusoids.

property of a convex problem is that, if one finds a locally optimal point, the
point is also globally optimal. The Lasso can be seen to be a combination of the
parametric and the non-parametric methods due to the fact that in (16), one uses
the information of which kind of components the signal is made up by, but one
does not specify how many of these components there are. This approach is thus
less sensitive to model errors than many parametric approaches, but it still often
manages to yield a lower estimation variance as compared to the non-parametric
approaches. As a result of (16), a user parameter λ is introduced. This para-
meter governs the amount of sparsity allowed in the solution and is in practice
often difficult to choose. Common approaches to find a suitable λ include cross-
validation [13] or using some data dependent rule of thumb. In this thesis, the
latter approach has been commonly used where λ has often been chosen such that
λ = α||DH y||∞, with α ∈ [0, 1], thus only allowing the peaks that are at least
as big as α of the largest inner-product of the dictionary and the data. In [14],
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4. Sparsity

Algorithm 1 Reweighted ℓ1

1: Initiate W(0) = I and set k = 0;
2: repeat

3: Solve for x(k) using (17) with W(k)

4: Update W(k+1) using (18)
5: Set k = k + 1
6: until convergence or kmax is reached

a method for enhancing sparsity by reweighting the ℓ1 penalty was introduced.
This will also decrease the sensitivity to the choice of λ, as long as λ is not chosen
too large. The basic idea is to replace the original ℓ1 penalty and reformulating
the problem. For (16), this reformulation becomes

x̂ = argmin
x

1

2
||y−Dx||22 + λ ||Wx||1 (17)

where W is a diagonal matrix with weights w1,w2, . . . ,wP on the diagonal entries.
A natural way of choosing the weights would be to set them equal to the mag-
nitude of the corresponding elements in x. This is, of course, impossible since
one does not know the true x vector in advance (which would render the problem
meaningless), but it suggests that one may find the weights iteratively by alternat-
ing the estimation of x using (17) and updating the weights according to

w(k+1)
i =

1

|x(k)
i |+ ε

(18)

where ε > 0 is a parameter introduced to ensure numerical stability, and where
x(k)

i denotes the ith element in x at the kth iteration. Algorithm 1 summarizes the
discussed scheme, where I denotes the P × P identity matrix. The algorithm is a
variant of the Majorization-Minimization (MM) algorithm and resembles the log-
sum penalty function

∑P
i=1 log(|xi|+ε), which introduces a larger sparsity penalty

than the original ℓ1 penalty (see e.g. [14] for a thorough discussion on the subject).
Figure 4 shows the resulting estimate for the reweighted Lasso. Comparing to the
previous methods, it is clear that the reweighted Lasso estimate is the sparsest, and
that the method is able to estimate the sinusoids correctly. Furthermore, as the
method only details the signal part, the noise floor is fully reduced to zero.

The sparse based methods often introduce bias in the amplitude estimates.
This can also be seen in Figure 4, where the peaks are somewhat offset from their

9
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Figure 4: The reweighted Lasso estimate of the three sinusoids.

true magnitudes (being 10 for all three components). However, this is often not
of serious concern since once the correct support is found, thus the frequencies in
the sinusoidal case, the amplitude estimates may be refined using, e.g. NLS.

5 Efficient implementation

In recent years, convex optimization has become very popular and many re-
searchers have contributed to the area. Today, powerful convex solvers, such as
SDPT3 [15] and SeDuMi [16], are freely available to the public. This has further
accelerated the interest for convex optimization in the research community. Even
though the available solvers are very general and powerful, they are also (or there-
fore) complex and suffers from high computational complexity. In many cases,
it is, therefore, advisable to implement a faster solver directly for the problem at
hand and instead use the powerful solvers as benchmarks. A method for such an

10



5. Efficient implementation

efficient implementation that is used many times in this thesis is the Alternating
Direction Method of Multipliers (ADMM), which is both simple and powerful.
It works by separating the original large problem into smaller subproblems, which
are then iteratively solved one by one, and then coordinated to find a solution to
the original problem. This approach makes the ADMM suitable for distributed
optimization, where the subproblems are distributed to different processes, thus
parallelizing the computation, allowing for shorter computation time. Another
beneficial feature is that given some mild assumptions (such that the problem is
convex and that there exists a solution), the ADMM will converge to the true
solution [17–19]. In general, the ADMM solves problems in the form

minimize f (x) + g(z) (19)

subject to Ax + Bz = c

where f (·) and g(·) are convex functions and the matrices A and B and the vector
c are all known. The ADMM solves the problem by solving for each variable
separately, in an iteratively fashion. To derive the steps in the algorithm, the
augmented Lagrangian is formed

L(x, z, y) = f (x) + g(z) + yT (Ax + Bz− c) +
ρ

2
||Ax + Bz− c||22 (20)

where y denotes the dual variable and ρ the augmented Lagrangian parameter. If
one defines the scaled dual variable as u = (1/ρ)y, one ends up with the simpler
form

L(x, z,u) = f (x) + g(z) +
ρ

2
||Ax + Bz− c + u||22 (21)

The steps in the ADMM are then derived by first minimizing (21) with respect
to x and then z, yielding, for iteration k + 1,

x(k+1)
= argmin

x

(

f (x) +
ρ

2
||Ax + Bz(k) − c + u(k)||22

)

(22)

z(k+1)
= argmin

z

(

g(z) +
ρ

2
||Ax(k+1)

+ Bz− c + u(k)||22
)

(23)

and then update the scaled dual variable

u(k+1)
= Ax(k+1)

+ Bz(k+1)
+ u(k) − c (24)

11
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As an example, the steps in ADMM for the Lasso problem in (16) are derived for
a real valued problem. First, the variable x is split into two new variables, here
denoted x and z, yielding the optimization problem

minimize
x,z

1

2
||y−Dx||22 + λ||z||1 (25)

Noting that A, B, and c in (21) are, for (25), A = I, B = −I, and c = 0, the
augmented Lagrangian for (25) is

L(x, z,u) =
1

2
||y−Dx||22 + λ||z||1 +

ρ

2
||x − z + u||22 (26)

The ADMM step for x follows from differentiating (26) with respect to x and
setting it equal to zero, yielding

x(k+1)
=

(

DT D + ρI
)−1 (

DT y + ρ(z(k) − u(k))
)

(27)

For z it is more complicated, since ||z||1 is not differentiable if one element is
equal to zero, but using sub-gradients and letting

J (z) = λ||z||1 +
ρ

2
||x− z + u||22 (28)

we may express ∂J (z)
∂zj

as

∂J (z)

∂zj
=











ρ(zj − xj − uj)− λ if zj < 0
{

ρ(zj − xj − uj)− λ, ρ(zj − xj − uj) + λ
}

if zj = 0
ρ(zj − xj − uj) + λ if zj > 0

(29)

By then setting (29) equal to zero and solving for z, the solution may be compactly
expressed using the soft threshold

S(v, α)i =
vi

|vi|
max {0, |vi| − α} , for i = 1, . . . ,P (30)

where v = x(k+1) + u(k), and α = λ/ρ. The last step of the ADMM is then to
update the scaled dual variable using (24).

12



6. Off-grid estimation

6 Off-grid estimation

In all the above presented examples, we have assumed that the dictionaries have
contained the actual signal frequencies. This is of course the ideal situation when
using a grid-based method for estimation. However, the probability that the grid
actually contains the true parameters is generally small, at least when dealing with
signals from real world applications. Instead, one has to hope that the grid-points
are close enough to the true parameters [20]. In an effort to close the gap between
the closest grid point and the true parameter, it is tempting to increase the grid
size. Even though this makes intuitive sense, it has two major drawbacks. First,
when increasing the grid size, the size of the problem will become larger, and the
computational cost will grow. Since many of the off-the-shell convex solvers, like,
e.g., CVX [21], scale badly with the number of grid points, this can result in
problems that practically takes too long time to solve. The second drawback is
the problem that the dictionary matrix becomes coherent, which means that the
columns in the matrix become more correlated as the grid spacing decreases. This
may in turn result in a decrease in performance, especially for signal reconstruc-
tion problems [22, 23].

Recently, there has been notable attention directed to solve the problem with
grid mismatch [22]. One idea that has been vigorously studied is using adaptive
grids. The idea behind adaptive grids is to let the grid points be a part of the
optimization problem. For the here studied Lasso method in (16), this would
mean that both x and the frequency grid are optimization variables, thus solving

minimize
x,θ

||y− A(θ)x||22 + λ||x||1 (31)

At a first glance, this looks like an awful problem to solve; not only do we have
to find x, we also have to change the columns of the dictionary, which in turn
affects x. Fortunately, these problems often allow for separating the optimization
problem, such that one may first solve for x using a coarse grid, and then update
the grid. This is then iterated until the method has converged or until some pre-
defined stopping criteria is fulfilled. Algorithm 2 shows the underlying idea of the
method, where F (x,θ) denotes the cost function to be minimized, x the original
optimization variable, and θ the vector containing the adaptive grid points. The
adaptive grid methods are often quite easy to use, but they have their limitations.
First, one has to make sure that the initial grid is not too coarse, such that true
signal components are missed. For instance, if the initial grid is too coarse, one
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Algorithm 2 Adaptive Grid Method

1: Given a dictionary matrix, A(θ(0)), with initial grid θ(0), and an upper limit
on the number of iterations Imax ∈ Z+.

2: for i = 1, . . . do

3: Compute x(i) = argmin
x

F (x,θ(i−1)) as a function of θ(i−1).

4: Compute θ(i)
= argmin

θ

F (x(i),θ).

5: Terminate after convergence or if i ≥ Imax.
6: end for

may find that one and the same grid point is the closest grid point to two signal
components. This can cause the grid point to get stuck in between the two true
signal components, and thus one of the signal components will be lost, whereas
the other one is poorly estimated. Another disadvantage is that the optimization
problem is no longer convex, and thus one can no longer guarantee that a local
optimum is also the global optimum.

An alternative to the adaptive grid approach is to use an infinite grid. This
can be done by solving an atomic norm minimization problem [24]. The idea
with using the atomic norm is to specify the building blocks that make up the
signal, the so called atoms. For the sinusoidal case, these become [25]

a(f ,φ) =
[

eiφ e2iπf +iφ . . . e2iπf (N −1)+iφ
]T

(32)

The set of all these atoms is thus

A = {a(f ,φ) : f ∈ [0, 1],φ ∈ [0, 2π]} (33)

The signal model can now be represented as a linear combination of the atoms

y =

K
∑

k=1

c̃ka(fk,φk) =
K
∑

k=1

cka(fk, 0), a(fk,φk) ∈ A (34)

where ck = c̃keiφk . The atomic norm is defined as

||y||A , inf {t > 0 : y ∈ t conv (A)} (35)

= inf

{

∑

k

ck : y =
∑

k

ckak, ck > 0, ak ∈ A

}

(36)
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where conv(A) denotes the convex hull of the set A. The atomic norm is a proper
norm if conv (A) is compact, centrally symmetric, and contains a ball of radius ε
around the origin for some ε > 0. To minimize (35) in the sinusoidal case is thus
equivalent to finding the smallest sum of magnitudes for all linear combinations
of sinusoids that fully explains the signal. In [26] it is shown that for the sinusoidal
case, minimizing (35) is equivalent to

||y||A = inf

{

1

2
(x + T1,1) :

[

T y

yH x

]

≥ 0

}

(37)

where T ∈ T, with T denoting the set of all Hermitian Toeplitz matrices, and
where T1,1 denotes the first element of the first row of T. To prove (37), we first
need the following lemma [26] (Caratheodory-Toeplitz)

Lemma 6.1. Any positive semidefinite Toeplitz matrix T can be represented as

T = APAH

where

A =

[

a(f1, 0) . . . a(fr , 0)
]

P = diag ([d1 . . . dr]) (38)

where dk > 0 are real numbers, and r = rank(P).

For the sake of completeness, the proof of (37), which was first given in [26],
will be presented.
Proof of (37):
Let the right hand side of (37) be denoted Γ(y). First assume that y =

∑

k cka(fk,φk)
with ck > 0 and that the signal has been sampled at t = 0, . . . ,N − 1. Define
T =

∑

k cka(fk,φk)a(fk,φk)H and let x =
∑

k ck. Then,

[

T y

yH x

]

=
∑

k

ck

[

a(fk,φk)
1

] [

a(fk,φk)
1

]H

≥ 0 (39)

Thus,

T1,1 = x =
∑

k

ck ⇒ Γ(y) ≤
∑

k

ck (40)
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This holds for any decomposition of y, thus

||y||A ≥ Γ(y) (41)

Conversely, suppose that for some Toeplitz matrix T ≥ 0 and some complex
vector y, we have

[

T y

yH x

]

≥ 0 (42)

From lemma 6, we have that

T = APAH
=
∑

k

pka(fk, 0)aH (fk, 0) (43)

thus, 1
N trace (T) = trace (P), since ||a(fk, 0)||2 =

√
N . Further, due to the

Toeplitz structure, we have that 1
N trace (T) = T1,1. Using the Vandermonde

decomposition and (42), it follows that y is in the range of T, and thus also in the
range of A. This means that

y =
∑

k

wka(fk, 0) = Aw (44)

for some complex vector w. Moreover, the Schur complement yields
[

T y

yH x

]

≥ 0 ⇐⇒ T ≥ x−1yyH (45)

resulting in that APAH ≥ x−1AwwH AH . Since A has full rank, there exists a
vector q such that AH q = sign(w). Then,

xT1,1 = trace (P) x = xqH APAH q ≥ qH AwwH AH q (46)

= (sign (w) w))H sign (w) w =

(

∑

k

|wk|
)2

(47)

yielding xT1,1 ≥
(
∑

k |wk|
)2. By the arithmetic geometric mean inequality [27],

we have

1

2

(

T1,1 + x
)

≥
√

T1,1x ≥
∑

k

|wk| ≥ ||y||A (48)
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implying that Γ(y) ≥ ||y||A. We have now shown that Γ(y) ≤ ||y||A ≤ Γ(y)
meaning that ||y||A = Γ(y), which concludes the proof.

In the context of this presentation, the atomic norm has two interesting ap-
plications. As was mentioned before, it allows one to estimate the signal frequen-
cies without the use of a grid, and thus serves as a grid-less frequency estimator.
The second application is missing data. We can use the atomic norm formula-
tion to recover the true signal from only a subset of the elements in the vector. If
we denote Ω as the set of elements corresponding to the observed samples in the
signal vector s, we may form the optimization problem as [26]

minimize
y,T∈T,x

1

2

(

T1,1 + x
)

subject to

[

T y

yH x

]

≥ 0

yΩ = sΩ

(49)

where yΩ selects the elements in y corresponding to Ω . The atomic norm for-
mulation we have seen above assumes that the observed signal is noise free. To
accommodate for noisy signals as well, one may instead solve [25, 28]

minimize
z,T∈T,x

τ

2

(

T1,1 + x
)

+
1

2
||sΩ − zΩ ||22

subject to

[

T z

zH x

]

≥ 0
(50)

where τ, similar to λ in (16), is a hyper-parameter governing the allowed sparsity
in the solution.

One question still remains: when we have solved (49) or (50), how do we
find the frequency estimates? There are two answers to this question. The first
one finds the frequencies by using the fact that the optimal T is a Vandermonde
matrix. Thus, using the Vandermonde decomposition [26], one may retrieve
the frequencies. The second approach to retrieve the frequencies is via the dual
problem [26]. In this thesis, the first approach has been used and we refer the
interested reader to [26] for a discussion on how to use the dual problem to find
the frequencies.

This chapter is concluded by demonstrating the results from solving (50) as
compared to the Lasso formulation in (16) and the reweighted Lasso in (17).
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Figure 5: Left: the Lasso estimate. Middle: the reweighted Lasso estimate. Right:
the atomic norm estimate.

This time, the frequencies are deliberately selected not on the frequency grid,
being selected as

f =
[

0.2 0.5 0.7
]

π/3 (51)

Further, the SNR level is increased to 10 dB. Figure 5 shows the resulting estimates
from the three methods. The left figure shows the result from the Lasso, where
it can be seen that the power of the true peaks has been split to the closest grid
points. In the middle figure, the results from the reweighted Lasso in shown.
Here the amplitude estimates have become better, but the splitting of the peaks
are still visible. In the right figure, the estimates from the atomic norm method
are shown. Since this method does not depend on any grid structure, there are
no splitting of the peaks, and the resulting frequency estimates are closer to the
true frequencies compared to the other two methods. Note that the amplitude
estimates are biased. As mentioned above, this can easily be corrected for by
reestimating the amplitudes using, e.g., NLS, once the frequencies are found.
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7 Outline of the papers

Paper A: Estimating Periodicities in Symbolic Sequences Using Sparse
Modeling

In the first paper, the task of finding hidden periodicities in symbolic sequences
is considered. Previously, the by far most commonly used approach to determine
the periodicities has been to map the symbols into a numerical representation and
then apply standard frequency estimation techniques on the transformed data. In
this paper, we formulate a likelihood-based sparse logistic regression model, which
models the probability of each symbol being present at the considered periodic in-
dex sets. We present two different methods for maximizing the likelihood. The
first one is a greedy approach, where each index set is added to the likelihood, one
at a time. The procedure is terminated when it is statistically unlikely that the
signal contains an additional periodicity. The second method is a cyclic coordin-
ate descent algorithm that maximizes the penalized likelihood. The methods are
evaluated on simulated and real symbolic data, showing superior performance as
compared to competing methods. The work in paper A has been published in
part as

Stefan Ingi Adalbjörnsson, Johan Swärd, Andreas Jakobsson, “Likelihood-
based Estimation of Periodicities in Symbolic Sequences”, 21st European
Signal Processing Conference, Marrakech, Morocco, September 9-13, 2013.

and has been published in full as

Stefan Ingi Adalbjörnsson, Johan Swärd, Jonas Wallin, and Andreas Jakobsson,
“Estimating Periodicities in Symbolic Sequences Using Sparse Modeling”,
IEEE Transactions on Signal Processing, Vol. 63, No. 8, pp. 2142-2150,
April 2015.

Paper B: High Resolution Sparse Estimation of Exponentially Decay-
ing N -D Signals

In the second paper, we set out to estimate the parameters detailing an unknown
number of N dimensional exponentially decaying sinusoids. For small dimen-
sional problems, a common approach is to form a dictionary containing finely
spaced parameter candidates for the signal at hand. If either of the parameter
space and/or the signal space are large, the dictionary easily becomes vast, even if
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the candidate parameters are sparsely distributed on the grid. In this paper, we
propose a method that exploits the Kronecker structure inherent in the model,
thereby drastically decreasing the computational complexity. Furthermore, we in-
troduce a novel dictionary learning approach that iteratively refines each found
component, allowing for off-grid estimation as well as for smaller dictionaries.
This approach is based on the fact that it is often an easier task to find the fre-
quency parameter than the damping parameter. Therefore, first a rough frequency
estimate is found by constructing a dictionary containing a grid of frequencies,
while the damping parameter is fixed. The damping parameter, as well as a re-
fined estimate of the frequency, are then found by treating each component at
the time. The method achieves, at medium to high SNR-levels, the same level of
performance as statistically efficient parametric methods with oracle model order
knowledge, for well-separated components. Furthermore, the proposed method
is shown to produce superior resolution as compared to the zero-padded periodo-
gram for closely spaced components. The work in paper B has been published in
part as

Johan Swärd, Stefan Ingi Adalbjörnsson, Andreas Jakobsson, “High Resol-
ution Sparse Estimation of Exponentially Decaying Signals”, 39th Interna-
tional Conference on Acoustics, Speech, and Signal Processing, Florence, Italy,
May 4-9, 2014.

Stefan Ingi Adalbjörnsson, Johan Swärd, Andreas Jakobsson, “High Resol-
ution Sparse Estimation of Exponentially Decaying Two-Dimensional Sig-
nals”, 22nd European Signal Processing Conference, Lisbon, Portugal, Septem-
ber 1-5, 2014.

and has been published in full as

Johan Swärd, Stefan Iingi Adalbjörnsson, and Andreas Jakobsson, “High
Resolution Sparse Estimation of Exponentially Decaying N-dimensional
Signals”, Elsevier Signal Processing Journal, Vol. 128, pp. 309-317, Novem-
ber 2016.

Paper C: Sparse Semi-parametric Estimation of Harmonic Chirp Sig-
nals

In the third paper, we introduce a novel harmonic chirp estimator which allows
for non-uniformly sampled data. Based on sparse modeling, a dictionary of can-
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didate chirps are constructed, and an estimate of the chirp components are found
utilizing the harmonic relation. The estimates are then refined using an iterative
approach, where each component is added to the residual, refined, and then sub-
tracted again, all while the harmonic relation is held intact. The proposed method
is evaluated on simulated data, as well as on an actual recording of a bat sound,
showing preferable performance as compared to other chirp estimators. Further-
more, the proposed method is shown to attain the Cramér-Rao lower bound, at
least for medium and high SNR-levels. The work in paper C has been published
in part as

Johan Swärd, Johan Brynolfsson, Andreas Jakobsson, and Maria Hansson-
Sandsten, “A Sparse Semi-Paramtric Chirp Estimator", 48th Asilomar Con-
ference on Signals, Systems, and Computers, Asilomar, USA, November 2-5,
2014.

and has been published in full as

Johan Swärd, Johan Brynolfsson, Andreas Jakobsson, and Maria Hansson-
Sandsten, “Sparse Semi-Parametric Estimation of Harmonic Chirp Sig-
nals”, IEEE Transactions on Signal Processing, Vol. 64, No 7, pp. 1798-
1807, April 2016.

Paper D: Generalized Sparse Covariance-based Estimation

In this paper, we extend the sparse iterative covariance-based estimator (SPICE),
by generalizing the formulation to allow for different norm constraints on the
signal and noise parameters in the covariance model. We show that by using this
new formulation, one may expect sparser solutions than with the original SPICE
method, which is known for producing spurious peaks. We also show that the
extended SPICE formulation is equivalent to a certain family of penalized regres-
sion problems, for which the proposed method presents itself as a computationally
attractive solver. Furthermore, we also provide a gridless formulation of the pro-
posed method for the case of sinusoidal signals, based on the recent atomic norm
framework. The numerical evaluations show the preferred performance of the
proposed method. The work in paper D has been published in part as

Johan Swärd, Stefan Ingi Adalbjörnsson, Andreas Jakobsson, “A General-
ization of the Sparse Iterative Covariance-based Estimator”, 42nd Interna-
tional Conference on Acoustics, Speech, and Signal Processing, New Orleans,
Louisiana, USA, March 5-9, 2017.
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and is submitted for possible publication as

Johan Swärd, Stefan Ingi Adalbjörnsson, Andreas Jakobsson, “Generalized
Sparse Covariance-based Estimation”.

Paper E: Online Estimation of Multiple Harmonic Signals

In this paper, we consider time-recursive estimation of the fundamental frequen-
cies of multi-pitch signals with an unknown number of signal components us-
ing sparse modeling techniques. By using signal-adaptive penalties that induce
a group structure, we show that the proposed method is capable of multi-pitch
estimation without requiring model order information, i.e., without knowing the
number of pitches or harmonics present in the signal. By using a signal-adaptive
dictionary updating technique, we also show that the proposed methods are able
to track frequency modulated signals. The amplitudes of the active pitches are
also recursively updated, allowing for a smooth and more accurate representation.
When evaluated on a data set of real audio signals, the proposed method out-
performs state-of-the-art methods in either estimation accuracy or computational
speed. The work in paper E has been published in part as

Filip Elvander, Johan Swärd, and Andreas Jakobsson, “Time-Recursive Multi-
Pitch Estimation Using Group Sparse Recursive Least Squares”, 50th As-
ilom’ar Conference on Signals, Systems, and Computers, Asilomar, USA, Novem-
ber 6-9, 2016.

and has been published in full as

Filip Elvander, Johan Swärd, and Andreas Jakobsson, “Online Estimation
of Multiple Harmonic Signals”, IEEE Transactions on Audio, Speech and
Language Processing, Vol. 25, No. 2, pp. 273-284, February, 2017.

Paper F: Off-grid Fundamental Frequency Estimation

This paper addresses the problem of off-grid estimation of fundamental frequen-
cies in multi-pitch signals. First, a non-convex optimization problem is proposed
that allows for sparser solutions than the traditional convex cost functions, having
both the amplitude and the frequency grid points as variables. This non-convex
problem is then relaxed using a majorization-minimization approach, where, in
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each iteration, a simpler surrogate function, based on the latest estimates, is min-
imized. In each iteration, the amplitudes may be found in closed-form, whereas
the fundamental frequencies may be found using, e.g., a gradient descent method.
The dictionary is in each iteration pruned, such that the grid points that are
deemed obsolete are removed, thus decreasing the total computational cost for
solving the problem. The proposed algorithm is shown to perform similar to
state-of-the-art transcription methods that have been trained on the instruments,
whereas the proposed method does not require any such training, and is therefore
also more robust to any prior signal assumptions. The work in paper F has been
submitted for possible publication as

Johan Swärd, Hongbin Li, and Andreas Jakobsson, "Off-grid Fundamental
Frequency Estimation".

Paper G: Estimating Sparse Signals Using Integrated Wideband Dic-
tionaries

In this paper, we introduce new dictionary elements for, primarily, frequency es-
timation. Instead of following the traditional approach, where the dictionary is
composed of sinusoids, we consider elements covering larger bands in the fre-
quency domain. Using these bands, we may form problems where the number
of parameters is smaller but still covers the whole spectrum. Thus, we may dis-
card large parts of the parameter space when using these bands. In the paper,
we propose an iterative zooming procedure, where in each iteration the parts of
the spectrum that were not activated in the previous iteration are discarded, and
the active bands are refined to create thinner bands in the next iteration. This
approach makes it possible to limit the number of parameters in the dictionary,
thus allowing for faster computations. The work in paper G has been published
in part as

• Maksim Butsenko, Johan Swärd, and Andreas Jakobsson, “Estimating Sparse
Signals Using Integrated Wide-band Dictionaries”, 42nd International Con-
ference on Acoustics, Speech, and Signal Processing, New Orleans, Louisiana,
USA, March 5-9, 2017.

and submitted for possible publication as

Maksim Butsenko, Johan Swärd, and Andreas Jakobsson, “Estimating Sparse
Signals Using Integrated Wide-band Dictionaries”.
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Paper H: Grid-less Estimation of Saturated Signals

This paper addresses the problem of frequency and amplitude estimation when
the measured signal has been subjected to clipping, which happens when the
measured signal is saturated at its maximum and/or minimum values. Tradition-
ally, these samples have been treated as missing and have completely been disreg-
arded from the estimation. In this paper, we incorporate the information available
in the saturated samples as well as including robustness to noise effects and pro-
pose a sparse reconstruction algorithm based on the atomic norm framework. We
provide a formulation enabling multidimensional estimation and show the pre-
ferred performance of the proposed method on 1-D and 2-D data. Furthermore,
we also present a refinement procedure for the amplitude estimates which also,
robustly to the noise effects, incorporates the information inherent in the clipped
samples. This work has been submitted for possible publication as

Filip Elvander, Johan Swärd, and Andreas Jakobsson, “Multi-dimensional
Grid-less Estimation of Saturated Signals”.

Paper I: Designing Optimal Sampling Schemes

In this paper, we propose a method for finding good sampling schemes for mul-
tidimensional data. In many experiments, sampling is associated with high costs
of both time and money. In these situations, it is of importance to know how to
sample a signal to minimize the acquisition time but, at the same time, avoiding
losing too much information. In this paper, we propose a convex optimization
problem that minimizes the number of samples subject to an upper bound on the
variances of the parameters of interest. The method takes any a-priori informa-
tion about the signal into account and also provides a simple approach for giving
more importance to one or many parameters. The proposed method outperforms
other state-of-the-art sampling schemes and is shown to provide a better sampling
scheme, much faster, as compared to using a random sampling approach. The
work in paper I has been published in part as

Johan Swärd, Filip Elvander, and Andreas Jakobsson, “Designing Optimal
Sampling Schemes”, 25th European Signal Processing Conference, Kos island,
Greece, 28 August - 2 September, 2017.

and submitted for possible publication as
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Filip Elvander, Johan Swärd, and Andreas Jakobsson, “Designing Sampling
Schemes for Multi-Dimensional Data”.
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Estimating Periodicities in Symbolic
Sequences Using Sparse Modeling
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Abstract

In this work, we propose a method for estimating statistical periodicities in sym-
bolic sequences. Different from other common approaches used for the estima-
tion of periodicities of sequences of arbitrary, finite, symbol sets, that often map
the symbolic sequence to a numerical representation, we here exploit a likelihood-
based formulation in a sparse modeling framework to represent the periodic be-
havior of the sequence. The resulting criterion includes a restriction on the car-
dinality of the solution; two approximate solutions are suggested, one greedy and
one using an iterative convex relaxation strategy to ease the cardinality restriction.
The performance of the proposed methods are illustrated using both simulated
and real DNA data, showing a notable performance gain as compared to other
common estimators.

Key words: Periodicity, symbolic sequences, spectral estimation, data analysis,
DNA
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1 Introduction

Sequences formed from a finite set of symbols, or alphabet, occur in a variety of
fields, such as, for instance, in genomics, semantic analysis, and categorical time
series [1, 2]. Frequently, there is an interest in determining reoccurring patterns,
periodicities, in such sequences. For instance, in DNA analysis, the latent peri-
odicities in DNA sequences, commonly assumed to be stationary in short time
intervals, have been found to be correlated with various forms of functional roles
of importance [3–11]. Traditional spectral estimation techniques are not suit-
able for this problem as symbolic sequences lack algebraic structures. For DNA
analysis, there is no natural ordering among the four occurring symbols, A, C,
G, and T. In earlier literature, several authors have addressed the problem of es-
timating symbolic periodicity using heuristic mappings from the symbol set to
sets of complex numbers. After the transformation the periodicities are estim-
ated through standard estimation methods like, for instance, the periodogram.
However, such estimates will suffer from the well-known high variability and/or
poor resolution inherent to the periodogram [12]. Other examples of methods
that use a mapping to transform the symbolic data include PAM- or QPSK-based
mappings, minimum entropy mapping, mapping equivalences, or other trans-
formations [4–7, 9, 10, 13, 14]. Generally, these mappings are computationally
intensive, and/or suffer from difficulties expanding to a larger symbol sets, and
often inadvertently impose a non-existing structure on the symbols. In this work,
we instead use a probabilistic approach, modeling the symbolic sequences using
a categorical distribution for each observation and try to infer not only the un-
known probabilities but also the unknown indices where the distribution differs,
resulting in a likelihood ratio test, which, for a given index set, is equivalent with
the well studied problem of testing for independence in 2× J contingency tables,
where J denotes the number of categories, see, e.g., [2]. Ideally, an estimator for
this problem should be able to discern not only whether the distribution differs
at a certain periodicity, but also how many indices have differing distributions.
If more than one statistical periodicity is considered at the same time, the num-
ber of possible combinations of index sets grows rapidly and an exact test will in
many cases be computationally infeasible. By formulating the estimation of the
unknown index sets, and the unknown probabilities, as a sparse logistic regression
problem, we devise two approximate solutions to the combinatorial problem us-
ing sparse heuristics. Namely, one greedy approach which builds up the solution
by adding the sets in a sequential manner, and one using a convex relaxation of
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the cardinality constraint, resulting in the well-known (reweighted) Lasso prob-
lem. The resulting methods are firmly based in statistical theory, and also easily
generalized to any finite symbol set.
The remainder of the paper is organized as follows: in the next section, we intro-
duce the considered data model and show how the problem of choosing which
indices that show a periodic change in the distribution can be interpreted as a
sparse estimation problem. Then, in section III, we introduce a greedy algorithm
that approximately solves the sparse problem, as well as a convex relaxation of the
original problem, which may be efficiently solved using convex optimization al-
gorithms. Then, in section IV, we outline some implementation issues, including
a cyclic coordinate descent algorithm for solving the resulting convex relaxation
problem. In section V, we examine the performance of the discussed estimators,
showing the benefits of the proposed approach as compared to previously pub-
lished methods. Finally, we conclude on the work in section VI.

2 Probabilistic model for symbolic sequences

Consider a symbolic sequence, {sk}N
k=1, where each symbol, sk, is a stochastic

variable drawn from a finite set, A = {α1, . . . , αB}, where B denotes the size
of the alphabet. Assume that the symbols in the sequence are independent and
identically distributed, such that

pj , Prob(sk = αj) (1)

Then, if gathering a sequence of observations, x1, . . . , xN , into the vector x, the
probability mass function (PMF) of x is given as

q0(x|p) , Prob(s = x)

=

N
∏

j=1

B
∏

ℓ=1

p
[xj=αℓ]
ℓ =

B
∏

ℓ=1

pGℓ

ℓ (2)

where [·] denotes the Iverson’s bracket, which equals one if the statement inside
the brackets is true, and zero otherwise, with each of the symbols appearing Gk

times, and where p and s denote the vector of probabilities and the sequence of
random variables, respectively, i.e.,

p =

[

p1 . . . pB

]T
(3)
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s =

[

s1 . . . sN
]T

(4)

with (·)T denoting the transpose. As a result, the PMF is a function depending
only on the number of times each symbol appears, and on the probability given
to each symbol. In general, the probabilities, pk, are unknown and need to be
estimated from the observed sequence. This can be done using the maximum
likelihood (ML) estimate, formed as

p̂j =
Gj

N
(5)

for j = 1, . . . ,B, which is an unbiased and asymptotically efficient estimate (see,
e.g., [15, p. 475]). Furthermore, note that a symbol α ∈ A, occurring with
periodicity m, i.e., with the symbol appearing at every mth index in the sequence,
implies that all elements of the sequence should be equal to the symbol α in one
of the m possible (disjoint) index sets

I (m, ℓ) =
{

ℓ, ℓ+ m, . . . , ℓ+

⌊

N − ℓ

m

⌋

m

}

(6)

for all offsets ℓ ∈ {1, . . . ,m}, where ⌊·⌋ denotes the rounding down operation.
This means that if a periodicity m is present in a sequence, the sequence is clearly
also periodic on the subharmonics i.e., for every mr:th symbol, for all natural
numbers r [8]. To avoid ambiguity, we here refer to the period as the lowest
possible such periodicity. Considering a sequence, s, with a periodicity m in
the symbol α, with offset n, this implies that all the symbols in the sequence at
index k, will equal α, for k ∈ I (m, n). Thus, it is a deterministic and not a
statistical problem to determine if such a (deterministic) periodicity is present.
However, of more interest are typically the statistical periodicities that occur in
many forms of symbolic sequences, such as, e.g., DNA sequences. These are
characterized by certain index sets having different distributions, such that the
sequence may contain the periodicity over only a limited interval, and/or with
some of the periodically occurring symbols occasionally being replaced by some
other symbol, which may occur, for example, due to the presence of measurement
noise, coding errors, or some, perhaps unknown, functional equivalence between
symbols [3]. In such cases, the PMF for a symbolic sequence might instead be
formed from two distributions, one for the indices, say I1, corresponding to some
unknown periodic index set I (m, l), and another distribution for the complement
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index set, here denoted I0. In this case, the PMF is

q1(x|p0, p1) ,
N
∏

j=1

B
∏

ℓ=1

p
[xj=αℓ][j∈I0]
0,ℓ p

[xj=αℓ][j∈I1]
1,ℓ

=

B
∏

ℓ=1

p
G0,ℓ

0,ℓ p
G1,ℓ

1,ℓ (7)

where p0, and similarly for p1, is a parameter vector containing the probabilities
p0,k, denoting the probability of a symbol, αk, occurring in the index set I0, and
with G0,k and G1,k denoting the number of times the symbol αk occurs in the set
I (m, n) and in its complement, respectively. The corresponding ML estimates are
found as

p̂0,j =
G0,j

|I0|
(8)

p̂1,j =
G1,j

|I1|
(9)

for j = 1, . . . ,B, where |S| denotes the cardinality of a set S, i.e., the number
of elements in S. In a similar fashion, the addition of more than one periodicity
can be accomplished by defining the distribution on more index sets, e.g. if one
considers M disjoint index sets, I0, . . . , IM−1, so that their union corresponds to
the entire sequence, the PMF is

q1(x|p0, . . . , pM−1) ,
M−1
∏

m=0

B
∏

k=1

p
Gm,k

m,k (10)

where Gm,k denotes the number of times the symbol αk occurs in the set Im.
Comparing the likelihood above with (2), it can be seen that (10) corresponds to
a likelihood for i.i.d. categorical variables, within each of the M index sets. How-
ever, note that this does not assume that the sequence consists of i.i.d. variables,
only that knowing the index sets we can split the sequence into sub sequences of
i.i.d. variables.

A similar model was considered in [8], although there they defined a statistical
periodicity, say k, to be present when all index set I (k, ℓ), for ℓ = 1 . . . , k, have
different distributions, and then set out to find the periodicity, k, by maximizing
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the log-likelihood using an information-theoretic criterion penalty term to select
the correct periodicity. If doing so, and the signal has a periodicity of k, then each
index set corresponding to a different offset also has a unique distribution, imply-
ing a subdivision of the data into ⌊N/k⌋ disjoint data sets, resulting in less data
to be used to estimate these probabilities. For multiple periodicities, i.e., several
index sets with different distributions, this results in a necessity to consider the
overall periodicity of the sequence, i.e., if periods l and k are present, then the
sequence will have a periodicity of lk, resulting in the need for substantially more
data to achieve a similar performance as if only a single periodicity was present,
as well as the need to perform on additional analysis to identify the factors con-
stituting lk. Furthermore, in the case when the sequence contains more than two
periodicities, the problem quickly becomes infeasible. We instead want to find
the index sets where the distributions differ as much as possible from the rest of
the sequence. To that end, we recast the estimation problem in a sparse modeling
framework. To do so, we note that one can interpret (10) as a multi-response
logistic regression problem, which, as we will show, will be particularly useful for
the case of several simultaneous periodicities. Furthermore, this mapping allows
us to consider sequences one symbol at a time, which is particularly useful when
the periodicity in a certain symbol is sought, or if the distribution of a particular
symbol deviates especially much on a given index set. This, when applicable, de-
creases the variance of the estimated probabilities, thus improving the detection of
periodicities only occurring in one symbol, or one subset of symbols. Rewriting
(10) using logistic regression is accomplished by modeling the probability of each
observation separately using a logistic function to map a linear model to the inter-
val [0, 1]. To clarify the exposition, we first consider the case of a binary symbol
set, a special case which will be shown to be particularly useful. Thus, consider
a binary sequence which has a statistical periodicity on the indices I1, and some
other distribution on the indices I0, so that the PMF may be expressed as

q1(x|γ(c)) ,
N
∏

k=1

γk(c)xk(1− γk(c))1−xk (11)

where γ(c) ∈ RN is a vector of probabilities, such that

Pr(sk = 1) = γk(c) (12)

and the vector c ∈ R2 models the probabilities for the index sets I1 and its com-
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plement, I0, such that

γ(c) =
[

γ1(c) . . . γN (c)
]T

(13)

γk(c) =
ehT

k c

1 + ehT
k c

(14)

where

hk =











[

1 1
]T

if k ∈ I1
[

1 0
]T

if k /∈ I1

(15)

Thus, there is a simple relationship between the parameters p0,1 and p1,1 in the
original model in (7), i.e.,

P(sk = 1) = p0,1 for k ∈ I0 (16)

P(sk = 1) = p1,1 for k ∈ I1 (17)

and the parameter vector, c, introduced in (11), i.e.,

log

(

p0,1

1− p0,1

)

=

[

1 0
]T

c (18)

log

(

p1,1

1− p1,1

)

=

[

1 1
]T

c (19)

It should be noted that (18) implies that the probability of a symbol appearing in
the set I0 is given by the first element of the vector c, and, similarly, one may by
substituting (18) into (19) and simplifying, note that

log

(

p1,1

1− p1,1

)

− log

(

p0,1

1− p0,1

)

=

[

0 1
]T

c (20)

Thus, the second element in hk control the change in probability on the index set,
I1, as compared to the indices in the set, I0, e.g., if the second element is zero, then
the probabilities are the same for both sets, whereas a positive or negative second
element implies higher or lower probabilities on the set I1, respectively. Extending
the model to allow for the possibility of several periodicities using the logistic
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regression parameterization can be achieved by adding elements to the c vector
such that each new element adjusts the probability for an additional index set. To
that end, consider the case with M index sets, Ij, for j = 1, . . . ,M , corresponding
to some specific periodicities with their different offsets, then c ∈ RM and every
element of hT

k ∈ RM is zero except the first element and the elements where k is
in the corresponding index set, i.e.,

hk,j =

{

1 k ∈ Ij

0 otherwise
(21)

for j = 1, . . . ,M , and dk,j denotes element j of the vector dk. The resulting
model can then be seen as the solution of the following optimization criterion

maximize
c

N
∏

k=1

γk(c)xk (1− γk(c))1−xk

subject to











||c||0 ≤ L

γk(c) = e
hT

k
c

1+e
hT

k
c

(22)

where || · ||0 denotes the ℓ0 (pseudo) norm, which counts the number of nonzero
elements of a vector, and L is the maximum number of periodicities that will be
included in the model. It is worth noting that the expression for γk(c) does not
pose a restriction to the minimization, but has been included to emphasize that
the probabilities for each observation are being modeled explicitly. Solving (22)
for a given L, i.e., finding the maximum allowed number of simultaneous periodic
sets, can be accomplished using an exhaustive search, since for each fixed k there
are (M)!/

((

M − j
)

!j!
)

index sets. For each such set, the ML estimates may then
be found using (5). However, the dimension of the parameter vector will grow
quadratically with the maximum periodicity considered, since

M =

mmax
∑

k=1

k =
mmax(mmax + 1)

2
(23)

where mmax is the maximum allowed periodicity, since each period k has k corres-
ponding index sets, one for each possible offset. Thus, to evaluate the likelihood
for all combinations of index sets will soon lead to a computationally infeasible
problem. Generalization to larger symbol sets may be carried out in a similar
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manner, leading to the multi-response logistic regression model (see, e.g., [2] for
a further discussion on multi-response logistic regression). The corresponding op-
timization problem is therefore given as the maximum of the log-likelihood with
a cardinality constraint [16]

maximize
c1,...,cB

1

N

N
∑

i=1

[

B
∑

ℓ=1

xiℓ(h
T
i cℓ)− log

(

B
∑

ℓ=1

ehT
i cℓ

)]

subject to ||Ck·||0 ≤ L, for k = 1, . . . ,R

(24)

where C is a matrix constructed such that its k:th column is formed by the vector
ck, and R is the number of considered index sets, with Ck· denoting the restriction
that ||Ck·||0 forces the solution to adjust the B parameters corresponding to every
index set simultaneously. Thus, the distributions can be changed on at most L
index sets. As a result, the framework allows for flexibility in what is deemed a
periodicity, e.g., one might test for a high probability of a certain symbol appear-
ing, or even for if some symbols appear with low probability. Both of these ideas
will be explored further in the following, where we outline a couple of possible
algorithms for estimating periodicities for some commonly occurring situations,
namely, estimation of an unknown periodicity, detection of an unknown period-
icity, and, finally, estimation of multiple periodicities.

