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Abstract

Computer generated imagery is used in a wide range of disciplines, each
with different requirements. As an example, real-time applications such as
computer games have completely different restrictions and demands than
offline rendering of feature films. A game has to render quickly using only
limited resources, yet present visually adequate images. Film and visual
effects rendering may not have strict time requirements but are still required
to render efficiently utilizing huge render systems with hundreds or even
thousands of CPU cores.
In real-time rendering, with limited time and hardware resources, it is al-
ways important to produce as high rendering quality as possible given the
constraints available. The first paper in this thesis presents an analyti-
cal hardware model together with a feed-back system that guarantees the
highest level of image quality subject to a limited time budget.
As graphics processing units grow more powerful, power consumption be-
comes a critical issue. Smaller handheld devices have only a limited source
of energy, their battery, and both small devices and high-end hardware are
required to minimize energy consumption not to overheat. The second pa-
per presents experiments and analysis which consider power usage across a
range of real-time rendering algorithms and shadow algorithms executed on
high-end, integrated and handheld hardware.
Computing accurate reflections and refractions effects has long been consid-
ered available only in offline rendering where time isn’t a constraint. The
third paper presents a hybrid approach, utilizing the speed of real-time
rendering algorithms and hardware with the quality of offline methods to
render high quality reflections and refractions in real-time.
The fourth and fifth paper present improvements in construction time and
quality of Bounding Volume Hierarchies (BVH). Building BVHs faster re-
duces rendering time in offline rendering and brings ray tracing a step closer
towards a feasible real-time approach.
Bonsai, presented in the fourth paper, constructs BVHs on CPUs faster
than contemporary competing algorithms and produces BVHs of a very
high quality.
Following Bonsai, the fifth paper presents an algorithm that refines BVH
construction by allowing triangles to be split. Although splitting triangles
increases construction time, it generally allows for higher quality BVHs. The
fifth paper introduces a triangle splitting BVH construction approach that
builds BVHs with quality on a par with an earlier high quality splitting
algorithm. However, the method presented in paper five is several times
faster in construction time.
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1. Introduction

Figure 1: Path traced grove with ponds. Although a simple scene, this rendering
displays a multitude of effects used in computer graphics. A glossy ground and
water with reflections and refractions accompanied by diffuse inter-reflections. The
leaves interact with light via subsurface scattering and the sky color is determined
by a physically based sky model. The camera model creates a depth of field effect
based on its aperture settings.

1 Introduction

Most people, perhaps without realizing it, experience computer graphics to
some extent on a daily basis. It may be small things such as viewing an
email on a smartphone or it may be an obvious feature at the cinema.
Computer Generated Imagery (CGI) is used in a multitude of disciplines and
has become an important aid in medicinal visualization. Two closely related
example applications where computer graphics and visualization techniques
are used are Computed Tomography (CT) and Magnetic Resonance Imag-
ing (MRI). Another modern usage of computer graphics in medicine is in
visualizing three dimensional ultrasound data.
Architectural tools utilize advanced rendering and illumination techniques
to allow architects a realistic view and a feeling of what their project may
look like without having to construct it. Similar tools are also used in indus-
try by, for example, automobile manufactures when designing new models
or visualizing engine components, or when marketing the final products.
Although represented in many disciplines, the entertainment industry is by
far the largest producer of CGI. Most feature films and television series
utilize CGI to some extent. Even in cases where CGI is obvious, it may be
difficult to differentiate real filmed objects from computer generated ones.
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Introduction

It is not uncommon to hide stunt actors’ faces behind digital models of the
actors they are covering for. Terminator 4 is a recent example of using a
cover face of an actor when an aging robot had to battle a younger version
of himself. The younger robot was played by a younger actor who had his
face exchanged for a computer generated face that looked and behaved as
the original robot’s did three decades ago. Furthermore, entire landscapes
may be added with exciting weather and perhaps wild animals. A feature
film stage often consists of a mixture of real and computer generated objects
and computer animated film is the extreme case where everything on screen
apart from voices is generated digitally. The current trend in the creation
of CGI in films is to use a rendering technique known as ray tracing.
Another field where CGI is extensively used is in computer and video games.
Although some of today’s game settings and scenes, at first glance, may be
difficult to distinguish from reality, CGI used in games suffers from con-
straints that aren’t as strict in film rendering. Everything that is displayed
on screen in a real-time game has to be created within a few milliseconds.
Due to the hard real-time constraint the computationally demanding ray
tracing technique usually isn’t fast enough. Instead, a real-time rendering
method called rasterization is used.
The focus in this thesis is part real-time rendering hardware and part ray
tracing and the underlying accelerating spatial data structures used by ray
tracing algorithms to make them computationally feasible. Improving qual-
ity and construction times of spatial data structures is beneficial to offline
rendering as it results in reduced overall rendering time. It also brings ray
tracing a step closer to becoming a reasonable real-time rendering approach.
To further reduce the offline to real-time gap this thesis also presents a real-
time hybrid rendering approach that combines the speed of rasterization
with the quality of ray tracing.

1.1 Computer generated imagery

The 3D World

Object representation is usually defined in a 3-dimensional cartesian space.
Figure 2 describes a simple scene in computer graphics which consists of
three abstract components. The objects to be rendered, one or more light
sources that illuminate the scene, and an abstract camera model used to
capture images. In addition to 3-dimensional space, a time dimension may
be added. Time introduces motion and animation and each discreet image
sample in time is referred to as a frame. Animation is not exclusive to
geometric objects represented in a scene. The camera position and camera
settings such as aperture, zoom and focus may also change with time. Light
sources may also move or change properties between frames.

2



1. Introduction

Figure 2: To the left, a wireframe rendering of a scene consisting of a ground
plane, a few trees, a camera and a single light source. The right side is a ray
traced image representing the setup presented in the left image.

The Triangle

The typical atom in computer graphics is the triangle. A triangle is repre-
sented as a set of three points in space and its edge vectors span a single
plane in three dimensions. A triangle edge vector from point p0 to point p1

is computed as e0 = p1 − p0. The points representing a triangle are also
known as vertices. The triangle is the simplest geometric entity that spans
a plane in three dimensions and, if all vertices are different, is guaranteed
to span precisely one plane. As an example, a quad which consists of four
points may span a plane with three of its points, but it is not guaranteed
that the fourth point lies on that plane. The property that a triangle is
guaranteed to span precisely one plane simplifies visibility determination in
computer graphics and is the main reason why triangles are favored rather
than more complex polygons.
A collection of triangles where all triangle share at least one vertex with
another triangle is known as a mesh. Meshes are used to model complex ob-
jects such as houses or trees in 3-dimensional space. A coarse grained mesh
represented by only a few triangles is considered to be lowly tessellated and
a more detailed and refined mesh is referred to as highly tessellated. Three
unit spheres with different levels of tessellation are displayed in Figure 3.

Camera

The simplest camera model used in computer graphics is analog to the
real world pin-hole camera. An image rendered with this type of camera

3



Introduction

Figure 3: Three triangle meshes that represent the same parametric surface, a unit
sphere. From left to right is a refinement in quality due to an increased level of
tessellation. The sphere to the left coarsely approximates a sphere however renders
faster then the highly tessellated sphere to the right.

Figure 4: Phong shading of three unit spheres. To the left a matte material with
no specular highlight. In the middle the specularity is increased but the highlight
is still smooth. To the right the specular intensity is high and the sharpness of the
specular highlight is increased.

may seem flat since all objects, regardless of distance to the camera, are in
perfect focus. There are many possible extensions to the pin-hole camera
model, either as real-time approximations or physically based concepts used
in offline rendering. To achieve depth of field, a lens has to be simulated and
to add the effect of motion blur, time has to be considered within a frame.

Illumination and shading

Without lighting computations a rendered object would seem plain and
artificial. Typical early forms of illumination or shading methods in real-
time graphics are Gouraud and Phong shading [13, 41]. Phong shading,
illustrated in Figure 4, computes direct illumination from point lights and
blends the result with a diffuse and an ambient term. Illumination with
Phong shading can easily be computed per pixel in real-time on modern
graphics hardware. It may be difficult to represent all types of lighting
and materials using Phong shading only. In modern rendering systems,
mathematical models form the basis of material and lighting computations.

4



1. Introduction

Figure 5: Three triangles with different level of aliasing artifacts. The triangle
to the left suffer from under sampling because of too low resolution. The middle
triangle is represented with a higher resolution but still only has one sample per
pixel. The triangle to the right displays smoother edges and a visually adequate
appearance thanks to four rotated grid MSAA samples.

Real-time rendering uses fast approximate techniques and in offline render-
ing lighting and material properties are often simulated using physically
based models. Ray tracing with physically based material and illumination
computations can represent properties of objects so that a rendered image
sometimes is visually indistinguishable from a photograph.

Sampling and aliasing

A common artifact1 is aliasing. Figure 5 presents three versions of a triangle
where aliasing is affecting the visual quality in different ways. The first ex-
ample is obviously under sampled in the sense that the resolution is too low.
The second triangle looks better than the first and has four times higher
resolution. However, aliasing is still present and the edges are perceived as
rather jagged. The third triangle in Figure 5 utilizes a technique known as
Multi-Sampled Anti Aliasing (MSAA) [2]. MSAA works by sampling each
pixel in more than one place followed by a weighted blend of all triangles
visible to any sample within a pixel. With more than one sample per pixel
the aliasing artifact is reduced and the color of a pixel becomes a weighted
blend of all visible triangles covering a pixel. Sampling patterns and tech-
niques are important topics in computer graphics, both when it comes to
real-time and offline rendering.

1.2 Real-time rendering

In real-time rendering the task at hand is to generate everything that is to
be displayed on the screen many times every second. The requirement of
a modern real-time application is to update the screen, and thus render a

1In computer graphics, an artifact is an undesired visual effect such as noise or a
grainy image.

5



Introduction

new image of the scene, at a frequency in the range 30–60Hz. Considering
that time constraint, an image has to be rendered in 16–33ms.
The computational task to generate a fully realistic looking image using
physically based lighting and materials is challenging. Consider a simple
scenario, an enclosed room with a single light source, blue walls and a white
floor. Light is emitted in a continuous spectrum with spikes at different
wavelengths depending on the type of light source. When light hit the walls
some of its spectrum is absorbed and some is reflected. Depending on the
physical properties of the walls, the angle of reflection might be affected due
to micro facets in the wall and the wavelength of the light. Reflected light
with spectral properties different from the original light bounces from the
walls, onto the floor, to the ceiling and back to the walls, before eventually
passing through the optics of the eye of the observer and finally excites light
sensitive receptors in the eye. In addition to these possible light paths in
a simple environment, there is participating media such as smoke, fog or
dust, that the light can pass through.
Naturally, it is not possible to perfectly simulate physically based lighting
and materials within such a small time budget. Instead in real-time graph-
ics almost all computations, shadows, lighting and materials are clever ap-
proximations. Although not all real-time applications seek photo-realism in
rendering, for those that do, methods that reduce computational complexity
while retaining as much realism as possible are used.
Figure 6 illustrates the benefit of ambient occlusion, an example algorithm
that approximates a global illumination phenomena. In the real world,
corners and creases are usually less illuminated with soft shadows which
darkens the deeper the crease is. Adding the ambient occlusion effect has a
positive impact on realism and an approximation can be computed quickly,
adding only a few milliseconds to the overall per frame rendering time [34].

There have been many creative approximations in real-time graphics and
they tend to push the available hardware to its limits. As dedicated hard-
ware improves, from fixed function accelerators to fully programmable graph-
ics processing units (GPU), so does the approximations, bringing real-time
rendering closer to realistic looking images.
Adding shadows to rendering is important not only to improve realism but
also necessary as a visual aid to understand scale and positioning of an
object. There are several methods to compute shadows and there are also
many modern improvements. A couple of well known basic techniques are
shadow volumes [6] and shadow maps [52].
A popular technique to allow many light sources in real-time rendering is
deferred shading. It is a multi pass algorithm that renders colors, normals
and depth values to separate buffers. The collection of buffers are called a
G-buffer [43]. Using the G-buffer, lighting computations are performed in

6



1. Introduction

Figure 6: Both cars are shaded with the same simple diffuse lighting computations.
The car to the right is rendered with ambient occlusion, which can be seen as darker
details in cracks and other places where some parts of the car may limit the light
that illuminates other parts of the car. Ambient occlusion enhances details and
improves realism.

a second pass.
In Paper II deferred shading is one of the rendering techniques used when
comparing energy efficiency of different rendering algorithms. Furthermore,
energy efficiency of shadow algorithms is also investigated. In addition to
shadow volumes and shadow maps, the technique variance shadow maps [7]
is also included in the energy measurements.
Two effects difficult to achieve in real-time are refractions and specular
reflections. Reflections and refractions can be computed with little overhead
in screen space [32]. However, screen space techniques are limited to reflect
what is currently visible to the camera and would miss objects reflected
from the outside of the view frustum.
Paper III addresses the difficulty of representing global reflections and re-
fractions in real-time by separating the scene into two regions. A smaller
region close to the camera is rendered with Whitted ray tracing [51], allow-
ing accurate reflection and refraction computations. The larger but further
away region surrounding the ray traced region is approximated using raster-
ization techniques similar to screen space reflections. However, rather than
limiting secondary visibility to screen space objects, in Paper III we utilize
a G-buffer cube map that captures the entire scene from the origin of the
camera. Instead of using the G-buffers for deferred shading, the G-buffers
are used to approximate ray tracing in geometry far away from the camera.

1.3 Offline rendering

Offline rendering is the complement to real-time rendering, creating com-
puter generated images often using physically based rendering techniques [40]

7
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and trading longer rendering times for improved visual quality.
It is not uncommon to spend hours to generate a high quality image, even
if it is just a single frame of a feature film. The goal is not always to cre-
ate photorealistic imagery but lighting computations can still be physically
based and the ultimate task is to solve the rendering equation [19]

Lo(x, ω) = Le(x, ω) +

∫
Ω

fr(x, ω′, ω)Li(x, ω
′)(ω′,n)dω′. (1)

In short, the rendering equation represents the outgoing light Lo, referred
to as radiance, from any 3-dimensional point x in the scene in the direction
ω. The radiance is computed as the sum of light emitted Le from x in the
direction ω and the proportion of the total incoming light on the hemisphere
Ω that is scattered in the direction ω. The proportion and properties of the
light scattered is determined by fr, the Bidirectional Reflectance Distribu-
tion Function (BRDF). The BRDF can be thought of as a mathematical
representation of the material properties of the surface.
Finding a solution, or approximation, to the rendering equation involves
computing the light interaction between each and every primitive in the
scene. Common methods to solve the rendering equation are Monte Carlo
based ray tracing methods, such as path tracing [19], that gradually converge
to a solution with each additional sample computed. Ray tracing and path
tracing are further discussed in Section 2.2.
Looking back at the example discussed as impossible in real-time rendering
in Section 1.2, when considerably longer rendering times are allowed and
using techniques that at any time can interact with any part of the scene
without loss of information, it is possible to consider all the complex light
paths and material interactions. However, when the primitive count of a
scene reaches tens or hundreds of millions, the computational needs grow.
To be able to render high quality images of vast and detailed scenes in only
minutes or hours, a huge amount of computational recourses are needed.
In the visual effects industry large distributed systems called render farms
are used, parallelizing image computations across hundreds or thousands of
processors [37].
The computational task to produce an animated or effects heavy feature
film can be difficult to comprehend. As an example, consider a 2 hour
production that is required to be rendered at 24 frames per second. The
total number of frames to render are 172800. Assuming an average frame
time of only 3 minutes, total rendering time would reach almost one year
of around the clock rendering. To be more precise, rendering such a film
would take exactly 360 days.

8



2. Rendering algorithms and hardware

2 Rendering algorithms and hardware

Although it is not exclusive for real-time rendering to use Graphics Process-
ing Units (GPU) and vice versa for offline rendering methods to use Central
Processing Units (CPU), the following sections will discuss two rendering
algorithms, rasterization and ray tracing, together with the hardware they
are commonly paired with.
Both rasterization and ray tracing are methods of visibility determination
and the rendering pipeline using either of them is built up in stages, where
finding which triangle is visible to a given pixel is at the heart of the algo-
rithm.

2.1 Rasterization and the graphics processing unit

The foremost choice as a real-time rendering algorithm is rasterization. Ras-
terization has been pushing the development of graphics hardware and al-
though modern GPUs are more versatile, GPU hardware was originally
designed for real-time rendering using rasterization.
Early graphics hardware accelerators were designed solely as fixed func-
tion pipelines with no programmable stages. In addition to the hardware
rasterizer, they also had hardware support to compute transforms and light-
ing. As graphics hardware matured, programmable shader cores were in-
troduced. A shader core is a Single Instruction Multiple Data (SIMD) pro-
cessor designed for high arithmetic throughput and to hide latencies when
fetching data from memory. The SIMD width of a shader core may be as
wide as 1024 or 2048 bits, as an example performing 32 or 64 floating point
operations per SIMD instruction. A GPU is optimized for fine grained par-
allel execution, and high throughput is achieved by allowing thousands of
threads to stay active at any time. When a high latency memory fetch is
issued, the shader core switches tasks and performs arithmetic computa-
tions with other available threads. If there are enough active threads to
switch between, it is possible to completely hide latency caused by fetching
data from main memory. Although reducing bandwidth usage with a cache
hierarchy is important, with the concept of task switching for latency hid-
ing, GPUs are not as dependent on their caches and the cache hierarchy as
CPUs to achieve high throughput.
In Paper I, a GPU hardware model was used to understand the expected
workload of a given algorithm. The hardware model estimate was used to
auto-tune a real-time rendering implementation to maximize rendering qual-
ity per frame subject to a limited time budget. Although this section’s main
focus is rasterization, it is worth mentioning that the rendering technique
used in Paper I was ray tracing, which is further discussed in Section 2.2.
The graphics hardware pipeline as it is implemented in modern GPUs, in
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Figure 7: The left image illustrates how geometry is projected onto a view plane
prior to rasterization. The right image is an example of the rasterization process
with one sample per pixel. The z-buffer ensures that the green triangle is rendered
in front of the blue triangle.

broad terms consist of three stages. The first stage is geometry processing
and although this stage consists of additional optional components such as
the geometry shader and the tessellation shader, the vertex shader is the
most important component that cannot be omitted. The vertex shader ex-
ecutes a user defined program for each vertex in the scene’s vertex array
stream. Typically, the vertex shader is used to animate three-dimensional
objects. Given a vertex, its transform and view projection represented as
a 4x4 matrix, the vertex shader outputs are the transformed vertices pro-
jected to the view plane together with some user specified attributes possibly
needed later in the pipeline. Common attributes that are passed through the
pipeline from the vertex shader are vertex normals and texture coordinates.
The second stage in the pipeline is rasterization. Rasterization is a fast
technique to determine primary visibility in computer graphics and is im-
plemented as fixed function hardware in modern GPUs. Figure 7 illustrates
2-dimensional rasterization. Given the transformed triangles projected to
the view plane, the algorithm scans from left to right each pixel and tests
which, if any, triangles are covering that pixel. In case of overlapping tri-
angles a z-buffer [5] is used to know which triangle is closest to the viewer.
The z-buffer stores the per pixel depth of the currently nearest triangle. If
an overlapping triangle is found to be further away it can be culled without
spending time on any lighting computations. A common improvement to
the rasterization algorithm is to divide the grid of pixels into tiles. Working
on tiles of pixels improves locality and thus improves cache behavior. There
are many further improvements that are not covered in this brief algorithmic
description.
Following geometry processing and rasterization is pixel processing. The last
programmable stage in the pipeline is the fragment shader. The fragment
shader is executed per pixel and outputs the final color to shade an object
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with. It is not uncommon that fragment shading is the pipeline stage where
most time is spent. The fragment shader is usually responsible for lighting
computations, shadow computations and other visual effects that are added
to the final image.
The last stage of the pipeline is blending. There may be multiple overlapping
fragments and the blending stage, implemented in hardware, is tasked to
composite overlapping fragments into a final color.

2.2 Ray tracing and the central processing unit

Although recursive ray tracing as a rendering algorithm was first described
by Whitted [51] in 1980, ray tracing is often used as an umbrella term
describing a set of ray tracing algorithms. Unlike rasterization, ray tracing
doesn’t reduce dimensionally by projecting the geometry to a view plane to
test which pixel a given triangle belongs to. Instead, ray tracing is thought
of as shooting rays from each pixel and visibility is determined by finding
the nearest intersections of rays and 3-dimensional scene geometry. The
intersection closest to the origin of a ray is considered as the ray’s hit point
and the hit point becomes the source of lighting computations.
The primary rays produce exactly the same visibility and 2-dimensional sim-
plifications as rasterization. However, with dedicated hardware available in
GPUs these computations can be made significantly faster with rasteriza-
tion. When it comes to secondary visibility such as shadows, reflections
and refractions, ray tracing is inherently suitable but rasterization requires
specialized methods to achieve visually acceptable approximations. Having
said this, approximations developed for rasterization are often many times
faster than ray tracing and are used extensively in real time applications.
One high quality approximation is the earlier mentioned hybrid rendering
approach presented in Paper III.
Ray tracing without the support of an accelerating data structure is com-
putationally unfeasible, with linear time complexity per ray. Assuming only
primary rays, rendering an image would exhibit O(NM) time complexity
where N is the number of pixels to render andM is the number of primitives
in the scene. It is possible to overcome this unfortunate time complexity by
the use of an accelerating spatial data structure. By encapsulating the scene
geometry into a spatial tree structure, time complexity can be reduced to
O(logM) per ray. Accelerating data structures for ray tracing are further
discussed in Section 3.
Computing shadows using ray tracing is performed by shooting a new ray
from the hit point to each light source. If any intersection with geometry
happens between the hit point and a light source, the hit point is consid-
ered to be in shadow from that light source. Furthermore, other secondary
visibility such as rays originating from reflective or translucent materials
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Figure 8: To the left is an illustration of three ray paths as they progress through
the scene. Each primary ray passes through a pixel in the view plane and con-
tinues through the scene, creating new rays at each intersection point. Recursion
is terminated when a ray finally leaves the scene without intersecting anything,
alternatively a ray is terminated due to the probability of not producing another
ray or because a maximum recursion depth bias has been reached. To the right is
a path traced image from the point of view of the left image setup.

are computed recursively by shooting new rays in the direction of reflection
or refraction of the original ray and hit point. In each recursive step the
final color of a pixel is accumulated and refined. Recursive ray tracing that
follows a ray from each pixel through a scene of various materials certainly
improves realism, but does not converge towards a solution to the rendering
equation described in Equation 1.
An improvement to Whitted’s recursive ray tracing [51] is path tracing [19]
which was developed in conjunction with the rendering equation and thus
designed to solve the equation. Path tracing is a probabilistic approach
based on the statistical Monte Carlo method. In path tracing many sam-
ples, i.e. rays, have to be computed from each pixel and the final color is the
average of the samples. Instead of strictly spawning reflective or refractive
recursive rays like it is done in Whitted’s ray tracing, path tracing has a
probability to spawn a ray in a random direction of the hemisphere cov-
ering the hit point. Eventually, the path will terminate, either due to the
probability of not spawning a ray or because of a biased decision of a maxi-
mum path depth. The color contribution of an entire ray path is a weighted
sum of each hit point’s contribution and the contribution at a hit point is
decided by the BRDF of the intersected object. In production rendering,
path tracing or one of its derivatives are the algorithms commonly used for
high quality and photo realistic CGI.
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Although dedicated ray tracing hardware is being researched [30], ray trac-
ing systems are often built completely in software. Ray tracing can be
efficiently implemented on either GPU or CPU hardware. An example ray
tracing frame work designed for GPU hardware is NVIDIA’s OptiX [38] and
an equivalent implementation for CPU hardware is Intel’s Embree [49].
The modern x86 CPU [16], which is the most common CPU architecture
available in laptops, desktops and servers, usually consists of more than one
CPU core per chip and exhibits a possible linear performance improvement
with the number of cores, less the serial execution limitation defined by
Amdahl’s law. Ray tracing, like rasterization, is an algorithm that exposes
ample amounts of parallel workload where every pixel can be computed in
parallel and each available hardware thread can be dedicated to a pixel or
a tile of pixels. Due to deep and large cache hierarchies available in CPUs,
divergent workload can be handled efficiently. Like GPUs, modern CPUs
also implement fine grained parallelism in the form of SIMD hardware,
although usually not as wide as its GPU counterpart. Current x86 CPUs
are available with 256-bit SIMD width [16] and it is likely that upcoming
hardware generations will be available with a 512-bit SIMD configuration.
Exploiting SIMD in ray tracing is less straight forward than implementing
thread level parallelism. Although vector operations can be performed in a
SIMD fashion, it is uncommon to see vectors with more than four elements
in computer graphics. Rays can be traced in packets, however it has been
found that divergence within ray packets, as a consequence of path tracing,
quickly reduces SIMD efficiency [8]. Another approach to utilize SIMD in
ray tracing is by adapting the spatial data structure to make it more SIMD
friendly. Such an approach is discussed in Section 3.
Path tracing is one of the simpler ray tracing algorithms that can be used
with physically based rendering which makes it a popular choice, but there
are some shortcomings which are handled more robustly with other ap-
proaches.
Caustic effects such as the intricate patterns of light at the bottom of the
seabed produced by sun light refracting through gentle waves are difficult
to simulate with path tracing. The probability that a randomly directed
ray from a hit point on the seabed will refract through the waves and hit
the light source is extremely low and thus it may take a very long time for
path tracing to converge to a solution to the rendering equation.
Bi-directional path tracing [28] improves light transportation by allowing
rays to be traced both from the camera and from the light sources. Figure 9
illustrates caustic and dispersion effects simulated using bi-directional path
tracing. Two pass methods such as photon mapping [18] and progressive
photon mapping [15] are also more robust in situations like the caustic case.
The first pass in photon mapping sends rays from the light sources through
the scene and produces a photon map. The second pass shoots rays from
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Figure 9: A simulation of light paths through a cut diamond using bi-directional
path tracing. Without the possibility of tracing rays from the light source as well
as the camera it would take a very long time for the caustic effects to converge.

the camera and gathers light from the photon map at each intersection.