3 Relaxation of the cardinality constraint

For cardinality constrained, or sparse, least squares problems, there are a wide
range of tools for forming approximate solutions, with many methods falling into
two broad categories, namely greedy methods that build up a solution one vari-
able at a time until either fitting criterion is satisfied, or the number of variables
reaches the constraint, or methods that replace the cardinality constraint with a
penalty function that promotes solutions that have few non-zero variables [17].
This implies that the optimization can be carried out without the combinatorial
computation complexity inherent in cardinality constrained optimization prob-
lems. Typically, the penalty function is selected as the ℓ1 norm, leading to a
simple convex optimization problem. In the following two subsections, we pro-
pose both kinds of algorithms, first a greedy approach and then an iterative convex
relaxation.
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3.1 Greedy approach

In order to form a greedy estimate of the minimization in (24), one may note the
analogy between this formulation and that of simple hypothesis test for testing if
a distribution is different on some index sets (see also [3]). Thus, one may form
a test to determine the hypothesis that a given sequence has a different distribu-
tion for the indices corresponding to I (m, ℓ), i.e., that the PMF is formed using
(7), against the null hypothesis that the entire sequence has the same categorical
distribution, such that the PMF instead follows (2), i.e.,

H0 : p0 = p1 (25)

H1 : p0 6= p1 (26)

Such a test may be formed as a likelihood ratio (LR) test (see, e.g., [18, p. 375])

λm,ℓ(xN ) =
q0(xN |p0,H0)

q1(x|p0, p1,H1)
(27)

where the probabilities are determined using (5) under H0, and using (8) and
(9) under H1. Thus, if one only seek to find a single index set, a suitable choice
would be the one minimizing the LR, i.e.,

arg min
m,ℓ

λm,ℓ(xN ) (28)

If the number of periodicities is unknown, i.e., the problem is one of detection
and not estimation, one can allow for the possibility of no set being added by
considering that if H0 is true, it holds asymptotically that [18, p. 489]

−2 log(λm,ℓ(xN ))
d→ χ2

B−1 (29)

where
d→ denotes convergence in distribution and χ2

k denotes the chi-squared
distribution with k degrees of freedom. Thus, if no periodicity is present, a critical
value, denoted Tα, for the likelihood ratio, below which no periodicity is deemed
to be present, can be constructed for the likelihood ratio for each of the tests.
Since M tests are formed in order to compute (28), and if assuming that these
are independent, the critical value may be well approximated using extreme value
theory as a quantile of the random variable

ψ = max (z1, . . . , zM ) (30)
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where each zk is χ2 distributed, implying that ψ will follow a Gumbel distribution
(see, e.g., [19, p. 156]). In the case when multiple periodicities may be present,
one can extend this procedure using a step-wise approach. To do so, first define I1

as the index set containing all the indices in the sequence. Then, the initial step
is performed by using the above algorithm to determine an index set I2 = Im1,ℓ1 ,
where m1 and ℓ1 denote the initially estimated periodicity and offset, respectively,
found in the minimization of (28). In order to determine the next periodicity, the
H0 distribution is formed from (10), using one distribution for the found index
set I2 and one for all the other indices, I1 \ I2, where \ denotes set subtraction
operation. The second phase, m2, and periodicity, ℓ2, may be determined using
(28). This procedure can then be repeated until the zero hypothesis can not be
rejected using a suitable quantile of (30), i.e., at iteration s the corresponding
likelihood ratio test may be formed as

λ(s)
m,ℓ(xN ) =

q0(xN |p0, . . . , ps−1,H0)

q1(x|p0, . . . , ps,H1)
(31)

Note that this assumes that the sets Ik being added to the zero hypothesis are
disjoint, otherwise the likelihood would include some data points more than once.
To ensure this we propose to only consider the indices that have not already been
added to H0 when evaluating q1(x|p0, p1,H1) in (27), i.e., at iteration k the
sets I (m, ℓ) are replaced with I (m, l) ← I (m, l) \ Ik−1, for all m and ℓ, where
← denotes that the quantity on the left is replaced with the one on the right.
The resulting greedy algorithm, here termed the greedy Periodicity Estimation of
Categorical Sequences (PECSG) estimator, is outlined in Algorithm 1 below, with
each iteration requiring at most O(BmmaxN ) operations.

3.2 Iterative Convex Relaxation

It is worth noting that the optimization criterion in (22) is not convex as it restricts
the parameter space to lie in a non-convex set. A commonly used relaxation for
problems of this kind is to replace the ℓ0 restriction with the convex ℓ1 ball,
which by taking the negative logarithm and using the Lagrange duality, results in
the relaxed convex optimization criterion

minimize
c

N
∑

k=1

−xkhT
k c + log(1 + ehT

k c) + λ||c||1 (32)
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Algorithm 1 The PECSG estimator

1: Given a categorical sequence, x of length N
2: I0 = {1, . . . ,N}
3: for s = 1, . . . do

4: {ms, ℓs} = arg max
m,ℓ

λm,ℓ(xN )

5: if λm,ℓ(xN ) > Cα then

6: Is = Ims ,ℓs

7: else

8: break
9: end if

10: I (m, l)← I (m, l) \ Is for all m and l
11: I0 ← I0 \ Is

12: H0 distribution is replaced with (10) using I0, . . . , Is

13: end for

where we have exploited the equality constraint for pk(c) and where λ > 0 is
a tuning parameter, which may be set using, for example, cross validation (see
e.g., [20]), or by an heuristic choice using the observation following equation
(42). Some adjustments may be done to this criterion; firstly, the penalty on c

includes the first element. This is not appropriate since the first element con-
trols the probability for all observations, and we have no reason to want to bias
that probability towards 1/2. This is easily accomplished by only penalizing the
other elements of the vector, i.e., replacing ||c||1 with ||c||1, where c denotes the
resulting vector once the first element of c is removed. However, the resulting
expression will also have an undesirable ambiguity due to the lack of distinction
being made between if the probability is higher or lower on the periodic indices.
For instance, consider a case when every third index starting with 1 has the prob-
ability 0.1 of being 1, and all other indices have probability 0.9 of being 1. Should
this be considered two periodicities of 3 with probability 0.9, or one periodicity
of 3 with probability 0.1?

Such a distinction is of course not a problem specific for this model. However,
since one is commonly interested in finding periodic indices where the probab-
ility is either higher or lower, such an ambiguous result would result in a non-
consistent interpretation of the estimates. Fortunately, this can be easily handled
by adding a constraint on c, ensuring that only periodicities with greater probab-
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ility of a symbol appearing are considered, i.e., ck > 0, for k = 2, . . . ,M , where
ci is the i:th element of the vector c. This yields

minimize
c

N
∑

k=1

−xkhT
k c + log(1 + ehT

k c) + λ||c||1

subject to ck ≥ 0 for k = 2, . . . ,M

(33)

The resulting optimization is thus a sum of an affine function and the logar-
ithm of a sum of exponential functions, and is thus a convex function. (see,
e.g., [21, p. 93]). Thus, since the constraints can be seen as inequalities involving
inner products with the Cartesian coordinate basis vectors, they are affine, and
therefore convex functions, and the criterion is as a result a convex optimization
problem in the standard form, as defined in [21, p. 136]. However, the cri-
terion in (33) will not yield sufficiently sparse estimates, as a result of the rather
coarse approximation of the ℓ1 norm to the desired ℓ0 norm. Recently, interest
in non-convex penalties that are closer, in some sense, to the ℓ0 norm have been
suggested, such as the use of the ℓq norm, for 0 < q < 1 (see e.g., [22, 23]).
Herein, we consider an alternative approach where the ℓ1 penalty is replaced with
the concave log(·) penalty. The resulting optimization is then solved with an it-
eratively re-weighted ℓ1 minimization, using a technique suggested in [24]. The
resulting algorithm thus solves, at iteration j + 1, the minimization

min.
c

N
∑

k=1

−xkhT
k c + log(1 + ehT

k c) + λ
M
∑

k=2

|ck|
|̂c(j)

k |+ ε
s. t. ck ≥ 0 for k = 2, . . . ,M

(34)

where ĉ
(j)
k is the k:th element of the c estimate resulting from the j:th iteration, and

ε is set as a small number to avoid numerical problems as well as to enable zero
valued elements of c to transition from zero to non-zero values (see also [24]). The
resulting sequence of convex minimizations yields a sufficiently sparse estimate of
the periodicities (although at a high a computational complexity if implemented
directly using a standard interior point-based solver). The resulting estimator is
in the following referred to as the Periodicity Estimation of Categorical Sequences
using Logistic regression, PECSL.
Comparing the two methods, PECSG offers a faster solution, whereas PECSL

yields better results in the case of multiple periodicities. This is due to the fact

45



Paper A

that the iterative greedy procedure in PECSG does not take into account the over-
lap between the two index sets, e.g., the index sets I (k, 1) ∩ I (l , 1) = I (kl , 1),
whereas, the logistic regression approach also takes the overlap into account in the
estimation procedure.

4 Efficient implementation

In order to form an efficient solver for the minimization in (34), we proceed
to develop a cyclic coordinate descent (CCD) algorithm. The CCD algorithm
minimize the cost function in (34) one variable at a time, in a cyclical fashion,
holding the other variables fixed at their most recent estimates. This will thus
transform the M−dimensional optimization problem into a scheme where one
instead repeatedly solves simpler one-dimensional problems.

It should be noted that such an approach is, in general, converging notori-
ously slowly, or in some cases, not at all. However, for the optimization problems
encountered in sparse modeling, this does no longer hold, as in fact, convergence
proofs exist [20, 25], and in many applications, CCD implementations have em-
perically been shown to be the fastest algorithms available [16, 26]. Below, we
outline the steps involved in a CCD algorithm for the case of ck ≥ 0, with the
other case being handled in a similar manner. Thus, consider c(r)

i as the r:th
estimate of element i of the vector c, then, for i > 1,

c(r+1)
i = arg min

ci

N
∑

k=1

−xkhT
k c + log(1 + ehT

k c) + λ||c||1

= arg min
ci
−xT H(·,i)ci + λ|ci|+

N
∑

k=1

log(1 + ak,ie
hk,ici ) (35)

The notation H(·,i) denotes the i:th column of the matrix H, hk,i the i:th element
of the vector hk, and

x =

[

x1 . . . xN

]T
(36)

H =

[

h1 . . . hN

]T
(37)

c =

[

c(r+1)
1 . . . c(r+1)

(i−1) c(r)
i . . . c(r)

N

]T
(38)
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Algorithm 2 The PECSL estimator
1: Initiate c = c0

2: for r = 1, . . . do

3: for i = 1, . . . ,M do

4: if maximum of (40) ≥ 0 then

5: c(r)
i = 0

6: else

7: Update c(r)
i according to (35)

8: end if

9: end for

10: end for

ak,i = exp





∑

j, j 6=i

hk,jcj



 (39)

If the maximum value of the subdifferential set

∂f0 = −xT H(·,i) + λw +

N
∑

k=1

ak,ihk,ie
hk,ici

1 + ak,ie
hk,ici

(40)

with ci = 0 is positive and {w ∈ [−1, 1]}, then the optimum is attained at ci = 0
for the constrained optimization problem. On the other hand, if the maximum
is negative, the stationary point may be found using a gradient approach (since
the cost function is differentiable for all positive ci). Note that this analysis gives
insight into both the sparsity promoting effect of the ℓ1 norm as well as the role
of the tuning parameter λ, in fact, rewriting (40) as

∂f0 = −xT H(·,i) + λw + rT
i H(·,i) (41)

where ri =

[

a1,i

1+a1,i
. . .

aN ,i

1+aN ,i

]

can be interpreted as probabilities for each

index. Furthermore, rT
i H(·,i) is the expected number of symbols on the period-

icity corresponding to i and xT H(·,i) is the observed number of symbols on that
periodicity, thus if

|rT
i H(·,i) − xT H(·,i)| < λ (42)

implying that, if the expectation for the model with ci = 0 is closer than λ to the
observed number in the data, then set c(r+1)

i = 0. The resulting CCD algorithm
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Figure 1: Rate of success in estimating deterministic periods.

is outlined in Algorithm 2. The computational cost of one iteration of the outer
loop is O(m2

maxN ). Note that a significant performance increase is often possible
in batch applications, where a recursive algorithm is needed, by the so called active
set strategy [20]. The strategy simply involves not updating the parameters that
are currently zero in every iteration, and perhaps only doing so once every tenth
iteration or so.

5 Numerical results

We proceed to examine the performance of the proposed likelihood-based estim-
ators using simulated DNA sequences, binary sequences, and measured DNA
data. For DNA sequences, only B = 4 different symbols are present, namely A,
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Figure 2: The error rate of finding the periodicity as a function of 1 − p1,1, and
the periodicity for the proposed PECSG method.

C, G, and T. Initially, we examine a simulated DNA sequence containing one
deterministic periodicity. Figure 1 illustrates the rate of successfully determining
this periodicity as a function of the length of the periodicity, comparing the pro-
posed PECSG estimator with the MEM [10], PAM [7], QSPK [5], and SPE [27]
estimators, as well as with a Fourier-based estimator detailed in [27]. As the simu-
lated sequence is stationary, the window length used for the DFT-based methods
were selected to be equal to the length of the sequence.

Here, and in the following, the success rate has been determined using 250
Monte-Carlo simulations using N = 1000 equiprobable symbols, with the sought
periodicity being inserted appropriately. As is clear from Figure 1, the proposed
estimator succeeds in successfully determining all the considered periodicities,
whereas all the other methods lose performance as the length of the periodicity
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Figure 3: The error rate of finding the periodicity as a function of the negative
probability, 1− p1,1, and the periodicity for the SPE algorithm.

grows. Of the other examined estimators, the SPE estimator seems to offer the
second best performance, and we will for this reason only show the results for
this estimator in the following comparisons, noting that all the other discussed
estimators exhibits a notably worse performance than the SPE estimator in all the
considered cases (see also [1]). Proceeding to examine also statistical periodicities,
we vary p1,1 for the index set corresponding to the generated periodicity, with
p0,1 = 1/4 on the complement set. It may be noted that p1,1 = 1 corresponds to
a perfect periodicity, whereas p1,1 < 1 corresponds to a statistical periodicity with
a probability of each symbol being eroded, i.e., a non-perfect periodicity, being
1 − p1,1. Similarly, p0,1 is the corresponding probability for the complement set.
Figures 2 and 3 show the resulting success rate for the PECSG and SPE estimators
as a function of the periodicity and the probability p1,1, again clearly illustrating
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Figure 4: The proportion of incorrect estimations of two periodicities for the
PECS algorithms. Each point on the x-axis represent average error for all com-
bination of that point and smaller (or equal) periodicities.

how PECSG outperform SPE (and thus also all the other mentioned estimators)
for all periodicities and p1,1.

Next, we investigate how well PECSG and PECSL are able to resolve two
periodicities in a binary sequence. In this case, some care needs to be taken when
setting up the simulations, as when generating two periodicities, these may over-
lap or combine to create a new periodicity, e.g., if generating two periodicities of
period six, these may be placed such that they instead form just a single period-
icity with period three. Similarly, two periodicities with period four and twelve
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Figure 5: Rate of success for PECSG in estimating the periodicities of a signal
with periodicities at 11 and 31, as a function of signal length. The dashed line
denotes the minimum data needed for using [8].

may cause the resulting sequence to have only a single periodicity of four. In or-
der to avoid such ambiguities in the resulting performance measure, the test data
has been generated such that it avoids this form of ambiguities. Figure 4 illus-
trates the success rate of determining both periodicities correctly, as a function of
the length of the two periodicities, with N = 500 and again using p1,1 = 3/4
and p0,1 = 1/4. Each point on the x-axis should be interpreted as the average
error for all combinations of periodicities within the brackets, i.e., for instance
(14, 14 − 17) denotes all combinations (14, 14), (14, 15), (14, 16) and (14, 17).
As may be seen from the figure, even when the sequence contains two periodicit-
ies of lengths up to 12, when most of the other discussed estimators completely
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Figure 6: The periodicities of each symbol in the gene C.elegans F56F11.4 com-
puted using a sliding window.

fail to find even a single perfect periodicity, both PECS algorithms have a very
low proportion of errors. From the figure, one can also observe that, as expec-
ted, the PECSL outperforms the PECSG when there is more than one periodicity
present in the sequence. For the last simulated data experiment, we recreate a
simulation experiment similar to the one that was used in [8], where a determ-
inistic periodicity of 11 and 31 are present simultaneously in a signal generated
from a 4 element set being uniformly distributed on the other indices. As can be
seen in Figure 5, the PECSG estimator achieves almost 100 % success rate even
before the method presented in [8] can start to be used, since it requires a min-
imum of 11× 31 = 341 data points. Finally, we examine the performance of the
PECSG estimator on measured genomic data, in the form of the gene C. elegans
F56F11.4 [28]. Since genomic data is generally not stationary, the estimate has
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been formed using a sliding window with length N = 360. The results obtained
by PECSG are shown in Figure 6, where the periodicities with a likelihood ratio
greater than the 95% quantile of the maximum of M = 465 χ2 distributed ran-
dom variables are shown for each symbol. In earlier work, such as [10] and [27], a
period of three was found at around index 7000. This period was also found when
using PECSG , but when looking at the corresponding p̃, one may note that this
periodicity is actually constituted by the lack of the symbol C, i.e., this period is
detected since the symbols A, G, and T are alternating in a non-periodic fashion,
and since C is always absent at these indices, this apparently causes the Fourier
based methods to indicate a periodicity of three. If one is not interested in find-
ing these sorts of periodicities, one may restrict p1,1 to be in [1/2, 1], in the same
manner as mentioned above. This will ensure that PECSG only finds periodicities
that are made up by an increased probability in the presence of a symbol.

6 Conclusion

In this work, we have presented a likelihood-based approach for modeling peri-
odicities in symbolic sequences. Modeling the observations using a categorical
distribution with periodic indices, possibly having a different distribution, leads
to a difficult combinatorial problem. Here, we have proposed two algorithms to
relax the problem using sparse heuristics: namely, one fast greedy approach which
builds up the solution set in an iterative fashion, and one based on convex relaxa-
tion ideas, which has the benefit of a more efficient usage of the data. Finally, we
show the benefits of the proposed algorithms as compared to previously published
methods using simulation experiments as well as with real DNA data examples.
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High Resolution Sparse Estimation of
Exponentially Decaying N -D Signals

Johan Swärd, Stefan Ingi Adalbjörnsson, and
Andreas Jakobsson

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

In this work, we consider the problem of high-resolution estimation of the para-
meters detailing an N-dimensional (N-D) signal consisting of an unknown num-
ber of exponentially decaying sinusoidal components. Since such signals are not
sparse in an oversampled Fourier matrix, earlier approaches typically exploit large
dictionary matrices that include not only a finely spaced frequency grid, but also
a grid over the considered damping factors. Even in the 2-D case, the result-
ing dictionary is typically very large, resulting in a computationally cumbersome
optimization problem. Here, we introduce a sparse modeling framework for N-
dimensional exponentially damped sinusoids using the Kronecker structure inher-
ent in the model. Furthermore, we introduce a novel dictionary learning approach
that iteratively refines the estimate of the candidate frequency and damping coef-
ficients for each component, thus allowing for smaller dictionaries, and for fre-
quency and damping parameter that are not restricted to a grid. The performance
of the proposed method is illustrated using simulated data, clearly showing the
improved performance as compared to previous techniques.

Key words: Sparse signal modeling, spectral analysis, sparse reconstruction,
parameter estimation, dictionary learning, damped sinusoids.
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1 Introduction

High-dimensional decaying sinusoidal signals occur in a wide variety of fields,
such as spectroscopy, geology, sonar, and radar, and given the importance of such
signals in a variety of applications, the topic has attracted notable attention in the
recent literature (see, e.g. [1–11]). Common solutions include subspace-based al-
gorithms [3–8], which are typically making relatively strong model assumptions,
or the use of high-dimensional representations necessitating an iterative zooming
procedure over multiple dimensions, such as the technique introduced in [11].
These kind of approaches often suffer from high complexity and sub-optimal
performance, typically requiring an accurate initialization or model order inform-
ation to yield reliable results, information which is commonly not available in
many of the discussed applications.

Often, the measurements are also assumed to be uniformly sampled, which
may well be undesired in applications such as, for instance, spectroscopy. Further-
more, the number of modes present in the signal is generally unknown, or may
vary over time, typically necessitating some form of model order selection de-
cision. Given such difficulties, it is often of interest to formulate non-parametric
or semi-parametric modeling techniques, imposing only mild assumptions of the
a priori knowledge of the signal structure. Popular solutions include the so-called
dCapon, dAPES, and dIAA spectral estimators, which all form generalized spec-
tral estimates of the signal, constructing spectral representations over both the
frequency and damping dimensions [12, 13] (see also [14, 15]). Although this
form of techniques are robust to the made model order assumptions, they suf-
fer difficulties in separating closely spaced modes from each other, and typically
require notable computational efforts if not implemented carefully [15].

As an alternative, one may use sparse modeling of the signal, forming a large
dictionary of all potential frequencies and damping candidates, thus generally
having vastly more columns than rows. For a given signal and the resulting dic-
tionary matrix, one thus wishes to find the sparsest solution to the resulting lin-
ear set of equations, mapping the signal to a linear combination of a few of the
columns of the dictionary. Such techniques have successfully been applied to line
spectral data, and the topic has attracted notable attention in the recent literature
(see, e.g., [16–22]). Although these algorithms appear quite different from each
other, they share the property that the considered dictionary grid should be selec-
ted sufficiently fine to allow for a sparse signal representation (see also [23, 24]),
which, if extended to also consider damped modes, necessitates a large dictionary

62



2. N -dimensional signal model

matrix containing elements with a sufficiently fine grid over the range of both
the potential frequencies and damping candidates (see, e.g., [13, 25, 26]); this
will be particularly noticeable if treating large data sets, or data sets with multiple
measurement dimensions. In order to mitigate this problem, we here introduce
a tensor representation of the signal model, allowing us to exploit the resulting
inherent Kronecker structure, which may be exploited to significantly reduce the
required complexity as compared to a naive implementation of the sparse model-
ing framework.

Furthermore, we propose a novel dictionary learning approach, wherein one
iteratively decomposes the signal with a fixed small dictionary, adaptively learning
the dictionary elements best suited to enhance sparsity. To this effect, we initially
form a coarsely spaced dictionary with undamped modes over the range of con-
sidered frequency candidates, iteratively adapting both the frequency and damp-
ing settings for the dictionary elements, thereby also allowing for both a reduction
and an expansion of the number of dictionary elements considered in each iter-
ation of the optimization. In order to further reduce complexity, we propose a
computationally efficient implementation based on the concept of the alternating
direction method of multipliers (ADMM) (see, e.g., [27]), where the Kronecker
structure of the resulting dictionary matrices may be exploited to dramatically
decrease the cost of each iteration.

The remainder of the paper is organized as follows: in the next section, we
introduce the considered data model. Then, in Section 3, we introduce the idea
behind decoupling the search dimensions. Section 4 introduces the ADMM for-
mulation of the estimator, and Section 5 illustrates the performance of the pro-
posed estimator using simulated data. Finally, Section 6 contains our conclusions.
In the remainder of the paper, we use the following notation: scalars are represen-
ted using lower case letters, whereas vectors are represented with lower case bold-
face letters. Matrices are represented with capital bold-face letters, tensors with
capital bold Euler script letter, (·)T denotes the transpose, and (·)H the conjugate
transpose.

2 N -dimensional signal model

Consider an N -dimensional signal consisting of a sum of K modes, i.e., K N -
dimensional damped sinusoids such that observation xτ at a sampling point τ,
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where

τ =
[

t(1)
i1

t(2)
i2

. . . t(N )
iN

]T
(1)

and t(ℓ)
iℓ

denotes the iℓ:th sampling point in dimension ℓ, may be well modeled as

xτ =
K
∑

k=1

gk

N
∏

ℓ=1

ξ
t (ℓ)
iℓ

k,ℓ + ετ (2)

where

ξk,ℓ = ejω(ℓ)
k −β (ℓ)

k (3)

and with gk denoting the complex amplitude of mode k, and ετ is an additive
noise term, here for simplicity assumed to be an independent identically distrib-
uted circularly symmetric Gaussian random variable. Assuming the signal is ob-
served over t(n)

in , for in = 1, . . . , In, and n = 1, . . . ,N , the entire sequence may
be stored in an N-way tensor X ∈ C

I1×I2×···×IN . It is worth noting that this
formulation makes no restriction on any of the dimensions to have a sampling
scheme that is equidistant, thus encompassing both missing data scenarios as well
as irregular sampling. The entire model may thus be written in tensor format as
the sum of K rank one tensors, such that

X =

K
∑

k=1

gk ã(1)(k) ◦ ã(2)(k) · · · ◦ ã(N )(k) + E (4)

where ◦ denotes the outer product defined such that element τ of X corresponds
to equation (2), E is the tensor containing the noise terms, and

ã(n)(k) =
[

ξ
t (n)
1

k,n . . . ξ
t (n)
In

k,n

]T

(5)

For an overview of tensor algebra sufficient for the here discussed results see, e.g.,
[28], which also use a notation consistent with the one used in this article. The
model thus contain (2N + 1)K + 1 unknown parameters, namely

θ ,
[

{{ω(n)
k , β (n)

k }N
n=1, gk}K

k=1, K
]T

(6)

of which 2NK are non-linear parameters. Clearly, one could, in theory, form a
non-linear least squares (LS) minimization over these parameters, as well as form
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a model order estimate from the resulting model order residuals for varying pos-
sible candidate model sizes. However, such a solution would in most practical
situations be computationally unfeasible, even for low dimensional data sets, es-
pecially as the optimization is well known to have numerous local minima [29].
To avoid this, we introduce a sparse modeling heuristic to approximate the model.
This can be done by creating a large dictionary of candidate parameters, selected
from a grid fine enough such that each true parameter lies sufficiently close to
some grid point. For instance, if, to simplify our notation, one considers a single
N -dimensional sinusoid and fix all but the first frequency and damping coeffi-
cients, then one may approximate (4) using a dictionary containing P1 and J1

candidate elements along the (first) frequency and damping dimension, respect-
ively, such as

X ≈
P1
∑

p=1

J1
∑

j=1

gp,ja
(1)
ωp

(βj) ◦ a(2)
ω2

(β2) ◦ · · · ◦ a(N )
ωN

(βN ) (7)

where ω2, . . . ,ωN and β2, . . . , βN denote the (for simplicity) fixed frequency and
damping coefficients along the 2nd to N :th dimensions,

a(n)
ω (β) =

[

ξ
t (n)
1

n . . . ξ
t (n)
In

n

]T

where

ξn = ejω(n)−β (n)
(8)

and gk,ℓ denotes the contribution of each of these dictionary elements in the ap-
proximation. Thus, as long as P1 and J1 are selected sufficiently large to allow for a
grid of dictionary elements such that the true frequency and damping coefficients
lie close to one of the grid points, only one gp,j should be non-zero for each of
the K modes. By similarly extending the dictionary for each of the frequency and
damping dimensions, such that gp1,...,pN ,j1,...,jN denotes the contribution of the
corresponding dictionary elements for the pq:th and jr :th frequency and damping
dictionary elements, where q, r ∈ {1, . . . ,N}, the resulting (very large) diction-
ary would allow for a sparse approximative solution of the unknown parameters,
such that most of the dictionary elements would not contribute to the approxim-
ation. Given such an approximative solution, the number of modes, K , may be
estimated as the number of elements with non-zero contribution to the approx-
imation. The non-linear parameters may then be estimated correspondingly, such
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that for any non-zero variables, e.g., gh1,...,hN ,i1,...,iN , the non-linear parameters are
estimated as the frequency and damping coefficient that correspond to the found
coefficients. Such a solution may be obtained by reformulating the problem using
the vec operator, defined here for tensors such that it is the usual vec operation on
the mode-1 matricization, or unfolding (see also [28]), of a given tensor, i.e.,

vec (X ) , vec
(

X(1)
)

(9)

This allows for a sparse LS solution to be found by solving

min
g̃
‖vec (X )− Ãg̃‖2

2 + ρ(g̃) (10)

where g̃ = vec (G), with G ∈ C
P1×···×JN denoting the tensor formed from the

amplitudes of all of the dictionary elements, and the i:th column of Ã is formed
as

Ã:i = vec
(

a(1)
ωp1

(βj1 ) ◦ a(2)
ωp2

(βj2) · · · ◦ a(N )
ωpN

(βjN )
)

(11)

where the notation A:i denotes the ith column of the matrix A. The penalty term
ρ(·) is added in (10) as the grid is typically chosen such that the number of ele-
ments in vec(X ) is smaller than the number of columns in Ã; thus, if assuming
that Ã is of full rank, the system of equations is under-determined, with infinitely
many solution, out of which one is interested in finding a solution that appro-
priately weighs sparsity and model fit. Ideally, ρ(·) could be chosen as a function
counting the number of non-zero elements. However, the resulting optimization
problem is well known to be combinatorial in nature and will be unfeasible to
solve even for moderate problem sizes. Common approximative choices include
the scaled ℓ1 norm [17,30], ℓq penalties [16,31], and the reweighted ℓ1 approach,
which may be seen to correspond to the log penalty [32]. Herein, we consider the
ℓ1 and the log penalty. It is worth noting that the above sparsity restrictions allow
for solutions having multiple damping coefficients for a given frequency. Such
solutions imply that the component is not an exponentially damped sinusoid; as
this is not relevant for the here considered application, we proceed to refine the
constraint such that it will only yield unique frequency-damping pairs for each
component. To this end, we propose an iterative dictionary learning approach
such that the damping parameters for each sinusoidal component is held fixed
during the sparse LS step, after which the damping parameters are found using
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the residual from the sparse LS step, one mode at the time, thus allowing for
damping and frequency estimation to be performed with a non-linear optimiza-
tion algorithm, e.g., Newton’s method. Thus, we initially fix all damping para-
meters to zero, modifying (7) such that the dictionary is only formed over the
unknown frequencies, i.e.,

X ≈
P1
∑

p1=1

· · ·
PN
∑

pN=1

gp1,...,pN a(1)
ωp1

(βp1) ◦ · · · ◦ a(N )
ωpN

(βpN ) (12)

The resulting minimization with respect to the K unknown frequencies, which
may then be used to estimate the damping components, iteratively finding each
of the set of estimates. To allow for a computationally efficient solution, the
considered frequency and damping grids, respectively, are updated in each itera-
tion, such that the dictionary is refined in each step of the iteration. However,
even with such a reduction in complexity, the iterative optimization problems are
clearly daunting, being formed over J1×· · ·× JN and P1×· · ·×PN dimensions,
respectively. In the next two sections, we therefore proceed to examine how these
minimizations may be performed in an efficient manner utilizing the Kronecker
structure of the dictionary matrices for the sparse LS step, and by solving the
non-linear damping parameter estimation one mode at a time.

3 ADMM implementation

The minimization problem considered in (10) may be solved using an approxim-
ation of the form

min
g̃
‖vec(X )− Ãg̃‖2

2 +

P1×···×JN
∑

k=1

λk|g̃k| (13)

where λk denotes a set of tuning parameters, for k = 1, . . . ,P1 × · · · × JN .
In case these tuning parameters are all selected equal and the penalty is in-

cluded as an inequality constraint, the resulting minimization is equivalent with
the regular ℓ1 penalized LS problem, often called basis pursuit denoising [33], or
the Lasso [30]. For highly correlated dictionary elements, as may be required for
high resolution N -D spectra, one may obtain sparser solutions using a reweighted
Lasso formulation [32], such that the λk:s are instead selected as

λk =
φ

|g̃k(ℓ)|+ ε (14)
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Algorithm 1 Sparse LS via ADMM

1: Initiate z = z(0),u = u(0), and ℓ = 0
2: repeat

3: z(ℓ+ 1) =
(

ÃH Ã + μI
)−1 (

ÃH y + μ(u(ℓ) − d(ℓ))
)

4: u(ℓ+ 1) = Ψ
(

z(ℓ+ 1) + d(ℓ+ 1), λμ

)

5: d(ℓ+ 1) = d(ℓ) + z(ℓ+ 1)− u(ℓ+ 1)
6: ℓ← ℓ+ 1
7: until convergence

where the constant ε is included to avoid numerical problems when gk(ℓ) is close
to zero. Here, g̃k(ℓ) denotes the value of gk at iteration ℓ, and with φ > 0 de-
noting a tuning parameter controlling the sparsity at the solution. A general
efficient iterative algorithm for solving problems such as (10), using an ADMM
implementation was proposed in [27], and may be easily adapted to the here con-
sidered reweighted scenario. The steps involved are summarized in Algorithm 1,
where the Ψ operator is a shrinkage operator, defined as

Ψ(x,γ) = x(1− γ/|x|)+ (15)

where (·)+ denotes the positive part of a scalar. In Algorithm 1, g̃ has been split
up into two separate variables z and u. Furthermore, d denotes the scaled dual
variable, (see, e.g., [27] for a detailed discussion). The complexity of each iteration
in the resulting algorithm is approximately O(n2p), where p and n denote the
columns and rows of a, respectively. This is about the same as the computational
cost for many Lasso solvers (see e.g. [34]). In the N -dimensional case, the overall
computational complexity is about O(

∏N
n=1 JnPn

∏N
n=1 I 2

n ), implying that even
a 3-dimensional problem with 100 grid points in each dimension would result
in a cost of approximately 10012I1I2 operations, in each step, where In denotes
the number of samples in dimension n. Fortunately, this complexity may be
significantly reduced by exploiting the inherent Kronecker structure of the model.
In order to do so, we rewrite (4) using tensor products as

X = G ×1 A(1) ×2 A(2) · · · ×N A(N )
+ E (16)

where the operator ×n represents the n-mode product of a tensor with a matrix,
and the dictionary matrix for dimension n is given as

A(n) ,
[

a(n)
ωk1

(βk1) . . . a(n)
ωK1

(βK1 )
]

(17)
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Expressed in this form, one may note that the matricization may be accomplished
via Kronecker products instead (see, e.g., [28], [35]), yielding

X(1) = A(1)G(1)

(

A(N ) ⊗ A(N −1) ⊗ · · · ⊗ A(2)
)T

(18)

where ⊗ denotes the Kronecker product, and X(1) ∈ C
I1×
∏N

n=2
In is obtained by

stacking all the mode-1 slices of X , and with G(1) defined similarly. Vectorizing
the resulting mode-1 slices yields (see, e.g., [36]),

vec
(

X(1)
)

=

(

A(N ) ⊗ · · · ⊗ A(2) ⊗ A(1)
)

vec
(

G(1)
)

(19)

allowing us to express the parameters in (10) as

g̃ , vec
(

G(1)
)

∈ C
K̃ ×1 (20)

Ã ,
(

A(N ) ⊗ · · · ⊗ A(2) ⊗ A(1)
)

∈ C
Ĩ×K̃ (21)

As a result, the full Ã matrix does not need to be formed, and vector multiplica-
tion of the form Ãx and ÃH y, for any appropriately sized vector x and y, may be
computed iteratively by each sub-matrix A(n), and by then reshaping the resulting
elements (see, e.g., [37, p. 28] for further details). This allows for a dramatic
complexity reduction. To illustrate this, consider the case where each A(ℓ) matrix
is n×n. Then, the operation Ãx, which would require about about n2N multiplic-
ations if first forming Ã and then computing the inner-product using this mat-
rix, may instead be formed using only about NnN+1 (see, e.g., [38]) operations.
Furthermore, the LS step in the ADMM algorithm for solving (10) may also be
computed significantly cheaper by utilizing its Kronecker structure, simply by cal-
culating the singular value decomposition of each sub-matrix A(n) = UnΣnVH

n ,
and then utilizing that the singular value decomposition of Ã is given by (see,
e.g., [36, p. 246])

Ã = UÃΣÃVH
Ã

(22)

where

UÃ = U1 ⊗ · · · ⊗ UN (23)

ΣÃ = Σ1 ⊗ · · · ⊗ΣN (24)

VH
Ã
= VH

1 ⊗ · · · ⊗ VH
N (25)
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As a result, one may solve step 3 in Algorithm 1 by solving the equivalent LS
problem

min
z̃

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

[

UH
Ã

y

VH
Ã
ξ

]

−
[

ΣÃ√
μ I

]

z̃

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

2

(26)

where

z̃ =

(

Σ2
Ã
+ μI

)−1 (

ΣÃUH
Ã

y +
√
μVH

Ã
ξ
)

(27)

with z̃ = VH
Ã

z and ξ =
√
μ(u(ℓ) − d(ℓ)). Thus, the LS step can be solved

by three matrix vector multiplications, two Hadamard products between vectors,
one scalar multiplication of a vector, and a vector-vector addition, which may all
be calculated using their inherent Kronecker structure, significantly reducing the
computational cost. For example if each A(ℓ) is n × n, the cost for our approach
is approximately about NnN+1 versus approximately n3N for a solution that does
not use the inherent structure of the equations.

4 Sparse dictionary learning

As noted above, the considered grid over the candidate frequency and damp-
ing coefficients are updated in alternating fashion. Let K̂ denote the number of
non-zero amplitudes after the sparse LS step. Then, the dictionary learning may
be done by forming the residual1

R = X − G ×1 A(1) ×2 A(2) · · · ×N A(N ) (28)

Using a relaxation-based procedure (see also [39]), one then iteratively adds back
one mode at a time to the residual in (28), and form an estimate of the fre-
quency and damping of this mode using an N -dimensional single mode solver,
such as, for instance, the standard nonlinear least squares estimator or, in the case
of uniformly sampled data, an estimator such as the PUMA estimator [40]. Using
the refined parameter estimates, the mode is then subtracted again, and the next
mode is refined similarly. The procedure is summarized in Algorithm 2. Using
the refined modes, the dictionary is then updated, such that it is separated into N
dictionaries, one over each dimension, with each dictionary being centered in a
fine grid around each of the found frequencies. As a result, the unused dictionary

1To simplify our notation, we have here suppressed the dependencies on the frequency ω and
the damping β .

70



5. Numerical examples

Algorithm 2 Mode estimation

1: Initialize all damping coefficients to zero and use (10) to form initial estimates
{

gγk

}K̂

k=1
2: for i = 1, . . . , itermax do

3: Compute the residual according to (12)
4: for k = 1, . . . , K̂ do

5: Add the current mode to the residual:
Yk = Rk + gγk

a(1)
k ◦ · · · ◦ a(N )

k
6: Estimate the frequencies and the dampings for the mode
7: Remove the current mode:

Rk = Yk − gγk
a(1)

k ◦ · · · ◦ a(N )
k

8: end for

9: Use the found frequencies and damping coefficient to create new diction-
aries and re-solve (10).

10: end for

elements, having zero-amplitudes, are excluded from the updated dictionary (un-
less being close to one of the found modes). This also implies that closely spaced
modes may yield overlapping dictionary elements; such duplicated dictionary ele-
ments are removed to avoid collinearity in the dictionary. For each grid point,
the dictionary element is scaled according to the found damping coefficient of
the corresponding mode, to ensure that all dictionary elements have the same
norm, thus refining the dictionary iteratively over both frequencies and damping
coefficients. We coin the resulting method the Sparse Exponential Mode Analysis
(SEMA) algorithm.

5 Numerical examples

We proceed to examine the performance of the proposed method using simu-
lated data. To simplify the presentation, we focus on the 1-D, 2-D, and 3-D
cases, since problems of these dimensions offer more intuitive results that are also
easier to analyze. Considering first the 1-D case, we illustrate the performance
of the proposed method using simulated data. We initially consider a data vec-
tor containing N = 128 samples of a three mode signal, where the frequencies
and damping parameters are chosen uniformly over [0, 1] and [0, 0.025], re-
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Figure 1: The RMSE of the frequency estimation as a function of SNR.

spectively. We note that we here use normalized frequencies, lying in the interval
[0, 1], denoted by the letter f . For now, we ensure that no modes are closer
in frequency than 1/N . Figures 1 and 2 depict the resulting performance of
the SEMA algorithm, as compared to the non-parametric damped-Capon (dCa-
pon) estimate [12, 15], as a function of the signal-to-noise-ratio (SNR), defined
as log10(||y||22/Nσ2), where σ2 denotes the variance of the noise. The two fig-
ures show the root mean squared error (RMSE) of the frequency and damping
estimates, defined as

RMSE =

√

√

√

√

1

MK

M
∑

m=1

K
∑

k=1

(

θm,k − θ̂m,k

)2
(29)
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Figure 2: The RMSE of the damping estimation as a function of SNR.

where θm,k denotes the estimate of either the frequency or the damping of mode
k for Monte-Carlo simulation m, M is the total number of Monte-Carlo sim-
ulations, and K the number of modes. These results have been obtained using
M = 175 Monte-Carlo simulations. In this example, dCapon has a frequency
grid that is selected to be 6000×6000, uniformly covering frequencies and damp-
ing factors in [0, 1] and [0, 0.025], respectively, and where the recommended filter
length of N/4 is used. The SEMA algorithm on the other hand uses a diction-
ary containing only 128 elements in the first iteration, and, thereafter, uses only
40 grid points for each found mode when updating the dictionary in each sub-
sequent iteration. As can be seen from the figures, the proposed SEMA algorithm
yields notably better estimates than the dCapon estimator, without requiring a
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Figure 3: The result of resolving two closely spaced spectral peaks. The (red)
square indicates the distance 1/(2N ) from the true frequencies.

large dictionary grid over both dimensions, thereby allowing for a substantially
faster implementation. It is also worth noting that the dCapon estimation errors
are here larger than the smallest possible error that is attainable given the current
grid size, implying that the grid size does not in itself limit the quality of the
estimates.

Next, we examine the ability of the methods to resolve two closely spaced
spectral lines. In this case, we consider a signal containing two sinusoidal compon-
ents with frequencies, f1 = 0.6417 and f2 = 0.6456, i.e., separated by 0.5/N ,
with damping constants being 0.010 for both modes. Figure 3 illustrates the
resulting frequency estimates as obtained from 5 Monte-Carlo simulations, and
SNR = 20 dB. For comparison, the figure also shows the estimates obtained us-
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Figure 4: The average RMSE of f (1)
1 and f (1)

2 as a function of SNR.

ing 1-D SEMA, dCapon, dIAA [41], and for a Lasso method with a dictionary
containing both frequencies and damping factors, and exploiting a zooming sim-
ilar to the one used in SEMA. Here, to speed-up the computations, the frequency
grid for dCapon has been selected to only be formed on [0.63, 0.67], allowing
the method notable a priori information on the frequency region of interest. The
damping grid ranges over [0, 0.025] and has size 500 for all methods, except for
the used Lasso method, where, due to complexity reasons, it is set to 10. As
seen in the figure, the proposed method clearly manages to resolve the two peaks,
whereas the Lasso and dIAA estimates are only partly succeeding to do so, while
dCapon yields noticeably biased estimates. In the figure, the (red) square indicates
the region 1/(2N ) centered around the true frequencies.

We proceed to examine the performance of the SEMA algorithm for 2-D

75



Paper B

SNR (dB)
-5 0 5 10 15 20

R
M

S
E

# 10-3

0

0.2

0.4

0.6

0.8

1

1.2
SEMA
PUMA
CRLB
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simulated data, examining the RMSE of two well separated peaks, showing that
the proposed method has similar performance to the statistically efficient PUMA
method [7], using simulated data mimicking a 2-D Nuclear Magnetic Resonance
(NMR) signal, simulated using (2), containing two damped sinusoids and having
33 × 31 samples. Figures 4-7 illustrates the performance of the SEMA estimator
as compared to the parametric PUMA estimator and the corresponding Cramér-
Rao lower bound (CRLB) [42]. The frequencies were randomly selected in the
interval from 0 to 1 in normalized frequencies, and selected such that compon-
ents were separated by at least 3/N in each dimension. If the spacing between
the peaks is smaller, the estimation will degenerate for all methods. The damping
parameters were set to β1 = (0.05 0.02) and β2 = (0.01 0.04) for all simula-
tions. Each mode was normalized in amplitude, thus making sure that both peaks
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Figure 6: The average RMSE of β (1)
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2 as a function of SNR.

were equally dominant. The PUMA algorithm was, as for all examples, allowed
100 iterations, as well as oracle model order information, and the initial grid for
the proposed 2-D method was, as for the following examples, set to 100. The
proposed method was allowed two iterations and used 33 grid points to zoom in
on each found mode.

The choice of λ governs the number of peaks that may be found. If set too
high, peaks with low amplitude will be suppressed, and if set too low, peaks that
originate from the noise will not be suppressed. However, due to the reweighting
step, a too small λwill be compensated for, and therefore the algorithm is relatively
robust to the choice of λ, as long as it is not set too large. Therefore, it is prefer-
able to set λ to a small value. In these examples, we set λ equal to the tenth largest
peak found in the periodogram. One could argue that we thereby limit the num-
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2 as a function of SNR.

ber of peaks that may be found, but that is easily avoided. If λ were set to equal
the amplitude of the r:th largest peak and, when using the method, we found r
peaks, one would run the algorithm a second time but with a somewhat smaller
λ value. In this way, we make sure that we do not in fact limit the algorithm
to a specified number of peaks. The test was performed using 250 Monte-Carlo
simulations, for each value of the considered SNR. Figures 4-7 illustrate the total
RMSE of all the unknown parameters. As can be seen from the figure, both the
parametric PUMA, which has been allowed oracle model order information, and
the proposed semi-parametric SEMA algorithms yield statistically efficient para-
meter estimates especially for larger larger SNR. Here, if the proposed algorithm
did not manage to estimate the number of modes correctly, that estimate was
then removed from the RMSE calculations for all methods. This happened two
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Figure 8: Ability to resolve two peaks as a function of the peak separation.

times out of 1500 Monte-Carlo simulations. The average computation times for
100 simulations on SNR level 20 was around 0.6 seconds for SEMA and 0.005
seconds for PUMA.

We proceed to examine the methods ability to resolve two closely spaced
peaks. This was done by fixing the first mode at frequency f1 = (0.4, 0.6),
and letting the second mode gradually approach the first. The modes were ini-
tially separated by 1/N1 and 1/N2 in each frequency dimension, and the test was
stopped when the modes were separated by 0.1/N1 and 0.1/N2. The data size
for this example was again 33× 31. The same SEMA settings as above were used.
We also compare the estimates to that of a zero-padded 2-D periodogram, where
213 zeros were padded in each dimension, but zoomed in on the correct frequen-
cies (±0.1 in each frequency). The damping parameters where fixed to 0.02 for
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Figure 9: Resulting estimates using 2-D SEMA on two closely spaced modes.

all modes and dimensions, and the SNR was set to 10 dB. Furthermore, PUMA
was again allowed complete knowledge of the number of peaks. To determine
whether or not two peaks were resolved, we ensured that the method fulfilled at
least two separation criteria: First, the peaks that were found had to be at least
within a rectangle of size 1/N1 × 1/N2 from the correct frequencies; Secondly,
the power of the valley between the peaks were allowed to be at most 90% of the
average power of the peaks. If these two criteria were met, the modes were deemed
to be resolved. The results are shown in Figure 8, where the x-axis should be in-
terpreted as the distance divided by N1, i.e., 0.1 means that the distance between
the modes is 0.1/N1. As may be seen from the figure, the periodogram’s ability
to distinguish the two modes drastically decreases as the modes become closer.
As may be expected. the PUMA method on the other hand manages to separate
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Figure 10: Resulting estimates using two dimensional periodogram on two closely
spaced modes.

the modes very well until they are about 0.3 apart from each other. As can be
seen from the figure, the SEMA method achieves about the same performance as
PUMA until the distance is less than 0.4. It should be stressed that the PUMA
estimator is given perfect prior knowledge about the number of modes, whereas
the 2-D SEMA has no such prior information. As is clear from the figure, the
SEMA estimate seems to be able to separate closely spaced modes almost as well
as the parametric and statistically efficient PUMA estimator, without imposing
any a priori model order information, as well as yielding far better performance
than the periodogram estimate. A typical result is shown in Figures 9 and 10,
where the peaks are separated by 0.5/N1. It clearly shows how SEMA manages to
separate the two peaks, whereas the periodogram only shows one peak.

81



Paper B

SNR (dB)
-5 0 5 10 15 20

lo
g

R
M

S
E

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5
SEMA 2D frequency
CRB frequency
SEMA 2D damping
CRB damping

Figure 11: The RMSE for the frequency and damping estimates using SEMA for
a non-unifomly sampled signal.

In the next example, we investigate how well SEMA works on non-uniformly
sampled data. We made 100 Monte-Carlo simulations on a simulated NMR sig-
nal containing 33 × 31 sample points, where the second dimension was sampled
uniformly and the first dimension was sampled in a non-uniformly manner, mim-
icking a typical high-dimensional NMR experiment. The frequency was ran-
domly selected and separated at least 3/N1 from each other, whereas the β para-
meters were set to β1 = (0.01, 0.02) and β2 = (0.04, 0.03) throughout the
simulation. Again, each mode was normalized in amplitude. In each dimension,
100 frequency grid points were used, and SEMA was allowed one iteration. Since
PUMA does not work with non-uniformly sampled data, we instead applied an
NLS search for the frequency and damping parameters in the mode estimation
stage (Algorithm 2). Figure 11 shows the result where the frequency and damp-
ing parameters RMSE are shown together with the corresponding CRB.

Finally, to also illustrate the performance for higher dimensional data, we
examine a 3-D data sets containing two unit amplitude damped modes at fre-
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Figure 12: The log RMSE for the frequency estimates using SEMA and 3-D
periodogram, together with the log RMSE for the damping estimates yielded
from SEMA.

quencies drawn uniformly from (0, 1), with damping parameters fixed to β1 =

(0.01, 0.06), β2 = (0.02, 0.05), and β3 = (0.03, 0.04), and having 13× 13× 13
samples. The modes were created so that they were separated at least by 1/N1 in
all dimensions. The summed RMSE of the six frequency components was com-
puted using 100 Monte-Carlo simulations for each considered SNR-level; ranging
from −10 dB to 10 dB in steps of 5 dB. These estimates were compared to the
N -dimensional PUMA estimator [10], and a 3-D periodogram zero-padded to
512 samples in each dimension. On our computer, it was not possible to allow
for more zero-padding due to memory constraints. Furthermore, the estimates
from the periodogram were selected as the two largest peaks in a cube of size
0.1× 0.1× 0.1 around each of the true frequencies, thereby disallowing the peri-
odogram to return any frequencies outside this area. The SEMA estimator were
given an initial frequency grid of 15 × 15 × 15 and allowed only one iteration.
The user parameter λ was set to either 0.35 or to the mean of the all but the
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ten largest peaks in the nonzero-padded periodogram, depending on which value
was the smallest. The results can be seen in Figure 12, showing the log RMSE
for the frequency estimates for the three methods, clearly showing the preferable
performance of the SEMA algorithm as compared to the periodogram, and sim-
ilar performance to the N -dimensional PUMA estimator, even though this has
been allowed oracle model order knowledge. The figure also shows the log RMSE
for the SEMA and PUMA damping estimates, obtained as a part of the proced-
ure. We note that the used frequency resolution is not limiting the quality of the
periodogram estimates via grid effects.

It is also worth noting that the evaluation time for the periodogram, imple-
mented using Matlab’s optimized FFT command, is only four times faster than
using our proposed SEMA 3-D implementation, even though SEMA is imple-
mented using standard Matlab code as well as estimating the damping paramet-
ers.

6 Conclusions

In this work, we have introduced a semi-parametric separable sparse model for
N -dimensional damped sinusoidal signal components, forming a computation-
ally efficient implementation exploiting the inherent structure of the resulting
tensors, which allows us to treat the dictionary for each sampling dimension seper-
ately. The proposed SEMA algorithms is found to yield highly accurate estimates
of the frequency and damping coefficients of the signal modes, without imposing
a priori knowledge on the number of modes present in the signal, a difficult for
previously proposed parametric methods. To further reduce computational com-
plexity, the proposed method reduces the 2-D dictionary into a sequence of 1-D
dictionary learning problems, specifically exploiting the properties of the damp-
ing coefficients in a novel dictionary learning approach. The performance of the
method is illustrated using 1-, 2-, and 3-D simulated data as compared to the
(parametric) PUMA estimator, the Cramér-Rao lower bound, and a zero-padded
periodogram estimate, as well as the corresponding non-parametric Capon and
IAA based estimators, and a Lasso-based estimator, clearly illustrating the achiev-
able performance gain.
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Sparse Semi-parametric Estimation of
Harmonic Chirp Signals
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Abstract

In this work, we present a method for estimating the parameters detailing an un-
known number of linear, possibly harmonically related, chirp signals, using an
iterative sparse reconstruction framework. The proposed method is initiated by
a re-weighted group-sparsity approach, followed by an iterative relaxation-based
refining step, to allow for high resolution estimates. Numerical simulations illus-
trate the achievable performance, offering a notable improvement as compared
to other recent approaches. The resulting estimates are found to be statistically
efficient, achieving the corresponding Cramér-Rao lower bound.

Key words: Harmonic chirps, multi-component, Block sparsity, Lasso,
Cramér-Rao lower bound

95



Paper C

1 Introduction

Many forms of everyday signals, ranging from radar and biomedical signals to
seismic measurements and human speech, may be well modeled as signals with
instantaneous frequencies (IF) that varies slowly over time [1]. Such signals are
often modeled as linear chirps, i.e., periodic signals with an IF that changes lin-
early with time. Given the prevalence of such signals, much effort has gone into
formulating efficient estimation algorithms of the start frequency and rate of de-
velopment, and then, in particular, for signals only containing a single (complex-
valued) chirp. One noteworthy such method is the phase unwrapping algorithm
presented by Djuric and Kay [2]; further development of this method can be
found in e.g. [3]. Other methods presented for single component estimation are,
for example, based on Kalman filtering [4, 5], or sample covariance matrix estim-
ates [6]. Similarly, in [7], the authors utilized the idea of single chirp modeling in
detecting non-stationary phenomena in very noisy data. Recent work has to a lar-
ger extent focused on also identifying multi-component chirp signals, such as the
maximum likelihood technique presented in [8], the fractional Fourier transform
method [9–11], and the multitapered synchrosqueezed transform [12]. Others
have used some Fourier based time-frequency estimate, e.g, the Wigner-Ville dis-
tribution, the reassigned spectrogram, or a Gabor dictionary, as a rough initial
estimate, which may then be refined using image processing techniques to fit a
linear chirp model [13–15]. The latter methods seem to render good estimates,
although they typically require rather large data sets to do so. The reassignment
method will yield perfect localization of the IF for each chirp component, given
enough noise-free observations. Regrettably, it is quite sensitive to noise corrup-
tion [16]. Furthermore, in [17] a Lasso-based framework to estimate linear chirp
signals was proposed that showed more robustness to noise as well as allowed for
estimating an unknown number of unrelated linear chirps. Also, some efforts
have been made to use a compressed sensing approach [18], where a dictionary
containing a small number of chirps is formed and the final estimates are found
using an FFT-based algorithm. The size of the dictionary was limited to the signal
length, thus impairing the estimation abilities. Also, the method did not allow for
any modeling of additional signal structure.

Often, the nonparametric methods have the advantage of computational ef-
ficiency, but generally also suffer from the poor resolution and high variance as
is inherent to the spectrogram (see, e.g. [19]). The parametric methods on the
other hand often have good performance and resolution, but generally require a
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priori knowledge of the number of components in the signal. Furthermore, it is
not uncommon that one also needs to have good initial estimates to be able to use
such methods; otherwise, the algorithm might suffer from convergence problems.

Many naturally occurring signals show a harmonic structure, i.e., a funda-
mental frequency with a number of overtones that are integer multiples of the
fundamental frequency. For such signals there are many proposed algorithms
(see e.g. [20–22]). However, in many signals the signal structure suffers from
inharmonicities, such that the spectral components are not exactly harmonic. Re-
cently, two works have also examined extensions to the case of a single source
harmonic chirp, containing a set of harmonically related chirps signals [23, 24].
These signals have lately started to attract interest due to their ability to model
non-stationary harmonical signals, such as many forms of audio signals [23]. In
these works, both a nonlinear least squares (NLS) [23] and a maximum likelihood
solution [24] were examined. In this work, we extend upon and generalize the
findings in [17], to account for an harmonic structure, where both the number of
sources and the number of harmonic overtones for each source are unknowns, as
well as allow for the case when some of the harmonics are missing. The algorithm
requires very few samples to get an accurate estimate of the parameters, which
allows the method to also model short segments of even highly non-linear chirp
signals as being piecewise linear over each of the segments, yielding a quite ac-
curate local signal representation. Furthermore, as long as the sampling times are
known, the algorithm will also handle irregularly sampled data. Typically, most
existing works rely on available a priori knowledge of the order of the models, al-
though such details are in general unavailable, and are notoriously hard to estim-
ate [21]. Recently, some efforts on alleviating these assumptions have been made
for purely harmonic signals [22], wherein a block-sparse framework is utilized to
form the estimates. The here presented work extends on these efforts, also allow-
ing for inharmonic sources, using the ideas introduced in [23]. We demonstrate
the performance of the proposed method using both real and simulated data, and
compare the results with the corresponding Cramér-Rao lower bound (CRLB),
which is also presented, as well as with competing algorithms. To improve on the
computational complexity, we present an efficient implementation, utilizing the
alternating direction method of multipliers (ADMM) framework (see, e.g. [25]).

In this paper, scalars will be denoted with lower case symbols, e.g. x, whereas
vectors will be denoted with bold lower case, x. Matrices will be denoted with
bold upper case letter, X. Furthermore, (·)T , (·)H , Re, and Im will be used to
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denote the transpose, the conjugate transpose, the real part, and the imaginary
part, respectively.

The paper is structured as follows: In the next section, we introduce the signal
model for harmonic chirp signals. Then, in section III, we derive the proposed
algorithms and present some heuristics for setting the user parameters. In sec-
tion IV, we present efficient implementations of the algorithms, whereas in sec-
tion V, we illustrate the available performance of the introduced methods using
numerical results. Finally, in section VI, we conclude upon our work.

2 Signal model

Consider

y(t) =
K
∑

k=1

Lk
∑

ℓ=1

αk,l e
i2πℓφk (t)

+ e(t), t = t0, . . . , tN −1 (1)

where K and Lk denote the unknown number of fundamental chirps and the
number of unknown harmonics for the kth component, respectively, whereas N
denotes the number of available samples, t the sample times, which may be ir-
regular, αk the complex valued amplitude, φk(t) the time dependent frequency
function, and e(t) an additive noise term, here assumed to be white, circularly
symmetric, and Gaussian distributed. Furthermore, the chirp signal is assumed
to be reasonable linear, at least under short time intervals, which allows φk(t) to
be modeled as

φk(t) = f 0
k t +

rk

2
t2 (2)

yielding the IF function

φ′
k(t) = f 0

k + rkt (3)

where f 0
k and rk denote the starting frequency and the frequency rate, i.e., the

frequency slope of the chirp, for chirp component k, respectively. The considered
problem consists of estimating K , Lk, f 0

k , and rk, as well as, in the process, also
the phase, φk,ℓ , ∠αk,ℓ, and the magnitude, ak,ℓ , |αk,ℓ|. Finally, we assume that
min

{

ℓφ′
k(t)
}

≥ 0 and max
{

ℓφ′
k(t)
}

≤ Fs, ∀(k, ℓ), where Fs denotes the sampling
frequency, in order to ensure that all frequencies in the signal are observable, i.e.,
fulfilling the Nyquist-Shannon sampling theorem.
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3 Algorithm

In order to form an efficient algorithm for estimating the unknown parameters in
(1), one may rewrite (1) as

y = D̃ã + e (4)

where

y =

[

y(t0) . . . y(tN −1)
]T

(5)

ã =

[

α1,1 . . . α1,L1 . . . αK ,LK

]T
(6)

D̃ =

[

d1,1 . . . d1,L1 . . . dK ,LK

]

(7)

dk,ℓ =

[

ei2πℓφk(t0) . . . ei2πℓφk(tN−1)
]T

(8)

and where e is formed in the same manner as y. To allow for an unknown number
of components, we expand the signal representation in (4) into one formed using
a large dictionary containing P ≫∑K

k=1 Lk candidate chirps, such that

y ≈ Da (9)

where D is an N × P dictionary matrix, and a the corresponding amplitudes,
which thus mostly contains zeros, but with (at least)

∑K
k=1 Lk non-zero elements.

It is here assumed that P is selected sufficiently large so that the corresponding
dictionary elements are close to the location of the true components and also
spans the the relevant parameter space, e.g. ranging from 0 to Fs for the starting
frequency parameter (see also [26, 27] for a related discussion). Solving (9) using
ordinary least squares, if feasible, would yield a non-sparse solution, i.e., most
of the indexes of a would be non-zero. Instead, we here impose the harmonic
structure upon the solution by forcing it to choose between the different candidate
chirp groups, while allowing for one or many of the overtones to be missing. To
impose this structure, we form the minimization

minimize
x

||y−Dx||22 + λ||x||1 + γ
Q
∑

q=1

||x[q]||2 (10)

where x[q] selects all elements in x corresponding to block q in D, and Q denotes
the number of blocks considered, where each block contains a fundamental chirp
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and its overtones, i.e., for block q, x[q] denotes the elements of x that corresponds
to

[

dq,1 . . . dq,Lq

]

(11)

in the dictionary. The first term in (10) measures the distance between the signal
and the model, the second term enforces an overall sparsity between the available
chirp candidates and thus limits the number of chirps that may be part of the
solution. The third term in (10) acts as a sparsity enhancer for the number of
harmonically related chirp groups that are allowed in the solution, thus promoting
a solution that has fewer number of activated groups. Together, the two last terms
in (10) promotes a solution that has few harmonically related chirp groups, and
also allows for chirps within a group to be sparse. This optimization problem is
convex as it is a sum of convex functions, and the solution may thus be found
using standard interior-point methods, such as, e.g., SeDumi [28] and SDPT3
[29]. Furthermore, γ and λ are tuning parameters controlling the sparsity of
the groups and the sparsity within the groups, respectively. It is worth noting
that if setting γ = 0, one solves the problem of finding unrelated chirps in the
signal. Even though P is finely spaced, the quality of the solution obtained from
(10) will depend on the grid structure of D, i.e., if the true components are not
contained in the dictionary, the components that are the closest to the true chirps
will be activated, ensuring that the corresponding indices in x will be non-zero.
Therefore, the solution attained from (10) will be biased in accordance to the
chosen grid structure of D. To avoid this bias, the estimation procedure involves
an additional step consisting of a nonlinear least squares (NLS) search to further
increase the resolution. In order to do so, let the residual from (10) be formed as

r = y−Dx (12)

Then, each harmonic chirp component may be iteratively updated by first adding
one component to the residual formed in (12), conducting a NLS search for the
parameter estimates, initiated using the estimates found from (10), and then re-
move the found component using (12). When all components have been updated
in this way, one may continue updating the residual with the newly refined estim-
ates. The final estimates are found by iterating the entire refinement procedure a
few times.

In the above algorithm, the user has to select a value for the parameters γ
and λ. Of these, the value of γ penalizes the number of harmonic chirps allowed
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in the solution, meanwhile the value of λ penalizes the overall number of chirps,
thus allowing for sparsity within each harmonic chirp component. The values
of γ and λ are commonly chosen through cross-validation [30], or by some data
dependent heuristics. In the case of γ = 0, we herein suggest selecting

λ =
||y||22
2N

(13)

which has empirically been shown to provide a reliable choice of λ, for the here
considered data lengths. When both tuning parameters are active, the problem of
setting good values becomes more complicated, since the two penalties interact.
We have empirically found that, as long as λ is reasonably small, one may use (13)
as a rule of thumb for also setting γ. To further increase the robustness to the
choice of γ and λ, and to further enhance the sparsity, we propose a re-weighted
approach, based on the technique introduced in [31]. In this approach, one solves
the minimization iteratively, where, at every iteration, two weight matrices, W

and V, with weights w1, . . . ,wP and v1, . . . , vQ on the diagonals and zeros
elsewhere, are used. The diagonal elements in W and V are updated as

w(b)
p =

1

|x(b−1)
p |+ ε

, p = 1, . . . ,P (14)

v(b)
q =

(

1

||x(b−1)[q]||22 + ε

)1/2

, q = 1, . . . ,Q (15)

where the superscript b denotes the iteration number, and ε > 0 is a small offset
parameter, which prevents the solution from diverging. At each iteration, one
thus solves

minimize
x

||y−Dx||22 + λ||W(b)x||1 + γ
Q
∑

q=1

v(b)
q ||x[q]||2 (16)

The resulting algorithm is outlined in Algorithm 1, where D(·, k) and x(k) denote
the kth column and the kth index of the matrix D and the vector x, respectively.
Furthermore, let K̂ denote the number of non-zero elements in the solution from
(10), and let the corresponding indices in x make up the index set IK̂ . Clearly, one
must select an appropriate stopping criteria for the second loop in Algorithm 1.
This may be done in various ways, such as when the parameter estimates does no
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Algorithm 1 The HSMUCHES algorithm

1: Initiate wp = 1, for p = 1, . . . ,P, and vq = 1,
for q = 1, . . . ,Q

2: for b = 1, . . . do

3: Solve (16)
4: Update (14) and (15)
5: end for

6: Compute (12)
7: for j = 1,. . . do

8: for k = 1, . . . , K̂ do

9: z = r + D(·, IK̂ (k))(j)x(IK̂ (k))(j)

10: Using z, update D(·, IK̂ (k))(j) and x(IK̂ (k))(j) via NLS
11: Subtract the refined estimates from z

12: end for

13: end for

longer improve significantly in each iteration, or by setting a maximum number of
iterations. Empirically, we found that 10 iterations where enough for convergence
and through out this work, we used this as stopping criteria. It should be noted
that the re-weighted approach introduces the tuning parameter ε. In this paper,
we have set ε to be

ε =
N

||y||22
(17)

which is in accordance with the discussion in [31], and which has been empirically
shown to yield reliable estimates.

It should be noted that if γ = 0, the estimator does not assume any harmonic
structure, and therefore constitutes solely a multi-chirp estimator; we term this the
Sparse MUlticomponent Chirp EStimator (SMUCHES). In the case γ > 0, the
estimator also allows for the possibility of harmonic chirp components; we term
this the Harmonic Sparse MUlticomponent Chirp EStimator (HSMUCHES).

4 Efficient implementation

We proceed to examine efficient implementations of the proposed estimators us-
ing the ADMM framework. The discussion here is focused on the HSMUCHES
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estimator, although the implementation also works for the SMUCHES algorithm
by simply setting γ = 0. In general, an ADMM solves problems in the form

minimize
x,z

f (x) + g(z)

subject to Ax + Bz = c (18)

In our case, A = I, B = −I, c = 0, f (x) = ||y − Dx||22, and g(z) =

λ||z||1 + γ
∑Q

q=1 ||z[q]||2, where I denotes the identity matrix of size N × P.
The augmented Lagrangian for this minimization is formed as

Lρ(x, z,u) = f (x) + g(z) +
ρ

2
||x− z + u||22 (19)

where u is the scaled dual variable, and ρ is the penalty parameter, penalizing the
distance between z and x. The ADMM finds the solution to (16) by iteratively
solving (19) for each variable separately. The steps in the ADMM are

x(k+1)
= argmin

x

(

f (x) +
ρ

2
||x − z(k)

+ u(k)||22
)

(20)

z(k+1)
= argmin

z

(

g(z) +
ρ

2
||x(k+1) − z + u(k)||22

)

(21)

u(k+1)
= x(k+1) − z(k+1)

+ u(k) (22)

To find the solution to (20), one differentiates (19) with respect to x and put it
equal to zero, yielding

x(k+1)
=

(

DH D + ρI
)−1 (

DH y + ρ
(

z(k) − u(k)
))

(23)

To solve (21), one needs to take some further care as g(z) is not differentiable at
z = 0. However, it can be shown (see e.g. [32]) that the solution to (21) is

z(k+1)
= S

(

S
(

x(k+1)
+ u(k), λ/ρ

)

,γ/ρ
)

(24)

where S and S are soft thresholds defined as

S(x, κ) =
xj

|xj|
max(|xj| − κ, 0) (25)

S(x, κ) =
x[q]

||x[q]||2
max(||x[q]||2 − κ, 0) (26)
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for q = 1, . . . ,Q, where S should be interpreted elementwise. Observing that
f (x) and g(z) are closed, proper, and convex functions, and given ρ > 0, then,
under some mild assumptions, if there is a solution to (16), then the algorithm
will converge to this solution [33, 34]. Also, the choice of ρ will only effect the
convergence rate, not whether or not the method will converge. Using this im-
plementation, the computational complexity for SMUCHES is, for the Lasso
part, about N 3 + N 2P. The computations in this part are dominated by (23),
which only needs to be calculated once throughout the minimization. Further-
more, the computational complexity of the inverse is significantly decreased using
the Woodbury matrix identity [35]. The NLS part of the proposed algorithm
requires a computational complexity of about K̂ NP.

It may be noted that a dictionary similar to (7) was proposed in [18]; in this
case, the dictionary was restricted to only contain N candidate chirps. As a result,
the dictionary experienced low correlation between the columns, for which case
the restricted isometry properties (RIP) will hold, suggesting that the signal may
be recovered with high probability (see, e.g., [36]). The same result would hold
for the dictionary in (7), if restricted in the same manner. However, to allow
for high resolution estimates, the dictionary should, as discussed, be extended to
contain many more chirp candidates, indicating that the dictionary columns will
be highly correlated, thereby no longer satisfying the RIP. Fortunately, as is also
shown in the next section, practical evidence indicate that even highly correlated
dictionaries enjoy excellent signal recovery properties.

5 Numerical results

In order to evaluate the performance of the proposed algorithms, we examine
their behavior on both real and simulated data, comparing them both to other
alternative techniques, and to the CRLB (as derived in Appendix A). All the fol-
lowing root mean squared error (RMSE) curves are based on 1000 Monte Carlo
simulations.

Initially, we examine a simulated uniformly sampled signal of length N = 20,
consisting of two non-harmonic chirp components, as depicted in Figure 1, which
is corrupted by white circularly symmetric Gaussian noise with a signal to noise
ratio (SNR) of 10 dB, which is here defined as

SNR = 10log10

(

Py

σ2

)

(27)
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Figure 1: The figure shows the true (solid) and the estimated (dashed) IF.

where Py denotes the power of the signal, and σ2 the variance of the additive
noise. The resulting estimates from the proposed SMUCHES method and for
the reassigned spectrogram [16] are shown in Figures 1 and 2, respectively. As can
be seen in Figure 2, the reassigned spectrogram finds the two chirp components,
but the estimates are blurred, as well exhibiting jumps in the frequencies. On the
other hand, as can be seen in Figure 1, the proposed method manages to find the
chirp components without any such ambiguities.

We continue by showing how the proposed SMUCHES method may be used
in tracking a non-linear chirp. In this example, we simulated an exponential chirp
component defined as

φ(t) =
(

rt − 1

log(r)

)

f0 (28)

where f0 and r are parameters determining the starting frequency and the expo-
nential rate of change, respectively. The signal, containing N = 105 samples, was

105



Paper C

Figure 2: The figure shows the estimated time-frequency distribution of the chirp
signals using the reassigned spectrogram.

divided in 7 equally sized sections, such that each segment may be reasonably well
modeled as a linear chirp. The signal was corrupted by a white circularly symmet-
ric Gaussian noise with SNR = 20 dB. The proposed algorithm was applied on
each signal segment. The resulting chirp estimate is depicted in Figure 3, where
it is clearly shown how the proposed method manages to estimate the evolving
parameters of the non-linear chirp, showing that the local linear approximation is
valid.

Next, we examine the estimation performance of the SMUCHES method as a
function of SNR. In this example, the simulated signal contains only a single chirp
component, with starting frequency f 0 = 0.6/π, frequency rate r = 0.03/π,
amplitude α = 1, and a uniformly distributed random phase φ ∈ U [− 1

2 ,
1
2 ),

which was randomized for each simulation. The sample length is set to N =
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Figure 3: The estimated chirp in dashed lines as compared to the true chirp.

20. Figures 4 and 5 show the RMSE of the SMUCHES estimator, where λ
and ε were selected using (13) and (17), as well as the discrete chirp Fourier
transform algorithm (DCFT) [9], the algorithm presented by Djuric and Kay
in [2], both being allowed oracle knowledge of the number of chirps in the signal,
and the CRLB. It should be noted that the proposed methods do not assume any
model order information, as they are estimating this as part of the optimization;
clearly, this also implies that the method may estimate the wrong model orders.
However, the proposed SMUCHES method only estimated the wrong number
of components in 1 out of the 1000 simulations, and this at the SNR = 5 dB
level. For the other SNR levels, the order estimations were without any errors.
To assert a fair comparison, the simulation where the proposed method estimated
the wrong model order was removed from all methods, and is thus not included
in the RMSE graphs. As is clear from Figures 4 and 5, the SMUCHES method,
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Figure 4: Performance of the proposed SMUCHES method, as compared with
the Djuric-Kay method, the DCFT method, and the CRLB, when estimating the
starting frequency of a single chirp.

without using any prior knowledge about the number of chirps, manages to attain
the CRLB, as well as outperforming the Djuric-Kay algorithm, even though the
latter has been allowed oracle model order information. Furthermore, it can be
seen that the DCFT algorithm is stuck to its initial grid, which suggests why
it does not manage to improve beyond a certain limit when the SNR increases.
Examining the computational complexities, it was found that the Djuric-Kay and
the DCFT algorithms (given oracle model orders) are notably faster to compute
than the presented SMUCHES implementation, requiring on average (computed
over 1000 simulations on a regular PC, for SNR = 20 dB) 2.3 ·10−4 , 5.1 ·10−3,
and 5.0 · 10−1 seconds to execute, respectively.

We proceed by examining the performance on multicomponent chirp signals.
Since the competing methods, which we previously compared with, cannot be
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Figure 5: Performance of the proposed SMUCHES method, as compared with
the the Djuric-Kay method, the DCFT method, and the CRLB, when estimating
the frequency rate of a single chirp.

used on multicomponent data, we only show the results for the proposed method
as compared to the corresponding CRLB. Figure 6 depicts the RMSE of the para-
meter estimations, as a function of SNR. The starting frequency of the chirps
were f 0

1 = 0.6/π and f 0
2 = 1.2/π, and the slope rates were r1 = 0.03/π and

r2 = 0.09/π. The amplitudes were set to unity and the phase were drawn as
φ ∈ U [− 1

2 ,
1
2 ) at each simulation. Once again, λ and ε were chosen using (13)

and (17). As one can note from Figure 6, the proposed method follows the CRLB
for SNR levels greater or equal to 10 dB. In this case, the proposed method es-
timated the wrong model order 26 times out of the 1000 simulations, all for the
SNR = 5 dB case, and not at all for higher SNRs. Again, these simulations
were removed from the proposed method’s RMSE, and the CRLB was adjusted
correspondingly.
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Figure 6: Performance of the proposed SMUCHES method when estimating the
starting frequencies (top curves) and the frequency rates (bottom curves) of two
non-crossing linear chirps, as compared to the CRLB.

Next, we examine the performance on irregularly sampled data constituting
of 20 observations from a chirp signal with the same chirp components as in the
previous example. The sampling times where drawn from a rectangular distribu-
tion in the range (0, 20] and are depicted in Figure 7. The phase was drawn from
U [− 1

2 ,
1
2 ) for each simulation. Figure 8 shows the resulting RMSE results. As

for the earlier examples, for SNR greater than 5 dB, the proposed method attains
the CRLB. The main difference to the uniform sampled case is that the resulting
RMSE for SNR = 5 dB is worse. Also, the number of times the proposed method
estimated the wrong model order increased to 51 times out of 1000, again, only
for the SNR = 5 dB case. As before, for SNR greater than 5 dB, no errors in
the model order estimation were made. Though slightly more sensitive to non-
uniformly sampled data, it can be concluded that the proposed method is suitable
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Figure 7: The distribution of the sample times.

to use also for non-uniformed sampled data.

We proceed to examine the performance on simulated harmonic data. The
simulated chirp signal consist of one fundamental frequency and 3 overtones
(K = 1 and L1 = 4), each with unit amplitude and uniformly distributed ran-
dom phase. The fundamental starting frequency was set to f 0 = 0.2 ∗ 3/π and
the frequency slope to r = −0.004∗3/π. The resulting RMSE are shown in Fig-
ures 9 and 10, as a function of SNR, when using N = 20 samples. The RMSEs
for both the starting frequency and the frequency slope, are measured as mean
value of the RMSE for each of the four components in the signal, i.e., for the fun-
damental frequency and the two overtones. Here, HSMUCHES estimated the
wrong model order 54 times out of 1000 at SNR = 5 dB, 5 times out of 1000 at
SNR = 10 dB, and made no mistakes at higher SNRs.

As SMUCHES does not take the harmonicity inherent in the signal in ac-
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Figure 8: Performance of the proposed SMUCHES method when estimating
the starting frequencies (top curves) frequency rates (bottom curves) of two non-
crossing linear chirps for irregularly sampled data, as compared to the CRLB.

count, there are 18 parameters (model order, noise variance, and four parameters
for each component) to estimate using only 20 samples, whereas HSMUCHES
only has to estimate twelve parameters (model order, number of overtones, start-
ing frequency, frequency slope, phase, noise variance, and four amplitudes). As
a result, it can be expected that SMUCHES will make more order estimation
mistakes than HSMUCHES, which was also found to be the case. Out of the
1000 simulations, SMUCHES made 906 model order errors at SNR = 5 dB,
261 at SNR = 10 dB, 21 at SNR = 15 dB, 8 at SNR = 20 dB, and 3 errors
at SNR = 25 dB. The tuning parameters for SMUCHES were selected using
(13) and (17), and for HSMUCHES γ using (13), with λ = 0, and ε = 10−4.
Finally, we show the performance on real data, containing sounds from bats [37].
Many forms of audio sources, such as voiced speech and many forms of music,
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Figure 9: Performance of the proposed HSMUCHES methods applied to an
harmonic chirp signal with one fundamental frequency and three overtones, as
compared with the SMUCHES method and the CRLB, when estimating the
starting frequencies.

may be well modelled as harmonic signals. Thus, it should be expected that the
sound from a bat may contain a harmonic structure. The spectrogram of the
bat signal is shown in Figure 11, suggesting that the signal contains one funda-
mental chirp with, at most, two overtones. Figure 12 shows the estimated har-
monic structure when using HSMUCHES. Comparing the figures, it is clear that
the HSMUCHES algorithm is well able to capture the changing frequencies in
the harmonic signal, achieving a substantially better resolution than the spectro-
gram. As before, the tuning parameters for SMUCHES were selected using (13)
and (17), and for HSMUCHES, γ was set to two times (13), λ = 0.01, and
ε = 10−4.
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Figure 10: Performance of the proposed HSMUCHES methods applied to an
harmonic chirp signal with one fundamental frequency and three overtones, as
compared with the SMUCHES method and the CRLB, when estimating the
frequency slopes.

6 Conclusion

In this paper, we have proposed two semi-parametric algorithms for estimating the
parameters of an unknown number of chirp and harmonic chirp components in
noisy data, respectively. The methods are shown to work well even for very short
signals, and allow for both uniform and non-uniform sampled data. The methods
are shown to attain the corresponding CRLB for both cases. Furthermore, it is
shown in the paper that the methods can be also used to approximate non-linear
chirps, by dividing the data into small sections, in which the non-linear chirps can
be assumed to be reasonably linear. Numerical examples illustrate the preferable
performance on both real and simulated signals.

114



7. Acknowledgement
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8 Cramér-Rao lower bound

The CRLB for a multi-component chirp signal has been derived in multiple pa-
pers, see e.g. [8]. Here, we derive the CRLB for the case of both regular frequen-
cies and irregular sampling, as well as harmonic overtones. The Fisher informa-
tion matrix (FIM) for any signal observed under complex valued additive white
noise, with variance σ2, can be set up block-wise as

115



Paper C

0.5 1 1.5 2

20

30

40

50

60

70

Time (s)

F
re

q
u

en
cy

 (
H

z)

Figure 12: The figure shows the estimated time-frequency content of the bat
signal using the proposed HSMUCHES algorithm.

Jij =
2
σ2

N−1
∑

n=0

(

∂Re{y(tn)}

∂θi

∂Re{y(tn)}

∂θj
+

∂ Im{y(tn)}

∂θi

∂ Im{y(tn)}

∂θj

)

(29)

where θk = [f 0
k , rk , φk,1 , ... , φk,Lk

, αk,1 , ... , αk,Lk
]T , Lk is the number of har-

monics, and αk,ℓ is the kth amplitude of the ℓth harmonic. Hence, the FIM will
have (K × K ) blocks, such that

J =













J11 J12 · · · J1K

J21 J22 · · · J2K

· · · · · · . . .
...

JK 1 JK 2 · · · JKK













(30)
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8. Cramér-Rao lower bound

By denoting the Fisher information between the two parameters u and v as

I(u, v) ,
∂Re{y(tn)}

∂u

∂Re{y(tn)}
∂v

+
∂ Im{y(tn)}

∂u

∂ Im{y(tn)}
∂v

(31)

each block in the FIM may be found as
Jkj =

2

σ2

N −1
∑

n=0







I
(

θk(1),θj(1)
)

· · · I
(

θk(1),θj(Mj)
)

...
. . .