3 Spatial data structures

As mentioned in the previous section, an important technique to reduce
computational complexity for ray tracing algorithms is to utilize an acceler-
ating spatial data structure. By representing scene geometry in an efficient
spatial data structure, it is possible for a ray to quickly discard large seg-
ments of the scene, since it can be known that no ray-triangle intersections
are possible in the discarded regions.
Choosing data structure and construction algorithm is not as simple as to
always select the fastest or to always select the one resulting in the best ray
tracing performance. Naturally, if one algorithm produces the same quality
data structure at a reduced build time compared to another algorithm then
there is no reason not to chose the faster one. However, sometimes it might
be a better choice to use an algorithm that is faster in terms of build times
but results in reduced rendering performance. If it is known that the number
of rays to trace is relatively small and that rendering time will be short,
then it might be beneficial to utilize a data structure algorithm that is
optimized for build speed rather than ray tracing performance. On the
other hand, if it is known that a large number of rays will be traced, for
example when path tracing in a feature film, then it is probably worth
spending some additional time on producing a higher quality data structure
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that also improves rendering performance.
Paper IV presents a novel fast CPU based BVH algorithm that achieves
ray tracing performance similar to, or sometimes even better than, con-
temporary BVH approaches. Paper V improves BVH quality compared to
Paper IV by also allowing triangles to be split during BVH construction,
without suffering from significantly increased build times.

3.1 Variations

There are several varieties of spatial data structures that have been used in
computer graphics in one or another way. Among the simpler types are uni-
form grids [25, 20] where a scene is quantified into a predefined number of
grid cells and each primitive is assigned to all grid cell that touches the prim-
itive. Uniform grids are fast to construct but often inefficient in eliminating
empty space and are sub-optimal in most ray tracing situations. A slightly
more effective data structure is the quadtree [44] represented in three dimen-
sions known as an octree [33]. An octree is a hierarchical approach which
improves ray traversal time compared to uniform grids. However, grid cells
are not adaptively refitted to the triangles enclosed by the cell and a ray
may still have to traverse many grid cells that do not contain any geometry
that could be intersected by the ray. Improving further upon octrees are
kd-trees [3, 17]. A kd-tree adaptively separates primitives in a top down
fashion and thus is able to reduce empty space efficiently. However, in a
kd-tree, it is likely to duplicate primitive references since it is impossible
to guarantee that there exists a plane that separates all primitives in two
disjoint sets. Instead, primitives that intersect a split plane are referenced
to both children of a tree node. Although kd-trees exhibit good ray trac-
ing performance they have been considered impractical due their a priori
unknown memory foot print.

3.2 Bounding volume hierarchy

One of the most popular contemporary data structures for ray tracing is
the Bounding Volume Hierarchy (BVH). The BVH benefits from an a priori
known upper bound in memory usage, efficient empty space elimination
and very good ray tracing performance. The typical BVH is a binary tree
structure where each node in the tree encapsulates the volume of its children.
A 2-dimensional BVH of a few triangles is illustrated in Figure 10. Leaf
nodes represent a set of primitives that each need to be tested against a ray
that reaches the leaf during tree traversal. A BVH references each primitive
only once and allows spatial overlap of sibling nodes. It may seem inefficient
to allow node overlap, however, with a good build heuristic the overlap can
be minimized and the benefits of the BVH as an accelerating data structure
often amortizes its drawbacks.
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Figure 10: To the left a 2-dimensional analog of a BVH and to the right its
corresponding tree structure. This example illustrates a simple spatial median
object split build strategy with at most two triangles per leaf node.

A BVH is traversed recursively, starting by letting a ray intersect the root
node. If a node is intersected its child nodes are tested against the ray,
prioritizing the child node closest to the origin of the ray. The other child
is pushed on a stack and may be processed later. Traversal continues as
long as there are nodes on the stack or until an intersection with a primitive
is found and no other nodes on the stack are closer than the intersected
primitive.

3.3 Combinatorial complexity

Considering that scenes in computer graphics and especially in production
rendering commonly consist of triangles counted in millions, it is obvious
that there are many potential solutions to a BVH. The number of ways to
build a full binary tree, one where each node has either two children or none
at all, for n+ 1 elements is defined by the nth Catalan number [45]

Cn =
1

n+ 1

(
2n

n

)
, n ≥ 0. (2)

The first few catalan numbers are relatively small and the full binary trees
representing catalan number 3 are illustrated in Figure 11. However, already
with as few elements as there are letters in the alphabet, the number of
possible ways to build a binary tree grows to become a 13 digit number.
The combinatorial possibilities to construct a BVH is even greater, since a
leaf node may contain an arbitrary, relatively small, number of triangles.
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Figure 11: Five possible variations of binary trees with four leaf nodes. The num-
ber of combinations is represented by the 3rd catalan number. Circles are leaf
nodes and squares represent internal nodes.

3.4 Quality evaluation

Although there is an immense number of solutions that result in functional
BVHs, it is likely that most of these solutions would suffer from poor ray
tracing performance. A good build strategy together with a BVH quality
metric would quickly discard most poor solutions. Such a metric needs to
account for certain properties that correlate to ray tracing performance.
The by far most used BVH quality metric is the Surface Area Heuristic
(SAH) [12], which incidentally is also used to define a common top-down
build strategy for BVH construction [31]. The SAH cost of a BVH is eval-
uated as

Ci

∑
n∈I

A(n)

A(n0)
+ Cl

∑
n∈L

A(n)

A(n0)
+ Ct

∑
n∈L

A(n)

A(n0)
N(n), (3)

where the result depends on the surface area A of all nodes, the number
triangles N referenced by leaf node n ∈ L and the respective cost constants
of traversing all internal nodes Ci, traversing leaf nodes Cl and intersecting
leaf nodes Ct. Internal nodes are represented by the set I and leaf nodes
by the set L. The root node is denoted n0. Modern usage of the equation
often omits the second sum by defining Cl as zero since most ray tracing
implementations don’t traverse leaf nodes but instead immediately compute
intersections with the triangles represented in a leaf node.
The SAH metric represents the cost of tracing a randomly directed ray
starting and ending outside of the BVH and A(n)/A(n0) is the conditional
probability P (R(n)|R(n0)) of a non-terminating randomly directed ray R
to intersect node n provided that it has intersected the root n0. Although
minimizing the SAH cost is a common approach known to work well to
construct high quality BVHs, it has been found that the SAH may not
always correlate perfectly to ray tracing performance [10, 1]. The main
issue with the SAH is its simple assumption that only randomly directed
rays that begin and end outside the root node without actually intersecting
any geometry are considered. In path tracing it is true that most rays are
randomly directed with the exception of camera rays. However, it is not
true that rays begin and end outside the root node. In fact, the majority of
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rays will begin from a surface somewhere inside the BVH, and in the case
of an enclosed scene such as an indoor environment, all rays will terminate
inside the BVH.
One approach to improve the SAH metric is presented by Fabianowski [10]
where ray origins uniformly distributed within the root node of a BVH are
considered. Another approach by Aila et al. [1] introduced two new post-
build metrics to improve BVH cost estimation, End Point Overlap (EPO)
and Leaf Count Variability (LCV). EPO is similar to SAH but considers
rays starting and terminating within the BVH and LCV is an approach
to estimate SIMD utilization. Fabianowski’s metric can be evaluated at
build time and thus also improve ray tracing performance. The additional
metrics by Aila et al. aren’t evaluated at build time and don’t improve ray
tracing performance. Instead they are used to describe the performance
of a particular BVH built with one of many available algorithms. Aila et
al. found that the new BVH quality metric as a combination of SAH and
EPO correlated well with ray tracing performance for non SIMD execution
and by also considering the LCV term their metric correlated well with ray
tracing performance on SIMD hardware as well.

3.5 Geometric top-down

The canonical approach of a top-down BVH builder is to initially consider
the complete set of triangles and using a build heuristic decide how to
divide the set into two subsets. The builder then continues recursively by
considering each subset as an independent partition to further subdivide
until a stopping criteria terminates the recursion.
The simplest build heuristics are object median and spatial median splits.
Object median split requires the triangles to be sorted in the dimension that
the split will occur and in each recursion simply divides the array of triangles
in two halves. Spatial median split is slightly more sophisticated where the
triangles are partitioned to one or the other side of a split plane with the
plane defined as the spatial median of the parent BVH node. Since these
techniques in different ways ignore important properties of the scene it is
possible to create large BVH nodes containing spatially unrelated triangles.
Although spatial median split is likely to produce a BVH with a tighter fit
to the scene than object median split both approaches suffer from poor ray
tracing performance when compared to more sophisticated build methods.
A BVH build strategy often considered the gold standard among BVH al-
gorithms is Sweep SAH [31]. The typical implementation greedily searches
for the best object split in all three spatial dimensions and minimizes the
SAH cost at each level of recursion. As it is not computationally feasible to
consider all possible partitions the sweep approach maintains the triangles
in sorted order in x,y and z during construction and only considers object
splits in the sorted arrays as candidate solutions. Sweep SAH is known to
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produce high quality BVHs at the cost of longer build times. However, in
Paper IV we present a Sweep SAH implementation with build performance
competitive to faster BVH construction approaches.
An efficient approximation to Sweep SAH is the Binned SAH algorithm
proposed by Wald et al [48] and further refined by Wald [47]. Instead of
considering split candidates at each triangle in sorted x, y and z order,
triangles are partitioned into bins defined by a set of uniformly distributed
spatial split planes. The binned algorithm then evaluates the SAH cost of
choosing a particular split plane and selects the one that results in the lowest
SAH cost. Contrary to Sweep SAH, the binned algorithm does not need to
sort or maintain a sorted order of triangles and only needs to perform one
pass per dimension over the triangles to reference them to their respective
bin. The binned approach is also thread friendlier than its predecessor.
Sweep SAH doubles parallelism at each recursion, starting with only one
thread. Binned SAH allows all available threads to perform binning even
at the first level of recursion.
In addition to experiments in Paper IV and Paper V, both Sweep and Binned
SAH have been thoroughly tested and found to be robust high quality BVH
algorithms [47, 22, 1, 49].
Our BVH algorithm in Paper IV is mostly classified as a geometric top-
down approach. However, the last stage of our method, where a set of pre-
constructed and optimized mini trees are passed to a Sweep SAH builder,
may be considered a bottom-up approach.

3.6 Geometric bottom-up

Bottom-up approaches in BVH construction are tempting due to the in-
herently parallel algorithmic structure similar to divide and conquer algo-
rithms such as merge sort. Walter et al. [50] proposed a bottom-up BVH
algorithm based on agglomerative clustering. Naive agglomerative cluster-
ing has an unfortunate time complexity O(N3) unsuitable even as a parallel
algorithm [50]. Walter et al. devised a fast agglomerative clustering al-
gorithm that uses a coarse un-optimized kd-tree of triangle mid points as
an auxiliary data structure. Although with longer construction times than
Sweep SAH, Walter et al. found that their approach reduced overall SAH
cost and improved ray tracing performance of their test scenes.
Inspired by the work of Walter et al. the Approximate Agglomerative Clus-
tering (AAC) algorithm was proposed by Gu et al [14]. Noting that initial
clustering was a dominant factor of execution time Gu et al. spatially lim-
ited the clustering search space by initially arranging the triangles into a
space filling curve known as Morton order. However, unlike the space-filling
curve based builders described in Section 3.7, AAC does not implicitly uti-
lize the Morton order for BVH construction. Rather than globally searching
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for nearest neighbors while clustering using a kd-tree [50], the AAC algo-
rithm only needs to search a pre-calculated Morton order based local subset
to find nearest neighbors. By exchanging construction, update and search
queries of a kd-tree for a once computed and sorted Morton order, Gu et
al. found that their AAC algorithm could be executed in linear time to the
number of triangles. They also showed that they had similar ray tracing
performance as the original agglomerative clustering BVH by Walter et al.
Although the SAH cost of a BVH built with one of the agglomerative clus-
tering algorithms often is on a par with, and sometimes lower than, the
SAH cost of a Sweep SAH BVH, as discussed in Section 3.4, lower SAH
costs does not always correlate to improved ray tracing performance. In
the case of the agglomerative clustering methods there seems to be some
discrepancy between BVH SAH cost and ray tracing performance [1].This
discrepancy is also briefly discussed in Paper IV.

3.7 Space-filling curves BVH construction

A space-filling curve in broad terms is a continuous mapping from the unit
interval onto a 2-dimensional unit square of a higher order n-dimensional
hypercube. The first such curve was discovered by Peano in 1890 [39] and
is known as the Peano curve. Another well known space-filling curve is the
Z-order curve, also named Morton curve [35] after its inventor. For BVH
construction the Morton curve is favorable due to its simple implementation
and representation in 3 dimensions. A point in 3-dimensional space can be
quantized into a 32-bit or 64-bit integers as a 30-bit or a 63-bit Morton code
respectively, where x, y and z values are interleaved and every three bits
represent a different level of the hierarchy where the most significant three
bits are level zero. Strictly morton based BVH builders implicitly utilize the
hierarchical 3-dimensional morton order to construct BVHs. Most notable
work in space-filling curve BVH construction are the Linear BVH (LBVH)
by Lauterbach et al. [29], Hierarchical LBVH (HLBVH) by Pantaleoni et
al. [36] which was further improved by Garanzha et al. [11] and Karras’
algorithmic improvement to LBVH construction [21]. All of the mentioned
algorithms were originally designed for GPU BVH construction.
Lauterbach et al. noted that representing triangle mid points in sorted
3-dimensional Morton order implicitly defined a BVH structure. Their ap-
proach recursively builds a BVH top-down similar to a simple top-down
spatial median builder. The difference is that instead of recursively parti-
tioning at the spatial median, LBVH recursively partitions where the most
significant bit of the Morton code differs. To finalize the BVH a linear time
pass computes the bounding boxes of the LBVH nodes.
HLBVH improved the LBVH approach by utilizing two levels of sorting [36].
LBVH was implemented with a parallel radix sort to create the sorted Mor-
ton order and sorting was a large part of total build time. Pantaleoni et
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Figure 12: Three levels of a 2-dimensional Morton curve. One issue with space-
filling curve based BVHs is the same as with uniform grids. Many triangles may
be quantized to the same Morton code if the resolution isn’t high enough. The
two triangles in the bottom right corner aren’t separated until the last level in the
illustration.

al. found that improved build speed due to improved data locality could be
achieved if only the n most significant bits were sorted with a global radix
sort approach and the lower bits instead sorted with odd-even sorting [26]
in GPU shared memory. HLBVH also made it possible to construct the
top-level of the hierarchy represented by the n most significant bits simul-
taneously as the lower levels of the hierarchy.
Karras [21] used the sorted Morton order to build a binary radix tree rep-
resenting a skeleton of the expected BVH, and each node represented in
the radix tree in fact could be computed in parallel. Furthermore Karras
presented a highly parallel bottom-up approach to compute the bounding
boxes of each BVH node. The real-time hybrid rendering algorithm pre-
sented in Paper III uses Karras’ [21] Morton based BVH algorithm to allow
a per frame full rebuild of the BVH.
The space-filling curve algorithms discussed in this section share a couple of
properties. They are all highly parallel algorithms that execute efficiently
on GPU hardware. However, even though both LBVH and HLBVH present
SAH optimization approaches, they also produce BVHs with a relatively
poor ray tracing performance compared to the top-down algorithms [22].
Although ray tracing performance of Morton curve based BVHs are not
as good as with other algorithms, there are still situations where faster
builders are preferred. If it is known that the number of rays to trace will
be relatively small, a faster builder, introducing less build time overhead,
may result in an overall improved rendering performance. Fast to build low
quality BVHs may also be used as initial trees further improved by iterative
optimization techniques.
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3.8 Inital tree optimization

A relatively new approach in producing high quality BVHs is to begin with
a lower quality hierarchy and perform iterative optimization to improve tree
quality and ray tracing performance. A precursor to such approaches was
introduced by Kensler [23] where the initial BVH is optimized by tree rota-
tions. Although Kensler initiated optimization with a high quality BVH he
found that the SAH cost could be reduced further by recursively traversing
the BVH and performing tree rotations in a depth-first order. Kensler noted
that the simple and fast recursive optimization strategy had a tendency to
get stuck at local minima in regards of SAH cost and also proposed a tree
rotation approach in combination with Simulated Annealing [24]. Although
requiring longer build times, occasionally forcing poor solutions made it
possible to escape local minima in favor of continued optimization.
An efficient version of Kensler’s tree rotations used to maintain high quality
BVHs of animated scenes was introduced by Kopta et al. [27]. Instead of
strictly optimizing an initial BVH, Kopta et al. found tree rotations to
be an effective instrument to avoid BVH deterioration when the BVH is
refitted due to animated objects.
Bittner et al. [4] took a different approach to BVH optimization and instead
of using tree rotations optimized BVHs with node removal and insertions.
Optimization is performed by iteratively selecting costly internal nodes from
the initial BVH, removing those nodes from the BVH and reinserting them
in positions that reduce the SAH cost the most. Bittner et al. noted that
although tree rotations [23] technically could find the global minima, con-
vergence was slow and the insertion based optimization resulted in higher
quality BVHs in a significantly shorter time [4].
Considering the concepts and ideas of both rotation based and insertion
based optimization Karras et al. [22] developed a massively parallel high
quality BVH algorithm designed for GPU hardware. The primary observa-
tions of previous work was that although simple tree rotations could improve
BVH quality, the inherent risk of getting stuck in local minima, unless using
excessively time consuming optimization algorithms such as Simulated An-
nealing, made tree rotations less favorable. Insertion based optimization be-
gins with a low quality BVH and produces superior BVHs, sometimes even
of higher quality than top-down sweep SAH [22] but the algorithm is inher-
ently serial and not likely to perform well on parallel hardware [4, 22]. The
BVH construction approach by Karras et al. optimizes an LBVH initially
built with Karras’ LBVH algorithm [21]. Instead of simple tree rotations
entire sub-trees called treelets are exhaustively optimized with a dynamic
programming approach. The optimization approach by Karras et al. results
in BVHs with a quality not far from top-down sweep SAH but build times
are significantly reduced [22].
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Figure 13: An illustration showing the benefits of performing split clipping rather
than actual triangle splitting. In this case it is obvious that split clipping creates
tighter bounds than triangle splitting.

3.9 Triangle splitting

As mentioned earlier in Section 1.1 the triangle can be considered as the
atom of computer graphics and just like its real world counterpart, despite
the meaning of the name, the atom of computer graphics may be split in
half. An approach closer to the truth regarding triangle splitting is known
as split clipping [17]. As Figure 13 shows, rather than actually splitting a
triangle into multiple triangles, triangle bounding boxes can be split in two
parts and both parts refitted to form a tight bound of each respective part
of the triangle. Actually splitting a triangle may produce a triangle and a
quad, i.e. a polygon with four vertices, rather than two triangles. Further
refinement would eventually be required where the quad is divided into two
triangles and consequently also two bounding boxes. Another benefit of
split clipping compared to actual splitting is that split clipping is likely to
produce a smaller summed area of the split bounding boxes.
Triangle splitting for BVHs can be categorized into two groups, pre-split
and intra-split where pre-split represents a pass prior to BVH construction
and intra-split is a splitting approach within a BVH algorithm.
Splitting triangles prior to or while building a BVH may improve ray tracing
performance dramatically [46, 42, 22]. A scene with an even distribution
of finely tessellated triangles will probably not benefit much from triangle
splitting, but typical scenes consist of a mix of large and small triangles and
such scenes are likely to result in improved ray tracing performance when
using a triangle splitting BVH approach. Two modern robust approaches
are the top down intra-split builder by Stich et al. [46] and the pre-split
method by Karras and Aila [22]. The first, known as Split BVH (SBVH),
is a combination of the greedy sweep SAH builder and a builder with a set
of predefined spatial split planes as with binned SAH. However, the binned
split planes actually split the triangle and reference the two parts to their
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respective side of the split plane. In each recursion, the algorithm picks the
better of sweep SAH and the best available predefined split plane. Thorough
experiments with SBVH show that although other algorithms are getting
closer, SBVH generally produces the highest quality BVHs [46, 22, 1]. A
variant of SBVH is available in Embree [49] as a slow to build high quality
BVH.
The other modern robust triangle splitting approach is the pre-splitting
algorithm by Karras and Aila [22]. Inspired by Early Split Clipping (ESC)
by Ernst and Greiner [9] where triangles are split recursively according to a
cost heuristic, Karras and Aila introduce a split budget and employ a novel
heuristic that ranks the importance of splitting a specific triangle. They
also define a function of spatial split planes that are likely to improve the
SAH cost rather than looking at uniformly distributed split planes or simply
subdividing each triangle until a certain threshold of bounding box areas
have been reached [9]. Karras’ and Aila’s pre-split approach reduces BVH
build times significantly compared to SBVH but still results in ray tracing
performance close to that of SBVH. The approach by Karras and Aila is
designed for GPU hardware and is thus likely to perform better on a GPU
than a CPU.
In Paper V we present a new approach for triangle splitting. Our algorithm
is optimally integrated with a BVH builder as an intra-split approach and
the Bonsai algorithm from Paper IV is favorable. However, we also show
that our algorithm produces high quality BVHs when used as a pre-split
approach together with sweep SAH. Furthermore, in Paper V we show that
our algorithm is faster than competing CPU based robust triangle split
builders yet producing BVHs of quality similar to SBVH.