...
I
(

θk(Mk),θj(1)
)

· · · I
(

θk(Mk),θj(Mj)
)







where Mk = 2 + 2Lk denotes the number of parameters for the kth component.
Defining

Ψk,ℓ(tn) , 2π
(

ℓ

(

f 0
k tn +

rk

tn
t2
n

)

+ φk

)

(32)

and
ΔΨk,ℓ,j,m(tn) , Ψk,ℓ(tn)−Ψj,m(tn) (33)

each pairwise Fisher information is found as

I(fk, f 0
j ) =

Lk
∑

ℓ=1

Lj
∑

m=1

αk,ℓαj,m4π2
ℓmt2

n cosΔΨk,ℓ,j,m(tn)

I(f 0
k , rj) =

Lk
∑

ℓ=1

Lj
∑

m=1

αk,ℓαj,m2π2
ℓmt3

n cosΔΨk,ℓ,j,m(tn)

I(f 0
k ,φj,m) =

Lk
∑

ℓ=1

αk,ℓαj,m4π2
ℓtn cosΔΨk,ℓ,j,m(tn)

I(f 0
k , αj,m) =

Lk
∑

ℓ=1

−αk2πℓtn sinΔΨk,ℓ,j,m(tn)

I(rk, f 0
j ) =

Lk
∑

ℓ=1

Lj
∑

m=1

αk,ℓαj,m2π2
ℓmt3

n cosΔΨk,ℓ,j,m(tn)

I(rk, rj) =

Lk
∑

ℓ=1

Lj
∑

m=1

αk,ℓαj,mπ
2
ℓmt4

n cosΔΨk,ℓ,j,m(tn)

I(rk ,φj,m) =

Lk
∑

ℓ=1

αk,ℓαj,m2π2
ℓt2

n cosΔΨk,ℓ,j,m(tn)

I(rk , αj,m) =

Lk
∑

ℓ=1

−αk,lπℓt
2
n sinΔΨk,ℓ,j,m(tn)
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I(φk, f 0
j ) =

Lk
∑

ℓ=1

Lj
∑

m=1

αk,ℓαj,m4π2mtn cosΔΨk,ℓ,j,m(tn)

I(φk, rj) =

Lk
∑

ℓ=1

Lj
∑

m=1

αk,ℓαj,m2π2mt2
n cosΔΨk,j,ℓ,m(tn)

I(φk,ℓ,φj,m) = αk,ℓαj,m4π2 cosΔΨk,ℓ,j,m(tn)

I(φk, αj,m) =

Lk
∑

ℓ=1

−αk,ℓ2π sinΔΨk,ℓ,j,m(tn)

I(αk,ℓ, f 0
j ) =

Lj
∑

m=1

αj,m2πmt sinΔΨk,ℓ,j,m(tn)

I(αk,ℓ, rj) =

Lj
∑

m=1

αj,mπmt2
n sinΔΨk,ℓ,j,m(tn)

I(αk,ℓ,φj,m) = αj,m2π sinΔΨk,ℓ,j,m(tn)

I(αk,ℓ, αj,m) = cosΔΨk,ℓ,j,m

Finally, the CRLB is found as the inverse of the FIM.
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Generalized Sparse Covariance-based
Estimation

Johan Swärd1, Stefan Ingi Adalbjörnsson1, and Andreas
Jakobsson1

1Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

In this work, we generalize the recent sparse iterative covariance-based estimator
(SPICE) by extending the problem formulation to allow for different norm con-
straints on the signal and noise parameters in the covariance model. The res-
ulting extended SPICE algorithm offers the same benefits as the regular SPICE
algorithm, including being hyper-parameter free, but the choice of norms allows
further control of the sparsity in the resulting solution. We also show that the pro-
posed extension is equivalent to solving a penalized regression problem, providing
further insight into the differences between the extended and original SPICE for-
mulations. The performance of the method is evaluated for different choices
of norms, indicating the preferable performance of the extended formulation as
compared to the original SPICE algorithm. Finally, we introduce two implement-
ations of the proposed algorithm, one gridless formulating for the sinusoidal case,
resulting in a semi-definite programming problem, and one grid-based, for which
an efficient implementation is given.

Key words: Covariance fitting, sparse reconstruction, convex optimization
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1 Introduction

Many problems in signal processing may be well described using a linear model,
such that

y = Bx + e (1)

where y ∈ C
N is a vector of measurements, B a matrix of regressors, x the para-

meter vector, and e denotes an additive (complex-valued) noise term, typically
assumed to have zero mean and covariance matrix Σ. This model occurs in a
wide range of applications, such as in, e.g., audio and speech processing [1,2] and
spectroscopy [3–7].

Earlier works have primarily focused on parametric and non-parametric solu-
tions to this problem. The latter kind of estimators typically do not assume any
a-priori information about the signal, including assumptions on the model order
or the signal structure. As a result, such techniques are more robust to uncertain-
ties in the model assumptions that parametric solvers generally impose. However,
this robustness also implies that non-parametric methods are, in general, not able
to achieve the same level of performance as parametric approaches, given that the
made model assumptions hold [8].

Recently, notable efforts have been made to combine these two approaches,
developing so-called semi-parametric approaches, which typically only make some
weak model structure assumptions, such that assuming that the solution is sparse,
although restrain from making any stronger model order assumptions.

This is done by forming the dictionary, B ∈ C
N ×M , using M ≫ N signal

candidates, whereof only a few are assumed present in the signal. This allows
the problem to be reformulated as one of the subset of these M candidates best
approximating the measured signal y. This is typically done by enforcing sparsity
on the vector x, trading off model fit and the resulting level of sparsity.

In [9], this was done by introducing the Lasso optimization problem

minimize
x

1

2
||y− Bx||22 + μ||x||1 (2)

where the first term penalizes the ℓ2-norm distance between the model and the
signal, whereas the second term enforces sparsity upon the vector x, with μ being
a user parameter governing the trade-off between the two terms. During recent
years, many other sparse techniques have been proposed (see, e.g., [10–15] and
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the references therein). Many of these methods suffer from the drawback of re-
quiring the selection of one or many user parameters, often being a non-trivial
task. In some cases, the user parameters may be selected using physical aspects, or
via some kind of rule of thumb (see, e.g., [16]). Other ideas include solving the
problem for all different values of the parameter [15, 17], or to use some iterat-
ive process for aiding in the choice [10, 18, 19]. Another common way is to use
cross-validation to find a suitable regularization parameter (see, e.g., [15]).

In [20], a novel sparse technique based on a covariance fitting criteria was
proposed, avoiding the requirement of selecting any user parameters (see also [21–
25]). The proposed minimization criteria was there formed as

minimize
p̃≥0

∣

∣

∣

∣

∣

∣R1/2(p̃)
(

R(p̃)− yy∗)
∣

∣

∣

∣

∣

∣

2

F
(3)

where || · ||F denotes the Frobenius norm, (·)∗ the conjugate transpose, and where

R(p̃) = APA∗ (4)

A =

[

B I
]

(5)

p =

[

p1 . . . pM

]T
(6)

σ =

[

σ1 . . . σN

]T
(7)

p̃ =

[

pT σT
]T

(8)

P = diag
(

p̃
)

(9)

with I denoting the N × N identity matrix, (·)T the transpose, σk the noise
variance for sample k, and diag(z) the diagonal matrix with the vector z along its
diagonal, and zeros elsewhere. It was further shown that solving (3) is equivalent
with solving [20]

minimize
p̃≥0

y∗R−1(p̃)y + ||W̃p̃||1 (10)

where

W̃ = diag
([

w1 . . . wM+N

])

(11)

wk = ||ak||22/||y||22, for k = 1, . . . ,N + M (12)
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with ak denoting the kth column of A.
Clearly, both (2) and (10) minimize a signal fitting criteria. In the former

case, this is done by minimizing the distance between the model and the data,
whereas the latter measures the distance through the inverse of the (model) co-
variance matrix. Both methods also impose an ℓ1 norm constraint, with the
first one penalizing the parameters corresponding to the different candidates in
the dictionary B, whereas the second, the so-called SPICE formulation, penalizes
both the parameters corresponding to B and the parameters corresponding to the
noise.

In this work, we propose to generalize the SPICE formulation to allow for dif-
ferent penalties on p and σ, as given in (6) and (7), respectively, for two different
cases. The first case considers the situation when all noise variances, σk, are equal,
whereas the second considers the case when they are allowed to differ. In the case
of equal noise variances, we show that the choice of norm for the noise parameters
corresponds to different choices of the regularizing parameter, μ. In the case when
the noise variances are allowed to be different, the choices of norms are similarly
shown to affect the sparsity level. This results in the fact that even if the different
SPICE formulations are hyper-parameter free, one may interpret the choices of
norms as the equivalence of selecting hyper-parameters dictating the sparseness
of the solution, and that the original SPICE version is equivalent to one partic-
ular choice of norms. We also provide an efficient grid-based implementation of
the proposed method, which, indirectly, allows for solving (weighted) square-root
Lasso problems for a wide choice of regularizing parameters. Additionally, we state
a semi-positive programming (SDP) problem that allows for solving the proposed
SPICE extension, for the sinusoidal case, without the use of a grid search.

2 The {r, q}-SPICE formulation

It is worth noting that the second term in (10) penalizes the magnitude of each pj

and σk, thus promoting a sparse solution with only a few of the terms in p̃ being
non-zero. However, since the penalty does not distinguish between setting the
different terms to zero, one may expect that some of the σk may be forced to be
zero as a part of the minimization.

If this happens, the result will be solutions that are less sparse than desired.
Intuitively, this may be understood by interpreting (10) to require that R is in-
vertible. Thus, setting some σk to zero will cause the resulting covariance matrix,
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R, to lose rank, unless some of the pj are non-zero. This was also observed in [26],
wherein a gridless formulation of SPICE was presented. For this formulation, it
was shown that R had full rank with probability one, resulting in an overestima-
tion of the model order. As a result, forcing any σk to zero will yield a less sparse
p, thus increasing the estimated model order. This implies that, in the original
SPICE formulation, σk and pj are competing for the sparseness allowed in the
solution of (10). In this work, we propose to treat the σk terms different from the
rest of the pj terms. A naive way of doing this could be to omit σk from the cost
function of (10), but this would result in all the pj terms being set to zeros, as σk

may then take on any value which will make R full rank, and will thus make the
pj terms redundant. Clearly, the σk terms must instead be penalized to produce
a meaningful solution to (1). This may be done in different ways, for instance
using

minimize
p≥0, σ≥0

y∗R−1y + ||Wp||r + ||Wσσ||q (13)

where r, q ≥ 1, such that

||Wp||r =
[

M
∑

k=1

wr
kpr

k

]1/r

(14)

||Wσσ||q =

[

N
∑

k=1

w
q
M+kσ

q
k

]1/q

(15)

W = diag
([

w1 . . . wM

])

(16)

Wσ = diag
([

wM+1 . . . wM+N

])

(17)

Thus, using r = 1 and q = 1 yields the original SPICE formulation. More
general regularization functions could also be used. Furthermore, one could use
an approach reminiscent of the one presented in [27], considering also the case
when all 0 < r, q < 1, resulting in a concave penalty term. However, in this
work, we restricted our attention to the {r, q}-norm case, using r ≥ 1 and q ≥ 1,
terming the result the {r, q}-SPICE formulation.

3 Linking {r,q}-SPICE to penalized regression

To examine the implications of introducing the r- and q-norms in the SPICE
formulation, we examine the connection between {r, q}-SPICE and a penalized
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regression problem, such as the Lasso expression in (2). In doing so, we follow the
derivation in [23,24], distinguishing between the case when each σk is allowed to
have a distinct value, and the case when all σk are equal. To do so, we recall the
following lemma (see also [24]):

Theorem 3.1. Let

P = diag
([

p1 . . . pM

])

(18)

and

Σ = diag
([

σ1 . . . σN

])

(19)

Then,

y∗R−1y = minimize
x

(y− Bx)∗Σ−1(y− Bx)

+

M
∑

k=1

|xk|2/pk (20)

with the minimum occurring at

x̂ = ΣB∗R−1y (21)

3.1 Varying noise variance

Using Lemma 1, one may express (13) as

minimize
x,p,σ

N
∑

k=1

|yk − b∗
k x|2/σk +

M
∑

k=1

|xk|2/pk

+

(

M
∑

k=1

wr
kpr

k

)1/r

+

(

N
∑

k=1

w
q
M+kσ

q
k

)1/q

(22)

Solving (22) for pj yields

pj = w
− r

r+1

k |xk|
2

r+1 ||W1/2x||
r−1
r+1
2r

r+1
(23)

130



3. Linking {r,q}-SPICE to penalized regression

Differentiating the function to be minimized in (22) with respect to σk and setting
it to zero yields

−|yk − b∗
kx|2

σ2
k

+
w

q
M+kσ

q−1
k

||Wσσ||q−1
q

= 0 (24)

Summing over k on both sides and simplifying, one arrives at

||Wσσ||q = ||W1/2
σ r|| 2q

q+1
(25)

Inserting (25) into (24) yields

σk = w
−

q
q+1

M+k |rk|
2

q+1

∣

∣

∣

∣

∣

∣W1/2
σ r

∣

∣

∣

∣

∣

∣

q−1
q+1
2q

q+1

(26)

Finally, inserting (23) and (26) into (22) yields

minimize
x

∣

∣

∣

∣

∣

∣W1/2
σ

(

y− Bx
)

∣

∣

∣

∣

∣

∣ 2q
q+1

+

∣

∣

∣

∣

∣

∣W1/2x
∣

∣

∣

∣

∣

∣

2r
r+1

(27)

As may be noted from the resulting expression, using q = 1 yields the least
absolute deviations (LAD) estimate, whereas using q = ∞ yields the (unscaled)
square-root Lasso. The implications of this is discussed further below. Regardless
of the choice of q, the corresponding problem in (13) will still be scale invariant.
This may be seen by following the example in [24], scaling each pk and σk with a
constant c and do the same for the cost function in (13), defining

g(p,σ) , cy∗ (AcPA∗)−1
y

+ c

[

M
∑

k=1

wr
kcrpr

k

]1/r

+ c





N+M
∑

k=M+1

w
q
kcqp

q
k





1/q

= y∗ (APA∗)−1
y + c2

[

M
∑

k=1

wr
kpr

k

]1/r

+

c2





N+M
∑

k=M+1

w
q
kp

q
k





1/q

(28)
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Let f (p,σ) denote the cost function in (13). Then, one may use Lemma 2 in [24]
to conclude that if

{p̂, σ̂} = arg min
p,σ

g(p,σ) (29)

and

{ˆ̄p, ˆ̄σ} = arg min
p̄,σ̄

f (p̄, σ̄) (30)

then

ˆ̄p = cp̂ (31)

where c > 0, which is true in the here examined case as well. The observed scale
invariance implies that one may view the {r, q}-SPICE method as being hyper-
parameter free in the same sense as the original SPICE algorithm is. Furthermore,
it may be noted that when converting the pk to xk, using (21), any scaling will
disappear.

3.2 Uniform noise variance

If, similar to [23, 24], one instead assumes that all the noise terms have equal
variance, treating the case whenσk = σ, ∀k, one may observe interesting connec-
tion to the Lasso. Under these assumptions, it has been shown that the SPICE
problem is connected to the (weighted) square-root Lasso problem [23, 24], i.e.,

minimize
x

||y− Bx||2 + μ||W1/2x||1 (32)

where μ = N −1/2 yields the SPICE estimator. Following the derivation in Section
3.1, together with the assumption that all the noise terms have equal variance,
yields μ = N −1/2q for the {r, q}-SPICE formulation, implying the equivalent
formulation

minimize
x

||y− Bx||2 + μ||W1/2x|| 2r
r+1

(33)

As a result, the choice of q corresponds to selecting the weight that governs the
trade-off between the model fitting term and the regularization of the parameters,
whereas the choice of r decides which norm will be used in the regularization
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4. Efficient implementation

of the parameters. Thus, using r = 1 means that increasing q corresponds to
increasing the sparsity in the (weighted) square-root Lasso; this implies that if the
signal at hand is assumed to be sparse, solving {r, q, }-SPICE with q > 1 will
yield preferable estimates. Furthermore, setting r → ∞ yields a ridge regression
problem, with q governing the amount of regularization. We note that it might be
preferable to solve (33) using the {r, q}-SPICE formulation, rather than solving
(33) directly.

4 Efficient implementation

As will be argued later, for sparse problems, the most interesting setting for {r, q}-
SPICE is when r = 1, since, according to (33), this will yield an ℓ1 regularization.
To this end, we will in this section derive an efficient implementation for this case.
In [20], an efficient implementation of SPICE was introduced. To derive the steps
of this algorithm, it was noted that the original SPICE minimization in (10) could
also be expressed as

minimize
{pk≥0}M

k=1, {σk≥0}N
k=1

y∗R−1y subject to (34)

Furthermore, it was noted that one could further rewrite the objective in (34) by
considering the optimization problem

minimize
Q

y∗Q∗P−1Qy subject to Q∗A = I (35)

which has the solution Q0 = PA∗R−1. By defining

β = Qy (36)

one may rewrite (34) as

minimize
{pk≥0}M

k=1, {σk≥0}N
k=1

M+N
∑

k=1

|βk|2
pk

subject to
M
∑

k=1

wkpk +

N
∑

k=1

wkσk = 1

(37)

The estimates may then be found by iteratively updating R and solving for pk in
(37). For {r, q}-SPICE, with r = 1, when assuming different values for the σk,
the same update for R may be used, but instead of (37), one needs to solve
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minimize
{pk≥0}M

k=1,{σk≥0}N
k=1

M
∑

k=1

|βk|2
pk

+

N
∑

k=1

|βM+k|2
σk

subject to
M+N
∑

k=1

wkpk +

(

N
∑

k=1

w
q
M+kσ

q
k

)1/q

= 1 (38)

From the Karush-Kuhn-Tucker (KKT) conditions [28], it follows that

− |βk|2
p2

k

+ λwk = 0, for k = 1, . . . ,M (39)

− |βM+k|2
σ2

k

+ λσ
q
kw

q
M+k

(

N
∑

k=1

w
q
M+kσ

q−1
k

)1/q

= 0 (40)

where λ denotes the dual variable, for k = 1, . . . ,M , together with the constraint
in (37). Solving these equation for each pk and σk yields

pk =
|βk|√
wkλ1/2

(41)

σℓ =

|βM+ℓ|
2

q+1 ||W1/2
σ βσ||

q−1
q+1
2q

q+1

w
q

q+1

M+ℓλ
1/2

(42)

λ =

(

||W1/2β||1 + ||W1/2
σ βσ|| 2q

q+1

)2

(43)

for k = 1, . . . ,M and ℓ = 1, . . . ,N , where

β =

[

β1 . . . βM

]T
(44)

βσ =
[

βM+1 . . . βM+N

]T
(45)

This allows for the formulation of an efficient implementation by iteratively form-
ing R from (4), βk from (36), and pk and σk from (41) and (42), respectively. Since
{1, q}-SPICE allows for a more sparse solution than the original SPICE, one may
speed up the computations further by removing the zero valued pk when forming
R and βk.
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4. Efficient implementation

Algorithm 1 The {r, q}-SPICE estimator with r = 1

1: Initiate p(0)
k = |b∗

k y|2/||bk||4, for k = 1, . . . ,M , σ(0)
k = |yk|, for k =

1, . . . ,N , and set i = 1
2: while the termination criteria is not fulfilled do

3: Let R(i) = AP(i)A∗

4: Form λ from (43)
5: Update p(i)

k from (41), for each k = 1, . . . ,M

6: Update σ(i)
k from (42), for each k = 1, . . . ,N

7: Set i = i + 1
8: end while

Algorithm 2 The {r, q}-SPICE estimator for equal σk with r = 1.

1: Initiate p(0)
k = |b∗

k y|2/||bk||4, for k = 1, . . . ,M ,

σ(0) =

√

1
N −1

∑N
k=1

(

yk − ȳ
)2

, for k = 1, . . . ,N , and set i = 1
2: while the termination criteria is not fulfilled do

3: Let R(i) = AP(i)A∗

4: Form λ from (48)
5: Update p(i)

k from (46), for each k = 1, . . . ,M

6: Update σ(i)
k from (47), for each k = 1, . . . ,N

7: Set i = i + 1
8: end while

When instead assuming that σk = σ, ∀k, one obtains the steps

pk =
|βk|√
wkλ1/2

(46)

σ =
||βM ||2

N 1/2qλ1/2
(47)

λ =
(

||W1/2β||1 + ||N 1/(2q)βσ||2
)2

(48)

for k = 1, . . . ,M . Algorithms 1 and 2 summarize the {1, q}-SPICE implement-
ations for the two settings, with ȳ denoting the mean value of the vector y. Similar
to the previous case, since using q > 1 will enforce more sparsity than q = 1,
one may utilize this added sparsity in the implementation of the algorithm. Since
most of the elements in p will be zero, one may form R−1 by only considering
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the columns and rows of A and A∗ corresponding to the non-zero entries in p.
Let K̂ (i) be the number of non-zero entries in p(i) at iteration i. Then, if K̂ < N ,
one may use the Woodbury matrix identity to efficiently calculate the inverse of
R (see, e.g., [29]).

The termination criterias in Algorithms 1 and 2 can take on many forms. In
this work, we have chosen to terminate the algorithms when the percentage of
change in p and σ between two consecutive iterations falls below a certain level,
say in the range [10−9, 10−3].

Note that the algorithm described in Algorithm 2 solves a (weighted) square-
root Lasso problem, where the different choices of q corresponds to different levels
of sparsity, i.e., different values of μ in (32). If one is interested in solving a
(weighted) square-root Lasso with μ = μ0, then one may instead solve the {r, q}-
SPICE with q = − 1

2 ln μ0
, as long as q > 1, and with r = 1. Thus, the algorithm

in Algorithm 2 presents an attractive and efficient way of solving the (weighted)
square-root Lasso problem, for a large range of different μ.

To give an idea of the running time of the proposed algorithm as compared
with a standard SDP solver (see, e.g., [30, 31]), the algorithms were tested on a
problem with M = 10000, N = 1000, and with q = 5, and r = 1, where the
data vector, y, contained 3 sinusoids, using a standard PC (2.6 Ghz Intel Core
i7, 16 GB RAM). The corresponding run times were roughly 4 seconds for the
Matlab implementation in Algorithm 2 and 4132 seconds for the SDP Matlab
solver1.

5 Off-grid solution

Many forms of estimation problems are solved by evaluating over a grid of the
parameters of interest. However, such a solution may cause concerns when the
sought solution falls outside the grid or may be found in between grid points.
A common solution to this problem is to increase the grid size to thereby min-
imize the distance from the closest grid point to the true parameter value (see,
e.g., [32, 33]). However, such a solution might cause the columns of the exten-
ded dictionary to be highly correlated, thereby decreasing the performance of the
method (we instead refer the interested reader to other works treating this issue,
e.g., [33–36] and the references therein). In [26] and [37], an off-grid solution to

1Our implementation of {r, q}-SPICE will be made available on the authors’ web-pages upon
publication.
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the original SPICE version was presented for the sinusoidal case. In this section,
we similarly provide one possible version of off-grid estimation for the proposed
{r, q}-SPICE method for a signal containing superimposed sinusoids. In order
to do so, it may initially be noted that one may separate R into two different
matrices, such that

R = B∗diag
(

p
)

B + diag (σ) , T(u) + diag (σ) (49)

where T(u) is a Toeplitz matrix with u forming the first column of T(u). Thus,
(13) may be expressed as (see also [26, 37])

minimize
u,σ,x

||y||22x + ||diag(T(u))||r + ||Wσσ||q

subject to

[

x y∗

y T(u) + diag (σ)

]

≥ 0

T(u) ≥ 0

T(u)− T(u)∗
= 0

σ ≥ 0 (50)

and under the additional constraint that T(u) is a Toeplitz matrix. The optimiza-
tion problem in (50) is convex, and may be solved using, e.g., a publicly available
SDP solver, such as the one presented in [30, 31]. The final off-grid estimates
may then be found using the celebrated Vandermonde decomposition in com-
bination with, for instance, Prony’s method (see [8,38] for further details on such
an approach).

6 Numerical examples

Using the interpretation provided by the reformulation in Section 3, it is clear
that the choice of r will decide what kind of regularization that will be used.
Thus, choosing r = 1 will yield an ℓ1 norm and letting r →∞ will result in the
ℓ2 norm. In this paper, we consider sparse problems, and will therefore mainly
confine our attention to the case where r = 1, since this will yield the most sparse
convex regularizer, namely ℓ1.

From the discussion in Section 2, one may expect that SPICE will set some
of the elements in σ to zero, since the sparsity enforcing term in (10) also applies
to these parameters. Figure 1 shows the estimated p and σ for the SPICE and the

137



Paper D

0 50 100
p

k

0

0.5

1

M
a

g
n

it
u

d
e

SPICE (q=1)

0 20 40 60
σ

k

0

0.05

0.1

M
a

g
n

it
u

d
e

SPICE (q=1)

0 50 100
p

k

0

0.5

1

M
a

g
n

it
u

d
e

q-SPICE, q=2

0 20 40 60
σ

k

0

0.1

0.2

M
a

g
n

it
u

d
e

q-SPICE, q=2

Figure 1: The resulting estimates of p and σ from the SPICE and the q-SPICE
estimator (q=2). Note that q-SPICE is sparser in p, whereas SPICE is sparser in
σ. In this example r is set to r = 1.

{r, q}-SPICE estimators, when applied to a linear signal formed using (1) with
three non-zero components. As expected, using r = 1, {r, q}-SPICE offers a
sparser p vector as compared to SPICE, whereas the solution is more sparse in σ
for SPICE. As a result, the sparsity constraints on the σk terms in {r, q}-SPICE
are thus relaxed and are instead subjected to a bounding of their power in the
q-norm, thus allowing for more sparsity in p.

We will proceed by showing the difference in performance for different values
of r and q, to provide an example on how the different choices of these norms
affect the estimates. We investigate two properties of the estimators, namely the
resulting root-mean-squared error (RMSE) of the frequency estimates, defined as

RMSE ,

√

√

√

√

1

P

P
∑

k=1

|θ̂k − θk|2 (51)
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Figure 2: The RMSE of the frequency estimates, as a function of SNR for {r, q}-
SPICE and SPICE.

where θk is the true frequency of the kth component, whereas θ̂k is the formed
estimate, and the ability to correctly estimate the model order. The signal was
N = 50 samples long and contained 4 sinusoids with unit magnitude and ran-
dom phase. The simulation was done using 100 Monte-Carlo simulations for
each SNR-level, where the signal-to-noise ratio (SNR) is defined as

SNR = 10 log10

(

Py

Pσ

)

(52)

with Py denoting the power of the true signal and Pσ the power of the noise. The
noise used was circular white Gaussian noise, and the noise terms were allowed
to differ. The solution was obtained by solving (50) for all settings except for
the original SPICE, where the estimates were obtained from solving the problem
formulated in [37]. In Figure 2, the resulting RMSEs are shown for different
values of r and q, as a function of the SNR. To make the figures readable, 11
outliers were removed for SPICE and for the r = 3, q = 2 case for {r, q}-SPICE
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Figure 3: The probability of finding the correct model order of the signal as a
function of SNR for {r, q}-SPICE and SPICE.

each, whereas only 2, 5, and 5 outliers were removed for the case where q = 1.25,
q = 1.5, and q = 1.75, respectively. Furthermore, to remove the noise peaks
that appear when using small values of q, all peaks smaller than 20 % of the
largest found peak were removed. Note, however, that this is not necessary for
the case where q is larger. As is clear from the figure, the RMSE is decreased as
the sparsity level is increased, with the {r, q}-SPICE versions outperforming the
original SPICE. This is also true for the resulting model order estimation, which is
shown in Figure 3. As may be expected, when increasing q the sparsity is increased
and the spurious peaks are removed, but as q is further increased, the true peaks
start to disappear. In this setting, it seems to be beneficial to set the norms around
q = 1.5 and r = 1. From these results, we conclude that the generalized version
of SPICE allows for better estimation of parameter values, as well as model order.
As was expected, using r > 1 was not beneficial when confronted with a sparse
signal, and we will therefore, in the succeeding example, restrict our attention to
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Figure 4: The probability of finding the correct support of the signal as a function
of q and SNR. Here, all the σk are assumed to be equal. In this example, r = 1.

the case where r = 1, referring to the method as q-SPICE. However, it should
be stressed that for certain situations, it might be preferable to use r > 1, e.g.,
in situations when otherwise considering to use ridge regression; we will further
examine this aspect in future works.

Arguably, the most important property of a sparse estimator is the ability to
return the true support of the signal, as well as yielding reasonable amplitude
estimates for this support. However, it seems inevitable that when including a
sparsity enforcing penalty, one also introduced a (downwards) bias on the mag-
nitude of the amplitudes. Fortunately, this problem is often easy to overcome by
simply re-estimating the amplitudes using, e.g., least squares, once the true sup-
port is known. Accordingly, we will in this section focus on the methods ability of
finding the true support of the signal. To this end, 200 Monte-Carlo simulation
for each SNR level are formed. In each simulation, N = 50 samples of a signal
containing three sinusoids, each with unit magnitude, and phase uniformly drawn
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Figure 5: The probability of finding the correct support of the signal as a function
of q and SNR. Here, all the σk are assumed to be equal. Here, r = 1.

from (0, 2π], was created. The normalized frequencies were uniformly selected,
but were at least 1/2N apart. The dictionary contained M = 1000 candidate si-
nusoids, selected on a uniform frequency grid from (0, 1]. The estimated support
was selected to be the elements of the vector x that had a corresponding absolute
value of at least 20% of the largest estimated value in x. This was done to allow
for comparison with the less sparse q-SPICE versions, for cases with small q value
(most notably q = 1). It may be noted that for values of q that are large, this
is not necessary. The support was deemed correctly estimated if the estimated
frequencies were at most two grid points away from the true frequencies.

Figure 4 shows the results of applying q-SPICE, for different values of q,
assuming that all the σk are the same, with q = 1 yielding the SPICE estimate.
As is clear from the figure, the results improve with increasing q values. From the
discussion in Section 3.2, we note that this corresponds to increasing the value of
μ in (32), thus increasing the sparsity in the estimates. Thus, one could assume
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Figure 6: The RMSE of the frequency estimates, as a function of q and SNR.
Here, all the σk are assumed to be equal. In this example, r = 1.

that when further increasing q, the estimate of the support should decline. In
Figure 5, this behavior can be seen, where now q-SPICE is evaluated over a range
of larger q values. It is also apparent from the figure that the best value for q is
for this signal somewhere around q = 2, which corresponds to using μ ≈ 0.38
in (33). Next, we investigate the precision for different values of q, by using
the RMSE of the frequency estimates. Figure 6 shows the resulting RMSE of
the frequency estimates, for the three largest values of x. As can be seen in the
figure, the RMSE is clearly improving as q is increased, corresponding to sparser
solutions. For smaller values of q, the results are not very sparse, and large spurious
noise peaks can be found. To improve readability, seven, two, and three outliers
were removed from the cases q = 1, q = 1.25, and q = 1.5, respectively. If q is
increased too much this will, of course, make the solution too sparse, thus risking
setting non-noise peaks to zero. This can also be seen in Figure 5, where for about
q = 3, the probability of retrieving the true support of the signal starts to decline,
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Figure 7: The probability of finding the correct support of the signal as a function
of q and SNR. Here, r = 1.

and at q > 3.5, the solution is too sparse.

We proceed by considering the case when the σk parameters are allowed to
take on different values, using the same set-up as above. Figures 7 and 8 show the
probability of estimating the correct support of the signal and the RMSE of the
three largest frequency estimates, respectively. Again, in the interest of readability,
three outliers were removed from q = 1, six outliers from q = 1.25, and three
outliers for q = 1.5. As previously noted, it is clear from the figures that q governs
the sparsity enforced on the solution. From the figures, one may also see that for
this setup, it is advantageous to choose q in the interval q = [1.25, 2.25]. To
demonstrate the differences in the solutions obtained from using different values
of q, we show a typical simulation result for four different values of q, namely
q = 1, 1.5, 2, and 2.5, for the settings above, with SNR = 5 dB. Figure 9 shows
the results, where it may again be noted that the sparsity level increases with q.

Finally, we provide a numerical example showing the results from solving the
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Figure 8: The RMSE of the frequency estimates, as a function of q and SNR.
Here, r = 1.

{r, q}-SPICE using (50), with r = 1 and q = 1.75, and for the case where
each noise variance are allowed to differ across the samples. In this scenario,
we evaluated the gridless version of {r, q}-SPICE, given in (50), and the gridless
version of SPICE, given in [37], together with the grid-based {r, q}-SPICE, given
a frequency grid of M = 500 grid points. In each of the 100 Monte-Carlo
simulations, the N = 50 samples long signal contained four sinusoids, each with
random phase, with two peaks having magnitude 4, one peak magnitude 2, and
the last one unit magnitude. The frequencies were selected not to be closer than
1/2N from each other and were randomly selected in each simulation from the
interval (0, 1]. Both gridless versions were computed using the SDP-solver in
CVX [30, 31]. Figure 10 and 11 show the resulting RMSE and probability of
finding the correct support as functions of the SNR level, respectively. As seen
in the figures, the two versions of the q-SPICE outperforms the gridless version
of SPICE. It is worth noting that in this scenario, only SPICE had the benefit of
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Figure 9: A typical result from q-SPICE for different values of q. Top left: q = 1,
top right q = 1.5, bottom left q = 2, and bottom right q = 2.5. The red stars
indicate the position and size of the true sinusoids. In this example, r = 1.

removing the smallest peaks. Furthermore, the model order was deemed correct
if the method found the true number of peaks, thus there were no limitation on
how close an estimated frequency had to be the true value. If the model order
was too high, the four largest peaks were selected to compute the RMSE, whereas
if the model order was too low, these estimates were omitted from the RMSE
evaluations.

Furthermore, one may see that the gridless version of q-SPICE is slightly bet-
ter than the gridded version. However, this slight improvement from using the
gridless q-SPICE version may not be worth the extra computation time; the grid-
less version took on average 9.4 seconds to execute, whereas the gridded version
only took 0.5 seconds. However, it is worth recalling that other works on gridless
solutions implicate that faster implementations are available (see, e.g., [39]), and
these improvements in implementation can likely also be applied to the gridless
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Figure 10: The RMSE of the frequency estimates, as defined in (51), as a function
of SNR for the gridless versions of q-SPICE and SPICE, together with the gridded
version of q-SPICE.

q-SPICE.

7 Conclusion

In this paper, we introduced a generalization of the SPICE method, in which we
allow for a trade-off between the penalties for the model, using a q-norm, and
the noise parameters, using an r-norm. We show that for larger values of q, one
achieves a higher level of sparsity and better performance for recovering the sup-
port of the signal. Furthermore, we show that the proposed method is equivalent
to a penalized regression formulation, with the 2q

q+1 norm on the model fit, for
the case when we let the noise variance vary across all samples. In the case where
the noise variance is assumed to be equal for all samples, it is shown that the
proposed method is equal to the (weighted) square-root Lasso, where the regular-
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Figure 11: The probability of finding the correct model order of the signal as a
function of SNR for the gridless versions of q-SPICE and SPICE, together with
the gridded version of q-SPICE.

ization parameter has a one-to-one correspondence to the choice of q for a given
problem. Furthermore, we provide a fast and efficient implementation for both
the case when r = 1 and the noise variances are equal for all samples, and where
they are allowed to differ. As a result of the shown equivalence, the presented im-
plementation offers an attractive alternative for solving 2q

q+1 -norm problems, and,
perhaps more interesting, (weighted) square-root Lasso problems for different reg-
ularization parameters. We also present a gridless version of {r, q}-SPICE for the
sinusoidal signals, which is on the form of an SDP problem. Numerical result
show the preferred performance of the {r, q}-SPICE as compared to the original
SPICE method, both for gridded and for gridless versions for the estimator.
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Online Estimation of Multiple
Harmonic Signals

Filip Elvander, Johan Swärd, and Andreas Jakobsson

Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

In this paper, we propose a time-recursive multi-pitch estimation algorithm using
a sparse reconstruction framework, assuming that only a few pitches from a large
set of candidates are active at each time instant. The proposed algorithm does
not require any training data, and instead utilizes a sparse recursive least squares
formulation augmented by an adaptive penalty term specifically designed to en-
force a pitch structure on the solution. The amplitudes of the active pitches are
also recursively updated, allowing for a smooth and more accurate representation.
When evaluated on a set of ten music pieces, the proposed method is shown to
outperform other general purpose multi-pitch estimators in either accuracy or
computational speed, although not being able to yield performance as good as the
state-of-the art methods, which are being optimally tuned and specifically trained
on the present instruments. However, the method is able to outperform such a
technique when used without optimal tuning, or when applied to instruments
not included in the training data.

Key words: Adaptive signal processing, dictionary learning, group sparsity,
multi-pitch estimation, sparse recursive least squares
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1 Introduction

The problem of estimating the fundamental frequency, or pitch, arises in a vari-
ety of fields, such as in speech and audio processing, non-destructive testing, and
biomedical modeling (see, e.g., [1–6], and the references therein). In such ap-
plications, the measured signal may often result from several partly simultaneous
sources, meaning that both the number of pitches, and the number of overtones
of each such pitch, may be expected to vary over the signal. Such would be the
case, for instance, in most forms of audio signals. The resulting multi-pitch estim-
ation problem is in general difficult, with one of the most notorious issues being
the so-called sub-octave problem, i.e., distinguishing between pitches whose fun-
damental frequencies are related by powers of two. Both non-parametric, such as
methods based on autocorrelation (see, e.g., [7] and references therein), and para-
metric multi-pitch estimators (see, e.g., [2]) have been suggested, where the latter
are often more robust to the sub-octave problem, but rely heavily on accurate a
priori model order information of both the number of pitches present and the
number of harmonic overtones for each pitch.

Regrettably, the need for accurate model order information is a significant
drawback, as such information is typically difficult to obtain and may vary rap-
idly over the signal. In order to alleviate this, several sparse reconstruction al-
gorithms tailored for multi-pitch estimation have recently been proposed, allow-
ing for estimators that do not require explicit knowledge of the number of sources
or their harmonics; for example, in [8], the so-called PEBS estimator was intro-
duced, exploiting the block-sparse structure of the pitch signal. This estimator
was then further developed in [9], such that the likelihood of erroneously select-
ing a sub-octave in place of the true pitch was lowered, while also introducing a
self-regularization technique for selecting the penalty parameters. Both these es-
timators form implicit model order decisions based on one or more tuning para-
meters that dictate the relative weight of various penalties. As shown in the above
cited works, the resulting estimators are able to allow for (rapidly) varying model
orders, without significant loss of performance. Earlier works based on sparse
representations of signals also include works such as [10], which considers atomic
decomposition of audio signals in both the time and the frequency domains.

There have also been methods proposed for multi-pitch estimation and track-
ing that are source specific, i.e., tailored specifically to sources, e.g., musical in-
struments, that are known to be present in the signal. In [11], the authors per-
form multi-pitch estimation on music mixtures by, via a probabilistic framework,
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matching the signal to a pre-learned dictionary of spectral basis vectors that corres-
pond to instruments known to be present in the signal. A similar source specific
idea was used in [12], where pitch estimation was performed by matching the
signal to spectral templates learned from individual piano keys. Other methods
specifically designed to handle multi-pitch estimation for pianos include [13–15].
Another field of research is designing multi-pitch estimators based on a two-
matrix factorisation of the short-time Fourier transform, i.e., a non-negative mat-
rix factorization (see, e.g., [16–18]). The method has also been used in the sparse
reconstruction framework, for instance to learn atoms in order to decompose the
signal [19]. A common assumption is also that of spectral smoothness within each
pitch, which may also be exploited in order to improve the estimation perform-
ance (see, e.g., [13, 17, 20, 21]).

In many audio processing applications, pitch tracking is of great interest and
despite being a problem that has been studied for a long time, it still attracts a
lot of attention. Over the years, there have been many different approaches for
tracking pitches; some of the more recent include particle filters [22], neural net-
works [23], and Bayesian filtering [24]. Many of these methods require a priori
model order information, and/or are limited to the single pitch case. The sparse
pitch estimators in [8], [9] are robust to these model assumptions, and allow for
multiple pitches. However, these estimators process each data frame separately,
treating each as an isolated and stationary measurement, without exploiting the
information obtained from earlier data frames when forming the estimates. To
allow for such correlation over time, the PEBS estimator introduced in [8] was
recently extended to exploit the previous pitch estimates, as well as the power dis-
tribution of the following frame, when processing the current data frame [25].
In this work, we extend on this effort, but instead propose a fully time-recursive
problem formulation using the sparse recursive least squares (RLS) estimator. The
resulting estimator does not only allow for more stable pitch estimates as com-
pared to earlier sparse multi-pitch estimators, as more information is used at each
time-point, but also decreases the computational burden of each update, as new
estimates are formed by updating already available ones.

On the other hand, sparse adaptive filtering is a field attracting steadily in-
creasing attention, with, for instance, the sparse RLS algorithm being explored
for adaptive filtering in, e.g., [26–28]. Other related studies include [29], wherein
the authors use a projection approach to solve a recursive LASSO-type problem,
and [30], which introduced an online recursive method allowing for an underly-
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ing dynamical signal model and the use of sparsity-inducing penalties. Recursive
algorithms designed for group-sparse systems have also been introduced, such as
the ones presented in [31–33], but to the best of our knowledge, no such tech-
nique has so-far been applied to the multi-pitch estimation problem. This is the
problem we strive to address in this paper. It should be noted that the here presen-
ted work differs from many other multi-pitch estimators in that it only exploits
the assumption that the signal of interest is generated by a harmonic sinusoidal
model. Recently, quite a few methods for multi-pitch estimation adhering to the
machine learning paradigm have been proposed (see, e.g., [34], [35]). In these
methods, a model is trained on labeled signals, such as, e.g., notes played by indi-
vidual music instruments, extracting features from the training data that are then
used for classification in the estimation stage. As opposed to this, the method
presented here is not dependent on being trained on any dataset prior to the es-
timation.

Our earlier efforts on multi-pitch estimation based on sparse modeling, such
as the PEBS [8] and PEBSI-Lite [9] algorithms, have focused on frame-based
multi-pitch estimation techniques, with PEBS introducing the use of block sparsity
to form the pitch estimates, and PEBSI-Lite refining these ideas and introducing
a self-regularization technique to select the required user parameters. In this work,
we build on the insights from these algorithms, and expand these ideas by intro-
ducing a method that allows for a sample-by-sample updating, in the form of an
RLS-like sparse estimator, thereby allowing the estimates to also exploit inform-
ation available in earlier data samples. The sub-octave problems experienced by
PEBS and later alleviated by PEBSI-Lite, with the use of a total-variation penalty
enforcing spectral smoothness, is here addressed using an adaptively re-weighted
block penalty. Furthermore, we introduce a signal-adaptive updating scheme for
the dictionary frequency atoms that allows the proposed method to, e.g., track
frequency modulated signals, and alleviates grid mismatches otherwise commonly
experienced by dictionary based methods.

The remainder of this paper is organized as follows; in the next section, we
introduce the multi-pitch signal model and its corresponding dictionary formu-
lation. Then, in Section 3, we introduce the group sparse RLS formulation for
multi-pitch estimation, followed by a scheme for decreasing the bias of the har-
monic amplitude estimates in Section 4. Section 5 presents a discussion about
various algorithmic considerations. Section 6 contains numerical examples il-
lustrating the performance of the proposed estimator on various audio signals.
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Finally, Section 7 concludes upon the work.

1.1 Notation

In this work, we use lower case non-bold letters such as x to denote scalars and
lower case boldface letter such as x to denote vectors. Upper case bold face letters
such as X are used for matrices. We let diag (x) denote a diagonal matrix formed
with the vector x along its diagonal. Sets are denoted using upper case calligraphic
letters such as A. If A and B are sets of integers, then xA denotes the sub-vector
of x indexed by A. For matrices, XA,B denotes the matrix constructed using
the rows indexed by A and columns indexed by B. We use the shorthand XA

to denote XA,A. Furthermore, [̄·], [·]H , and [·]T denotes complex conjugation,
conjugate transpose, and transpose, respectively. Also, |A| is the cardinality of the
set A, and |x| denotes the number of elements in the vector x, unless otherwise
stated. Finally, we for vectors x ∈ C

n let ‖x‖ℓ denote the ℓ-norm, defined as

‖x‖ℓ =




n
∑

j=1

∣

∣xj

∣

∣

ℓ





1/ℓ

(1)

and use i =
√
−1.

2 Signal model

Consider a measured signal1, y(t), that is generated according to the model
y(t) = x(t) + e(t), where

x(t) =
K (t)
∑

k=1

Lk(t)
∑

ℓ=1

wk,ℓ(t)e
i2πfk (t)ℓt (2)

with K (t) denoting the number of pitches at time t, with fundamental frequencies
fk(t), having Lk(t) harmonics, wk,ℓ(t) the complex-valued amplitude of the ℓth
harmonic of the kth pitch, and where e(t) denotes a broad-band additive noise.
It should be stressed that the number of pitches, as well as their fundamental
frequencies, and the number of harmonics for each source, may vary over time.

1For notational and computational simplicity, we here consider the discrete-time analytic signal
of any real-valued measured signal.
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It is worth noting that we here assume a harmonic signal, such as detailed in (2);
however, as shown in the numerical section, the proposed method does also work
well for somewhat inharmonic signals, such as, e.g., those resulting from a piano.

We here attempt to approximate the measured signal using a sparse represent-
ation in an over-complete harmonic basis, see, e.g., [36]. Specifically, as in [8], [9],
the signal sources are approximated using a sparse modeling framework contain-
ing P candidate pitches, each allowed to have up to Lmax harmonics, such that

x(t) ≈
P
∑

p=1

Lmax
∑

ℓ=1

wp,ℓ(t)e
i2πfp(t)ℓt (3)

where the dictionary is selected large enough so that (at least) K (t) candidate
pitches, fp(t), reasonably well approximate the true pitch frequencies (see also, e.g.,
[37], [38]), i.e., such that P ≫ maxt K (t) and Lmax ≫ maxt,k Lk(t). It should be
noted that as the signal is assumed to contain relatively few pitches at each time
instance, the resulting amplitude vector will be sparse, although with a harmonic
structure reflecting the overtones of the pitches. Furthermore, it may be noted
that the frequency grid-points, fp(t), are allowed to vary with time, which will
here be implemented using an adaptive dictionary learning scheme. Using this
framework, the pitches present in the signal at time t may be implicitly estimated
by identifying the non-zero amplitude coefficients, wp,ℓ(t).

3 Group-sparse RLS for pitches

Exploiting the structure of the signal, we introduce the group-sparse adaptive
filter, w(t), which at time t is divided into P groups according to

w(t) =
[

wT
1 (t) ... wT

P (t)
]T

(4)

wp(t) =
[

wp,1(t) ... wp,Lmax(t)
]T

(5)

implying that, ideally, only K (t) sub-vectors wp(t) will be non-zeros at time t. In
order to achieve this, the filter is formed as

ŵ(t) = arg min
w

gt(w) + ht (w) (6)
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where ŵ(t) denotes the solution of (6), gt(w) the regular RLS criterion, (see, e.g.,
[39]), formed as

gt(w) =
1

2

t
∑

τ=1

λt−τ
∣

∣

∣y(τ)− wT a(τ)
∣

∣

∣

2
(7)

and ht (w) a sparsity inducing penalty function. Note that a similar adaptive filter
formulation for estimating sparse data structures was introduced in [27]. How-
ever, whereas [27] considered sparse signals, we in this work expand this approach
to also consider block sparsity, and specifically the pitch structure. As a result, the
dictionary is here formed as

a(t) =
[

aT
1 (t) . . . aT

P (t)
]T

(8)

ap(t) =
[

ei2πfp(t)t . . . ei2πfp(t)Lmaxt
]T

(9)

and λ ∈ (0, 1) being a user-determined forgetting factor. The choice of the for-
getting factor λ will reflect assumptions on the variability of the spectral content
of the signal, with λ close to 1 implying an almost stationary signal, whereas a
smaller value will allow for a quicker adaption to changes in the spectral con-
tent. The sparsity inducing function, ht (w), should be selected as to encourage
a pitch-structure in the solution; in [9], which considered multi-pitch estimation
on isolated time frames, this function, which then was not a function of time, was
selected as

h(w) = γ1‖w‖1 + γ2

P
∑

p=1

∥

∥

∥FwGp

∥

∥

∥

1
(10)

where F is the first difference matrix and Gp is the set of indices corresponding to
the harmonics of the candidate pitch p. The second term of this penalty function
is the ℓ1-norm of the differences between consecutive harmonics and acts as a
total variation penalty on the spectral envelope of each pitch. Often referred to as
the sparse fused LASSO [40], this penalty was in [9] used to promote solutions
with spectral smoothness in each pitch, although requiring some additional re-
finements to achieve this. To allow for a fast implementation, we will here instead
consider the time-varying penalty function

ht (w) = γ1(t)‖w‖1 +

P
∑

p=1

γ2,p(t)
∥

∥

∥wGp

∥

∥

∥

2
(11)
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where γ1(t) and γ2,p(t) are non-negative regularization parameters. This pen-
alty, often called the sparse group LASSO [41] when combined with a squared
ℓ2-norm model fit term, is reminiscent of the one used in the PEBS method in-
troduced in [8], and belongs to the class of methods utilizing mixed norms for
sparse signal estimation (see, e.g., [42]). The second term of this penalty func-
tion, the pitch-wise ℓ2-norm, has a group-sparsifying effect, encouraging solutions
where active harmonics are grouped together into a few number of pitches. As the
frequency content of different pitches may be quite similar due to overlapping, or
close to overlapping, harmonics, the group penalty thus prevents erroneous ac-
tivation of isolated harmonics, while still allowing the different groups to retain
harmonics shared by different sources (see also [8], [9]). In the case of overlapping
harmonics in the signal, i.e., the presence of two pitches which share at least one
harmonic, the ℓ2-norm will favor solutions of the optimization problem (6) in
which the powers of these harmonics are shared among the two pitches. The pre-
cise level of sharing is decided by the relative powers of the unique harmonics of
each pitch so that the pitch having unique harmonics with more power will also be
assigned a larger share of the power corresponding to the overlapping harmonics.
In the case of the the two pitches having unique harmonics with equal combined
power, the power of the overlapping harmonics will also be shared equally. How-
ever, when, as in [8], using fixed penalty parameters γ1(t) and γ2,p(t), the resulting
estimate has been shown to be prone to mistaking a pitch for its sub-octave (see
also [9]). In order to discourage this type of erroneous solutions, we will herein
introduce a way of adaptively choosing the group sparsity parameter, γ2,p(t), as
further discussed below.

We note that gt(w), as defined in (7), may be expressed in matrix form as

gt(w) =
1

2

∥

∥

∥Λ
1/2
1:t y1:t −Λ1/2

1:t A1:tw
∥

∥

∥

2

2
(12)

where

yτ:t =
[

y(τ) ... y(t)
]T

(13)

Aτ:t =
[

a(τ) ... a(t)
]T

(14)

and withΛ1:t = diag
([

λt−1 λt−2 ... 1
])

. To simplify notation, define

R(t) , AH
1:tΛ1:tA1:t (15)
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r(t) , AH
1:tΛ1:ty1:t . (16)

With these definitions, the minimization in (6) may be formed using proximal
gradient iterations, (see, e.g., [43]), such that the jth iteration may be expressed
as

ŵ( j+1)(t) = arg min
w

1

2s(t)

∥

∥

∥ν( j ) − w
∥

∥

∥

2

2
+ ht (w) (17)

where

ν( j ) = ŵ( j )(t) + s(t)
[

r(t)− R(t)ŵ( j )(t)
]

(18)

with s(t) denoting the step-size. We note that this update is reminiscent of the
one presented in [27], which considers the problem of ℓ1-regularized recursive
least squares, although it should be noted that the ℓ1-norm for complex vectors
in [27] is defined to be the sum of the absolute values of the real and imaginary
parts separately, whereas we here use the more common definition, as given by
(1). In [27], the authors motivate their minimization algorithm by casting it as
an EM-algorithm using reasoning from [44], as well as some further assumptions
about properties of the signal. By studying the zero sub-differential equations
for (17), it can be shown that the closed form solution for each group p can be
computed separately as (see, e.g., equations (54)-(55) and (32)-(38) in [8]; for
further details, see also [41])

ν̃( j )
Gp

= S1

(

ν( j )
Gp

, s(t)γ1(t)
)

(19)

ŵ
( j+1)
Gp

(t) = S2

(

ν̃( j )
Gp

, s(t)γ2,p(t)
)

(20)

where S1 (·) and S2 (·) are the soft thresholding operators corresponding to the ℓ1-
and ℓ2-norms, respectively, i.e.,

S1 (z, α) =
max

(

|z| − α, 0
)

max
(

|z| − α, 0
)

+ α
⊙ z (21)

S2 (z, α) =
max

(

‖z‖2 − α, 0
)

max
(

‖z‖2 − α, 0
)

+ α
z (22)

where, in (21), |z| denotes the vector obtained by taking the absolute value of each
element of the vector z, the max function operates element-wise on the vector z,
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and ⊙ denotes element-wise multiplication. Furthermore, as R(t) and r(t) can be
expressed as

R(t) =
t
∑

τ=1

λt−τa(τ)aH (τ) (23)

r(t) =
t
∑

τ=1

λt−τy(τ)ā(τ) (24)

these entities can be updated according to

R(t) = λR(t − 1) + a(t)aH (t) (25)

r(t) = λr(t − 1) + y(t)ā(t) , (26)

when new samples become available. Here, (̄·) denotes complex conjugation.

4 Refined amplitude estimates

In general, the sparsity promoting penalty function ht(w) will introduce a down-
ward bias on the magnitude of the amplitude estimates formed by (6). However,
as the support of ŵ(t) will reflect the fundamental frequencies present in the sig-
nal, we can refine the amplitude estimates by minimizing a least squares criterion.
As this problem only considers amplitudes of harmonics of pitches that are be-
lieved to be in the signal, we do not need to use any sparsity inducing penalties
and can therefore avoid the magnitude bias. This will be analogous to estimating
the amplitudes of each harmonic using recursive least squares assuming that the
support of the filter is known. To this end, let

S(t) =
⋃

p∈A(t)

Gp (27)

A(t) =
{

p |
∥

∥

∥ŵGp(t)
∥

∥

∥

2
> 0

}

, (28)

i.e., A(t) is the set of active pitches determined by the sparse filter ŵ(t), at time
t, and S(t) is the index set corresponding to the harmonics of these pitches. Let
w̆(t) denote the refined amplitude estimates at time t. Given ŵ(t), and thereby
S(t), we update this filter according to

w̆k(t) = 0 , k /∈ A(t) (29)
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w̆S(t)(t) = arg min
w∈C|S(t)|

wH RS(t)w− wH rS(t) − rH
S(t)w

+ ξ‖w− w̆S(t)(t − 1)‖2
2 (30)

where RS(t)(t) is the |S(t)| × |S(t)| matrix constructed by the rows and columns
of R(t) indexed by S(t) and rS(t)(t) is the |S(t)| dimensional vector constructed
by the elements of r(t), indexed by S(t). The second term of (30) is a prox-
imal term that will promote a smooth trajectory for the magnitude of the filter
coefficients, where the parameter ξ > 0 controls the smoothness. This type of
smoothness-promoting penalty has earlier been used, for instance, to enforce tem-
poral continuity in NMF applications [45]. To avoid inverting large matrices, we
split the solving of (30) into A(t) problems of size Lmax using a cyclic coordinate
descent scheme (see also, e.g., [26]). To this end, define the index sets

Qp = S(t) \ Gp , p ∈ A(t) , (31)

i.e., the indices corresponding to harmonics that are not part of pitch p. Consid-
ering only terms in the cost function in (30) that depend on harmonics of the pth
pitch, we can form an update of the corresponding filter coefficients according to

w̆Gp(t) = arg min
w∈CLmax

wH RGpw− wH r( p ) − r( p )H w

+ ξ
∥

∥

∥w− w̆Gp(t − 1)
∥

∥

∥

2

2

(32)

where

r( p ) = rGp − RGp,Qpw̃Qp . (33)

The vector w̃Qp ∈ C
|Qp| contains the (partially updated) filter coefficients that

correspond to other pitches than p, i.e.,

w̃Gq =

{

w̆Gq (t) if updated

w̆Gq (t − 1) if not updated
(34)

for q 6= p. By setting the gradient of (32) with respect to w to zero, we find the
update of w̆Gp(t) to be

w̆Gp(t) =
(

RGp + ξ I
)−1 (

r( p ) + ξ w̆Gp(t − 1)
)

. (35)
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5 Algorithmic considerations

We proceed to examine some implementation aspects of the presented algorithm,
first discussing the appropriate choice of the penalty parameters, then possible
computational speed-ups, as well as ways of adaptively updating the used pitch
dictionary.

5.1 Parameter choices

In order to discourage solutions containing erroneous sub-octaves, we here pro-
pose to update the group penalty parameter, in iteration j of the filter update (17),
as

γ2,p(t) = γ2(t) max



1,
1

∣

∣

∣ŵ
j−1

p,1 (t)
∣

∣

∣+ ε



 (36)

where
∣

∣

∣ŵ
j−1

p,1 (t)
∣

∣

∣ is the estimated amplitude of the first harmonic of group p, ob-

tained in iteration j − 1, with ε≪ 1 being a user-specified parameter selected to
avoid a division by zero. In this paper, we use ε = 10−5. As sub-octaves will typic-
ally have missing first harmonics, such a choice will encourage shifting power from
the sub-octave to the proper pitch. Similar types of re-weighted penalties have
earlier been used to enhance sparsity in the estimated signal (see, e.g., [46], [47]).
Studies using many different kinds of pitch signals indicate that the overall per-
formance of the algorithm is relatively insensitive to the choice of the parameter
s(t), which may typically be selected in the range s(t) ∈

[

10−5, 10−3
]

. Here,
we use s(t) = 10−4. The choice of the penalty parameters γ1(t) and γ2(t) can
be made using inner-products between the dictionary and the signal. Letting Δ
denote the time-lag, define

η(t, μ) = μ
∥

∥

∥Λ1:ΔAH
t−Δ:tyt−Δ:t

∥

∥

∥

∞
(37)

where μ ∈ (0, 1). A good rule of thumb is choosing γ1(t) in the neighborhood of
(37) with μ = 0.1, whereas a corresponding reasonable value for γ2(t) is μ = 1.
Empirically, the performance of the algorithm has been seen to be robust to vari-
ations of these choices of μ. This method emulates choosing the values of the
penalty parameters based on the correlation between the signal and the dictionary
in a finite window. Here, the window length, Δ, is determined by the forgetting

166



5. Algorithmic considerations

factor, λ, and by how much correlation one is willing to lose as a result from the
truncation. For example, selecting

Δ =
log(0.01)

log λ
(38)

will yield a window such that the excluded samples will contribute to less than
0.01 of the correlation. It should be noted that for smoothly varying signals,
γ1(t) and γ2(t) only need to be updated infrequently.

5.2 Iteration speed-up

As the signal is assumed to have a sparse representation in the dictionary a(t),
one may expect updates of the coefficients of many groups, here indexed by q,
to result in zero amplitude estimates. As such groups do not contribute to the
pitch estimates, these groups would preferably be excluded from the updates in
(17)-(18). If assuming the support of w(t) to be constant for all t, one could thus
sequentially discard such groups from the updating step, and thereby decrease
computation time. However, as generally pitches may disappear and then re-
appear, as well as drift in frequency over time, we will here only exclude the groups

q from the updating steps temporarily. That is, if at time τ, we have
∥

∥

∥ŵGq

∥

∥

∥

2
< ε̃,

where ε̃ ≪ 1, the group q is considered not to be present in the signal and
is therefore excluded from the updating steps for a waiting period, T . After that
period, it is again included in the updates, allowing it to again appear in the signal.
Defining the set U , indexing the groups that are considered active, the group q is

adaptively included and excluded from U depending on the size of
∥

∥

∥ŵGq

∥

∥

∥

2
. If the

signal can be assumed to have slowly varying spectral content, meaning that the
support of w(t) is also varying slowly, the waiting period T may be chosen to be
quite long, as to improve the computational efficiency. In general, choosing T as
to correspond to a few milliseconds allows for a speed-up of the algorithm while
at the same time enabling it to track the time evolution of w(t).

5.3 Dictionary learning

In general, a signal’s pitch frequencies may vary over time, for instance, due to
vibrato. Applying the filter updating scheme using fixed grid-points will therefore
result in rapidly changing support of the filter or energy leakage between adjacent
blocks of the filter, here indexed by p. In order to overcome this problem, and to
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Algorithm 1 The PEARLS algorithm

1: Initialise ŵ(0)← 0, R(0)← 0 , r(0)← 0

2: t ← 1
3: repeat {Recursive update scheme}
4: R(t)← λR(t − 1) + a(t)aH (t)
5: r(t)← λr(t − 1) + y(t)ā(t)
6: j ← 0
7: ŵ( j )(t)← ŵ(t − 1)
8: repeat {Proximal gradient update}

9: ν( j ) ← ŵ( j )(t) + s(t)
[

r(t)− R(t)ŵ( j )(t)
]

10: ŵ( j+1)(t)← arg min
w

1
2s(t)

∥

∥

∥ν( j ) − w
∥

∥

∥

2

2
+ ht(w)

11: j ← j + 1
12: until convergence
13: ŵ(t)← ŵ( j )(t)
14: Determine A(t) and S(t)
15: w̆k(t)← 0 , k /∈ A(t)
16: w̆S(t)(t) = arg min

w∈C|S(t)|

wH RS(t)w− wH rS(t) − rH
S(t)w

+ξ‖w− w̆S(t)(t − 1)‖2
2

17: Update active set U
18: if t ∈ T then

19: Update dictionary
20: end if

21: t ← t + 1
22: until end of signal

allow for smooth tracking of pitches over time, we propose a scheme for adaptively
updating the dictionary of candidate pitches. This adaptive adjustment scheme
also allows for the use of a grid with coarser resolution than would otherwise be
possible. Let T = {τk}k be the set of time points in which the dictionary is up-
dated. As only groups ŵGp(τk) with non-zero power are considered to be present
in the signal, one only has to adjust the fundamental frequencies of these. As-
suming that the current estimate of such a candidate pitch frequency is fp(τk−1),
one only needs to consider adjusting it on the interval fp(τk−1)± 1

2δf ,k(t), where
δf ,k(t) denotes the current grid-point spacing. The update can be formed using
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the approximate non-linear least squares method in [48], [2], where, instead of
Lmax, one uses the harmonic order corresponding to the non-zero components
of ŵGp(τk). This refined estimate is obtained by first forming the residual, and
adding back the current group of harmonics, whereafter the approximate non-
linear least squares method is applied to update the frequencies. The adjusted fre-
quency fp(τk) is then used to update the dictionary on the time interval

[

τk, τk+1
)

.
After updating the dictionary, the filter coefficient estimates will, due to the re-
cursive nature of the method, be partly based on the old dictionary and partly on
the updated one. It is thus very likely that after the dictionary update the phase
component of the two filter coefficient parts will differ. To avoid this, we instead
incorporate the phase into the dictionary, thus obtaining a filter coefficient with
zero phase. This is accomplished by estimating the phases at the same time as the
frequencies are updated in the dictionary updating step. Each estimated phase is
then multiplied with the corresponding column of the dictionary, thus including
the phases into the dictionary. This update corresponds to changing (8) and (9)
to

a(t,φ) =
[

aT
1 (t,φ1) ... aT

P (t,φP)
]T

(39)

ap(t,φp) =
[

ei2πfp(t)t+iπφp1 ... ei2πfp(t)Lmaxt+iπφpLmax

]T
(40)

where

φ =

[

φT
1 . . . φT

P

]T
(41)

φp =

[

φT
p1

. . . φpLmax

]T
(42)

with φpℓ denoting the phase of the ℓth harmonic of the pth pitch. With this
formulation the phases are incorporated into the dictionary, thus rendering the
amplitudes real valued.

Together with the discussed algorithmic considerations, the presented time-
recursive multi-pitch estimator is detailed in Algorithm 1. The algorithm is
termed the Pitch Estimation using dictionary-Adaptive Recursive Least Squares
(PEARLS) method2.

2An implementation in MATLAB may be found at http://www.maths.lu.se/staff/andreas-
jakobsson/publications/
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Figure 1: Pitch frequency and pitch norm estimates, i.e., estimates of fp(t) and
∣

∣

∣

∣

∣

∣w̆Gp(t)
∣

∣

∣

∣

∣

∣

2
as produced by PEARLS when applied to a simulated two-pitch signal

with fundamental frequencies 302 and 369 Hz, respectively, deviating from the
original dictionary grid points by 2 and 1 Hz respectively.

6 Numerical results

In this section, we evaluate the performance of the proposed PEARLS algorithm
using both simulated signals and real audio recordings.

6.1 Simulated signals

To demonstrate the effect of the smoothing parameter, ξ, as well as the ability of
PEARLS to smoothly track the amplitudes of pitches, we first consider an illus-
trative example with a two-pitch signal. Figure 1 shows the time evolution of the

pitch frequency and pitch norm estimates, i.e., estimates of fp(t) and
∣

∣

∣

∣

∣

∣w̆Gp(t)
∣

∣

∣

∣

∣

∣

2
,

as produced by PEARLS when applied to a two-pitch signal with fundamental
frequencies 302 and 369 Hz, respectively, where both pitches are constituted
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Figure 2: Response time for different values of the smoothing parameter ξ.

by 5 harmonics each. Both pitches enter the signal after 90 ms, reaching their
maximum amplitudes momentarily and keeping them for the rest of the signal
duration. The signal was sampled at 11 kHz. The settings for PEARLS was
Lmax = 10, λ = 0.995, and the smoothing parameter was ξ = 104. The original
pitch frequency grid was chosen so that the true pitch frequencies deviated from
the closest grid points by 2 and 1 Hz, respectively. As can be seen from the fig-
ure, the estimate initially, before the pitch signals appear, contains several spurious
pitch estimates, but then quickly finds the pitch signals when these appear in the
data. At this point, the spurious peaks are suppressed and the estimates are seen
to well follow the true pitch envelopes. It is worth noting that both the response
time and the steady state variance of the estimates will be influenced by the choice
of the smoothing parameter, ξ. Figures 2 and 3 illustrate this effect by consider-
ing the response time, defined as the time required for the PEARLS amplitude
estimate to reach 95% of its peak value, and the steady state amplitude variance,
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Figure 3: Steady state variance of the pitch norm estimate for different values of
the smoothing parameter ξ.

respectively. The signal considered is the same as in Figure 1. As can be seen from
the figures, a higher value of ξ implies a longer response time for PEARLS, while
at the same time promoting a more smooth pitch norm trajectory, just as could
be expected.

The PEARLS algorithm is not restricted to form estimates of stationary pitches;
it is also able to cope with amplitude and frequency modulated signals. In Fig-
ure 4, PEARLS has been applied to a two-pitch signal with fundamental frequen-
cies that oscillate according to sine waves with frequencies 2 and 3 Hz on the
intervals 327 ± 2 Hz and 394 ± 3 Hz, respectively. Also, the pitch norms are
not constant, but are amplitude modulated according to a Hamming window. As
can be seen, PEARLS is able to track the two pitches smoothly both in frequency
and in pitch norm. Here, the pitches consisted of 5 and 7 harmonics, respect-
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Figure 4: Pitch frequency and pitch norm estimates, i.e., estimates of fp(t) and
∣
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∣

∣
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∣

2
, as produced by PEARLS when applied to a simulated two-pitch signal

with fundamental frequencies that oscillate according to sine waves.

ively. The signal was sampled at 11 kHz, with PEARLS using the same settings as
above. As comparison, Figure 5 presents a corresponding plot for the multi-pitch
estimator ESACF [7], using recommended settings. As ESACF only estimates
pitch frequencies, pitch norm estimates have been obtained using least squares,
assuming known harmonic orders. ESACF is a frame based estimator and the
signal was therefore here subdivided into 30ms windows. As can be seen, the
ESACF estimates deviate from the true pitch frequencies, causing the amplitude
estimates to degrade. Figure 6 demonstrates the usefulness of using the dictionary
learning procedure. In this figure, PEARLS is again applied to the signal with
two frequency modulated pitches, but this time the dictionary learning scheme
is excluded from Algorithm 1. As can be seen in the figure, PEARLS is still able
to estimate the frequency content, as well as the pitch norms, but the tracking is
now performed by different elements of w̆(t), as the frequency modulation causes
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Figure 5: Pitch frequency, i.e., estimates of fp(t), as produced by ESACF when ap-
plied to a simulated two-pitch signal with fundamental frequencies that oscillate

according to sine waves. The pitch norms, i.e.,
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, have been estimated

by applying least squares to the ESACF pitch frequency estimates using oracle
harmonic orders.

the different candidate pitches to become activated and then deactivated, with the
activation-deactivation cycles following the periods of the frequency modulation.
Also, there is some power-sharing between adjacent pitch groups of w̆(t) at time
points where the frequency modulating sinusoids change sign. In contrast, the
dictionary learning scheme allows for a much smoother tracking as the movable
dictionary elements counters the activation-deactivation phenomenon, which can
be observed in Figure 4.

6.2 Real audio

We proceed to evaluate the performance of PEARLS on the Bach10 dataset [49].
This dataset consists of ten excerpts from chorals composed by J. S. Bach, and
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Figure 6: Pitch frequency and pitch norm estimates, i.e., estimates of fp(t) and
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2
, as produced by PEARLS when applied to a simulated two-pitch signal

with fundamental frequencies that oscillate according to sine waves. Here, the
dictionary learning scheme is excluded from Algorithm 1.

have been arranged to be performed by an ensemble consisting of a violin, a cla-
rinet, a saxophone, and a bassoon, with each excerpt being 25-42 seconds long.
The algorithm settings for PEARLS were λ = 0.985, ξ = 103, Lmax = 6, and the
dictionary was updated every 10 ms using 45 ms of past signal samples. Each mu-
sic piece, originally sampled at 44.1 kHz, was down-sampled to 11.025 kHz. The
PEARLS estimates were compared to ground truth values with a time-resolution
of one reference point every 30 ms. The ground truth fundamental frequencies
were obtained by applying the single-pitch estimator YIN [50] to each separate
channel with manual correction of obvious errors. The results are presented in
Table 1, presenting values of the performance measures Accuracy, Precision, and
Recall, as defined in [51]. As in [51], an estimated fundamental frequency is asso-
ciated with a ground truth fundamental frequency if it lies within a quarter-tone,
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PEARLS PEBSI-Lite BW15 ESACF

Accuracy 0.437 0.449 0.515 0.269
Precision 0.683 0.631 0.684 0.471
Recall 0.548 0.609 0.675 0.386

Table 1: Performance measures for the PEARLS, PEBSI-Lite, BW15, and ESACF
algorithms, when evaluated on the Bach10 dataset.

or 3%, of the ground truth fundamental frequency. For comparison, Table 1 also
includes corresponding performance measures for the PEBSI-Lite [9] and ES-
ACF algorithms. The values for PEBSI-Lite and ESACF were originally presen-
ted in [9], and the settings for these algorithms are the same as is presented there.
Also presented in Table 1 are performance measures obtained when applying the
method presented in [35], hereafter referred to as BW15, after the authors and
year of publication, to the same dataset. Being trained on databases of music
instrument, this method uses probabilistic latent component analysis to produce
pitch estimates and is specifically tailored to estimate pitches in music signals. The
frequency resolution of the obtained estimates corresponds to that of the Western
chromatic scale, i.e., to the keys of the piano.

As can be seen, PEARLS clearly outperforms ESACF and performs on par
with PEBSI-Lite when considering these measures, although it should be stressed
that PEARLS has significantly lower computational complexity than PEBSI-Lite.
The BW15 methods performs better than the other presented methods, including
PEARLS, for this dataset. This is as the performance of the BW15 estimate was
formed when using an a posteriori thresholding of the obtained estimate, optim-
ally selecting the threshold level as to maximize the performance measures; this in
order to illustrate the best possible performance achievable for BW15. However,
several other choices of possible threshold levels resulted in BW15 performing
worse than both PEARLS and PEBSI-Lite. Furthermore, the BW15 estimator
is sensitive to mismatches between the examined signal and the training dataset
used to construct its priors. This is illustrated by applying the BW15 and PEARLS
estimators to a signal consisting of two (harmonic) trumpet notes and two (inhar-
monic) piano notes. The trumpets are playing the notes A4 and D♭5, corres-
ponding to the fundamental frequencies 440 and 554.37 Hz, whereas the pianos
are playing the notes E4 and G♯4, corresponding to the fundamental frequencies
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Figure 7: Ground truth for a signal consisting of two trumpets and two pianos.
The amplitude of each pitch, i.e., the pitch norm, is illustrated by the color of
each track. The amplitudes have been normalized so that the maximal amplitude
is 1.

329.65 and 415.3 Hz. The signal was sampled at 11.025 kHz. The ground truth
pitches can be seen in Figure 7. Here, the amplitude, i.e., the pitch norm, of each
pitch is illustrated by the color of each track. The amplitude has been normalized
so that the maximum amplitude is equal to one. The corresponding estimates
produced by PEARLS (using the same settings as for the Bach10 dataset) and
BW15 are presented in Figures 8 and 9, respectively.

As can be seen from Figure 8, PEARLS is able to correctly identify both the
trumpet and the piano pitches, despite the pianos being inharmonic and thereby
differing from the assumed signal model, as given in (2). Note that PEARLS is
also able to smoothly track the frequency modulation caused by that trumpets
are playing with vibrato, which can be more clearly seen from the zoomed-in
portions of Figures 7 and 8. In contrast, as seen in Figure 9, BW15 is able to
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correctly identify the piano pitches (note that pianos were included in the training
dataset used by the authors of [35]), but instead of identifying the sinusoidal
content corresponding to the trumpets (which are not in the training dataset) as
originating from only two pitches, several of the individual harmonics are instead
being assigned individual pitches.

It may be noted that the method does not accurately represent the vibratos;
this as the estimates of BW15 are restricted to correspond to the keys of the piano.
It should further be noted that the pitches indicated as being the most significant
by BW15 are not those corresponding to the true fundamental frequencies, but
instead higher order harmonics. This problem is arguably due to the mismatch
between the content of the signal and the database used to train the method.
Thus, for this example, it is not possible to recover the true pitches by thresholding
the solution of BW15, as the thresholding would eliminate true pitch candidates
before getting rid of the erroneous ones. Although the estimates produced by
BW15 could arguably be improved by extending its training data to also include
trumpets, this example illustrates that basing estimation on exploiting the features
of a signal model, as PEARLS does, can be beneficial in terms of the generality
of the estimator, even in the face of slight deviations from the assumed signal
model, which in this case takes the form of inharmonicity for the pianos. It can
be noted that an interesting future development would be to combine the benefits
from training a hidden Markov model, as is done in BW15, with the more robust
approach in PEARLS.

Another recent method that would be of interest to consider in this respect
would be the one presented in [21], which also exhibits some conceptual similar-
ities with the herein presented algorithm. Notably, the sparsifying role played by
the ℓ1-norm herein is in [21] formed by instead determining the significant spec-
tral peaks using an estimate of the noise floor. The pitch selection, herein formed
using the group-wise ℓ2-norm, is in [21] made by matching spectral content with
that of components in a large training data set, which is also used to measure the
power concentration for low-order harmonics, as well as a synchronicity measure.
The relative weighting of these components is selected using training data. Using a
greedy approach, the method in [21] then iteratively adds candidate pitches to the
estimate; the power allocation between pitches that have overlapping harmonics is
resolved using an interpolation scheme utilizing the power of harmonics unique to
each candidate pitch. In contrast, the number of active pitches is herein decided
by the optimal point of (6), where candidate pitches not contained in the signal
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Figure 8: Estimates produced by PEARLS when applied to a signal with two
trumpets as well as two pianos. The amplitude of each pitch, i.e., the pitch norm,
is illustrated by the color of each track. The amplitudes have been normalized so
that the maximal amplitude is 1.

should be assigned zero power. It can also be noted that the optimization problem
presented here does not favor spectral smoothness; rather, the ℓ2-norm will favor
collecting as much power as possible into a few candidate pitches. The power of
overlapping harmonics will therefore tend to be allocated to pitches with more
prominent unique harmonics. Using a MATLAB implementation of PEARLS on
a 2.68 GHz PC, the average running time for the Bach pieces was 20 minutes.
The Bach pieces were on average 33 seconds long3. For PEBSI-Lite, the average
running time was 54 minutes, with the signal being divided into non-overlapping
frames of length 30 ms.

3We note that the current implementation has not exploited that the filter updating step (17)
can be done for all P candidate pitches in parallel. Similarly, the computations for PEBSI-Lite can
also be parallelized, as each time frame can be processed in isolation.
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Figure 9: Estimates produced by BW15 when applied to a signal with two trum-
pets as well as two pianos. The magnitudes of the estimates are illustrated by
the color of the pitch tracks. The magnitudes have been normalised so that the
maximal magnitude is 1.

As an illustration of the performance of PEARLS on the Bach10 dataset, Fig-
ures 10 and 11 present the estimated fundamental frequencies obtained using ES-
ACF and PEARLS, respectively, for the piece Ach, Gott und Herr, as compared to
the ground truth for each instrument. Here, in order to make a fair comparison of
the computational complexities of the estimators, the ESACF estimate was com-
puted on windows of length 30 ms, where two consecutive windows overlapped
in all but one sample. Although ESACF can arguably be applied to windows with
smaller overlap, this setup meant that ESACF would produce pitch tracks with
the same time resolution as PEARLS. This resulted in an average running time of
11 minutes per music piece, that is, about half that of PEARLS. As can be seen
from the figures, PEARLS is considerably better at tracking the instruments than
ESACF. In Figure 12, the corresponding results for BW15 are shown. The figure
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Figure 10: Pitch tracks produced by ESACF when applied to a 25 seconds excerpt
of J. S. Bach’s Ach, Gott und Herr performed by a violin, a clarinet, a saxophone,
and a bassoon.

has been truncated at 1000 Hz to simplify inspection, although pitch estimates
with fundamental frequencies higher than 1000 Hz did occur repeatedly. From
the figure, it is clear that BW15 is better able to track the bassoon (which is in-
cluded in the method’s training data) than either PEARLS or ESACF. It can also
be noted that the discrete nature of the BW15 estimator prevents it from tracking
smaller frequency variations, such as vibratos.

7 Conclusions

In this work, we have presented a time-recursive multi-pitch estimation algorithm,
based on a both sparse and group-sparse reconstruction technique. The method
has been shown to be able to accurately track multiple pitches over time, in fun-
damental frequency as well as in amplitude, without requiring prior knowledge
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Figure 11: Pitch tracks produced by PEARLS when applied to a 25 seconds ex-
cerpt of J. S. Bach’s Ach, Gott und Herr performed by a violin, a clarinet, a saxo-
phone, and a bassoon.

of the number of pitches nor the number of harmonics present in the signal.
Furthermore, we have presented a scheme for adaptively changing the signal dic-
tionary, thereby providing robustness against grid mismatch, as well as allowing
for smooth tracking of frequency modulated signals. We have shown that the
proposed method yields accurate results when applied to real data, outperforming
other general purpose multi-pitch estimators in either estimation accuracy and/or
computational speed. The method has further been shown to be robust to devi-
ations from the assumed signal model, although it is not able to yield performance
as good as that achievable by a state-of-the art method being optimally tuned and
specifically trained on the present instruments. However, the method is able to
outperform such a technique when used without optimal tuning, or when applied
to instruments not included in the training data.
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Figure 12: Pitch tracks produced by BW15 when applied to a 25 seconds excerpt
of J. S. Bach’s Ach, Gott und Herr performed by a violin, a clarinet, a saxophone,
and a bassoon.
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Abstract

In this paper, we propose an off-grid method for estimating an unknown number
of fundamental frequencies. Starting with a conventional dictionary matrix, con-
taining sets of candidate fundamental frequencies and their corresponding har-
monics, a non-convex log-sum cost function is formed such that it imposes the
harmonic structure and treats every fundamental frequency in the dictionary as a
parameter. The cost function is then iteratively decreased by minimizing a sur-
rogate function, and, in each iteration, the fundamental frequencies are refined,
whereas redundant parameters are omitted from the dictionary. The proposed
method is tested on both real and simulated data, showing its preferred perform-
ance as compared to other state-of-the-art multi-pitch estimators.

Key words: Group sparsity, multi-pitch estimation, dictionary learning, off-grid
estimation

1 Introduction

In areas such as audio, biomedicine, and mechanics, the estimation of funda-
mental frequencies is often of central importance. In particular, the multi-pitch
problem is challenging, as one needs to determine not only the number of fun-
damental frequencies, but also the number of harmonics related to each fun-
damental frequency. This problem has historically been addressed by utilizing
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various forms of model order estimators, or by simply assuming the model or-
der is already known a-priori [1–4]. Early pitch estimation methods relied on
covariance-based methods as the ones presented in [5, 6]. Later, filterbank- and
subspace-based methods were introduced and MUSIC-like methods were widely
used [7–12]. Recent contributions include, e.g., [13], where the computational
speed is in focus, and [14] where the problem is to estimate the fundamental
frequencies in noisy environments when multiple people speak at the same time.
In [15], the Pitch Estimation using ℓ2 norm and Block Sparsity (PEBS) algorithm
was presented, where the fundamental frequency estimation problem was instead
solved by using a (block-)sparsity approach, thereby combining the model or-
der estimation with the overall estimation of the fundamental frequencies and
their harmonics. Based on the promising performance of the initial PEBS al-
gorithm, several improvements have been suggested, including focusing on the
choice of hyperparameters [16], time-updating [17], and computation complex-
ity [18]. The results presented in these works illustrate the benefits of using a
sparse framework for solving multi-pitch estimation problems.

Sparse reconstruction methods are used in a vast number of areas and has
been intensively studied (see, e.g., [19–24]). As in the case of PEBS, the resulting
sparse problems have often been expressed using dictionary matrices, containing
a large quantity of possible signal candidates, with the assumption that only a
small subset of these candidates is needed to approximate the signal well. These
candidates are often selected on a pre-defined grid that spans the parameter space
of interest. Recently, some concerns have been raised as to how this grid-based se-
lection of candidates affects the performance. In [25], it was shown that since the
grid and the true parameters are unlikely to coincide, this may cause the estima-
tion to deteriorate. If one, in an effort to circumvent this, increases the number
of grid points to decrease the distance between the grid and the true parameters,
the dictionary matrix will become increasingly coherent, i.e., the columns of the
dictionary matrix become correlated, which may in turn degrade the perform-
ance, and increase the computational complexity of the algorithm. To counter
these drawbacks, it has recently been suggested that one may instead solve the
sparse problem without applying a grid, using so-called gridless methods. One
noticeable example of this is the use of the atomic norm [26–30], where the
sparse problem is instead formulated as a convex semi-definite program (SDP).
The use of the atomic norm can be seen as solving the sparse problem using an
infinite grid, but without the problem of a resulting coherent dictionary matrix.
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Unfortunately, the atomic norm formulation does not easily allow for imposing
general data structures to the cost function, and, typically, any additional model
constraints will fundamentally change the problem formulation. This is in con-
trast to the grid-based approaches, where such model structures could easily be
accounted for by adding different constraints to the cost function.