3.10 SIMD efficiency

As mentioned in Section 2.2 an approach to improve SIMD utilization for ray
tracing requires a slightly different topology of the data structure. Instead
of building BVHs with two children per node, a multi-BVH [8] is used, with
as an example four or eight children per node. With eight children per node
it is possible to intersect all children at the same time using Intel’s Advanced
Vector Extensions (AVX), the current standard of x86 SIMD instructions.
Intel’s Embree [49] ray tracing framework currently implements branching
widths of 4 and 8 and the binned BVH builder is biased towards packing 4 or
8 triangles per leaf node, depending on the SIMD width of the architecture
compiled for.
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4 Methodology and Contributions

This thesis presents topics on hardware modeling, algorithmic energy ef-
ficiency, hybrid rendering and BVH construction. My supervisor Michael
Doggett has had an active part and co-authored all papers presented in this
thesis. Paper II was also authored by Björn Johnsson and Tomas Akenine-
Möller. Rasmus Barringer and Tomas Akenine-Möller co-authored Paper
IV.
My early work was mostly hardware centric with focus on hardware mod-
eling and energy efficiency. Paper I presents and extends an available GPU
hardware model and tunes it to function with hardware slightly different
from what the model was originally designed for. The paper sought to find
means of utilizing a GPU model to predict the behavior and execution time
of more complex algorithms than the simple benchmarks earlier presented
by previous work. The end result is a performance predictive real-time ray
tracing system that by the means of a hardware model and a feedback con-
troller auto-tunes ray tracing quality to maintain a steady state rendering
performance. In Paper I Michael Doggett implemented the original hard-
ware model and I focused on its extension, the GPU based real-time ray
tracer and the feedback system.
Paper II continues the hardware centric path and presents energy efficiency
experiments and measurements of a set of different rendering and shadow
algorithms executed on a broad range of GPUs. Energy efficiency data
was gathered by tapping in to the power supplies of high-end GPUs, an
integrated GPU and a mobile phone GPU. One significant difficulty in this
paper was to understand measured data. The tool used to sample voltages
and currents at a high frequency was decoupled from actual rendering and
thus we had to find a way to detect when our rendering measurements ac-
tually started. My focus, other than running time consuming experiments,
was on analyzing sampled energy data and finding ways of synchronizing
and making sense of the large data sets gathered by the energy measur-
ing tool. The first author, Björn Johnsson focused on implementing the
various rendering algorithms used, setting up test scenes and also running
experiments and analyzing data.
Following the first two papers, rendering focus changed from hardware to
algorithms. Paper III presents a hybrid rendering approach that combines
the visibility queries possible using ray tracing with the performance benefit
of using dedicated hardware and rasterization. The hybrid rendering algo-
rithm quickly builds a low quality BVH of geometry nearby the camera and
represents geometry outside of the BVH with a G-buffer cube map. This
approach allows for detailed and correct reflections and refractions near the
viewer and approximate reflections and refractions by stepping through the
G-buffer cube map outside the BVH. We found that our approach could
render visually acceptable reflections and refractions in real-time on patho-
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logical test cases such as animated scenes consisting of over two million
triangles, all reflective or refractive.
Paper IV presents Bonsai, a novel approach to BVH construction that builds
BVHs with a ray tracing performance on par with the sweep SAH algorithm
discussed in Section 3. Furthermore, our approach is the fastest CPU based
high quality BVH algorithm and it utilizes both thread level parallelism and
SIMD instructions efficiently. In this paper we also present an implemen-
tation of sweep SAH that constructs BVHs with competitive build times.
My focus was on overall algorithmic design and implementation. Rasmus
Barringer implemented the fast sweep SAH approach as well as an highly
efficient radix sorting approach. It is worth mentioning that I also imple-
mented a proof of concept version of Bonsai into Embree and the source
code is currently available at Embree’s github repository. As the proof of
concept implementation was found to scale well with many core hardware
and also expected to scale well with wider SIMD instructions the Embree
team has decided on implementing their own version of Bonsai.
My final paper is a continuation of Paper IV. In Paper V the Bonsai algo-
rithm is implemented into Intel’s Embree framework and most measure-
ments are made using Embree. Paper V presents a novel and efficient
method to build BVHs with triangle splitting. The algorithm can either
be integrated with Bonsai, adding only a small increase in build times, or
works as pre-split pass prior to construction using any other BVH algorithm.
In the pre-split case the overhead in build times is slightly larger than with
the Bonsai integrated version. Our splitting approach is the fastest CPU
based BVH builder that utilizes triangle splitting and yields a ray tracing
performance comparable to that of SBVH.
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Auto-tuning Interactive Ray Tracing using an
Analytical GPU Architecture Model

Per Ganestam Michael Doggett

Lund University

Abstract

This paper presents a method for auto-tuning interactive ray
tracing on GPUs using a hardware model. Getting full perfor-
mance from modern GPUs is a challenging task. Workloads
which require a guaranteed performance over several runs must
select parameters for the worst performance of all runs. Our
method uses an analytical GPU performance model to predict
the current frame’s rendering time using a selected set of pa-
rameters. These parameters are then optimised for a selected
frame rate performance on the particular GPU architecture. We
use auto-tuning to determine parameters such as phong shad-
ing, shadow rays and the number of ambient occlusion rays. We
sample a priori information about the current rendering load
to estimate the frame workload. A GPU model is run itera-
tively using this information to tune rendering parameters for
a target frame rate. We use the OpenCL API allowing tuning
across different GPU architectures. Our auto-tuning enables the
rendering of each frame to execute in a predicted time, so a tar-
get frame rate can be achieved even with widely varying scene
complexities. Using this method we can select optimal param-
eters for the current execution taking into account the current
viewpoint and scene, achieving performance improvements over
predetermined parameters.
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1. Introduction

1 Introduction

Programming GPUs for high performance requires a careful balance of sev-
eral hardware specific related factors that is typically only achieved by ex-
pert users through trial and error. GPUs are massively parallel devices
with parallel compute capacity exceeding other single chip devices and are
still the best device for high performance graphics [8]. There are currently
many APIs for programming GPUs all with their respective advantages
and disadvantages, but getting optimal performance from the GPU is still
a challenging task that requires repetitive manual tuning. To reduce the
amount of trial and error required to achieve optimal performance, general
guidelines can be followed or different metrics can be considered to predict
performance, but ultimately a trial and error process is still prevalent. In
this paper, we present a method that makes this tuning process automatic
using an analytical GPU model.
The current challenges of programming and getting efficient performance
from GPUs is likely to increase in the future as new devices have increas-
ingly complex architectures. While new features, such as shader cache hier-
archies, make programming easier, getting the best efficiency is still difficult.
Also as pointed out by Owens et al. [8], the cost of memory bandwidth in
comparison to computational power is ever increasing. On future devices
applications will need to switch to modes that require more compute pro-
cessing, whereas on older devices a better trade off between memory and
compute is necessary. Power usage is also an important consideration and
Dally [4] points out that the power cost of a memory operation is an order
of magnitude greater than compute operations. Sometimes it is important
to tune parameters for power usage instead of just performance. Using a
single set of parameters for all devices is therefore inadequate and per device
tuning is also needed, resulting in an ongoing maintenance task.
We present a method for automatically tuning the parameters of a parallel
application running on massively parallel devices, GPUs. Automatic tuning
is performed by estimating the run time for a given set of parameters using a
GPU analytical model [7] and then changing parameters and re-estimating
until a chosen performance target is met. A major advantage of this sys-
tem over using feedback from the previous frame is that the rendering load
based on viewpoint can change dramatically between frames, hence a pre-
vious frame’s feedback loop could become inaccurate and highly unstable.
We model GPU performance across a range of GPU architectures including
older generations and different vendors by using the OpenCL API. We eval-
uate our auto-tuning method with a ray tracing application, because it has
a range of parallel properties including a large amount of parallel work, high
memory bandwidth usage, and a workload that can be sometimes coherent
and sometimes incoherent.
This paper contributes a new method for auto-tuning using an analytical
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GPU model. Our method uses a feedforward controller to improve the
performance estimate achieved over what is possible with just the GPU
model. In addition, a simplified version of Hong and Kim’s GPU model [7]
is presented. This paper also presents GPU modeling across both GPU
vendors, NVIDIA and AMD.

2 Previous Work

Early efforts to tune rendering performance include work by Funkhouser et
al. [6] which tunes the rendering algorithm using predetermined geometry
properties and previous frame rates to ensure a user-specified frame rate. By
using a cost and benefit calculation for each object a target frame rate can
be achieved by setting appropriate LOD levels and adjusting image quality
for each object in the scene. In our approach we also control rendering
parameters, but use a GPU model to get accurate estimates of the final
performance for the current frame enabling much faster tuning.
Making efficient use of GPU hardware resources has always been a chal-
lenging task and a large amount of research is devoted to the discovery of
improved tuning parameters for a particular algorithm that have been found
through trial and error or developer tools. But recent efforts to find more
general methods have been presented. Using metrics such as the number
of instructions and threads running on a GPU at one time, Ryoo et al. [9]
shows how measures of utilization and efficiency can be computed to predict
which regions of the complete space of available optimizations need to be
tested in order to find the optimal setting. This method reduces the search
time considerably, but still requires iterating over variables to find the best
optimizations. Their model also only works if the application does not have
memory bandwidth issues.
In recent years several efforts have been made to understand and model
GPU architectures. Hong et al. [7] propose an analytical GPU model that
can be used to estimate the performance of algorithms by also taking into
account the impact of memory operations. They count the number of mem-
ory transactions as well as the actual address to better model the amount of
parallelism available when memory requests happen on GPUs. They mea-
sure GPU characteristics using micro-benchmarking and can then make
performance estimates using their analytical model. We use this model in
this paper to tune our application. Bakhoda et al. [3] presents a detailed
GPU simulator which takes PTX instructions and executes them to ana-
lyze execution performance. Their simulator gives accurate performance
estimates but does not provide quick estimates that can be used to rapidly
tune performance before execution. Baghsorkhi et al. [2] present a GPU
model that also models important properties such as scratch-pad memory
access and control flow divergence using a work flow graph. Further details
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of GPU architecture including cache sizing can also been determined via
the use of micro benchmarking [10].
Recent results in auto-tuning show that using statically determined param-
eters for algorithms that run on GPUs always produce poorer results than
tuning those parameters to the GPU capabilities [5]. Davidson et al. [5]
also show that by running multiple benchmarks of an algorithm, optimal
performance can be achieved. In this paper we improve upon this result
by directly querying a GPU model to determine the best parameters. This
enables a wider range of parameters to be checked, which is important for
complex algorithms such as ray tracing.
In this paper we tune the ray tracing algorithm for image synthesis. Previ-
ous work in GPU ray tracing has also used statically determined parameters
or algorithm changes to improve performance. Aila et al. [1] introduced the
concept of persistent threading in order to improve GPU utilization beyond
that achieved by the hardware work scheduler. They found that packet
tracing was not much faster than per-ray tracing even though per-ray in-
troduces more incoherent memory accesses. To improve performance they
created scheduling threads on the GPU, called persistent threads, which im-
proved the performance two-fold by moving scheduling into the GPU thread.
Persistent threads are an example of a non-standard performance optimiza-
tion that programmers may not be aware of, but could be incorporated into
an auto-tuning system.

3 GPU Performance Model

To estimate the performance of an algorithm on the GPU, we use a GPU
model based on Hong and Kim’s model. [7]. We use Hong and Kim’s model
on AMD GPUs as well as NVIDIA GPUs. The model is deterministic and
straight forward to implement. It also executes quickly with practically no
overhead, hence it is well suited for real-time applications. In this section we
present a shorten version of their analytical GPU model. The properties of
the program and the device are measured as shown in Table 1. The number
of cores, Dc, is the number of Streaming Multicores (SM) for NVIDIA GPUs
and SIMDs for AMD GPUs.
To compute the total number of cycles, several intermediate values are also
computed as shown in Table 2. These intermediate values are computed
using the same equations as Hong and Kim [7] and the variable name from
their model is also shown in the Table.
GPUs are throughput oriented architectures capable of running thousands of
program threads in parallel [8]. When a thread requests data from memory
the GPU switches to other threads to ensure the GPU continues to do
work while it waits for memory to respond. This switching is done on a
warp (called wavefront for AMD hardware) basis. In the worst case, when
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Program
ic Number of compute instructions
im Number of memory instructions
tb Number of threads per block
bt Number of blocks to run
bo Maximum blocks per core (occu-

pancy)
Device
Md Device total memory bandwidth
Dc Number of cores
Dtw Device number of threads per warp
Wd Device resource limited number of

warps = botb
Dtw

Ci Cycles to execute one instruction
Benchmarked
cml Averaged memory latency cycles for

one memory operation

Table 1: Input variables used for the GPU model.

Hong09 variable
Mw Memory bandwidth per

warp
BW_per_warp

cc Computation cycles Comp_cycles
cm Memory cycles Mem_cycles
ct Total execution cycles Exec_cycles_app
cml Averaged memory latency Mem_L
cdd Averaged departure delay

to issue a memory instruc-
tion

Departure_delay

Table 2: Variables computed by the GPU model.

data is not in any on-chip cache and must be read from off-chip global
memory, the original thread must wait a memory latency period. This
memory latency is measured using benchmarks for each chip and represented
by the variable cml in graphics core clock cycles. While GPUs are capable of
running multiple kernels, we assume that the device is running only multiple
instances of the same kernel program. The maximum number of warps
that are runnable on a core is determined by available resources such as
OpenCL private memory, OpenCL local memory (NVIDIA shared memory)
and other device specific features. We use the device specified parameter

38



3. GPU Performance Model

that limits the number of blocks (groups of warps) per core to determine
this maximum which is called Wd.
Our objective is to compute the number of graphics core clock cycles that it
takes to execute the specified program. When a warp issues a global memory
request, it is put to sleep and other warps are run instead. While waiting
for the sleeping warp’s memory request, the GPU can run the compute
instructions from other warps. We can compute the number of warps that
run only compute instructions while waiting as

wc =
cm + cc
cc

. (1)

This is the maximum amount of compute that can be done measured in
warps. This must be capped by the maximum number of warps, Wd so we
take min(wc,Wd) and call it Compute Warp Parallelism (CWP ) [7].
Next, we consider how many memory operations could be performed. First,
we compute the maximum number of parallel warps that can issue a memory
operation while the first warp is sleeping. The number of warps that can
concurrently issue a memory operation is computed as follows:

wmd =
cml

cdd
. (2)

Each warp that makes memory requests uses some of the limited memory
bandwidth resulting in a maximum number of warps that can run. This
maximum number of warps is computed as

wmb =
Md

MwDc
. (3)

Again, these numbers of memory warps must be limited by the maximum
number of warps of the device, Wd, so we take
min(wmd, wmb,Wd) and call it Memory Warp Parallelism
(MWP ) [7].
From this, we can compute the total number of cycles for the kernel to run
by multiplying the total of compute and memory cycles per block by the
total number of block repetitions required on the device:

ct =
bt

boDc
(Ciwt(ic + iM ) + cb). (4)

The total execution equation requires two variables which are determined
by the limiting case for parallelism, compute warps wt, and memory cycles
per block cb. For these two variables, there are three possible cases. The
first case is whenMWP > CWP , i.e., only CWP warps will be able to run
because of the amount of compute instructions, so the device is arithimetic
bound. In this case, the maximum number of warps that can run in parallel
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is determined by device properties, and this is the main contributor to the
total number of cycles.
The second case is when CWP > MWP , i.e., only MWP warps will be
able to run because of the amount of cycles memory instructions require,
so the device is memory bound. The maximum number of parallel warps
is determined by MWP . The third case is when the number of warps that
can run in parallel for compute and memory instructions are the same and
equal to the device limit of number of warps running, this case is referred
to as balanced. Once the type of limitation is worked out, wt and cb are
determined as shown in Table 3.

Arithmetic Memory Balanced

wt Wd
MWP−1

im
MWP−1

im
+ 1

cb cml
Wdcm
MWP cm

Table 3: Total execution time variables.

3.1 Parameters for Different GPUs

Several of the model parameters are measured using a series of synthetic
benchmarks with known numbers of compute and memory operations. The
memory operations are either consecutive memory accesses so that they will
be combined, called coalescing or random addresses. More details about
these benchmarks can be found in Hong and Kim [7].
The measured memory parameters are memory latency, cl, departure delay
for coalesced memory access, cdc, and for uncoalesced memory access, cdu.
These three values are varied to find the best fit for the particular architec-
ture. The coalesced memory access takes into account the lower memory
access time required for shader loads and stores from different threads in
the same warp. These memory values and also the architectural parameters
of three different GPUs are shown in Table 4
In Table 4, for the Geforce580 architecture, we set Ci to 2 to account for
the 2 instructions issued per SM resulting in a halving of the effective cycle
time for each instruction. The blocks per core determined by occupancy is
given as the maximum value for the architecture ’Max bo’, in Table 4.

4 Estimating Workload

Ray tracing renders an image of a 3D scene by tracing a path from the eye
into the geometry, intersecting with objects in the scene. For a ray tracer
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GF 8800 GF 580 Radeon 5870
Md 86 192 153
Dc 16 16 20
Dtw 32 32 64
Ci 4 2 4

Max bo 8 8 24
F (GHz) 1.35 1.54 0.88
Benchmarked

cl 420 550 500
cdc 4 0.08 64
cdu 9.8 0.66 1

Table 4: GPU dependent variables.

to handle large complex scenes, a hierarchical data structure is typically
used to improve the performance of finding intersections. In particular we
use a bounding volume hierarchy (BVH) constructed using a surface area
heuristic. Each ray starts at the root node that contains a bounding box for
the entire scene. For each node that is intersected, the two child nodes are
read into memory, typically from global memory, and intersection testing
is performed with their bounding boxes. This continues recursively until
the leaf nodes are reached. Once the ray reaches a leaf node in the BVH,
it intersects with the triangles contained there. To estimate performance
of ray tracing the algorithm is divided into several major components such
as the number of nodes traversed, the number of nodes read in, and the
number of triangles intersected.
Since every scene is different and even viewpoints within a scene vary greatly,
we use a low resolution ray tracer to estimate the ray tracing specific pa-
rameters. One of the benefits of working with OpenCL is that we can easily
make use of the CPU to quickly estimate these values and not put extra
load on the GPU.

4.1 Ray Tracing Parameters

Beyond the basic surface of the objects in the scene, the actual lighting of the
scene requires computation as well. To create a more realistic scene, more
complex computation is required. Different techniques can be incrementally
added to increase the realism and in this paper, we control the level of
realism based on the available hardware. We add shadow rays and ambient
occlusion (AO). Shadow rays trace a ray from the surface to each light
source to determine if the surface is in light or shadow. AO attempts to
approximate the light that is reflected by the scene to a point by calculating
how much of a white hemisphere around the point it can ’see’. The visibility

41



Paper I: Auto-tuning Interactive Ray Tracing using an
Analytical GPU Architecture Model

of the hemisphere is calculated by tracing a selected number of rays in
random directions and terminating them at a set radius. We tune the
performance of AO by adjusting the number of rays and the terminating
radius.

4.2 Estimating Shader Cache Performance

The NVIDIA Fermi architecture used in the GeForce 4XX and 5XX series
includes an L1 and L2 cache hierarchy for global memory loads and stores
from a kernel program. This memory hierarchy improves performance sig-
nificantly for our BVH based ray tracer, as the BVH nodes are frequently
stored in this cache. When running the low resolution frame estimate, we
store the final BVH node for each ray. We count the number of rays that
end at the same node within a region of the screen and assume that rays
that terminate at the same node are likely to have taken a similar path
through the BVH and so when reading nodes from memory, the nodes are
likely to be already in the cache. This estimate of cache hits is represented
by the variable m and used to estimate the performance by modifying the
instruction count.

4.3 Instruction Counting

We calculate the compute and memory instruction counts for our ray tracing
kernel on NVIDIA GPUs, by using the ability to save the OpenCL kernel
binary using clGetProgramInfo. The binary is compiled using nvcc for the
target architecture and the assembler dumped using cuobjdump. For AMD
GPUs we use the KernelAnalyzer application which compiles OpenCL di-
rectly into machine assembler code. To get the final number of instructions,
we break the kernel into instruction counts inside loops and outside loops.
These instruction counts are denoted by the variable i. Using the low res-
olution workload estimate, we compute an average of the number of times
each loop runs and denote these variables as n.
The total number of compute instructions is calculated as:

ic = ict(atar + pt) + ici(pi + awtvar) + icco,

where the variables are described in Table 5.
The estimated ratio m is used both to divide between coalesced and un-
coalesced memory instructions and to measure cache performance. This is
possible due to the similarity of probability to have a coalesced memory ac-
cess and a cached memory fetch. The total number of memory instructions
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Instruction count variables
ic Total number of compute instruc-

tions
ict Compute instructions per traversal
ici Compute instructions per intersec-

tion
icco Constant compute instructions
im Total number of memory instruc-

tions
it Initial number of memory instruc-

tions
imt Memory instructions per traversal
imi Memory instructions per intersec-

tion
imco Constant memory instructions
imu Uncoalesced memory instructions
imc Coalesced memory instructions
m Memory coalescing estimate
m2 Memory cache performance esti-

mate
pt Number of primary ray traversals
pi Number of primary ray intersections
tv Number of visible triangles
at Number of AO node traversals
ar Number of AO rays
aw AO intersection cost
am Total AO memory instructions
aca AO cache performance estimate

Table 5: Compute and memory instruction count variables.

are calculated as follows:

it = (imtpt + imipi + imco)(1−m2),

aca = 1−min(1, 2−(
at+pt

23 −1)),

am = aca(imtatar +
tvimiar

2
),

imu = it(1−m) + am,

imc = itm,

The total number of memory instructions is im = imc + imu.
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4.4 Tuning Ray Tracing Parameters

The GPU model is used as a feed forward controller which updates itself
iteratively to find the best fitting parameters and then sends those to the ac-
tual ray tracer. The error is calculated between the current model estimated
frame time and a target reference frame time and ray tracing parameters are
adjusted to improve the error. Since the simulated ray tracer and model ex-
ecutes quickly they update several times within one frame of the ray tracer,
hence it is possible to recover from sudden changes in view direction. As
an example, viewing a plain wall with few node traversals and triangle in-
tersections, the model adapts by increasing the number of AO rays. If the
view is turned around 180 degrees to view some more complex geometry the
actual frame rate would drop severely, but since the model updates several
times before the frame is rendered the number of AO rays are matched so
that frame rate stays constant. Ray tracing features that are adjusted to
match the reference frame rate are shadow rays and the number of AO rays.
Figure 1 illustrates how the GPU model is utilized to tune the ray tracer
as a feed forward controller. The model control loop runs several times per
frame and iteratively updates x until the error e, from model output y to
reference r, is as small as possible. Changes in x result in switching shadow
and AO on or off and adapting the number of AO rays so that a fixed frame
rate is maintained.

+

-1

r e ∆x x
yModel

Controller
GPU

Model
Ray Tracer

Figure 1: Auto tuning the ray tracer using the GPU model and a feed forward
controller.

The feed forward model simulates the ray tracer with some error due to
unmodeled behaviours. This error can be greatly reduced with help of a slow
outer feedback loop. A controller compensates the model by comparing the
model predicted execution time with real ray tracer execution time. In figure
2 the inner loop containing the GPU model also receives real execution time
y2 and a feedback controller compensates for the error e2 between model
execution time and real execution time reducing the error from model y1 to
reference r further.
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+

-1

r e1 ∆x1 x1
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Model
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+Feedback
Controller

y2

e2

x2

Figure 2: Model errors are improved by introducing a slow outer feed back loop.

5 Results

We auto tune ray tracing parameters for three different GPUs, namely,
NVIDIA Geforce 580, NVIDIA Geforce 8800 and the AMD Radeon 5870.
We use two data sets, a fairy scene shown in Figure 3 and a cabin scene
shown in Figure 4. With our implementation of surface area heuristics BVH
the fairy scene contains 174,117 triangles and requires a BVH depth of 28.
The cabin scene contains 422,635 triangles and requires a BVH depth of
34. The increased complexity of the cabin scene results in more traversal
iterations and triangle intersections resulting in longer rendering times. In
particular on the Radeon 5870 the cabin scene results in ray tracing stack
nodes spilling from the shader’s on-chip registers out to global memory,
resulting in slower performance.

Figure 3: Fairy scene.
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Figure 4: Cabin scene.

Figure 5 shows the frame time results of an animation of 100 frames of
our two scenes. The times shown in the graphs are the actual measured
frame time (red), the GPU model predicted frame time (green) and the
outer feedback loop corrected model time (blue). For each GPU and scene
a different reference frame time is set. This reference frame time is user
selected and we set it to values to enable a reasonable number of AO rays.
Lower reference times are possible, but if the frame time is too low, auto-
tuning will switch to the lowest possible settings. The GPU model times
follow the curve shape of the actual times accurately, but in some cases
with a significant offset. The average model to execution time error for
the fairy scene is 6.3, 4.8 and 2.1 percent and for the cabin scene it is
11.1, 12.8, and 19.9, for the three GPUs used. The GPU model alone does
reasonable well with the fairy scene, but the error increases with the cabin
scene. The offset between frame time and model time is removed when the
outer loop feedback is used resulting in the new ’Model FB’ estimated time.
The average error of this improved feedback model time compared to the
original execution time for the fairy scene is 1.1, 0.7, and 0.2 percent and
for the cabin scene it is 1.7, 0.2, and 1.3, for the three GPUs used. Now
with the feedback the error is reduced significantly for both scenes.
As a comparison we also ran the animation on both scenes on the GF
580 without any auto-tuning. Before measuring we manually tuned the
first frame to execute at 100 ms. These settings were then kept during
the animation. For both the fairy and the cabin scene the initial errors
from target to real execution time were within 1 percent, however as the
animation progressed the errors changed and for the fairy execution time
increased and for the cabin execution time decreased. At the last frame
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both scenes had an error close to 20 percent and the average errors over
the animation are for the fairy 10.5 percent and for the cabin 13.2 percent.
These measurements are only a comparison for this animation since without
auto-tuning the errors can grow arbitrarily large depending on the initial
view direction and tuning.
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Figure 5: Frame times for different GPUs and scenes for a 100 frame animation.
The reference time for the graphs for the fairy scene in the left column are 100ms,
333ms and 2000ms, and for the cabin scene in the right column, they are 100ms,
333ms and 4000ms.

Three frames from 1st, 50th and 100th frame of the two animations are
shown in Figure 6 and Figure 7. Both animations rotate around the scene
while moving in towards the center. The cabin animation starts with the
tree filling a small part of the scene and finishes with the camera right next
to the tree. When rendering the tree, the prediction of the rendering works
well, due to the very constant distribution of primitives across the screen.
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Figure 6: Frames from fairy animation.

Figure 7: Frames from cabin animation.

Figure 8 shows the auto-tuned number of AO rays parameter, GPU model
to execution time percentage error and the outer loop feedback corrected
model percentage error. The number of AO rays is tuned in order to ensure
the target frame rate as specified in Figure 5. The number of AO rays is
similar across the different GPUs because the rendering time is determined
by the current view point which is the same for each GPU. The GPU model
error follows a similar curve for the two scenes even though different GPUs
are used, showing that the model works well, but estimating the workload
of ray tracing is still challenging for some views. This could be improved by
increasing the resolution of our low resolution pre-sampling pass, which on
multi-core CPUs would not affect the performance of the GPU rendering
time if run in parallel with the previous frame rendering on the GPU. The
outer feedback loop corrected time improves upon the original GPU model
estimate by removing un-modeled behavior in the GPU.