In this paper, we aim to combine the benefits of the off-grid methods with
the use of a cost function that easily allows for adding structure to the signal
of interest. To this effect, we will expand on the PEBS formulation and intro-
duce a method for solving problems involving group sparsity with sparse groups
based on the super-resolution iterative reweighted (SURE-IR) method [31]. We
then proceed to adress both the computational complexity issue as well as the
appropriate choice of hyperparameters for the introduced estimator. Using both
simulated and real audio data, we illustrate the preferable performance of the in-
troduced estimator, comparing to several earlier alternative formulations. For the
real data case, we test the proposed method using the Bach10 data set, contain-
ing 10 musical pieces composed by Johann Sebastian Bach, showing that the pro-
posed method achieves similar performance as state-of-the-art music transcription
methods, although without the need of any training data, as is typically utilized
by such methods.

It should be noted that the proposed method is not limited to audio problems,
although this is here the main focus. Indeed, due to the possibility of adding new
constraints to the cost function, the technique may likely be extended to find use
in other related fields, such as studies of mechanical vibrations (see, e.g., [32–35]).

2 Signal model and earlier work

Consider the multi-pitch signal model1

y(n) =
K
∑

k=1

Lk
∑

ℓ=1

αk,ℓe
2iπfkℓtn + ε(n) (1)

where fk denotes the kth fundamental frequency (also denoted pitch), αk,ℓ the
complex amplitude corresponding to the ℓth overtone of the kth fundamental
frequency, tn, for n = 1, . . . ,N , the nth time point, and ε(n) any non-tonal

1For notational and computational simplicity, we here consider the discrete-time analytic signal
of the (real-valued) measured signal.
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audio or noise component, here, for simplicity, being modelled as a complex-
valued white Gaussian noise (see also [36]). Often, the problem of interest is that
of estimating fk for k = 1, . . . ,K . If this set is known, as well as the number of
overtones for each pitch, Lk, the corresponding amplitudes of the overtones may
be formed, for instance, using least squares (LS).

Typically, it is non-trivial to determine the required model orders; for sim-
plicity, we will initially consider the problem of only estimating K sinusoids in
noise. This corresponds to the case where Lk = 1 for all k. To form an efficient
estimator, one may then include the model order estimation into the estimation
of the frequencies, for instance by forming the sparse optimization problem (see
also [37])

minimize
z

||y− Az||22 + λ||z||1 (2)

where A is a dictionary matrix, z a vector containing the complex amplitudes, λ
is a hyperparameter that controls the amount of sparsity in the solution, and

y =

[

y(1) . . . y(n)
]T

(3)

Usually, the dictionary, A, is an N ×M matrix containing M ≫ N signal can-
didates (in this case sinusoids).

A =

[

a1 . . . aM

]

(4)

where ak =

[

e2iπfk t1 . . . e2iπfk tN
]T

.

The first part of (2) is thus a data-fitting term, whereas the second term is a
sparsity enhancing term, penalizing the magnitude of z, thus promoting a sparse
solution, containing only a few signal candidates. This methodology is widely
used in signal processing and has been popular for many years (see, e.g., [19]).
However, it has in recent times been argued that using a pre-defined grid may
cause the estimation to deteriorate, mainly because of the fact that the true para-
meter value will typically not exactly coincide with any of the grid points. Trying
to increase the grid size, in an effort to minimize the distance from the grid points
to the true values, may further harm the estimation as the dictionary matrix then
becomes more coherent. To address this issue, a gridless method based on the use
of the atomic norm was proposed in [27]. Instead of solving a problem based on a
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dictionary matrix, the authors proposed the gridless formulation (for the noiseless
case)

minimize
x,u

1

2
(x + u1)

subject to

[

T (u) yH

y x

]

≥ 0 (5)

where T (u) forms a Hermitian Toeplitz matrix with the vector u on its first row,
and where u1 denotes the first element in u. The corresponding frequencies are
then obtained using a Vandermonde decomposition of T (u∗), where u∗ denotes
the value of u at the solution of (5). The atomic norm enjoys many benefits (for a
more detailed discussion on the topic, see, e.g., [26–30]), but it is generally hard
to generalize the method to accommodate for other model restrictions, such as
block sparsity or, e.g., spectral smoothness [38]. Furthermore, if needed, it is not
clear how one may impose any of the assumed signal structures when retrieving
the frequency estimates using, e.g., the Vandermonde decomposition. As an al-
ternative, another gridless approach was suggested in [31], which was based on
the formulation of a non-convex optimization problem. The proposed problem
utilized a logarithmic penalty to enforce sparsity, such that

minimize
z,θ

||y − A(θ)z||22 + λ
M
∑

m=1

log
(

|zm|2 + η
)

(6)

where η > 0 is a parameter ensuring that the function is not evaluated at zero,
and zm denotes the mth element of z. It should be noted that the dictionary
matrix is now parameterized over the parameter vector θ, containing the sought
fundamental frequencies. Thus, instead of using a fixed grid, the grid points are
selected as to minimize the cost function in (6). Using a logarithmic penalty will
enhance the sparsity, but, at the same time, render the problem non-convex. To
solve the problem, a majorization-minimization (MM) approach was proposed in
[31] and the optimization problem was reformulated using a surrogate function,
thus yielding a simplified version of the original problem. This allows the problem
to be solved in closed-form for the amplitudes, as a function of θ, such that

z∗(θ) =
(

AH (θ)A(θ) + λD(i)
)−1

AH (θ)y (7)
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where

D(i)
= diag

(

1

|z(i)
1 |2 + η

, . . . ,
1

|z(i)
M |2 + η

)

(8)

with z(i)
m denoting the mth element of z at iteration i. Using this closed-form

solution, the frequencies may then be found using a gradient descent method.
The resulting algorithm starts with an initial grid and then iteratively refines the
grid points to find the correct solution. This results in a dynamic grid, where the
redundant grid points are removed, and the grid points closest to the true solution
are refined. The initial grid may here be much coarser than the grid needed to
solve (2) with a classic grid-based solution. In the following, we will extend on
the SURE-IR algorithm to allow for the incorporation of block penalties, as well
as sparsity within each block, showing how the resulting technique may be used
to solve the multi-pitch problem.

3 Proposed method

To take the harmonic structure in (1) into consideration and generalize the above
discussed SURE-IR algorithm, we need to reformulate the problem so that it
allows for a closed form solution similar to (7). In order to do so, let A(θ) denote
the N ×M dictionary matrix with

A(θ) =
[

A1(θ1) . . . AG(θG)
]

(9)

Ag(θg ) =
[

a(θg ) a(2θg ) . . . a(Lgθg )
]

(10)

a(ℓθg ) =
[

ei2πℓθg t1 . . . ei2πℓθg tN
]T

/
√

(N ) (11)

where θg denotes the fundamental frequency for the gth pitch-group, for g =

1, . . . ,G, with G denoting the number of considered groups, and M =
∑G

g=1 Lg ,
i.e., the total number of frequencies considered in the initial grid. Note that by
dividing with

√
N , the columns of the matrix A(θ) are normalized. Using the

logarithmic penalty for a group penalty, and at the same time allowing for sparsity
within the groups, one may consider the cost function

minimize
z,θ

λ
G
∑

g=1

Lg
∑

ℓ=1

log
(

|zg,ℓ|2 + η
)

+
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μ
G
∑

g=1

log
(

||zg ||22 + η
)

/Lg + ||y− A(θ)z||22 (12)

where μ and λ are hyperparameters that govern the group sparsity and the overall
sparsity, respectively, η > 0 are constants ensuring that the functions are not
evaluated over zero, and where zg denotes the amplitudes related to group g in A.
As expected, the problem in (12) is not convex and difficult to solve. To allow for
a closed form solution for z, the second term in (12) is rewritten as

G
∑

g=1

log(||zg ||22 + η)/Lg =

G
∑

g=1

log(||Fgz||22 + η)/Lg (13)

where Fg is a diagonal matrix with ones on the diagonal corresponding to group
g , and zeros elsewhere. To solve (12), we then follow the same approach as in [31]
and use an MM approach. To do so, a surrogate function, Q(z|z(i)), which is
much simpler than the original function, is devised such that it coincides with
the original function at the current point z(i), and is greater than or equal to the
original function everywhere else. It can be shown that minimizing (or even just
decreasing) Q(z, z(i)) then yields a non-increasing updating step in the original
function, thus yielding a method of minimizing the more complex function, using
simpler functions. An appropriate surrogate function to (12) may be selected as

ψ1(z|z(i)) =
G
∑

g=1

L−1
g

( ||Fgz||22 + η
||Fgz(i)||22 + η

+ log(||Fgz(i)||22 + η)− 1
)

(14)

for the second term in (12) and

ψ2(z|z(i)) =
G
∑

g=1

Lg
∑

ℓ=1





|zg,ℓ|2 + η
|z(i)

g,ℓ|2 + η
+ log(|z(i)

g,ℓ|2 + η)− 1



 (15)

for the first term, thus yielding

Q(z|z(i)) = μψ1(z|z(i)) + λψ2(z|z(i))

Removing terms that are independent of z andθ, the surrogate cost function may
be re-written as

minimize
z,θ

S(z,θ|z(i)) (16)

199



Paper F

where

S(z,θ|z(i)) =λzH D(i)
0 z + μ

G
∑

g=1

zH FH
g D(i)

g Fgz/Lg

+ ||A(θ)z− y||22 (17)

with

D(i)
0 = diag

(

1

|z(i)
1 |2 + η

, . . . ,
1

|z(i)
M |2 + η

)

(18)

D(i)
g =

1

||Fgz(i)||22 + η
, for g = 1, . . . ,G (19)

Furthermore, let

H(i)
=

G
∑

g=1

FH
g D(i)

g Fg/Lg (20)

Differentiating S(z,θ|z(i)) with respect to z, setting it equal to zero, yields

∂S(z,θ|z(i))

∂z
= 0⇔ (21)

z(θ)∗
=

(

λD(i)
0 + μH(i)

+ A(θ)H A(θ)
)−1

A(θ)H y (22)

Using (22), one may then find the θ that minimizes (16) by searching for the best
θ using, e.g., a steepest descent method, by substituting (22) in (16), yielding

minimize
θ

S(z∗,θ|z(i)) =

− yH A(θ)
(

λD(i)
0 + μH(i)

+ A(θ)H A(θ)
)−1

A(θ)H y (23)

Following the reasoning in [31], one may show that the original cost function
will be non-increasing when one decreases the surrogate function, thus showing
that Γ(θ(i+1), z(i+1)) ≤ Γ(θ(i), z(i)). This proof has been presented in [31] for
the problem in (6); the corresponding proof for the here considered case follows
directly, and is, in the interest of brevity, thus omitted.

Interestingly, the minimization problem in (23) is very similar to the one
in [31]; the difference lies in the introduction of μH(i), which weights the differ-
ent zg,ℓ accordingly to the power of the group they belong to. This indicates how
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3. Proposed method

easy it is to extend the SURE-IR algorithm and allow for the modeling of other
structures in the signal. For instance, one may consider adding a logarithmic
version of the total variation penalty to (12), which would then simply add an-
other term in (23). This suggests that the SURE-IR approach, in contrast to, e.g.,
atomic norm, can allow for adding and subtracting different penalties and may
thus easily be extended to cover also other model structures.

For the gradient based search, one needs to compute the gradient of S(z∗,θ|z(i))
with respect to θ. The gradient for the single sinusoid case was presented in [31]
and the reader is referred to that paper for the details. However, we note that,
in contrast to the single sinusoidal case, the derivative of one fundamental fre-
quency, ∂A(θ)/∂θ, is in the examined case operating on all the elements of that
pitch group; the derivative will thus be a matrix instead of a vector for the here
considered case. Thus the direction, dg , for which the frequency for the pitch
group g is moving is

dg = −yH
(

T1 + AGAH
+ TH

1

)

y (24)

where Re(·) and Tr(·) denote the real part and the trace, respectively, and where

T1 =
∂A(θ)

∂θ
T2A(θ)H (25)

with

T2 =

(

λD0 + μH + A(θ)H A(θ)
)−1

(26)

and

G = −T2

(

∂A(θ)

∂θ

H

A(θ) + A(θ)H ∂A(θ)

∂θ

)

T2 (27)

When forming the gradient step, each harmonic is then multiplied with its cor-
responding harmonic order, i.e., ℓ. Thus, the updating becomes

θ(i+1)
g = θ(i)

g − αdg (28)

where α denotes the step length.
The algorithm starts by first selecting a grid of fundamental frequencies, and

then adding the harmonics, thus forming a grid containing G fundamental fre-
quencies and M total grid points (thereby including both the fundamental fre-
quencies and their respective harmonics). In pitch estimation, one has to pay par-
ticular attention to the so-called halfling problem [15, 16]. This problem stems
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from the fact that the frequencies corresponding to {f0, 2f0, . . . ,L0f0} are also
present in the group corresponding to f0/2. This ambiguity results in that the
algorithms often prefer to choose the lower fundamental frequency. A common
solution to this problem is to include a total variation penalty, which can easily be
included in the proposed method. However, we opt to overcome this problem by,
similarly to [17], instead penalize the amplitudes in each group with the power
of the group’s fundamental frequency. Thereby, if the amplitude of the candidate
fundamental frequency is zero, the other amplitudes in that group will be heavily
penalized; thus, if there is any competition between f0 and f0/2 candidates, the
method is more likely to choose the higher fundamental frequency. This penalty
is not necessary after the algorithm has found some initial estimates of the groups,
and may be removed after a couple of iterations, which will, in the same way as
decreasing μ and λ (see next section), result in an improved estimate.

4 Implementational aspects

The implementation of the proposed algorithm relies on three steps in each it-
eration: solving (23) using a gradient-based minimization, evaluating z for the
new value of θ using (22), and removing redundant grid points. The last step
is implemented to reduce the computational complexity by decreasing the size
of the matrices A(θ), D0, and H. To speed up the calculations, one may start
pruning the dictionary after merely a few iterations. This is done by removing all
the groups and all the individual frequencies in case their magnitudes are below a
certain predefined limit, say τ, which we in this paper has selected to be τ = 0.05.

Appropriately setting hyperparameters such as μ and λ is often a difficult
problem. In this work, we take a practical stance to this problem. First, we
observe that if the true θ were known, one would solve (23) with μ = λ = 0.
Thus, we should expect the method to improve if we gradually decreased λ and μ.
To this end, we begin setting λ as in [31]. Then, after the first pruning step, we
decrease λ by half each iteration, thereby gradually improving the estimates. Sim-
ilar to the method introduced in [31], the extended algorithm will also decrease
η in each iteration. The choice of μ is more critical. A too small value of μ will
result in too many groups being involved in the solution, and a too large value
will suppress true groups and often result in the method breaking down. If one is
not able to find a suitable value of μ, one may first run the algorithm by setting
a large μ; if the method breaks down, i.e., yields an empty set, the problem is
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5. Numerical examples

Algorithm 1 The BSURE-IR estimator

1: Define an M element grid, θ, over the considered fundamental frequencies,
and let λ = λ0, μ = μ0, τ = τ0, i = 1, z(0) = 0MG, and z(1) = 1MG.

2: while i < 2 or ||z(i) − z(i−1)||2 > τ do

3: Form H(i) from (18), (19), and (20).
4: Update z(θ)(i) from (22).
5: Update θ(i) by solving (23) using (28).
6: Decrease λ and μ, prune the dictionary and remove all columns of A(θ)

corresponding to elements in z that are |zg,ℓ| < 0.05 and ||zg ||2 < 0.05.
7: Set i = i + 1
8: If ||z||0 = 0, then set μ = μ0/2 and restart the iterations with i = 1.
9: end while

simply resolved using a smaller value of μ. As noted above, it may be beneficial to
continue to decrease the value of μ, which can be efficiently computed by warm-
starting the algorithm for each decrease of μ. This approach to selecting a good
value of μ is possible since with the pruning step, the computational complexity
is low. As shown in the numerical section, the proposed method is notably faster
than the SURE-IR algorithm when using a dictionary with the same number of
frequencies. This is primarily due to the fact that even though the number of grid
points are the same, the proposed method only has the fundamental frequencies
as variables; thus, when calculating the gradient, and pruning the dictionary, these
steps become more efficient.

We coin the presented method the block super-resolution iteratively reweighted
(BSURE-IR). Algorithm 1 summaries the proposed method, wherein 0MG and
1MG denote an MG × 1 long vector of zeros and ones, respectively, and τ a pre-
defined stopping criteria.

5 Numerical examples

In this section, we investigate the performance of the proposed method and com-
pare the results to other competing methods. Throughout this section, we will
evaluate the methods’ ability to correctly estimate the frequencies by measuring
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the root-mean-squared-error (RMSE), defined as

RMSE(θ̂) =

√

√

√

√

1
∑K

k=1 Lk

K
∑

k=1

Lk
∑

ℓ=1

(θk,ℓ − θ̂k,ℓ)2 (29)

where θk,ℓ denotes the true parameter value, θ̂k,ℓ the estimated value, and θ̂
the vector of parameters that are estimated. In the following, we compare the
methods’ RMSE as a function either of the length of the signal, N , or the signal-
to-noise-ratio (SNR), defined as

SNR = 10 log
(

P

σ2

)

(30)

where P is the power of the noiseless signal and σ2 the variance of the noise. For
each SNR level or signal length, the presented results are found using 100 Monte-
Carlo simulations. In the first example, an N = 30 long uniformly sampled sig-
nal with a single pitch was considered. The fundamental frequency was uniformly
drawn between [1/7, 1/3) for each Monte-Carlo simulation and the number of

harmonics were selected as
⌊

1
f0

⌋

for each fundamental frequency, f0, with ⌊·⌋ de-

noting the floor operator. Four algorithms were considered; BSURE-IR, SURE-
IR [31], ANLS [9], and the PEBS algorithm [15]. The BSURE-IR method was
allowed an initial grid of 15 elements over the fundamental frequencies, ranging

from [0.1, 0.3], and the number of harmonics selected as
⌊

1
f0

⌋

, for each con-

sidered fundamental frequency, f0, thus yielding a dictionary containing a total of
77 spectral lines. The initial value of μ was set to 100. The SURE-IR algorithm
was also allowed a dictionary containing 77 elements, although these being un-
structured. The ANLS was allowed 28 grid points and was given the same range
over the fundamental frequency as BSURE-IR, as well as perfect model order
knowledge. The PEBS algorithm was given prior information about where the
fundamental frequency was positioned, given as a range of±0.02 around the true
value. In this range, PEBS was given 1000 grid points and the initial user para-
meters were set to 5 and 30 for the parameter governing the ℓ1 and the ℓ2 norms,
respectively. Furthermore, for the PEBS algorithm, only the largest peak was
selected from the estimates, thus not requiring the algorithm to make a correct
model order, thereby avoiding the problem of wrongly setting the hyperparamet-
ers. This was not true for the other methods, where each wrong model order
estimate was recorded. The resulting RMSE may be seen in Figure 1, where it can
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Figure 1: The RMSE of the frequency estimates, as defined in (20), as a function
of SNR, for uniformly sampled data.

be seen that the proposed method outperforms the other methods for SNR-levels
of 10 dB and above. Interestingly, it can be seen that the grid-based methods
have similar performance to the BSURE-IR for low SNR levels, whereas the two
off-grid methods excel for higher SNR levels; even SURE-IR, which does not
take the harmonic structure in consideration, actually outperforms the two grid-
based methods that actively exploits the harmonic structure. In this setting, the
BSURE-IR method failed to correctly estimate the model order 6 times for the
lowest SNR level, but managed to correctly do so for the other SNRs. The aver-
age run-times for the methods were 3.0 seconds for BSURE-IR, 10.5 seconds for
SURE-IR, 0.1 seconds for ANLS, and 4.7 for PEBS.

Proceeding, we investigate how the performance is affected by non-uniformly
sampled data. This scenario is not as common for audio samples, but is so in
many other areas. As ANLS does not allow for this case, the algorithm is omit-
ted from comparison. Using the same settings as before, but now with non-
uniform sampled data with length N = 30 sampled from 60 measurements, the
RMSE was measured for the methods. Figure 2 shows the result. As expected,
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Figure 2: The RMSE of the frequency estimates as a function of SNR for non-
uniformly sampled data.

BSURE-IR again outperforms the competing methods. Again, comparing SURE-
IR with PEBS, the latter seems to benefit from exploiting the harmonic structure
for lower SNR levels. However, when the SNR level reaches 10 dB, the unstruc-
tured SURE-IR again outperforms the PEBS algorithm. Here, BSURE-IR failed
to determine the correct model order 6 times for SNR 5 dB, but estimated it
correctly in the other cases. The run times in this setting were 2.5 seconds for
BSURE-IR, 11.5 seconds for SURE-IR, and 18.5 seconds for PEBS.

In the third example, we investigate the performance as function of the length
of the signal. Figure 3 shows the results when using the same settings as before,
but with N ranging from 20 to 300 and with SNR fixed at 15 dB. Once again it
may be seen that the purposed method outperforms the competing methods. In
this scenario, we had to remove 86 outliers for PEBS to make the figure readable;
55 outliers for N = 20, 29 for N = 25, and 2 for N = 30. BSURE-IR estimated
the wrong model order five times, once for N = 20, N = 100, and N = 300,
and twice for N = 200 . The run times for the considered algorithms were 2.3
seconds for BSURE-IR, 8.6 seconds for SURE-IR, and 14.2 seconds for PEBS.
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Figure 3: The RMSE of the frequency estimates as a function of the data length,
N .

In the fourth example, we look at the case were the signal contains multiple
pitches. Here, we consider a signal with length N = 30, non-uniformly sampled
and with two fundamental frequencies set at 0.15π/3 and 0.26π/3. Figure 4
shows the resulting RMSE for all frequencies in both pitches. For the case when
the SNR level is 5 dB, BSURE-IR seems to have problem to get the model or-
der correct, and 41 times the estimated order model was incorrect. This only
happened 8 times for the other SNR levels. For PEBS, 42 outliers were removed
to make the figure more readable. If disregarding the 5 dB case, one can see
that the BSURE-IR method outperforms the PEBS algorithm for the multi-pitch
case. Note that, again, PEBS is given K a priori and is also zoomed in around the
correct fundamental frequencies. Also, PEBS are now allowed 1000 grid points
for each fundamental frequency. The run times for this examples are 5.2 seconds
for BSURE-IR and 84.3 seconds for PEBS. The increase in run time for PEBS is
mainly due to the increase in grid size.

In the final example, we evaluate the performance of the methods on the
Bach10 dataset [39]. The data set contains ten excerpts from chorals that were
composed by Johann Sebastian Bach. The instruments playing in the pieces are
a violin, a clarinet, a saxophone, and a bassoon, and the set contains many se-
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Figure 4: The RMSE of the frequency estimates of a multi-pitch signal containing
two pitches for non-uniformly sampled data.

quences where the overtones overlaps. The resulting estimates are compared to
ground truth fundamental frequencies, obtained by applying the single pitch es-
timator YIN [40] to each separate channel. Obvious errors in the ground truth
were corrected for manually. Each excerpt is about 25-42 seconds long. Table 1
presents the performance measures accuracy, precision, and recall, as defined in
[41]. In Table 1, the performance of the BSURE-IR estimator is compared to four
other multi-pitch estimators, namely PEARLS [17], PEBS [15], PEBSI-Lite [16],
and ESACF [6], as well as a state-of-the-art music transcription method [42], here
denoted BW15 (after the surnames of the authors and the year of publication).
For BSURE-IR, the starting value of μ was set to 1 and the number of initial
fundamental frequency grid-points 30, and the maximum allowed L was set to
4. PEARLS is a time-recursive multi-pitch estimator, with a dictionary learning
scheme that resembles a gridless method, but uses a different cost function, and
ESACF is a auto-correlation based multi-pitch estimator. The BW15 method is a
music transcription algorithm that uses a probabilistic latent component analysis
to produce pitch estimates that are trained on databases of music instruments.
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6. Conclusions

Method Accuracy Precision Recall Pre-trained
BSURE-IR 0.47 0.71 0.58 No
PEARLS 0.44 0.68 0.54 No

PEBS 0.39 0.56 0.51 No
PEBSI-Lite 0.45 0.63 0.61 No

BW15 0.52 0.68 0.68 Yes
ESACF 0.27 0.47 0.39 No

Table 1: Performance measures for the BSURE-IR, PEARLS, PEBS, PEBSI-Lite,
BW15, and ESACF algorithms, when evaluated on the Bach10 dataset.

We choose to include this method into the comparison to show the performance
of a state-of-the-art method that is pre-trained and specifically tailored for music
transcription, which is not the case for the other discussed methods. The settings
and results from ESACF and PEBSI-Lite were taken from [16] and for PEARLS
and BW15, the setting and results were from [17]. The PEBS settings and results
were obtained from [18]. Figure 5 shows the resulting BSURE-IR estimates of
the fundamental frequencies from an excerpt of J. S. Bach’s Ach, Gott und Herr
performed by a violin, a bassoon, a clarinet, and a saxophone. As can be seen from
the figure, BSURE-IR manages to capture most of the fundamental frequencies
without too many false positives. Furthermore, from Table 1, one may see that
the BSURE-IR method scores higher on both accuracy and precision as compared
to the other multi-pitch estimators, and has somewhat even score for recall. Not
surprisingly, BW15 attains a higher score than BSURE-IR, except for precision,
where BSURE-IR attains a slightly higher score. However, it should be stressed
that BW15 has been trained on the instruments included in the Bach10 data set,
whereas BSURE-IR has not. We note that, as for a future research topic, it would
be interesting to try to combine the probabilistic approach of BW15 and the more
robust BSURE-IR signal model approach.

6 Conclusions

In this paper, we present a novel off-grid multi-pitch estimator. By parameter-
izing the dictionary containing the candidate pitches and solving a non-convex
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Figure 5: The resulting estimation of the fundamental frequencies (pitches) of the
Bach10 data set.

optimization problem using a majorization-minimization approach, an iterative
method is derived. In each iteration, the dictionary is pruned which allows for a
decreased computational complexity. The method is evaluated on both simulated
and real data. In the real data case, the proposed method is shown to yield sim-
ilar performance as a specialized music transcription algorithm that is pre-trained
on the instruments present in the signal. Furthermore, the proposed method is
benchmarked against other popular multi-pitch estimates, showing the preferred
performance of the proposed method.
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Abstract

In this paper, we introduce a wideband dictionary framework for estimating sparse
signals. By formulating integrated dictionary elements spanning bands of the
considered parameter space, one may efficiently find and discard large parts of
the parameter space not active in the signal. After each iteration, the zero-valued
parts of the dictionary may be discarded to allow a refined dictionary to be formed
around the active elements, resulting in a zoomed dictionary to be used in the fol-
lowing iterations. Implementing this scheme allows for more accurate estimates,
at a much lower computational cost, as compared to directly forming a larger dic-
tionary spanning the whole parameter space or performing a zooming procedure
using standard dictionary elements. Different from traditional dictionaries, the
wideband dictionary allows for the use of dictionaries with fewer elements than
the number of available samples without loss of resolution. The technique may be
used on both one- and multi-dimensional signals, and may be exploited to refine
several traditional sparse estimators, here illustrated with the Lasso and the SPICE
estimators. Numerical examples illustrate the improved performance.

Key words: Sparse signal reconstruction, dictionary learning, convex
optimization
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1 Introduction

A wide range of common applications yield signals that may be well approximated
using a sparse reconstruction framework, and the area has as a result attracted not-
able interest in the recent literature (see, e.g., [1–3] and the references therein).
Much of this work has focused on formulating convex algorithms that exploit
different sparsity inducing penalties, thereby encouraging solutions that are well
represented using only a few elements from some (typically known) dictionary
matrix, D. If the dictionary is appropriately chosen, even very limited measure-
ments can be shown to allow for an accurate signal reconstruction [4,5]. Recently,
increasing attention has been given to signals that are best represented using a con-
tinuous parameter space. In such cases, the discretization of the parameter space
that is typically used to approximate the true parameters will not represent the
noise-free signal exactly, resulting in solutions that are less sparse than desired.
This problem has been examined in, e.g., [6–8], wherein discretization recom-
mendations and new bounds of the reconstruction guarantees were presented,
taking possible grid mismatches into consideration. Typically, this results in the
use of large and over-complete dictionaries, which, although quite efficient, often
violate the assumptions required to allow for a perfect recovery guarantee.

As an alternative, one may formulate the reconstruction problem using a con-
tinuous dictionary, such as in, e.g., [9–11]. This kind of formulations typically use
an atomic norm penalty, as introduced in [12], which allows for a way to determ-
ine the most suitable convex penalty to recover the signal, even over a continuous
parameter space. These solutions often offer an accurate signal reconstruction,
but also require the solving of large and computationally rather cumbersome op-
timization problems, thereby limiting the size of the considered problems.

In this work, we examine an alternative way of approaching the problem,
proposing the use of wideband dictionary elements, such that the dictionary is
formed over B subsets of the continuous parameter space. In the estimation pro-
cedure, the activated subsets are retained and refined, whereas non-activated sets
are discarded from the further optimization. This screening procedure may be
broken down into two steps. The first step is to remove the parts of the parameter
space not active in the signal, whereafter, in the second step, a smaller dictionary
is formed covering only the parts of the parameter space that were active in the
first step. This smaller dictionary may then again be expanded with candidates
close to the activated elements, thereby yielding a zoomed dictionary in these re-
gions. The process may then be repeated to further refine the estimates as desired.
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1. Introduction

Without loss of generality, the proposed principle is here illustrated on the prob-
lem of estimating the frequencies of K complex-valued M-dimensional sinusoid
corrupted by white circularly symmetric Gaussian noise. The one-dimensional
case of this is a classical estimation problem, originally expressed using a sparse
reconstruction framework in [13], and having since attracting notable attention
(see, e.g., [14–17]). Here, using the classical formulation, the resulting sinus-
oidal dictionary will allow for a K -sparse representation of frequencies on the
grid, whereas the grid mismatch of any off-grid components will typically yield
solutions with more than K components. Extending the dictionary to use a finely
spaced dictionary, as suggested in, e.g., [8], will yield the desired solution, al-
though at the cost of an increased complexity. In this work, we instead proceed
to divide the spectrum into B (continuous) frequency bands, each band possibly
containing multiple spectral lines. This allows for an initial coarse estimation of
the signal frequencies, without the risk of missing any off-grid components. Due
to the iterative refining of the dictionary, closely spaced components are success-
fully separated as the dictionary is refined; as the wideband elements span the full
band, no power is off-grid, avoiding the problem of a non-sparse solution due to
dictionary mismatch.

Other screening methods that decrease the dictionary size have been pro-
posed. For instance, in [18–23], methods for finding the elements in the diction-
ary that corresponds to zero-valued elements in the sparse vector were proposed.
Based on the inner product between the large dictionary and the signal, a rule
was formed for deeming whether or not a dictionary element was present in the
signal or not. Although these methods show a substantial decrease in computa-
tional complexity, one still has to form the inner product between the likely large
dictionary and the signal. To alleviate this, one may instead use the here proposed
wideband dictionary elements, thereby discarding large parts of the parameter
space. Since the wideband dictionary is magnitudes smaller than the full dic-
tionary required to achieve the reconstruction, the computational complexity is
significantly reduced.

The proposed principle is not limited to methods that use discretization of
the parameter space; it may also be used when solving the reconstruction problem
using gridless methods, such as the methods in [9–11]. It has been shown that
if the reconstruction problem allows for any prior knowledge about the location
of the frequencies, e.g., the frequencies are located within a certain region of
the spectrum, one may use this information to improve the estimates [24]. The
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proposed method may also be used to attain such prior information, and thus
improving the overall estimates as a result.

To illustrate the performance of the proposed dictionary, we make use of two
different sinusoidal estimators, namely the Lasso [25] and the SPICE estimators
[26, 27]; the first finding the estimate by solving a penalized regression problem,
whereas the latter instead solves a covariance fitting problem.

The remainder of this paper is organized as follows: in the next section, the
problem of estimating an M-dimensional sinusoidal signal is introduced, fol-
lowed, in Section III, by the introduction of the proposed wideband dictionary.
In Section IV, a discussion about the computational complexity reduction allowed
by the proposed wideband dictionary is given, and, in Section V, the performance
of the proposed wideband dictionary is illustrated by numerical examples. Finally,
in Section VI, we conclude on our work.

2 Problem statement

To illustrate the wideband dictionary framework consider the problem of estim-
ating the K frequencies f (m)

k , for k = 1, . . . ,K and m = 1, . . .M , of an M-
dimensional signal yn1,...,nM , with

yn1,...,nM =

K
∑

k=1

βke2iπf (1)
k t (1)

n1 +···+2iπf (M )
k t (M )

nM + εn1,...,nM (1)

for nm = 1, . . . ,Nm, and where K denotes the (unknown) number of sinusoids
in the signal. Furthermore, let βk and f (m)

k denote the complex amplitude and
frequency of the kth frequency and mth dimension, respectively, t(m)

nm
the nmth

sample time in the mth dimension, and εn1,...,nM an additive noise observed at
time tn1 , . . . , tnM . The signal model in (1) may be equivalently described by an
M-dimensional (M-D) tensor

Y =

K
∑

k=1

βkd̃(1)
(k) ◦ d̃(2)

(k) · · · ◦ d̃(M )
(k) + E (2)

where ◦ denotes the outer product, and

d̃(m)
(k) =

[

e2iπf (m)
k t (m)

1 . . . e2iπf (m)
k t (m)

Nm

]T
(3)
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2. Problem statement

To determine the parameters of the model in (1) or (2), as well as the model
order, we proceed by creating a dictionary containing a set of signal candidates,
each representing a sinusoid with a unique frequency. By measuring the distance
between the signal candidates and the measured signal, and by promoting a sparse
solution, one may find a small set of candidates that best approximates the signal.
To this end, we form dictionary elements on the form

d(m)
(k) =

[

e2iπf (m)
p t (m)

1 . . . e2iπf (m)
p t (m)

Nm

]T
(4)

for p = 1, . . . ,PM , where PM ≫ K denotes the number of candidates in dimen-
sion m. Here, the dictionary is assumed to be fine enough so that the unknown
sinusoidal component will (reasonably well) coincide with K dictionary elements.
Often, it is more convenient to work with a vectorized version of the tensor. Let
y = vec(Y), where vec(·) stacks the tensor into a vector. One may then re-write
(2) as

y =

(

D(M ) ⊗D(M−1) ⊗ · · · ⊗D(1)
)

β (5)

where ⊗ denotes the Kronecker product, suggesting that one may find both the
unknown parameters and the model order by forming the Lasso problem (see,
e.g., [13, 25])

min
β

1

2
||y−Dβ||22 + λ||β||1 (6)

where D =

(

D(M ) ⊗D(M−1) ⊗ · · · ⊗D(1)
)

and ‖·‖q denotes the q-norm. The

penalty on the 1-norm of β will ensure that the found solution will be sparse, with
λ denoting a user parameter governing the desired sparsity level of the solution.
The frequencies, as well as their order, are then found as the non-zero elements in
β.

As shown in [8], the number of dictionary elements, P, typically has to be
large to allow for an accurate determination of the correct parameters. This
means that for multi-dimensional signals, the dictionary quickly becomes inhibit-
ory large. Thus, it is often not feasible in practice to directly compute the solution
of (6) using a dictionary constructed from such finely space candidates. As an al-
ternative, one may use a zooming procedure, where one first employs an initial
coarse dictionary, D1, to determine the parameter regions of interest, and then
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Figure 1: The inner-product of a dictionary containing P = 50 (narrowband)
candidate frequency elements and the noise-free signal, with N = 100.

employ a fine dictionary, D2, centered around the initially found candidates (see,
e.g., [28, 29] for similar approaches). This allows for a computationally efficient
solution of the optimization problem in (6), but suffers from the problem of pos-
sibly missing off-grid components far from the initial coarse frequency grid. This
is illustrated in Figure 1 for a 1-D signal, where the inner-product between the
dictionary and the signal is depicted together with the location of the true peaks.
In this noise-free example, we used N = 100 samples and P = 50 dictionary
elements, with one of the frequencies being situated in between two adjacent grid
points in the dictionary. As seen in the figure, the coarse initial estimate fails to
detect the presence of the second signal component, which is thereby discarded as
a possibility in the following refined estimate. Increasing the number of candidate
frequencies will result in the side-lobes of the dictionary elements decreasing the
gap between the frequency grid points, making the inner-product between the
dictionary and the signal larger for components that lie in between two candidate
frequencies. However, doing so will increase the computational complexity cor-
respondingly, begging the question if one may retain a low number of candidate
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3. Integrated wideband dictionaries

frequencies, while still reducing the likelihood of missing any off-grid compon-
ents. This is the problem we shall examine in the following.

3 Integrated wideband dictionaries

We note that the above problem results from the dictionary being formed over
a set of single-component candidates, thereby increasing the risk of neglecting
the off-grid components. In order to avoid this, we here propose a wideband
dictionary framework, such that each of the dictionary elements is instead formed
over a range of such single-component candidates. This is done by letting the
dictionary elements be formed over an integrated range of the parameter(s) of
interest, in this case being the frequencies of the candidate sinusoids. For a multi-
dimensional sinusoidal dictionary, the resulting B integrated wideband elements
should thus be formed as

ab(1),...,b(M )(t(1), . . . , t(M )) =
∫ f

b(1)+1

f
b(1)

· · ·
∫ f

b(M )+1

f
b(M )

e2iπ(f (1)t (1)+···+f (M )t (M ))df (1) . . . df (M ) (7)

for t(m) = 1, . . . ,Nm for all m = 1, . . . ,M , where f (m)
b and f (m)

b+1 are the two
frequencies bounding the frequency band, for b = 1, . . . ,B, for the mth dimen-
sion. The resulting elements are then gathered into the dictionary, B, where each
column contains a specific wideband of the M-D parameter space for all time
samples, where each element is formed as the solution from (7), such that, in this
case,

ab(1),...,b(M )(t(1), . . . , t(M )) =

M
∏

m=1

e2iπf
b(m)+1

t (m) − e2iπf
b(m) t (m)

2iπt(m)
(8)

Note that (8) corresponds to the M-D inverse Fourier transform of 1, i.e., it
is the M-D inverse Fourier transform of an M-D section in the frequency domain
with unit amplitude. For the 1-D case, this simplifies to

{

1, for fa ≤ f ≤ fb

0, otherwise
F

−1

−−→
{

e2iπfbt −e2iπfa t

2iπt

0
(9)
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Figure 2: The inner-product of a dictionary containing B = 50 (wideband) can-
didate frequency elements and the noise-free signal, with N = 100.

The inner-product between the proposed dictionary, B, and the earlier 1-D sig-
nal is shown in Figure 2, using the same number of dictionary elements as in
Figure 1, clearly indicating that the proposed dictionary is able to locate the off-
grid frequency. This is due the wideband nature of the proposed dictionary, which
thus has less power concentrated at the grid points, but covers a wider range of
frequencies, not reducing to zero, or close to zero, anywhere within the band (as is
the case for the narrowband dictionary elements). As a result, using the wideband
dictionary elements, it is possible to use a smaller dictionary, thereby reducing the
computational complexity, without increasing the risk of missing components in
the signal. To further show this, 1000 Monte-Carlo simulations were conducted
for each considered signal to noise ratio (SNR) level. In each simulation, we con-
sidered a signal containing two sinusoids, where the frequencies were randomly
selected on (0, 1] with a spacing of at least 2/N , with N = 100 denoting the
signal length. The sinusoids had the magnitudes 4 and 5, with a randomly selec-
ted phase between (0, 2π]. Two dictionaries were given, one containing ordinary
sinusoids and one containing the proposed wideband components, both contain-

226



3. Integrated wideband dictionaries

0 5 10 15 20 25 30 35 40 45 50
SNR (dB)

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 o
f 

p
ea

ks

Lasso
Band-Lasso

Figure 3: The standard deviation of the peaks as a function of SNR.

ing P = B = 50 elements. For each dictionary, the inner-products with the signal
where computed, where the amplitudes were normalized so that the largest estim-
ated peak had unit magnitude. Figure 3 shows the variance of the smallest peak
for different SNR-levels. As is clear from the figure, the variance of the peaks are
much lower for the banded case. The reason why the sinusoidal dictionary results
in a larger variance is due to the fact that the main lobe is much thinner in this
case than in the banded counterpart. This means that when the sinusoids happen
to have frequencies that do not overlap with the main lobe of the dictionary, the
power in the inner-product will be small. This will not only make such compon-
ents harder to detect, but will also make it more difficult to determine a suitable
regularizing hyperparameter, λ. When P decreases below N , the gaps between the
frequency candidates in the single-component dictionary become so large that if
one of the sinusoids in the signal has its frequency values between two adjacent
grid points, the likelihood that this sinusoid lie in the null-space of the dictionary
increases. This problem is avoided with the wideband dictionary as it is more
likely to eliminate any gaps.

This property is depicted in Figure 4, where the success rate of finding the
true support is displayed as a function of the number of samples, N , and the
number of bands in the dictionary, B, for different number of sinusoids in the
signal, K . The estimation was done for a noise-free signal by solving (6), using
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Figure 4: The success rate of finding the true support as a function of the number
of samples (y-axis) and the ratio between the number of bands in the dictionary
and the number of samples (x-axis), for different values of K . Top, K = 3,
middle, K = 7, and bottom, K = 13.