6 Conclusion

We have used an analytical GPU model to tune a complex application, ray
tracing, on a variety of GPU hardware. The model was originally designed
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Figure 8: Auto-tuned number of AO rays, and error for different GPUs and scenes
over a 100 frame animation. The left column is for the fairy scene and the column
for the cabin scene. The top row graphs show the number of AO rays auto-tuned
over the animation, the graphs in the middle show the percentage error between
the GPU model and actual execution time and the bottom row graphs show the
percentage error between the GPU model and the outer loop feedback corrected
model time.

only to target NVIDIA GPUs but with its general construct we have man-
aged to estimate performance on AMD GPUs as well.
Using the model and a feed forward controller we have shown that it is
possible to estimate GPU workload and to tune a complex application using
the workload information. We also introduced a slow outer feedback loop
that can be used to improve the GPU models errors by compensating for
unmodeled behaviors. Using this approach it is possible to estimate and
auto-tune applications with different levels of complexity, given a model of
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the application’s run time.
We believe that our approach should be applicable to other complex com-
pute applications as well. Performance tuning is possible as long as the
number of instructions executed can be estimated for the application. Even
if the problem space is large with many tuning parameters, the cost of exe-
cuting the model is low and can easily be executed hundreds or more times
per iteration.
Several areas for future work arise from our initial work. More ray tracing
features such as reflection and refraction can be added to the ray tracer and
their parameters auto-tuned. We modeled the Fermi shader cache archi-
tecture inside our workload estimates. A more general model of the cache
architecture in the GPU model would make it useful for other applications.
The GPU model could also be generalized to work with multi-core CPUs
and Intel CPU SIMD extensions such as AVX.
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Abstract

Power efficiency has become the most important consider-
ation for many modern computing devices. In this paper, we
examine power efficiency of a range of graphics algorithms on
different GPUs. To measure power consumption, we have built
a power measuring device that samples currents at a high fre-
quency. Comparing power efficiency of different graphics algo-
rithms is done by measuring power and performance of three dif-
ferent primary rendering algorithms and three different shadow
algorithms. We measure these algorithms’ power signatures on a
mobile phone, on an integrated CPU and graphics processor, and
on high-end discrete GPUs, and then compare power efficiency
across both algorithms and GPUs. Our results show that power
efficiency is not always proportional to rendering performance
and that, for some algorithms, power efficiency varies across dif-
ferent platforms. We also show that for some algorithms, energy
efficiency is similar on all platforms.
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1. Introduction

1 Introduction

All kinds of computing devices, be it CPUs, GPUs, or integrated CPUs
with graphics processors, face great challenges in terms of power efficiency.
Transistor technology scaling will no longer provide the performance im-
provements that we are used to [9]. One of the reasons for this is that when
the supply voltage, and consequently the threshold voltage, of the transistor
is reduced, the current leakage of the transistor increases exponentially [3].
This, in turn, means that the supply voltage cannot be reduced, and that
future architectures will be limited by power instead of area.
It is well known that the power consumption of an external memory access,
e.g., to DRAM, is substantially higher than both floating-point (more than
an order of magnitude) and integer (more than three orders of magnitude)
operations [5], and for CPUs, logic tends to use more power than caches [3].
In addition, moving data inside a chip is also becoming increasingly ex-
pensive, and starts to be a major part of power dissipation. Historically,
we are used to the growth of memory bandwidth being slower than com-
pute growth, but lately, the memory bandwidth growth has slowed down
more [9]. Recently, Esmaeilzadeh et al. [7] have modeled multi-core speedup
as a combination of single-core scaling, multi-core scaling, and device scal-
ing, and predict that with a 22 nm technology process, 21% of the chip has
to be powered off. When the technology scales down to 8 nm, more than
half the chip has to be powered off. This under-utilization is called dark
silicon. On top of this, current leakage also increases exponentially with the
temperature of the chip [21]. All this indicates that the main optimization
axis for the foreseeable future for any computing architecture is power.
It should be clear that predicting power consumption of a particular ar-
chitecture is not an easy undertaking, and in fact, it may not always be
meaningful, since power consumption also is a function of the program that
runs on the architecture. However, optimizing for lower power consump-
tion is very important, and there are opportunities for improving the power
efficiency of future architectures by developing new hardware mechanisms
to reduce power. This has been the focus of mobile graphics, which often
has translated to algorithms for bandwidth savings [2]. For GPUs, simu-
lators can be used to model power and leakage [16], and different low-level
hardware optimization techniques can be developed and studied [17]. Power
gating techniques can also be used [18]. It is also possible to save energy by
reducing the precision in the computations in the vertex shader unit [12, 13]
and in the pixel shader cores [14]. If you are not in a position to make power-
efficient hardware changes, another approach to reduce power consumption
remains, namely, to develop power-efficient software. Koduri [10] suggests
that software developers should optimize for power as well, and in particu-
lar so for mobile devices. Some of the advice includes minimizing the frame
rate and continuing to optimize the code of an application even if the frame
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Figure 1: We have built a power measurement station, which measures power on
the PCI express bus (which can deliver up to 75 W) and on the graphics card’s
two power connectors, which in this case can deliver up to 75+150 W. This sums
to a max of 300 W.

rate goal has been reached.
In this paper, we take a different approach to study power efficiency of soft-
ware running on graphics processors. We have built a power measurement
station, as shown in Figure 1, which measures power consumption directly
on the PCIe bus and on the power connectors of discrete graphics cards. For
integrated CPU and graphics processors, we measure directly at the battery
connection (for mobile phones) or directly on the power connectors of the
motherboard. Using our power measurement station, we have studied the
power efficiency of algorithms that generate exactly or approximately the
same result, and we compare the power consumption per frame with the
time needed to render the frame. For example, one of our case studies uses
different shadow algorithms. In our study, power consumption is measured
on two different discrete graphics cards, on a CPU with integrated graphics
processor, and on a mobile phone, and these have widely different power
efficiency characteristics. We hope that our research will spark an increased
interest in the power efficiency of graphics software, and as such, that it
opens a new research area for the graphics community.
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2 Methodology

Our goal in this research is to measure power consumption on a number of
different rendering algorithms running on several different types of graphics
architectures. This includes discrete graphics cards from different vendors,
integrated graphics on the CPU die, and inside a mobile phone. Some
graphics architectures have built-in counters to estimate some kind of power
draw, but not all architectures expose those, and they tend to estimate
different things anyway.
Instead, we take another approach, which allows for a fairer comparison (at
least between different discrete graphics cards, or between different mobile
phones, etc). The general idea is to measure power draw on all incoming
power sources. It suffices to measure the current of the power sources, since
the voltages are constant, and due to the following relationship between
power, P , voltage, U , and current, I:

P = UI. (1)

The units are watts (W or joules/second) for power, volts (V) for voltage,
and ampere (A) for current. Note that energy is the integral of P over time.
In addition, the dissipation power due to switching in CMOS is P = CU2f ,
where C is the capacitance, and f is the clock frequency. For discrete
graphics cards, there are several sources of power, namely, the PCI express
bus, which can deliver up to 75 W, and between 0 and 2 power connectors,
where connectors with 6 pins can deliver up to 75 W, and 8-pin connectors
can deliver up to 150 W.
To measure all currents on these power sources, we have built a custom
power measurement station, as shown in Figure 1. The currents from the
PCI express bus is measured using an Ultraview PCIeEXT-16HOT expander
card, which has test points for measuring the currents. On our custom card,
we have four ACS710 Hall effect current sensors, which can measure currents
up to 12 A. There are also two shunt current sensors that can accurately
measure smaller currents of up to 1 A, which are useful for mobile phone
measurements. In Figure 2, we show the setup when measuring power on a
mobile phone.
All these currents are going to an A/D converter, and these are fed to
an ARM Cortex-M3 processor that samples the currents at 40 kHz. The
resulting sampled signals are sent via ethernet to a PC, which can show the
currents in real time directly in a window, or save them to a file for later
analysis (e.g., conversion to power and filtering).
The power measurement station as described above can be used directly
to measure the power consumption of discrete graphics cards. For mobile
phones and for CPUs with an integrated graphics processor, this approach
cannot be used directly since the graphics processor is not an isolated unit.
For mobile phones, we decided to measure all (including, for example, the
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Figure 2: Our power measurement station, also seen in Figure 1, connected directly
on the battery power connects on an iPhone 4S.

display) power consumption by measuring power draw at the battery con-
nector inside the phone. This is not perfect, but it is hard to measure more
accurately than that, and at least, no power consumption is missed with this
methodology. Similarly for CPUs with integrated graphics processors, we
measure the power consumption on the 4-pin power connector, which sup-
plies +12 V to the mother board. For both these architectures, we subtract
the power consumption in some form of “idle” state in order to isolate the
power consumption of the graphics processor. We define the idle power as
measured power draw of our application without submitting any OpenGL
API calls at all1. These differences in measuring methodology affects the
comparability of the results across platforms. On the integrated platform
and mobile phone, the idle memory power usage is removed, but the power
for graphics usage of memory is included. For this reason, we compare the
relative consumption of different algorithms on different platforms, but in
general, we attempt to not draw too detailed conclusions from comparing
power consumption of discrete graphics cards and mobile phones or CPUs
with integrated graphics.
The questions that we were interested in answering when starting this
project include:

1. What are the power characteristics of different graphics algorithms
solving the same problem on different graphics architectures?

1The CPU power cost of the OpenGL calls is included in the CPU with integrated
graphics and mobile phone measurements.
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2. Is energy directly proportional to frame time?

3. What does the power consumption look like during an animation?

4. What does the power consumption look like inside a frame (for differ-
ent algorithms)?

5. Can power optimization of software algorithms become a new subtopic
in graphics?

In the following, we will attempt to answer these questions.

3 Case Studies

We have chosen two case studies to measure power consumption on. Both
of these are commonly used in real-time rendering today. The first is simply
rendering the scene from the eye, and the second is shadow rendering. Those
are described in the subsequent subsections. All our algorithms have been
written in OpenGL and some have been ported to OpenGL ES, since we
want to test them on mobile phones as well.

3.1 Case 1: Primary Rendering

It is likely that graphics hardware’s most common use case is to render a
scene from the eye, i.e., to evaluate both primary visibility and shading.
We have three different flavors of this case study, where lighting with 32
spotlights (without shadows) is included. The first is basic forward render-
ing (FR), where the triangles simply are submitted as vertex arrays, and
lighting computed for non-culled fragments. Our second technique starts
with rendering the scene only to the depth buffer, which is followed by a
pass with the depth test set to GL_LEQUAL and lighting computed for each
fragment with a loop over the light sources. This way of priming the depth
buffer avoids expensive pixel shading for fragments that will not be visible in
the final image. We call this method Z-prepass rendering (ZR). Finally, we
use deferred rendering (DR), which starts by creating various G-buffers [15],
e.g., one buffer for depth, one for the normal in world space, one for spec-
ular exponent, and one for the diffuse texture. Then, for each light source,
we render a volume covering the region of influence of the spotlight, and
accumulate the lighting to each affected pixel.
For all primary rendering algorithms, we use the same camera path through
the Sponza atrium with five Stanford dragons added. The Sponza atrium
contains 224, 337 triangles and the dragons contain 100, 000 triangles each.
Some frames from this animation can be seen in the middle left part of
Figure 4.
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3.2 Case 2: Shadow Algorithms

As our second case study, we have chosen three different shadow algorithms,
namely, shadow volumes (SV) [4], shadow mapping (SM) [19], and variance
shadow mapping (VSM) [6]. While the algorithms for case 1 (Section 3.1)
all generate exactly the same result, our chosen shadow algorithms only
generate approximately the same result. For example, the shadow volume
algorithm generates pixel-exact shadows without anti-aliasing, while the
quality of both shadow mapping techniques depends on the shadow map
resolution. In addition, variance shadow mapping provides filtered shadow
lookups, and so has smoother edges. We chose those three shadow algo-
rithms because they are rather different, and our hypothesis was that they
may have different power consumption characteristics.
The shadow volume algorithm extracts a shadow volume from each shadow
caster by determining which of its edges are silhouette edges as seen from
the light source. These edges are then extruded away from the light source,
creating the sides of the shadow volume as quads. This shadow volume
is then capped at each end. These shadow primitives are rasterized from
the eye, and front facing quads increment the stencil buffer, while back
facing quads decrement the stencil buffer. We have used Carmack’s reverse
(also called z-fail) [1], where the increment/decrement is done for occluded
shadow quads. Since a shadow quad often can cover many pixels, the shadow
volume algorithm is known to burn fill rate.
The shadow map and variance shadow map algorithms need to render a
shadow map — containing depths to the closest surfaces as seen from the
light source — of the shadow casting geometry in a first pass. The variance
shadow map algorithm then creates two mipmap hierarchies containing fil-
tered depths, and filtered squared depths. Using Chebyshev’s inequality
and those two mipmap hierarchies, the shadow test provides a floating-
point value, instead of a binary outcome. Normal shadow maps do not
use a mipmap hierarchy, and so gain some speed there. However, when
the filter is large, variance shadow mapping will go up towards the tip of
the mipmap hierarchy. For mipmap-based algorithms [20], this is known to
increase cache hit ratio as compared to not using a mipmap. As a result,
the memory bandwidth usage to main memory is reduced. So even though
variance shadow maps create a mipmap hierarchy, it is not clear that it will
be more expensive in terms of power consumption.
For the shadow algorithms, we use a camera path over the scene with tes-
sellated geometry without textures. The scene contains 396, 344 polygons.
Some frames from this animation can be seen in the middle right part of
Figure 4.

60



4. Results

3.3 OpenGL ES

For the mobile phone, we use OpenGL ES, and there we have chosen to
omit deferred rendering (DR), shadow volumes (SV), and variance shadow
mapping (VSM). Deferred rendering was omitted since our target mobile
platform does not support multiple render targets. A multi-pass solution
for creating the G-buffers would be possible, but would not result in a fair
comparison. Likewise, variance shadow maps were omitted, since it was
not possible to implement without adding an extra pass. Shadow volumes
were omitted because the mobile phone could not support the amount of
geometry of our test scene without drastically splitting up geometry into
more draw calls, which would incur a significant overhead.

4 Results

Using our two case studies and our power measurement station, we have
measured power on a series of GPUs. Starting with high-end discrete
GPUs, we have taken measurements on an AMD Radeon HD7970 and on
an NVIDIA GeForce GTX 580. For integrated GPUs, we measure power
on an Intel Sandy Bridge Core i7 2700K with Intel HD 3000 graphics. The
graphics processor part of Sandy Bridge is running at between 850 MHz
and 1350 MHz because we have turbo mode enabled. In addition, we have
set idle turbo mode to “high performance.” For mobile GPUs, we measure
power on an iPhone 4S, which contains an Apple A5 chip with a dual core
PowerVR SGX543MP2 GPU running at 250 MHz. In all main diagrams,
we show the raw data, which often is a bit noisy, in a lighter color, while we
show a low-pass filtered version with a fatter curve using a stronger color.
In Figure 4, we show power consumption diagrams for both the GeForce
580 and the Radeon 7970 for our primary rendering application and for our
shadow algorithms. These animations were rendered at 2560× 1440 pixels.

It should be noted that the GeForce was manufactured in 40 nm, while the
Radeon was manufactured in 28 nm, which gives a power advantage for the
Radeon.2 This advantage is one of the possible reasons that Radeon power
varies between 170–245 W, while GeForce power varies between 240–310 W.
For the shadow algorithm runs, the number of lights is varied from 2 to 8
lights in increments of 2, and the resolution of the shadow maps was set to
25602 pixels. As can be seen, the Radeon 7970 has spikes where the frame
time increases and, as a result, the average frame power decreases at the
same time, as a longer period of idle power is taken into account. Looking at

2In all fairness, it should be noted that NVIDIA recently released the Kepler archi-
tecture [11], which also is manufactured in 28 nm, and has been optimized for power
(e.g., tripling the number of shader cores while lowering the shader core clock frequency).
However, at the time of writing no such cards were available to us.
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Figure 3: Power signature of eight frames of forward rendering on the AMD
Radeon 7970, where the fourth frame is followed by a delay which also affects our
time stamp measurements.

the frames in which this occurs, we see that the power usage does not really
change compared to neighboring frames, but the time stamps for start and
end of a frame are further apart as shown in Figure 3. At this point, we
do not know the root cause of this, but since the frame time increases, and
those measurements are independent of our power measurement station, we
are certain that it is not a shortcoming of our custom card. For primary
rendering, FR is more expensive in terms of power on both platforms. On
the GeForce 580, DR generally uses the least power, and has the best per-
formance. On the Radeon 7970, ZR has higher frame times than FR and
DR at times, while FR and DR have about the same. For power, FR clearly
uses the most power, while ZR and DR are more similar, but ZR often uses
a little less power than DR. So even though FR and DR are generally faster,
ZR uses less power. From these measurements, it is clear that one cannot
just measure frame times in order to find the most energy-efficient algorithm
(since FR and DR have about the same frame times, but widely different
power usage, for example).
For the shadow rendering results, the order of power usage is SV (highest),
VSM, and then SM (lowest) for both discrete GPUs. Increasing the number
of lights has little impact on power, except when going from 2 lights to 4
lights. In particular, on the Radeon 7970 when going from 2 to 4 lights,
there is a large increase in SM power, but little change in SM frame times,
and in fact, frame time goes down. The Radeon 7970 has two power states,
where the first runs at 300 MHz and the second at 925 MHz. It would appear
that SM with 2 lights runs at the 300 MHz state and then switches to the
925 MHz state for 4 lights. We cannot determine this exactly because we
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AMD Radeon HD 7970
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Figure 4: Frame times and power consumption for primary rendering (left) and
the different shadow algorithms (right) on an NVIDIA GTX580 (top) and on an
AMD Radeon HD 7970 (bottom). Abbreviations: FR (forward rendering), ZR (Z-
prepass), DR (deferred), SV (shadow volumes), SM (shadow mapping), and VSM
(variance shadow mapping).

do not have accurate frequency measurements. Shadow performance on the
GeForce 580 is clearly separated with SM being fastest, followed by VSM
and then SV. Power consumption is clearly lowest for SM. On the Radeon
7970, SM is again the fastest, but SV and VSM vary over the animation
with VSM varying a lot and SV staying fairly steady.
The power measurements for the Sandy Bridge, which is manufactured in 32
nm, are shown in Figure 5, where the animation was rendered at 1600×1200
to reach real-time frame rates. The shadow maps for the Sandy Bridge
measurements were scaled with a factor taking into account the difference
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Figure 5: Frame times and power consumption for primary rendering (left) and the
different shadow algorithms (right) on an Intel Sandy Bridge integrated graphics
HD3000.

in screen resolution, i.e., scaled by k = 1600×1200/(2560×1440) compared
to the discrete GPUs. This means that we used 17922 as resolution for
the shadow maps, and this is to make the energy/pixel measurements in
Table 1 fairer. As can be seen, the power consumption for graphics varies
between 8–22 W, and it contains a regular oscillation, which we presume
is the effect of the turbo mode dynamically scaling voltage and frequency.
This oscillation originates in the idle power measurement, where the pattern
is inversed. In general, we observed an idle power draw of about 40 W. The
power results show that FR draws the most power followed by DR and ZR.
The order of DR and ZR is the opposite compared to the GeForce 580, and
yet the performance results show that DR is the fastest, then ZR and FR,
which is the same order as the GeForce 580. This shows that performance
is not always a good indicator of power and that it varies across platforms.
We also note that both ZR and DR uses about 50% of the power of FR,
and since ZR and DR also are faster, this turns into a significant difference
in energy efficiency as we will see later (Table 1). For shadows, the power
draw is highest for VSM, followed by SV. SM uses less power for only 2
lights, but then generally matches SV. This is quite different compared to
the discrete cards in that SV and VSM have changed places, and we note
that SV on Sandy Bridge uses consistently less power than VSM. Shadow
performance on Sandy Bridge has similar curves for each algorithm as the
GeForce 580, with SM being the fastest, followed by VSM, and then SV.
In Figure 6, we show the power measurements for the iPhone 4S, where
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Figure 6: Frame times and power consumption for primary rendering (left) and
the different shadow algorithms (right) on an iPhone 4S. Note that the frame time
axis is different in the two graphs.

the animation was rendered at 960 × 640. The shadow map resolutions
were scaled in a similar manner as done for Sandy Bridge, resulting in a
resolution of 10242 for this architecture. In general, the power consumption
for graphics varies between 0.7–1.1 W. The power results show that ZR
uses more power than FR to achieve lower frame times for ZR compared to
FR. Again, we observe that frame time does not correlate to power usage,
and it is only through power measurement analysis that the lower power
algorithm can be determined. It is interesting to note that the iPhone
uses a sort-middle architecture with deferred rendering [8], which essentially
performs a pre-Z pass in hardware before shading, and yet our ZR, which
adds another pre-Z pass, still improves performance. SM runs at a much
lower frame time than primary rendering due to the shadow scene having
less geometry, but SM still uses more power for each frame.
It is also interesting to compute how much energy is used over an entire
animation divided by the number of frames in the animation and the screen
resolution. This is computed as shown below:

E =

∫ ttot

0

P (t)dt

F ·R
, (2)

where ttot is the total time it took to render the entire animation, F is the
number of frames in the animation, and R is the screen resolution in pixels.
By dividing with screen resolution, we weigh in that different resolutions
are used for different platforms. Two advantages of this measure are that
GPUs that are faster to render the animation will integrate over a shorter
time domain (ttot), which should be taken into account, and that it is a
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screen resolution independent measure. We believe this makes the compar-
ison fairer. In Table 1, we have gathered statistics for the average energy
per pixel and its standard deviation. We note that in some situations, per-
formance/Watt is reported. This could be interpreted as frames per second
per Watt, which is frames per joule, and due to the resolution differences,
we would report pixels/joule. While all the information is available in the
table, we have chosen joules per pixel for the same reasons that frames per
second often is avoided, and pure time per frame is preferred. One of these
reasons is that one cannot split the running time of an algorithm into dif-
ferent parts and measure them using frames per second, while on the other
hand, it makes sense to measure the time of a certain part of an algorithm.
For power efficiency, we foresee a future where it may be possible to measure
the power consumption for a certain part of an algorithm, and therefore,
joules/pixel is chosen in our presentation.
Table 1 shows that energy/pixel follows similar trends across all GPUs. For
primary rendering, it is noticeable that the differences between algorithms
are much greater for the GeForce 580 and the Sandy Bridge than the Radeon
7970. For the shadow algorithms, we observe that SM, which uses a lighter
rendering load, has similar energy/pixel over all four GPUs. However, it
is also interesting to note that there is about an order of magnitude in
difference in frame times (discrete GPUs are fastest), while at the same
time there is more than an order of magnitude in difference in the number
of transistors used for graphics (discrete GPUs use the most transistors).
Also VSM, compared to SM, requires a small energy/pixel increase on the
GeForce 580, but requires a more significant increase on the Radeon 7970
and on the Sandy Bridge. While SV, compared to VSM, has a large ener-
gy/pixel increase on the GeForce 580 and on the Sandy Bridge, but requires
a small increase on the Radeon 7970.

Average energy/pixel (nJ) [std. dev]
Primary rendering Shadow algorithms

FR ZR DR SV SM VSM
GeForce 580 1443 [180] 722.1 [62.1] 510.6 [87.1] 1325 [114] 446.6 [80.3] 532.0 [67.5]

Radeon 7970 607.4 [73.0] 512.0 [103] 489.2 [79.9] 953.9 [44.9] 469.0 [88.3] 804.0 [250]

Sandy Bridge 871.5 [134] 314.2 [46.8] 280.0 [53.4] 1317 [212] 311.3 [76.2] 511.3 [87.9]

iPhone 4S 2234 [423] 2015 [290] −−− −−− 460.5 [135] −−−

Table 1: Average energy per pixel measurements for all our architectures and
algorithms. To measure standard deviation in a meaningful way, we have kept
the number of light sources constant at four for the shadow algorithms. Note that
Sandy Bridge and iPhone energy measurements have excluded idle memory power
usage, but included the driver overhead.

Our power measuring station samples at a high frequency, so we can look at
the characteristics of individual frame power usage. Figure 7 shows frames
for the GeForce 580 and Figure 8 shows frames for the Radeon 7970. For
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Figure 7: Single frame rendering power signature for the NVIDIA GeForce
GTX580. The top row contains measurements for (from left to right) FR, ZR,
and DR, while the bottom row shows SV, SM, and VSM. All shadow algorithms
use 6 light sources.

the primary rendering algorithms, FR shows full power usage throughout
the frame, while ZR has some drops in power usage. DR shows a drop to
idle power in the middle of the frame before finishing with full power usage.
The shadow rendering algorithm frames have 6 lights and the processing
for the 6 lights can be clearly seen in each graph. It is interesting to note
that in SM, both discrete cards drop to idle power between some lights, but
for VSM only Radeon 7970 drops fully to idle, and does that between each
light. Also, the amount of idle-time is larger for Radeon 7970.

5 Conclusions and Future Work

Power is a major concern for all graphics processors today, and will be even
more important in the future when technology continues to scale down. In
this work, we have built a power measurement station, and measured power
and frame times for a set of different GPUs and graphics algorithms. As
we have shown, the fastest algorithm is not always the least power hungry
algorithm, and we have also shown that this varies greatly between different
architectures. More importantly, we believe that power is so incredibly
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Figure 8: Single frame rendering power signature for the AMD Radeon HD7970.
The top row contains measurements for (from left to right) FR, ZR, and DR,
while the bottom row shows SV, SM, and VSM. All shadow algorithms use 6 light
sources.

important that it will become an integral part of most graphics research
papers in the near future. We speculate that it will become as common to
report joules per pixel as it is to report milliseconds per frame today.
At this point, we have not provided any new and more energy-efficient algo-
rithms. So, for future work, we want to focus on studying more algorithms,
and to explore optimizations for existing algorithms that reduce power con-
sumption, or even invent new algorithms with better power behavior. It
would also be useful to put together a graphics benchmark for measuring
power consumption and frame times. We hope that our work has opened
up a new small subfield for graphics performance optimization.
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Abstract

We present a new method for real-time rendering of multi-
ple recursions of reflections and refractions. The method uses
the strengths of real-time ray tracing for objects close to the
camera, by storing them in a per frame constructed bounding
volume hierarchy (BVH). For objects further from the camera,
rasterization is used to create G-Buffers which store an image
based representation of the scene outside the near objects. Rays
that exit the BVH continue tracing in the G-Buffers’ perspec-
tive space using ray marching, and can even be reflected back
into the BVH. Our hybrid renderer is to our knowledge the first
method to merge real-time ray tracing techniques with image
based rendering to achieve smooth transitions from accurately
ray traced foreground objects to image based representations in
the background. We are able to achieve more complex reflec-
tions and refractions than existing screen space techniques, and
offer reflections by off screen objects. Our results demonstrate
that our algorithm is capable of rendering multiple bounce re-
flections and refractions, for scenes with millions of triangles, at
720p resolution and above 30 FPS.