4. Complexity analysis

wideband dictionaries and letting

λ = 0.3 max
i=1,...,B

|dH
i y| (10)

where di denotes the ith column of D. In the top figure, the signal contains
three sinusoids, and it is clearly the case that the banded dictionary is enable to
retrieve the true support for all setting of N and M/N , except for the case when
N = 30 and M/N < 7. In the middle and bottom figures, where K = 7
and K = 11, respectively, it is shown that when the number of sinusoids in the
signal increases, a larger number of samples is needed to allow for a successful
reconstruction, which is reasonable, as one needs more information to be able to
correctly estimate more parameters. However, the banded dictionary is able to
retrieve the true support as long as the number of samples is big enough and the
ratio M/N is not too small. It is further clear from the figures, that the banded
dictionary actually retrieves the true support even though M < N . Examining
the part of the signal that is unexplained by the support, one may note that no
bands outside the true support were activated. Thus, only the bands that either
were part of the true support, or that were adjacent to a band included in the
true support, were activated. The reason why some of the adjacent bands were
activated is that when the true frequency is very close to the left (or right) limit of
the band, it will also activate the adjacent bands.

The proposed approach is not the only way to form a wideband dictionary.
For example, one could populate the dictionary using discrete prolate spheroid
sequences (DPSS) [30]. For an integer Q and with real-valued 0 < W < 1

2 , the
DPSS are a set of Q discrete-time sequences for which the amplitude spectrum is
band-limited. The most interesting property of the DPSS for our discussion is the
fact that the energy spectrum of the dictionary elements are highly concentrated
in the range [−W ,W ], suggesting that the DPSS could be a suitable basis for
the candidates in a wideband dictionary, where the candidates are formed such
that each covers a 1/B-th part of the spectrum. In the numerical section below,
we examine how the use of DPSS candidates compare to the integrated wideband
candidates in (8).

4 Complexity analysis

To illustrate the computational benefits of using the wideband dictionary as com-
pared to forming the full dictionary, we proceed with our example of determining

229



Paper G

K M-D sinusoids by solving (6) using the popular ADMM algorithm [31]. In
order to do so, we first transform the problem into a vector form reminiscent to
(5), and split the variable β into two variables, here denoted x and z, after which
the optimization problem may be reformulated as

minimize
x,z

1

2
||y− Ax||22 + λ||z||1 subj. to x = z (11)

having the (scaled) augmented Lagrangian

1

2
||y− Ax||22 + λ||z||1 +

ρ

2
||x − z + u||22 (12)

where u is the scaled dual variable and ρ is the step length (see [31] for a detailed
discussion on the ADMM). The minimization is thus formed by iteratively solv-
ing (12) for x and z, as well as updating the scaled dual variable u. This is done by
finding the (sub-)gradient for x and z of the augmented Lagrangian, and setting
it to zero, fixing the other variables to their latest values. The steps for the jth
iteration are thus

x(j+1)
=

(

AH A + ρI
)−1 (

AH y + z(j) − u(j)
)

(13)

z(j+1)
= S(x(j+1)

+ u(j), λ/ρ) (14)

u(j+1)
= u(j)

+ x(j+1) − z(j+1) (15)

where (·)H denotes the Hermitian transpose, (·)(j) the jth iteration, and S(v, κ) is
the soft threshold operator, defined as

S(v, κ) =
max

(

|v| − κ, 0
)

max
(

|v| − κ, 0
)

+ κ
⊙ v (16)

where ⊙ denotes the element-wise multiplication for any vector v and scalar κ.
The computationally most demanding part of the resulting ADMM imple-

mentation is to form the inverse in (13) and to calculate AH y. These steps are
often done by QR factorizing the inverse in (13) prior to the iteration, so that this
part is only calculated once. After this, the QR factors are used when forming
the inner product. To give a simple example on the difference between the two
types of dictionaries, we exclude any further computational speed-ups and show
the difference on brute force computations of the above ADMM. This is done
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to give an idea on the effect P < N has on the computational complexity. The
total computational cost for the step in (13) depends on the size of the matrix A.
Let N =

∏M
m=1 Nm and P =

∏M
m=1 Pm, then A is a N × P matrix. If P < N ,

computing the inverse will cost approximately P3 operations, plus an additional
P2N operations to form the Gram matrix AH A. Furthermore, to compute AH y

requires PN operations, and the final step to compute x costs P2 operations. If in-
stead P > N , one may make use of the Woodbury matrix identity [32], allowing
the inverse to be formed using N 3+3PN 2 operations, whereafter one has to com-
pute AH y and the final matrix-vector multiplication, together costing PN + P2

operations. In total, the x-step will have the cost of roughly P3+(N +1)P2+NP,
if P < N , or N 3 + 3PN 2 + PN + P2, if N < P.

Since using the banded dictionary allows for a smaller dictionary, one may
calculate the computational benefit of using the integrated dictionary as compared
to just using an ordinary dictionary with large P. Consider using only a single-
stage narrowband dictionary, D1, with P > N dictionary elements. This requires
C1 = N 3 + 3PN 2 + P2 + PN operations if using the above ADMM solution,
with the dictionary D1 in the place of A in (13)-(15). If, on the other hand,
one uses a multiple-stage wideband dictionary with N dictionary elements in
the initial coarse dictionary, B1 (which is more than required, but simplifies the
calculations), the cost of forming the first stage (coarse) minimization is C2 =

2(N 3 + N 2). By taking the difference, i.e., forming

R = C1 − C2 = N 3
+ 3PN 2

+ P2
+

+PN − 2(N 3
+ N 2)

one obtains the available computational resources, R, that are left for the diction-
aries of the zoomed-in stages, without increasing the overall computational cost
above that of the narrowband dictionary solution. Let Bz denote the zoomed-in
dictionary with ηN number of bands, where 0 < η < 1 denotes the ratio between
the number of available bands in the dictionary and the number of samples. Then,
one may deduce the grid size for each Bz that is allowed without increasing the
overall computational complexity as compared to using the narrowband diction-
ary by solving

R = KIz

(

(ηN )3
+ (N + 1)(ηN )2

+ ηN 2
)

where Iz denotes the number of zooming steps and K the number of sinusoids in
the signal. To illustrate the resulting difference, consider the following settings:
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P = 1000, N = 100, K = 5, and η = 2/3. To only use half the resources that
are needed to solve the full narrowband problem, one may, using the wideband
dictionary, use 4 stages of zooming, resulting in a grid spacing of roughly 10−9, as
compared to 10−3 for the narrowband dictionary. One may of course also use a
zooming procedure when using the narrowband dictionaries, although this would
increase the risk of missing any off-grid component. This means that the smallest
number of dictionary elements, for the narrowband dictionary to avoid missing
any off-grid components, is P = N , and thus the wideband dictionary would
need only at most η2 of the computational resources needed for the ordinary dic-
tionary, at each zooming stage.

It is worth stressing that the wideband dictionary framework introduced here
is not limited to the Lasso-style minimizations such as the one examined in (6).
There are many other popular methods that could be implemented using this
approach. As an example of how the wideband dictionary can be applied for
other typical sparse estimation algorithms, consider the SPICE algorithm [14,27],
formed as the solution to

minimize
p,σ≥0

y∗R−1y + ||p||1 + ||σ||1 (17)

where

R(p) = APA∗ (18)

A =

[

B I
]

(19)

p =

[

p1 . . . pM

]T
(20)

σ =

[

σ1 . . . σN

]T
(21)

p̃ =

[

pT σT
]T

(22)

P = diag
(

p̃
)

(23)

Alternatively, one may consider the more general {r, q}-SPICE formulation1 [33,
34]

minimize
p≥0

y∗R−1y + ||p||r + ||σ||q (24)

1In this formulation, we assume that the columns of the dictionaries are normalized to have
unit norm.
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Using the wideband dictionary over B in (17) or (24) will allow for much smal-
ler dictionaries as opposed to using ordinary sinusoidal dictionaries. Many other
sparse reconstruction techniques may be extended similarly. Generally, the wide-
band dictionary may be used either as an energy detector which finds the parts of
the spectrum that have most energy, or in a zooming procedure similar to the one
described above.

5 Numerical examples

In this section, we proceed to examine the performance of the proposed method,
initially illustrating that the use of a two-stage wideband estimator will have the
same estimation quality as when using the ordinary (one-stage) narrowband Lasso
estimator.

5.1 One-dimensional data

We initially considered a signal consisting of N = 75 samples containing K = 3
(complex-valued) sinusoids corrupted by a zero-mean white Gaussian noise with
SNR = 10 dB. In each simulation, the sinusoidal frequencies are drawn from
a uniform distribution, over [0, 1), with all amplitudes having unit magnitude
and phases drawn from a uniform distribution over [0, 2π). The performance
is then computed using three different dictionaries, namely the (ordinary) nar-
rowband dictionary, D, with P = 1000 and P = 75 elements, respectively, and
the proposed wideband dictionary, B, using B1 = 75 elements, followed by a
second-stage narrowband dictionary using B2 = 25 elements per active band.
For each dictionary, we evaluate the performance for varying values of the user
parameter α using λ = αλmax , where λmax = maxi |xH

i yi| is the smallest tuning
parameter value for which all coefficients in the solution are zero [19]. Here, xi

denotes either the ith column of the D dictionary or the ith column of the B

dictionary. Each estimated result is then compared to the ground truth, counting
the number of correctly estimated and underestimated model orders. The res-
ults are shown in Figure 5. As can be seen from the figure, the best results are
achieved when α ≤ 0.65, in which case the proposed wideband dictionary, using
B1 = 75 bands, followed by a second stage narrowband dictionary, with B2 = 25
for each activated band, have similar performance to the narrowband dictionary
using P = 1000 dictionary elements.
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Figure 5: The probability of (top) correctly estimating and (bottom) underestim-
ating the number of spectral lines, for the (single-stage) narrowband dictionary,
using P = 1000 elements (cyan, dashed) and P = 75 elements (green, dot-
dashed), and for the initial wideband dictionary, using B1 = 75 elements (blue,
dotted), and the (two-stage) wideband dictionary, using B1 = 75 elements, to-
gether with B2 = 25 elements per activated bands in the refining dictionary (red,
solid).

Proceeding, we asses the mean-square error (MSE) for the two-stage diction-
ary, showing the MSE as a function of SNR for the first-stage wideband dic-
tionary, B1, and second-stage wideband refining dictionary, B2. Here, and in
the following, we consider situations where the number of elements in the dic-
tionary is less than number of samples. As was described before, this is a situ-
ation where the performance of narrowband dictionaries can deteriorate seriously.
For this experiment, we considered a signal with N = 300 samples containing
K = 2 (complex-valued) sinusoids, being corrupted by different levels of zero-
mean white Gaussian noise with SNR in the range [5, 20] dB. Figure 6 shows the
resulting MSE for the Lasso estimator for the estimates with correctly estimated
model order; for runs with the correct model order estimation we also removed
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SNR in dB
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Figure 6: Mean-square error curves for different SNR levels for the single-stage
narrowband dictionary, using P = 100, as compared to the two-stage diction-
ary, using B1 = 20 integrated wideband elements in the first stage, followed by
B2 = 5 wideband elements in the second stage. The percentage of correct model
order estimation (excluding outliers) is shown as a percentage on top of the cor-
responding MSE value.

outliers from the final MSE calculation. We consider an estimate as an outlier
if |f − f̂ | > Δf , where Δf was defined as two times the possible resolution,
where possible resolution is defined as 1/P for the narrowband dictionary and
1/(B1 · B2) for the wideband dictionary. Figure 7 shows the MSE for the same
experiment done using the SPICE estimator. The number of outliers removed
for the Lasso estimator was: 4, 0, 0, 0 for the wideband dictionary and 7, 16,
10 and 11 for the narrowband dictionary (corresponding to SNRs of 5, 10, 15,
and 20 dB). The number of outliers removed for the SPICE estimator was; 17, 1,
1, 0 for the wideband dictionary and 52, 80, 117, and 103 for the narrowband
dictionary. As can be seen from the figures, the two-stage dictionary using a wide-
band dictionary using B1 = 20 bands, followed by a refining dictionary using
B2 = 5 wideband elements, achieves the same performance as the single-stage
narrowband dictionary using P = 100 elements in terms of resolution. However,
the narrow-band dictionary will for this case fail to reliably restore the signal with
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Figure 7: Mean-square error curves for different SNR levels for the single-stage
narrowband dictionary, using P = 100, as compared to the two-stage diction-
ary, using B1 = 20 integrated wideband elements in the first stage, followed by
B2 = 5 wideband elements in the second stage. The percentage of correct model
order estimation (excluding outliers) is shown as a percentage on top of the cor-
responding MSE value.

reconstruction success rates of merely 30− 50%.

Table 1 shows the corresponding complexity cost of some of the different set-
tings in the numerical section. Note that to simplify the comparison this is the
complexity of solving the ADMM without utilizing any structures of the diction-
ary matrices.

Next, we consider non-uniformly sampled data with N = 400 samples, for
K = 2 sinusoids. For this experiment, we also added a third estimation step for
the iterative wideband dictionary. After initial estimation with B1 = 10 wideband
dictionary elements, we zoom into the active bands with B2 = 10 dictionary ele-
ments per active band, and then once again with B3 = 5 dictionary elements. In
spite of the three stage zooming, the method requires considerably less computa-
tional operations as compared to using a corresponding narrowband dictionary,
but results in better performance both in terms of resolution and model-order
accuracy. The resulting MSEs are shown in Figure 8. All results are computed
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Settings Complexity ratio

D = 1000,N = 200,K = 3 1
B1 = 20,B2 = 5 897
B1 = 20,B2 = 40 27
D = 1000,N = 400,K = 3 26
B1 = 10, B2 = 10,B3 = 5 1000

Table 1: Complexity reduction compared to using the full dictionary and the
distance between the final grid for different settings. Here, D indicates the nar-
rowband dictionary, whereas B1,B2 indicates the two-stage dictionary using B1

wideband elements in the first stage, followed by B2 wideband elements in the
second-stage.

using 1000 Monte-Carlo simulations.

5.2 Two-dimensional data

In this subsection, we present results on a 2-D data set. In this example, each
dimension is sampled uniformly with N = 100 samples. We compare a nar-
rowband dictionary with P = 49 elements per dimension with the wideband
dictionary using B1 = 7 bands per dimension in the first step and a wideband
dictionary with B2 = 7 elements per active band in a second (zooming) step.
Here, we use two separate wideband dictionaries, the first, B, using integrated
dictionary elements as defined in (7), and the second, BDPSS , which contains ele-
ments based on DPSS. For the DPSS-based dictionary, we used a sequence length
of Q = 100 and W = 1/2.1. Using W < 1/2.1 results in dictionary elements
which concentrate energy in a more narrow band and are therefore not suitable for
the dictionary with B1 = B2 = 7 elements. We considered a signal containing
K = 2 (complex-valued) sinusoids per dimension, with the signal being cor-
rupted by a zero-mean white Gaussian noise. In each simulation, the sinusoidal
frequencies are drawn from a uniform distribution, over [0, 1), with all the amp-
litudes having unit magnitude. The two dictionaries are compared against each
other based on the MSE performance in the same manner as in the previous sub-
section, with the MSE being calculated as the average value for both dimensions
if the model order estimate for the iteration was correct. Outliers are removed
before the MSE calculation. The number of outliers removed was: 6, 15, 25, 30
for the BDPSS dictionary and 20, 22, 17 and 24 for the narrowband dictionary
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Figure 8: Signal estimation for non-uniform sampling: mean-square error curves
for different SNR levels for the single-stage narrowband dictionary, using P =

200 elements, as compared to the three-stage dictionary, using B1 = 10 integrated
wideband elements in the first stage, followed by B2 = 10 and B3 = 5 wideband
dictionaries in the second stage and third stage per active band detected in the
previous stage. The correct model order estimations are shown in percentage
above each point.

(corresponding to SNRs of 5, 10, 15, and 20 dB). The wideband dictionary B

did not result in any outliers. The percentages of correct model order estimates
are shown for each SNR value. Figure 9 shows the resulting MSE curves. It can
be seen that the wideband dictionary with integrated sinusoids outperforms the
DPSS-based wideband dictionary both in terms of MSE and model-order accur-
acy. Comparing to using the narrowband dictionary, it can be seen that both
wideband dictionaries outperform it both in terms of MSE and model-order es-
timation. Also in this example, the wideband dictionaries provide a considerable
reduction in computational complexity as well as a robustness in terms of es-
timating off-grid components. All results are computed using 100 Monte-Carlo
simulations.

Using the same setup as described above we also evaluated the performance of
the proposed approach when the number of sinusoids to detect is higher. Again,
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Figure 9: Signal estimation in two dimensions: mean-square error curves for dif-
ferent SNR levels for the single-stage narrowband dictionary D, using P = 100
per dimension, as compared to the two-stage dictionaries (DPSS based and in-
tegrated sinusoids based), using B1 = 7 wideband elements in the first stage,
followed by B2 = 7 wideband elements in the second stage (per active band).

we considered the ordinary narrowband dictionary, D, and the wideband diction-
ary, B, from the previous experiment. We calculated the percentage of correct
model order estimation for signals with K = 4, 6, 8, and 10 (complex-valued)
sinusoids. The results were computed using 100 Monte-Carlo simulations; the
correct model order estimation percentages for different SNR levels are shown in
Figure 10. The best regularization parameters λ for solving the Lasso for each case
were found beforehand with the grid-search method. For this, we selected the
range of parameter α ∈ [0.05, 0.7] with the step-size 0.05 and ran 100 Monte-
Carlo simulations for each model order and then picked the best parameter for
the selected model order based on model order accuracy. For the two-step wide-
band dictionary, a grid-search was done for the set of α parameter for the both
stages. It can be clearly seen that for situations where the number of elements in
the dictionary is lower than the number of samples, the narrow-band dictionary
fails to produce any meaningful results.

239



Paper G

SNR in dB
5 10 15 20

C
o

rr
ec

t 
m

o
d

el
 o

rd
er

 e
st

im
at

io
n

 in
 %

0

10

20

30

40

50

60

70

80

90

2D W-B dictionary order 4
2D N-B  dictionary order 4
2D W-B dictionary order 6
2D N-B  dictionary order 6
2D W-B dictionary order 8
2D N-B  dictionary order 8
2D W-B dictionary order 10
2D N-B  dictionary order 10

Figure 10: Percentage of correct model order esimations for different number
of sinusoids and for different SNR levels for wideband dictionary (W-B) and
narrowband dictionary (N-B).

6 Conclusion

In this paper, we have introduced a wideband dictionary framework, allowing for
a computationally efficient reconstruction of sparse signals. Wideband dictionary
elements are formed as spanning bands of the considered parameter space. In the
first stage, one may typically use a coarse grid using the integrated wideband dic-
tionary locating the bands of interest, whereafter non-active parts of the parameter
space are discarded. In the next stage, a refining dictionary can be used to more
precisely determine the parameters of interest on the active bands from the previ-
ous step, allowing for an iterative zooming procedure. The technique is illustrated
for the problem of estimating multidimensional sinusoids corrupted by Gaussian
noise, showing that the same accuracy can be achieved, although at a computa-
tionally substantially lower cost and with much less risk of missing any off-grid
components. The proposed framework is here illustrated for the Lasso and SPICE
estimators, but other sparse reconstruction techniques may be extended similarly.

240



References

[1] M. Unser and P. Tafti, An introduction to sparse stochastic processes, Cam-
bridge University Press, 2013.

[2] M. Elad, Sparse and Redundant Representations, Springer, 2010.

[3] E. J. Candès and M. B. Wakin, “An Introduction To Compressive
Sampling,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 21–30, March
2008.

[4] E. J. Candès, J. Romberg, and T. Tao, “Robust Uncertainty Principles:
Exact Signal Reconstruction From Highly Incomplete Frequency Informa-
tion,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[5] D.L. Donoho, “Compressed Sensing,” IEEE Trans. Inf. Theory, vol. 52, pp.
1289–1306, 2006.

[6] M. A. Herman and T. Strohmer, “Genral Deviants: An Analysis of Perturb-
ations in Compressed Sensing,” IEEE J. Sel. Topics in Signal Processing, vol.
4, no. 2, pp. 342–349, April 2010.

[7] Y. Chi, L. L. Scharf, A. Pezeshki, and A. R. Calderbank, “Sensitivity to Basis
Mismatch in Compressed Sensing,” IEEE Trans. Signal Process., vol. 59, no.
5, pp. 2182 –2195, May 2011.

[8] P. Stoica and P. Babu, “Sparse Estimation of Spectral Lines: Grid Selection
Problems and Their Solutions,” IEEE Trans. Signal Process., vol. 60, no. 2,
pp. 962–967, Feb. 2012.

[9] G. Tang, B. N. Bhaskar, P. Shah, and B. Recht, “Compressed Sensing Off
the Grid,” IEEE Trans. Inform. Theory, vol. 59, no. 11, pp. 7465–4790,
Nov 2013.

[10] Y. Chi and Y. Chen, “Compressive Two-Dimensional Harmonic Retrieval
via Atomic Norm Minimization,” IEEE Trans. Signal Process., vol. 63, no.
4, pp. 1030–1042, Feb 2015.

241



Paper G

[11] Z. Yang and L. Xie, “Enhancing Sparsity and Resolution via Reweighted
Atomic Norm Minimization,” IEEE Trans. Signal Process., vol. 64, no. 4,
pp. 995–1006, Feb 2016.

[12] V. Chandrasekaran, B. Recht, P. A. Parrilo, and A. S. Willsky, “The Con-
vex Geometry of Linear Inverse Problems,” Foundations of Computational
Mathematics, vol. 12, no. 6, pp. 805–849, Dec 2012.

[13] J. J. Fuchs, “On the Use of Sparse Representations in the Identification of
Line Spectra,” in 17th World Congress IFAC, Seoul, jul 2008, pp. 10225–
10229.

[14] P. Stoica, P. Babu, and J. Li, “New method of sparse parameter estimation
in separable models and its use for spectral analysis of irregularly sampled
data,” IEEE Trans. Signal Process., vol. 59, no. 1, pp. 35–47, Jan 2011.

[15] P. Stoica and P. Babu, “SPICE and LIKES: Two hyperparameter-free meth-
ods for sparse-parameter estimation,” Signal Processing, vol. 92, no. 7, pp.
1580–1590, July 2012.

[16] I. F. Gorodnitsky and B. D. Rao, “Sparse Signal Reconstruction from Lim-
ited Data Using FOCUSS: A Re-weighted Minimum Norm Algorithm,”
IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600–616, March 1997.

[17] S. I. Adalbjörnsson, A. Jakobsson, and M. G. Christensen, “Multi-Pitch
Estimation Exploiting Block Sparsity,” Elsevier Signal Processing, vol. 109,
pp. 236–247, April 2015.

[18] L. E. Ghaoui, V. Viallon, and T. Rabbani, “Safe Feature Elimination for
the LASSO and Sparse Supervised Learning Problems,” 2011, Publication:
eprint arXiv:1009.4219v2.

[19] R. Tibshirani, J. Bienand, J. Friedman, T. Hastieand N. Simon, J. Taylor,
and R. J. Tibshirani, “Strong rules for discarding predictors in lasso-type
problems,” Journal of the Royal Statistical Society: Series B (Statistical Meth-
odology), vol. 74, no. 2, pp. 245–266, 2012.

[20] Z. J. Xiang, Y. Wang, and P. J. Ramadge, “Screening Tests for Lasso Prob-
lems,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
PP, no. 99, 2016.

242



References

[21] A. Bonnefoy, V. Emiya, L. Ralaivola, and R. Gribonval, “A Dynamic Screen-
ing Principle for the Lasso,” in Proceedings of the 22nd European Signal Pro-
cessing Conference, Lisbon, Portugal, 1-5 September 2014.

[22] O. Fercoq, A. Gramfort, and J. Salmon, “Mind the Duality Gap: Safe Rules
for the Lasso,” 2015, Publication: eprint arXiv:1505.03410v3.

[23] J. Liu, Z. Zhao, J. Wang, and J. Ye, “Safe Screening With Variational
Inequalities and Its Application to LASSO,” 2014, Publication: eprint
arXiv:1307.7577v3.

[24] Z. Yang and L. Xie, “Frequency-Selective Vandermonde Decomposition
of Toeplitz Matrices With Applications,” 2016, Publication: eprint
arXiv:1605.02431.

[25] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” Journal
of the Royal Statistical Society B, vol. 58, no. 1, pp. 267–288, 1996.

[26] P. Stoica, P. Babu, and J. Li, “SPICE : a novel covariance-based sparse es-
timation method for array processing,” IEEE Trans. Signal Process., vol. 59,
no. 2, pp. 629 –638, Feb. 2011.

[27] P. Stoica, D. Zachariah, and L. Li, “Weighted SPICE: A Unified Approach
for Hyperparameter-Free Sparse Estimation,” Digit. Signal Process., vol. 33,
pp. 1–12, October 2014.

[28] S. Sahnoun, E. H. Djermoune, and D. Brie, “Sparse Modal Estimation of
2-D NMR Signals,” in 38th IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, Vancouver, Canada, May 26-31 2013.

[29] J. Swärd, S. I. Adalbjörnsson, and A. Jakobsson, “High Resolution Sparse
Estimation of Exponentially Decaying N-dimensional Signals,” Elsevier Sig-
nal Processing, vol. 128, pp. 309–317, Nov 2016.

[30] D. Slepian, “Prolate Spheroidal Wave Functions, Fourier Analysis, and
Uncertainty - V: the Discrete Case,” The Bell System Technical Journal, vol.
57, no. 5, pp. 1371–1430, May-June 1978.

[31] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Op-
timization and Statistical Learning via the Alternating Direction Method of

243



Paper G

Multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, Jan.
2011.

[32] G. H. Golub and C. F. Van Loan, Matrix Computations, The John Hopkins
University Press, 4th edition, 2013.

[33] J. Swärd, S. I. Adalbjörnsson, and A. Jakobsson, “A Generalization of the
Sparse Iterative Covariance-based Estimator,” in 42nd IEEE Int. Conf. on
Acoustics, Speech and Signal Processing, New Orleans, USA, March, 5-9 2017.

[34] J. Swärd, S. I. Adalbjörnsson, and A. Jakobsson, “Generalized Sparse
Covariance-based Estimation,” Elsevier Signal Processing, 2017, Accepted
for publication.

244



H





Paper H

Multi-dimensional Grid-less Estimation
of Saturated Signals

Filip Elvande1, Johan Swärd1, and Andreas Jakobsson1
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Abstract

This work proposes a multidimensional frequency and amplitude estimator tailored
for noise corrupted signals that have been clipped. Formulated as a sparse re-
construction problem, the proposed algorithm estimates the signal parameters by
solving an atomic norm minimization problem. The estimator also exploits the
waveform information provided by the clipped samples, incorporated in the form
of linear constraints that have been augmented by slack variables as to provide
robustness to noise. Numerical examples indicate that the algorithm offers prefer-
able performance as compared to methods not exploiting the saturated samples.

Key words: Atomic norm, de-clipping, gridless reconstruction

1 Introduction

Many forms of practical measurements suffer from clipping, for instance due to
limitations in the dynamic span of the analog-to-digital (AD) converter, possibly
necessitated by needs of resolution, or by additive interference offsetting the signal
unexpectedly. In such cases, the measured signal is occasionally saturated at its
minimum or maximum values, typically requiring these samples to be treated as
missing. One may attempt to reconstruct such samples using various forms of
interpolation or by using estimators of the relevant signal information that allow
for missing samples (see, e.g., [1–4]). There have also been methods proposed for
using gain masks in the sampling stage as to mitigate the effects of clipping [5], as
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well as post-processing methods for countering the harmonic distortion induced
by clipping [6].

More recently, several reconstruction schemes exploiting an assumed signal
sparsity have been proposed. In [7], the authors extend the concept of image
inpainting (see, e.g., [8]) to audio signals in order to reconstruct the clipped
samples. In [9], the authors utilize a compressed sensing formulation, as well as
exploit features of the human auditory system, in order to increase the perceived
signal quality. Other approaches include iterative hard thresholding [10], greedy
methods [11], smooth regularization [12], social sparsity exploiting temporal de-
pendence [13], and non-negative matrix factorization [14], whereas theoretical
recovery guarantees have been studied in [15]. The related field of estimation and
reconstruction of 1-bit signals is also attracting interest (see, e.g., [16, 17]). Such
signals only retain the sign of the sampled analog waveform, which can be seen
as an extreme form of clipping. The problem of signal reconstruction of more
generally quantized measurements has been explored in [18].

In this work, we propose an algorithm that exploits the assumed a priori struc-
ture of the signals of interest. This structure may, for instance, be that the signal
can be well modelled as a sum of decaying sinusoids, as is common in areas such
as spectroscopy, or by some other well structured signal. By formulating an es-
timator of the unknown parameters detailing the assumed signal structure, taking
into account both the available and the saturated samples, we propose a sparse
reconstruction algorithm that is able to exploit the information available in the
saturated samples, while still being robust to the presence of additive noise. Ro-
bustness against noise is achieved by not enforcing hard clipping constraints, i.e.,
the proposed estimator does not constrain the reconstructed waveform to satur-
ate at precisely the same samples as the observed signal, as this would make the
estimator vulnerable to amplitude bias. Instead, the clipping information is taken
into account by adding linear constraints, relaxed using slack variables, allowing
also the noise to cause saturation.

Assuming that the measured signal consists of relatively few signal compon-
ents, the algorithm may be constructed as a sparse reconstruction problem using
a signal dictionary formed using the assumed signal waveforms, taking into ac-
count the saturation information of the clipped samples. In order to allow the
signal of interest to be formed over a continuous parameter space, we express the
resulting optimization as an atomic norm minimization. The atomic norm has
previously been successfully exploited to develop estimators allowing for off-grid
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components (see, e.g., [19–21]). Here, we propose a similar formulation to ex-
ploit the structure of the assumed signal, while incorporating information of the
saturated samples. We note that an approach reminiscent of ours was recently
proposed in [22] for line spectrum estimation from 1-bit samples, although that
work considered only noise-free signals. In audio application the signal may of-
ten be well modeled as sum of harmonically related sinusoids. As noted above,
clipped samples often occurs in audio applications. In such cases, it is reason-
able to instead exploit the expected harmonic structure of speech or tonal music.
This may be done by extending the here proposed idea using the atomic norm
framework developed in [23].

2 Proposed estimator

In this section we present the proposed estimator. We begin by initially present-
ing the one-dimensional (1-D) version for real-valued sinusoidal data, and then
generalize the formulation to allow for both complex and multidimensional data.

2.1 One dimensional case

To illustrate the proposed algorithm, we assume that the signal of interest, y,
consists of N samples of a sum of K real-valued sinusoids corrupted by an additive
Gaussian noise, such that

y = Ad + e (1)

where d ∈ R
K ×1 denotes the amplitude vector, e the additive noise, and

A =

[

a1 . . . aK

]

ak =

[

cos(2πfkt1 + φk) . . . cos(2πfktN + φk)
]T

with fk and φk denoting the kth frequency and phase, respectively. Furthermore,
let Ω−, Ω+, and Ω denote the indices of y that are clipped from below, from
above, and all the non-clipped indices of y, respectively. In order to reconstruct
the signal of interest successfully, one needs to estimate the signal parameters,
here the frequencies and amplitudes, as well as the model order, K , all which are
assumed to be unknown. The typical way of dealing with the clipped samples
in y is to treat these as missing data points, and simply omit them from the
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measurement vector. The unknown parameters, and the model order, are then
estimated using a technique that allows for missing samples, such as, e.g., [24].

It is well known that dictionary techniques using a predefined grid suffers
when the true parameters are not on the grid. To alleviate this problem, and also
account for the missing samples, we here make use of an atomic-norm formula-
tion. Defining an atom set as A = {a(f ,φ) : f ∈ [0, 1], φ ∈ [0, 2π)} and an
atom as [a(f ,φ)]t = cos(2πft + φ), a signal containing a sum over K sinusoids
can be expressed as

y∗
=

K
∑

k=1

dka(fk,φk) (2)

The atomic norm is defined as

||y||A = inf{t > 0 : y ∈ t conv(A)}

= inf
dk≥0,φk∈[0,2π),fk∈[0,1]

{

∑

k

dk : y =
∑

k

dka(fk,φk)

}

where conv(A) denotes the convex hull of A. This formulation can be interpreted
as finding the sparsest linear combination of atoms that constitutes the signal.
In [20], it was shown that the atomic norm may be expressed equivalently as a
(computationally tractable) semidefinite program (SDP) on the form

minimize
x,z,u

x + u1 +
1

2
‖yΩ − zΩ‖2

2

subject to

[

x zH

z T(u)

]

� 0

T(u) ∈ T
N ×N

(3)

where yΩ and zΩ denote the measured signal and the signal model over the non-
saturated samples, respectively, whereas T denotes the set of all N × N symmet-
ric Toeplitz matrices, with T(u) denoting the Toeplitz matrix with u on its first
column. Since the problem in (3) is an SDP, it is also convex, and may as a result
be computed using solvers, such as, e.g., CVX [25]. The third term in (3) pen-
alizes the difference between the observed samples for the measured signal and
the optimization variable, z, corresponding to the noise-free, non-clipped signal.
Solving this optimization problem will yield a signal, z, where the missing values
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have been estimated, a scalar, x, corresponding to the sum of the absolute values of
the amplitudes, and the vector u that forms the Toeplitz matrix T(u), from which,
using, e.g., a Vandermonde decomposition, the resulting frequency estimates may
be found. This approach has been shown to be very efficient in both retrieving
the missing samples, as well as estimating the frequencies [20, 26]. However, it
should be noted that the approach treats the clipped samples as missing, and is
thus wasteful in the sense that the information that the measured signal is above
(or below) the clipping limit is not incorporated in the optimization problem.

To alleviate this, we proceed to extend the minimization to also incorporate
this information in the saturated samples. Clearly, since a clipped sample may not
always indicate that the true wave form should be clipped, this should be taken
into consideration when forming the optimization problem. This discrepancy
appears when the true wave form is inside the measurable region, but the noise
pushes the sample over (under) the saturation limit. To incorporate this effect,
we introduce the variables ε+ and ε−. These capture the discrepancy between
the observed and the true signal waveform for the samples saturated due to the
additive noise, and should preferably be as small as possible to reduce the influence
of this problem. Incorporating both changes, the minimization may be expressed
as

minimize
x,z,ε,u

μ (x + u1) + λ‖ε‖1 +
1

2
‖yΩ − zΩ‖2

2

subject to

[

x zH

z T(u)

]

� 0

T(u) ∈ T
N ×N

zΩ+ + ε+ ≥ γ
zΩ− + ε− ≤ −γ

(4)

where

ε =
[

ε+ ε−
]

(5)

and with μ and λ denoting user parameters governing the denoising and the reg-
ularization of the ε, respectively.

As before, the resulting frequency estimates are then found by using, e.g., a
Vandermonde decomposition on T(u). Although estimates of the amplitudes, dk,
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can also be obtained from such a Vandermonde decomposition, these estimates
will be biased towards zero due to the regularization parameter μ. In order to
refine the amplitude estimates, we therefore propose to additionally solve

minimize
α,β,ε

1

2

∥

∥

∥yΩ − ZΩ
(

f̂
)

r
∥

∥

∥

2

2
+ λ‖ε‖1

subject to ZΩ+

(

f̂
)

r + ε+ ≥ γ
ZΩ−

(

f̂
)

r + ε− ≤ −γ

(6)

where

Z
(

f̂
)

=

[

c1 . . . cK s1 . . . sK

]

(7)

ck =

[

cos(2πf̂kt1) . . . cos(2πf̂ktN )
]T

(8)

sk =

[

sin(2πf̂kt1) . . . sin(2πf̂ktN )
]T

(9)

r =
[

αT βT
]T

. (10)

Here, f̂ denotes the vector of frequency estimates obtained from the Vandermonde
decomposition of T(u), and Z

(

f̂
)

is the dictionary matrix of cosine and sine atoms
corresponding to these frequencies. Thus, the resulting optimization is a least
squares (LS) problem, constrained to satisfy the clipping conditions of the ob-
served signal, where the slack variable ε is again exploited to provide robustness
against noise. Using trigonometric identities, each amplitude estimate, d̂k, is then
constructed from the minimizing vectors α and β as

d̂k =

√

α2
k + β

2
k . (11)

2.2 D-dimensional case

In this section, we generalize the proposed estimator to allow for complex-valued
data as well as expand the optimization problem to also be able to deal with D-
dimensional data. We begin by defining what we in this paper mean by complex
clipping. Let γ denote the clipping level. The real and the imaginary parts of
the signal are typically treated separately, resulting in the following definition of
complex clipping:
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2. Proposed estimator

Definition 2.1. Clipping of complex-valued data.
Sample n in a complex signal yunclipped is subjected to clipping if either

(i) |Im{yunclipped
n }| > γ

and will assume the value Im{yn} = γsign(Im{yunclipped
n }), and/or

(ii) |Re{yunclipped
n }| > γ

and will assume the value Re{yn} = γsign(Re{yunclipped
n }) where Re and Im

denote the real and the imaginary part, respectively.

It is worth noting that Definition 2.1 allows the real part of a sample to be cor-
rectly recorded, whereas the imaginary part is clipped, or vice versa. It also allows
both the real- and the imaginary parts of the sample to be clipped, as well as being
below γ in both dimensions.

In [27], the atomic norm framework was expanded to allow for two-dimensional
data, and this was further generalized in [28] for the multidimensional case, where
it also was shown that the Vandermonde decomposition that is used in the one-
dimensional case to retrieve the frequency estimates has a multidimensional coun-
terpart, and may thus be used for frequency retrieval for multidimensional data.
We now present the D-dimensional version of the proposed estimation algorithm
for clipped complex data.

Let Y be the N1×N2×· · ·×ND data tensor and let y be the vectorized version
of Y with size N × 1, where N =

∏N
n=1 Nn. We here define the vectorization as

being operated on the mode-1 matricization, or unfolding (see also [29]). Thus,
in the two-dimensional case, the vectorization reduces to stacking the columns
of the 2-D data matrix. The order of the vectorization is not important as long
as it is consistent. The atomic norm minimization problem taking the clipping
information into account may then be formulated as
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minimize
x,z,T,ε

μ
(

x + tr{T}
)

+ λ‖ε‖1

+
1

2
‖Re(yΩRe

)−Re(zΩRe
)‖2

2

+
1

2
‖Im(yΩIm

)− Im(zΩIm
)‖2

2

subject to

[

x zH

z T

]

� 0

Re(zΩ+

Re

) + ε+
Re
≥ γ

Im(zΩ+

Im

) + ε+
Im
≥ γ

Re(zΩ−
Re

) + ε−
Re
≥ −γ

Im(zΩ−
Im

) + ε−
Im
≥ −γ

(12)

where ε =

[

ε+
Re
ε+
Im
ε−
Re
ε−
Im

]

, with ΩRe and ΩIm denote the subset

of the elements corresponding to the samples in y that have not been clipped in
their real and imaginary parts, respectively. The notationΩ+

Re
andΩ−

Re
denote for

the subset of elements corresponding to the samples in y that have their real part
clipped with positive sign and negative sign, respectively, and similar for Ω+

Im
and

Ω−
Im

. As before, ε acts as a slack-variable, allowing the clipping of the real and
imaginary parts to be considered caused by the noise and not the true waveform.
Furthermore, T is a D-level Toeplitz matrix (see [28] for a detailed definition). In
the two-dimensional case, the 2-level N1N2 × N1N2 Toeplitz matrix becomes

T =













T0 T−1 . . . T−(N1−1)

T1 T0 . . . T−(N1−2)
...

...
. . .

...
TN1−1 TN1−2 . . . T0













(13)

where each

Tn1 =













zn1,0 zn1,−1 . . . zn1,−(N2−1)

zn1,1 zn1,0 . . . zn1,−(N2−2)
...

...
. . .

...
zn1,N2−1 zn1,N2−2 . . . zn1,0













(14)
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3. Numerical evaluation

for n1 = −(N1 − 1), . . . ,N1 − 1, is an N2 × N2 Toeplitz matrix.
Similar to (4), the first term in (12) minimizes zH T−1z and controls the size

of T. The second term regularizes the slack variables ε using the one norm. This
corresponds to letting only a few of the elements in ε to be active in the solution.
The third and fourth term bounds the variable z to be close to the noisy signal,
in a two norm sense, corresponding to a data fitting term. Note that the two
last terms corresponds to the proposed denoising term in [26]. Having obtained
estimates of the set of frequencies from the optimal T estimate, one may then
estimate the amplitudes by solving a LS problem analogous to that in (6), namely

minimize
d,ε

λ‖ε‖1 +
1

2

∥

∥

∥Re(yΩRe
)−Re

(

ZΩRe
(̂f)d

)∥

∥

∥

2

2

+
1

2

∥

∥

∥Im(yΩIm
)− Im

(

ZΩIm
(̂f)d

)∥

∥

∥

2

2

subject to Re

(

ZΩ+

Re

(̂f)d
)

+ ε+
Re
≥ γ

Im

(

ZΩ+

Im

(̂f)d
)

+ ε+
Im
≥ γ

Re

(

ZΩ−
Re

(̂f)d
)

+ ε−
Re
≥ −γ

Im

(

ZΩ−
Im

(̂f)d
)

+ ε−
Im
≥ −γ

(15)

where d is the vector of amplitudes of the K D-dimensional sinusoids and Z(̂f) is
the N × K matrix defined as

Z(̂f) = A(d ) (̂f)⊗ . . .⊗ A(1)(̂f) (16)

where ⊗ denotes the Kroenecker product and

A(d )(̂f) =
[

a(d )
1 (̂f) . . . a(d )

K (̂f)
]

(17)

a(d )
k (̂f) =

[

e(2iπf̂ (d )
k t (d )

1 ) . . . e(2iπf̂ (d )
k t (d )

N )
]T

(18)

3 Numerical evaluation

We proceed to examine the performance of the proposed algorithm, initially striv-
ing to estimate the frequencies and amplitudes of a clipped 1-D signal consisting
of K = 2 sinusoids using (4) and (6), respectively. This is done by forming 500
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Figure 1: RMSE for the frequency estimates produced by the constrained and
unconstrained estimators, as a function of the fraction of unclipped data.

Monte Carlo (MC) simulations of N = 100 samples, where in each simulation
the frequencies, f1 and f2, are drawn uniformly on the intervals [0.08, 0.1] and
[0.11, 0.13], respectively. Furthermore, the amplitudes and phases are drawn uni-
formly on [0.8, 1.2] and [0, 2π), respectively. We examine the performance for
two cases, the first varying the number of clipped samples while keeping the signal
to noise ratio (SNR) fixed at 15 dB, where SNR is defined as

SNR = 10 log10

(

Py

σ2

)

(19)

with Py denoting the power of the true signal. In the second, the SNR is instead
varying for the case of 30% clipped samples. The performance is measured using
the sum of the root mean squared error (RMSE) for the frequencies, f1 and f2,
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Figure 2: RMSE for the amplitude estimates produced by the constrained and
unconstrained estimators, as well as the LS estimators, as a function of the fraction
of unclipped data.

as well as for the amplitudes, d1 and d2, where the RMSE for each component is
defined as

RMSE =

√

√

√

√

1

P

P
∑

k=1

|θ̂k − θk|2 (20)

where θ is the true parameter, θ̂k is the kth MC estimate of that parameter, and
P is the number of MC simulations. For all simulation settings, we use μ = 1
and λ = 1. As comparison, we also include the performance of the atomic norm
minimization which only considers the unclipped samples, i.e., where the estim-
ates are obtained by solving (4) without including the constraints, or equivalently,
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Figure 3: RMSE for the frequency estimates produced by the constrained and
unconstrained estimators, as a function of the SNR.

by setting λ = 0. For the obtained set of frequency estimates, the amplitudes are
then estimated using (6). Also, for the amplitude estimates, we include comparis-
ons with three least squares (LS) estimators that have been given oracle knowledge
of the frequencies. The first of these LS estimators estimates d by solving (6) using
the ground truth frequencies. The second considers only the unclipped samples,
i.e., solves (6) using λ = 0. Lastly, the third estimators uses hard clipping con-
straint, i.e., ε = 0, or equivalently, (6) is solved using λ = +∞.

For the scenarios considering varying fractions of non-clipped samples, the
RMSE for the frequency and amplitude estimates are presented in Figures 1 and
2, respectively. As can be seen from Figure 1, the proposed estimator is robust
to the occurrence of clipped samples, and produces estimates whose accuracy is
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Figure 4: RMSE for the amplitude estimates produced by the constrained and
unconstrained estimators, as well as the least squares estimators, as a function of
the fraction of unclipped data.

close to unaffected by the fraction of clipped samples. By comparison, the altern-
ative estimator that only considers the non-clipped samples breaks down as the
fraction of non-clipped samples decreases. As can be seen in Figure 2, the robust-
ness of the proposed estimator then translates into improved amplitude estimates.
In the figure, it can be seen that the three estimators utilizing (6) perform the
best, as they can salvage information contained in the clipped samples; the LS
estimator operating on only non-clipped samples suffers from the smaller samples
size, whereas the constrained LS estimator using no slack variables suffers from a
positive amplitude bias induced by the corrupting noise component, e.

Similar conclusions may be drawn from Figures 3 and 4, showing the RMSE
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Figure 5: RMSE for the frequency estimates produced by the proposed multidi-
mensional estimator, as a function of the fraction of unclipped data and the SNR
level.

for the frequency and amplitude estimates for the scenario with varying SNR.
Also in this case, the proposed estimator displays greater robustness, and is less
sensitive to noise than the estimators utilizing only the non-clipped samples. It
may be noted from the figure that the RMSEs of the two estimators do not con-
verge as the SNR increases; the proposed estimator consistently outperforms the
estimator using only the non-clipped samples. Interestingly, for the highest SNR
considered, i.e., 50 dB, the three LS estimators have identical performance. This
is to be expected, as such a low noise setting renders the slack variable ε superflu-
ous as the constraints are satisfied by the uncorrupted waveform themselves. Also,
as can be seen from the figure, for SNRs 25 and 30 dB, the LS estimator consid-
ering only non-clipped samples actually performs better than the estimators using
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Figure 6: RMSE for the frequency estimates produced by the unconstrained 2-D
atomic norm estimator, as a function of the fraction of unclipped data and the
SNR level.

(6), which is probably due to the slack variable ε introducing degrees of freedom
that are not beneficial in such high, but not extreme, SNR settings. Furthermore,
one may note that the atomic norm-based estimators perform worse than the LS
estimators for the highest SNR settings, as it also have to estimate the frequencies.

We proceed by showing the performance of the estimator for multidimen-
sional complex data using (12). All tests were done using 2-D data with size
N1 = N2 = 8, containing two 2-D sinusoids with random phase, frequency, and
magnitude. The data was on the form

y = A(2) ⊗ A(1)α+ e (21)
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Figure 7: RMSE for the amplitude estimates produced by the proposed multidi-
mensional estimator as a function of the fraction of unclipped data and the SNR
level.

where α denotes the K × 1 complex vector corresponding to the amplitudes, e

the additive noise, ⊗ the Kronecker product, and the superscript (·)(d ) denotes
the dimension d . The matrix A(d ), for d = 1, 2, are constructed as

A(d )
=

[

a(d )
1 . . . a(d )

K

]

(22)

a(d )
k =

[

e2iπf (d )
k t (d )

1 . . . e2iπf (d )
k t (d )

N

]T
(23)

The phase was sampled from [0, 2π), whereas the frequencies were selected uni-
formly from [0, 1] but separated 1/Nd in each dimension. The magnitudes where
uniformly selected between [0.8, 1.2]. In the first example, we investigate the
RMSE on the frequency estimation of the proposed method compared with the
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Figure 8: RMSE for the amplitude estimates produced by the 2-D atomic norm
estimator as a function of the fraction of unclipped data and the SNR level.

2-D atomic norm proposed in [27], which treats the clipped samples as unknown.
The frequency estimates were all retrieved using the MaPP estimator from [28]1.
The RMSE was evaluated for a range of different SNR levels and clipping ratios.
The SNR ranged from 0 to 50, and the clipping ratios varied from 0.5 to 1. For
each setting of SNR and clipping ratio, 500 Monte-Carlo simulations were done
and the user parameters were set to μ = λ = 1. Figure 5 and Figure 6 show
the performance of the proposed multidimensional estimator and the 2-D atomic
norm, respectively. It can be seen from the figures that the result from two es-
timators differs on two key points. First, the proposed estimator seems relatively

1The authors would like to thank Dr. Zai Yang for providing the code for the MaPP method,
as well as making us aware of several interesting references.
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Figure 9: RMSE for the amplitude estimates produced by the constrained (λ = 1)
LS estimator, given oracle knowledge of the true frequencies, as a function of the
fraction of unclipped data and the SNR level.

unaffected by the clipping ratio; it is first when the SNR level drops to about 0
dB that any degradation starts to be noticeable. For the 2-D atomic norm estim-
ator, the performance degrades both for low SNR levels and when the number
of clipped samples increase. This figure corresponds well with the results for the
1-D case shown in Figures 1 and 3. Incorporating information that the clipped
sample should be above (below) the clipping threshold, as well as including the
noise effect using ε, clearly shows its benefits.

As in the 1-D case, we proceed to examine the resulting RMSE for the amp-
litude estimates comparing the proposed method to the 2-D atomic norm es-
timator, as well as the three LS estimators described above, which are given full
knowledge about the true frequencies. Figures 7 and 8 show the RMSE of the
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Figure 10: RMSE for the amplitude estimates produced by the unconstrained
(λ = 0) LS estimator, given oracle knowledge of the true frequencies, as a function
of the fraction of unclipped data and the SNR level.

amplitude estimates produced by solving (15) using the frequency estimate from
the proposed method and the 2-D atomic norm estimator, respectively. Similar
to the frequency estimation, the proposed method manage to better estimate the
amplitudes. This is not surprising, as it also produced better frequency estimates.
Figures 9, 10, and 11 show the three LS estimates with total knowledge of the true
frequencies, corresponding to solving (15), with λ = 1, λ = 0, and λ → +∞,
respectively. As can be seen from the figures, the proposed method in Figure 7 can
be seen to produce similar results as the oracle LS estimator with λ = 1 in Figure
9. The unconstrained LS estimate, shown in Figure 10, seems to be more sensitive
to the SNR, especially when the number of clipped samples is large. The final LS
estimator, corresponding to the case when λ → +∞, seems even more sensitive
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Figure 11: RMSE for the amplitude estimates produced by the hard constrained
(λ → +∞) LS estimator, given oracle knowledge of the true frequencies, as a
function of the fraction of unclipped data and the SNR level.

to low SNR levels. We can conclude that the proposed method provides a better
frequency estimate than the traditional 2-D atomic norm estimator. Furthermore,
given these estimates, it is shown that the amplitude estimates are almost as good
as given full knowledge about the true frequencies.

4 Conclusions

In this work, we have introduced a sparse reconstruction technique allowing for
saturated signal samples. By exploiting the 1-bit information of the saturated
samples, as well as allowing for the possibility that the noise causes the signal sat-
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4. Conclusions

uration of signals close to the saturation limits, the proposed estimator is shown to
outperform alternative estimators not exploiting such information. The proposed
estimator is formed using an atomic norm formulation allowing for a continu-
ous parameter space, and does thus not suffer from the off-grid effects that often
deteriorates dictionary based techniques.
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Designing Sampling Schemes for
Multi-Dimensional Data

Johan Swärd1, Filip Elvander1, and Andreas Jakobsson1

1Centre for Mathematical Sciences, Lund University, Lund, Sweden

Abstract

In this work, we propose a method for determining a non-uniform sampling
scheme for multi-dimensional signals by solving a convex optimization problem
reminiscent of the sensor selection problem. The resulting sampling scheme min-
imizes the sum of the Cramér-Rao lower bound for the parameters of interest,
given a desired number of sampling points. The proposed framework allows
for selecting an arbitrary subset of the parameters detailing the model, as well as
weighing the importance of the different parameters. Also presented is a scheme
for incorporating any imprecise a priori knowledge of the locations of the para-
meters, as well as defining estimation performance bounds for the parameters of
interest. Numerical examples illustrate the efficiency of the proposed scheme.

Key words: sampling schemes, convex optimization, CRLB

1 Introduction

Determining how to suitably sample a signal is an important problem in many
signal processing applications, such as sensor positioning and selection in net-
work monitoring [1,2], localization and tracking [3], magnetic resonance imaging
(MRI) [4], graph signal processing [5, 6], and selecting the temporal sampling
[7]. In general, these problems can be viewed as sampling a multi-dimensional
field containing partly known signal components. For high-dimensional data,
it quickly becomes infeasible to sample the field uniformly, especially, in areas
such as nuclear magnetic resonance (NMR) spectroscopy when examining living
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cells, which have limited lifetimes. For example, a recent study of 4-D NMR
measurements that would have taken about 2.5 years to perform using regu-
lar sampling was shown to be possible to construct in merely 90 hours using
a non-uniform sampling scheme [8]. This has caused an interest in formulating
sampling schemes for NMR signals, allowing for notable improvements [7,9–12].

Among the developed schemes are some exploiting a compressive sensing
framework, allowing for an accurate signal reconstruction using fewer samples
than the Nyquist-Shannon sampling theorem necessitates for uniformly sampled
signals (see, e.g., [11–14]). However, the developed schemes typically do not
optimize the sampling scheme with respect to the expected signals, even though
these are often fairly well known. In this work, we strive to exploit this knowledge
in order to design a sampling scheme that would allow for a optimal estimation
accuracy given the assumed prior knowledge.

There are many related problems to the here studied sampling scheme prob-
lem. In [15], the problem of how to optimally measure a signal in problems
related to propagating wave-fields was studied. More specifically, the authors
studied how to best recover the input wave field from noise measurements of
the output field given that each measurement is associated with a cost, where
the selected cost was set higher for measurement devices with better resolution.
The results were presented as trade-off curves between the error of estimation
and the total cost budget. In [16], a framework for joint hypothesis testing and
estimation using a minimal sampling size was developed. The proposed frame-
work guarantees, under a Bayesian setup, that the overall detection and estima-
tion performance, given the minimization of the samples size, is the best possible.
In [17], the optimal placement of phasor measurement units on power grids was
studied. Other works have been studying problems related to sampling in ran-
dom fields [18, 19] and wireless sensor networks [20]. A notable example of the
latter category is [20], where the problem of target tracking in wireless sensor net-
works is studied. The sensors with the most information are found by utilizing a
proposed probabilistic sensor management scheme based on the compressed sens-
ing framework. This scheme is decided based on the probability of transmission
at each node, found by maximizing the trace of the Fisher information matrix
(FIM). Using this approach, sensors with less information can be discarded, im-
plying that fewer sensors need to communicate, thus leading to energy savings.

Lately, for the related problem of optimal sensor placement, there has been
several methods proposed in which the combinatorial problem of selecting a sub-
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set of sensors is relaxed using convex optimization. In [21], the authors consider
the case when signal measurements are linear in the unknown parameters and pro-
pose a sensor selection scheme based on solving a convex optimization problem
inspired by the determinant criterion (D-optimality) of experimental design [22].
This work was then developed in [2, 23–26], wherein the authors consider non-
linear measurement equations, as well as replacing D-optimality with the average
variance criterion (A-optimality) as a performance measure. Specifically, as A-
optimality can be interpreted as the sum of the diagonal elements of the Cramér-
Rao lower bound (CRLB) for the signal parameters, the problem was formulated
as to minimize the number of required sensors subject to an upper bound on
the resulting diagonal sum of the CRLB. Assuming that the bound is tight, the
method thus finds a sparse set of sensors, i.e., activates a few out of a set of candid-
ate sensors, while keeping the variance of the estimated parameters below a fixed
level.

In this paper, we expand on this idea, proposing a method for finding a
suitable sampling scheme in order to estimate the parameters for signal models
where, in general, the signal measurements are non-linear functions of the un-
known parameters. By taking the available prior information of the signal into
consideration, we propose a sampling scheme that is found by solving a convex
optimization problem that guarantees a bound on the worst case CRLB. The
sampling pattern is selected via a variable vector, corresponding to the available
sample positions, which is penalized using the ℓ1-norm, resulting in a sampling
scheme that is limited in the number of samples. Furthermore, we reformulate
the optimization problem into a semidefinite program (SDP) problem that al-
lows for more flexibility and can be used for adding additional constraints on the
optimization. In general, when estimating a set of parameters, it might be that
the scale of the parameters, as well as the accuracy with which they can be estim-
ated, are significantly different. Also, some of the unknown parameters might be
of greater interest than the others; again, using NMR as an example, the signal
decay is often of more interest than the signal frequencies, the latter often be-
ing relatively well known for a given substance, whereas the former measures the
sought interactions. We here propose to use a weighting scheme in order to allow
for a relative balancing of the variances of the different parameters, allowing for
designing sampling schemes specifically tailored to yield good estimation accuracy
for the parameters of interest.

In some applications, one may assume some prior knowledge of the signal of
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interest, such as, for example, knowledge of the subspace where the signal para-
meters are to be found. Again using NMR as an illustrative example, the signals of
interest consist of decaying modes, being well modeled as a sum of damped sinus-
oids. These modes are, as noted, often well known in frequency, at least within
some reasonably well defined frequency band, whereas the uncertainty of, and the
interest in, the signal decays is often more significant. Typically, the problem of
interest is thus to specify the damping parameter as accurately as possible using as
few samples as possible. To allow for this case, we herein propose using a gridding
of the parameter space in order to guarantee performance within certain bounds,
allowing for uncertainty in the parameters.

This paper is organized as follows. In section 2, we introduce the prob-
lem statement and derive the proposed optimization problem. In Section 3, we
present extensive numerical simulations and results that validates our proposed
method. Finally, in Section 4, we conclude upon our work.

2 Problem statement and proposed sampling scheme

Consider a measured signal y(θn), defined on a D-dimensional space with N po-
tential D-dimensional sampling points, θn, n = 1, 2, . . . ,N . It is assumed that
the probability density function (pdf ) of y(θn), here denoted with p

(

y(θn);θ
)

,
is parametrized by the parameter vector θ ∈ R

P and that two samples y(θn) and
y(θm) are independent if θn 6= θm. FIM for sample y(θn) may then be defined
as

F(θn;θ) = E

{

∇θ log
(

p(y(θn);θ)
)

∇H
θ log

(

p(y(θn);θ)
)

}

(1)

where E {·} ,∇θ, and (·)H denote the statistical expectation, the gradient with re-
spect to θ, and the conjugate transpose, respectively. The here proposed sampling
scheme is designed such that it is optimal in the sense of either minimizing the
CRLB of the parameters of interest, given that M of the N potential uniform
samples are used, or conversely, to minimize the number of samples used given a
desired upper bound on the CRLB of the parameters. It is worth noting that as
the potential signal samples are assumed to be independent, for any set of samples
indicesΩ, it holds that

∑

n∈Ω

F(θn;θ) (2)
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is the corresponding FIM using this sample scheme. Let the N -dimensional vec-
tor w denote the possible sampling points in the D-dimensional sampling space,
such that if the n:th index, wn, is set to one, this sampling point is used, whereas
if it is set to zero, it is not. Reminiscent of the case of optimal sensor selection,
the resulting sampling design problem may then be formulated as (see also [23])

minimize
w

tr

(

N
∑

n=1

wnF(θn;θ)

)−1

subject to ‖w‖1 ≤ λ
wn ∈ {0, 1} , n = 1, 2, . . . ,N

(3)

where λ > 0 and tr(·) denotes the trace operator. The choice of objective function
is related to the so-called A-optimality criterion from design of experiments [22]
as the trace of the inverse FIM corresponds to the sum of the CRLBs of the
signal parameters in θ. Here, the parameter λ constitutes an upper bound on the
ℓ1-norm of the sample selection vector. The sampling design scheme (3) is not
convex due to the restriction that wn, for n = 1, . . . ,N , is defined over a non-
convex set. A convex approximation to this problem may be found by relaxing
the binary constraint and instead allowing wn to take any value in the range [0, 1]
(see, e.g., [24]), resulting in

minimize
w

tr

(

N
∑

n=1

wnF(θn;θ)

)−1

subject to 1T w ≤ λ
wn ∈ [0, 1] , n = 1, 2, . . . ,N

(4)

where 1 is a vectors of ones with appropriate dimension. It should be noted that
we can here replace ||w||1 with simply 1T w, since each element in w is equal
to or greater than zero. Given a solution ŵ to (4), we define the FIM for the
corresponding sampling pattern as

I(ŵ;θ) =
∑

ℓ∈Ω

F(θℓ;θ), Ω = {ℓ | ŵℓ > ξ} (5)

where ξ ≥ 0 is a threshold determining whether a sample weight ŵℓ should be
rounded toward one or zero, i.e., whether the sampling point should be included
or not. This formulation allows for the minimization of the sum of the CRLBs

279



Paper I

given an upper bound on the number of samples used. Note that the problem
could alternatively be formulated as minimizing the number of sampling points
given an upper bound on the sum of the CRLBs.

However, the sampling design in (4) does not allow for the case when one is
primarily interested in a subset of the available parameters. Neither does the for-
mulation take into account that the different parameters might have significantly
different variances. For example, for a sum of damped sinusoids, the trace con-
straint in (4) will clearly be dominated by the CRLB for the amplitudes, as these
are orders of magnitude larger than those of the frequencies, and the optimization
will therefore put an emphasis on minimizing the CRLB of the amplitude para-
meter. In order to allow for sampling schemes that put an emphasis on a selection
of the parameters of interest, we recently proposed to introduce a weighting mat-
rix, A(θ), acting upon the FIM in [27]. Specifically, instead of minimizing the
cost function using the FIM, we proposed to perform the minimization using
weighted FIMs

F̃(θn;θ) = A(θ)F(θn;θ)AT (θ) , (6)

i.e., performing a linear transformation of the variables and minimizing the sum
of the CRLBs corresponding to the transformed parameters θ̃ = A(θ)θ. How-
ever, although this formulation allows for shifting emphasis to the parameters of
interest, it does not allow for complete disregard of nuisance parameters as A(θ)
has to be definite in order for the matrix inverse to be defined. In order to al-
low for an arbitrary weighting, we note the following useful identity holds for an
invertible matrix B,

tr B−1
=

P
∑

p=1

eT
p B−1ep (7)

where ep denotes the pth canonical basis vector, i.e., a vector with all its elements
equal to zero except the pth being equal to one. Furthermore, it is noted that for
a positive definite matrix B, a scalar μ, and an arbitrary vector a, it follows from
the Schur complement (see, e.g., [28]) that

μ− aT B−1a ≥ 0 ⇐⇒
[

B a

aT μ

]

� 0 (8)
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where X � 0 indicates that the matrix X is positive semi-definite. Thus, it follows
that

minimize
B≻0

aT B−1a (9)

and

minimize
μ,B≻0

μ

subject to

[

B a

aT μ

]

� 0
(10)

are minimized by the same matrix B. Here, B ≻ 0 indicates that the matrix B is
positive definite. This observation allows us to reformulate (4) as the semidefinite
program (SDP) (cf. [2, 17])

minimize
μ,w

P
∑

p=1

ψpμp

subject to

[

∑N
n=1 wnF(θn;θ) ep

eT
p μp

]

� 0, ∀p

N
∑

n=1

wnF(θn;θ) ≻ 0

1T w ≤ γ , wn ∈ [0, 1], ∀n

(11)

where ψp are weight parameters allowing for putting emphasis on different com-
ponents of the vector θ. For example, if ψq = 1 and ψp = 0, ∀p 6= q, then
the CRLB for the parameter θq will be the only one minimized, as μq precisely
corresponds to this lower bound, whereas the CRLBs for the other parameters θp,
p 6= q will be disregarded. Similarly, for ψp = 1, ∀p, the problems (4) and (11) are
equivalent. Another benefit of this formulation is that it allows for a straightfor-
ward way of incorporating performance constraints in the minimization problem,
such as if, for instance, there is some upper tolerance bound λp for the CRLB of
parameter θp. This kind of performance specifications can then be incorporated
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in the minimization problem via linear inequality constraints according to

minimize
μ,w

P
∑

p=1

ψpμp

subject to

[

∑N
n=1 wnF(θn;θ) ep

eT
p μp

]

� 0, ∀p

N
∑

n=1

wnF(θn;θ) ≻ 0

1T w ≤ γ , wn ∈ [0, 1], ∀n
μp ≤ λp , ∀p

(12)

Furthermore, one may not only be interested in designing a sampling scheme
for a single parameter vector θ, but rather for a set of parameter vectors. For
example, consider the case when the parameters in θ are only partly known, such
that one may assume that θ instead lies in a set of possible parameters, Θ . In
such cases, it may be desired to treat some of the parameters as known, whereas
others are only partly known, within some set of uncertainty. To allow for this,
as well as taking the weighting into account, we further generalize (12) such that
the sampling scheme is designed as

minimize
μ,w

P
∑

p=1

ψpμp

subject to

[

∑N
n=1 wnF(θn;θ) ep

eT
p μp

]

� 0, ∀p,∀θ ∈ Θ

N
∑

n=1

wnF(θn;θ) ≻ 0

1T w ≤ γ , wn ∈ [0, 1], ∀n
μp ≤ λp , ∀p

(13)

Using this formulation, the optimal μp will, assuming that ψp > 0, now corres-
pond to a worst case CRLB for the pth component of θ, when θ ∈ Θ , i.e., for
the obtained sampling sampling scheme

μp = arg max
θ∈Θ

eT
p I(ŵ;θ)−1ep (14)
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Thus, the solution to (13) is a sampling scheme minimizing the worst case CRLB
for the parameters of interest if the parameter vector θ is known to be in the set
Θ .

Further, one could also consider the case where there is some cost associated
with changing sampling points in one of the dimensions. For instance, if one of
the sampling dimensions corresponds to a certain setting of a machine, e.g., time
delay or magnetic flow, it could be more costly to acquire many different sample
points in this dimension. Illustrating this in the 2-D case, one could include such
a cost in the optimization by forming the N1 × N2 matrix W by reshaping the
vector w, and adding the constraints

∣

∣

∣

∣

∣

∣WT
∣

∣

∣

∣

∣

∣

2,1
=

N1
∑

n=1

∣

∣

∣

∣W(:,n)
∣

∣

∣

∣

2 ≤ γ1 (15)

||W||2,1 =

N2
∑

n=1

∣

∣

∣

∣W(n,:)
∣

∣

∣

∣

2 ≤ γ2 (16)

to (13). Here, γ1 and γ2 are tuning parameters that may be set according to
the associated cost. This constraint can easily be omitted simply by setting γ1 =

γ2 =∞.
It is also worth noting that when relaxing (3) in favor for (4), we can no longer

guarantee that the weights are exactly 0 or 1. In this case, as is noted in (5), we
simple choose an appropriate threshold such that values above the threshold are
deemed as ones, and the values below are deemed as zeros. However, a better
approximation of (3) is found by using re-weighting. This may be done by first
solving (13), yielding the estimated w(1), where the superscript (·)(j) denotes jth
iteration. Then, (13) is solved again, but this time with

1

w(1)
n + ε

(17)

as a scaling factor for each wn, where ε is a small number added to the denom-
inator to avoid numerical problems. This procedure can then repeated until con-
vergence. The re-weighting is a better approximation of the ℓ0-norm, and thus is
more likely to produce weights with values close to zero or one. As we have em-
pirically found that using re-weighting for the here studied examples offers only a
marginal improvement, while significantly increasing the computational cost due
to the iterative procedure, we have in our examples chosen to use the simpler
thresholding approach.
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3 Numerical results

3.1 Illustration in 1-D

To illustrate the proposed sampling scheme, we consider the NMR signal model,
as noted being formed as a sum of damped sinusoids (for ease of notation, we
initially focus on the 1-D case), such that

y(tn) =
K
∑

k=1

αk exp{2iπfktn − βktn + iφk}+ ε(tn) (18)

for n = 1, . . . ,N , where αk, fk, βk, and φk denote the magnitude, frequency,
damping, and phase of the k:th component, respectively, and where ε is an addit-
ive noise term, here assumed to be well modeled as a white, circularly symmetric
Gaussian noise with variance σ2, with tn being the time at sample n. For simpli-
city, we consider uniformly sampled candidate sampling times, tn. As an illustra-
tion, Figure 1 shows an example of sampling schemes found by solving (13) for
two different levels of decay for a single damped sinusoid such that β = 1/10
for the top figure, and β = 1/20 for the bottom figure, but otherwise identical
signal parameters. In both cases, γ = 13 so that M = 13 sample points, out of
N = 50 possible candidates, are selected. Also, ψp = 1, p = 1, . . . , 4, i.e., all
signal parameters are considered in the minimization. As can be seen, the placing
of the samples are determined by the damping parameter. As may be expected, for
both values of β , some samples are placed in the beginning of the signal, where
the signal to noise ratio (SNR) is at its maximum. To allow for an accurate estim-
ation of the damping constant, one can also note that a further set of samples are
selected later in the signal, with the more strongly decaying signal selecting them
earlier than the less damped version, agreeing with the intuition that the more
rapidly decaying signal contains less information at later sampling times.

As a further example, we next consider an example showing the resulting
sample scheme for a signal containing two linear chirp components on the form

y(tn) =
2
∑

k=1

αk exp
{

2iπ
(

f 0
k + f 1

k tn
)

tn + iφk

}

+ ε(tn) (19)

where f 0
k and f 1

k denote the frequency starting point and the slope of the chirp
component k, respectively. Figure 2 shows the three sampling schemes yielded by
the proposed method for three different setting on γ, namely γ = 15, γ = 20,
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Figure 1: The resulting sample scheme for two different values of β plotted against
the real part of the signal. The upper most figure details the sampling scheme for
β = 1

10 and the bottom figure the sampling scheme for β = 1
20 .

and γ = 25. The here used parameters had the values α1 = α2 = 5, f 0
1 = 0.1,

f 0
2 = 0.5, f 1

1 = 0.01, f 1
2 = −0.003, and the phases were set to φ1 = π/2, and

φ2 = π/3. Due to the linear drift in frequency, it is reasonable to assume that the
resulting sample scheme should have at least two clusters; one in the beginning
of the signal, and one at the end of the signal. Looking at the sampling schemes
in Figure 2 supports this intuition; three clusters are present for all three settings
of γ. When γ increases the two first clusters gets bigger, whereas the last cluster
remains more or less unchanged.
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Figure 2: The resulting sample scheme for three different settings of γ, namely
γ = 15, γ = 20, and γ = 25, where the signal contains two linear chirps.

3.2 Illustration in 2-D

As further illustration of the impact of the choice of weight parameters ψp, con-
sider the 2-D case with one damped sinusoid, i.e.,

y(t1, t2) = αe2iπ(f1 t1+f2t2)−(β1t1+β2t2)+iφ
+ ε(t1, t2) (20)

with α = 1, f1 = 0.2, f2 = 0.5, β1 = 1/20, β2 = 1/10, φ = 1/2, and noise
variance σ2 = 0.1. Figure 3 presents the sampling scheme found by solving (11)
with γ = 50, i.e., 50 sampling points are chosen, for the case when ψp = 1 for all
parameters. As can be seen, the optimal sampling pattern here consists of three
clusters of selected sampling points; one close to the origin and two close to the
two time axes. Note that this is analogous to the 1-D case as the sampling cluster
close to the first time axis is located further from the origin due to the decay in
the first dimension being slower.

In contrast, Figure 4 displays the corresponding scheme found when solving
(11), again with γ = 50, but only giving weight to the frequency and damping
parameters, i.e., the ψp corresponding to the amplitude and phase parameters
are set to zero. As can be seen, assigning the amplitude and phase parameters
zero weight has the effect of shifting sampling points away from the origin to the
clusters close to the t1 and t2 axes, in order to put more emphasis on the frequency
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Figure 3: The resulting sampling scheme consisting of 50 selected samples for a
signal consisting of a 2-D damped sinusoid as found when solving (11) with all
ψp = 1.

and damping parameters. Indeed, the sum of the CRLBs for the parameters, as
given by the sampling scheme in Figure 3, is 2.31 ·10−2, whereas it is 3.61 ·10−2

for the sampling scheme in Figure 4. However, if one considers the sum of the
CRLBs for the frequency and damping parameters, these are 6.53 · 10−4 and
4.42 · 10−4 for Figures 3 and 4, respectively.

3.3 Simulations in 1-D

3.3.1 Optimization vs simulation

In Figure 5, we motivate that solving (13) is indeed a reasonable approach to
determine optimal sampling patterns. The figure shows the obtained sum of the
CRLBs for the parameters, i.e., tr

(

I(ŵ;θ)−1
)

, where the sampling pattern is
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Figure 4: The resulting sampling scheme consisting of 50 selected samples for a
signal consisting of a 2-D damped sinusoid as found when solving (11) with all
ψp = 1 except for the amplitude and phase parameters, for which ψp = 0.

obtained by solving (13) for the case of K = 1 using the model (18), for a
singleton set Θ . This is done for varying values of γ such that the number of
samples used vary between M = 5 and M = 25. As a comparison, for each
sample size M , we carry out 106 Monte Carlo simulations, in which we randomly
decide on which M sampling points to use. We then compute which of these 106

sampling patterns that results in the lowest sum of CRLBs. As can be seen from
the figure, the randomized approach achieves better results for small sample sizes,
this as the simulations then become an exhaustive search, i.e., the simulations will
with high likelihood find the exact solution to (3). However, as the sample size
increases, so does the number of possible sampling patterns, which is

(N
M

)

. As can
be seen from the figure, the sampling scheme determined by (13) is then able to
achieve an optimal performance as the sample size increases.
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Figure 5: Sum of CRLBs for the parameters, i.e., tr
(

I(ŵ;θ)−1
)

, for the sampling
patterns given by the optimization problem and the best simulation, respectively,
for different number of sampling points.

3.3.2 Weighting

In Figures 6 and 7, we proceed to examine the effect of using the weighted FIM in
(13). This is done for a signal consisting of two damped sinusoids with parameters
(α1, f1, β1,φ1) = (1, 0.2, 1/12, 0.5) and (α2, f2, β2,φ2) = (1, 0.65, 1/20, π/5).
The noise variance was σ2 = 0.01 and N = 50. Assuming that we are interested
only in the frequencies f1, f2, and the damping factors β1, β2, but not in the amp-
litudes or the phases, the weight parameters ψp are set to one for the frequency and
damping parameters, whereas they are set to zero for the amplitudes and phases.
Thus, the sought sampling pattern will be designed to increase the accuracy for
the frequency and damping parameters at the expense of the amplitude and phase
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Figure 6: Obtained RMSE for the frequencies, when using the sampling patterns
for the weighted and non-weighted cases, respectively.

parameters.

The resulting root CRLB, as a function of the number of samples used, for
the frequencies f1 and f2 and the dampings β1 and β2 are shown in Figures 6 and
7, respectively. The root CRLB for the frequencies f1 and f2 is here defined as the
root of the sum the individual CRLBs, and correspondingly for the dampings, β1

and β2. For comparison, the figures also present the root CRLBs corresponding to
the optimal sampling patterns obtained for the case when no weighting is applied,
i.e., ψp = 1, ∀p. As can be seen, the weighting scheme results in sampling patterns
that decreases the CRLB for the parameters of interest, in this case the frequencies
and dampings. Also plotted is the obtained root mean squared error (RMSE) for
the frequency and damping parameters, respectively, obtained when estimating

290



3. Numerical results

5 10 15 20 25
number of samples

0

0.005

0.01

0.015

0.02

0.025

0.03

R
M

S
E

RMSE (weighted)
root CRLB (weighted)
RMSE (non-weighted)
root CRLB (non-weighted)

Figure 7: Obtained RMSE for the damping, when using the sampling patterns
for the weighted and non-weighted cases, respectively.

these parameters using non-linear least squares (NLS) applied to simulated signals.
The NLS estimate is found by solving

θ̂ = argmin
θ

1

2
||y − g(θ)||22 (21)

where y is the data and g(θ) is the (non-linear) data model with parameter θ. In
this paper, a minimum of (21) is found by evaluating the cost function over a grid
of parameter values θ. The θ that achieves the lowest value of (21) then becomes
the resulting estimates. The RMSE is here defined as the root of the sum of the
individual MSEs for the frequencies and dampings, respectively. As can be seen,
the RMSE coincides with the root CRLB, implying that the bound is tight.
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Figure 8: Obtained RMSE for the frequency f , when estimating θ for the
sampling pattern obtained for a grid of damping parameters β .

3.3.3 Gridding

Figures 8 and 9 show the effect of finding an optimal sampling pattern for a set
of parameters θ ∈ Θ when solving (13). The results are obtained for a single
decaying sinusoid. Here, we let Θ = {θℓ}L

ℓ=1 express uncertainty in only the
damping parameter β by fixing α, f , and φ and letting Θ be a gridding over
the damping parameter β , such that the parameter vectors constituting Θ are
θℓ = (α, f , βℓ,φ)T , where

βℓ = βlower +
ℓ− 1

L
Δβ (22)

with Δβ denoting the grid spacing, in effect letting β reside in the uncertainty
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Figure 9: Obtained RMSE for the damping β , when estimating θ for the
sampling pattern obtained for a grid of damping parameters β .

interval

Jβ =
[

βlower, βlower +
L− 1

L
Δβ

]

(23)

The parameters used are α = 1, φ = 0.5, σ2 = 0.1, βlower = 0.1, Δβ = 0.022,
and L = 10. Using this, we solve (13) to get optimal sampling patterns as the
number of samples grows. To evaluate the performance of the obtained sampling
schemes, we then randomly sample the parameter vectors θ where β is sampled
uniformly on Jβ , i.e., on the interval covered by the grid Θ , but not on the grid
points βℓ, ℓ = 0, 1, . . . ,L − 1. We then estimate θ using NLS and compute
the RMSE for the parameters θ. The figures show the obtained MSE using 5000
Monte Carlo simulations for the frequency f and the damping β , respectively.
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Figure 10: The sum of variances of the parameters of interest as a function of the
number of selected samples.

Also presented are the best and worst case root CRLBs found on the grid Θ for
each parameter. The obtained RMSE lies between the lowest and highest on-grid
root CRLB for both parameters and for all considered sample sizes, suggesting that
(13) indeed yields sampling schemes with a guaranteed worst case performance,
as well as a lower limit on the possible RMSE.

3.4 Simulations in 2-D

3.4.1 Optimization vs simulation

As was seen in the 1-D setting, the optimization scheme was able to outperform
the method of randomly selecting sampling points and then choosing the scheme
minimizing the sum of the CRLB. In 2-D, this becomes even more apparent as the
number of potential sampling points increase rapidly with increasing dimension.
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Figure 11: Obtained RMSE for the frequencies in the first dimension, when using
the sampling patterns for the weighted and non-weighted cases, respectively.

An illustration of this is shown in Figure 10, showing the sum of the CRLBs
obtained when solving for varying number of desired sampling points. The signal
considered is the 2-D damped sinusoid in (20) with parameters α = 1, f1 =

0.2, f2 = 0.5, β1 = 1/20, β2 = 1/10, φ = 1/2, and σ2 = 0.1. We here
let ψp = 1, ∀p, and consider a sampling space of 50 × 50 potential sampling
times. Also presented is the sum of the CRLBs for the best (defined as the one
with smallest sum of CRLBs) among 107 sampling scheme obtained by randomly
choosing sampling points. As can be seen from the figure, the proposed method
outperforms the random sampling for all numbers of selected samples. It is worth
noting that the computational time to evaluate the 107 sampling schemes was
three times longer than solving the proposed problem using a off-the-shelf convex
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Figure 12: Obtained RMSE for the frequencies in the second dimension, when
using the sampling patterns for the weighted and non-weighted cases, respectively.

solver [29].

3.4.2 Weighting

We here consider the case of a signal consisting of two 2-D damped sinusoid, i.e.,

y(t1, t2) =
K
∑

k=1

αkeiφkΠ 2
d=1e2iπfk,d td −βk,d td + ε(t1, t2) (24)

for K = 2. Let the parameters be (f1,1, f2,1) = (0.1, 0.2) and (β1,1, β2,1) =

(0.1, 0.1) for the first dimension, (f1,1, f2,1) = (0.1, 0.2) and (β1,1, β2,1) = (0.1, 0.1)
for the second dimension, and let α1 = 1, α2 = 1.3, φ1 = π

3 , φ2 = π
3 , and
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Figure 13: Obtained RMSE for the dampings in the first dimension, when using
the sampling patterns for the weighted and non-weighted cases, respectively.

σ2 = 0.01. We then determine optimal sampling schemes by solving (11) for
varying number of sampling points. This is done for both the equally weighted
case, i.e., with ψp = 1 for all p, as well as for the case when only the frequency
and damping parameters are given weight, i.e., with ψp = 0 for the amplitude
and phase parameters. The results are shown in Figures 11-14. In Figure 11, the
root of the sum of the CRLBs for the frequencies in the first dimension, i.e., f1,1
and f2,1, are shown. Similarly, Figure 12 corresponds to the frequencies in the
second dimension, while Figures 13 and 14 corresponds to the damping paramet-
ers in the first and second dimension, respectively. Also presented is the corres-
ponding RMSE obtained when estimating the parameters using NLS. As can be
seen, the obtained RMSEs coincides with the CRLBs for both the weighted and
non-weighted case, implying that the bound is tight. Note also that the schemes
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Figure 14: Obtained RMSE for the dampings in the second dimension, when
using the sampling patterns for the weighted and non-weighted cases, respectively.

corresponding to assigning no weight to the amplitude and phase parameters all
result in a lower sum of CRLB for the frequency and damping parameters than
the non-weighted schemes. This comes at the price of a larger sum of CRLB for
the amplitudes α1 and α2, which is illustrated in Figure 15. As can be seen in the
figure, the non-weighted sampling scheme here leads to more accurate estimates
of the amplitudes.

4 Conclusion

In this work, we have proposed a convex optimization problem for finding suit-
able sampling schemes for multidimensional data models. The optimization
problem is formed such that the number of used samples, chosen from a col-
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Figure 15: Obtained RMSE for the amplitudes, when using the sampling patterns
for the weighted and non-weighted cases, respectively.

lection of available sampling points, is minimized while the sum of the variance
of parameters of interest are guaranteed to be below a certain level. Due to the
structure of the optimization problem, it is easy to add additional constraints, e.g.,
adding performance bounds on selected parameters, or putting more emphasize
on a subset of the parameters, and to model for the uncertainty in a-priory as-
sumptions of the parameter values. In the numerical section, we show that solving
the proposed optimization problem is a more efficient approach than randomly
selecting the sampling points, especially in the multi-dimensional setting. Fur-
ther, we show that using the sampling schemes found by solving the proposed
optimization problem, will provide a lower Cramér-Rao lower bound than that
found from using ordinary uniform sampling. By using an efficient parameter es-
timator on the signal sampled according to the found sampling scheme, we show
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that these Cramér-Rao lower bounds are, in fact, tight.
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