The Visual Computer
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1. Introduction

1 Introduction

Reflective and refractive objects are an important component of reality
found in ray traced imagery, but rarely found in real-time rendering. When
these objects do appear in real-time rendering, they typically only demon-
strate a single bounce using rendered or pre-rendered environment maps.
These reflective and refractive objects can relay to the viewer information
about the composition of the scene, such as what is hiding behind an object,
or what can be seen through refractive objects.
For example, in modern real-time games, being able to see movement behind
the player in a mirror would add to the gameplay experience. Also, real-
time reflections are listed by Andersson [1] as a major challenge for real-time
rendering. Modern real-time rendering scenes have a high triangle count,
and most triangle meshes are highly detailed. Storing this data can take a
large amount of memory, and computing complex visibility with reflections
is quite challenging, if all geometry is taken into account.
The contribution of this paper is a general framework that enables real-time
reflection and refraction rays to traverse multiple bounces, while running on
graphics hardware. Our method enables complex reflections and refractions
with multiple recursions to be computed within a region near the camera,
and more limited interaction in the remainder of the scene. We use a hybrid
approach that starts with a rasterization of the scene to compute primary
ray hit points. We also generate a cube map of G-Buffers, that store depth,
color, normal and material, creating an image based representation of the
scene from the camera’s view point. In the area close to the camera, a
bounding volume hierarchy is constructed every frame to enable fully de-
formable objects. For the primary ray hit points that require further tracing,
rays are traced into the BVH, and the G-Buffers. To trace rays in the G-
Buffer we present a new approach to ray marching in the scalable, geometry
insensitive G-Buffer that represents an entire scene. Rays traced into the
image-based G-Buffer that intersect with reflective objects, can spawn new
rays that trace back into the BVH volume or into other G-Buffers. The
different types of rays that are traced are illustrated in Figure 1. An im-
portant objective of our system is to integrate complex viewing rays into
large scenes, e.g. where complex foreground reflections and refractions are
integrated with non-reflective, faster to render, backgrounds.

2 Related Work

Real-Time reflections and refractions have long been possible using environ-
ment maps and graphics hardware using the technique introduced by Blinn
and Newell [2]. This method is limited to a single bounce and so imme-
diately loses much of the realism that reflections and refractions provide.
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Figure 1: A scene showing the type of complex reflections possible in real-time
using our system. The left image shows the camera and it’s viewing frustum from
a distance and the right shows the camera image. On the left three reflection
and refraction ray paths are shown as red lines. The top ray reflects off a mirror
sphere and reveals a green sphere that is occluded in screen space. The middle
reflection bounces off a large mirror sphere that is behind our BVH region close
to the camera, but the viewing ray is still traced back into the BVH to show the
back of the red sphere. The lower ray traces through a refractive yellow sphere and
is then reflected back into the yellow sphere. All these complex ray paths are not
possible with existing screen space techniques.

True photo realism requires more complex rendering of visibility to capture
realistic reflections and refractions. Realistic reflections and refractions can
be achieved using ray tracing [24], but ray tracing needs to be integrated
carefully into real-time systems in order to ensure high performance.
Real-time rendering in games has used environment mapped reflection and
refraction for many years. Recent game engines such as Unreal Engine [3]
supports features such as billboard reflections, where imposters are used to
improve the accuracy of reflections.
More realistic screen space reflections are created in CryEngine 3 [19] using
ray marching in screen space to create accurate reflections, but are limited
to objects which appear in the view frustum. Recent research on using
non-pinhole cameras for reflections is presented by Rosen [16].
Wyman [25] makes real-time refraction look more realistic by also repre-
senting a second surface. Sun et al. [20] present a technique for simulating
light transmission through refractive objects using the GPU, but at much
lower frame rates than we target in this work.
Our approach also captures the surrounding scene by rendering a cube map,
similar in nature to image based methods such as presented by McMillan [11]
where images are warped to create the final rendering. Hakura and Snyder
[4] present a hybrid system that uses environment maps and ray tracing to
generate realistic reflections and refractions. Their system creates multiple
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environment maps from different directions and distances from the reflective
or refractive object in a preprocessing stage that would take significantly
more time than our method, which creates maps of the entire scene’s envi-
ronment using the rasterization pipeline, which is significantly faster, even
without modern graphics hardware. Our algorithm also improves accuracy
by tracing rays at each pixel.
Cube maps have been used extensively in real-time rendering to capture
lighting. Games, such as Half-Life 2 [12], assign individual cube maps to
each object to create local lighting. Sebastien et al. [18] present techniques
for recent games that solve the parallax issues present in the cube map
technique. Szirmay-Kalos et al. [21] render a cube depth map, similar to
our G-Buffer Cube Map used here, and uses it for parallax corrected access
to lighting in the environment map. Their approximation to the intersection
point is calculated using the point where the cube maps where created from,
and the currently intersected point. In our work we use similar cube and
depth maps, but use ray marching to compute accurate intersection points
and trace secondary rays from those points, rays that also traverse the depth
map to enable much more accurate visibility from our cube map. Knecht et
al. [8] also use G-Buffers to capture illumination and relight reflective and
refractive objects.
In recent work, Mara et al. [10] use a two-layer deep G-Buffer to achieve
low frequency lighting effects. They also show how to use their deep G-
Buffer to compute mirror reflections. Although their two-layer G-Buffer
captures objects hidden to the viewer (such as objects behind a wall), the
reflected object still has to reside within the view frustum. Our approach
offers reflective rays in any direction, even opposite to the view direction,
and with a higher quality if the reflected object is located within the BVH
region.
We use a screen space approach based on deferred shading [17] to find the
hit points of the primary rays and then use real-time ray tracing to trace
secondary rays through the foreground objects. There is a great deal of work
in real-time ray tracing which will not be reviewed here that includes data-
structure construction such as BVHs and kD-trees [27] and optimizations
of ray tracing performance, but this paper focuses on combining ray tracing
with image based rendering to compute complex reflection and refraction
effects. Recent work on real-time ray tracing on GPUs [6], using voxelization
and A-Buffers to create a representation of the scene, is capable of global
illumination at interactive rates using a full GPU pipeline. The algorithm
presented targets higher frame rates and resolutions in order to fit more
easily into modern real-time rendering engines.
Interactive global illumination attempts to accurately model the interaction
of light and matter by rendering frames in less than a second. Ritschel et
al. [15] survey the current state of the field and we take a few highlights
from that area that are related to our current work.
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Screen space techniques improve upon basic environment mapping by using
the representation of objects in the scene in screen space, but still screen
space does not handle objects occluded from the view point or objects out-
side the view frustum. Reinbothe et al. [14] voxelize the entire scene so
that ambient occlusion can be more accurately calculated in screen space.
Thiedemann et al. [23] also voxelize the scene to avoid illumination errors.
Ritschel et al. [15] point out that interactive global illumination approaches
approximate the geometry and lighting in the scene to reduce the complex-
ity, because low frequency representations are sufficient for lighting. For
accurate reflections and refractions, accurate geometry is required and for
this we use real-time BVH construction. Recent improvements in accurate
indirect illumination using BRDFs [26], demonstrate future directions for
improving the image quality of our work, but since their performance is
limited, they are beyond the scope of this paper.

3 Algorithm

Our rendering algorithm is based on a hybridization of existing rasterization
and ray tracing techniques. It balances visual quality and performance
in such a way that multiple bounce reflections and refractions of complex
scenes are possible in real-time on current graphics hardware.
Distant geometry in the scene is represented by image-based maps that
reduce scene complexity, but still allow rays to recursively reflect and even
refract if the refraction goes to a sky box. The maps are a set of six G-
buffers arranged in a cube map style. Geometry close to the view camera is
represented in a BVH that is traversed with a real-time ray tracer. In order
to facilitate fully dynamic scenes in real-time, a full rebuild of the BVH
around objects close to the camera is performed each frame. An overview
of the partitioning of the scene geometry is shown in Figure 2.
Each frame of our algorithm performs the following steps:

1. Rasterize primary visibility

2. Render a G-buffer cube map

3. Build the BVH of geometry near the view camera

4. Perform primary shading and generate secondary rays

5. Recursively traverse the BVH and G-buffer cube map

These steps are further explained in the following sections.
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BVH

Cube Map

Environment Map
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Figure 2: An X-Z 2D diagram of our rendering setup shows the different regions
we break the scene into and how they are represented for rendering. Objects near
to the camera (c) are inside a BVH. Objects further away are rendered into 6
G-Buffers that are stored as a Cube Map. Objects beyond the Cube Map will be
represented by the typical sky box in an outer Environment Map. The Cube Map
faces are rendered with the camera at the center point c. A blue trapezoid shows
the view frustum where three paths are traced from the primary view G-Buffer into
the BVH and intersect with objects in the BVH (red ray), objects in the Cube Map
(green ray) and going through two Cube map faces (yellow ray). The red ray shows
an example where a ray can trace in and out of the Cube Map and BVH regions.

3.1 Primary Visibility

The first pass of the algorithm is the same as the first step of a standard
deferred renderer. Primary visibility depth values and normals are stored
in 2D textures that are used as a G-buffer. The only variation with our
G-buffer compared to one commonly used in deferred rendering methods is
that a material index rather than a specularity value is stored in the alpha
component of the normal texture. These material indices are later used as
material identifiers by the ray tracer.
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3.2 The Cube Map

The cube map in our algorithm is an image-based data structure that is
updated once every frame. The cube map is used to reduce scene complexity
for ray tracing by rasterizing distant geometry. It stores the same kind of
G-buffers as the primary visibility pass does, but instead of having one G-
buffer, an individual G-buffer is stored per cube face. The cube origin is
set to the view camera’s world space position and the near planes of the
cube map cameras define the boundary between BVH ray traversal and
image-based ray marching. To avoid issues when a ray travels parallel to
the diagonal planes of the view frustums of the cube map camera faces, the
cube map cameras’ field of view (FOV) is slightly wider than 90 degrees. In
our implementation the FOV is set to 90.2 degrees (Figure 3). By widening
the FOV, a ray existing in one of the cube’s diagonal planes will always
belong to at least one of the cube sides when entering the cube map. It
is not important which side a ray belongs to, the first side a ray is tested
positively against is chosen for ray marching.

3.3 BVH Construction

Our BVH implementation builds an LBVH, the linear BVH approach by
Lauterbach et al. [9], where tree construction is reduced to a sorting prob-
lem. Parallelism is further improved by applying a tree and axis aligned
bounding box (AABB) construction algorithm similar to the one by Karras
[7].
Only geometry residing inside the cube defined by the cube map cameras’
near planes is represented in the BVH. Before the BVH is constructed, a per
object culling pass is performed. If an object’s AABB overlaps with the cube
then all triangles of that object are transformed to world space and a second
culling pass is executed. The second pass performs per triangle culling. This
is motivated since any ray that leaves the BVH boundary will enter the cube
map and not continue in the BVH, even if the BVH contained triangles from
partially overlapping objects. By culling triangles from objects partially
overlapping the BVH region, no time is wasted on building a tree that
includes triangles that would never be intersected anyway. Per triangle
culling also enables a more balanced BVH of the triangles that actually are
inside the BVH region. Since a lot of geometry is represented in the cube
map, the BVH becomes much smaller, with the benefits of both reduced
construction time and faster ray traversal.
By introducing a small overlap of the BVH and the cube map the possibility
of a gap at the boundary due to precision errors is removed. In the overlap,
an intersection occurs either in the map or in the BVH.
It is also possible for objects to have individual pre-computed BVHs, rather
than a per-frame full BVH rebuild, and that rays intersecting an object
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Figure 3: It is always possible to get a ray that goes along the diagonal planes
(green ray) that separate the 90 degrees frustums of the cube map’s faces. A
drawback of having the view camera centered in the cube is that this is a frequent
event. In our approach we widen the FOV of the cube map cameras so that the
green ray always belongs to one or the other cube map side, and once the side
to traverse is picked, the ray will continue in that side and not risk repeatedly
switching sides. The blue ray displays a case where the ray first only belongs to
the red frustum and then enters the overlapped region. Entering the overlapped
region doesn’t mean that the ray will switch side. The blue ray continues in its
current side for as long as it is within the red frustum. A ray aligned with the
diagonal plane of the red view frustum would only be able to switch to the blue
frustum once, since the new switching planes would then be the blue view frustum’s
diagonal planes.

are transformed to the local frame of the object before continuing traversal.
However, this method only works when applying rigid body transformations.
Our method is capable of handling any types of transformations, as an
example, procedurally animated meshes.

3.4 Ray Tracing: BVH and Cube Map Traversal

Our ray tracer approximates Whitted ray tracing by letting rays recursively
traverse through the two different data structures, the BVH and the cube
map. In fact, the cube map can itself be considered an approximation of
a BVH. And as it is an image based data structure, once rasterized, ray
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traversal time in the cube map is constant in relation to scene complexity.
The size of the BVH and cube map can be chosen arbitrarily and as the
BVH is increased in size, to cover a larger part of the scene, our method
converges towards a complete Whitted ray tracer.
Before ray tracing begins, the view camera G-Buffer is used to compute
shading of the primary intersections and to determine whether a visible
object should generate secondary rays or not. A spawned recursive ray con-
tinues to traverse the scene until it hits a diffuse surface, exits through the
far planes of the cube map (and intersects a sky box in an outer environment
map), or the maximum recursion depth is surpassed. The first recursion of
a ray may start either in the BVH or in the cube map. Where it starts is
simply decided by testing if the origin of the ray is inside the BVH bounding
box or not. A recursive ray is initially defined in world space as

rw(t) = ow + dwt, {ow, dw} ∈ R3, |dw| = 1, t > 0.

If a ray currently traversing the BVH doesn’t intersect any geometry, then
it is instead sent to intersect with the world space representation of the
cube map cameras’ near planes. Given an intersection in the cube map side
i ∈ [1, 6] at the parameter value ti > 0, the two points

p0 = rw(ti) and p1 = rw(ti + ε)

can be computed along the ray, where the offset ε > 0 is a small value that
extends the ray slightly into the cube map side. By multiplying the points
p0 and p1 with the view projection matrix Mi given by the camera that
corresponds to cube map side i, the transformed points

p′0 = Mip0 and p′1 = Mip1,

are computed and further used to define the map ray used for ray marching
as:

rm(t) = p′0︸︷︷︸
om

+
p′1 − p′0
|p′1 − p′0|︸ ︷︷ ︸
dm

t

with the components of om and dm in the range [−1, 1].
Rays that leave the BVH and enter the cube map use a similar ray march-
ing technique to that of per-pixel displacement mapping [5] and Parallax
Occlusion Mapping [22]. An important difference is that where previous ray
marching techniques expect an orthogonal height map to traverse, in our
method, each face of the cube map is represented in perspective. A second
difference, and an result of the perspective projection, is that a ray can exit
one face of the cube map but still be an active ray, and enter a neighbouring
side of the cube map. A ray can also bounce between the cube map and the
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BVH and back again, as many times as the recursive traversal needs before
reaching one of the terminating conditions.
If the map ray, rm, currently traversing the cube side i doesn’t intersect
anything in the map, then there are five alternatives to exit the cube map
sides for continued traversal and one alternative which would terminate the
ray. If the z-component rmz > 1, then the ray exits through the far plane
of the cube and is sent to intersect the sky box as a final traveral step. If
the ray traverses in the negative z-direction and rmz < −1, then traversal
continues in the BVH, using the original ray rw. The other four alternatives
are when the ray exits through the x- or y-axis and continues in the cube
map side j. Given the side i and the map exit condition it is possible to
directly pick the side j to traverse. Before the ray can continue in cube
side j, rm is transformed back to world space and further transformed to
the cube side j’s space using the jth view projection matrix. The matrices
from any side i to any other possible side j can be precomputed to speedup
the transition from one cube side to another.
The sampling rate n while traversing a cube map side depends on the angle
between the normal Nw of the intersected plane and the ray direction rw
and is computed in a similar way as it is done by Tatarchuk [22], n =
nmin + Nw · rw(nmax − nmin). However, once the ray is transformed to
normalized device coordinates (from rw to rm) the transformed normal will
always be directed along the z-axis and Nm · rm simply becomes the z-
component of rm.
To avoid stretching artifacts when a ray that is close to parallel to the cur-
rent cube map side intersects an object, and since the cube map only stores
one layer of depth values, objects represented in the cube map can be con-
sidered to be thin or thick. The thickness value of an object is proportional
to the amount of stretching permitted by that object when intersected in
the cube map. If a ray, currently traversing the cube map, intersects an
object that is considered thin, instead of stretching the object, the ray sim-
ply misses and continues directly to the sky box. Whether an object is thin
or thick is a per material property which can be chosen arbitrarily by an
artist. The thickness value ranges between 0 and 1, where a thickness of 0
represents a perfectly thin object and a thickness of 1 represents an object
that stretches to the far plane. Smaller moving objects seem to visually
benefit from being considered rather thin, and static objects, such as walls
(which shouldn’t let rays pass behind them anyway), should preferably be
considered thick. Refractive objects in the cube map are always considered
thin and once intersected, ray traversal is cancelled and the refracted ray is
sent to the sky box.
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3.5 Shadows and Deferred Rendering

It would be possible to compute accurate ray traced shadows inside the
BVH, complying to the restriction that the light sources also reside within
the BVH. If the light sources and thus possible occluders are positioned
outside the extent of the BVH it is no longer possible to guarantee cor-
rect shadows using conventional ray traced shadow rays. However, since
our method is highly compatible with the deferred rendering pipeline, it is
straight forward to incorporate shadow maps, or any other effect or post
processing filter commonly used with deferred rendering, to our method.
Computing shadows using shadow maps has an insignificant impact on ren-
dering performance.

4 Results

We implemented our method using OpenGL and CUDA 5 on a 32-bit Win-
dows 7 PC with an Intel Core i7 and an Nvidia GeForce 680, and tested it
on several scenes. For the larger San Miguel scene, we used 64-bit Windows
and an Nvidia Quadra K5000 to generate the full BVH ray traced images.
Figure 4 shows two images from each of our test scenes in comparison to
an accurately rendered image, using a BVH for the entire scene, and a col-
ored coded image that shows the size of the BVH near the camera. The
San Miguel model is from PBRT [13]. The San Miguel scene uses only per
triangle frustum culling, since per object frustum culling is not possible be-
cause of its file format. We would expect much better performance if per
object culling was implemented as it is for the other scenes, even so, our
method still manages to render The San Miguel scene at an average speed
of 10 frames per second.
Figure 5 shows the frame time for rendering a 200 frame sequence in the
Sponza-Buddha-Bunny model. Each frame is broken down into the CUDA
kernels that are used for rendering each frame. The breakdown shows that
the ray tracing kernel is the dominant part of rendering, with the cube map
rasterization of the scene taking little of the overall rendering time. The
results show that on average our algorithm is four times faster than using
a BVH for the entire scene.

The Chess scene is considered a pathological case when it comes to comput-
ing approximated reflections. This is because of its many reflective convex
objects (288 chess pieces and 9 spheres) where many of them reflect and
interreflect each other. Yet, our method accurately computes reflections
nearby the view camera and successfully approximates reflections far away.
This can be compared to what is possible in, as an example, unreal engine
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[3], where reflections of dynamic objects are only achieved in screen space
(and only one recursion is possible), and off screen reflections have to be
pre-computed and stored in reflection environment maps. Since only static
objects are visible in unreal’s reflection environment maps, but all objects
in the Chess scene are dynamic, no reflections at all would be possible from
the reflection environment maps. Figure 6 shows the performance of our
method for the Chess scene compared to the full BVH version. The results
show a similar characteristic for both methods as the rendering time is dom-
inated by ray tracing for both our method and the BVH version. But our
method always shows significant improvement in performance due to the
use of the cube maps for storing the scene.
To fairly compare the performance of our method versus a full BVH ray
tracer, we have chosen to rasterize primary visibility in both methods, which
brings the full BVH ray tracer closer to real-time performance. Even so,
our method always performs better than a full BVH ray tracer.

4.1 Limitations

While accurate reflections and refractions are achieved inside the BVH, this
is not possible in the cube map. The G-Buffers only represent a single
depth value without any thickness. So objects that have some thickness,
details that are behind the front or objects that are hidden behind this
depth value are not represented in the depth map and appear missing in
some rays. This results in some artifacts, but our BVH close to the camera
ensures that the artifacts are in distant geometry and are only present for
secondary rays. Even with this limitation, the resulting images in real-time
applications have a more realistic look when rendering multiply recursive
reflections and refractions.
The first row of figure 7 presents a minor artifact in the Chess scene where
the reflected chess piece on the board is slightly stretched (dark pixels to
the right of the chess piece) due to its thickness value and that the reflected
rays’ origins aren’t shared with the cube map cameras’ origin.
Another artifact, also displayed in figure 7, is when an object is covering
a reflective object in the cube map. This artifact has a lower probability
to appear near the camera (and can’t appear inside the BVH) than further
away, due to the increased possibility of having objects covering each other
in the cube map the further away they are represented. A reflected ray can
detect that it is behind another object, but there is no information about
what to intersect, and as a fallback, the ray is sent to do a look-up in the
sky box.
Rendering performance is greatly affected by the type of materials in the
scene and also by the size of the BVH. If a scene contains many reflective
and refractive materials, performance is naturally reduced due to the high
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recursive ray count. The reduced performance in scenes containing a lot of
reflective materials can be mitigated by adapting the size of the BVH, thus
a trade off between performance and image quality is made.
A carefully sized BVH is, in some cases, vital to minimize the presence
of possible artifacts using our method. One artifact that would be too
interfering had it not been pushed to the background by a, for this scene,
suitably sized BVH is displayed in figure 8. The refractive objects (water
pitcher and glasses) in the back of the San Miguel scene are only stored in
the cube map, and thus no information about what is behind them exists.
Instead of computing accurate refractions, a typical real-time refraction
approximation is used where the objects are considered thin and rays simply
refract only once and do a look-up in the cube map.
The G-Buffers require a reasonable amount of memory. If needed, the G-
Buffers may be rendered at a lower resolution in order to reduce memory
usage. However, a reduced G-Buffer resolution would also affect image
quality.

5 Conclusion

We have presented an approach for rendering multiple bounce reflections
and refractions in real-time using rasterization and ray tracing on modern
graphics hardware. Our technique is capable of rendering objects typically
not seen in previous real-time screen based techniques at real-time rates
of between 30 and 60 FPS for 720p images. Since the BVH can be arbi-
trarily sized, our technique is highly customizable to scene or performance
requirements.
Since our approach is highly compatible with current rendering approaches,
such as deferred rendering, we hope it will impact future applications and
enable new types of interactions and improved visibility in real-time render-
ing.

Acknowledgements

To ELLIIT and Intel Visual Computing Institute for funding. Thanks to
TurboSquid artist cjx3711 for the chess piece models.

84



5. Conclusion

Our BVH Colored

C
he
ss

Sp
on

za
Sa

n
M
ig
ue
l

Figure 4: Three test scenes rendered from left to right with our algorithm (Our),
using the BVH only (BVH), and with geometry inside the BVH colored blue and
geometry in the cube map colored red (Colored). For the colored image, only pixels
that contain reflective material that starts a ray are colored according to which area
of the scene the ray is started in. The number of triangles for each scene is Chess
2,149,944, Sponza Buddha Bunny 1,354,743 and San Miguel is 10,500,551.
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Figure 5: Rendering time breakdown of the 200 frames Sponza-Buddha-Bunny ani-
mation. Our method to the left compared to full ray tracing to the right. The scene
is rendered with a maximum of four ray recursions. The improved performance is
mostly due to the improved ray traversal in the cube map over the cost of BVH
ray tracing. For this scene the BVH has been optimized to give high image quality
and good performance. But since the size of the BVH used is chosen arbitrarily,
performance is dependent on this trade-off, and the scene.
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Figure 6: Performance comparison for the Chess scene between our method and
using a full BVH for the scene. Both methods rasterize primary visibility. Our
method always out performs full BVH ray tracing by being at least twice as fast
and up to 4 times faster.
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Figure 7: In the first row a minor stretching artifact is visible in the reflected
chess piece on the board (visible as darker pixels to the right of the chess piece).
The second row displays an artifact where an object (chess piece) is covering a
reflective object (sphere) in the cube map and thus important scene information
between the two objects is lost. Neither of the two artifacts can take place inside
the BVH and so only occur in the background where the G-buffer cube map is used
to store scene information. The magnified regions can be located by red boxes in
the Chess scene images in figure 4.
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Figure 8: In our method, refractive objects residing in the cube map cannot truly
refract incoming rays due to the lack of information behind them, and as a fallback
method a typical real-time refraction method is used, where rays simply look-up a
value in the cube map. The magnified region presented can be located as red squares
in the results image (figure 4) of San Miguel.

87



Paper III: Real-time multiply recursive reflections and
refractions using hybrid rendering

88



Bibliography

[1] Johan Andersson. Five Major Challenges in Real-Time Rendering. In
Beyond Programmable Shading course, SIGGRAPH, 2012.

[2] James F. Blinn and Martin E. Newell. Texture and reflection in com-
puter generated images. Commun. ACM, 19(10):542–547, October
1976.

[3] Epic. Epic games unreal engine.

[4] Ziyad S. Hakura and John M. Snyder. Realistic reflections and refrac-
tions on graphics hardware with hybrid rendering and layered envi-
ronment maps. In Proceedings of the 12th Eurographics Workshop on
Rendering Techniques, pages 289–300, 2001.

[5] Johannes Hirche, Alexander Ehlert, Stefan Guthe, and Michael
Doggett. Hardware accelerated per-pixel displacement mapping. In
Proceedings of Graphics Interface 2004, GI ’04, pages 153–158, 2004.

[6] Wei Hu, Yangyu Huang, Fan Zhang, Guodong Yuan, and Wei Li. Ray
tracing via GPU rasterization. The Visual Computer, 30(6-8):697–706,
2014.

[7] Tero Karras. Maximizing Parallelism in the Construction of BVHs,
Octrees, and K-d Trees. In High-Performance Graphics, pages 33–37,
2012.

[8] Martin Knecht, Christoph Traxler, Christoph Winklhofer, and Michael
Wimmer. Reflective and Refractive Objects for Mixed Reality. IEEE
Trans. Vis. Comput. Graph., 19(4):576–582, 2013.

[9] Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David
Luebke, and Dinesh Manocha. Fast BVH Construction on GPUs. Com-
puter Graphics Forum,, 28(2):375–384, 2009.

[10] Michael Mara, Morgan McGuire, and David Luebke. Lighting Deep
G-Buffers: Single-Pass, Layered Depth Images with Minimum Separa-
tion Applied to Indirect Illumination. Technical Report NVR-2013-004,
NVIDIA Corporation, December 2013.

89



Bibliography

[11] Leonard McMillan and Gary Bishop. Plenoptic modeling: an image-
based rendering system. In Proceedings of SIGGRAPH 95, Annual
Conference Series, pages 39–46, 1995.

[12] Gary McTaggart. Half-life 2 shading. In Direct3D Tutorial, GDC, 2004.

[13] Matt Pharr and Greg Humphreys. Physically Based Rendering: From
Theory to Implementation. MKP, 2nd edition, 2010.

[14] Christoph Reinbothe, Tamy Boubekeur, and Marc Alexa. Hybrid am-
bient occlusion. EUROGRAPHICS 2009 Areas Papers, 2009.

[15] Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and Jan
Kautz. The state of the art in interactive global illumination. Computer
Graphics Forum, 31(1):160–188, 2012.

[16] P. Rosen, V. Popescu, K. Hayward, and C. Wyman. Nonpinhole Ap-
proximations for Interactive Rendering. Computer Graphics and Ap-
plications, IEEE, 31(6):68 –83, nov.-dec. 2011.

[17] Takafumi Saito and Tokiichiro Takahashi. Comprehensible Render-
ing of 3-D Shapes. In Computer Graphics (Proceedings of ACM SIG-
GRAPH 90), pages 197–206, 1990.

[18] Lagarde Sébastien and Antoine Zanuttini. Local image-based lighting
with parallax-corrected cubemaps. In ACM SIGGRAPH 2012 Talks,
pages 36:1–36:1, 2012.

[19] Tiago Sousa, Nickolay Kasyan, and Nicolas Schulz. Secrets of
CryENGINE 3 graphics technology. In ACM SIGGRAPH 2011
Courses, Advances in Real-Time Rendering in 3D Graphics and
Games, 2011.

[20] Xin Sun, Kun Zhou, Eric Stollnitz, Jiaoying Shi, and Baining Guo.
Interactive Relighting of Dynamic Refractive Objects. ACM Transac-
tions on Graphics, 27(3):35:1–35:9, August 2008.

[21] László Szirmay-Kalos, Barnabás Aszódi, István Lazányi, and Mátyás
Premecz. Approximate ray-tracing on the gpu with distance impostors.
Computer Graphics Forum, 24(3), 2005.

[22] Natalya Tatarchuk. Dynamic parallax occlusion mapping with approxi-
mate soft shadows. In Proceedings of the 2006 symposium on Interactive
3D graphics and games, I3D ’06, pages 63–69, 2006.

[23] Sinje Thiedemann, Niklas Henrich, Thorsten Grosch, and Stefan
Müller. Voxel-based global illumination. In Symposium on Interac-
tive 3D Graphics and Games, I3D ’11, pages 103–110, 2011.

90



Bibliography

[24] Turner Whitted. An Improved Illumination Model for Shaded Display.
Communications of the ACM,, 23(6):343–349, 1980.

[25] Chris Wyman. An approximate image-space approach for interactive
refraction. ACM Trans. Graph., 24(3):1050–1053, July 2005.

[26] Kun Xu, Yan-Pei Cao, Li-Qian Ma, Zhao Dong, Rui Wang, and Shi-
Min Hu. A Practical Algorithm for Rendering Interreflections with All-
frequency BRDFs. ACM Transactions on Graphics, 33(1):10:1–10:16,
February 2014.

[27] Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-Time
KD-tree Construction on Graphics Hardware. ACM Transactions on
Graphics,, 27(5):126:1–126:11, 2008.

91



Bibliography

92



P
ap

er
IV

Paper IV

Bonsai: Rapid Bounding Volume Hierarchy
Generation using Mini Trees
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Tomas Akenine-Möller1,2
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Abstract

We present an algorithm, called Bonsai, for rapidly build-
ing bounding volume hierarchies for ray tracing. Our method
starts by computing midpoints of the triangle bounding boxes,
and then performs a rough hierarchical top-down split using the
midpoints, creating triangle groups with tight bounding boxes.
For each triangle group, a mini tree is built using an improved
sweep SAH method. Once all mini trees have been built, we
use them as leaves when building the top tree of the bounding
volume hierarchy. We also introduce a novel and inexpensive op-
timization technique, called mini tree pruning, that can be used
to detect and improve poorly built parts of the tree. We achieve
a little better than 100% in ray tracing performance compared
to a “ground truth” greedy top-down sweep SAH method, and
our build times are the lowest we have seen with comparable
tree quality.

Journal of Computer Graphics Techniques
Volume 4, Number 3, Pages 23-42, September 2015





1. Introduction

Figure 1: The San-Miguel scene (7,842,744 triangles) overlaid with a visualization
of its Bonsai bounding volume hierarchy (BVH). The Bonsai BVH of San-Miguel
is constructed in 478 ms using a 2.6G Hz quad core laptop CPU (Intel 4950HQ)
and rendering performance is 107% compared to the rendering performance of the
same scene using a BVH built with the sweep SAH method.

1 Introduction

In order to ray trace [27] a scene with path tracing [10], for example, a
spatial acceleration data structure [13, 19] needs to be built. The task of
this structure is to speed up the determination of what a ray intersects in a
three-dimensional scene. One of the most popular spatial acceleration data
structures is the bounding volume hierarchy (BVH). For animated scenes,
the entire BVH, or parts of it, needs to be rebuilt every frame, and therefore,
the BVH generation needs to be fast. However, it is also important that
the generated trees are of high quality so the subsequent ray tracing process
becomes as fast as possible.
Top-down, greedy sweep surface area heuristic (SAH) methods [16], simply
abbreviated sweep SAH here, are known to generate high-quality trees. We
present a highly efficient implementation of the sweep SAH method, and use
that as a building block in our new algorithm for generating BVHs. Our
algorithm is surprisingly simple, parallelizes well, and is easy to implement.
As we will show in our results, our BVHs can be built faster than binning
SAH methods [23], and our tree quality is better in that the subsequent ray
tracing is faster.
Next, we review previous work and BVH generation background. In Sec-
tion 4, we present our implementation of the sweep SAH method with some
extra optimizations, followed by our novel BVH generation algorithm. Im-
plementation details are described in Section 6 and results are presented in
Section 7. Finally, we offer some conclusions.
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2 Previous Work

An important component of light transport simulation performance is the
time it takes a ray to find the surface intersection. Tremendous gains in
ray tracing performance have been achieved through improved traversal
algorithms and improved data structures. One of the first uses of hierar-
chical storage was presented by Clark [3], who used them to improve the
determination of visible surfaces. Later Rubin and Whitted [21] developed
this idea using parallelepipeds for ray tracing. To ensure the best hierar-
chy was constructed, Goldsmith and Salmon [7] presented the surface area
heuristic (SAH), that computes the surface area for new nodes to find the
best potential split of a bounding volume. MacDonald and Booth [16] later
formalized the SAH. Walter et al. [26] used SAH to build trees using a
bottom-up, node merging approach, but this approach requires long execu-
tion times. Recently, Gu et al. [8] demonstrated a real-time, multi-threaded
CPU approximation to Walter et al.’s agglomerative clustering algorithm.
While showing impressive results, we show in our results, using their pro-
vided source code, that our top down algorithm running on a multi-threaded
CPU can build and trace scenes faster.
Aila et al. [1] extended the SAH metric by proposing additional quality met-
rics for tree construction, and hence improved ways to measure ray tracing
performance. They introduced two terms where the first term accounted for
the reality that many rays start or terminate inside the scene, whereas SAH
assumes they do not. They called the first term end-point overlap (EPO)
and it takes into account the area of the surfaces within each node. Second,
they showed how to model SIMD performance by taking into account the
number of leaf nodes intersected by a ray, using their leaf count variability
(LCV) term. LCV is computed as ray tracing is performed, which makes
it a good measure for explaining performance, but impractical for BVH
construction.
The construction of BVHs typically follows a top-down approach where a
bounding volume of the entire object is split into two child volumes. These
child volumes are recursively split, and before splitting, the SAH is used
to estimate the cost of each potential split. While this type of exhaustive
search can generate trees with very low SAH cost, it can take a very long
time, so faster methods are often used. A popular approximation is binned
SAH [23, 24], which limits the number of potential split planes to a fixed
number.
To further improve performance and utilize the parallel capacity of GPUs,
Lauterbach et al. [15] presented a technique called linear BVH (LBVH),
which constructed a BVH by first generating a Morton code for each primi-
tive, then using a parallel GPU algorithm to sort them, and then recursively
bucketing primitives based on the bits in their Morton codes. HLBVH [17]
improved this technique by using a 2-level hierarchical sort that used the
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upper bits of the Morton code to do an initial sort. Pantaleone et al. [18]
used a similar 2-level build approach in their stream-based out-of-core BVH
construction algorithm. Garanzha et al. [5] simplified the bookkeeping for
the HLBVH algorithm and used work queues and binary search. Karras [11]
improved parallel construction time of this group of algorithms by creating
node indices and keys using a binary radix tree that allowed creation of con-
nections between parent and child nodes. A related hierarchical GPU based
approach is presented by Garanzha et al. [6]. In their work, a hierarchical
grid is computed over the scene and used to construct the BVH using SAH.
Triangle splitting is an important technique to handle difficult scenes with
a wide variety of triangle sizes. Havran and Bittner [9] presented the idea
of split clipping, where the bounding box of an object is split to reduce
empty overlap between object bounding boxes and kd -tree nodes. Ernst and
Greiner [4] applied a similar concept to BVHs, by splitting triangle bounding
boxes in a preprocess, before using a typical BVH construction pass. Stich
et al. [22] and Popov et al. [20] proposed similar ideas, where primitives
are considered for splitting into both children during BVH construction,
which resulted in tighter bounding boxes on a larger range of triangles than
previous approaches.
Further performance can be achieved by optimizing existing trees. Kensler [14]
presented a method of improving a BVH by locally rearranging nodes or
using tree rotations. Bittner et al. [2] also refined existing BVHs by select-
ing expensive SAH nodes for optimization, removing them, and reinserting
their children at locations with minimal cost. Karras and Aila [12] selected
groups of nodes in treelets and performed an exhaustive search for the op-
timal treelet in parallel on GPUs.

3 Background BVH Generation

As background, we first review the surface-area heuristic (SAH) [7, 16],
which is used extensively in spatial data structure generation. The SAH cost
for a bounding volume hierarchy (BVH), with similar notation as Karras
and Aila [12], is

CI

∑
n∈I

A(n)

A(root)
+ CL

∑
n∈L

A(n)

A(root)
+ CT

∑
n∈L

A(n)

A(root)
N(n). (1)

This formula expresses the expected cost of traversing a random ray through
the BVH, such that the ray does not terminate inside the scene geometry.
The set of internal nodes is denoted by I, and L is the set of leaf nodes.
The function A computes the surface area of a node’s bounding volume
and the function N represents the number of triangles in a leaf node. The
constants CI and CL are the traversal costs of an internal node and a leaf
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node respectively, and CT is the cost for intersecting a triangle. Karras and
Aila use CI = 1.2, CL = 0, and CT = 1.
To determine the SAH cost of a node, n, we use the standard formulation,
where we again use a similar notation as Karras and Aila [12], i.e.,

C(n) =

{
CIA(n) + C(nl) + C(nr), n ∈ I,
CTA(n)N(n), n ∈ L. (2)

The left and right child nodes are denoted nl and nr, respectively. Note that
the first row is an expression of splitting n into a left and a right child, while
the second row represents the cost of making a leaf node of the triangles.

4 Our Implementation of Sweep SAH

The sweep SAH BVH algorithm was introduced by MacDonald and Booth [16],
and one often uses a top-down, greedy approach to build such trees. Sweep
SAH is commonly used as a comparison algorithm due to its high quality
trees. However, most implementations seem relatively slow. In this section,
we will adapt a partitioning trick from kd-tree building to BVHs, and then
describe a very efficient implementation.
Sweep SAH is a top-down recursive algorithm that, at each recursion, tries
to partition a set of primitives into two subsets that minimizes the surface
area heuristic. The initial set to be partitioned is all primitives in the scene,
and recursion stops when a partition cannot improve the cost of the tree.
The SAH metric is minimized by sweeping over primitives along the x, y,
and z axis. For this sweep to work, primitives need to be sorted along each
coordinate axis. Typical implementations do this by sorting the primitives
along the axis to test before each sweep. However, we have discovered that
this is unnecessary work.
In the spirit of previous work on kd-tree building [25, 29, 28], we sort all
primitives once along each coordinate axis before any recursion takes place,
and keep these three arrays sorted within each subset during recursion. This
allows us to improve performance without sacrificing tree quality, which is
in contrast to the binned SAH approach [23], where quality is often reduced.
The sweep part of the algorithm simply performs a sweep over the correctly
sorted array, so no additional sorting is required. Once the partition that
minimizes the SAH metric is found, we need to ensure that all three arrays
are correctly partitioned and sorted within the two subsets.
Without loss of generality, we assume that x is the coordinate axis that we
chose to partition the primitives along. This means that the y and z arrays
need to have the same primitives in each subset as the x array, but ordered
by the y and z axis within each subset. We do this by flagging all triangles
depending on which side of the pivot they are on along x. Then, using this
flag, a partition of the primitives in y and z is performed, while preserving
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order. Partitioning is a fast and simple operation that runs in O(n) time.
This is in contrast to any comparison-based sorting algorithm, which would
take O(n log n) time at best. Thus, the sweep recursion is improved from
running in O(n log2 n) time to instead execute in O(n log n) time.
In addition to the algorithmic improvements, we have found that many
parts of the SAH algorithm lends itself well to vectorization and threading.
Instruction-level parallelism and SIMD is exploited during SAH minimiza-
tion by sweeping over multiple triangles at the same time. In our imple-
mentation, we successfully utilize 8-wide AVX2 instructions for the sweep.
Thread-level parallelism is achieved by branching off the two subsets as new
thread tasks at each recursion. Threads are then coordinated using a work
list with task information. Since each subset can be processed indepen-
dently, little synchronization is required. Additionally, the initial sorting
along each coordinate axis can be performed using a parallel sorting algo-
rithm. We currently use a radix sorter, where each axis (x, y, z) is sorted
in a separate thread. Further details relevant to the implementation are
presented in Section 4.

5 Bonsai BVH Algorithm

The basic idea of our approach to rapidly building bounding volume hi-
erarchies (BVHs) is illustrated in Figure 2. Very briefly, the triangles are
partitioned into groups with a user-defined size, and then a mini tree is
built for each group, and finally, the mini trees can be seen as leaf nodes
in a top tree build. If a bounding box is computed for each triangle group
as part of the grouping, then the top tree and all the mini trees can be
built in parallel. To improve tree quality further, we have developed a novel
mini tree pruning algorithm (Section 5.4), which can be applied before the
top tree is built. However, the pruning algorithm is dependent on the mini
trees, and therefore, the top tree must be built after the mini trees. We
make extensive use of mini trees and pruning, and hence decided to call the
entire algorithm Bonsai.
The Bonsai algorithm is summarized by the following list of operations:

1. Compute the midpoint for each triangle.

2. Mini tree selection: split the set of midpoints hierarchically into groups
of triangles.

3. Use efficient implementation of sweep SAH (Section 4) to build a mini
tree per triangle group.

4. [optional] Mini tree pruning, i.e., find and optimize mini trees with
subtrees that cause less optimal ray tracing performance.
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top tree

bottom tree

a)

b)

c)

mini tree

Figure 2: Illustration of our BVH tree builder in two dimensions. a) In an initial
pass, groups of triangles are generated. b) For each group of triangles, an SAH-
optimized mini tree is built using the algorithm in Section 4. c) The top tree is built
using an SAH-optimized builder as well. Pruning is not shown in this illustration.

5. Top-tree construction using the mini trees as leaves.

These five steps are described in more detail in the following subsections.

5.1 Compute Midpoints

Initially we loop over all triangles, where the midpoint, i.e., the center point
of a triangle’s axis-aligned bounding box, is computed for each triangle.
Computing midpoints maps well to both thread- and instruction-level par-
allelism.

5.2 Mini Tree Selection

The purpose of the second step is to find a number of relatively small groups
of triangles, where the triangles of each group is spatially coherent.
It is common to use triangle bounding box midpoints to determine the
sorted order of triangles in the x, y, and z dimensions as well as to deter-
mine whether a triangle is to the left or to the right of a plane, but also to
determine which bin a triangle belongs to. However, in many algorithms,
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Figure 3: Our hierarchical split uses the triangle midpoints (colored circles) to
generate triangle groups using a top-down approach. In each step, the bounding
box of the triangle midpoints in the set is computed and used in the next split. We
always split along the longest axis and in the middle.

the bounding boxes of triangles enlarges the bins or left and right bounds,
and then a hierarchical top-down split follows using these boxes. We have
found that it is considerably faster to use only the triangle midpoints rather
than the minimum and maximum of the bounds of all vertices. In addition,
long sliver triangles are simply treated as points, which avoids problems
where long boxes do not become subdivided. In Figure 3, we illustrate our
hierarchical split using triangle midpoints. The bounding box of the current
set of triangle midpoints is calculated, and the set of triangle midpoints are
simply split into two subgroups using the center point of the longest axis
of the parent box. Each subgroup computes its own bounding box of the
triangle midpoints, and then the hierarchical split continues until fewer or
equal than N triangles are located in each triangle group. The threshold
N is a parameter that can be chosen for a particular platform, depend-
ing on cache sizes, etc. Again, we achieve a high computational efficiency
by exploiting thread-level parallelism at each hierarchical subdivision and
instruction-level parallelism when computing the triangle midpoint bounds.

5.3 Mini Tree Construction

In the third step of our mini tree BVH algorithm, we compute an SAH-
optimized subtree, called a mini tree, for the triangles in each group using
our implementation of sweep SAH (Section 4). In theory, any method,
such as, for example, LBVH [15], HLBVH [17, 11], and binned SAH [23],
could be used here. However, our sweep SAH implementation results in
the same tree quality as the greedy, top-down sweep SAH [16], and it is
important to generate high-quality trees for the mini trees in order to get
good overall tree quality. It is also possible to introduce triangle splitting
techniques [4, 22, 12] here, but this is out of the scope of our work, and is
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something we want to investigate in the future.
When building mini trees, we get even better hardware utilization and
thread-level parallelism compared to using our implementation of sweep
SAH (Section 4) for all triangles in the scene, since each mini tree is built
with only one thread each. In addition, situations like sorting the three in-
dex arrays for a full sweep SAH build, using only three threads are avoided.
As long as there are mini trees to build, all threads will have completely
parallel tasks to process.

5.4 Bonsai Pruning

Mini tree pruning is a novel technique that we introduce in order to recover
tree quality lost due to potentially poorly chosen mini tree triangle groups
in the selection algorithm (Section 5.2). Since the mini tree selection does
not take SAH into account, the separation of large triangles from groups of
smaller triangles will be rather arbitrary. So even though each mini tree is
SAH optimized, the initial choice of triangles for a mini tree may be quite
poor. As a result, both the top tree and the mini trees may suffer from
reduced tree quality. Although, for some scenes, such as Hairball, midpoint
split works surprisingly well as a BVH build heuristic.
Our pruning algorithm searches for mini trees that have a surface area larger
than some user defined threshold, T . For each such mini tree, a depth first
traversal searches for the first nodes that are smaller than T , and such
nodes become new mini trees that are used in the top tree construction
(Section 5.5). All nodes between the found nodes and the mini tree root
node are deleted, and the remaining nodes are added back as mini trees for
the top tree construction. This is illustrated in Figure 4. By pruning mini
trees, we will find misplaced triangles (or entire misplaced subtrees), and
just add them to the top tree index list as mini tree roots. The effect is that
difficult (large) triangles or difficult regions of a mini tree will be pushed up
in the hierarchy, and re-built with the top tree builder among equally sized
nodes. The threshold value, T , is simply a fraction of the average surface
area of all the original mini tree root boxes. We present results with T = 0.1
and T = 0.01.
The pruning algorithm relies solely on the already computed mini trees (e.g.,
it does not split triangles or build any new data structures), and all it really
does is traversing a mini tree at most once, so its addition to the overall
build time is very small for most scenes. There are exceptions to all rules,
and the Hairball is one such case. Since it is evenly tessellated and has an
even distribution of triangles, the variance of mini tree root node areas is
small, and thus Hairball build time is quite sensitive to pruning. For future
work, we plan to use a fraction of the standard deviation of the mini tree
root box areas as threshold in order to avoid this.
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Original mini tree

New mini trees

Deleted nodes

Before pruning

After pruning

Figure 4: In mini trees, whose root box has a surface area larger than a threshold,
our pruning algorithm performs a depth-first search in the mini tree to find better
nodes to use as mini tree root nodes. Nodes that have a surface area smaller than
the threshold (light blue, dark blue, and dark green) are found, and their subtrees
are selected as new mini trees. The old mini tree root node (black) and all nodes
between it and the new mini tree root nodes (light green) were parts of a tree
caused by poor mini tree selection, and can be safely deleted. The remaining nodes
(light blue, dark blue, and dark green) are used as new mini tree root nodes in the
subsequent top tree build.

It could be worth mentioning that mini tree pruning is not exclusive to the
mini tree BVH algorithm. Any already constructed BVH could potentially
benefit from pruning. As an example, pruning could start at any node with
less than a user defined number of triangles referenced by the sub tree.

5.5 Top Tree Construction

The top tree construction is similar to sweep SAH, except that now we have
a set of mini trees, each with an axis-aligned bounding box, and a fully
built subtree, and we need to build the top part of the tree based on these.
Also, while performing the sweeps, there is no need to weigh in the SAH
cost to the parent surface area as it is done in normal sweep SAH, since the
top tree nodes will always be split as far as possible. Building the top tree
can be done using any appropriate method. We use our implementation of
sweep SAH (Section 4).
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6 Implementation

We have implemented both our sweep SAH (Section 4) and Bonsai BVH
(Section 5) with as much focus as possible on both thread-level and instruction-
level parallelism.
The first consideration to achieve good parallelism is data layout. We
store our vertex data in three arrays of vertices where each vertex has
four values, [x, y, z, 0]. A triangle is composed of the i:th vertices from
the three arrays where i is the triangle index. This layout maps well to
SIMD execution when computing midpoints and triangle bounds. The mid-
points are stored in three float arrays, one for each dimension. We keep
the triangle bounding boxes in an array of eight values per bounding box,
b = [xmin, ymin, zmin, 0, xmax, ymax, zmax, 0], and all bounds are arranged
in an array as [b0, . . . ,bn−1], where n is the number of triangles in the
scene. With this layout, each triangle bounding box can be loaded into a
single 256-bit AVX2 register.
In our implementation of sweep SAH, denoted SweepSAH from now on,
each recursion in the sweep algorithm spawns a new thread task to the left
child, while the right child is constructed using the current thread. The
sweep loop from left to right operates on eight triangle indices per iteration,
that is, eight triangle bounds are loaded and accumulated to eight potential
left side bounding boxes. The left to right sweep is quite similar. One
situation when SIMD instructions are not used is the sorted order preserving
index partitioning described in Section 4. Memory reads and writes while
partitioning are simply too scattered to benefit from SIMD instructions and
the partitioning algorithm does not have good SIMD features. However,
partitioning consumes only a small part of the total running time, and so
is generally not a problem.
In Section 5.1(midpoint computation), we compute four midpoints per loop
iteration using 256-bit AVX2 registers. Even though triangle vertices are
loaded in order to compute the midpoints, using the triangle bounding
boxes, it does not pay off to save the bounding boxes to memory at this
stage of the algorithm. A serial loop operating on independent data lends
itself well to thread-level parallelism and our threading scheduler simply
assigns the available hardware threads to 1024 sized segments of the loop
range. Once a thread finishes computing its segment, it is assigned a new
segment of 1024 iterations of the loop.
The mini tree selection (Section 5.2) is designed in a recursive fashion, where
we spawn new thread tasks at each recursion. We compute the bounding
boxes around the midpoints using 8-wide AVX2 registers and the 8-wide
min and max intrinsic functions. Since we work with midpoints and not
bounding boxes, we can read 8 of them per iteration and find the min and
max of all eight midpoints using only six SIMD instructions (one min and
one max AVX2 instruction per dimension). Without 8-wide AVX2, the same
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computation would require 16 min and max operations per dimension.
Triangle bounding boxes are computed and stored during mini tree con-
struction (Section 5.3). The reason why this is not done earlier is that now
it is known which triangles belong to which mini tree and all data necessary
is gathered and computed in pre-allocated thread local memory. Operating
in thread local memory improves caching and removes false sharing between
threads. Each mini tree is built by only one thread, and so there are no
idle threads as long as there are mini trees left to construct. This is slightly
different from SweepSAH, since there is no need to spawn new thread tasks
while recursing down the tree.
It is not straightforward to map the Bonsai pruning algorithm to SIMD
instructions, since the algorithm basically just traverses the constructed
mini trees. The average surface area computation of mini tree root nodes
benefits from SIMD instructions, but is a tiny part of pruning. However,
the traversal has thread-level parallelism just as SweepSAH and mini tree
selection, and in addition, each mini tree can be pruned in parallel. The
only synchronization is when a new mini tree root is found and the new
mini tree root node bounds are written to the top tree’s bounds array.
The top tree (Section 5.5) is built in a similar manner as SweepSAH.

7 Results

All our results have been generated on a Macbook Pro laptop with Iris
Pro 5200 integrated graphics processor. More specifically, the CPU is a
4950HQ, which has eight hardware threads at 2.6 GHz. All BVH building
is done entirely on the CPU cores, while ray tracing is done using both
the CPU cores and the GPU. More precisely, BVH traversal and triangle
intersections are done using the GPU while shading computations are done
using the CPU. Note that for all our comparisons, we use a path tracer,
which means that the rays are highly incoherent after a few bounces. Our
baseline algorithm for comparison is the efficient implementation of sweep
SAH as described in Section 4. This method is denoted SweepSAH, and
note that it generates the same high-quality trees as a standard sweep-
based SAH BVH algorithm. Furthermore, we compare to binned SAH [23],
referred to as binSAH, to Bonsai (Section 5), and to two versions of Bonsai
P (Section 5.4), where Bonsai P is our algorithm with pruning. For binSAH,
we use Intel’s Embree 2.2 implementation of binned SAH BVH. However,
Embree’s fastest BVH builder is designed to build 4-wide trees, but we only
compare to 2-wide trees, since our GPU traversal is faster for these trees.
Although older versions of Embree implement binary tree builders, those
implementations were not as fast, and we found it fairest to modify the faster
4-wide builder to construct 2-wide trees. We also compare to approximate
agglomerative clustering (AAC), using the authors’ source code [8], where
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we used both the high quality (HQ) and the low quality version (LQ), where
the latter is faster, but generates lower quality trees. The provided source
code is single threaded, so to generate fair build times, giving AAC the
benefit of the doubt, we have divided the single-threaded performance by
4, since we have 4 hardware cores and because the authors claim linear
speedup with number of cores.
Our first contribution in terms of results is to show the results of our imple-
mentation of the sweep SAH algorithm (Section 4). While it is difficult to
compare against others’ implementations of the same algorithm, we simply
note that the Hairball often takes at least 15× longer to generate [12, 2]
than when using our implementation. In fairness, there are differences in
CPUs and likely also in the ambition level of optimization for sweep SAH.
Since we will release our source code, we believe that this is a small but im-
portant contribution since the community will get access to a highly efficient
implementation of sweep SAH for BVHs.
All major results are shown in Figure 5 for 14 different scenes, where Bonsai
and Bonsai with pruning (Bonsai P in the table) were generated with a
maximum mini tree size of 512 triangles and Bonsai P* with a maximum of
4096 triangles. The pruning threshold constants are 0.1 for Bonsai P and
0.01 for Bonsai P*.
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Arabic City Battlefield Bentley Conference Crown Dragon Fairy Forest
Triangles 411,563 64,256 2,346,676 331,177 4,868,924 7,349,988 174,117

Build Trace Build Trace Build Trace Build Trace Build Trace Build Trace Build Trace
SweepSAH 67.3 100% 8.9 100% 560 100% 57.8 100% 1585 100% 3074 100% 29.9 100%
binSAH 46 91% 9.5 92% 271 89% 38.7 93% 584 90% 948 89% 24.5 94%
AAC HQ 76.8 84% 13.2 75% 502 69% 60.9 91% 1033 73% 1624 67% 34.7 76%
AAC LQ 32.3 72% 6.2 69% 209 67% 23.7 87% 415 71% 632 66% 14 79%
Bonsai 19 81% 3.3 78% 117 90% 16.3 86% 251 90% 403 92% 8.8 87%
Bonsai P 20.2 96% 3.7 94% 119 94% 16.9 96% 278 96% 415 92% 9.5 96%
Bonsai P* 23.6 100% 4.3 101% 133 97% 19.7 98% 315.4 97% 463 93% 11 97%

Hairball Italian City Kalabsha Sala San Miguel Sibenik Sponza
Triangles 2,850,000 368,322 4,542,545 395,725 7,842,744 79,306 262,266

Build Trace Build Trace Build Trace Build Trace Build Trace Build Trace Build Trace
SweepSAH 590 100% 57.3 100% 1603 100% 67.9 100% 2386 100% 10.5 100% 51.4 100%
binSAH 275 81% 40.71 92% 571 96% 43.3 98% 947 94% 10.7 100% 32.3 100%
AAC HQ 625 49% 68.3 87% 954 82% 76.6 97% 1649 91% 15.9 84% 50.4 105%
AAC LQ 276 50% 29 82% 367 74% 32 93% 688 87% 6.6 84% 21.5 105%
Bonsai 119 95% 17.3 75% 267 81% 19.3 91% 409 78% 4.3 94% 12.6 90%
Bonsai P 156 100% 18.5 101% 271 102% 20 104% 424 106% 4.9 100% 13.4 105%
Bonsai P* 203 103% 21.5 108% 298 108% 23 103% 478 107% 5.8 108% 15.4 108%

Figure 5: Build times are in milliseconds and ray tracing (path tracing) performance is relative to SweepSAH. Note that the fastest
build time is marked with bold text, and so are the two fastest ray tracing performance numbers per column. The binned SAH algorithm
is from Intel’s Embree 2.2 and uses a modified version of its fast BVH4 builder to construct binary trees.
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For Bonsai, ray tracing performance ranges from 75% up to 95% compared
to SweepSAH. With Bonsai P, ray tracing performance is increased to range
between 92% to 105%, with an average of 98.5%. The most difficult scene
to build for Bonsai P and P* is Dragon, which with P* is ray traced at 93%
performance compared to SweepSAH. The other scenes are in the range 97%
to 108% for P* and the total average ray tracing performance is 101.5% to
that of SweepSAH. Depending on the scene, the increase in build time for
pruning can range from very little (Bentley) to nearly double (Hairball).
Bonsai build times vary with different mini tree sizes, and without loss of
ray tracing performance, improved build times can be made for some scenes
by selecting other mini tree sizes. However, with no a priori knowledge
regarding which scene would benefit from which mini tree size we have
found that a size of 512 is a reasonable compromise across the test scenes.
Bonsai P and P* build times are also affected by the pruning constants, and
we base our choices on empirical observations in regards of both ray tracing
performance and build times. It is actually not pruning itself that adds to
the build time, but it is the increased number of leaf nodes for the top tree,
caused by pruning, that affects build time. Simply put, more leaf nodes
result in more work for the top tree. This effect can be seen in Figure 6,
where we show the timings of each step of the Bonsai and the Bonsai P
algorithms, relative to Bonsai build times of the San Miguel scene.
We found that scenes with a uniform distribution of finely tessellated trian-
gles with roughly the same size are more sensitive to the pruning algorithm.
This is because we use a fraction of the average surface area of mini tree
root nodes as a threshold. If there is little variance among mini tree root
nodes sizes, then too many mini trees may be larger than the threshold, and
they simply get over pruned. However, if a scene has a larger variance in
triangle sizes and triangle distribution, then it is likely that just a smaller
number of all the mini trees have a surface area larger than the threshold,
and these mini trees are exactly the ones that need to be pruned.
Average build times, SAH costs, and ray tracing times for our 14 test scenes
are presented in Figure 7. Build performance for Bonsai compared to Sweep-
SAH is on average 4× faster and compared to binSAH a little more than
2× faster. Bonsai, Bonsai P and P* all have faster build times than AAC
LQ and, in addition, a significantly higher ray tracing performance. The
SweepSAH implementation is on par with the build times of AAC HQ, but
ray tracing is often much faster for SweepSAH. Note that we use a full path
tracer, with highly incoherent ray distribution after a few bounces, for all
comparisons and we measure wall clock rendering time, while Gu et al. [8]
used 16 diffuse rays and counted BVH node traversal and intersections tests
in their paper. As can be seen, our algorithm is significantly faster than
the others at building, and at the same time, it has the best ray tracing
performance.
Although it is very difficult to make comparisons to algorithms aimed at
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Figure 6: As pruning increases ray tracing performance significantly, it also has
an adverse effect on BVH build times. In the two bars, we show the time of each
step of the Bonsai and Bonsai P algorithms relative to Bonsai’s full build time.
We chose San Miguel as a representative scene. Even though pruning (red) does
not take up much more than 1% of the total build time, the top tree build time
(purple) increases from 1.5% of the total build time without pruning to 3.3% with
pruning.

completely different hardware, it might be worth noting, that on average,
in the cases where we share test scenes, our Bonsai BVH build times are
less than 1.4× the build times of the GPU BVH algorithm by Karras and
Aila [12]. Note that the latter was executed on an NVIDIA GTX Titan,
which has 10× more FLOPS than the CPU cores that we use. We have
similar behavior with Bonsai P, where the shared scenes have an average
build time less than 1.6× to that of Karras and Aila.
It is well known that SAH does not correlate perfectly to ray tracing perfor-
mance. However, it is generally assumed that better ray tracing performance
can be the result when SAH cost is lowered. Figure 7 shows the average
SAH costs for all the involved algorithms and Figure 8 shows the SAH cost
details across all scenes. Although it is not possible to deduct any clear
conclusions how SAH cost reflects ray tracing performance between differ-
ent algorithms (AAC HQ often has a lower SAH cost than SweepSAH but
most of the time also lower ray tracing performance), there seem to be a
clear intra-algorithmic correlation for both Bonsai and AAC, where reduced
SAH costs correlate well to improved ray tracing performance.
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Build Times SAH Cost RT Performance
SweepSAH 100% 100% 100.0%
binSAH 61% 106% 92.6%
AAC HQ 101% 106% 80.8%
AAC LQ 42% 108% 75.2%
Bonsai 25% 112% 85.7%
Bonsai P 27% 101% 98.5%
Bonsai P* 32% 99% 101.5%

Figure 7: Average build times, SAH costs, and ray tracing performance compared
to SweepSAH. The algorithms with the best build times and best ray tracing per-
formance are highlighted respectively.

Arabic City Battlefield Bentley Conference Crown Dragon Fairy Forest
SweepSAH 113.5 33.9 4.2 53.6 36.6 25.5 47.8
binSAH 119.0 36.4 6.1 57.5 37.5 26.3 47.6
AAC HQ 111.0 41.5 6.1 49.8 41.8 29.1 54.5
AAC LQ 124.5 41.8 6.1 50.9 41.6 28.2 53.5
Bonsai 129.1 39.4 6.0 63.9 37.5 26.0 49.9
Bonsai P 109.3 34.1 5.9 55.9 36.8 25.9 46.6
Bonsai P* 108.2 33.9 5.8 55.4 36.7 26.1 46.3

Hairball Italian City Kalabsha Sala San Miguel Sibenik Sponza
SweepSAH 620.5 90.7 10.4 53.9 95.6 74.9 121.3
binSAH 663.4 96.2 10.8 54.2 96.7 74.2 122.9
AAC HQ 767.1 86.9 8.2 52.3 88.5 80.2 109.5
AAC LQ 785.8 97.5 8.0 52.0 89.0 82.2 112.7
Bonsai 640.5 107.6 10.3 58.3 111.0 79.3 136.5
Bonsai P 610.7 86.2 10.1 51.2 92.6 71.6 114.2
Bonsai P* 595.9 85.2 8.6 51.6 93.0 71.0 113.4

Figure 8: SAH costs, calculated using Equation 3, of all scenes and across all
algorithms. Traversal cost constants used are CI = 2, CL = 0, and the triangle
intersection cost constant is CT = 1.

8 Conclusions and Future Work

Bonsai is a highly efficient and simple to implement algorithm for building
bounding volume hierarchies. When measuring ray tracing performance, our
algorithm, supplemented with the pruning optimization technique, meets or
comes close to, but in many cases surpasses, the tree quality of SweepSAH.
We have shown that Bonsai maps well to both thread-level and instruction-
level parallelism. An observation is that it may well be that CPU hardware
is a better fit to construct high quality bounding volume hierarchies than
GPU hardware. This is based on the comparisons of BVH build times
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between Bonsai (with and without pruning) on a laptop CPU and Karras
and Ailas [12] GPU BVH algorithm. The latter is executed on an NVIDIA
GTX Titan with 10 times more compute capabilities, while Bonsai with
pruning only takes 60% longer to execute on a laptop CPU.
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SAH guided spatial split partitioning for fast BVH
construction
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Abstract

We present a new SAH guided approach to subdividing tri-
angles as the scene is coarsely partitioned into smaller sets of
spatially coherent triangles. Our triangle split approach is in-
tegrated into the partitioning stage of a fast BVH construction
algorithm, but may as well be used as a stand alone pre-split
pass. Our algorithm significantly reduces the number of split
triangles compared to previous methods, while at the same time
improving ray tracing performance compared to competing fast
BVH construction techniques. We compare performance on In-
tel’s Embree ray tracer and show that BVH construction with
our splitting algorithm is always faster than Embree’s pre-split
construction algorithm. We also show that our algorithm builds
significantly improved quality trees that deliver higher ray trac-
ing performance. Our algorithm is implemented into Embree’s
open source ray tracing framework, and the source code will be
released late 2015.

To appear in Computer Graphics Forum (Proceedings of Eurographics),
Volume 35, Number 2, 2016.





1. Introduction

Figure 1: Traversal cost visualization of the Power Plant model (12,759,246 tri-
angles). The binned SAH builder is represented by the left half of the figure and
our splitting approach together with the Bonsai BVH algorithm is represented by
the right half. A brighter color means a higher traversal cost. The binned BVH
is built in 1311ms and the Bonsai BVH using our triangle split approach is built
in 1881ms. However, traversal cost is significantly reduced and rendering perfor-
mance is improved by 60% when using our triangle split BVH.

1 Introduction

For ray tracing techniques [20], such as path tracing [10], to be a feasible
choice of rendering it is necessary to accelerate triangle intersection compu-
tations with an underlying accelerating spatial data structure [12, 15]. This
data structure, often arranged as a binary tree, is used to speed up traversal
of a three-dimensional scene to determine which triangle a ray intersects.
Common types of data structures for ray tracing are kd-trees, grids, and
the Bounding Volume Hierarchy (BVH), where the latter has gained a lot
of popularity in recent years.
It is also important that the data structure is of high quality, in the sense
that a higher quality data structure results in better ray tracing perfor-
mance. A commonly used algorithm to construct high quality BVHs is a
greedy top-down approach called sweep SAH, that uses the Surface Area
Heuristic (SAH) [14]. Another crucial aspect of BVH construction, espe-
cially for animated scenes and real-time ray tracing, is that the data struc-
ture must be constructed quickly, since it may need to be rebuilt or updated
every frame.
An often overlooked, but still important aspect for high quality tree con-
struction is triangle splitting. Triangle splitting creates multiple references
to a single triangle enabling the axis aligned nodes in a BVH to have a
tighter fit, resulting in improved ray traversal times.
Analyzing the results in Section 5 reveals some disadvantages of current
triangle splitting approaches which may be either a lack of robustness or
significantly increased BVH construction times and memory usage.
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We propose a new fast top-down triangle splitting algorithm that produces
BVHs with a quality similar to those of Split BVH (SBVH) [17] but with
build times close to those of the fast binned [18] BVH construction approach.
Our algorithm may be used as a preprocess to construction, or in conjunc-
tion with other top-down BVH approaches. By pairing our method with
top-down construction algorithms, our splitting approach can take advan-
tage of the partitioning stage already present in the algorithm. We evaluate
our new algorithm by implementing it into the industry grade Embree [19]
ray tracing system. We use our method both with sweep SAH as a pre-split
pass and integrated with the Bonsai BVH construction algorithm [7] and
compare our results with some of the high performing and high quality BVH
builders available in Embree.
Our main contribution is the fastest CPU based triangle split BVH builder
to achieve ray tracing performance comparable to SBVH. Furthermore, our
triangle split approach can be used as a preprocess to any BVH builder,
and thus improve ray tracing quality by simply adding a pre-split module
to existing frameworks. To attain our results we have developed a new
simple but effective recursive triangle split approach and paired it with a
novel in-place parallel partitioning scheme for recursively growing data.

2 Previous Work and Background

Havran and Bittner [9] presented the idea of split clipping, where the bound-
ing box of an object is split to reduce empty overlap between object bound-
ing boxes and kd -tree nodes. Rather than actually splitting triangles and
storing the resulting polygons, or tessellating the polygons into several trian-
gles, only the bounding boxes of triangles are actually split and re-computed,
to create tighter axis-aligned bounds around the triangles. By performing
split clipping rather than actual triangle splitting both computational com-
plexity and the memory footprint are reduced.
Ernst and Greiner [5] applied a similar concept to BVHs by splitting triangle
bounding boxes in a preprocess, called Early Split Clipping (ESC), before
using a typical BVH construction pass.
Dammertz and Keller [3] suggested splitting triangles based on the tightness
of the bounding boxes on each triangle edge and introduced a heuristic based
on the volumes of the triangles’ bounding boxes, the Edge Volume Heuristic
(EVH).
Karras and Aila [11] introduced a new heuristic to the pre-splitting approach
and the concept of a split budget. Their heuristic significantly improves split
candidate selection and consequently improves the BVH quality compared
to earlier methods. By using a split budget they also reduce the risk of
producing too many triangle splits.
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Although computing triangle splits prior to BVH construction is a tempting
approach, it also comes with certain impediments. As noted by Karras and
Aila [11], both ESC [5] and the EVH [2] fail in robustness. With the lack of
knowledge of which triangle is valuable to split, some triangles may be split
when they shouldn’t, and some that should may not be split enough, or
not split with the right split plane; sometimes resulting in worse ray tracing
performance than a BVH without triangle splitting. Another shortcoming
shared by the earlier pre-split approaches is that an a priori choice has
to be made. Since ESC only relies on a predefined constant, it has to be
hand tuned for every scene. The heuristic of EVH tries to mitigate the
hand-tuning issue, however, it still has a constant that needs to be chosen.
Although the pre-splitting heuristic by Karras and Aila [11] produces very
good BVHs and is robust across a wide range of scenes, there is still the
choice of split budget size. Sometimes a split budget of 10% of the triangles
is enough, however, in other scenes a split budget of 50% is necessary to
reach the potential increase in ray tracing performance. Thus the risk of
performing too many splits is still inherent, since the BVH of some scenes
cannot be improved by triangle splitting.
Stich et al. [17] and Popov et al. [16] proposed similar ideas, where primitives
are considered for splitting into both children during BVH construction,
which resulted in tighter bounding boxes on a larger range of triangles than
previous approaches. The top-down approaches by Stich et al. [17] and
Popov et al. [16] have the potential of producing superior BVHs. However,
at the mercy of long build times. At each level of recursion, SBVH by Stich
et al. [17] picks the better of either using the best object split computed
by sweep SAH, or the best spatial split among 256 equidistant split planes.
To reduce the risk of performing too many triangle splits, and potentially
running out of memory, SBVH incorporates a bias so that it may choose
sweep SAH object split, even though spatial splits in fact could reduce SAH
costs further. As of yet, the SBVH algorithm by Stich et al. [17] produces
the highest quality BVHs.
Since we make extensive use of Bonsai, a fast CPU based BVH construc-
tion algorithm presented by Ganestam et al. [7], it is worth mentioning a
few details about the algorithm. Initially, Bonsai employs a fast approxi-
mate partitioning routine, using triangle mid-points only, to divide the scene
into smaller spatially coherent groups of triangles. The triangle groups are
passed to a BVH builder, in Bonsai a fast sweep SAH routine is used, and
in parallel constructed into mini-trees. Prior to the last stage where the
mini-trees are considered as leaf nodes in a sweep SAH pass, a pruning al-
gorithm is applied to each mini-tree. Thus tightening the bounds of each
mini-tree and correcting potential flaws to the full BVH caused by the initial
partitioning stage.
Domingues and Pedrini [4] improve upon the performance of GPU based
BVH construction by using an agglomerative process that merges nodes in
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treelets based on selecting the minimum surface area of the bounding boxes.
They build on previous treelet reordering work that searched exhaustively
for the best treelet [11]. Their techniques is based on an initial tree being
built using the LBVH technique [13]. Domingues and Pedrini don’t present
any results with triangle splitting. However, their BVH builder may as well
be combined with the pre-splitting approach by Karras et al. [11], or for
that matter, our approach as a preprocess.
Previous triangle splitting algorithms, although producing high quality BVHs,
are either slow in construction [17, 16], or in need of hand tuning or manual
decisions prior to construction [5, 2, 11]. Motivated by the little, or none, a
priori knowledge needed for BVH construction and the prospect of produc-
ing superb trees, we continue in the fashion of the recursive triangle split
approaches. However, to reduce build times, we pair our splitting method
with the Bonsai BVH algorithm.

3 Algorithm

Our SAH guided mid-point split partitioning can be either integrated with
the Bonsai BVH construction algorithm or work as a stand alone triangle
pre-split method for any other BVH algorithm. Both with Bonsai and
as a sweep SAH pre-split pass, our split partitioning approach results in
improved ray tracing performance and when paired with Bonsai, ray tracing
performance is similar to that of Embree’s SBVH based spatial split builder.

3.1 The Surface Area Heuristic

Although the Surface Area Heuristic [8, 14] for BVH construction in recent
years has been found not to correlate perfectly with improved ray tracing
performance [6, 1, 7], it is still an advantageous approach in the construction
of high quality BVHs. With this in mind we will briefly explain the SAH cost
equations and how the SAH cost is evaluated and minimized in a top-down
BVH construction algorithm.
The total SAH cost of a BVH can be computed as

Ci

∑
n∈I

A(n)

A(root)
+ Cl

∑
n∈L

A(n)

A(root)
+ Ct

∑
n∈L

A(n)

A(root)
N(n), (1)

where the equation expresses the expected cost of a random ray traversing
the BVH, however in such a way, that it does not terminate within the
scene geometry. Internal nodes are in the set I and the set L represents leaf
nodes. The operator A represents the surface area of a node’s bounding box
and N represents the number of triangles in a node. The constants Ci, Cl,
and Ct represent the costs of traversing an internal node, a leaf node, and
intersecting a triangle, respectively.
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Using SAH to optimize a top-down BVH builder is done by at each level of
recursion evaluating and minimizing the equation

Er = CiA(n) + Cl(A(nl)N(nl)) +A(nr)N(nr)), (2)

which represents the cost of proceeding with the recursion, where nl and nr
are the potential left and right child nodes. The result is compared to

Et = CtA(n)N(n), (3)

which represents the cost of terminating the recursion and using the current
node n as a leaf node in the BVH. If Et < Er an SAH optimal leaf node is
found and the recursion terminates. Otherwise the recursion continues with
nl and nr as child nodes. In our triangle split algorithm we use Equation 2
in a similar way to how it is used in recursive BVH construction.

3.2 SAH guided mid-point split partitioning

In addition to computing the mid-point bounds used to find the split plane
while partitioning, to know whether triangles should be subdivided or not,
we need to compute the complete left and right bounding boxes. While
partitioning, we accumulate six sets of different triangle categories. We
create two completely disjoint sets of left and and right triangles, in relation
to the mid-point split plane, where the two sets are denoted as DL and DR

and DL ∩ DR = ∅. We also store two overlap sets, OL and OR, of those
triangles that have their mid-points to the left or right side of the split
plane but with bounding boxes overlapping the split plane. The last two
sets, the split sets, contain the left and right halves of subdivided triangles
respectively, and are denoted as SL and SR. The triangles in each of the split
sets are exactly the same as the triangles in the overlap sets, i.e. OL∪OR =
SL = SR. However, due to split clipping [9], the left and right subdivided
triangles have different bounding boxes. This also implies that the split sets
contain twice as many triangles as the overlap sets.
Figure 2 shows the bounding boxes and their associated groups of triangle
indices created around the split plane. As in the Bonsai algorithm [7], to
avoid empty partitions, we use the mid-point bounds rather than full bounds
when choosing the split plane. As a consequence of this, the split plane used
to subdivide triangles isn’t the spatial median of the complete bounding box
of a partition, but instead chosen as the spatial median of the mid-point
bounds. We choose the largest axis for partitioning.
Once the bounds of the six sets are computed we evaluate the benefit of
splitting triangles by computing the SAH cost when using the overlap sets

CO = A(DL ∪OL)|DL ∪OL|+A(DR ∪OR)|DR ∪OR|
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Figure 2: The bounding boxes of the different sets of triangles used by our triangle
split method. The brown box represents the mid-point bounds of all triangles and
its spatial median is used to create the split plane. The blue bounds represent the
overlap sets, the red bounds represent the split sets, and the green bounds represent
the left and right disjoint sets.

and comparing the result to the SAH cost when using the split sets, evalu-
ated as

CS = A(DL ∪ SL)|DL ∪ SL|+A(DR ∪ SR)|DR ∪ SR|,

where A is the surface area of a set, CO is the SAH cost of keeping the
original triangles, and CS is the SAH cost of using the split triangles. Split
partitioning is continued by choosing whichever set has the lowest SAH cost.
Our split partitioning algorithm continues the recursion until a threshold
of triangle count has been reached. The threshold is based on the Bonsai
algorithm’s mini-tree size and can be set arbitrarily. However, we have
found that for smaller scenes (< 100, 000 primitives) a smaller threshold of
512 is necessary to perform enough triangle splitting, and for larger scenes
(> 4, 000, 000 primitives), a value of 8192 as a threshold is enough to achieve
a high quality BVH. We linearly interpolate the threshold value between its
minimum and maximum values. Other than the mini-tree size threshold,
our method does not require any other bias or tuning variables to guarantee
enough splitting or to avoid over-splitting.

4 Implementation

Since we have implemented our splitting algorithm in Embree, we also make
use of some of their design choices. The type primitive reference, denoted
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First Last Last free space

Initial triangle array

After partitioning

After splitting and
memory reordering

Left first

Left last
free space

Left last
Right first

Right last

Right last
free space

Pivot

Figure 3: Triangle array memory management in each recursion. The initial array
contains disjoint left and right triangles (blue and red) and overlap triangles (green
and orange). After in-place partitioning, the left side of the split plane contains
DL∪OL and the right side its counterparts. Two separate arrays of temporary left
and right split triangles contain their respective parts of split triangles. An indexed
triangle, one that can be inserted where an overlap triangle currently resides, in
the left split set SL is colored blue and green and marked with IL. An indexed
triangle in the right set SR is colored red and orange and marked with IR. If the
SAH metric finds the split sets favorable, indexed triangles are inserted where the
overlap triangles are and a small segment of the right partition is moved as the
last part of the diagram illustrates. Note that this is an extreme case were almost
50% of the triangles are split, and it is merely for illustrative purposes.

primref, is a structure of six floats representing a triangles bounding box
and two integers used as references to the original mesh and triangle. Since
the size of a primref is (6 + 2) · 32 bits, it fits into a 256-bit AVX register,
which is useful for fast bounding box computations. As an initial pass, all
algorithms we present create an array of primrefs containing the original
bounding boxes and indices of each triangle. It is the primref array that is
used in BVH construction and triangle splitting. A split triangle is simply
two primrefs referencing the same original triangle, but having different
bounding boxes. To avoid confusion, in the following section we simply talk
about triangles, although all operations are actually done on primrefs.

4.1 Triangle Splitting and Recursively Growing Mem-
ory

One of the most difficult tasks with a recursive algorithm that needs to
expand memory wise, is efficient memory management. In practice, keeping
the different sets (split, overlap, and disjoint) in separate arrays and then
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merging them when a decision whether to split or not is taken, although
much easier to implement, is inefficient memory wise.
We perform a quick-sort style in-place partitioning with the split plane as
the pivot. To minimize memory traffic, we track the index of any triangle
that belongs to one of the overlap sets instead of making an actual copy of
the triangle. When partitioning discovers an overlap triangle, it places that
triangle to the left or right of the split plane depending on its bounding box
midpoint, as is done with a non-split partitioning. Thus there is no need for
any auxiliary storage of the overlap sets as it is with the split sets. Since we
store the index of the overlap triangles, it is possible to later substitute an
overlap triangle for a split triangle, if the SAH-cost calculation determines
that it is more beneficial to keep the split sets of triangles than the overlap
sets. The partitioning performed at each recursion is illustrated in Figure 3.
A memory problem arises when it is decided that the split sets should be
used. Since there are twice as many triangles in the split sets as there are in
the overlap sets, and only half of the split triangles are indexed and can be
inserted into the original triangle array. In the first level of split partitioning,
before any recursive calls have been made, it is possible to simply append
the non-indexed triangles of the right split set SR to the end of the original
partition. However, it doesn’t solve the problem with the non-indexed left
split triangles. There is no space to place them in-between the pivot and
the triangles that belong to the right of the split plane. Thus, as many right
triangles as there are non-indexed left split triangles have to be moved to
the end of the original partition as well. Then there would be enough space
for both the left and right split sets.
Due to the recursive fashion of our algorithm, it becomes more problematic
with the succeeding recursions. In most cases, there won’t be any empty
space available at the end of the partition, and all triangles of one of the
halves would have had to been moved to new memory every time the split
sets are better than the overlap sets. This memory overhead can be solved
by always rebalancing the available empty space relative to the partition
sizes and making sure that enough empty space is created in each partition
as the algorithm recurses.
Whether the split sets produce a lower SAH cost than the overlap sets or
not, we always perform a rebalancing of empty space. In each recursion of
the left and right partitions, they are rearranged to supply each side with a
fraction of the available empty space in proportion to the current size of the
partitions. As an example, after splitting and partitioning, if there is space
for 15 additional triangles at the end of the right partition but no space
between the left and the right partitions, and the left partition is twice as
large as the right partition, then after rebalancing there would be space for
10 additional triangles at the end of the left partition and 5 at the end of
the right partition.
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If there isn’t enough space for both SL and SR after split partitioning, then
the whole right set DR∪SR has to be moved to a new memory region, with
an additional 20% extra padding space as well. The left side gets all the
memory left behind by the right side.
We empirically found that the 20% additional space for the partitions works
in a robust way for all of our scenes. It is rare that a partition grows with
more than a few percent of its size.
In a pathological worst case scenario where all triangles in a scene need to
be split, the size of the temporary split set arrays SL and SR would need to
be as large as the entire scene, but such a scene would cause trouble to any
split builder. We found that the actual worst case space needed for the split
set arrays across all our scenes is 1% of the triangle count in size. Often
they are much smaller than that. For San Miguel the largest temporary
split set array is only 0.05% in size relative to the number of triangles of
the scene.
Bonsai [7] permits gaps between each final partition and some unused space
at the end of the partitions will not affect other stages of the builder. How-
ever, when using our splitting algorithm as a pre-split pass, a compaction
of the triangle array prior to BVH construction is necessary.
Task parallelism is implemented by recursively spawning new tasks as more
partitions are created. We utilize data parallelism when swapping positions
of triangles and when computing new bounding boxes.
The total memory allocations needed for our split partitioning algorithm
additional to the initial triangle array are a dynamically growing SL and
SR pair per thread and the dynamically growing memory of the triangle
array. Our in-place growing memory partitioning scheme allocates at worst
about twice as much additional memory than needed. As an example, the
Power Plant scene is built with 19% additional split triangles but allocated
space is increased by 39%.

4.2 Bonsai and 8-wide Trees

To maximize ray tracing performance on modern CPUs Embree utilizes 8-
wide SIMD instructions (AVX) when ray tracing. However, to efficiently
gain data level parallelism while traversing a BVH, Embree builds 4-wide
or 8-wide trees for SSE or AVX hardware. We had to modify the Bonsai
algorithm to also build 8-wide trees. The initial partitioning of Bonsai
doesn’t store any BVH node information and is not affected by the fact that
the BVH nodes will have eight children. However, mini-tree construction
and top tree construction must be adapted to build 8-wide trees. Since
both the top tree and the mini-trees use the sweep SAH algorithm, they
are modified in the same way. Just like in Embree’s binned SAH builder,
instead of creating a node once an SAH optimal pivot has been found, the
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two halves are placed in a priority queue. While the queue is smaller than
the maximum number of children of a node, the element with the largest
SAH cost in the queue is chosen for further partitioning. Once the queue
has reached the maximum branching size, a BVH node is created and the
children are further partitioned recursively.
One issue with the top tree in 8-wide BVH construction that doesn’t exist
for binary trees, is that it isn’t guaranteed that the top tree gets precisely
the maximum number of children (which are mini-trees) in its leaf nodes,
causing partially filled nodes in the middle of the tree. Initially we thought
it would be better to move the gaps to the leaves of the BVH and when a
partially filled node was created, the empty space was propagated down the
tree. However, we didn’t see any tree quality improvement by moving the
empty nodes from the middle of the tree to the leaf nodes. It was simply
wasted CPU cycles, thus we decided to leave the partially filled nodes as
they were.
Triangle splitting is integrated into Bonsai simply by exchanging the mini-
tree partitioning with our split partitioning.

5 Results

Our main results have been generated using an Apple Macbook Pro laptop
with a quad core Intel 4850HQ CPU. Our primary results are produced by
running our triangle split implementations in the Embree ray tracing frame-
work and using the path tracer available in Embree, in benchmark mode,
for tree quality measurements. We compare several different construction
algorithms with and without splitting and the results are shown in Table 1.
For non-split algorithms we include a standard sweep SAH, SweepSAH,
the original non-split version of Bonsai (Bonsai), and the binned SAH al-
gorithm included in Embree, BinnedSAH. Our new splitting algorithm is
integrated into the Bonsai construction algorithm and denoted BonsaiS. To
demonstrate the ability to use our splitting algorithm with other construc-
tion techniques, we apply it as a pre-split pass to sweep SAH, SweepPre.
We also compare to the two splitting algorithms available in the Embree.
The first is a pre-split builder BinnedPre, and the second is a spatial split
algorithm BinnedS, based on SBVH [17].
BVH performance comparisons are done using Embree version 2.7.1. It
is worth noting that our implementation of SweepSAH is not optimized
for build time, although, Ganestam et al. [7] showed that SweepSAH can
achieve competitive build performance.
In Table 1 build times are presented in milliseconds and rendering perfor-
mance is the average time in milliseconds of 10 frames rendered using the
path tracer supplied by Embree. A frame is simply a rendering pass with
one sample per pixel and many frames need to be accumulated for a final
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Figure 4: Multicore performance scaling of the Power Plant scene. Although Bon-
saiS is close, BinnedSAH presents slightly better multicore scaling. Scaling mea-
surements were conducted on a dual socket 12 core CPU. Note the logarithmic
x-axis scale.

image to converge. The more samples and longer time an image need to
converge the more beneficial it is with a high quality BVH.
We have marked the two algorithms resulting in the best rendering perfor-
mance in bold. If more than two algorithms share the best performance
percentage, they are all marked. Among the algorithms with the best ren-
dering performance we also marked the one with the fastest build time.
Across our twelve test scenes, BonsaiS is always the fastest triangle split
algorithm. Additionally, BonsaiS is among the two best performing al-
gorithms 10 out of 12 times and in four occasions, Bonsai with integrated
triangle splitting even out performs BinnedS. SweepPre is among the top
performing algorithms in two occurrences, and tends to have a ray tracing
performance in between BinnedS and BinnedPre on scenes where trian-
gle splitting is beneficial. BinnedS improves rendering performance on all
scenes but one compared to SweepSAH. However, on scenes that don’t
benefit much from splitting, the performance gain is small, and at the cost
of significantly longer build times.
An example of a scene where triangle splitting does not improve rendering
performance is Dragon. The reason is that Dragon only contains finely tes-
sellated and evenly distributed triangles, and non-split builders like Binned-
SAH can easily minimize the SAH cost.
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Figure 4 illustrates multicore performance scaling of the Power Plant scene
with BonsaS and BinnedSAH. Scaling measurements were performed on
an Intel E5-2643V3 dual socket 12 core CPU. Although BinnedSAH scales
slightly better with an increasing number of CPU cores than BonsaiS, it is
worth noting that BonsaiS build times are close to BinnedSAH build times
and ray tracing performance on the 12 core CPU using BonsaiS is 105ms
per frame and with BinnedSAH 162ms per frame. Since BinnedSAH and
BonsaiS present significantly better build performance than BinnedS we
omit BinnedS in the multicore scaling comparisons.
Although it is easy to measure memory performance of BonsaiS it is diffi-
cult to make thorough comparisons in regards of build time memory usage to
the BinnedS algorithm. The source code of BinnedS presents many small
memory allocations and memory free instructions. We added a counter
to see whether the actual number of allocations were significant or not and
found that a large number of allocations were made. However we didn’t have
the means to measure the maximum memory allocated at any time. To fur-
ther investigate memory usage we executed both BonsaiS and BinnedS
through the well known memory analysis tool Valgrind. Valgrind couldn’t
tell us what the largest amount of memory allocated at any time was either,
but it could inform us about the total number of allocations made by both
algorithms. In the tests we made, BinnedS allocated 34× more memory in
total compared to BonsaiS and for Arabic City BonsaiS allocated 735MB
of memory and BinnedS allocated 25GB of memory, not counting any free
instructions.

5.1 Binary Trees

Since Embree only implements 4-wide and 8-wide BVHs we also present
results on a subset of our scenes using a standard binary BVH. In this
comparison we also use SweepSAH as a baseline but present only one ad-
ditional algorithm, BonsaiS. The ray tracer used in the second comparison
performs ray traversal on the GPU but computes shading on the CPU. The
GPU calculations are done on an Intel Iris Pro 5200 integrated graphics
processor.
In our Embree implementation, we noticed that the improved rendering
times using triangle splitting didn’t always match the expected rendering
improvement we had seen prior to integrating our methods to Embree. One
observation that partially explains the gap in rendering performance be-
tween the 8-wide Embree implementation and the 2-wide GPU implemen-
tation is that it may be less advantageous for wider trees to perform triangle
splitting. We found that if we forced Embree to actually build binary BVHs,
although the ray tracer would still use its 8-wide AVX implementation, on
some scenes, the reduced rendering time benefit from triangle splitting com-
pared to no splitting would differ with about 5% compared to the splitting

130



5. Results

benefit with 8-wide trees. This doesn’t fully account for the discrepancy,
where as an example Arabic City, in Table 1 using 8-wide trees BonsaiS
performs at 84% of SweepSAH, but in Table 2 using 2-wide trees, the ren-
dering time is reduced to 65% of SweepSAH. The rest of the discrepancy
can then only be explained by using different hardware or a different ray
tracer, or more likely, a combination of the two.
Due to this discrepancy we also present results of a sub set of our test
scenes by ray tracing standard binary BVHs. We do this with our own
GPU based ray tracer, with shading computations done on the CPU. The
improved rendering times in Table 2 can also be put in relation to the
rendering speed improvements reported by Karras et al. [11]. For Arabic
City their SBVH implementation reduces rendering times to 62% compared
to SweepSAH. The same comparison results in 71% for Sponza and 73%
for San Miguel. The rendering times of the same three scenes of the fast
triangle split builder by Karras et al.[11] are reduced by 74%, 73% and
77% respectively compared to SweepSAH. For Arabic City and Sponza
the triangle counts are increased by 50% and for San Miguel the count is
increased by 30%. On the same scenes, BonsaiS reduces rendering times
to 65% for Arabic City, 75% for San Miguel, and 60% for Sponza, compared
to SweepSAH, while having an adaptive split count that is increased by
34% for Arabic City, 6% for San Miguel, and 23% for Sponza. Since the
algorithms are designed for and executed on different hardware it is difficult
make direct build time comparisons. However, BonsaiS and the triangle
split builder by Karras et al. [11] exhibit similar performance improvements,
but BonsaiS results in a significantly smaller increase of triangles.

5.2 Triangle counts

Table 3 presents the increase in triangle counts due to splitting triangles.
Our splitting algorithm and the binned spatial split builder BinnedS both
split triangles adaptively and thus find triangle splits that greedily mini-
mize the SAH costs. The pre-split approach used in Embree depends on
a pre-defined splitting budget and thus may split too much or too little in
some scenes. Generally, BonsaiS creates fewer additional triangles than
the two triangle split methods available in Embree. The pre-split approach
in Embree tends to increase the original triangle count by close to 50%.
This is because of the split budget that allows a maximum increase of 50%.
The algorithm will continue to split large triangles until it is close to its
split budget, even though it may not always further improve rendering per-
formance. For the Power Plant model, BinnedS creates more than twice
the number of additional triangles than BonsaiS, even so, rendering per-
formance is identical. For San Miguel, the difference in triangle splits is
even greater, where BonsaiS only adds 6% additional triangles compared
to 45% with BinnedS but BonsaiS results in slightly better rendering per-
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formance. Again, we see how dragon isn’t affected much by splitting and
most of its split computations are discarded.

5.3 Splitting performance

In Table 4 we present the actual time our splitting algorithm takes as a stand
alone pre-split approach and the percentage of the BonsaiS build time
that is spent on split partitioning. When our method is used with Bonsai
the splitting time is merged with the initial mini-tree partitioning. As an
example, when using our triangle splitter as a pre-split on San Miguel, the
extra build time added is 248ms. Since the splitting algorithm is integrated
into Bonsai, and the original partitioning pass of Bonsai takes 133ms for
San Miguel, the added build time for BonsaiS in relation to Bonsai is
248 − 133 = 155ms. Any other extra build time added for BonsaiS and
other algorithms using our split method would be from the fact that there
are more triangles to process while building the BVH.

5.4 SAH cost

Table 5 shows the SAH cost of the competing algorithms. BonsaiS consis-
tently produces low SAH costs, not always the lowest, but close. Table 5
also demonstrates that SAH cost doesn’t necessarily correlate with render-
ing performance [6, 1, 7]. This is clearly seen on Fairy Forest and San
Miguel, where BinnedPre greatly increases the SAH cost without signifi-
cantly reducing ray tracing performance compared to BinnedSAH.

6 Conclusion

We have presented a new triangle split algorithm for fast BVH construction
on multicore CPUs using the latest SIMD extensions. Our triangle split ap-
proach paired with Bonsai is always the fastest triangle split builder among
the presented algorithms and achieves a rendering performance similar to,
and some times better than, the SBVH based spatial split builder available
in Embree. We achieve fast build times by utilizing a parallel in-place parti-
tioning scheme for recursively growing data, and improved BVH quality by
employing an SAH guided triangle split technique while partitioning. Our
algorithm reaches its full potential in regards of both build times and ren-
dering performance when paired with Bonsai. We have also showed that our
method works well as a pre-split pass prior to BVH construction, and can
easily be added to existing BVH builders without any invasive procedures.
We consider our contributions as continued work towards a high quality
real-time BVH construction.
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As future improvement, our algorithm could benefit from a more sophis-
ticated parallel approach in the early stages of partitioning. Rather than
using only one thread in the first level of recursion, all available threads
could work on the same partition until the number of partitions equals the
number of hardware threads available.
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Arabic City Crown Dragon Fairy Forest
Triangles 416,236 4,868,924 7,349,978 174,117

Build Trace Build Trace Build Trace Build Trace
SweepSAH 254 295 [100%] 4680 325 [100%] 7595 129 [100%] 117 299 [100%]
Bonsai 34 291 [99%] 469 331 [102%] 664 131 [102%] 16 299 [100%]
BinnedSAH 33 302 [102%] 447 322 [99%] 674 126 [98%] 14 296 [99%]
SweepPre 374 243 [82%] 5414 322 [99%] 8087 134 [104%] 147 301 [100%]
BonsaiS 53 247 [84%] 535 316 [97%] 827 132 [102%] 24 297 [99%]
BinnedPre 91 267 [91%] 980 317 [98%] 1577 134 [104%] 40 305 [102%]
BinnedS 404 237 [80%] 4130 304 [94%] 2205 124 [96%] 129 289 [97%]

Italian City Kalabsha Mini Power Plant
Triangles 382,029 4,542,705 912,411 12,759,246

Build Trace Build Trace Build Trace Build Trace
SweepSAH 240 300 [100%] 4910 551 [100%] 719 593 [100%] 14347 617 [100%]
Bonsai 31 292 [97%] 451 554 [101%] 74 581 [98%] 1261 606 [98%]
BinnedSAH 31 297 [99%] 459 555 [101%] 83 592 [100%] 1311 700 [113%]
SweepPre 322 239 [80%] 6098 550 [100%] 952 548 [92%] 17603 469 [76%]
BonsaiS 47 231 [77%] 765 513 [93%] 106 538 [91%] 1881 437 [71%]
BinnedPre 77 254 [85%] 811 572 [104%] 166 617 [104%] 3625 606 [98%]
BinnedS 316 229 [76%] 4646 505 [92%] 739 572 [96%] 13835 441 [71%]

Sala San Miguel Sibenik Sponza
Triangles 400,637 7,880,512 79,380 262,267

Build Trace Build Trace Build Trace Build Trace
SweepSAH 283 298 [100%] 8208 394 [100%] 49 222 [100%] 178 1210 [100%]
Bonsai 34 298 [100%] 711 363 [92%] 9 225 [101%] 22 1137 [94%]
BinnedSAH 35 332 [111%] 798 386 [98%] 7 222 [100%] 22 1393 [115%]
SweepPre 359 296 [100%] 9301 359 [91%] 53 222 [100%] 213 1224 [101%]
BonsaiS 47 286 [96%] 835 339 [86%] 11 218 [98%] 29 1057 [87%]
BinnedPre 90 339 [114%] 2168 388 [98%] 14 229 [103%] 56 1244 [103%]
BinnedS 342 292 [98%] 7118 341 [87%] 53 213 [96%] 168 1113 [92%]

Table 1: BVH build time and rendering performance measurements across all
scenes and algorithms. Build times are reported in milliseconds and ray tracing
performance in milliseconds per frame. The reported frame time is the average
of ten frames rendered with the path tracer available in Embree, set to benchmark
mode. The reported build times are generated by taking the minimum build time
when running each builder 20 times. In regards of both build times and rendering
performance, lower is better. The two algorithms that result in the highest ray
tracing performance are marked, and so is the fastest build time among those with
the best rendering performance.
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Arabic City Crown Italian City Kalabsha San Miguel Sponza
SweepSAH 240 [100%] 191 [100%] 129 [100%] 455 [100%] 667 [100%] 630 [100%]
BonsaiS 155 [65%] 183 [96%] 86 [67%] 330 [73%] 499 [75%] 380 [60%]

Table 2: Rendering performance comparison of SweepSAH and BonsaiS using
binary BVHs and on a GPU based ray tracer. Measurements are reported in
milliseconds per frame.

BonsaiS BinnedPre BinnedS
Arabic City 34% 47% 61%
Crown 9% 46% 34%
Dragon 2% 46% 1%
Fairy Forest 19% 46% 24%
Italian City 27% 48% 59%
Kalabsha 11% 22% 46%
Mini 24% 46% 42%
Power Plant 19% 47% 50%
Sala 19% 45% 44%
San Miguel 6% 50% 45%
Sibenik 19% 46% 29%
Sponza 23% 45% 25%

Table 3: The triangle count increase due to splitting. BonsaiS represents the
counts for SweepPre as well, since they use the same splitting algorithm.
BinnedSAH with pre-split always stays close to a 50% increase, since this is
the allowed splitting budget. Our method and BinnedS are both adaptive split
techniques, and reduce the probability of keeping unnecessary splits.
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Split time (ms)
Arabic City 13 [25%]
Crown 151 [28%]
Dragon 294 [36%]
Fairy Forest 11 [46%]
Italian City 11 [23%]
Kalabsha 394 [52%]
Mini 30 [28%]
Power Plant 844 [45%]
Sala 17 [36%]
San Miguel 248 [30%]
Sibenik 4 [36%]
Sponza 8 [28%]

Table 4: The time in milliseconds our triangle splitting approach takes when used
as a pre-split pass. In brackets we show the time spent on split partitioning relative
to full BonsaiS build times. On split friendly scenes, such as Italian City, the
relative time spent on splitting is lower than on less split friendly scenes. This is
inherent, since all triangles that cross the split plane have to be considered as a
split candidate, even if the split never is used. However, if the number of triangles
used by the BVH builder isn’t increased, the build times are lower than they would
be if the splits were used. Thus increasing the ratio between triangle split time and
BVH build time.

SweepSAH SweepPre Bonsai BonsaiS BinnedSAH BinnedPre BinnedS
Arabic City 23.23 17.21 22.43 17.10 23.83 20.38 16.80
Crown 7.91 7.48 7.77 7.77 7.93 7.79 7.58
Dragon 6.22 6.16 6.02 6.48 6.50 7.44 6.50
Fairy Forest 9.50 9.89 9.42 9.63 9.76 15.17 9.82
Italian City 17.94 13.83 17.49 13.64 19.05 17.27 13.66
Kalabsha 2.31 2.34 2.24 2.42 3.42 6.55 3.39
Mini 5.10 5.16 4.94 5.31 6.19 9.57 5.61
Power Plant 10.02 8.34 9.83 8.17 10.67 9.37 7.32
Sala 10.43 10.41 10.67 10.00 12.05 13.08 10.61
San Miguel 18.86 16.92 19.12 16.00 19.75 24.45 15.99
Sibenik 15.03 14.38 14.59 14.06 14.78 16.02 13.45
Sponza 22.53 22.25 22.61 20.78 24.59 29.26 21.65

Table 5: SAH costs of all scenes and construction methods. For each scene, the
builder with the lowest cost is marked with bold text. BonsaiS and BinnedS tend
to have the lowest SAH costs, but no algorithm is consistently lowest. The Ci and
Ct constants used to evaluate Eq. 1 are set to one and Cl is zero.
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